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Summary. We study adaptive information for approximation of linear prob-
lems in a separable Hilbert space equipped with a probability measure u. It
is known that adaption does niot help in the worst case for linear problems,
We prove that adapuon also does nor help on the average. That is, there
exists nonadaptive information which is as powerful as adaptive inlor-
mauon. This result holds for “orthogonally invariant™ measures. We pro-
vide necessary and sulfficient conditions for a measure to be orthogonally
invariant. Examples of orthogonally invariant measures include Gaussian
measures and, 1n the finite dimensional case, weighted Lebesgue measures.

Subject Clusstfications: AMS(MOS): 68C25. CR: F2.1.

Introduction

We explain the setting of the problem using a simple integration example.
1 .

Suppose one secks an approximation to | f(ndt knowing n values of f at
0

points ¢,. N{f)y=[f(r,). fits)....f(c)]. and knowing that f belongs to a given
class F of functions. If the points ¢,.r......r, are given simultaneously then N
=N"" s called nonaduptive information. If the second point ¢, depends on the
previously computed value it re. r,=t.0f(r,) and if the point r; depends
on the previously computed values f{e,) ... f(r, _ ) e =0 f ). . fle, _ 0.
then NV = NV 15 called aduptive information.

The structure of adaptive inlormation is much richer than the structure of
nonadaptive information. Therefore one might hope that adaptive information
can be much more powerful than nonadaptive information, Le., an approxima-
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tion that uses adapuve iformation has much smaller ercor than an approxi-
mation that uses nonadaptive information.

What do we mean by error? It depends which model we have in mind.
Consider first the worst case model. In this model the ercor of an algonithm o
tfor our simple example) 15 defined by

elo. Ni=sup || findt =N (L.

feF

Oty -

By an ulgorithm we mean any mapping ¢ which maps N(f) into R. Then

riN)y=infe(p. N) (L)
&

is called the radius of informarion and ¢ is optimal iffe(g. N)=r(N).
Does adaption help in the worst case? That is, does there exist a choice of
points £ =t,(f{t)....f(r;_,) such that

riN9Y<r(N"")?

A surprising answer is no. at least for some classes F. More preciseiy. if the
class F is convex and balanced (ie. feF implies —f<F) then there exist
points ¢* such that the nonadaprive information N f)=[f(1¥),.... f(t*)] is as
powerful as the adaptive information N? ie,

FINT S (N

This was established in [1] for arbitrary linear functionals. It was generalized
to arbitrary linear operators and information consisting of linear functionals in
{27 and [12. Theorem 7.1. Chap. 2]. A further generalization may be found in
[ty

[t 1s also known that there are nonlinear problems such that adaption does
not help n the worst case: see [3. 8. 9. 14] and [17].

We stress that 1in the worst case there do exist nonlinear problems for
which adaption 1s far more powerful. An example of such a problem is zero
finding for scatar functions which change sign at the endpoints of the interval
{u. b]. Then the opumal nonadaptive information has radius (b —a){2(n+1))
‘whereas the optimal adaptive information is bisection information which has
radius (b -1 27"~ see [12, Theorem 2.1, Chap. 8] and [7].

As long as F is convex and balanced. adaption does not help in the worst
case for linear problems. One may think that this is due to a model assump-
ton. te. that the error of an algorithm is determined by its performance for
the hardest /. One might hope that with a more realistic definition of error. the
converse result would be true. re., adaption helps, perhaps even significantly,
for linear problems.

lt seems natural to propose the average error of an algorithm as a more
realistic measure of s performance. Technically, this means that we replace
supremum in (1.1} by integral, i.e.

&

-;((df)} (L3

1
S, .\'.:{( “ Jnde—o(NIF)
Flo i



Can Adaption Help on the Avirage’

where p is a probabifity measure on F. Note that even for our simpie 2vampiz,
F usually lies in an infimte dimensional space and therefors the anaivsis of
(1.3) requires measure theory in nfimite dimensional spaces. Thus the analysis
of average case error is much harder than the analysis of worst case error.
Define
r¥ N =infet™ (@, V) 14
L}
as the average radius of information.
Does adaption help on the average? That is, does there exist a choice of
points r;=t.( f{t,),....f{1,_, D such that

PN < PN

The surprising answer is 70 for linear problems. This was established in [10]
for a finite dimensional Hilbert setting with a weighted Lebesgue measure and
with a general error criterion. [n this paper we show that adaption does not
help on the average {or linear problems in infinite dimensional Hilbert spaces
with an “orthogonally invariant™ measure p. Orthogonal invariance of ¢ means
that the measure of a Borel set is invariant under certain linear orthogonal
mappings. Examples of orthogonally invariant measures include Gaussian mea-
sures. For the finite dimensional case with u absolutely continuous with respect
to the Lebesgue measure, orthogonal invariance coincides with a weighted
Lebesgue measure, see Corollary 3.1. Thus this coincides with measures studied
in [10].

Our result holds for adaptive information operators which are measurable
and which consist of arbitrary inner products. In particular. it holds for
adaptive information operators used in practice which are usually continuous
almost evervwhere. We illustrate this point by an integration example. Usually
the next point ¢, _,. at which f is to be evaluated. depends on whether i,y
Siga) .. firy tor some of them) satisfv a certain Boolean condition, ie..

