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Abstract. 

A typical approach for finding the approximate solution 

of a continuous problem is through discretization with 

meshsize h such that the truncation error goes to zero 

with h. The discretization problem is solved in floating 

point arithmetic. Rounding-errors spoil the theoretical 

convergence and the error may even tend to infinity. 

In this paper we present algorithms of moderate cost 

which use only single precision and which compute the approxi

mate solution of the integration and elliptic equation pro

blems with full accuracy. These algorithms are based on the 

modified Gill-M¢ller algorithm for summation of very many 

terms, iterative refinement of a linear system with a special 

algorithm for the computation of residuals in single precision 

and on a property of floating point subtraction of nearby 

numbers. 



1. Introduction. 

Suppose we wish to approximate the solution u of a 

continuous problem u = S(f). Here S is an operator. For 

instance, S(f) may denote the integral of a function f and 

S(f) may denote the solution of an elliptic equation with a 

right-hand side f as illustrated below. A typical approach 

is to find a suitable discretization ~ = Sh(f), where h 

is a discretization parameter, with a truncation error O(hP ) 

for some positive p. The discretized problem ~ =·Sh(f) 

is solved in t digit floating point binary arithmetic. 

Due to rounding errors one computes ~ such that 

- -k -t 
uh - ~ = O(h 2 ) for some nonnegative k. Thus 

(1. 1) u -

For most algorithms that compute ~, the parameter k is 

1 

positive. Thus if h tends to zero, the influence of rounding 

errors spoils the theoretical convergence and u - uh may 

even tend to infinity with h ~ 0 and fixed t. One may 

choose h in (1.1) so that to minimize the function 

(1. 2) u -

Then h = h = O(2- t /(p+k)) and 
o 

~o 

-t -.J2..... 
= 0 (2 p+k). 

For positive k, this means that one cannot guarantee the 
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computation of a t digit approximation to the exact solution 

u although t digit arithmetic is used. This holds 

regardless of the smoothness of the problem u = S(f). We 

illustrate this point by two simple examples. 

Example 1.1: Integration. 

Let f: [0,1] ~ X be a once continuously differentiable 

function. Let 

u = S (f) 

For h = lin define 

= ,,1 f(t)dt. 
" 0 

which 'is the rectangle quadrature formula. Then u - ~ = O(h) 

which corresponds to p = 1 in (1.1). 

To compute u
h 

we apply the usual algorithm for summing 

of n numbers. Assuming for simplicity that £(ih) is com-

puted exactly we have 

-t -t 
where \€i l S 1.06(n + 2 - i)2 whenever (n+l)2 S 0.1, 

see [11]. Thus 
-1 -t 

~ - ~ = O(h 2 ) which corresponds to k = 1 

in (1. 1) . For this case the optimal h 
-t/2 = ho = 0(2 ) and 

u -
~o 



It is possible to improve this estimate by applying the 

Gill-M¢ller algorithm for summation of n numbers, see [7]. 

Then as was proven in [5] we have 

n 
~ = h 2: i =l f(ih) (1 + ~i) 

2 -t -t -t 
with 16. I ~ (3 + n 2 )2 whenever (n+l)2 ~ 0.1. Thus 

~ 

u -

The optimal h = hO = O(2-2/3t) and 

u -
~o 

This means that using the classical algorithm of summation 

one can compute a t/2 digit approximation to the integral of 

3 

f 
2 

whereas the Gill-M¢ller algorithm yields a 3t digit approxi-

mation provided these two algorithms use t digit arithmetic. • 

Example 1.2: Model Elliptic Equation. 

Let f: (0,1) 4 R be a sufficiently smooth function. 

Let u = S(f) be a solution of th~ one dimensional elliptic 

equation 

u" (x) = f (x) , X€ (0.1), 

u(O) = go' u(l) = gl' 

for some constants go and gl' We discretize u = S(f) 



by ~ = Sh(f) where h 
1 

- --- and u
h 

is a solution of the n X n 
n+l 

2, -1 

-1, 2, -1 

-1, 2. -1 

2 
Then u(ih) - u. . = O(h ), 

n,~ 

-1, 2 

i = 1,2, ... ,n, 

2 
-h f (1-2h) 

g - h
2
f(1-h) 

1 

where u
h 

. is , ~ the 

ith component of·u. This corresponds to p = 2 in (1.1). 
n 

To compute ~ apply, for instance, Gaussian elimination. 

