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Summary. We study adaptive information for approximation of linear prob· 
lems in a separable Hilbert space equipped with a probability measure .u. It 
is known that adapt ion does not help in the worst case for linear problems. 
\Ve prove that adaption also does nor help on the average. That is, there 
exists nonadaptive Information which is as powerful as adaptive inior­
mation. This result holds for "orthogonally invariant" measures. We pro· 
Vide necessary and sutTtcient conditions for a measure to be orthogonally 
invariant. Examples of orthogonally invariant measures include Gaussian 
measures and. In the finite dimenSional case. weighted Lebesgue measures. 

Subiecc Clussl(inlCwl/s. :\\lSI\10S): 68C25. CR: F2.1. 

Introduction 

We explain the setting of the problem using a simple integration example. 
t . 

Suppose one seeks an approximation to j f(ndr knowing II values of f at 
o 

points c" .V(/l=[f(r11. f(c~J . .... fle,I]. and knowing that f belongs to a given 
.:lass F of functions. If the points r I' r: ..... c" are given simultaneously then S 
= snon is called nonadupcirl! information. If the second point r; depends on the 
previously computed value ((C II. I.e .. c" = r ~(fl c III and if the point c, depends 
on the previously computed values/lc,I ..... ftr,_tJ i.e .. c;=c,lfllll .... ,fU,_lll. 
then .V = .V" is called udupcire information. 

The structure of adapllve tniormation is much richer than the structure of 
nonadaptive informatlon. Therefore one might hope that adaptive information 
can be much more powerful than nonadaptive Information. i.e .. an approxima-
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lion that USes .ldaptl\<! miormation has much smaller <!rror than ..In approxI­
mation that uSeS nonadaptl\e Information. 

What do We mean b: <!rro() It depends which model We ha\e 10 mind. 
Consider first the worst -:ase model. In this model the error of an algonthm 0 

t for our simple example) IS defined by 

<'(<,D •• VI=suPj: J f(ndc -cPI,VIIIlI'· 
fEf a 

By an ulgorichm we mean any mapping If> which maps Sill into lR.. Then 

rl lV) = inf el cP. iV) 
01> 

is called the radius (~f illjormacion and c/> is optimal iffelc/>. NI=r(N). 

I 1.I I 

( l.2) 

Does adaption hdp in the worst case? That is. does there exist a choice of 
points r = cil f(c I I •... .l(ti _ III such that 

A surprising answer IS no. at least for some classes F. ~ore preciseiy. if the 
class F is convex and balanced I i.e .. IE F implies - f E F) then there exist 
points (* $uch that the Ilonadapriee information N"O"(f) = [f(ri) . ... .fIC:)] is as 
powerful as the adaptive information N a

• i.e .. 

This was established in [I] for arbitrary linear functionals. It was generalized 
to arbitrary linear operators and information consisting of linear functionals in 
[2] and [12. Theorem 7.1. Chap. 2]. A further generalization may be found in 
[Il ]. 

It IS also known that there are nonlinear problems such that adaption does 
not hdp In the worst case: see [3. 8. 9. l~] and [l7]. 

We stress that In the worst case there do exist nonlinear problems for 
\vntch ..Idaptlon IS iar more powerful. .-\n example of such a problem is zero 
iindlng ior scalar iunctions which change sign at the ;:!ndpoints of the interval 
[LI. h). Then the optimal nonadaptive information has radius Ib -,I) I 2(11 ~ 1 II 
whereas the optimal adaptive information is biSection information which has 
radius t b - ,/I 2 -I" - I '; see [l2. Theorem 2.1. Chap. 8J and [7l 

As long ~s F. is convex and balanced. adaption does flUt help in the worst 
-:ase for linear probkms. One may think that this is due to a model assump· 
tlon. i . .: .. that the error of an algorithm is determined by its performance for 
the h,Hde~t ,: One might hope that with a more realistic detinition of error. the 
Cl)nVerSe result would be true. I.e .. adapt ion helps. perhaps even significantly. 
f(.)r lm.:ar probkms. 

[t ~..:ems natural to propose the average error of an algorithm as a more 
realistic measure oi its performance. Technically. thiS means that we replace 
supr;:!mllm In 11.1) b1 Integral. i.e .. 

11.3) 



\\here ~l 15 :.t probabdny me:.tsure l)n F 'ote that c\cn (or our ..;:mpk _'\Jmpk. 
F usually lies m Oln mfinlte dimensional ~pa~e Jnd therdore the: JnJI~s!S (If 

11.3) requires measure theory In infinite dimensIOnal spaces. Thus the: anal~sts 
of av<:!rage ~ase error is mu~h harder than the analysis of worst case error. 

Define 
r'~(.VI = inf e·"(jJ, .'11 lUI 

.;, 

.is the lll't'rage radit/S or informacion. 
Does adapt ion help on the average? That is. dOes there exist ;1 ~hoice of 

points ci=ci(fICII .... .jICi_111 such that 

The surprising answer is 110 for linear problems. This was established in [to] 
for a finite dimensional Hilbert setting with a weighted Lebesgue measure and 
with a general error criterion. In this paper we show that adapt ion does not 
help on the average for linear problems in infinite dimensional Hilbert spac<:!s 
with an "orthogonally invariant" measure J.l. Orthogonal invariance of J.l means 
that the measure of a Borel set is invariant under certain linear orthogonal 
mappings. Examples of orthogonally invariant measures include Gaussian mea­
sures. For the finite dimensional case with J.l absolutely continuous with respect 
to the Lebesgue measure. orthogonal invariance coincides with a weighted 
Lebesgue measure. see Corollary 3.t. Thus this coincides with measures studied 
in [10]. 

Our result holds for adaptive information operators which are measurable 
and w'hich consist of arbitrary inner products. [n particular. it holds for 
adaptive information operators used in practice \\i'hich Jfe usually continuous 
almost everywhere. We illustrate this point by an II1tegration example, L'sually 
the next point t, _ I' at which f is to be evaluated. depends on whether f 1[. I. 

I Ic~I ..... (1r,1 (or some of them) satisfy a certain Boolean condition. i.e .. 

r Lli .! 

r, _ I =~ 
1<.1, 
• _. I 

if Cond(flfll ..... "Ic,l)=true, 
if Cond (f(t I)' ... .,rlt, I) = false. 

ior some Ul., and ":.,' Then [,-I' as a function of the previously ..:omputed 
II1formatlon. is a pIecewise constant fun..:tion. Thus it iS,not ~ontinuous but it is 
.:ontinuous almost everyv"here for a reasonable choice of measure. St:e for 
example. the diSCUSSIon on adaptive integration in [5. pp. 126-l30]. 

