
The Accurate solution of certain

continuous problems Using Only

Single Precision

M. Jankowski

Institute of Informatics
University of Warsaw

H. wozniakowski*

Institute of Informatics
University of Warsaw and

Department of Computer Science
Columbia University

November 1983

*This research was supported in part by the National Science
Foundation under Grant MCS-7823676.

Abstract.

A typical approach for finding the approximate solution

of a continuous problem is through discretization with

meshsize h such that the truncation error goes to zero

with h. The discretization problem is solved in floating

point arithmetic. Rounding-errors spoil the theoretical

convergence and the error may even tend to infinity.

In this paper we present algorithms of moderate cost

which use only single precision and which compute the approxi­

mate solution of the integration and elliptic equation pro­

blems with full accuracy. These algorithms are based on the

modified Gill-M¢ller algorithm for summation of very many

terms, iterative refinement of a linear system with a special

algorithm for the computation of residuals in single precision

and on a property of floating point subtraction of nearby

numbers.

1. Introduction.

Suppose we wish to approximate the solution u of a

continuous problem u = S(f). Here S is an operator. For

instance, S(f) may denote the integral of a function f and

S(f) may denote the solution of an elliptic equation with a

right-hand side f as illustrated below. A typical approach

is to find a suitable discretization ~ = Sh(f), where h

is a discretization parameter, with a truncation error O(hP)

for some positive p. The discretized problem ~ =·Sh(f)

is solved in t digit floating point binary arithmetic.

Due to rounding errors one computes ~ such that

- -k -t
uh - ~ = O(h 2) for some nonnegative k. Thus

(1. 1) u -

For most algorithms that compute ~, the parameter k is

1

positive. Thus if h tends to zero, the influence of rounding

errors spoils the theoretical convergence and u - uh may

even tend to infinity with h ~ 0 and fixed t. One may

choose h in (1.1) so that to minimize the function

(1. 2) u -

Then h = h = O(2- t /(p+k)) and
o

~o

-t -.J2.....
= 0 (2 p+k).

For positive k, this means that one cannot guarantee the

2

computation of a t digit approximation to the exact solution

u although t digit arithmetic is used. This holds

regardless of the smoothness of the problem u = S(f). We

illustrate this point by two simple examples.

Example 1.1: Integration.

Let f: [0,1] ~ X be a once continuously differentiable

function. Let

u = S (f)

For h = lin define

= ,,1 f(t)dt.
" 0

which 'is the rectangle quadrature formula. Then u - ~ = O(h)

which corresponds to p = 1 in (1.1).

To compute u
h

we apply the usual algorithm for summing

of n numbers. Assuming for simplicity that £(ih) is com-

puted exactly we have

-t -t
where \€i l S 1.06(n + 2 - i)2 whenever (n+l)2 S 0.1,

see [11]. Thus
-1 -t

~ - ~ = O(h 2) which corresponds to k = 1

in (1. 1) . For this case the optimal h
-t/2 = ho = 0(2) and

u -
~o

It is possible to improve this estimate by applying the

Gill-M¢ller algorithm for summation of n numbers, see [7].

Then as was proven in [5] we have

n
~ = h 2: i =l f(ih) (1 + ~i)

2 -t -t -t
with 16. I ~ (3 + n 2)2 whenever (n+l)2 ~ 0.1. Thus

~

u -

The optimal h = hO = O(2-2/3t) and

u -
~o

This means that using the classical algorithm of summation

one can compute a t/2 digit approximation to the integral of

3

f
2

whereas the Gill-M¢ller algorithm yields a 3t digit approxi-

mation provided these two algorithms use t digit arithmetic. •

Example 1.2: Model Elliptic Equation.

Let f: (0,1) 4 R be a sufficiently smooth function.

Let u = S(f) be a solution of th~ one dimensional elliptic

equation

u" (x) = f (x) , X€ (0.1),

u(O) = go' u(l) = gl'

for some constants go and gl' We discretize u = S(f)

by ~ = Sh(f) where h
1

- --- and u
h

is a solution of the n X n
n+l

2, -1

-1, 2, -1

-1, 2. -1

2
Then u(ih) - u. . = O(h),

n,~

-1, 2

i = 1,2, ... ,n,

2
-h f (1-2h)

g - h
2
f(1-h)

1

where u
h

. is , ~ the

ith component of·u. This corresponds to p = 2 in (1.1).
n

To compute ~ apply, for instance, Gaussian elimination.