Assuming for simplicity that £(ih) is computed exactly, 

Gaussian elimination produces ~ which is the exact solution 

.of a slightly perturbed matrix, i.e., 

-t 
wi th IIEh11ce of order 2 . From this we have 

-1 -2 
Since I!Lh lice is of order h 

-2 -t = O(h 2 ). We stress that 

-1 whenever Eh is not correlated to Lh or u
h

" Thus 

4 
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-2 -t 
!I~-U1JCX) == 0 (h 2 ) which corresponds to k == 2 in (1. 1). 

For this case the optimal h = hO = 0(2-
t
/

4
) and 

- -t/2 
u(ih) - 1.1. • = 0(2 ). 

h.~ 

To improve this estimate one must guarantee that 

algorithm is proposed by Babuska [2]. For Babuska's algorithm Eh 

has a special form, Eh = [e: .. l,-e:· . 1- e. ·+l,e:· '+1]' 
~,~- ~,~- ~,~ ~,~ 

i.e., the sum of elements of the ith row is equal to zero 

is of order 
-t 

Then for i E (1, n) and e: . . 2 . 
~.J 

- 0(h2- t ) Eh~ = cle l 
+ c e + 

n n 

-t T 
where c

l 
and c

n 
are of order 2 ,e

l 
= [1,0, ... ,0] and 

T -1 
e = [0, ... ,0,1] . Since 1ILh e.I' = 0(1) for i == 1 and n, n ' ~.CX) 

we get 

This corresponds to k = 1 in (1.1). The optimal h = ho 

-t/3 = 0(2 ) and 

u(ih) - 1.1. = O(2-
2

/
3t

). 
h.i 

This means that using Gaussian elimination one can compute a 
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t/2 digit approximation to the solution of an elliptic problem 

2 
whereas Babuska's algorithm yields a 3t digit approximation 

provided these two algorithms use t digit arithmetic. 

The aim of this paper is to study the question: 

Do there exist algorithms that compute t digit approx-

imations to the exact solutions of continuous problems using 

t digit arithmetic? Or stated technically: do there exist 

algorithms for which k = 0 in (l.l)? Examples 1.1 and 1.2 

• 

indicate that if such algorithms exist, they must be specially 

designed to make use of some properties of the continuous 

problem. 

We present such algorithms for continuous problems which 

generalize the problems described in Examples 1.1 and 1.2. 

We stress that the costs of these algorithms are comparable 

to the costs of the commonly used algorithms. 

The algorithms presented in this paper utilize one or 

more of the following three ingredients: 

(i) a property of floating point subtraction of nearby 

numbers, 

(ii) a special algorithms for summation of very many terms, 

(iii) iterative refinement of linear systems in single preci-

sion with a special algorithm for the computation of 

residual vectors. 

Section 2 deals with these three ingredients. In Sections 3 



and 4 we present algorithms for integration and for elliptic 

equations. 

7 

Although we only analyze the integration and elliptic 

equation problems in this paper, we have obtained correspond

ing algorithms for a number of other continuous problems 

such as biharmonic, parabolic and hyperbolic equations. 

As in this paper these algorithms preserve certain essential 

properties of the continuous problems. 
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2. Preliminaries. 

In this section we present the basic ingredients needed 

-t 
to construct algorithms with 0(2 ) accuracy for the approxi-

mate solutions of certain continuous problems. 

(i) The first ingredient is a property of floating point 

subtraction of nearby numbers. Let ft be t digit floating 

point binary arithmetic. Let the arithmetic register of f~ 

have one guard digit. We assume that for real numbers 

a and b that are exactly represented in f1, i.e., a = rd(a) 

and b = rd(b), we have 

flea a b) = (a a b) (l+e:), 
-t 

\e:\.s.2 

where 0 stands for +,-,* or /. We additionally assume that 

Lemma 2.1: If a = rd(a) 2 1, b = rd(b) 2 1 and la - bl .s. 1/2 

then 

(2. 1) flea-b) = a-b. 