We have given a nlJmber of references dealing with adaptive information 
for nonlinear problems 111 the worst case. There exist no such paper for the 
average case model. We hope that the study of nonlinear problems in the 
a verage case model will be one of the foci of future research, 

We stress. by all means. that the worst and average case models are not the 
only lI1terestlng models to be studied. :\n asymptotic model. in which the total 
number of evaluations IS IIUl fixed a prIOri. should be analyzed, The question 
as to wheth<:!r adapt ion helps for linear problems in the asymptotic ~aSe .5 

analyzed in 11.\\. Trojan. in preparation). The answer is once more no. Some 
preliminary study indIcates that adapt ion does not help in the asymptotic 
3\'e:rage case. Results for thIS model WIll be reported in the future. 



Why ..lr~ w~ int~r~st~J in th~ liuestlon \\ heth~r ..lJJptlon IS more po\\erful 
then nonadaplll1fl! Ther~ ar~ a number of reasons which indud~: 

til IntrinsIc mathematll.:al Interest. :\daptlon corr~sponds to certain non­
linear operators whereas nonadaptlon corresponds to linear op~rators. \lath­
ematlcally the sentence .. adaption does not help" means that this nonlinearIl) 
is no more powerful than linearity. 

I iii Reduction of the search for optimal information. If adapllon does not 
help then we only have to look at the very special and relauvely easy non­
adJ.pllve case to find optimal information. 

I iii, Speedup for parallel computations. Nonadaptive information is na­
turally decomposable and can be computed \'ery efficiently in parallel. Adap­
tive information is lIor decomposable an is ill-suited for parallel computations. 
For instance. for the integration example if a function evaluation costs unity 
and th~re are /1 processors then nonadaptive information costs unity and 
adaptive information costs n. 

A more detailed discussion of this subject may be found in [13]. 
We briefly summarize the contents of this paper. In Sect. 2 we formulate the 

problem. introduce the concept of orthogonal invariance and state the main the· 
orem oi this paper. The proof of the theorem requires some properties of orthog­
onally invariant measures. Therefore Sects. 3 and 4 deal with characterization 
and properties of orthogonally invariant measures. In particular. we prove that 
orthogonal invariance of J.L is equivalent to orthogonal invariance of its pro­
jections into finite dimensional subspaces. We also characterize orthogonal 
invanance for the finite dimensional case. We prove that the measure of a 
Borel set IS invariant under a certain nonlinear mapping. This is basic to the 
proof in Sect. 5 that the spline algorithm is an optimal average error algorithm. 
The proof of the main theorem is given in Sect. 5. 

2. Adapthe Information 

Let F, .lod F; be real -;~parable Hilbert spaces. Let S: FI - F; be a linear 
-:onllnuous operator. Our :l1m is to appro.'(Imate SI for J.ny I irom Fl' We 
.lssum~ that IOstl!ad of t. \\e know SI) I. Hl!rl! S is .tn LIJapcirt: lI~lvmwtiulI 

dp"ru[Or defined by 

12.1 ) 

whl!re.ll =11.!?jl. 1,=I.r~,(.rI ..... .r'_II). ~,(.r!'··"Y'_I) is an element of FI and 
I' .• , IS the Inner product of F!. The essence of 12.1) IS that the choice of 
!!, II! ...... r _ II may depend on the (i - II previously computed inner products. 
For bre\ It~ WI! shall write 

12.2) 

T \.' ~trl!ss that .\' is aJapl1\ I! we shall soml!times wfl!e ..... = S". If each gil f) 
does not depend on f. I.e .. g, If' == g, for some g, from Ft. then .\1 is called 
IWIlLldurcir,' .tnd denoted b~ S = snon. i.e: .. 

12.3) 



:\otl:! [hat nonadapti\1:! Information is a /illt'''' operator whl:!reas J~a;JtI\.: 
information is tn gl:!neral IWlllilli!ar. \Vithout loss of gl:!nerality we assuml:! that 
g 11 n. g; 1 r l. .... ~"U) are linl:!arly indl:!pendent for 1:!3ch I from Fl' 

KnOWIng .v I f I WI:! approximate Sf by lol.\' I f II where (f) is a mapptng from 
.\'IFII into F~. We .:all such ~ an lidealized) ulgomhm. \VI:! wish to approxI­
mate Sf with an average error as small as possible. The average error of (PIS 

defined as 
e·,g(cp. 'vI = {j' .!Sf - (f)1.\j (f))! J.l.ldf)} t. 

F, 

Here J.l. is a probability measure defined on Borel sets of FI and the integral in 
(2'-+) is understood as the Lebesgue integral. We assume that an algorithm (il IS 

chosen such that 12.41 is well defined. i.e., :!Sf -!PINtfl) : is a measurable 
function. This assumption is not restricted as is shown in [15]. Let 

,.'II(N)= inf e"i(cp.NI 
"'E<b( .... ) 

be the at'erage radius vf information where cf>tNI denotes the class of ull 
algorithms using N for , ... ·hich the average error is well defined. 

The main problem addressed in this paper is to show that for a wide class 
of measures. adaptive information is /lOt stronger than correspondingly -:hosen 
nonadaptive information. Thus the much more complicated structure of adap­
tive information operators does not supply more knowledge about linear 
problems than the relatively simple structure of nonadaptive information oper­
ators. 

This result holds for "orthogonally invariant" measures' ,.1. This concept \vill 
be defined below. We assume that Jf '~~lidf)< ~ x. \VithoU( loss of gener­

F, 

ality we can assume that the mean element of the measure .u is zero. i.e. 

IS" '\ . .1'1= j' l/xllt:,rI.utJf). 'ix.YEFI • 12.61 
F, 

The operator Su is a linear self-adjoint. positive definite operator and has finite 
trace. If dim FI = + x then S)FI ) is a proper dense subset of Fl and S; i: 
SJFI)-Fl is a linear unbounded operator. See [-+.6] and also [16]. Let 

\2.:1 

Then ,x ",=ltx.:().=)IS;I,\.XI. 
\Ve ~ay ,U IS unllugO/wllr illrariLlIlC iff 

/.lIQBI=.!lIB) 

for any Borel set B and any linear mapping Q. Q: FI --+ Fl' of the form 

Qf = 2tj: h)S,)I-f 12.91 



ior any II su(h thatIS,Jr.hl= lor 17=0. For II=!). Q/= -J and 12.~1 means that 
JiI-B)=fJIBI whl!re -B=: I: -I-=B: 'Otc that I-=SutFII Implil!s that 
QfeS..tFII and 

Q/ ~ =121/ 17lh -5; 1/ 21/ /lIS) -/1 
=IS"- I/fl= f 

Thus the mapping Q is orthogonal in the norm I.: *. This explains why fJ is 
(ailed orthogonally tn\arianL 

It is shown in [16] that Gaussian measures are orthogonally invariant as 
wdl as measures of the form 

III B) = f 1\'(IS;;t/ !Ii.ld/I 
8 

for some measurable function w assuming that FI is finite dimensional and i. is 
the Lebesgue measure. 