_fay,if Cond(furyh ... fie ) =true.
U a., if Condi e, ... i n=1alse.
for some u, , and a. . Then ¢, _,. as a function of the previously computed

information, 1s a precewise constant function. Thus it is not continuous but it is
continuous almost evervwhere for a reasonable choice of measure. See for
example, the discussion on adaptive integration in (3, pp. [26-130].

We have given a number of references dealing with adapuve information
for nonlinear problems in the worst case. There exist no such paper for the
average case model. We hope that the study of nonlinear problems in the
average case model will be one of the foci of future research.

We stress. by all means. that the worst and average case models are not the
only interesting models to be studied. An asymptotic model. in which the total
number of evaluations s not fixed a priori, should be analvzed. The guestion
as to whether adaption helps for linear problems in the asymptotic case s
analyzed in (J.M. Trojan. in preparation). The answer is once more no. Some
preliminary study indicates that adaption does not help in the asymptotic
average case. Results for this model will be reported in the future,
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Why are we interested in the guestion whether adaption 1s more poweriul
then nonadaption? There are a number of reasons which include:

1 Intrinsic mathematical interest. Adaption corresponds to certain non-
linear operators whereas nonadapuon corresponds to finear operators. Math-
ematically the sentence “adaption does not help™ means that this nonlinearity
15 no more powerful than linearity.

t1) Reducnon of the search for optimal information. [f adaption does not
help then we only have to look at the very special and relatively easy non-
adaptive case to {ind optimal information.

{111y Speedup for parallel computations. Nonadaptive information is na-
turally decomposable and can be computed very efficiently in parallel. Adap-
tive information is nor decomposable an is ill-suited for parallel computations.
For instance, for the integration example if a function evaluation costs uniy
and there are n processors then nonadaptive information costs unity and
adaptive information costs n.

A more detailed discussion of this subject may be found in [13].

We briefly summarize the contents of this paper. In Sect. 2 we formulate the
problem. introduce the concept of orthogonal invariance and state the main the-
orem of this paper. The proof of the theorem requires some properties of orthog-
onally invariant measures. Therefore Sects.3 and 4 deal with characterization
and properties of orthogonally invariant measures. In particular, we prove that
orthogonal invariance of p is equivalent to orthogonal invariance of its pro-
jections into lnite dimensional subspaces. We also characterize orthogonal
invariance for the finite dimensional case. We prove that the measure of a
Borel set 1s invariant under a certain nonlinear mapping. This is basic to the
proof in Sect. § that the spline algorithm is an optimal average error algorithm.
The proof of the main theorem is given in Sect. 5.

2. Adaptive Information

Let F, and F. be real separable Hilbert spaces. Let S: F| —=F, be a linear
continuous operator. Our aim s to approximate S/ for any t from F,. We
assume that mstead of f. we know N/ Here N 15 an aduptive information
operator defined by

Notr=[ong o tfgaty i fog iy, Yoo (2.0

where v, =1t e v, =1 figlyo...oy, _ M gty ...y ) is an element of F| and
{-.+y is the inner product of F,. The essence ol {2.1) is that the choice of
v, ....v, . may depend on the (i — 1) previously computed inner products.

For brevity we shall write

IA

g =g, e(fri=giy,.....y, ) 1Sign (2.2

)

To stress that N is adaptive we shall sometimes write V=N If cach g /)
does not depend on /. el g(f)=g, for some g from F,. then NV is called
nonadaprive and denoted by NV = N"" e

Nevcfy=[ifgonfga . fgnl (23
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Note that nonadaptive nformation is a linear operator whereds adaptne
information is 1n general nonlinear. Without loss of generajity we assume thit
g, (f) g1 ... g0 /) are linearly independent for each / from F,.

Knowing N(f) we approximate S/ by @i N f)) where ¢ 1s a mapping tfrom
N(F,) into F,. We call such ¢ an (idealized) ulgorithm. We wish to approxi-
mate §/ with an average error as small as possible. The average error of ¢ s
defined as

e o, N ={ | iSf—otN( ) udf i} 2.4

[

s

Here u is a probability measure defined on Borel sets of F, and the integral in
{2.4) is understood as the Lebesgue integral. We assume that an algorithm o 15
chosen such that (2.4) is well defined. ie. ISf—w@iN(f).~ is a measurable
function. This assumption is not restricted as is shown in [13]. Let

3 N)= inf ¢"¥p.N)

@eB(N)

[
s

be the average radius of information where ®(N) denotes the class of wll
algorithms using N for which the average error is well defined.

The main problem addressed in this paper is to show that for a wide class
of measures. adaptive information is not stronger than correspondingly chosen
nonadaptive information. Thus the much more complicated structure of adap-
tive information operators does not supply more knowledge about linear
problems than the relatively simple structure of nonadaptive information oper-
ators.

This result holds for "orthogonally invariant™ measures u. This concept will
be defined below. We assume that | *f *u(df)< + x. Without loss of gener-

Fy
ality we can assume that the mean element of the measure u is zero. ie.