proof: If a = b then (2.1) holds trivially. Assume f~rst 

that a > b. Then \a - bl S 1/2 reads 

c 
2 a m 

a 

• 
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where ca,cb are the exponent parts of a, b and rna' ~ are 

the mantissas of a,b in ft, 1/2 ~ Ima l ' 1~1 < 1. Thus 

- (l+c
b

) 
c -c ~ +2 

2 a b ~ --'-___ _ 
m 

a 

Since b 2 1 then c b 2 1. Hence c = c + 1 or c = c
b

. 
a b a 

Suppose that c
a 

= c
b 

+ 1. 

the formula 

Then subtraction is executed using 

c 
a - b = 2 a (m 

a 

The mantissa ~ is shifted one place to the right. The exact 

value of rna - ~_ has at most t + 1 bits. Due to a - b ~ 1/2 

and a 2 1 we have c 2 1 and 
a 

m 
a 

-Thus the first bit of m 
a 

is zero. The mantissa of a - b 

is the normalized value of 
~ Thus 

mb 
is shifted m m - -

a 2 • a 2 

the left. exact value of m 
llb 

at least one place to The 
2 a 

is stored using t bits and therefore ft (a-b) = a-b. 

If c = c then m - ~ is executed. Since rna - mb 
a b a b 

has t mantissa bits, it is exactly done in ft and (2.1) 

holds. 
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Due to the assumption ft(a-b) = -fl(b-a), the case a < b 

is equivalent to the previous one. Hence Lemma 2.1 is proven .• 

The essence of Lemma 2.1 is that subtraction of two nearly 

floating point numbers a,b which are not small is exactly 

performed in floating point arithmetic. This will be used 

in the later sections with a and b representing the values 

of a continuous function at nearby points. 

(ii) In this subsection we present a special algorithm for 

summation of n terms, see [3]. This algorithm is based 

on the repetitiv~ use of the Gill-M¢ller (GM) algorithm and 

will be denoted by the RGM algorithm. 

To present the RGM algorithm we first recall the GM 

n 
algorithm. To compute ~i=l a i 

[5], [7]: 

Po := 8
0 

:= 0; 

for i := 1 step 1 until 

begin 

8. := 8. 1 + a. ; 
~ ~- ~ 

P. := P. 1 + (a. -
~ ~- ~ 

end; 

8 := 8 + P ; 
n n n 

We denote GM(n: ai' a2 ,· .. ,an) = 

(8. 
~ 

8 . 
n 

proceed as follows, see 

n do 

- 8
i

_
1

) ) 



n 
To compute ~i=l a

i 
by the RGM algorithm in t digit ft 

we proceed as follows, see [3]: 

For given nand t choose an integer r such that 

(2.2) 

Let m = 

a[O,i] 

fn l/rl 
and 

-t 
2.1r2 ~O.l. 

and a [0, i] : = a. for i = 1,2, ... , nand 
~ 

:= 0 for i = n+l,n+2, ... ,mr. Compute 

for j := 1 step 1 until r do 

for i := 1 step 1 until m
r

- j do 

11 

a [ j , i] f = GM (m ~ a [ j -1, (i - 1) m+ 1] , ... , a [ j -1, (i -1) m+m] ) . 

Denote RGM(r~al,a2"" ,an) = a[r,l]. Then a[r,l] is computed 

in time proportional to nand 

(2.3) a [r, 1] 
-t I €. \ ~ 2.23 r 2 . 

~ 

As an example observe that for r = 1, the RGM algorithm 

coincides with the GM algorithm. For n = 2
at 

one can, 

for large t, set r = f3al and the RGM algorithm yields the 

exact sum of slightly perturbed terms a. (1+£.) with a uniform 
~ ~ 

bound on £. given by 2.23 f3a 1 2-
t

. 
~ 

(iii) In this subsection we recall iterative refinement and 

some of its properties as analyzed in [4]. For a nonsingular 

n x n matrix A consider the linear systems Ax = b for 

different n X 1 vectors b. Suppose one has an algorithm 
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~ that for every b finds an approximation y to a = A-lb 

in t digit f1 such that 

for some q, q € [0,1). To improve accuracy of y we apply 

iterative refinement as follows: 

For m : = 1,2, ... 