Note that Q rcsembles a Householder matrix. It is easy to check that 

(2.10) 

This important property will be extensively used in this paper. In Sect 3 we 
characterize orthogonally invariant measures in detail. 

We shall show in Sect. 5 that without loss of generality we can assume that 
IS~g,lfl. gJ1fH=(\. Let 

t.l =sup {±SS"g,(f)i~: fEFI}' 
,~ I 

For simplicity assume that t.l is obtained for f*. i.e .. 

~ 5S,,!:!,1/ *) : = sup" SSS,ljl 
.. I f~F";-1 

12.11/ 

12.12/ 

',)te that S,":,n IS 'l,,,wdaprl!'t:' ..Ind IS vbtained by fiXing ~,Ifl in the adaptive 
mformatlOn S". 

We sa: that VI II=[II~IIIH . .... I,f.gJfll] 15 measurable iff gil') is 
mea:.urabk. I.e .. .I!,- : I BI I'S ..I Bord set for a Borel set B of JR.' -!. i = 2. 3. "" II. 

We are read: tv ,tate the main result of this paper. 

Theorem 2.1. L'r ,II he </11 orehogOIlCllly illnlrlClIlC mt'u.s:tri:'. Lt'e S" he 1IIt't.l'surablt.' 

Ill/Llpei!'.' 111/.//'III,U;OIl. Theil 

12.13/ 

Thus .Idaptl\.ln does not help on the i.l\crage for linear problems. :\s we 
;tlrc;ldy mentioned In the introduction it does not help for the worst case 
mode\. 



The prout l)t Th~or~m :.l Je:pends hea\il~ un (he: properue:-; .11' .,nh"g­
onall~ in\ arlant me:asures. I n Sect..~ \\ e: characterize onhollonally Hl \ ~lr!ant 

me:asun.:s. The: results 01 Sect. J are of Intnnslc interest. [n Sect. ~ \,e Jefl\<: 
properties of orthogonally lO\ariant measures. 50::cuon 5 contaInS the proai oi 
Theorem 2.1 The proof is based on (\,0 results on orthogonall~ Imartant 
measures. The first result is that for orthogonally invarIant measures. the 
measure of a set is invariant under a certain nonlInear mapping. The second IS 
that the measures JILV·)- I are orthogonally invariant and independent of S" 
Assummg these two results. the reader can skip Sects. 3 and -+ and turn to 

Sect. 5. 

3. Orthogonal (nvariance of :\Ieasure 

We show in this section which measures are orthogonally invariant. Our 
analysis will be first done for a finite dimensional case, dim I FI) < + Y... \Ve 
find. in particular. a condition for f.1. to be orthogonally invariant whenever J1 is 
absolutely continuous with respect to the Lebesgue measure i .. ~ext .... ·e consid­
er the general case. dim I F, ) ~ + x.. We show that orthogonal invariance of Ii- is 
equivalent to orthogonal invariance of its finite dimensional projections. 

Ii) Assume in this subsection that m=dim(F t )< +:r... Then the operator S4 
is bounded and 

13.1 I 

is well define:d. By 'I@'I we mean a linear operator from F t into FI such that 
1'I('g)I/lf./ 1=1.1>/1'1. Let Q be of the form (2.9). Then Q/=T-'i2'1@1)-flTj 
where l1=S:iz and '1'! = 1 or 17=0. Hence. the measure .U IS onhogunally 
100'ariant iff 

for an: Borel set B ;lnd ;lny 'I such that 't7: = lor l1=O. 
We char:.lctenze orthogonally il1\ariant measures .Il which are absolutel: 

continuous \\ ith respect to the Lebesgue measure i .. Recall that f.1. IS absL1 lutei! 
-:ontinuOU5 w.r.t. to ;.Ide:noted by .Ll~i.1 iff ;.IB1=O=~IIBl=O for ever) Bard 
,et B. If Ii ~ / .. th~n rhe: Radon':\ikod~ m theorem. see e.g. [6]. guarantees the 
existence of a nonne:gati\ e measurable mapping g: FI -lR _ such that 

.[lIB)= J gl/Ii.ld/I. 13.31 
Il 

For "implicit) we :.lssume that g is continuous almost e\erywhere. i.e .. there 
exists a set .4. i.IF I --1)=0. such that j:A implies that g is continuous ;It t: 

Theorem 3.1. ThL' ml'a.swt.' .U IS orrhogOl1ally il1['(lriallr iff 

r. - - . 13AI 

Prou( Suppose: ~l IS or!hogonall) im ariant. Take II and f: from .-1 5uch that 
II ,,= I~ .. ' Ddine rl= TIll -(~I fl -I~:. for II =i= -r~. and 11=0 for.l l = 



-I:. Let Q= r-:I:'781/-/IT. \\'e ha\e :ITf;. Till -/;11= I: -I: : :lnd Q/I 
=1:. Then 13.:, Yields ).lIQBI=HIBI ior J.n~ Bllrcl ~et B. Obsene that detQ' 
= I. This and 13.31 ~ leld 

f :glfl-gIQ}i}i.(J(I=O. 'fB-Borel set. 13.:51 
B 

'ote that g-gQ is .:ontinuous atfl and glfl l-gIQfl l=glfl '-glf1 ). Suppose 
that g( fll- g( f: 1= O. Due to conunulty of g - gQ at fl' there exists a positive r 
such that for /~B=(feFI: f-fl :<r} we have signlgl/l-gIQlll=constant. 
Since ;.IBI>O we ha\e 

J [glfl-gIQII};.ldfl*O 
B 

which contradicts 13.5). Hence gl II) = gl 1:1 as claimed. 
Assume now that (3A) holds. Then for an orthogonal Q in the norm ,; '1. 

we have Idet Q! = I and 

).lIQ(BIJ= J gl/)i.(dl)= J glll/.Id/) 
QIBI QIB' ..... i 

B"QI.t' 