Assuming for simplicity that £(ih) is computed exactly,

Gaussian elimination produces ~ which is the exact solution

.of a slightly perturbed matrix, i.e.,

-t
wi th IIEh11ce of order 2 . From this we have

-1 -2
Since I!Lh lice is of order h

-2 -t = O(h 2). We stress that

-1 whenever Eh is not correlated to Lh or u
h

" Thus

4

5

-2 -t
!I~-U1JCX) == 0 (h 2) which corresponds to k == 2 in (1. 1).

For this case the optimal h = hO = 0(2-
t
/

4
) and

- -t/2
u(ih) - 1.1. • = 0(2).

h.~

To improve this estimate one must guarantee that

algorithm is proposed by Babuska [2]. For Babuska's algorithm Eh

has a special form, Eh = [e: .. l,-e:· . 1- e. ·+l,e:· '+1]'
~,~- ~,~- ~,~ ~,~

i.e., the sum of elements of the ith row is equal to zero

is of order
-t

Then for i E (1, n) and e: . . 2 .
~.J

- 0(h2- t) Eh~ = cle l
+ c e +

n n

-t T
where c

l
and c

n
are of order 2 ,e

l
= [1,0, ... ,0] and

T -1
e = [0, ... ,0,1] . Since 1ILh e.I' = 0(1) for i == 1 and n, n ' ~.CX)

we get

This corresponds to k = 1 in (1.1). The optimal h = ho

-t/3 = 0(2) and

u(ih) - 1.1. = O(2-
2

/
3t

).
h.i

This means that using Gaussian elimination one can compute a

6

t/2 digit approximation to the solution of an elliptic problem

2
whereas Babuska's algorithm yields a 3t digit approximation

provided these two algorithms use t digit arithmetic.

The aim of this paper is to study the question:

Do there exist algorithms that compute t digit approx-

imations to the exact solutions of continuous problems using

t digit arithmetic? Or stated technically: do there exist

algorithms for which k = 0 in (l.l)? Examples 1.1 and 1.2

•

indicate that if such algorithms exist, they must be specially

designed to make use of some properties of the continuous

problem.

We present such algorithms for continuous problems which

generalize the problems described in Examples 1.1 and 1.2.

We stress that the costs of these algorithms are comparable

to the costs of the commonly used algorithms.

The algorithms presented in this paper utilize one or

more of the following three ingredients:

(i) a property of floating point subtraction of nearby

numbers,

(ii) a special algorithms for summation of very many terms,

(iii) iterative refinement of linear systems in single preci-

sion with a special algorithm for the computation of

residual vectors.

Section 2 deals with these three ingredients. In Sections 3

and 4 we present algorithms for integration and for elliptic

equations.

7

Although we only analyze the integration and elliptic

equation problems in this paper, we have obtained correspond­

ing algorithms for a number of other continuous problems

such as biharmonic, parabolic and hyperbolic equations.

As in this paper these algorithms preserve certain essential

properties of the continuous problems.

8

2. Preliminaries.

In this section we present the basic ingredients needed

-t
to construct algorithms with 0(2) accuracy for the approxi-

mate solutions of certain continuous problems.

(i) The first ingredient is a property of floating point

subtraction of nearby numbers. Let ft be t digit floating

point binary arithmetic. Let the arithmetic register of f~

have one guard digit. We assume that for real numbers

a and b that are exactly represented in f1, i.e., a = rd(a)

and b = rd(b), we have

flea a b) = (a a b) (l+e:),
-t

\e:\.s.2

where 0 stands for +,-,* or /. We additionally assume that

Lemma 2.1: If a = rd(a) 2 1, b = rd(b) 2 1 and la - bl .s. 1/2

then

(2. 1) flea-b) = a-b.