-compute the residual r(m) := Ay(m) _ b, (y(l) =.Y), 

1 Ad (m) ( m ) . 1 . h -so ve = r us~ng a gor~t m c,o, 

t th .. (m+l) -compu e e new approx~mat~on y := y(m) _ d(m). 

Assume that the computed residual r(m) is of the form 

(2.4) r(m) = (I + oI(m)) (Ay(m) + 6y(m) - b) 

where 

(2.5) 

for some constants c
l

' c 2 and Tj." Here I!. n denotes some norm. 

A slight change of the proof of Theorem 3.1 in [4] yields 

Theorem 2.1: Let 

-t -t -t -t 
01 = (l+q) (1+2 ) (c 1+(l+c

1
2 ) (~+c2))2 cond(A)+q+(2+q)2 . 

-t t 
02 = (l+q) (1+2 ) (l+c

12- )~ cond(A) + 1. 



If 0'1 < 1 then 

As usual, 
-1 

cond (A) = '1A!I IlA II. 

From Theorem 2.1 we get 

Theorem 2.2: Let a
l 

< 1 and 

Then 

Observe that 02 
-t 

is of order 1') cond (A) and if 2 cond (A) is 

much less than q, then 01 is of order q. In this case we 

have 

and 

(2.6) 

where c
3 

is of order unity. 

Thus if q is not too close to unity and one can 

guarantee that ~ is of order l/cond(A) , then algorithm ~ 

13 

• 

• 

with iterative refinement yields an approximation with relative 

error of order -t 2 . We stress that to guarantee 1') to be 

of order l/cond(A) , higher precision has to usually be used 

for the computation of the residuals 
(m) 

r . As we 

shall see later, for special linear systems 
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(4.10) lim ~(h,t) = O. 
-2 -t 

max(h,h 2 )~o 

Thus, for small h 
-2 -t 

and h 2 ,q(h,t) is small and the 

computed vector y is a good approximation to the vector a. 

Note that (4.10) holds if 0 computes y such that 

I!y-al' , 100 = o (h-
2
2-

t llall oo ) where a. = ~lb. Since 

-2 -t -
= 0 (h 2 llall oo ) , we have lIy-a!l oo ~ !~y-al!oo + rra-alloo 

-2 -t = O(h 2 ~!alloo) as claimed. 

Observe that Gaussian elimination satisfies (4.10). 

Indeed, Gaussian elimination computes y which is the exact 

solution of (Lh-~)Y = b where !I~!!oo ~ d22-t!lLhlloo with d2 

of order unity. Assuming that 
- --1 -t 

d 3 = d2 'ILh'!ca1\ L h 11002 < 1, 

we have 

--1 
a = Lh b. 

Since d
3 

-2 -t = e(h 2 ), this yields (4.10). Of course, there 

are many other algorithms for which (4.10) also holds. EXam-

ples include Babuska's algorithm and some iterative algorithms. 

To improve the estimate (4.9) we apply iterative refinement 

as described in (iii) of Section 2. The computation of the 

2 
residuals r = Lhy - b, b = h f + g, is done in single precision 

by a special algorithm. We now define this algorithm. Let 

(4.11) 



3 
Due to (4.3), ea. = hk' (x.) + O(h). We assume that ea. 

~ ~ ~ 

is computed in t digit fl such that 

(4. 12 ) 
-t 3 

ea. = ft(ea.) = ea. + O(h2 + h ). 
~ ~ ~ 

Note that (4.12) holds if one can compute k' (x.) with the 
~ 

-t 
absolute error of order 2 . Then we can set ea. := hk' (x.) 

~ ~ 

and 

22 

-t 
&a. = fJ. (hk' (x.)) = hk' (x.) + O(h2 ) 

-t 3 = ~a. + O(h2 + h ). 
~ ~ ~ ~ 

Observe that the i-th component of r = L Y - b. n . 