~ote that f~.-t r-Q(A) implies Q/eA. Since 
gIQ/)=gtI). Thus we have 

).lIQIB)) = 

Of : - II: - :.-, I. then 13.41 yields 

13.61 

for any Borel set B. Setting B = QI e) we ha\'e .ul e) ~).lIQ( ell for any Borel set 
C. Hence ).IIQIBII= ).lIB). This means that).l is orthogonally invariant. C 

The conditIOn (3"+1 means that g depends on the norm of f •. \Iore 
precisely. kt X =: f oo: J -:.·0. Ddlne w: IR _ - IR _ such that 

{

' ~II). 
1\'1 \'1 = . . 0 

\:;: X. 
13.71 

where (-=.1 and / ,,= x. Due to 13.4). 1\' is well defined. For leA we have 
l\ I J .) = )(1 / I. SInce 

=, l\1 f.)i.ld{). 
B 

Thus we ha\<! prt)\en 

Corollary 3.1. Tho:' IIIt'Ll.,urt' ,tl I.' orrhug"lIally illrar;(l1/C liT 

li.leill. iB-Borelset. C 13.81 

The measures ,onsidered In [10] .1fe of the form t})1) and therefore they are 
onhogonall~ 1n\.trlJnt. 



Iii 1 \Ve now turn to the gener:ll case dim 1 F, I ~ - '- If Jim 1 F, I = - I then 
T=Su-: IS unbounded and for (fS,:IF:I. T( IS not wdl defined. Thereforl! th<! 
rl!sults of 5ubsection Iii do not hold. 

\Ve exhibit relations between orthogonal invariance of i1 and orthogon.li 
invanance oi its finite dimensional proJections. Ll!t :1' ~; ... , bl! orthonormal 
eigenelements of the covariance operator Suo i.e. 

SU~!=I·J"I' {3.91 

projection. 

Let J.l", be the projection of the measure J.l onto X",. i.e. 

13.111 

for any Borel set B in X ... see [6]. We are ready to prove 

Theorem 3.2. The measure J.l is orrhogonallj' inrariant iff the measures J.l ... urI! 
orthogollally illraria/lC for m = l. 2. ... . [] 

Proof Assume that .LI. is orthogonally invariant. For any m. take a mapping 
Q: X .. - X .. of the form 12.91. i.e .• 

where S .. is the covariance operator of the measure J.l .. and hEX",. {5",It.hl= I 
or 11=0. First of all we show that S .. ,'(=5u ,'(' XEX ... Indeed. for X.YEX.., \I.e 
have 

t5",.\:.YJ= j U::O(j:.I'IPm(dfl=.1 (P..,j:x)(P",/.ylp(dII 
\." F 1 

=(s~p ... ,'(. P .. )'I =(5".\: . .1'1. 

Since X .. IS an invari;lnt subspace of S". SuXE.\'", and 5",'\:=Sux. -; XEX..,. as 
claimed. Thus Q can be extended to the space FI with S .. replaced by S". Let B 
be a Borel set in X.,. :--:ote that 

P.,- I Q B = Q P",- I B. (3.121 

Indeed. if (EP",-I QB then f = Qb.:... (, where bEB and II EX;.. Since Qfl = - C 
\\e have /=Q(b-t!J;:QfP",-IBI. Assume now that fEQP..,-IB. Then f=Qlo 
-/11 where bEB and/IEX,;;. Thus f=Qh-/IEP .. -IQB as claimed. 

From 13.111.13.121 and orthogonal invariance of J.l we have 

J.l..,(QB) =.UIP",-I QBI= j.lIQP ... - I BI = /1IP .. - 1 BI = 11",1 B). 

Thus tL.., IS orthogonally invariant which completes this part of the proof. 
Ll!tu.., be orthogonally Invanant. Let Q be of the form 12.9 I. I.e.. QJ 

= 21 OIlS)1 -( for ~ome h such that (5)1. hl= I or h =0. Define 

Z= :B: B is a Borel set In Fl' j.lIQBI=/1fBI}. 



Obsc:nc that Z IS d '7-IIc:ld, Imkc:d. Ii B,~Z -lnd B, - B, =0 1M I =/. then 
QB,~QB,=O since: Q is ont:-IO-une, Then 

u (Q .~ B,) =tt \ ~ QB,) = ± iIlQB,I= ± iIlB)=tl \ I~ B,). 
,"l" 1 l;a ! I: 1 ! _ I 1= l 

Thus \~: B,;:Z. Of .:ourse 0eZ .. lnd BeZ implies that FI -BEZ. Hence Z is a 
,. I 

Ii-field :lS daimed. 
We now show that t:ach closed ball B = U: .I-a, ~rl with tlEXm " for 

some mo_ belongs to Z. Recall that QI=21j:hIS)I-f where ISuh./n=1 or h 
=0. If 11=0 then take an Index j such that ~1t*0. Define hj=c~h where c 
=tS~~h.~/n-~. Ifh=O.sethJ=O. ThenhJEXjandIS"hJ.hjl=1 ofllj=O. 

Define the mapping Q J: XJ -- Xj by 

:--.rote that Qj is of the form 12.9) for the space Xj' We have hj -h and 
Qjl} I-Q(fl asj tends to ... x.. We now prove that 

L Y. n U ~-'Qj(~B)cQB. 
1=1 J= i 

( 3.15) 

Indeed. let x belong to the left hand side of (3.15). Then there exists a 
subsequence j, - - z such that .'(EPj~ I QJ,(~,81. Thus ~,'( =Qji(~,bj,) where 
bj,EB. From this we ha\'e 

If }, ~ml) then P"b -,I = PJ,lb -III ~ b -(/ ~,. for any b from B. Thus 
P"BcB and Q,,?',xeB. Since 8 is dosed then Q"p",-Q'(eB :lnd xEQB. This 
shL)\\S that the lelt hand SIde 01'(3.15115 contamed in QB. From 13.151 we have 

til Q B I ~ lim Jl (~' ~ - I Q , PJ B ) ~ lim Jt I ?, - I Q.I:: B I 
- , J ~ ~ . - , 

= lim Ll,IQ,?,BI. 

