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ABSTRACT

We study cptimal algorithms and optimal information for
an average case model. This is done fcr linear problems in
a separable Hilbert space equipped with a probability measure.
We show, in particular, that for any measure, an affine spline
algorithm is optimal among affine algorithms. The affine
spline algorithm is defined in terms of the correlation operatcr
and the mean element of the measure. We provide a condition
on the measure which guarantees that the affine spline algorithm
is optimal among all algorithms. The problem of optimal

infcrmaticn is also solved.



1. Introduction

In two recent monographs ([5] and [¢]), optimal reduction
of uncertainty for a worst case model was studied. 1In [7]
a corresponding study for an average case mcdel was initiated.
In that paper we confined ocurselves to linear problems in a
finite dimensional space. See also (3] where a general error
criterion for coptimal approximation of a linear problem is
studied.
In this paper we study linear problems in a separable
Hilbert space equipped with a probability measure .
We seek optimal algorithms and optimal information. The
follcwing results are cobtained.
1. Por all measures :
a, In the class of linear algorithms, a spline
algorithm, defined in terms of the covariance
operator of the measure , is cptimal.
b. In the class of affine algorithms, an affine
spline algorithm, defined in terms of the ccrrelation
operator and the mean element of the measure .,
is optimal.

2. Let | be any measure such that

(1.1) w(D(B)) = 4 (B)



where D 1is a certain affine mapping and B 1is any

Borel set. In the class of all algorithms, the affine

spline algorithm is optimal.

3. For all measures . optimal information is obtained

for the class of linear or affine algorithms. 1If

satisfies (l.1) then optimal information for the class

of affine algorithms is also optimal for the class of

all algcrithms.

The measures which satisfy (l1.1l) include Gaussian measures
and the measures studied in [7]. 1In a forthcoming paper [8]
we characterize measures satisfying (1l.1).

We briefly summarize the contents of this paper. We

formulate the problem in Section 2. 1In Section 3 we collect
some facts on measures in Hilbert spaces. Section 4 deals
with optimal algorithms. 1In subsection (i) we study linear

algorithms, in subsection (ii) affine algorithms and in sub-
section (iii) general algorithms. Secticn 5 deals with optimal
information. Our analysis and results are illustrated by two
examples. The first is a finite dimensional Hilbert space
equipped with a weighted Lebesgue measure: the second is a

separable Hilbert space equipped with a Gaussian measure.



2. Formulation of the Problem.

Let F, and F., be real separable Hilbert spaces. Let

1 2
m = dim(Fl), m { 4o, be the dimension of Fl. Let
(2.1) S Fl - F2

be a continucus linear operator. We call S a scluticn
operator.

Our aim is to approximate S(f), % f ¢ Fl, with an average
error as small as possible. 1In order to define an average

error we assume that the Hilbert space F, is equipped with

1
a probability measure , “(Fl) = 1, which is defined on
Borel sets of Fl. see e.g., [1 ] and [4].

To find an approximation to Sf we must know something

about f. We assume that N(f) is known where
(2.2) N :F, - R

is a centinuous linear operator whose range has dimensicn n.

We call N an infeormation operator and n = card(N) is called

the cardinality of N. We seek an approximation to Sf by

o (N(£)) where

(2.3) o " N(F)) = F,.

an (idealized) algcrithm using informaticn N.

wWe call o




The (global) average error ¢f »m 1s defined as

(2.4) 2, = (] lIsg - ev(eN )% @6} 2

F1

Note that the norm in (2.4) is the norm of the Hilbert space
F..
2

Let 3(N) be the class of all algorithms . using N
for which the average error is well defined, i.e.,
IsE - 3(N(f))[|2 is a measurable function.

We wish to find an algorithm =»* from % (N) with the

smallest average error. Such an algorithm is called an

optimal average error algorithm, its error is called the

avg

average radius of information and is denoted by r (N), i.e.,

a\g
(2.5) inf e P(m,N) = e "I (p*,N) = r "I (x).
w3 (N)




3. Measure .

We collect some facts on measures in Hilbert spaces which

will be used in the following sections. See e.g., [1] and [4].

(i) The mean element m of |, is defined as
i

(3.1) {mu,x) = f (£,%x)p(df), ¥ x e F

1
&

where the integral in (3.1) is understood as the Lebesque

integral with respect to the measure

N
i

(ii) The correlation operator Sc cf , is defined as

(3.2) (s x,y) = j (f-m ,x)(f - m ,y)y(df),
< F V) i
1

¥ x,y ¢ F,.