(4. 13) 

with YO = gO'Yn + l = gl' We transform (4.13) to the form 

(4. 14) 
2 

r. = a. [(y.-y. ) - (y. l-Y')] - ~a. (y. l-y.)-h f .. 
~ ~ ~ ~-n ~+ ~ '~~+ ~ ~ 

This is the formula from which the residual vectors will be 

computed. We stress that the order of arithmetic operations 

in (4.14) is crucial. 

follows: 

Zl := y. -
~ 

(4. 15) z2 := Yi + l 

.. 
That is, r. should be performed as 

~ 

y. l' 
~-

- y. , 
~ 

2 
r. := a i * (zl-z2) - ea

i * z2 - h *f .. 
~ ~ 



See [1) and (8) where a similar idea for computing r. has 
L 

been suggested. 
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We now show that the algorithm (4.15) computes r. = fL(r.) 
L L 

with a surprisingly small error. 

(4. 16) 
4 2 -t -t 3 

r i - r i = O(h +h 2 + lIy-v!loo(2 +h)) 

and the constant in the 0 notation does not depend on y. • 

Proof: Observe that due to Lemma 2.1, zl and z2 are computed 

exactly in fL. Thus 

where a. , 
L 

Ii a. , 
L 

f. are given by (4.6), (4.12) and e. 
-t = 0 (2 ) • 

L L 

From (4.6) and (4.12) we get 

r. - r. 
L L 

Note that ~a. = O(h) and 
L 

-t -t 
+ l~aiz212 + hl z

2 12 

+ h31Z2 I + h
2
2-

t
). 

z2 = v. 1- v. + (y. I-v. 1) - (y.-v.) = O(h+lly-vLJ L+ L L+ L+ L L ~ 

due to (4.5). Similarly 

= 2v.-v. I-v. 1 + 2(y.-v.) - (y. I-v. 1) L L- L+ L L L- L-

2 
- (y. I-v. 1) = O(h +lly-vll ). L+ L+ ,100 
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Hence 

Since none of the constants appearing in the 0 notation depend 

on y, (4.16) holds. 

We are ready to prove the main theorem of this paper. 

Theorem 4.1: Let (4.6) and (4.12) hold. Then an algorithm 

satisfying (4.9) and (4.10) with k = O(ln~) iterative 

refinement steps using the algorithm (4.15) computes the 

- - - - T 
vector ~ = [u

l
,u

2
, ... ,un] such that 

(4.17) 

2 
v. - u. = 0 (h ), 
~ ~ 

u(x.) - u. = O(h
2

), 
~ ~ 

-2 -t 
whenever h 2 is of order unity, i.e., there exist positive 

constants d4 ' 
d

5 
and d

6 such that h ~ d4 , h- 2 2- t d 
~ 5 imply 

Iv. u.1 d h
2 

and \u(xi ) 
- 2 - ~ -uil~d6h. 

~ ~ 6 

If the of is proportional 
-1 

then for cose I:P to h 

0(2 -t/2) , - t2t/2 h = ~ is computed in time proportional to and 

(4. 18) u(x.) - u. = O(2- t ). 
~ ~ 

proof: We use Theorem 2.1 with the infinity norm to show 

(4.17). The algorithm I:P computes the vector y such that 

• 

• 
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see (4.9) and (4.10). For small h 
-2 -t 

and h 2 , ( 4. 5), ( 4. 10) 

and u(x.) 2 2 yield that the y. are close to the u(x.) and 
~ ~ ~ 

1 
Yi + l - Yi are close to zero. Hence Yi 2 1. \yi+l-Yil ~ 2 

and we can apply Lemma 4.1 for the computed vector 

r
l = f1, (Lhy- b) . Due to (4.16) , (2.4) and (2.5) hold with 

c
l = 0, 4 t 

Tl = 0 (h 2 + h
2

) and c
2 = 0(1 + h

3
2

t
). The 

parameters 0'1 and 0'2 of Theorem 2.1 satisfy the relations, 

2 t 
0'2 = O(h 2 + 1). 

For small h 
-2 -t 

and h 2 ,0'1 is small. This means that the 

speed of convergence of iterative refinement is fast. For 

small 
(1) (m) 

h, all components of y as well as yare close 

(m) (m) 
to two and y. 1 - y. are close to zero. Hence Lemma 4.1 

~+ ~ 

can be applied for any m. After k steps where 

1 
k = O(1,n h)' we have due to Theorem 2.2 

l!y (k+l)-vll
oo 

= (2-t) 2) o 0'2 = O(h . 

(k+l) d Setting ~ = y an using (4.5), (4.16), we obtain (4.17). 