Since ,Lt, IS orthogonaJl~ 10\ arIant then 

Thu~ 

(3.161 

T" pw\e thl! OPPL)Sltc inequalit~ we show that 

, 

Q8=. - p-IO PB 
_ J -I 1 ' 

( 3.17, 
:-: t /=.I 



\\h~reB,=:/: 1-,1 ~r-,: Indeed. I:EQB means ihat.I:=Qh'lnd 11- 1 /-;;" 

~l)te that Q,PQh tends to Q2 h=h;l$ i--:- f. Thus there ~.\l5b.ln InJ..:\' 
=i"I/11 .;u..:h that Q/~Qb-(/ ~r+i: for ;'?:Jo' Hence QIP,Qh-=B, Since Q X, 
=.\'/ then Q/~Qh=P/QIPIQbE~B" Since, Q;=f We have PIQhEQ,~B. and 

QhEP/-!QJ~B, for J'?:io' Thus X=QhE n ~-IQj~B, which completes the 
proof of 13.17,. From this we have Ja 10 

J.ltQB)~ lim J.l (n ~- I QI~B,) ~ lim J.lI~- I Q,P'B,1 
I-~ J-j .-1 

= lim J.l,IQ,P'B,)= lim J.lilP.B,I. (3181 
1- T 

We now show that 
, 

B,=IIP.- I p'B .. 
i D 1 

, 
Since B,=p'-IP.B,. vi. it is enough take xEn p'-Ip'B, and show that xEB,. 

,~ I 

We have p'xEP'B, and since P.a=LI for i,?:mo we get ~xEB,. 1"ote that p.'( 
tends to x and Bt is closed which yields that xEB, as claimed. Since 
p.=:p._IB,=p'-IP.B, then 13.19) yidds 

J.lIB,) = lim J.l,fp'B,I. 

This and 13.18, yield 
(3.20) 

Note that (3.201 holds for any positive 1;;. Let c=k- I with k tending to 
r. 

infinity, Since B=l Bk -; and J.lIBI= lim J.l(B".,) we have from 13.':01. 
k= I 1<- ~ 

~II Q B) ~ J.lI BI. ThiS and f 3.161 yidd 

,LlIQB'=JdBI 

for an~ dosed ball \\lth center lying in X .. " for some ml)' 

;.. 
Thus BEZ. Since any dosed ball ..t = :.1: /-LI ~ri = :(:r -P .. a ~r ,= 1 

... 1 f - P,ILl, I and Z is a a-field .. 4 belongs to Z, HellCe Z contains all dosed 
balls .md therefore it contains all Borel sets, Hence 

for any Borel set B, Since Q is an arbitrar) mapping of the form 12,9). this 
proves that J.l is orthogonally imanant. This completes the proof C 

.t. Properties of Orthogonally Imariant .\leasures 

Th~ prooi of Theorem 2.1 depends on properties of the orthogonally in\ ariant 
measure J.l v. hlch will be obtained in thiS section, 



'Ii '_J \\ \\ .1~.iJ...L)"""'~,; .1riU. H \.\ .'1':1 •. 1.,.1'.\ .... , 

Lt!t 

.\·~III=[II.I!II/II.II.){~,' II ..... IJ.'!-"t./ II] 1.+11 

be measurable adapti\'e iniormation. This means that gll·I ..... g,i·1 arc 
measurable and are of the form I~.~I. Assume that ,Sug,(jl. g)I/II=(i'J' 7/,=F:. 
IWe show in Sect. 5 that this assumptIon is not restri-:ti\e.1 

Ddine the mapping D: F, - F, by 

, 

Df} I=~ ~ tj.g j l/IIS"g,I/I-j. 
,~ I 

The mapping D plays an important role in our analysis. Observe that D is 
measurable. For nonadaptive information. i.e .. g,If)=gO.i' D is linear. For 
adaptive information D is nonlinear. The mapping D has four important 
properties 

.V"(DI/H= .val/). 

D- I =D, 

JD(j)Ij.=;/ '., "I/eS"IF, ). 

" 
DIJ)= - n II -~SuV/I®gi(/))f, V JeFI' 

.= I 

where 1:<~yllfl=lj:yl:<. Indeed. observe that 

Since g,l!1 is of the form 1~.2) we have gIIDI/II=gl' 

g~IDI/II= g~IIDf, gill =g~ll/ gl II =g;I/) 

I'U) 

I.+A) 

14.5) 

14.6) 

and similarlyg,IDlfll=g,I/I. Thus YIDffll=.""'"tfl which proves 14.3). To 
show 14.41 obsen e that 

DIDI)I) = ~ ~ IDlfl. g,IDI} IIIS.s,IDIj II-Dill 

" 
=~ ~ lj.g,IIIJS.g,tll=Dlfl-/-Dtfl 

I:. : 

=( 

Thus D11J1= I\\hich implies that D-I'/I=Dt/i as claimed. 
To ~how ,·-1.51 llhs';[\\! that {eS)F,1 implies DI/IESuIFII andDljlt. IS 

well defined. \Vc ha\ e 

Dill :=IS~IDlfl.DIfJl=12 ± I/g,(f IIg,I/I-S.-IJ:Dtj I) 
,. I 

" 
=2 \' 1/.~.t1I1~-~ \' tf.~.tfJlIS-I,.S "IIII~IS-IIJI _ _ 0_, _ _ ~. _ ... _ ~t • " _ • 

J;: I •• I 

=IS_-l.tJI= J • 

• 



,1:. ..;IJlmeJ. Finall:- obsen c: that 

I I -S,gJ /1'& g,lf III I -S .gJI f 1'2; gJI/II! 

= f - 2j f. g,l.I liS "gil 11- 21./. gJI II)SugJ1./ I. 

and (he repe(itive use of this property yields 14.6,. 

Property 14.3) means that the mapping D does not change information. I.e .. 
the elements / and Dlfl are indistinguishable under So. Property ,.+AI means 
that D! IS the identity operator. Property 14.5) means that D IS orthogonal to 

the norm r·; .. and Property 14.61 states the factorization of the operator D. 
We show that orthogonal invariance of the measure p. Implies that the 

mapping D does not change the measure of a Borel set. 

Theorem 4.1. If p. is orthogonally invarianc (hen 

p.( Dj B)) = p.1 B) 

for allY Borel set B. 