Throughout this paper we assume that

(3.3) [ fen? aey < »,

)

This guarantees the existence of m (since "E | £llp (@£) <
. 1
Af, 1617 @0) < +=) ana s,

The correlation operator is self-adjoint and nonnegative

be an orthonormal basis of F. such

definite., Let - -

Gy Gpre
that



m 2 m 2
P = F - . 5 ' d " f.. I = 3 -~ y )
Then £ mh Zi=l{r m Cl)cl and || mLLl ‘L=l(f " Ci)

Note that (3.2) implies that

55

: 2
(3.5) o= JE-m g %@,
1

i.e., li is the average value of the squared ith component
of £ - m . Without loss of generality we can assume that
w
@(f-m ,ci)zu[df) is positive for any 1i. This means that
1 U

all li are positive and Sc is a one-to-cne mapping.

From (3.5) and (3.3) we conclude

(3.6) trace(s ) S et S

2
| £~ |
i=1"1 F If mu.1 IJ-(df) < +o,

1
i.e., the trace of S, is finite. Note that m = +» implies

11 - 0. This yields that Sc{Fl) is a proper subset of Fl'

(iii) The covariance operator S of , 1is defined as
7]

(£,%) (£,y)y (dE), ¥x,y € F

1 1

(3.7) (S %,y) = J"F
L

Due to (3.3), S exists and can be expressed in terms of Sc

and m as
L

(3.8) § X=8x +
. & (rnu,x)rnu, ¥x e E‘l.

Note that (s x,x) = (s . ]

: L% XaX) 4 (mu,x) which yields tha¢
2 S_ and t

u. - race(Su) = trace(s‘) + IIm Uz.

adjoint, . .



then § = § .
U c

We illustrate these concepts by two examples.

m

Example l1: Assume that F, is finite dimensicnal, F, = &

1 ik

with m < 4=, As in [7] define

(3.9) 4 (®) = | w(repas
B

where B is a Borel set of R and the integral is understood

: § m . :
as the usual Lebesgue integral in R, w : R+ - R+ is a function

such that Im w(l|Tfl|)df = 1 and T : B - By = T(®") is a
s

one-to-one linear operator onto a Hilbert space F Assume

2
that d =r—ﬁ ~Lﬂ[['rf[]'“’._,_ (AE) = %r'l jm”'rf”zw(nm'f!,[)df is finite. Let
B R
M = (Tﬂ"fT)]'/2 and M{, = ). &. for orthonormal §{. and . > O.
A, L L b ;i
Then
- o ” !
(s 6.6 = im(f,ci](f, c;)w (el ae
det M T
LSRR j(f,c.uf.:.)w(ufu)af.
s & i 3
33 e

Since the last integrand is odd for i # j, we have

{Suci’;j) = 0 for i # j,
” ” ) _.—dEt M-l 5 {f L )2 ”f”}df
(Su%il bj - 2 m ] hi W(” 1
X R
i
det M 1 2
R REETLILS
\, R
B L

a
, JLaty =g ¢
'L \ 'I,:\\T i!':\\?. W k\:\T f.\b\\ 143 k % N
m

’Fa #d"#fﬂ__“,_w-”'"-ﬂﬂ——#’ﬂﬂﬂﬂﬂﬂp—_-
mh: E

=



Thus

d -2
S C. = —2 ;]_ = dM ci
}.i

which yields

(3.10) s = d{T*T)-l.
ja%

We havem = 0and s = 8 .
W c i

Example 2: A Gaussian measure . in the Hilbert space E‘l

is a measure such that

( L HE%)

i(a:x)" (Axsx)/z
J e
F

(3.11) p (af) =

)

1

¥xerF i=4-1,

l!

where a = Fl and A : E‘l - Fl is a self-adjoint positive

definite operator with finite trace. (The left-hand side of

(3.11) is called the characteristic functional of ,..) Then

]
N
v
o
o1
3
]
A1)

(3. 12) S
c

See (4, p.18]. From (3.1l1l) it follows that

2
1 e—{t-mx) /2cz

(3.13) u(f € P,2(£,%x) £ 4] = “xdt,

¥ Y= A 2nc
X

Vxer Vdep
/

whera -4 = (8 x X)
; " e and m = (m
function Goasel X “;X). ThuS th

T femmally o : " 3surap)

Stribyeg e
d



4. Algorithms with Minimal Average Error.

In this section we pose the problem of characterizing
algorithms with minimal average error. In three subsections
we solve this problem for three classes of algorithms. The
first subsection deals with linear algorithms. Linear
algorithms are important since they are easy to implement in
actual computation. We prove that a linear algorithm with
minimal average error is a spline algorithm defined in terms
of the covariance operator. In the second subsection we turn
to affine algorithms. They are also easy to implement. We
prove that an affine algorithm with minimal average error is
an affine spline algorithm which is defined in terms of the
correlation operator and the mean element. In the third sub-
section we deal with the class 3(N) of idealized algcrithms.
We find a property of the measure | such that the affine
spline algorithm is an optimal average error algorithm. We

assume that
(4.1) N(E) = [(£.9,),(£,9,),..., (£,9)]
for linearly independent elements gl,gz,....gn of Fl.