To show (4.18), observe that the cost of computing uh 

1 1 
is proportional to h J,n h' For h = 0(2- t /2). it is propor-

tional to t2t/2 as claimed. 

Remark 4.1: Suppose that (4.12) is slightly strengthened. 

I 
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That is, let Aa. = f1. (sa.') = ~a. + O(h2- t ) . This holds, for 
~ ~ ~ ~ 

instance, if k(x) - const in (4. 1) which implies ~a. - 0. 
~ 

Then the proof of Theorem 4.1 yields that 

i.e., we can solve the linear system (4.4) whose condition 

-2 
number is of order h using only single precision with 

accuracy independent of h. • 
We now briefly indicate how to generalize our analysis 

to the multidimensional elliptic equations of the form 

f (x) , X € D, 

(4. 18) 

u(x) =g(x), X € aD, 

m 
where D = (0,1) , k. (x) 2 k. > ° for smooth functions k., 

J J J 

f and g. As we mentioned before we can assume without loss 

-
of generality that u(x) 2 2 for x € D. 

For x = [i
l
h,i

2
h, .... imh]T, 1 ~ i

j 
~ N. h = l/(N+l), 

we approximate (4.18) in each direction as in (4.2). We 

obtain the following difference scheme 

"hv (x) 1 l:~ 1 [a. (x) (v (x) -v (x-he. ) ) 
- h 2 J= J J 

-a. (x+he.) (v(x+he.) - v(x»] 
J J J 

where e. 
J 

T = [0, ... ,1, ... ,0] and 

j 



a. (x+he.) - a. (x) ok. 2 
] ] ] =-=--.J.(x)+O(h), 

h ox. 
J 

a. (x+he.) + a. (x) 
] ] ] 

2 
2 = k. (x) + 0 (h ). 

J 

This difference scheme is equivalent to the n x n linear 

27 

system Av = b whose form is similar to (4.4) with n = N
m 

= (~ - l)m. 

-2 
The condition number of this system is 8(h ). 

We assume that a. (x), f(x) and g(x) for the meshpoints x 
J 

-t 
are computed with absolute error of order 2 ,see (4.6). 

As in (4.12) assume that ~a.(x) = a.(x+he.) - a.(x) is 
J J J J 

-t 3 
computed with absolute error of order h2 + h . 

Let ~ be an arbitrary algorithm solving Av = b which 

produces in t digit ft a vector y satisfying (4.9) and (4.10). 

Following the proof of Theorem 4.1 one can obtain' 

Theorem 4.2: The algorithm ~ satisfying (4.9) and (4.10) 

with k = O(tn~) iterative refinement steps using the 

algorithm (4.15) in each direction computes the vector uh 

such that 

2 
II~ - vlloo = 0 (h ), 

whenever h-
2

2-
t 

is of order unity~ x is a meshpoint and 

~(x) is the corresponding component of ~. • 
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We comment on the assumption (4.10). As already observed, 

this holds for many algorithms for the one dimensional case, 

m = 1. For m 2 2, many efficient direct algorithms compute 

Y such that 

(4.19) 

where d
7 

depends on n. For instance, for algorithms using 

the Fast Fourier transforms, d
7 

= e(tn n), see [6] and [9]. 

We stress that d
7 

has to be of order unity if (4.10) is 

satisfied. We know no direct algirthms for which (4.19) 

holds with d
7 

= 0(1) for m 2 2. We doubt if such algorithms 

exist. 

For m ~ 3, there exists an iterative algorithm for which 

(4.19) holds with d
7 

= 0(1). This is Chebyshev's algorithm. 

To show this, recall that Chebyshev's algorithm approximates 

the solution v of Av = b in the spectral norm 11'11 2 , From 

Lemma 4.1 it is easy to observe that r = ft(Ay - b) satisfies 

(4.20) 

-2 -t 
whenever h 2 is of order unity. Theorem 5.1 of [12] 

yields that Chebyshev's algorithm with the algorithm (4.15) 

for computation of residuals produces a vector z such that 

(4.21) 
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with de of order unity. Applying iterative refinement to 

Chebyshev's algorithm. Theorem 2.1 and (4.20) yield that we 

can compute a vector y such that 

(4.22) 

with d g of order unity. From (4.21) we have in the infinity 

norm 

Thus q(h,t) = d
9

h
2

-
m

/
2 

and (4.10) is satisfied since 2-m/2 > o. 