Proof The elements gil', which form the adaptive information .Y" are of the 
form 12.2). i.e .. g;:lR i

-
I 

..... FI. For y=[yl.y: ..... y._I]EIR·- 1 denote g,ly, 
=giIYl ..... '\'i-I)' Since g, are measurable. they can be approximated by piece­
wise constant mappings. 

g,lyl = lim g,."Cr). ~ YEIR·- 1
• I'+.~I 

• 
and g,."lyl = g, .•. , for YEA".j where A • .) are disjoint Borel sets of IR"-l whose 
union IS 1R.- 1.j=1.2 ..... Il". Since glt,rJ=gl and ISug,(Y). gJIYII=Oi.j we may 
assume the same properties ior g; .•. i.e .. 

gU1y)=gl' 

ISug, .• lyl. g,. ,,1.1'11 = .5,.} 

(or an~ r~IR"-1 and .my k= I. 2 ..... 
Define (he mapping 

" 
D,IJ 1=2 " Ilg,.I..,IS"g, .•. J-/ 

,_ I 

for S·'IjIE.-t".r Due !O 14.8) we have 

Dljl=limDl.t/). 7fEFJ • /4111 
k 

Observe that D" is pieceWise linear. From 14.9) we have 

D 1)"- nIl 's g "XIIJ I)' k - - - - . .1 1.1e.] ~ .~I.J...J <0 

I = I 

\Ve no .... shtm (hat 



for ;lny open set B oiFt . Indeed. let x~DIBI. Then x=DI/I.I"=B. Since D;=l. 
/=DIXL Due to I~lli. D.txI approaches D(xI=l~B. Since B is open. D,t:I:IEB 
for k~kn Thus xED,-IIBI for all k~k(). This proves 1~.lJI. 

~ote that D; IS measurable. Therefore Dk- I t B) and E are Bord sets. From 
1~.131 We have 

,UI DIBI) ~,UI E) = lim ,U ( n Dk- I(B)) ~ lim J.LtD.- '(B)). (4.1~) 
,-%: k=i . k-x 

Let B'.1 =(S")-I ACj ' The sets BIt •1 are disjoint Bore! sets and their union is 
Fl' Then '. J.1ID It-

I (B))= I J.1(D.-l(BIIB •. )). 
j= I 

" , 
Dl(.jIII= 2 I (f gi.k.i)S~gi.k.J -f = - n u - 2Sl'g,.k./$)gi .•. )f 

1= L :=- l 

for JEFI . The mapping Dk•i is linear and 14.9) yields that DL=I. Thus D;:} 
= D'.F Orthogonal invariance of J.1 yields that ,utC) = JLI - C) and ,uIQ C) = J.L( C) 
for any Borel set C and Q = 1- 2Suh ®h where (Suh. /1)= 1. Thus we have 

,Ut D; I( B II Bk •i» = ,u(Dk.j(B II B •. j )) 

Hence 

Thus we h;lve 

for any vpen set B. 

=,u (n U - 2S ugi.k.j ® g,.k,j)B II B •. j ) 
1= 1 ' 

=,U (;8: (/ -.2 Sugi.k.J ®g;.k)B® B •. j ) 

= ... =J.LIBn Bk./ 

"" 
.UID.-1IBlI= I ,UIBIIBk.;)=,UIBI. 

J; I 

1~.151 

Take now.i ..:!osed set B. Define B,=I/EF,:dist(fBl<1 sl. 5=1.2 ..... 
r 

Then B, IS open. B::: B, _ I ::: B,. and B = 11 B,. Due to this and t·t 15) we have 
,= I 

.Ill Dt Bli ~J.LI D( B,)) ~,ul Bil. 

Thus J.11D(BII~!im.uIB,I=.UIB). Hence 1~.15) holds also for closed sets . . 
Take now an open set B. Then F, - B is dosed and 

I - .HIDI BI) = JIIDIFI - B)I ~J.l1 FI - BI = 1 -.Ui BI. 

Thus tIIBI~J.1IDIBIl. This and t~.151 gi\e 

uIDIBII=,uIB) (~.161 



for an~ open ,et B. Since the Set of B' for whh:h I·U 61 holds is J r,·fldJ .lnJ 
containS all open sets. it contains ;.ill Borel sets ThiS completes the pro~)! 

Theorem 4.1 will be used in the proof of the main result to ,;han~L' 

variables. That is (4.7, ImplIeS that 

.i H(jlpldfl= j HrDfll1ldf) 
8 D48) 

for any measurable function H and any Borel set B. 
In order to prove Theorem 2.1 we need one more result. let S" be gl\cn 

by (·u I. Define the probability measure .u I ('. sa) as 

where A is a Borel set of JR". The measure Pi' called the probability Induced by 
.va

, tells us the probability that N I fie A. 
We prove that the measure .Ill is independent of sa and PI is orthogonally 

invariant with mean zero and the identity covariance operator. 

Theorem 4.2. There exisrs a probabiliry measure PI defilled all Borel sees of lR" 
such chac 

for allY measurable adapriL'e informarion ;va of che form /4.1). 

Proof We first consider nonadaptive information operators. Le!t 

.v I I f 1 = [ll ~ I)' I f, ~ zl, ...• u: ~")] .. 

. V~(fl=[If. tlll,ll rIc), ••.• If tin)] 

where (S" ~,. :}I =IS,"rl i • till = J'.r We! prove 

(·us) 

lemma ·tt. There <'XlSCS a linear Olle-CO-one mapping Q. Q: FI - Fl' ~lIch chue 
.\' I = .'Ii ~ Q I·U 9, 

(·COI 

Prno( Le!t X=lIn~S.::I ..... SJ:n.SZtll ..... S~tlnl. Let p=dimX. Of courSe! 
pE[n.211J. There eXIst eleme!nts ~"_I""'~I'.tI"_I' .... rlpEFI so that :S,;tli:r=1 
and :S~ ~,}f= I are! orthonormal bases of X. Define the mapping H: FI--FI • 

p 

Hf= 2: iJ:S .. ltli+:'))~'-f. 
,. I 

P II 

Since S;tI,,= I ISJtllt·S;;,IS=~,. we get tilt = 2: (t/ •• S,,;,)~, and 
1= 1 1= 1 

p p 

Hry,= 2: Irl"SJtI,I:,- 2: Irl •• S,,:):,-ry .. =:, 1·+.211 
, • I t= 1 



for /.; = I. 2 .... p. \\"~ ddine th~ mapping Q a5 

p 

Qf = HoI = ~ It. :,IS)I/, + ;,)-f 
,_ I 

To pro\~ I·U')I note that S, = .\'~Q is equivalent to Ij: ;.1 =IQ/ I/~) =I}: Q*I/ll 
= 11: Hrr"l. This holds since H 'lie = :" I See 1 4.2111. 

To pro\e H.201 we decompose H as 

H=S;;tH,S! 

f' 

where HJ= ~ IfS~(rri-·<I))S!;,-f Note that H,SJ(F,)cS!(F, ) and there-
,. I 

fore Su-~/HlSJI is well defined. Let X~ be an orthogonal complement of X. Fl 
=X8.P. Thenf~X':' implies IfS!rril=(f,S!~,)=O and 

Htf= -f. 'Ii/eX'-. (4.22) 

From (4.21) we have 

H,S!rr"=S!:,,. k= 1.2 • ...• p. 

