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ABSTRACT 

We study optimal algorithms and optimal information for 

an average case model. This is done for linear problems in 

a separable Hilbert space equipped wi~~ a probability measure. 

We show, in particular, that for any measure, an affine spline 

algorithm is optimal among affine algorithms. The af::ine 

spline algorithm is defined in terms of the correlation operator 

and the mean element of the measure. We provide a condition 

on the measure which guarantees that the affine spline algorithm 

is optimal among all algorithms. 

information is also solved. 

The problem of optimal 



1. Introduction 

In two recent monographs ([5] and [6]), optimal reduction 

of uncertainty for a worst case model was studied. In [7] 

a corresponding study for an average case model was initiated. 

In that paper we confined ourselves to linear problems in a 

finite dimensional space. See also [3] where a general error 

criterion for optimal approximation of a linear problem is 

studied. 

In this paper we study linear problems in a separable 

Hilbert space equipped with a probability measure ~. 

We seek optimal algorithms and optimal information. The 

following results are obtained. 

(1. 1) 

1. For all measures ~: 

2. 

a. In the class of linear algorithms, a spline 

algorithm, defined in terms of the covariance 

operator of the measure ~, is optimal. 

b. In the class of affine algorithms. an affine 

spline algorithm, defined in terms of the correlation 

opera tor and the IT'.ean element of the measure 'o!, 

is optimal. 

Let u. be any measure such that 

u. (D(B)) == :J. (B) 
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where D is a certain affine mapping and B is any 

Borel set. In the class of all algorithms, the affine 

spline algorithm is optimal. 

3. For all measures u. optimal information is obtained 

for the class of linear or affine algorithms. If 

satisfies (1.1) then optimal information for the class 

of affine algorithms is also optimal for the class of 

all algorithms. 

2 

The measures which satisfy (1.1) include Gaussian measures 

and the measures studied in [7]. In a forthcoming paper [8] 

we characterize measures satisfying (1.1). 

We briefly su~marize the contents of this paper. We 

formulate the problem in Section 2. In Section 3 we collect 

some facts on measures in Hilbert spaces. Section 4 deals 

with optimal algorithms. In subsection Cil we study linear 

algorithmsJ in subsection (ii) affine algorithms and in sub

section (iii) general algorithms. Section 5 deals with optimal 

information. Our analysis and results are illustrated by two 

examples. The first is a finite dimensional Hilbert space 

equipped with a weighted Lebesgue measure~ the second is a 

separable Hilbert space equipped with a Gaussian ~easure. 



2. Formulation of the Problem. 

Let Fl and F2 be real separable Hilbert spaces. Let 

m = dim(F l ), m ~ +00, be the dimension of Fl' Let 

(2. 1) S 

be a continuous linear operator. We call S a solution 

operator. 

3 

Our aim is to approximate S(f), "ff E F
l

, with an average 

error as small as possible. In order to define an average 

error we assume that the Hilbert space Fl is equipped with 

a probability measure ~,~ (F l ) = 1, which is defined on 

Borel sets of Fl' see e. g., [1 ] and [4]. 

To find an approximation to Sf we must know something 

about f. We assume that N(f) is known where 

(2. 2 ) N 

is a continuous linear operator whose range has dimension n. 

We call N an information operator and n = card(N) is called 

the cardinality of N. We seek an approximation to Sf by 

~(N(f)) where 

(2. 3 ) ~ -:- N (F 1) ... F 2 • 

We call an J(Ji~d~e~a~ll=ilz:Je~d:!..)La~l.9.g.:::o:..!:r:...:!i:....!t~hJ..!m~~u~s~i:..!.n~g:2....-:.i!!n-=f.;o:..::rm=a;;...t;;.;~::;..' o.;;...n __ N. 



The (global) average error of m is defined as 

(2.4) 

Note that the norm in (2.4) is the norm of the Hilbert space 

t;' 
.. 2' 

Let ~(N) be the class of all algorithms ~ using N 

for which the average error is well defined, i.e., 

IISf - ~ (N(f)) 112 is a measurable function. 

We wish to find an algorithm ~* from ~(N) with the 

smallest average error. Such an algorithm is called an 

optimal average error algorithm, its error is called the 

average radius of information and is denoted by ravg(N), i.e.) 

(2. 5 ) 
aug avg 

inf e (e;l,N) = e (e;l* ,N) = r
avg 

(N) . 
~~.~ (N) 
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3. Measure u' 

We collect some facts on measures in Hilbert spaces which 

will be used in the following sections. See e.g., [l} and [4J. 

( i ) 

( 3. 1) 

The mean element m of 
u 

(m ,x) = 
u 

u is defined as 

where the integral in (3.1) is understood as the Lebesgue 

integral with respect to the measure 

( ii ) 

(3 . 2 ) 

The correlation operator S of 
c u is defined as 

( 5 x ,y) = 
c 

S (f - m ,x) ( f - m ,Y)u(df), 
Fl U U 

Throughout this paper we assume that 

(3 . 3 ) I Of 11 2. (df) < +-. 