It is easy to see why the assumption m ~ 3 is needed 

for iterative algorithms which approximate the solution in the 

spectral norm. Even if such an algorithm computes an 

approximation y with full precision in t digit fl, 

lly-v!12 

t:y-v!lcn 

-t 
= 0 (2 !lv'l2) and 

-t 
= 0 (2 llv!1

oo
Jn). 

-t 
order 2 ,then 

!Iv!12 = 9cfri,!vll cn ), then 

-m/2 2 
Since ,,;'n ~ hand h can be of 

Thus y approximates v in the infinity norm with some 

precision whenever 2 - m/2 is positive, i.e., m ~ 3. 

For m 2 4, we know no algorithms for which (4.10) is 

satisfied, i.e., the problem of designing algorithms which 

-t 
approximate u(x.) with order 2 using t digit ft is open. 

1. 
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that arise from the discretization of certain continuous 

problems it is possible to compute the residuals in single 

precision such that ~ is of order l/cond(A) although cond(A) 

is huge. In this case we guarantee O(2-
t

) precision of the 

computed approximation while still performing all operations in 

single precision. 



3. Integration. 

Let f: [0,1] ~ ~ belong to the class C ,i.e., f is 
s, ) 

15 

s-times differentiable function, s 2 0, and its s-th derivative 

satisfies a Holder condition of order A, A € [0,1], i.e., 

If(S) (x) - f(s) (y) 1 ~ Mlx-y\~· , 'ix,y € [0,1], for some constant 

M. We assume that s + \ > O. We wish to approximate 

u = S (f) 
,,1 

="0 f(t)dt. 

For h = lin consider a quadrature formula of the form 

where A. and x. depend on h. We assume that the weights A. 
~ ~ ~ 

are nonnegative and the quadrature formula Sh is convergent 

for continuous functions. The truncation error is assume 

·to be 

p = ) + s. 

for functions f from the class C 
". S.) 

Assume that the weights A. and the function values f(x.) 
~ ~ 

can be computed in f£ with high relative precision, i. e .. 

....., 
A. = f.e (A.) = A. (1 + ~A.), 
~ ~ ~ ~ 

= f(x.)(l + 6£.), 
~ ~ 

for some constants d
l 

and d
2

. Let a. = f£(A. f~) = A.f. (l+~.), 
~ ~ ~ ~ ~ ~ 
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_ -t 
16i l ~ 2 . 

'n 
We compute ~. 1 a. by the RGM algorithm with 

~;;: ~ 

r ;;: r2/pl . Assume that t satisfies 

(3.2) 

For h 2 10r / 22- t / P , (2.2) holds and the RGM produces 

(3.3) 

where 1 + 5. ;;: (l+5A.) (1+5f.) (1+'F.) (l+'e:.) with 
~ ~ ~ ~ ~ 

-t 
I'eil ~ 2.23r2 due to (2.3). Thus 

-t -2t I 5 i I ~ (d 1 +d2 + 1 +2 . 23 r) 2 + 0 (2 ) . 

- n 
Note that Iu. - u. I ~ (r:';;:1 A. If(x.) I )max (10.1). Since 

n n ~ ~ ~ 1/' ~ 
n 1 ~~~n 

r: i ;;:l Ailf(xi ) I converges to JOlf(t) tdt we have 

- -t 
~ - ~ ;;: 0(2 ). 

Hence we have proven 

Theorem 3.1: Let (3.1) and (3.2) hold. Then the RGM algorithm 

with r = r2/pl computes ~ in time proporitional to h-
1 

such 

that 

~ 
,..1 f(t)dt = O(hP ) .. 0 

whenever h2 10r / 2 -tip 2 . For h 
r/2 -tip 

close to 10 2 , 

~ 
,.,1 f(t)dt = 0(2- t ). • ~ 0 

------ ------
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Observe that for smooth problems, i.e., for functions f 

for which p L 2, we have r = 1 and the RGM algorithm coincides 

with the GM algorithm. For p E [1,2), we get r = 2. For 

nonsmooth problems, i.e., for functions f for which s = 0, 

we have p = ) and r = [2/)1. Thus for small ), r is large. 