(i) Linear Algorithms

Let S be the covariance operator of .,
i
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g :F., » S (F,). Define
T | w1
-1/2
. T =S + G > F
(4-2) u L L 1
wherse G = S l/2(1?1). Note that T is a self-adjoint, positive
~ = (%

definite and one-to-one operator. If m = dim(Fl) = +x then

T is unbounded.
9%

Let MysMpseeesy be an orthnormal basis of the linear

subspace lin(sl/zg ,Sl/zg ,...,Sl/zg ). Then
Y 1 L 2 W n
n 1/2
4.2 ; = E, (e S i3 MaaTud = Bl aos
S T B L (ny ﬂj) 51,3
Lrg = 1,2, ,A
for scme ci.. Let
n
(4. 3) Cu = (cji)j,i=l

be a n x n matrix. Note that C 1is nonsingular.
Wb

The element ﬂi belongs to the domain G and therefore
n

T ?i is well defined. From (4.2) and (4.3) we have

(4.4) [(f,TuﬂlJ,(f,Tuﬂz),.--,(f.Tuﬂn}] . N(f)cu.

Thus, knowing N(f) we can compute (f.T_ﬂi).

Define the element g = g(N(f)) as

n " =1
[4-5) g = Zi=l(z,T_l_ni)T_'. T‘i'



—
—

Then (¢, T ni) = (£,7T ni) which yields N(g) = N(f). This
o 1)
means that o "interpoclates" £f with respect to N.
Observe that s does not depend on a particular choice

of the orthonormal basis Myseeesf - Indeed, if 51,...,5 is

n
also an orthonormal basis of lin(Sl/zgl,...,Sl/zgn) then
b U
n
= 3 [ y

n n n -1

i

n n n -1
Lo (B T,850 (5 (25, (04850 (1.8, T 78 ]

n
= Y.

'T : .

-1 n -1
(8., )T "8, =¢. . (£f,T8.)T "3,
37RO Tk i=1 w3 e T3

n
k=1
as claimed.
Take an arbitrary g € G such that N(g) = N(£). Then
)
2 2 ,
T gi? = 8T (g-0)|° + YT of]® + 2(T (g-0),T o). Since
U L L H 7
h =g - ¢ belongs to ker N then (h,T ni) = 0 and
"
2
(T h,T ¢) = (h,T°¢) = £° (£,T7 1.)(h,T 7,) = 0. Thus
o) L M i=1 w1 Lo
ks "T o|l and ||T q!l = ||T ol 1££ = ¢. Thus = 1is the
17 9l > |7 oll and T ol = |IT ol i£2 g

unique solution of

N(c) = N(£),
(4.86)

m
o)
Z
o
I
%
[

HTLGH = inf(HTugH : g

The solution of (4.6) is called a spline (or a Tu-spline)
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interpolating N(£f). The algorithm

(4.7) o (N(£)) = So(N(£)) = le(f,Tﬂi)s«r;lni

is called a spline algorithm. (A discussion and optimal

properties of spline algorithms for the worst case may be found

in [5].) From (4.4) we can express (4.7) in the equivalent

form
S(N(£) = £ (£,9.)80 c,.sT "
® Bl O s LT M T
An algorithm ¢4 is linear if it has the form
N(£)) = Z;_. (£,9,)w
@ g Tl
for some elements WysWoyeoo W of Fz. We are ready to prove

; . s o
that the spline algorithm ¢, has minimal average error among

all algorithms that use N.

Theorem 4.1: The spline algorithm 35 defined by (4.7) and (4.4)

is a unique linear algorithm with minimal average error among

linear algorithms using N and

-1 2

av / ' !

(D KG 8 L :rin_nﬂ JSTu n

where Nyreses M ¢ 7n+1"" form an orthonormal basis of Fy

Procf: Let s (N(£f)) = £?=l{f,gi)wi. Due to (4.4) it can be

written as ca(N(f)) = rn
‘i=1(fsT;”i’Zi for some elements

Frevesal. of F,. Then
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2
e em® = L Istum®)han = [ gset e
l 1
+ ) ”w(N(f”” (df) - 2§ (SE,u(N(E))u(af). wNote that
l
(Sf,@(N(f>))= (f,z? (.7 m0s%z.) = £ (£.1 7,0 (£.5%2 ).
" 1

i=1""" "y i i i=1

From (3.7) we have

(S T 7.,8*z,
F ) u.nl l)