proof: If a = b then (2.1) holds trivially. Assume f~rst

that a > b. Then \a - bl S 1/2 reads

c
2 a m

a

•

9

where ca,cb are the exponent parts of a, b and rna' ~ are

the mantissas of a,b in ft, 1/2 ~ Ima l ' 1~1 < 1. Thus

- (l+c
b

)
c -c ~ +2

2 a b ~ --'-___ _
m

a

Since b 2 1 then c b 2 1. Hence c = c + 1 or c = c
b

.
a b a

Suppose that c
a

= c
b

+ 1.

the formula

Then subtraction is executed using

c
a - b = 2 a (m

a

The mantissa ~ is shifted one place to the right. The exact

value of rna - ~_ has at most t + 1 bits. Due to a - b ~ 1/2

and a 2 1 we have c 2 1 and
a

m
a

-Thus the first bit of m
a

is zero. The mantissa of a - b

is the normalized value of
~ Thus

mb
is shifted m m - -

a 2 • a 2

the left. exact value of m
llb

at least one place to The
2 a

is stored using t bits and therefore ft (a-b) = a-b.

If c = c then m - ~ is executed. Since rna - mb
a b a b

has t mantissa bits, it is exactly done in ft and (2.1)

holds.

10

Due to the assumption ft(a-b) = -fl(b-a), the case a < b

is equivalent to the previous one. Hence Lemma 2.1 is proven .•

The essence of Lemma 2.1 is that subtraction of two nearly

floating point numbers a,b which are not small is exactly

performed in floating point arithmetic. This will be used

in the later sections with a and b representing the values

of a continuous function at nearby points.

(ii) In this subsection we present a special algorithm for

summation of n terms, see [3]. This algorithm is based

on the repetitiv~ use of the Gill-M¢ller (GM) algorithm and

will be denoted by the RGM algorithm.

To present the RGM algorithm we first recall the GM

n
algorithm. To compute ~i=l a i

[5], [7]:

Po := 8
0

:= 0;

for i := 1 step 1 until

begin

8. := 8. 1 + a. ;
~ ~- ~

P. := P. 1 + (a. -
~ ~- ~

end;

8 := 8 + P ;
n n n

We denote GM(n: ai' a2 ,· .. ,an) =

(8.
~

8 .
n

proceed as follows, see

n do

- 8
i

_
1

))

n
To compute ~i=l a

i
by the RGM algorithm in t digit ft

we proceed as follows, see [3]:

For given nand t choose an integer r such that

(2.2)

Let m =

a[O,i]

fn l/rl
and

-t
2.1r2 ~O.l.

and a [0, i] : = a. for i = 1,2, ... , nand
~

:= 0 for i = n+l,n+2, ... ,mr. Compute

for j := 1 step 1 until r do

for i := 1 step 1 until m
r

- j do

11

a [j , i] f = GM (m ~ a [j -1, (i - 1) m+ 1] , ... , a [j -1, (i -1) m+m]) .

Denote RGM(r~al,a2"" ,an) = a[r,l]. Then a[r,l] is computed

in time proportional to nand

(2.3) a [r, 1]
-t I €. \ ~ 2.23 r 2 .

~

As an example observe that for r = 1, the RGM algorithm

coincides with the GM algorithm. For n = 2
at

one can,

for large t, set r = f3al and the RGM algorithm yields the

exact sum of slightly perturbed terms a. (1+£.) with a uniform
~ ~

bound on £. given by 2.23 f3a 1 2-
t

.
~

(iii) In this subsection we recall iterative refinement and

some of its properties as analyzed in [4]. For a nonsingular

n x n matrix A consider the linear systems Ax = b for

different n X 1 vectors b. Suppose one has an algorithm

12

~ that for every b finds an approximation y to a = A-lb

in t digit f1 such that

for some q, q € [0,1). To improve accuracy of y we apply

iterative refinement as follows:

For m : = 1,2, ...

-compute the residual r(m) := Ay(m) _ b, (y(l) =.Y),

1 Ad (m) (m) . 1 . h -so ve = r us~ng a gor~t m c,o,

t th .. (m+l) -compu e e new approx~mat~on y := y(m) _ d(m).

Assume that the computed residual r(m) is of the form

(2.4) r(m) = (I + oI(m)) (Ay(m) + 6y(m) - b)

where

(2.5)

for some constants c
l

' c 2 and Tj." Here I!. n denotes some norm.