Thus H I as well as - H I restricted to X are orthogonal mappings onto X. We 
decompose - H 1 in X using a Householder transformation. i.e .. there exist 
elements X,EX such that Xi =0 or Xi ' = 1 and 

where D, = /- 2x, (8) x;. 
For f~X- \\e have U:Xil=O and we get DIDc· ... ·Dp/=f Thus. (4.231 

holds also ror (E.'(- due to 14.221. Hence we proved that H, = -D1Dl· ... ·Dp 
and 

H= -S"-~D1D=· ... DpSj 
= -IS-!D S:I· ... ·'S-!D S=I .... t" . .I;J U 

= -Q~Q; ... Q; 
\\here Q,-=/-:Ir, -:;S)r, and h,=S::!~,. Obsene that Q,=l-2S)r,.E;Ir, Thus 

~ote that Q,- 1 =Q,. Thus Q is one-to-one and 

The (lrthogonal 1m ariance of Jl yidds JlIQ, BI = ,LlI BI = ,ul - BI ror any Borel set 
B llf F:. We ha\e therefore 

J( I Q - : B 1 =.!II - Q I ... Q p B I = pi Q 1 '. Q p B I = .HI Q 1 ..... Q f' B 1 

= ... =pIBI 

\\hl-:h pro\es 14 :01 .lnd wmpletes the proof of Lemma ·U. 



II 11 A I =.1( II.~ . .\' 11. 

From Lemma 4.1 W~ immediatel: get 

.u1L·t .\~I=~(.\~-I..tI=Jj(Q-l S~-l A) 

=.uIS!-! ..t1=~II..t. SII=~IIA). -: .-I:IBIIR'I. 

Thus (4.18) holds for any nonadaptive information 0f the form 14.11. 

Take now any measurable adaptive information S". Lsing 1-+.8, and 1-+.'11 
define 

for .valfIEAt.I' Then 

Y(fl=lim .\~If). '71:F1 • 
t 

Let ..t be an open set of IR". Then 

T. " 
(S·)-I(.·tlcE~ 'J n .\'.-1(.-1). 

,= I k= I 

Indeed. if /:I.\'")-IU) then y=.v"(fIE.-I.. Let y,=.\tf). Then Iim,r,=.IE.-I 
, 

Since.-l. is open • .1',-=.-1 for k~ko. Thus f:.v,-lly,lc'\'l-II.-II for k~k(). This 
means that (EE as claimed. From (-+.25) we have 

Jl I 1.-1. S") = ~(( .V") - I (,-111 ~ ,.d EI 

.= lim !I (0 .v,- 1(,-\1 ) ~ lim !IL\ - 1(,-1 )1. 
,- r- ", ... 1 ,- C" 

Obsene that 

". 
fil .\~ - I (.-Ill = ~ 111.\-: 1 A"' -I, ,ll. 

I ~ I 

Smce .\, 0n ea.:h-l, I ,:olncldes with nonadaptive iniormatlon. we han: 

and 

~II.\ - '1.-1)1 = ~ .1( 11.-1,-" .-I.~.J' = ~I,I.-I I. 
I' 1 

Thus 
1-+.261 

for any open set-l. T ..lke now a closed set .-1 and ddine-l, = : .\'~ IR" - : . 
, 

Jistl,r .. -II<I ,:. ,=1.2 ..... 11. Then .-1-::-1,_1-::.-1, . .-1= I~I-I,. Since .1, is npen 
\\eha\eJueto(4.261. ,.1 



Thus 
~Itl.-I. S"I ~lim !I t (.-1,) = /.1: 1.-11. 

s 

Hence I ~.261 holds ;llso for closed sets .-1. Repeating the last part of the proof 
of Theorem ~.l we com plete the prooi of I'U 81. Ll 

Theorem ~.2 Will be used to compute j HUVf)f.Lldj) for any measurable H 
F, 

and S of the form 1-+.11. Due to (-+.l8) we have 

f H(.'ij)f.L(dfl= J H(ylf.Lt(dyl. 
F, ~" 

Theorem 4.3. The measure f.L! of Theorem 4.2 is orthogonally i,wariallt with mean 
::ero alld the identity cOl'ariallce operator. 0 

Proof We first show that 

(m",.x)= j (y.xJf.Lt(dy)=O. 'i:c = [:Ct .. 'I:; •...• x,]elR". (4.27) 
~" 

(4.28) 

" 
Let g= ~ Xi:,. Since mIl =0. we have 

,. t 

0= f I! g)f.Lldf) = J ~ Xii! ~Jf.L(d{). 
F: F, i. t 

We change variables by setting Y=[Yt ..... yJ=,Vlf.). Theorem 4.2 states that 
p.\i- t =.U t regardless of .V. Thus 

0= J' ~ xiY,.utIJyJ= j (x·.\·JJ.ltldyJ 
F I 1= L Fl 

which pro\l!s 1~.:7I. This Yields In
J

• =0 as claimed. 
To show that S = l. we show that 

J 'y. XlIy_ .:JJ1 t I.LJrJ =Ix . .:). '1 x. ':EIR", (4.29) 
;R" 

For g = ~ .v,;, and h = ~ =,:, we have 
1::0 1 j!:' 1 

IS.,g.hl= J' If.g)(f.h)J.l(Jf)= J fY.XJ(Y'::'J.l!IJ.rJ. 
F, R" 

•• j-=- l 

We now prove that .H 1 IS orthogonally invariant. i.e .. 



\\here Qy=2IY.XIX-Y. y,=IR". X = I ur x=O. Ddine lh:: mapping 

where, as before, g= ~ x,;,. Then IS.g,g)= ~ x,~=1 ur g=O. Obsene that 
,. I t = 1 

S-IQB=DN-lB. 'tBeIBIIR"I. I·UO, 

Indeed. fE;V-lQB iff SfeQB iff Qj\fEB since QZ =1. Similarly jeDS- l B liT 
SDfEB since D" =1. Note that 

Q.vf = 21S): XIX - Sf = 21 f, glx - ;\I 

.V Df = 2(f, g)NISug) -.V f = 21f, gl x - Sf 

which proves H.30). From Theorem 4.2. /4.301 and orthogonal IOvariance of .u. 
we have 

as claimed. This completes the proof of Theorem ·U. C 

5. Proof of the Main Result 

L'sing properties of orthogonally invariant measures we are ready to prove 
that adaption does not help on the average. 