1
-1
= (STLL ni,zi).
2 n
Observe next that !l (N(E£)| ™ = . . £,7 7.
lo I i, 3= (5T 1) (T 09) (2,2,)
and
S " 2 n
(e (N(E) |7y (af) = Iy l(s T an ' T My ) (z; 'z )
P j=
1
2
= 2 _ llz,
since (ST 7".,T 0n.) = s T = %,
. uﬂl unj (nl 3) 534 Thus
2 -
9 p,m? = [ s @)
Fl
n 0 ne -1
+ £, _, Uz 2(ST; n;,2;))
= [usetoan + 23 e, s
F1
_ n ' -1 !|2
Zi=lL|STL‘. ‘nill
_avg, s 2 n _ -1 2
= (7™ + 2 _yllz; - ST "7,

This proves that the average error is minimized i:Zf

-1 . s . . . :
z, = ST M;, i.e., v 1is a unique linear algorithm with
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s . .
minimal average error. The error of » 1is given by

: 2 2 n -1 2
@9 S m? = [ seli@n - st st
F L
1
2 . m ;
We now compute J‘ s€l]“y (d£). Since £ =T, .(f,g.,)E, where
Fy i=1 i" 1
g, are orthoncrmal eigenelements cf Su, SuEi = xiéi’ we have
(rsep2can = 27 (6,5 (5,50 (55,58 (a8)
F e i,3=1"77°1 77730 TR )
1 1
m . 12 m -1_ ,2
= 2i=l killsgl“ = Zi=l”ST Si!l .
-1 -1.1/2 -1
Let K = [(ST ")*ST ] / . Then ||ST “xi| = |Kx|, 7 x ¢ Fis
L v v
where the first norm is in F2 and the second one in Fl'
H = m 3 £ '2 = m = 2‘
Observe that X3, Zj=l(Kgi’nj)nj and HKgiJ Zj=l(K’inj)
Thus
2 m 2 m m 2
1 { = z .| =
; .an!) U(df) ZJ_:lHKg]_‘[ Zj=lzi=l(gi,xnj)

1

' 2
= Tyl

This and (4.9) complete the proof.
It is well known that spiine algorithms enjoy many
important optimiality properties for theworst case. Theorem

4.1 states that among linear algorithms spline algorithms are

also cptimal for the average case.

(ii) Affine Algcrithms

Let Sc be the correlation cperator of v, S_ : F, = SC(F ).
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Define
(4.10) 1 =52 .g s,
o c c 1

where G = Sl/z(F ) Let n be a th 1

c - 1" ”1’ 2""’nn e an orthenorma
basis of the linear subspace lin(Si/2gl,...,Si/2gn). Then
there exists a n X n nonsingular matrix Cc = (cji) such that
(4.11) [(f,Tcﬂl),(f-Tcnz),.-.,(f,Tcnn)] = N(f)Cc-
Define the element o = ¢(N(£f)) as
(4.12) - (f-m.T )T M, 4

‘ 97 i1 0 MTe My m

where m 1is the mean element of (. Then (c,Tcni) =

U
= (f—mu,Tcﬂi) + (mu,Tcﬂi) = (f,TcUi) which yields N(¢) = N(£).

Thus ¢ interpclates f with respect to N.

The algcrithm

as -0 -1
(4.13) o (N(£f)) = Sa(N(f)) = ‘i=l(f_mu'Tcni)STc ni + Smﬁ

. as . -
is called an affine spline algorithm. Nocte that = differs

from a linear algorithm by the constant element

w = Sm -

n -1
.. t 4,11 ne can
3 Zizl(mu,Tcﬁi)STc ny Due to ( ) ©

equivalently rewrite (4.13) as

as n n -1
. T + W,
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as , . .
This means that g is affine in N(f).

It is easy to check that the element ¢ - m 1is a unique

")
solution cf the problem
N(e-m ) = N(f-m ),
o 5
(4.14)
ITe(o-n )| = inf()7 gl:geG_,N(g) = N(£-m ).

Thus ¢ - m

is a Tc-5pline. Observe that
o

uas(N(f)) = S(c-m ) + Sm
b u

where S(g-m ) is a spline algorithm. Thus the algorithm
M
as

& is a spline algorithm translated by Sm . This motives
i

cur terminclogy. Note that m = 0 implies T = TC and
" i
as s ) C . )
v (N(£f)) = ¢ (N(f)), i.e., (4.13) coincides with (4.7).
We are now ready to prove that the affine spline algorithm

has minimal average error among all affine algorithms using

N, i.e., among algorithms of the form

s (N(£)) = Z[_ | (£,g )W, + w,

for some elements wo,w ,2Ww_ of F

1’"""" " n 2°

Theorem 4.2: The affine spline algorithm was defined by

(4.13) and (4.11l) is a unique affine algorithm with minimal

average error amcng affine algorithms using N and



(4.16) e “(p N -w/zi=n+lJSTC m, |
where ﬁl,ﬂz, ”n’”n+1"" form an orthonormal basis cof
Fl.