A slight change of the proof of Theorem 3.1 in [4] yields

Theorem 2.1: Let

-t -t -t -t
01 = (l+q) (1+2) (c 1+(l+c

1
2) (~+c2))2 cond(A)+q+(2+q)2 .

-t t
02 = (l+q) (1+2) (l+c

12-)~ cond(A) + 1.

If 0'1 < 1 then

As usual,
-1

cond (A) = '1A!I IlA II.

From Theorem 2.1 we get

Theorem 2.2: Let a
l

< 1 and

Then

Observe that 02
-t

is of order 1') cond (A) and if 2 cond (A) is

much less than q, then 01 is of order q. In this case we

have

and

(2.6)

where c
3

is of order unity.

Thus if q is not too close to unity and one can

guarantee that ~ is of order l/cond(A) , then algorithm ~

13

•

•

with iterative refinement yields an approximation with relative

error of order -t 2 . We stress that to guarantee 1') to be

of order l/cond(A) , higher precision has to usually be used

for the computation of the residuals
(m)

r . As we

shall see later, for special linear systems

21

(4.10) lim ~(h,t) = O.
-2 -t

max(h,h 2)~o

Thus, for small h
-2 -t

and h 2 ,q(h,t) is small and the

computed vector y is a good approximation to the vector a.

Note that (4.10) holds if 0 computes y such that

I!y-al' , 100 = o (h-
2
2-

t llall oo) where a. = ~lb. Since

-2 -t -
= 0 (h 2 llall oo) , we have lIy-a!l oo ~ !~y-al!oo + rra-alloo

-2 -t = O(h 2 ~!alloo) as claimed.

Observe that Gaussian elimination satisfies (4.10).

Indeed, Gaussian elimination computes y which is the exact

solution of (Lh-~)Y = b where !I~!!oo ~ d22-t!lLhlloo with d2

of order unity. Assuming that
- --1 -t

d 3 = d2 'ILh'!ca1\ L h 11002 < 1,

we have

--1
a = Lh b.

Since d
3

-2 -t = e(h 2), this yields (4.10). Of course, there

are many other algorithms for which (4.10) also holds. EXam-

ples include Babuska's algorithm and some iterative algorithms.

To improve the estimate (4.9) we apply iterative refinement

as described in (iii) of Section 2. The computation of the

2
residuals r = Lhy - b, b = h f + g, is done in single precision

by a special algorithm. We now define this algorithm. Let

(4.11)

3
Due to (4.3), ea. = hk' (x.) + O(h). We assume that ea.

~ ~ ~

is computed in t digit fl such that

(4. 12)
-t 3

ea. = ft(ea.) = ea. + O(h2 + h).
~ ~ ~

Note that (4.12) holds if one can compute k' (x.) with the
~

-t
absolute error of order 2 . Then we can set ea. := hk' (x.)

~ ~

and

22

-t
&a. = fJ. (hk' (x.)) = hk' (x.) + O(h2)

-t 3 = ~a. + O(h2 + h).
~ ~ ~ ~

Observe that the i-th component of r = L Y - b. n .

(4. 13)

with YO = gO'Yn + l = gl' We transform (4.13) to the form

(4. 14)
2

r. = a. [(y.-y.) - (y. l-Y')] - ~a. (y. l-y.)-h f ..
~ ~ ~ ~-n ~+ ~ '~~+ ~ ~

This is the formula from which the residual vectors will be

computed. We stress that the order of arithmetic operations

in (4.14) is crucial.

follows:

Zl := y. -
~

(4. 15) z2 := Yi + l

..
That is, r. should be performed as

~

y. l'
~-

- y. ,
~

2
r. := a i * (zl-z2) - ea

i * z2 - h *f ..
~ ~

See [1) and (8) where a similar idea for computing r. has
L

been suggested.

23

We now show that the algorithm (4.15) computes r. = fL(r.)
L L

with a surprisingly small error.