Fl 

This guarantees the existence of m 
u 

(s ince ~ II f n. (df ) " 
1 

+00) and S . 
c 

The correlation opera tor is self-adjoint and nonnegative 

definite. Let 

that 

r' be an o rthonormal basis of F,_ such 
~l ' '"'2"" 

= >.. 6 . , 
1'1 



Then f - m 
~ 

= L~ l ( f - m ,' . I ,. and 
1.= u. 1. 1. 

Note that (3.2 ) implies that 

2 
!I f-m :1 

" 

(3 . 5 ) A. = 
~ 

2 
m ".) " (df ), 

u ~ 

m ) 2 = [ . l ( f - m ". . 
l.= J. 1. 

i. e. J A. is the average value of the squared ith component 
~ 

of f - m Without loss of generality we can assume that 
u 

r ( f - m JC.)2u.(df ) is positive for any i. This means that 
"'pl ~ 1. 

all Ai are positive and Sc is a one-to-one mapping. 

(3 . 6 ) 

From (3.5 ) and (3.3 ) we conclude 

trace (S ) 
c < -, 

i. e " the trace of S is finite . Note that m = +00 implies 
c 

Ai ~ D. This yields that Sc (F 1 ) is a proper subset of Fl ' 

( iii ) 

(3.7) 

The c ovariance operator 5 of 

" 
(S x,y) 

u 
= J

F 
(f,x) (f , y). (df), 

1 

is defined as 

Due to (3.3 ) . 5 exists and can be expressed in terms of s 
u c 

and m as 

" 
(3 . 8) s x = 

u 
5 x + (m J x) m , V x E F , 

c ~ u. 1 

Note that (S ) 2 x,x = (S x.x ) + 1m x ) h ' 
• c u' w lch yields that 

s 2 Sand tr ( ) 
aU . . c ace S. = trace (S,, ) + I/m 1/ 2 Thus S 

d)OLnt , POsitive deFinit - J. 

- e and has finite c 
r!Ce, 

is se l F . 

U • 
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then 5 = S . 
" c 

We illustrate these concepts by byo examples . 

Examole 1: Assume that Fl is finite dimensional. Fl = 1m 

with m < +~ . As in {7} define 

13 . g ) " IB) = S wl llTf ll )df 
B 

7 

where B is a Borel set of R
rn 

and the integral is understood 

as the usual Lebesgue integral in Rm , w : R ~ i is a function 
+ + 

such t."r:at Sm wl!I Tfli )df = 1 and 
It 

m m 
T , R ~ F 4 = Till ) is a 

one-to-one linear operator onto a Hilbert space F4' Assume 

that d = ~ t :I Tf Il2" Idf) = ~ Sm1l Tf 11 2WI II Tf ll) df is finite. Let 

l/2R R 
M = (T*T ) and MC. = A. C. for o rtho normal C. and A. > O. 

1. 11. 1. 1. 

Then 

= S If , 'i ) If, 'j )wl ll f ll) df. 

IIt
m 

Since the last integrand is odd for 1. F jJ we have 

IS ,-, '- ) = 
u. 1. J 

= 

for i F j I 

-1 
det M 

2 
hi 

-1 
det ~1 

2 m ~ , 
\. 

~ 

\ (\\\\"1f.\\"" \\\"1f.\\),," \ C.f. ) = ,2, 
~ 



-

Thus 

s ,. = 
• 1 

which yields 

( 3.10) s = d(T*T) - l 

We have m = 0 and 5 = S . 
• c. 

Exampl e 2 : A Gaussian measure ~ in the Hilbert spac e Fl 

is a measur e such that 

(3 .11 ) J ei ( f.x ). (df ) 

Pi 

i (a, x ) - (Ax,x) / 2 
= e J 

where a = Fi and A : P
l 

- Fl is a self-adjoint positive 

definite operator with finite trace. (The left-hand side o f 

(3.11) i s call e d the characteristi c functional of ~. ) Then 

(3. 12) S = A 
c 

and m = a. 
• 

See [4 , p. lS] . From (3 .11 ) it follows that 

( 3. 13) 

whe r e e
x 

function 
= (Se x , x ) and m _ 

x - 1m , x ) 
( ' ~x) is IJ. ' 

normally 
Thus the 

medsu 
distrib (db1 

Uted e 
See r 1 

, p. 28] . • 
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4. Algorithms with Minimal Average Error. 

In this section we pose the problem of characteriz ing 

algorithms with minimal average error. In three subsections 

we solve this problem for three classes of algorithms. The 

first subsection deals with linear algorithms. Linear 

algorithms are important since they are easy to implement in 

actual computation. We prove that a linear algorithm with 

minimal a verage error is a spline algorithm defined in terms 

of the covariance operator. In the second subsection we turn 

to affine algorithms. They are also easy to implement. We 

prove that an affine algorithm with minimal average error is 

an affine spline algorithm which is defined in terms of the 

correlation operator and the mean element . In the third sub-

section we deal with the class 9(N) of idealized algorithms. 