- _n . .
Proof: Let »(N(£f)) = Zi:l(r’gi)wi + W Due tc (4.1l1l) it

. _n _
can be written as o (N(f)) = Zi=l(f mu’Tcni) z, + 2z, for some
£ Then e 0 2
elementszo,...,zn o F2. en e (,N) =
2 2
Jp Ista e’y @) = fplnstf-mu)-@<u(f))+5muu 2 (af) =
- - - 2 ¢

fols(z-m )12 @)+ Mo () -sm |2 (a6)-25 (S(£-m )5 (N(E) -
F i 0 L F Tl L]. F LL

1 1
sm ), (df). Note that (S(f-m ), (N(f)-Sm ) =
u o o

1

n
- - . *2, + S* - =
(£ mu’zi=l(f mﬁ,Tcnl)S z, +8 (zO Smu)
n
- o - * - * -
Zyop (Eom LT 7)) (E-m o S*z )+ (£-m  S* (z-Sm)).  From (3.2)

and (3.1l) we have

_ - - < *
§ (f-m ,T M) (£ mu,s*zi)u(df) (5_T_M;,5*z,)
1

-1
= (STc ni,zi),

I

j (f-m .5*(z-Sm }u (Af)

8}
Fy

(mu,S*(zo—th))

I
o

- (rnu}S* (ZO-Smp )]

2
Observe next that 'lo (N(f)) - Sm ||
L

n
- - )+
zi,j:l(f mu,Tcni)(f mu,Tcnj)(zi,z])
° - - Nz - 2. Thus
2L, (£ mu,TCT}i)(zi,zO Smu) + 12, SmuH . u
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2 n
(£ ! df) = ¢. . STn., T n. .,z
é ko (0 (£))-sm 1% (Af) = zy o (ST n.,Tong) (2, z))
1

' 2 n 2 W2
+ HZO"S“‘U‘” = zj_:llizj_” + Hzo'smu .

From this we have

.2 = ) Iste-n 1) @0

Fy

n 2 -1 ne
+ Zizl[HziH - 2(STc ni,zi)] + HzO-Smud

o2v9

2 n -1 2
- Jstenontien « 2t e sty

F1

+ llzgmsm 17 - 2 st Tny )17

1 1!

This proves that the average error is minimized iff

-1 ; as ; .
z, = ST 'm, and z, = Sm , i1.e., g 1s a unique affine
i c i 0 w

. . o as
algorithm with minimal average error. The error of s is

given by

av as 2 n -1
e g(Co ,N)T = j s (£-m W aw(af) - T, ”STC
F K

2
L *
1

"
n‘i‘l
Repeating the last part of the procf of Thecrem 4.1 cne can

show that

1%, (ag) = £7_ st o, 12,

.-l
Il

J "s(£- -m )
1
This completes the procof. &

Thecrem 4.2 establishes optimality of the affine spline

algorithm in the class of affine algorithms. Note that the




1=
o

error of wa

g
has a r L mi
orm similar to the error of the spline
algorithm ms; although mas -

depends on T S
- - whereas » depends

u
Em = 0 & i i
b hen the affine spline algorithm coincides with
the spli ' i
Pline algorithm. This yields the following corellary

Corollary 4.1: r1f m

algorithms using N,

(1ii) Optimal Average Error Algorithms

In this subsection we provide a condition on the measure
. which guarantees that the affine spline algorithm is an
optimal average error algorithm. This condition is expressed

in terms of the mapping D : ?l > Fl defined as

n -1
(4.18) Df = 2(Ei=l{f—mu,Tcﬂi)Tc ul - q’) - £.

Here we use the notation of subsection (ii). The mapping D

is affine and has two important properties

N(f) = N(Df),
(4.17)

£ T = - I M. = » M. =
Indeed, (D ,Tc“i) 2((£ mu,Tcﬂi) + (m” Tc J_)) (£ 'I'c l}

=]

(f,Tcﬂi). This and (4.11l) vyield N(f) = N(Df). Then (4.186)
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can be rewritten as

-

-1 - pf = DI(DL) .
n n. +m ) Df
f = 2(zi=l(Df_mu’TCni)Tc i "

hence D = D_l. Note that

Thus D2 is the identity operator,

the mapping D depends on the information operator N.
e

we are ready to prove

Theorem 4.3: Assume that

(4.18) L (D(B)) = w (B)

for any Borel set B of Fy Then the affine spline

algorithm wasdefined by (4.13) is a unique optimal average

error algorithm, i.e.,

avg avg A6 as m -1 5
r TN =e Tl ,N) =W/Zi=n+1HSTc U

Proof: Take an arbitrary algorithm ., from 3(N). Observe

that (4.18) implies

2
f ”Sf-u(N(f))qu(df) = J |SDf-4 (N(DE)) ||"u (dE).
F1 1
Since N(Df) = N(f). we can express the average errcr of ., as
(4190 e’ =2 | Ustpnien)?
I
1

+ 18DE- (N(£)) %)y (df) .