Jfoxvud =0, “xsF,, and | (fx)udf1>0,  7xeF, x=0.
F,

F

Let 5, be the covariance vperaror of y. 1.e.. S 1 F, — F, and

(S.xoyr= o nudf). vxopef,. (2.6)
£,

The operator §, is a linear seif-adjoint. pesitive definite operator and has finite
trace. [f dimF, =+ x then S,(F,) is a proper dense subset of F, and S %:
S_F,y—F, is a linear unbounded operator. See [4.6] and aiso [16]. Lat

ey, =Sy Yx o ysSF,). (2.7

Then ix =} ix.x), =} 157" wxn
We say uis orthogonally incariant iff

wQBy=1uB) 12.3)
for any Borel set B and any linear mapping Q. Q: F, —~ F,. of the form

Qf =2f S h—f (2.9)
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for any h such that1S =1 or h=0. For h=0. Qf = — and (2.5) means that
W =By=wiB) where —B=1: —1=B}. Note that f=SF,) implies that
Qf=S (F) and

Qf T=120lmh =S 200 S b=

3

=Sy Nh= f 1

N
-

Thus the mapping @ is orthogonal in the norm '+ !_. This explains why u is
called orthogonally invariant.

It 1s shown in [16] that Gaussian measures are orthogonally invariant as
well as measures of the form

uB) = wISSEf D)audf)
B

for some measurable function w assuming that F, is {inite dimensional and 4 is
the Lebesgue measure.
Note that Q resembles a Householder matrix. It is easy to check that

Q'=I. Q-'=0Q. (2.10)

This important property will be extensively used in this paper. In Sect. 3 we
characterize orthogonally invariant measures in detail.

We shall show in Sect. 3 that without loss of generality we can assume that
(S,gf) gm=¢,. Let

u=sup{z §S. g ()1t feFl}.

=1

For simplicity assume that u is obtained for f* i.e.

1A

SS.e0t® T=sup ¥ SS g/ {2.10

~ v
"
-

Let g® =g (/) By N0 we mean
M= ghr g fgnl 12.12)

Note that N s aenaduptive and s obtained by fixing ¢,( ) in the adaptive
informanion V<.

We say that Ntn=[feg e tfgafn] is measurable off g+ s
measurable, ie. g7 '(B) s a Borel set for a Borel set B of R~ i=23.....n

We are ready to state the main result of this paper.
Theorem 2.1. Lot w he un orthogonally invariunt meusure. Let N7 be measurable
aduaptive pttormation. Then

rUAN ZPHND T (213

Thus adaption does not help on the average for linear problems. As we
already mentioned in the introduction it does not help for the worst case
model.
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The prool ol Theorem 2.1 depends heavily on the properties ol orthog-
onally invartant measures. [n Sect. ¥ we characterize orthogonally :nvarant
measures. The results of Sect. 3 are of ntrinsic interest. [n Sect. 4 we derive
properties of orthogonally invariant measures. Section 3 contains the proof of
Theorem 2.1 The proof is based on two results on orthogonally invariant
measures. The [irst resuit is that for orthogonally invariant measures. the
measure of a set is invariant under a certain nonlinear mapping. The second 15
that the measures p{.N%)~' are orthogonally invariant and independent of N*.
Assuming these two results, the reader can skip Sects.3 and 4 and turn 10
Sect. 3.

3. Orthogonal Invariance of Measure

We show in this section which measures are orthogonally invariant. Our
analysis will be first done for a finite dimensional case, dim(F)< + x. We
find, in particular. a condition for g to be orthogonally invariant whenever g is
absolutely continuous with respect to the Lebesgue measure 4. Next we consid-
er the general case. dim(F,) < + . We show that orthogonal invariance of u 1s
equivalent to orthogonal invanance of its finite dimensional projections.
t1) Assume in this subsection that m=dim(F,)< + ». Then the operator S_
is bounded and
T=S;%* F —F, (3.h

is well defined. By #®#n we mean a linear operator from F, into F, such that
in@mifr=1f.qn. Let Q be of the form (29). Then Qf =T *2n®n-NHTSf
where n=S:h and »ny1=1 or n=0. Hence, the measure u 15 orthogonully
invariant iff

uT='2n@n—NHTB)=uiB) 130

for any Borel set B and any y such that "7 =1 or n=0.

We characterize orthogonally invariant measures p which are absolutely
continuous with respect to the Lebesgue measure . Recull that g s absolutely
continuous w.r.t. to ~ (denoted by u <) iff 21B1=0= iB1=0 for every Borel
set B. If u<.. then the Radon-Nikodym theorem. see e.g. [6], guaraniees the
existence of a nonnegative measurable mapping g: £, -~ R _ such that

s
]

wBy=T gt fyadf ). ’ (3.
I

For simplicity we assume that g is continuous almost evervwhere, i.2.. there
axists a set A4, 2(F, — 4)=0. such that f= 4 implies that ¢ is continuous at /.

Theorem 3.1. The measure u is orthogonally invariant ilf

gitp=gauty torany £ 04 suchthat [, = f.._. = {34

- *

Proof. Suppose w1 orthogonally imvanant. Take f, and f. from 4 such that
ty o= 1, . Detine n=Tvr, =/ fi—t,:, for fy=—f,. and n=0 for s, =

=
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—f. Let Q=T 12929 =DT. We have Tr..Tot, == 1, —1. 7 and Qy,
= /.. Then (3.2} vields wtQBY=wiB) for any Borel set B. Observe that det Q
=1. This and 13.3) vield

Vigif1—g10f 1} 4df1=0. 7B —Borel set. (3.5
8
Note that ¢ —gQ is continuous at f, and g(f,)—g(Qf } =gl f;} —g( ;). Suppose
that gt f,)—gtt5)=0. Due to conunuity of g —gQ at f,. there exists a positive r
such that for fsB={feF,: [—f, ' <r} we have signig( /) -g(Qf ) =constant.
Since ~1B)>0 we have

18N =@M adf)+0

8
which contradicts (3.5). Hence gl f,) =gl f.) as claimed.