Even in this case we can (theoretically) find a t digit 

approximation to the integral of f although the cost of the 

RGM algorithm is unreasonably high, since it is proporition 

to 2t/\. 
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4. Elliptic Equations. 

In this section we first analyze a one dimensional elliptic 

equation in detail and next indicate how our results can be 

generalized for the multidimensional case. 

(4.1 ) 

Consider the elliptic equation 

d du 
dx (k (x) dx) (x) = f (x) , 

u(O) = g 0' u(l) = g l' 

X€ (0,1), 

We assume that 0 < kO ~ k(x). For simplicity we also assume 

that k and f are sufficiently smooth. 

We wish to find v. = vh(x.) which approximates u(x.) 
~ ~ ~ 

for x. = ih with the meshsize h = l/(n+l). To find V., (4.1) 
~ ~ 

is discretized as follows. The operator - d~(k(X)~~) is 

. t d 'th of order h
2 

by th t approx~ma e w~ error e opera or A
h

, 

see [10, pp. 149-170], 

(4.2) 
1 

Ahv. = -2 [ a. (v. - v . 1) - a. 1 (v. 1-v. ) ] 
~ h ~ ~ ~- ~+ ~+ ~ 

where a. satisfies two conditions' 
~ 

a. l-a. 2 ~+ ~ k' (x. ) = + O(h ). 
h ~ 

(4.3) 

a. l+a. 2 ~+ ~ k (x. ) = + 0 (h ). 
2 ~ 

For instance, a. can be equal to k(x.-h/2) or 
~ ~ 



(k(x.) + k(x.-h»/2. 
~ ~ 

Let f. = f(x.). From (4.2) we get the three point 
~ ~ 

difference scheme Ahv. = f. which is equivalent to the n X n 
~ ~ 

system of linear equations 

(4.4) 
2 

L v = h f + g h 

where Lh is a n X n symmetric positive definite tridiagonal 

19 

matrix with the i-th row given by [0, ... ,-a. ,a. l+a. ,-a. 1"" ,0], 
~ ~+ ~ ~+ 

(4.5) u (x. ) 
~ 

- v 

T 
[f

l
,f

2
, ... ,f

n
] and 

i 

) - 11 'I II -111 and that cond (Lh - .:Lh 100' Lh 00 

Observe that without loss of generality we can assume 

that u{x) 2 2 for x € [0,1]. Indeed, it is enough to replace 

f(x) and gO,gl with, for example f(x) = f(x) + d
l

, go = go + d
l

, 

gl = gl + d l · Then the solution u(x) = u(x) + d
l

. Since 

see [10], then setting d l = 2 + dO we get u (x) 2 d
l 

- IJull
oo 

2 2 

as claimed. For small h, (4.5) yields that all v. are close 
~ 

to 2 and the v. 1 - v. are close to zero. 
~+ ~ 

We now turn to the computational aspects of solving 

(4.4) in t digit ft. We first compute the coefficients of 
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L
h

, f and g. We assume that the values f., a., go and g 
1. 1. 1 

-t 
are computed with the absolute error of order 2 ,i. e .. 

f. = ft(f.) = f. + 0(2-
t

), 
1. 1. 1. 

i = 1,2, ... ,n, 

(4.6) a. = ft(a.) = a. + O(2-
t
), 

1. 1. 1. 
i = 1,2, ... , n, 

g. = f!(g.) = g. + O(2-
t

), 
] ] ] 

j = 0,1. 

-Let L
h

, f and g denote the computed matrix Lh and the 

computed vectors f and g. Thus, instead of the linear 

system (4.4) we have 

(4.7) 

It 
-2 = O(h ) and 

(4.8) 

Let ~ be an arbitrary algorithm for solving LhX = b with an 

arbitrary vector b. We assume that ~ satisfies the 

assumption of Theorem 2.1, i.e., ~ produces in t digit 

f! a vector y such that 

(4.9) 
-1 

cr. = Lh b, 

with q < 1. Observe that q is a function of the meshsize 

h and the mantissa length t, q = q(h,t). We need to assume 

that 