Observe that



|s£-spe)?

N T

(4.20)  lsE-s S (n(e)) Y2 =

< 5UISEo ()] + |[sDE- ()

N =

< (”sf_._,)(N(f))H2 + HSDf-g(N(f))HZ).

From (4.19) we get

eV (5,7 3 j Is£-52% (v (£)) |, (af)

Py

av as 2
= e g(@ JN) .

Thus was is an optimal average error algorithm. We ncw prove
uniqgueness. (Of course, unigueness is understoocd toc be up

to a set of measure zero.) If ¢4 1is an optimal average errcr
algorithm then (4.20) holds with equality almost everywhere.

This yields

|SE-SDE||? = 2 (||SE-5p (N(£)) ]| 2+1SDE-o (N (£)) |2
Since
Is£-sp£)% = IsE-u(N(£))])2
+ |SDE-us (N(£))12-2 (SE2s (N(£)),SDE-5 (N(£)))
then
2 2
0 = sEu (e + SDE-o (N (£)]

+ 2(Sf-y» (N(£)),SDE-5 (N(£)))

21
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= ISE-» (N(f)) + SDf—$(N(f))”2‘

Hence
as
(

80

N(£f)).

0 (N(f)) = S(Sf+SDf) = o

The average error of ¢as’ which is equal tc the average radius,
is given by Theorem 4.2. Hence Theorem 4.3 is proven. [
Theorem 4.3 states that the invariance of the measure
v under the mapping D yields optimality of the algorithm
@as. We now show that (4.18) holds for two examples which

we presented in section 3. Measures satisfying (4.18) are

characterized in [8].

Example 1 (ccontinued from Section 3): Since m = 0 and
[
T =T = d_l/Z(T*T)l/2, we have
c K
. (D(B)) = f w(@” % £ae.
D(B) =

Let g = Df, Note that

-1 n
I D7 gl = N2zi_) (e, )7 T g = T gl
Since D 1is linear and |det L] = 1, we have
\ 1/2
L @) = ) w@?r ghag = . (2).
3 b
Thus (4.18) holds for every information operatecr N. B

Example 2 (continued from Section 3): It is enough tc show
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that (4.18) holds for the sets B of the form

B = (f ¢ Fl:(f,x) & d} where x ¢ F, and d € R, From (3.13)

1
we have
d 2
-(t-
u (B) J ( "My /2oy dt
'\/21-'0’ =
where ¢ = (S %x,x) and m_ = (m ,x). We find , (D(B)). Note
X C X 0
that
(Df,x) = (f,DIX) + (b,x)
where D _x = 2Zn (T-l x)T - X and
1= 28 T M xIT Ny
n -1 .
b = 2(mu - zi=l(mu’Tcni)Tc ﬂi), From this we conclude that
D(B) = (f ¢ Fl:(f,Dlx) < d - (b,x)}.
Observe that
(m ,Dlx) = (Dm ,x) - (b,x) = (m ,x) - (b,x),
i u n
n -1 -1 .2
(S.Dyx,Dyx) = |2z, _, (T 0,0, -T x|
-1 2
= HTC x||” = (S x.x).
Thus
d-(b,x) 2
’ -(t-m + (b, 2
. (D(B)) = —= (t-m +(0,%))"/20% 4¢
. "/2ﬁ0‘x -

a. -
1 J o (E7my) "/ 2ax 4y u (B).

A2mox =%
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Hence (4.18) holds for every information cperatcr N. ]
We now show an example of a measure |, for which (4.18)
does not hold and for which the algorithm (4.13) is far Zrom

being coptimal.

) = 6

H = = i ye o e D e
Example 3 Let Fl F2 lln(gl,c2 ) where (Cl”j i3

Define

sl ) = ull-c ) = p;

1 . . s .
where 2:_1 P, =3 for different positive P, Thus  1s an
atomic measure concentrated on the elements Cl’_:l’c2’—:2"
It is easy to check that m = 0 and

5

s, £ =S, =T 2P (Egy)Ey

Let N(f) = (£,g9,) with g = z:=l p,¢; and let SE = £. The

algorithm (4.13) (and (4.7)) takes now the form

(f£,9,)
as - _ 1
@ (N(-)) - (S gngl)Sugl
u
3 -1 .2
= (Fjn 2Ry ) (Rep)EiL 2Ri0y

and has positive average error.