Assume now that (3.4) holds. Then for an orthogonal Q in the norm ;- i,

we have |detQl=1 and

wlQBY= | gifyudf)= | gufridf)

Q8 Q(BrA A
= | g@NidNh= | g@QN)ildf).
8AQu) B~ QiAln A

Note that f=4~Q(4) implies QfsA4. Since Qf i,=!f1i, then (3.4) yields
g(@/ =gt f). Thus we have

pl@B= | gtNadf1SuB) {3.6)
BrQiii~ 4
for any Borel set B. Setting B=Q(C) we have u(C)<pi@(ON for any Borel set
C. Hence uiQ(Bit=u(B). This means that u ts orthogonally invariant.

The condition 13.4) means that g depends on the norm of f . More
precisely. let X' =1! f _:f=4} Define w: R _— R _ such that

) gt x=X, (37
wlixji= . J.
0 xzX

where /=4 and f _=x. Due to 13.4) w is well defined. For =4 we have

wi f _r=gif) Since

*

wBi= | g NHadfi= | owe f )

B-4 8- 4

=\ wi [ )adf)
8

Thus we have proven

Corollary 3.1. The meusure u 1y orthogonally invariunt iff

wBr=)wt + sdf). 7 B—Borel set. (3.8)
B

The measures considered in [10] are of the form (1.8) and therefore they are
orthogonally mvanant
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(ii) We now turn to the general case dimiF g - » [ dimiF 1= — v then
T=5;° is unbounded and for f£S}1F.). T/ 1s not well defined. Therefore the
results of subsection (1) do not hold.

We exhibil relations between orthogonal invariance of g and orthogonal
invariance of its finite dimensional projections. Let [,.[,.... be orthonormal
eigenelements of the covariance operator 5. Le.

S, = 3.9
where /,2/,2.... Let X _=lin(,.7,.....5,) and let B, be an orthogonal
projection,

P.F,—X,. {3.10)

Let u,, be the projection of the measure u onto X, ie.
u (By=puiP ' B) t3.1h

for any Borel set B in X_, see [6]. We are ready to prove

Theorem 3.2. The measure u is orthogonally invariant iff the measures u. are

orthogonally invariant form=1,2,.... O

Proof. Assume that u is orthogonally invariant. For any m, take a mapping
Q: X, — X of the form (2.9, ie.

Of =2(f.h)S h~f

where S_ is the covariance operator of the measure u,, and heX . (S h. hi=1

or h=0. First of all we show that §_x=5,x. x=X . [ndeed, for x,ysX, we
have
1S 1= VAL XM f i tdf =V (B fLXUP, fovuidf)
X.. Fy
=(5,P,x. P, y)=(S_ x. 1.
Since X 15 an invariant subspace of S_. S, x=X_ and S x=§,x. YxsX,. as

claimed. Thus Q can be extended to the space F, with S replaced by §,. Let B
be a Borel set in X,. Note that

P 'QB=QF;'B. 13.12)

Indeed. if f=P'QB then f=Qb~f, where b=B and f,eX. Since Qf, = —1,.
we have f=Q(b—/,12Q(P ' B). Assume now that feQP-'B. Then r=0ib
-1y where b=B and j,=X;. Thus f=Qb —/,eP"'QB as claimed.

From (3.11). 13.12) and orthogonal invariance of u we have

2 AOBY=wP ' QBY=w QP ' By=puiP ' By =yu_ B ERRY

Thus g, s orthogonally invariant which completes this part of the proof.
Let «., be orthogonally invariant. Let Q be of the form (29), 1e. Qf
=21 .S i —f for some h such that (S_h hy=1 or h=0. Define

Z=\B: B s a Borel setin F,. ui@B)=u(B)}. (3.14
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Observe that Z 15 4 s-field. Indeed. 1f B,2Z and B,-8,=0 for 1=, then
QB,~QB,=V since Q is one-to-one. Then

’

ule ‘B‘)=u‘;;IQB;)=

L

wQB)= N /,MBJ:;;( ¥ B,).
ta | i=t

.
=1

1

Thus  B,eZ. Of course 9sZ and BeZ implies that |, —B&Z. Hence Z is a

[
a-ficld as claimed.

We now show that cach closed ball B={f: f-a <Sr} with agX _ for
some mg, belongs to Z. Recall that Qf =2(f.mS h—f where (S h.h)=1 or h
=0. If h+0 then take an index j such that Ph#0. Define h;=cPh where ¢
=1§,Ph. Py [[h=0.set h;=0. Then h X, and (S,k. h)=1 of h;=0.

Define the mapping Q,: X, — X, by

0,f1=2(f h)S,h,~f.