(4. 16)
4 2 -t -t 3

r i - r i = O(h +h 2 + lIy-v!loo(2 +h))

and the constant in the 0 notation does not depend on y. •

Proof: Observe that due to Lemma 2.1, zl and z2 are computed

exactly in fL. Thus

where a. ,
L

Ii a. ,
L

f. are given by (4.6), (4.12) and e.
-t = 0 (2) •

L L

From (4.6) and (4.12) we get

r. - r.
L L

Note that ~a. = O(h) and
L

-t -t
+ l~aiz212 + hl z

2 12

+ h31Z2 I + h
2
2-

t
).

z2 = v. 1- v. + (y. I-v. 1) - (y.-v.) = O(h+lly-vLJ L+ L L+ L+ L L ~

due to (4.5). Similarly

= 2v.-v. I-v. 1 + 2(y.-v.) - (y. I-v. 1) L L- L+ L L L- L-

2
- (y. I-v. 1) = O(h +lly-vll). L+ L+ ,100

24

Hence

Since none of the constants appearing in the 0 notation depend

on y, (4.16) holds.

We are ready to prove the main theorem of this paper.

Theorem 4.1: Let (4.6) and (4.12) hold. Then an algorithm

satisfying (4.9) and (4.10) with k = O(ln~) iterative

refinement steps using the algorithm (4.15) computes the

- - - - T
vector ~ = [u

l
,u

2
, ... ,un] such that

(4.17)

2
v. - u. = 0 (h),
~ ~

u(x.) - u. = O(h
2

),
~ ~

-2 -t
whenever h 2 is of order unity, i.e., there exist positive

constants d4 '
d

5
and d

6 such that h ~ d4 , h- 2 2- t d
~ 5 imply

Iv. u.1 d h
2

and \u(xi)
- 2 - ~ -uil~d6h.

~ ~ 6

If the of is proportional
-1

then for cose I:P to h

0(2 -t/2) , - t2t/2 h = ~ is computed in time proportional to and

(4. 18) u(x.) - u. = O(2- t).
~ ~

proof: We use Theorem 2.1 with the infinity norm to show

(4.17). The algorithm I:P computes the vector y such that

•

•

25

see (4.9) and (4.10). For small h
-2 -t

and h 2 , (4. 5), (4. 10)

and u(x.) 2 2 yield that the y. are close to the u(x.) and
~ ~ ~

1
Yi + l - Yi are close to zero. Hence Yi 2 1. \yi+l-Yil ~ 2

and we can apply Lemma 4.1 for the computed vector

r
l = f1, (Lhy- b) . Due to (4.16) , (2.4) and (2.5) hold with

c
l = 0, 4 t

Tl = 0 (h 2 + h
2

) and c
2 = 0(1 + h

3
2

t
). The

parameters 0'1 and 0'2 of Theorem 2.1 satisfy the relations,

2 t
0'2 = O(h 2 + 1).

For small h
-2 -t

and h 2 ,0'1 is small. This means that the

speed of convergence of iterative refinement is fast. For

small
(1) (m)

h, all components of y as well as yare close

(m) (m)
to two and y. 1 - y. are close to zero. Hence Lemma 4.1

~+ ~

can be applied for any m. After k steps where

1
k = O(1,n h)' we have due to Theorem 2.2

l!y (k+l)-vll
oo

= (2-t) 2) o 0'2 = O(h .

(k+l) d Setting ~ = y an using (4.5), (4.16), we obtain (4.17).

To show (4.18), observe that the cost of computing uh

1 1
is proportional to h J,n h' For h = 0(2- t /2). it is propor-

tional to t2t/2 as claimed.

Remark 4.1: Suppose that (4.12) is slightly strengthened.

I

26

That is, let Aa. = f1. (sa.') = ~a. + O(h2- t) . This holds, for
~ ~ ~ ~

instance, if k(x) - const in (4. 1) which implies ~a. - 0.
~

Then the proof of Theorem 4.1 yields that

i.e., we can solve the linear system (4.4) whose condition

-2
number is of order h using only single precision with

accuracy independent of h. •
We now briefly indicate how to generalize our analysis

to the multidimensional elliptic equations of the form

f (x) , X € D,

(4. 18)

u(x) =g(x), X € aD,

m
where D = (0,1) , k. (x) 2 k. > ° for smooth functions k.,

J J J

f and g. As we mentioned before we can assume without loss

-
of generality that u(x) 2 2 for x € D.