Define the algorithm
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o* (N(f)) = -C; 1f N(£f) = P,
g otherwise

where g 1is an arbitrary element of F The algorithm «»*

1
is nonlinear in N(f) and discontinuous at zeroc. Observe that

5 I £-ep* (N (£)) 1|2, (a£)

Fy

= Zj_=l Pi(”Ci'w*(Pi)” + “-Ci'w*('Pi)” )y = 0.

. . as , .
Thus »* is optimal and g is not. The mapping D has now

the form

To see that (4.18) is not satisfied, set B = [Ci]. Then
. (B) = p; and 4 (DB) = O.
We end this section by a property of optimal average errcr

algorithms.

Theorem 4.4: An algorithm 4* is an optimal average error

algorithm iff

(4.21) S (SE-p* (N(£)),0 (N(£)))p(df) = 0, ¥, e 3. 0

Py

Proof: Assume that 4* is an optimal average error algorithm
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and let + be an arbitrary algorithm using N. Define the

algorithm

wl(N(f)) = o* (N(f)) + co(N(f))

for some real c. We have

(4.22) ean(ml,N)z = V9 x, M

- 2c [ (st 000 0 (0))), (an)
F

1
2 2
v [ ey .
F1
Since ean(@l,N) > ean(@*,N) for an arbitrary <, then the

coefficient multiplying ¢ 1in (4.22) must vanish. This
yields (4.21).
Assume now that (4.21) holds. Take an algorithm 4 and

let o (N(£)) = 5 (N(£)) - o*(N(£)). Then

9,2 = ] |IsEw () ]2, (@f)

Fy
= S ”Sf—w*(N(f))qu(df) (S:
P
1
S 2 [ (SEpr ((0) 0, (N(E)))u (@D)

1

+ ] le(N(f))qu(df)
F1

+ ”wl(N(f))”zu(df) > e
=

"1

eavg(

q*,N)2

avg(m*’N)Z.

This proves that »* is an optimal average error algorithm

which completes the proof.
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Observe that Theorem 4.4 can be rewritten in a somewhat
stronger form. Namely, 5* is optimal in a given subclass of algor-

ithms QO(N) iff (4.21) holds for all algorithms from ?.(N) whenever

0

the subclass 3_(N) has the property: x*,»p < (N) implies

0 0

clm* + c2° 3 §O(N) for real cl and c2. This holds for the

class of linear or affine algorithms.
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5. oOptimal Information

In the previous section we studied cptimal average error
algorithms using the information operator N of cardinality

n of the form

N(f) = [(f,gl),(f,gz),---,(f,qn)]-

In this section we £find the optimal choice of elements

gl,gz,...,gn. By optimal choice we mean elements for which

the average error is minimized for a given class of algorithms.
We shall need the following result., Let K : Fl > Fl be

a self-adjoint nonnegative definite operator, K = K* > 0. Let
(5.1) Kzi = \.,2z,, i=1,2,...

where 2z2_,2

17250 is an orthonormal basis and kl > X2 >, ..

Lemma 5.1:

n

n

= Liophge

Proof: Although Lemma 5.1 fpllows from Theorem 4.1.4 of (2] we

m

provide a short proof for completeness. Let b, = ¢, a, .z,
i J=1 133
where a.. = (b,,2.) and n < m. Since both b, and z. are
ij i’73 i j
2
ortheonormal, g a¢, = gt a?. = 1. Then
j=1 1ij i=1 ij
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Tgey (R0y00) = Ti {E5 ) 0y i] Zjmnel ij)
< 2? l[z?=l 3 ij xn+l( -k =1 aij)]
=+ Io_ O T i]
< n>‘n+l * Zj=l()‘j - kn+1) = Z]=l kj
Equality is obtained for b, = z,. ||

We now solve the problem of finding an information operator
of cardinality n for which the average error of linear or

affine algorithms is minimized.

Let K = (ST—l)*ST_l and K = (ST_l)*ST-l. Let
W T8 w c C C

(5.2) Kz ., =% ,2 ,,Kz [, =2\ .z .
L ou, i u,1iw,i c c,i c,l ¢c,1

where (z i} and [zc i] are orthonormal basis and

S ’

L A;,Z""’lc,l > kc,z >... . Observe that

(K x,%x) < HSHZ(T_lx,T—lx) Hs”z(s X,X%),
M " U "

2, -1 -1
(K x,x) < Isl| (Tc X, T X) HSH (s _x, x)

This yields that K and Kc have finite traces and

W
m
trace(Ku) = Zi=l L
m
= T, A

trace(K )
c
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- -1 -
Note also that K =T lS*ST and 3 .T z | = §*ST lz ..