Note that Q; is of the form (2.9) for the space X;. We have h,—h and
Q,(/1=0Q1(f) asj tends to + . We now prove that

Dl J!:,li P~'Q,(PB)=QB. (3.15)
Indeed. let x belong to the left hand side of (3.15). Then there exists a
subsequence j,— - % such that xsP~'Q, (P, B). Thus P, x=Q (P, b;) where
b, =B. From this we have

Q,;P.x=FPb, cP B

[f jZmy then Pb-a = Ptb—u) € b—u <£r for any b from B. Thus
P B=Band Q, P xeB. Since B is closed then Q, F v —~QxeB and xeQB. This
shows that the left hand side of (3.13) 15 contained in QB. From (3.13) we have

. .

wQBZlimu (. A'0,PB)2limwP 'QPB)

-t } =1

=lm u,1Q,P B
Stnce w, s vrthogonally invarant then

Wi Q PBY=p (PBy=p(P~'PBYZ u(B).
Thus
wl@Byz (B (3.16)

To prove the opposite inequality we show that

" pP-'g,PB, (3.17)

=1 y=2

QB=
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where B =11 t—u <r—) Indeed. v=0QB means that x=0Qh und h—-u <r
Note that @, P Qb tends 1o 0 h=h as j—— 7. Thus there exists an indev 1,
=j,i such (hklt Q,PQb—u Sr+s torj>/,) Hence Q,PQhzB,. Since Q V|
=X, then Q PQh= PQ PQbeP B . Since Q ={ we haw.e PQbeQ P B, and

OheP 'Q,PB, for jzj, Thus x=Qbs ﬂ P~'Q;P,B, which completes the
proof of (3.17). From this we have 1=t

wEB < limu(() B 'Q,P,B,) < lim wP~'Q,RB,)

(Rl 4 J=
=lim u,(Q,PB,)=lim u(F,B,). (3.1%)
We now show that
B,=() P"'PB,. (3.19)

il

Since B,=P~'PB,, ¥i. it is enough take xe () P~'PB, and show that xz 8,
ta

We have BxeFB, and since Pa=u for iZm, we get PxsB, Note that Px

tends to x and B, is ciosed which yields that xeB, as claimed. Since

P-1P_,B,=P~'PB, then 13.19) yiclds

u(B,)=Ilim p,(P.B,.

=

This and (3.18) vield .
u(Q Bi<u(B,). (3.20)

Note that (3.20) holds for any positive & Let ¢=Ak~"' with & tending to
infinity.  Since B=‘E\1 B,-. and wB)=lim w(B,..) we have from (3.20)
w QB < u(B). This and (3.16) vield o

wl@B1=pu(B)

for any closed ball with center lying 1n X' for some m,,.
Thus B=Z. Since any closed ball A=/ f—u Srt=" !t 1=Pu <r
i=1

+ (I =P)a '} and Z is a g-field. 4 belongs to Z. Hence Z contains all closed
balls and therefore it contains all Borel sets. Hence

QB =1B)
for any Borel set B. Since Q is an arbitrary mapping of the form (2.9) this

proves that u is orthogonally invariant. This completes the proof. T

4. Properties of Orthogonally Invariant Measures

The prool of Theorem 2.1 depends on properties of the orthogonally invariant
measure g which will be obtained in this section.
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Let
Naop=litgrnchgstin g fn] 41y

be measurable udaptive information. This means that g,i).....g.(*) arc
measurable and are of the form (2.2). Assume that 1S5, ¢ (f)h g fn=d, . 7/=F,.
tWe show in Sect. 3 that this assumption I1s not restrictive.)

Define the mapping D: F, — F, by

Dif1=2% (fgfnS. g1 f1—/. (4.2)
1=l

The mapping D plays an important role in our analysis. Observe that D is
measurable. For nonadaptive information, ie. g(f)=g, .. D is linear. For
adaptive information D is nonlinear. The mapping D has four important
properties

NAD(fn=N4f), (4.3)

D-'=D, {4.4)

DU, =S s YFES,F) (4.5)

Difi=-[]U=-25g®glfNf. VSfeF,, {4.6)
=1

where (x® y)( f1=(f v)x. Indeed. observe that
D=2 fgtfn—fg=ifigtsfn  i=L2 ....n
Since g,( f1 is of the form (2.2) we have g, (D(fh=g,.
g DifN=g D g =g Lgn=g.1f)

and similarly gtDifn=g(f) Thus N4D(fn=N*y) which proves (4.3). To
show (4.4) observe that

DD =2 S 4D gDy S, gDy =DLf)
=2V tfg S, gt 1=DiHr=1 =D
=1

Thus D1 /)= 1 which implies that D~ ' f)=D( /) as claimed.
To show 14.3) observe that feS_(F,) implies Dtf1eS (F) and Dif)y, is
well defined. We have
Dify =S "Dif)Difn= (3 v (jlgAUl)g,lA/‘)—S;‘leU))
=t

Log =2 N (hg oS LS g =S
a=x 1
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ds claimed. Finaily obserse that

=S giN@guynd =S gifreeginf
=f=2L80 /NS g SV =200 80 /NS, 8,0 0N

and the repetitive use of this property vields {4.6).

Property (4.3) means that the mapping D does not change information. i.e.,
the elements / and Dif) are indistinguishabie under N°. Property (4.4) means
that D* is the identity operator. Property (4.3) means that D is orthogonal in
the norm !-._ and Property (4.6) states the factorization of the operator D.

We show that orthogonal invariance of the measure u implies that the
mapping D does not change the measure of a Borel set.

Theorem 4.1. If u is orthogonally invariant then

u(D{B)=pu(B) 1+.7)

Sor uny Borel set B.