For x = [i
l
h,i

2
h, imh]T, 1 ~ i

j
~ N. h = l/(N+l),

we approximate (4.18) in each direction as in (4.2). We

obtain the following difference scheme

"hv (x) 1 l:~ 1 [a. (x) (v (x) -v (x-he.))
- h 2 J= J J

-a. (x+he.) (v(x+he.) - v(x»]
J J J

where e.
J

T = [0, ... ,1, ... ,0] and

j

a. (x+he.) - a. (x) ok. 2
]]] =-=--.J.(x)+O(h),

h ox.
J

a. (x+he.) + a. (x)
]]]

2
2 = k. (x) + 0 (h).

J

This difference scheme is equivalent to the n x n linear

27

system Av = b whose form is similar to (4.4) with n = N
m

= (~ - l)m.

-2
The condition number of this system is 8(h).

We assume that a. (x), f(x) and g(x) for the meshpoints x
J

-t
are computed with absolute error of order 2 ,see (4.6).

As in (4.12) assume that ~a.(x) = a.(x+he.) - a.(x) is
J J J J

-t 3
computed with absolute error of order h2 + h .

Let ~ be an arbitrary algorithm solving Av = b which

produces in t digit ft a vector y satisfying (4.9) and (4.10).

Following the proof of Theorem 4.1 one can obtain'

Theorem 4.2: The algorithm ~ satisfying (4.9) and (4.10)

with k = O(tn~) iterative refinement steps using the

algorithm (4.15) in each direction computes the vector uh

such that

2
II~ - vlloo = 0 (h),

whenever h-
2

2-
t

is of order unity~ x is a meshpoint and

~(x) is the corresponding component of ~. •

28

We comment on the assumption (4.10). As already observed,

this holds for many algorithms for the one dimensional case,

m = 1. For m 2 2, many efficient direct algorithms compute

Y such that

(4.19)

where d
7

depends on n. For instance, for algorithms using

the Fast Fourier transforms, d
7

= e(tn n), see [6] and [9].

We stress that d
7

has to be of order unity if (4.10) is

satisfied. We know no direct algirthms for which (4.19)

holds with d
7

= 0(1) for m 2 2. We doubt if such algorithms

exist.

For m ~ 3, there exists an iterative algorithm for which

(4.19) holds with d
7

= 0(1). This is Chebyshev's algorithm.

To show this, recall that Chebyshev's algorithm approximates

the solution v of Av = b in the spectral norm 11'11 2 , From

Lemma 4.1 it is easy to observe that r = ft(Ay - b) satisfies

(4.20)

-2 -t
whenever h 2 is of order unity. Theorem 5.1 of [12]

yields that Chebyshev's algorithm with the algorithm (4.15)

for computation of residuals produces a vector z such that

(4.21)

29

with de of order unity. Applying iterative refinement to

Chebyshev's algorithm. Theorem 2.1 and (4.20) yield that we

can compute a vector y such that

(4.22)

with d g of order unity. From (4.21) we have in the infinity

norm

Thus q(h,t) = d
9

h
2

-
m

/
2

and (4.10) is satisfied since 2-m/2 > o.

It is easy to see why the assumption m ~ 3 is needed

for iterative algorithms which approximate the solution in the

spectral norm. Even if such an algorithm computes an

approximation y with full precision in t digit fl,

lly-v!12

t:y-v!lcn

-t
= 0 (2 !lv'l2) and

-t
= 0 (2 llv!1

oo
Jn).

-t
order 2 ,then

!Iv!12 = 9cfri,!vll cn), then

-m/2 2
Since ,,;'n ~ hand h can be of

Thus y approximates v in the infinity norm with some

precision whenever 2 - m/2 is positive, i.e., m ~ 3.

For m 2 4, we know no algorithms for which (4.10) is

satisfied, i.e., the problem of designing algorithms which

-t
approximate u(x.) with order 2 using t digit ft is open.

1.

Acknowledgements

We are grateful to A. Kietbasinski and J.P. Traub for

their valuable comments and suggestions.

30

References

[1] Axelsson, 0., Gustafsson, I.: A preconditioned
conjugate gradient method for finite element equations,
which is stable for rounding errors. Inf. proc. 80,
pp. 723-728.

[2] Babuska, J.: Numerical stability in problems of

31

linear algebra. SIAM J. Num. Anal., 1972, 9, pp. 53-77.