W w o wed opopsld woousl

Thus T 2z . is well defined whenever A . is nonzero.
oWl Mol

Similarly, Tcz is well defined whnever xc i is nonzero.

b b

Define the information operators

N £) = £,7 2 ,(E£,T 2 yeoee,(E,T 2 ,

Lal8) = lETz (5T 2 ) (7.2, k)]
= £
Nc,n(f) [(f,Tczc’l),(-,Tczc,l),..-,(f,TczC’kz)]
where

k, = min{n,max{i : » ., > 0}}
1 }J.sl

k =

min{n,max{i : xc,i > 0}}.

Note that ) | >...> Mk

. > 0 and xc,l D02 xc,k2 > 0 which
yields that N n and Nc are well defined. Of course,
) s

n) = kl < n and card(Nc

2

d = .
car (Nu n) k2 <n

] 1

We say that N'°, card (8°) < n, is nth linearly

optimal iff

2V9 S lo

(0 ,N7) = inf[ean

(= ,N) :card(N) < n,p-linear},

(o]

Nao’ card(Na ) < n, is nth affinely optimal iff

a a
e Vg(was,N o) = inf{ean(@,N):card(N)gn,@—affine]

and NO, card(N®) < n, is nth optimal iff

ran(NO) = inf{ran(N):card(N) < n}.
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We are ready to prove the following theorem.

Theorem 5.1; The information operator Nu A is nth linearly

y il

ocptimal and

n \

avg, s -
(5.4) e (CIJ ’Nu”n) —le=n+l p,)i'

The informaticn operator Nc n is nth affinely optimal and

s

avg K as _/m
(5.5) © (e ’Nc,n) "V *i=n+l e,i”

If (4.18) holds for arbitrary information of cardinality at

most n then the informatiocn operator Nc n is nth optimal and

s

avg _ m
(5.8) r (Nc,n) -«/2i=n+l Aei a
Proocf: To prove (5.4) we use (4.8) of Theorem 4.1 . Then
avg 2 ~m -1 2 _ _m
e (o, M) > ‘i=n+l”STu niH = Zi=n+l(Kuni’ni) for orthonormal
..., yeee i ini , 5.
nl,nz, nn n+l Since Ku has finite trace, Lemma 1
yields
m n
p=nsl (KMo Ny) = Erace(R) - x, g (K 70 7,)
n
- b,):(b,,b.)=s..
> trace(Ku) max{2i=l(Kubi, i) (bl,bj) élj]
n m
= trace(Ku) - 21:1 Xu’i = 2i=n+l Xu:i'
Thus

avg m
(5.7) e (CD’N) 24/Zi=n+l )\I'l i

b
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We now compute the average error of the spline algorithm

@s using N From (4.2) we have 71, = sl/zT z . =2z .,
o 1 " bopsl wyl
. . avg s 2 __m
i= l,2,...,kl. Thus (4.8) yields e (e ,Nu,n) = i=kl+lku;l
. avg, s
£ = =
If kl < n then Xu:i o, 1> kl + 1 and e (e ’N;,n) 0.

Thus in both cases kl < n and kl =

n we have

av S
e g(m s N
won

) =a/2" A

i=n+1

This and

(5.7) complete the proof of

u,l

(5.4).

To prove (5.5) it is enough to repeat the same argument

with T and K

] i

replaced by T and K _.
c c

Assume now that (4.18) holds for arbitrary information of

cardinality at most n. Theorem 4.3 and (5.5) yield that
av avg, as avg  a
rUIN) = e 0y ) >t (e N )
c,n
_ avg _[m
=T (Nc,n) —A/:i=n+l c,i”’
which proves (5.6) and completes the proof. B

We stress that (4.18) holds for
Examples 1 and 2, i.e., for measures

finite dimensiocnal Hilbert space and

Remark 5.1:

We say two infcormation operators are
same kernel.

follows that N

o

measures introduced in
of the form (3.9) in a

for the Gaussian measures.

We discuss uniqueness of optimal information.

equal iff they have the

From the proof of Theorem 5.1 it immediately

is unique nth linearly optimal whenever
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A\ and N is unigue nth affinely optimal
ku,n > u,n+l c,n E Y optim

’

whenever A > A . The information N is alsc nth
c,n c.n+l c,n

optimal whenever (4.18) holds for arbitrary information of

cardinality at most n. Thus if the (n+l)st corresponding

eigenvalue is strictly less than the nth we have unique opti-

mal information operators. -
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