Proof. The elements g.{+) which form the adaptive information N are of the
form (2.2). ie. g:R-'=F,. For y=[y.r:e.c..¥,_JeR*"" denote gy
=g(¥.....¥;_ ). Since g, are measurable. they can be approximated by piece-
wise constant mappings.

gin=limg (y. VysR"". 1+.3)
k

and g, vi=g, ., for y=4, ; where 4,  are disjoint Borel sets of R"~' whose

union 1s R"~'. j=1.2.....n,. Since g (y)=g, and (5,g,(y). g,V =0, ; we may
assume the same properties for g, ,. ie.,
g, ¥)=g,.
S & ] 149)
15ug,.k(.l').gj‘,((_H):OA,‘j
for any veR"~'and any k=1.2,....
Define the mapping
Dayr=2% (fg  )S.g.,~r (410
=]
for N'(f1e4, ,. Due to (4.3) we have
Dify=limDusy  7f=F,. {4111
3
Observe that D, is piecewise linear. From (4.9) we have
Dafi=~[11-28¢.,®g. )/ Nified,, 412
=1
We now show that
DIBIcEL ;D7 YB) (413

iml kmy
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for any open set B of F,. Indeed. let x=D(B). Then x=D( /). f=B. Since D* =1,
J =Dix). Due 1014111 D (x) approaches D(xi= f=B. Since B 15 open. D,tx)€B
for k2 k,. Thus xeD_ '(B) for all k2k,. This proves (4.13).

Note that D, is measurable. Therefore D '(B) and E are Borel sets. From
{4.13) we have

wDIBYSuE)=lim u () D] ‘(B)) < lim wD; B, (4.14)
i=z k=i / k-1x

Let B, ,=(N~'4, ;. The sets B, , are disjoint Borel sets and their union is
F,. Then M‘
wD;Y(BY= S w(D; (BB, ).

j=1

Note that D7 (B~ B, =D }(Bn B, ) where

D, (f1=2 Y 8w )Su8iu,—f=~ [T (1-25,8,,;98.)f
o} imt

5

for f=F,. The mapping D, ; is linear and (4.9) yields that D,f.l:l. Thus D}
=D, ;. Orthogonal invariance of u yields that u(C)=put —C) and u(QCO)=pu(C}
for any Borel set C and Q=1 -25 h®@h where (§,h, h=1. Thus we have

uDZ (BB, )=uiD, (BNB, )

=H ( ﬂ u _:Sugi.k.j®g:.k.j)BnBk.j)

ial

=F‘(1_L (1_:Sugi.k.;®gi.k.j)B®Bk.j)

=..=uwB"B, )
Hence
wDZHBn=Y wB~B, )=uB).
=1
Thus we have
ulDIBW L i B) (+13

for any vopen set B.

Take now a closed set B. Define B, ={feF :dist(f.BI<l s}, s=1.2,....

Then B, 1s open. B=B,_, = B,. and B= ") B,. Due to this and (4.13) we have

s=1
wtDIBWE wiD(B ) SutB)).
Thus w(D(Bn £lim uiB,) = utB). Hence (4.15) holds also for closed sets.
Tuke now un‘open set B. Then F| — B is closed and
1 —tDBY=1uDIF, -BhSuiF,—By=1-wB).
Thus ¢ ByLu1D(B). This and (4.13) give
wlD(BN=uB) (4.16)
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for any open set B Since the set of B for which 14.16) holds is 4 #-tieid and
contains all open sets. it contains all Borel sets. This completes the proot.

Theorem 4.1 will be used in the proof of the mamn result to change
variables. That is (4.7) implies that

VH(NHutdf )= | HIDf)utdf)
B DB
for any measurable function H and any Borel set B.
In order to prove Theorem 2.1 we nced one more result. Let N° be given
by (4.1). Define the probability measure u,(-,.V%) as

U A NY=pUNY - YA =pl{ feF : N°(fred} (417

where 4 is a Borel set of R". The measure y,, called the probability inducad by
N¢ tells us the probability that N( f)eA.

We prove that the measure u, is independent of N and y, is orthogonally
invariant with mean zero and the identity covariance operator.

Theorem 4.2. There exists a probability measure u, defined on Borel sets of R”
such that
A, N =u,(4), ¥ AeB(R". 4.18)

for any measurable adaprive information N°® of the form (4.1).

-
—

Proof. We first consider nonadaptive information operators. Let

N =L L)
NaSr=0fnofon o fnl

where (S, 7. .)=(S n.n)=0,, We prove

Lemma 4.1. There exists a linear one-to-one mapping Q. Q: F, — F,. such thar
N =N.0 14191

wQ 'By=uiB. YBecB(F) 14.20)

Proof. Let X=hn{S:I,.....8: . Sin,.....5:n,}). Let p=dimX. Of course

peln. 2n]. There exist elements |, ..., 5,0,y oo 1,2 F) 50 that {Sin;7_,
and {5}, }2_ | are orthonormal bases of .X. Define the mapping H: F, —F,.

r
Hf =Y (f£S.m+305, /.
1

P P
Since Sin,= Y (Sin.S: 0S¥ wegetn, =Y (n,.5,0)] and

=1 (=1

I3 P
Hn = S .S~ S (Mo Suodei =M= 14 (+2D
t=1

121
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for A=1.2.....p. Wz define the mupping Q as