[3]

[4]

Jankowski, M., Smoktunowicz, A.,
A note on floating-point summation of
Journal of Information processing and
ElK, to appear.

/

/

Wozniakowski, H.:
very many terms.
Cybernetics--

Jankowski, M., wozniakowski, H.: Iterative refinement
implies numerical stability. BIT, 1977, 17, pp. 303-311.

[5] Kie~basinski, A.: Summation algorithm with corrections
and some of its applications, Mat. Stos., 1973, I,
pp. 22-41 (in polish).

[6] Mejran,Z.: Algorithm for solving linear algebraic
systems arising from the difference method for Poisson's
equation. Mat. Stos., 1978, XII, pp. 35-41 (in polish).

[7] M¢ller, 0.: Quasi-double-precision in floating-point
addition. BIT, 1965, 5, pp. 37-50, 251-255.

[8] pohl, P.: Iterative Improvement Without Double
precision in a Boundary Value Problem. BIT, 1974, 14,
pp. 361-365.

[9] Ramos, G.: Roundoff error analysis of the fast
Fourier transform. Tech. Rep. STAN-CS-70-146, 1970,
Stanford University.

[10] Samarskij, A.A.: Theory of the difference schemes.
Moscow 1977 (in Russian).

[11] wilkinson, J.H.: Rounding errors in algebraic
processes. Englewood Cliffs, N.J., prentice-Hall 1963.

/

[12] wozniakowski, H.: Numerical Stability of the
Chebyshev Method for the Solution of Large Linear
Systems. Numer. Math., 1977, 28, pp. 191-209.

14

that arise from the discretization of certain continuous

problems it is possible to compute the residuals in single

precision such that ~ is of order l/cond(A) although cond(A)

is huge. In this case we guarantee O(2-
t

) precision of the

computed approximation while still performing all operations in

single precision.

3. Integration.

Let f: [0,1] ~ ~ belong to the class C ,i.e., f is
s,)

15

s-times differentiable function, s 2 0, and its s-th derivative

satisfies a Holder condition of order A, A € [0,1], i.e.,

If(S) (x) - f(s) (y) 1 ~ Mlx-y\~· , 'ix,y € [0,1], for some constant

M. We assume that s + \ > O. We wish to approximate

u = S (f)
,,1

="0 f(t)dt.

For h = lin consider a quadrature formula of the form

where A. and x. depend on h. We assume that the weights A.
~ ~ ~

are nonnegative and the quadrature formula Sh is convergent

for continuous functions. The truncation error is assume

·to be

p =) + s.

for functions f from the class C
". S.)

Assume that the weights A. and the function values f(x.)
~ ~

can be computed in f£ with high relative precision, i. e ..

.....,
A. = f.e (A.) = A. (1 + ~A.),
~ ~ ~ ~

= f(x.)(l + 6£.),
~ ~

for some constants d
l

and d
2

. Let a. = f£(A. f~) = A.f. (l+~.),
~ ~ ~ ~ ~ ~

16

_ -t
16i l ~ 2 .

'n
We compute ~. 1 a. by the RGM algorithm with

~;;: ~

r ;;: r2/pl . Assume that t satisfies

(3.2)

For h 2 10r / 22- t / P , (2.2) holds and the RGM produces

(3.3)

where 1 + 5. ;;: (l+5A.) (1+5f.) (1+'F.) (l+'e:.) with
~ ~ ~ ~ ~

-t
I'eil ~ 2.23r2 due to (2.3). Thus

-t -2t I 5 i I ~ (d 1 +d2 + 1 +2 . 23 r) 2 + 0 (2) .

- n
Note that Iu. - u. I ~ (r:';;:1 A. If(x.) I)max (10.1). Since

n n ~ ~ ~ 1/' ~
n 1 ~~~n

r: i ;;:l Ailf(xi) I converges to JOlf(t) tdt we have

- -t
~ - ~ ;;: 0(2).