The proof consists of two steps. The first step is to show that the spline 
algorIthm that uses .va has minimal average error among all algorithms that 
use sa. The second step is to estimate from below the average radius 0i 
information lor eq uivalently the average error of the spl ine algorithm I. 

Let 

be a measurable adaptive information operator oi the furm \ 2.11 and 12.21. Thus 
g lUI ..... g.U 1 are measurable. First of all we show that wtthout loss vi 
generality we can assume that 

15.11 

I ndeed. ;is In [16] let 1111 f I. __ .. 1I,(j) be an orthonormal basis uf the line:lr 
space lin IS"gll/) ..... S_g.lfl'. Then there e:mts a nonsingular matrix .\[ 5u..:h 
that 

[U: g \1 in . .... If, g,lf II] = .v"1 j I.\[ 15.21 

where~,IjI=S; ~1111)1 and IS"g,lfl. g,tjn=(i'J" Thus. knOWIng -""If I we ..:an 
..:ompute Ij: g,tj II. The mappings .~, are also measurabk The elem::nts g,1 ! I 
then play the role of g,1/ I. This explaIns 15.1 I. 

Deiine 

u=uIS"f/II= ~ l,(g,ljIlS.g,ljl. 
,= 1 



'.:,)te that .\""iI'71 = .\'1 I I. I.": .• u IOt.:rpolat..:s I. Funh.:rmJre. t.tkc Ir,=S) F: I ~u..:h 
that S"lill= .\""1/1. Th.:n 

Sin..:e IIr-u.~,I./II=1) w.: ha\e IS:II'1.Ir-al=O ;}nd h:*~ IT .. ' Thus IT has 
minImal norm .• among d.:m.:nts \\hi..:h interpolate f and lie In S)FII. Su..:h 
an dement is .:albi a ~pline interpolating l Let 

" 
1;>'1.\'"1) I) = S 111.'1"( f II = ~ U: g, (/ ))SS"g;(/ I (5AI 

i.l 

be the spline algorithm. 
We sayan algorIthm tp is an optimal average error algorithm iff 

Theorem 5.1. If ,u is vrtllOgOllcllly im'ariallC rhell cht! splint! ulgorithm tp' is £It! 

ilprimcll ill't!rage error ulgorithm WId 

t.'·'!I(<.O·.YI~=J Sf ~fJ(dfl-J tp·(S"UIII!fJldfl. C f5.51 
F: F, 

Prool The proof is essentially the same as the proof of Theorem ·U of [16]. 
For ..:ompleteness we proVIde a sketch of it. 

Orthogonal imariance of fJ and f,UI yield 

J Sj-<.OIYljl) ~fJldfl= J SD(fl-tp(.\jalflJ:~fJldfl 
F, F: 

where tp is an algortthm and D is the mapping defined by 1 .. 1-.21; see Theorem 
·U. Thus 

<,"'Ilv . .\'"1 =! f : SI-<.Of.\'"1/ II : 
F, 

--. SDI/ I-C)I.\"'I!II ::fJldfl. 15.61 
Sin..:.: 

Sf-lv'I.\'"II" :-=i SI-SDIII ;~11 SI-I)I.\'"ljll - SDI/I-<.OI."""'fll:l­

~~I SI-''oI.\''I/II;~ SDItI-0IYljll-1 

This me:lns that ,." I~ .In ('pumal average error algorithm. To prove (5.51 
not..: that 

.1= Sf-II"I.\"IIII SDlfl-,;>'IS"lfll 

Sf :", SDIII ;-~ "J 'I.\' "II II :-~IS.1,0'(.\'"I.1I1I-~(SDI}I,Q'(.\'"IjIIl. 

Sin..:.: DI 11=2,,1"'1 /ll-/. then SDU I=~():I.VI' II-I ,ll1d 

:/= 5/ SDIj I ; -2 ",'(.\'"111 !. 



Pro"! II/ Tht'orc'/Il :.1. The radius r·'~I.\"1 is given b~ 1~.:'1. [n ,)rd.:r t() .:~I:l11at.: 

It from bdow. not.: that Theorem ~.~ yidds 

.\ (1)' LV" f f II ~}.I f d,. I = J (i>' 1 .I I : j./ t f d .I I 
FI IR" 

= \" j .r • .I)SS.gIIYI.SS,gJlrll}.ltIJ.rl 15-1 
1./- I It"" 

where. as in Sect.~. g,lyl=g,IYt'Y1' .. · . .1"-1). Define the mapping 

Qy=y-~ly.t',It',=Y-~Ytt't' y~IR". 

where t'l is the ith unit vector. Then Qt';= -t', and Qt'j=f!J' This ~idds g,IQ.\1 
= gJ1y) for j < i. Since }.ll is orthogonally invariant we have 

u= J y;))SSug,(J'I.SSugjIYIIJ.-I1IdYI 
IR" 

= j Y;.I)Qe,. QejJ(S Sug,tQ .1'1. SSugjIQI.rll}.l1 Idyl 
IR" 

= -11. 

Hence <l=0 and 1:'.7) becomes 

J tp5 IYI/).I"}.lldj)= ~ J y; SS .. g,lyJ 1 J111 dYI. 
F 1 i - l tR" 

For i < 1/ define the mapping 

)' "'~ 5S~g,fY) :}.I\I"rl=.I .r~ SS~g,IYI ~,Lllld\'l. 
~" IR" 

From this. 15.81 and I~.lll \\.: ha\e 

'I 

" Ip51.\"I/1l ;.111,1/1=.\ r~ ~SS .. g,I.r1 !.ul1dy) 
F: IR" I • I 

~I:,up 5S"g,IYII~) I' y~.ulldYI= ~SSug,lf*1 
~·-;iR-" rR" : = t 

For the nonadapl1\e mformation \~:n. see I~.l~). we have 

, (.)'1\';'''1/11 '-}.lIt" 1= ~ f Y:.l)SS.g;.SSug;IJ.l\ld.rI 
F. <.J= I iR" 

= \" 5S.g,·! '- 15 101 
,~ I 



1'10 

From 15.~1 of Theorem ~.l. 1~9, .lnd 1).10, we have 

r·'~I.\'"I~ =<,"'10' . .\'"1" ~ i 
F, 

This .:ompletes the proof. 0 

J = I 

. . 
Ad",ol<\/.-dumt'otCs Our '1X''::lai thanks Me to J.F Traub for his \alua,le comments and fnendly 
advlc~. v.'~ are also ~rateful to the r~ieree for suggestions on how to sImplify the concepts 
pr~senled in thIs paper. 
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