CLIAS. o+ 101
1

Q_[:H']:

i

s

To prove (4191 note that N, =N,Q is equivalent to 1 £, )=1Qf n1=1£0%n)
={ /. Hn,). This holds since Hn, =7, (see (3.21).
To prove (4.20) we decompose H as

H=S:tH,S}

u3

P
where H, /=Y (fStin,+ S} —f Note that H, S:(F,)=S}(F,) and there-

tal
fore S7*H S} is well defined. Let X+ be an orthogonal complement of X, F,
=X®X* Then =X~ implies ( £.Stn)=(£5:;)=0 and

H,f=-f. ¥YfeX* {4.22)
From {4.2]1) we have
H Sin =S, k=L2...p

Thus H, as well as —H | restricted to X are orthogenal mappings onto X. We

decompose —H, in X using a Householder transformation. i.e.. there exist
elements x,€X such that x,=0 or .x, =1 and

-H,f=DD,-...-D,f. Y [feX. (4.23)
where D =1-2x ®x,

For =X~ we have (fix)=0 and we get D,D,-...-D,f=f Thus, (4.23)
holds also for f=.X- due to (4.22). Hence we proved that H = -D,D,-...-D,
and

H=-5;*D,D.-...-D,S}
= —1S7*D,S})-...1S7*D,SH)
=-0101..0;
where Q=/- i 25 h and h =57 *x. Observe that Q,=1-2S h, ®h. Thus
we get
Q= —Qpr-l""'Ql‘
Note that Q' =0Q,. Thus Q is one-to-one and
0-'=-0,0...0,

The orthogonal invariance of u yields utQ By=utBy=ut —B) for any Borel set
B of F,. We have therefore

WQ P Bi=u=Q, .. Q,B=wQ ... Q,B=wQ, ...-Q,B

<p
=..=ulB)

which proves 14.20) and completes the proof of Lemma 4.1.
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Define the measure «, as
u A= 44.N), | 7 4=BIR". 1424
From Lemma 4.1 we immediately get
A NID=u N =0 TN T )
=ulN Py =u (AN =g A, 7 AsBIRY.

Thus (4.18) holds for any nonadaptive information of the form (4.11,
Take now any measurable adaptive information N Using (4.8) and 149
define

~\"’klf’=[U‘-gl.u.;“];g:.k,,).--v.(/;gn.k.,)]
for N fied, ;- Then
N fri=him N f),  7feF,.
k

Let 4 be an open set of R”. Then
a5 A
INYTHACES ) )N A (4.25)
i=1 k=1

Indeed. if feiN“)~'A) then y=Nfred. Let y =N(f) Then limy, =yed

Since A4 is open, ¥, =4 for k2k,. Thus f2N"'(yp= N HA) for k2k,. This
means that f=E as claimed. From (4.23) we have

p AN =N T AN S plE)

=tlim g (D NTHAY) S lim a7 A

t—= 1 k= k=«

Observe that
"
WNT AN = S N A~
=1

1=
Since N on each 4, , coinctdes with nonadaptive information. we have

pENT A~ A D =p AN A )

and
i
wNTHAN =S pdn A = A
FEIRY
Thus
AN Y S u A 1426

for any open set 4. Take now a closed set 4 and define 4,=!vsR"" %

distiy. 1< st s=02 . on Then A= 4, , =4, 4= 4. Since 4, is open
we have due to 14.261. !

AN =N T AN S pU N T AN Sped ).
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A N Shm g (4= (4.
s

Hence (4.26) holds also for closed sets 4. Repeating the last part of the proof
of Theorem 4.1 we complete the proofl of (4.18). O

Theorem 4.2 will be used to compute | H(Nf)utdf) for any measurable H

£
and N of the form (+.1). Due to (4.18) we have

Y HINOudf = | H(ypp,ldy
s

£

Theorem 4.3. The measure u, of Theorem 1.2 is orthogonally invariant with mean
zero and the identity covariance operator. [

Proof. We first show that

m,,0=1 (y,x)u(dy)=0, Vx=[x,x,...x]eR" (.27
RH
Take [,.0,,....J, from F, such that (5,{,,;;)=4, ;. Deline
NO=MLI0LD o)) {4.28)

etg= Y x..Since m, =0, we have
Tw
O= [ (figudN=1 5 xdf;)utdf).
£ Fyimt
We change variables by setting v=[y,.....3,]=N(f). Theorem 4.2 states that
uN~'=yu, regardless of N. Thus

0=1 N xyvudy= | (xoypldy)
Fioi=1 F,
which proves (4.27). This yvields m_ =0 as claimed.

To show that S =1/. we show that

Flvxuy Dugdy =, 7x.ceR (4.29)
an

Forg=Y\ yland h="Y = we have

1 '

S.gm= 4 fLatfmuldf = | (v ) Wy
F: R"

Since (S,g.i=Y v (S, 7. )=(x 2 14.29) follows.
We  now prove that w, s orthogonally invariant, te.

u QB =pu, (Bl 7 BeIB(R"
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where Oy =2ty.x)x =1, y=R”, x =1 or x=0. Deline the mupping

Df=2t.98,g—-f 1IsF,.

where, as before, g= 3 x, . Then (S g.g)= Y x’=1o0r g=0 Observe that

izl t

N-'QB=DN-'B. ¥ BeB(R". (+.30)

[ndeed. feN~'QB iif NfcQB iff QNf=B since Q*=/. Similarly f=DN"'B f
ND/feB since D* =[. Note that

OQNf=2(Nf.xix=Nf=2(f,g9)x =N/,
NDf=2(fgIN(SS, ) -Nf=21fg)x-Nf

which proves (4.30). From Theorem 4.2, (4.30) and orthogonal invariance of u.
we have
g (QBY=u(N "' Q(BY=pu(DN~'B)=uiN"'B)=pu (B

as claimed. This completes the proof of Theorem +3. [T

5. Proof of the Main Result

Using properties of orthogonally invariant measures we are ready to prove
that adaption does not help on the average.