Hence we have proven

Theorem 3.1: Let (3.1) and (3.2) hold. Then the RGM algorithm

with r = r2/pl computes ~ in time proporitional to h-
1

such

that

~
,..1 f(t)dt = O(hP) .. 0

whenever h2 10r / 2 -tip 2 . For h
r/2 -tip

close to 10 2 ,

~
,.,1 f(t)dt = 0(2- t). • ~ 0

------ ------

17

Observe that for smooth problems, i.e., for functions f

for which p L 2, we have r = 1 and the RGM algorithm coincides

with the GM algorithm. For p E [1,2), we get r = 2. For

nonsmooth problems, i.e., for functions f for which s = 0,

we have p =) and r = [2/)1. Thus for small), r is large.

Even in this case we can (theoretically) find a t digit

approximation to the integral of f although the cost of the

RGM algorithm is unreasonably high, since it is proporition

to 2t/\.

18

4. Elliptic Equations.

In this section we first analyze a one dimensional elliptic

equation in detail and next indicate how our results can be

generalized for the multidimensional case.

(4.1)

Consider the elliptic equation

d du
dx (k (x) dx) (x) = f (x) ,

u(O) = g 0' u(l) = g l'

X€ (0,1),

We assume that 0 < kO ~ k(x). For simplicity we also assume

that k and f are sufficiently smooth.

We wish to find v. = vh(x.) which approximates u(x.)
~ ~ ~

for x. = ih with the meshsize h = l/(n+l). To find V., (4.1)
~ ~

is discretized as follows. The operator - d~(k(X)~~) is

. t d 'th of order h
2

by th t approx~ma e w~ error e opera or A
h

,

see [10, pp. 149-170],

(4.2)
1

Ahv. = -2 [a. (v. - v . 1) - a. 1 (v. 1-v.)]
~ h ~ ~ ~- ~+ ~+ ~

where a. satisfies two conditions'
~

a. l-a. 2 ~+ ~ k' (x.) = + O(h).
h ~

(4.3)

a. l+a. 2 ~+ ~ k (x.) = + 0 (h).
2 ~

For instance, a. can be equal to k(x.-h/2) or
~ ~

(k(x.) + k(x.-h»/2.
~ ~

Let f. = f(x.). From (4.2) we get the three point
~ ~

difference scheme Ahv. = f. which is equivalent to the n X n
~ ~

system of linear equations

(4.4)
2

L v = h f + g h

where Lh is a n X n symmetric positive definite tridiagonal

19

matrix with the i-th row given by [0, ... ,-a. ,a. l+a. ,-a. 1"" ,0],
~ ~+ ~ ~+

(4.5) u (x.)
~

- v

T
[f

l
,f

2
, ... ,f

n
] and

i

) - 11 'I II -111 and that cond (Lh - .:Lh 100' Lh 00

Observe that without loss of generality we can assume

that u{x) 2 2 for x € [0,1]. Indeed, it is enough to replace

f(x) and gO,gl with, for example f(x) = f(x) + d
l

, go = go + d
l

,

gl = gl + d l · Then the solution u(x) = u(x) + d
l

. Since

see [10], then setting d l = 2 + dO we get u (x) 2 d
l

- IJull
oo

2 2

as claimed. For small h, (4.5) yields that all v. are close
~

to 2 and the v. 1 - v. are close to zero.
~+ ~

We now turn to the computational aspects of solving

(4.4) in t digit ft. We first compute the coefficients of

20

L
h

, f and g. We assume that the values f., a., go and g
1. 1. 1

-t
are computed with the absolute error of order 2 ,i. e ..

f. = ft(f.) = f. + 0(2-
t

),
1. 1. 1.

i = 1,2, ... ,n,

(4.6) a. = ft(a.) = a. + O(2-
t
),

1. 1. 1.
i = 1,2, ... , n,

g. = f!(g.) = g. + O(2-
t

),
]]]

j = 0,1.

-Let L
h

, f and g denote the computed matrix Lh and the

computed vectors f and g. Thus, instead of the linear

system (4.4) we have

(4.7)

It
-2 = O(h) and

(4.8)

Let ~ be an arbitrary algorithm for solving LhX = b with an

arbitrary vector b. We assume that ~ satisfies the

assumption of Theorem 2.1, i.e., ~ produces in t digit

f! a vector y such that

(4.9)
-1

cr. = Lh b,

with q < 1. Observe that q is a function of the meshsize

h and the mantissa length t, q = q(h,t). We need to assume

that