The proof consists of two steps. The first step is to show that the spline
algorithm that uses N° has minimal average error among all algorithms that
use Y% The second step is to estimate from below the average radius of
information tor equivalently the average error of the spline algorithm.

Let

Nafy=QUfgaMufiga . afgiinl

be a meuasurable adaptive information operator of the form (2.1) und (2.2). Thus
g, (g0 f) are measurable. First of all we show that without loss of
generality we can assume that

(S.gl gl /=6, . 131

Indeed. as in [16] let n (/1 ....n.(f) be an orthonormal basis of the linear
space lin (5,g,(f).....5_g,tf 0. Then there exists a nonsingular matrix M such
that

fifg g uunl=NM 132

where 2Uf)1=S7*n(yyand (S ¢.(f). g/ N=4,, Thus. knowing N“(f) we can
compute (/. & f). The mappings g, are ulso measurable. The zlements g1 1)
then play the role of g,i /). This explains {3.1).

Detine

€

c=alN(fn="S (fig(fnS.gt)) {

=1

tn
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Note that Nimr=N"17 1 e, ¢ interpolates £ Furthermore. take 7235 (F,) such
that N tn= N4 7). Then

2 _ 2 l_" -1 _
h .= 06-h ~ 6 =S, 0. h—-5).

Since th—a.g(/N=0 we have 1S7'e.h—c1=0 and h» = 6 ,. Thus & has
mintmal norm  + , among elements which interpolate f and lie in S (F ). Such
an element is called a spline interpolating f. Let

GINUN=SaN( =S (fig S NSS, g f) (5.4

i=l

be the spline algorithm.
We say an algorithm ¢ is an optimal average error algorithm iff

e.ng(o' ‘\'.1' =I’“g(.‘\m).

Theorem 5.1. If u is orthogonally invariant then the spline algorithm @* is an
optimal average error algorithm and

e NV =) S — | QNN udf). T (3.5)
F, F;

Proof. The proof is essentially the same as the proof of Theorem 4.3 of [16].
For completeness we provide a sketch of it.
Orthogonal invariance of u and (4.3) yield

§oSf=—oN“iyy mdfi=1 SD(1=otN )7 uidf)
3 £,

where ¢ 15 an algorithm and D 1s the mapping defined by 14.21; see Theorem
4.1. Thus
Mo N =t Sr—olNq S
F

~ SD( =N fn ud) 15.6)
Singe

St= Nt S= Sr=SDity T€h Sr=oiNH — SDU =0 N )t

SH ST=o(N N S+ SDUH =N Y
we get
Lt N 2 et N,
This means that v an opumal average crror algorithm. To prove (3.3

note that
d= St=@UIN 11N S = SDUif =N G

= St = SDU =2 0NN S =2USL NI =28D U o N

Since Dtrr=2atNt =1 then DU =207 1N* 11 n—J and

a= St S= SDuf) =2 2N
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This and (361 with =0 vield i3 %)

Proot of Theorem 2.0, The radius r#1.N") s given by (551 [n order to ostimate
it from below, note that Theorem 4.2 vields

Voot IN I Gidf =1 @ty Tty
i R
= % v 1SS 2SS g tnutdy (

Lfel R’“

tn

where, as in Sect. 4. gy =g,(v,. ¥, .... ¥, _ ) Deline the mapping
Or=y—Cly.e)e,=v—=2yve. yvsR"

where ¢, is the ith unit vector. Then Qe¢,= —e, and Qe;=¢,. This yields ¢,10 )
=g,y for j<i. Since y, is orthogonally invariant we have

a= | y,;¥ASS,8,.8S8,¢,00u,dy)
g
= | yx,Qe.Qe)SS,g Q¥ SS,g,(QIyNu,ldy)
&
= —u

Hence a=0 and (3.7) becomes

n

oo NaN S udfy=S 1y SS g T ady. 3
Fy (= | R”

m
74

For i <n define the mapping
Qy=v -2t vth,  h=te, —¢) 1"‘3. reR™

Note that h =1und Q¢,=¢, for j<iand Qe¢, =¢_. Then g1Qyi=g,11) and

-

Vool SS,e iy Tudyr=1 vl SS,ga0) Cugtdy.

PRat] "

R” R"

From this. (3.8y and (2.11) we have

_|' DUNTSW S undf) = \ Vi E 'SS. gy u,idy)
£, R i

Ssup SS. gy | yippdn=S SS.guf* (39
R & ot

For the nonadaptive information N7 see (2.12), we have

VoonN o Cuidty= N [ vy (SS g SS,gud
F. .=l R
=YV S§§.g " (310

= |
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From 3.3y of Theorem 3.1.179) and 13.10) we have

PN = et N2 LSS Cudf1= Y SS g
F 1= 1

=rUHNEY
This completes the proof. J
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