We find a property of the measure ~ such that the affine 

spline algorithm is an optimal average error algor ithm. We 

assume that 

for linearly independent elements 9 1 ,g2"" , gn of =1' 

(i) Linear Algorithms 

Let S be the covariance operator of u. I 

" 

9 
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Define 

(4. 2) T 
-1/2 = 5 

u " 
toJhere G 

" 
= 5 1/2 (F ) . Note that T 

u 
is a self-adjoint, positiv e 

u 1 

definite and one- to- one operator. If m = dim (F1 ) = +00 then 

T is unbounded . 
u 

Le t 

subspace 

(4. 2 ) 

for some 

(4. J ) 

11 1 ,n2 , . . · ,Tl
n 

be an orthnormal basis of the line a r 

. 1/2 1/ 2 1/2 
ll.n (5 9

1
,5 9

2
, .. . ,5 9). Then 

u u u n 

n 
~ " = L· 1 J= 

c . . ' Let 
l.J 

1/ 2 
c .. 5 9 ., 

1J )J. ] 

n 
C = (C j i ) j , i=l u 

(~.,~.) 
1 J 

= 6· . J 
1, ) 

i,j = 1,2, ... , n 

be a n x n matrix. Note that C is nonsingular. 

" The e lement n. belongs to the domain G and the r efore 
' 1 u 

T ~ . is well defined. From (4.2 ) and (4 . 3) we have 
..I 1 

(4. 4 ) [ ( f , T nil, ( f ,T ~2)' "' ' ( f.T n ) I = N(f)C . 
u. u un )J. 

Thus , knowing N(f) we can compute (f, T~ ni" 

Define the element cr = o(N(f)) as 

( 4.5 ) a = n -1 
L. l(f,T ~.)T ~ . . 

1.= U l. ,.. 1. 



Then (a,T n.) = (f,T n.) which yields N(o) = N(f). This 
u. ~ u. ~ 

means that "interpolates" f with respect to N. 

Observe that a does not depend on a particular choice 

of the orthonormal basis nl ,··· ,nn· Indeed,if el ,··· 'Sn is 

. 1/2 1/2 also an orthonormal basis of l~n(S gl' ... 'S g) then 
~ u. n 

n. = Z~ l(n.,e.)s. and 
~ J= ~ J J 

n n n-l 
a = Z. -1 Z. -1 C'n. ,B . ) (f, T :3.) L -1 (n . , Ok) T Ok 

~- J - ~ J u. J K- ~ :.1 

n n n -1 = Z. 1 ( f, To. ) (Lk 1 0:. 1 (n . . ° . ) en. , Ok) ) T 8} 
J = u. J = 1= ~ J ~, u. k 

n -1 
L. l(f,T e.)T S. 

J= u. J u. J 

as claimed. 

Take an arbitrary g € G such that N(g) = N(f). Then 
~ 

liT gl!2 = liT (g-a) 112 + liT 011 2 
+ 2 (T (g-a),T a). Since 

u. u. u. u. u. 

h = g - u belongs to ker N then (h. T 11 . ) = 0 and 
u. ~ 

(T h,T cr) 
2 n 

= (h, TO') = r:. 1 (f, T 11.) (h, Tn. ) = o. Thus 
u. u. U. 

liT gil .2 '1 T 0' II and !IT g:1 
u. I u. U. 

unique solution of 

N(o) = N(t), 

(4.6) 

1= U. 1 U. ~ 

= II T cr P iff 9 = cr. Thus 
U. 

g _ G ,N(g) = N(f)}. 
u. 

.~ is the 

The solution of (4.6) is called a spline (or a T -spline) 
u. 

11 
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interpolating N( f ) . The algorithm 

(4. 7) ",S{N{f» = So{N{f» 
n -1 

= E. l{f,T n·)ST n. 
1.= j.J. 1. U. 1. 

is called a soline algorithm. (A discussion and optimal 

properties of spline algorithms for the worst case may be found 

in [51.) From (4 .4 ) we can express (4 .7 ) in the equivalent 

form 

"S {N{f » 
-1 

c .. ST n .. 
J 1. j.I. ) 

An algorithm ~ is linear if it has the form 

",{N ( f » 
n 

= E. l{f,g. )w . 
1.= 1. 1. 

for some elements w1 Jw
2

' ... ,w
n 

of F2' We are ready to prove 

that the spline algorithm OS has minimal average error among 

all algorithms that use N. 

Theorem 4.1: The spline algorithm ~s defined by (4.7 ) and (4.4 ) 

is a unique linear algorithm ,,,,ith min imal average error among 

linear algorithms us ing Nand 

(4. 8 ) 

whe re 

Proo f! 

wr i= -een 

v / II -1 '1 2 
e a g {_s N) = ft ~m ST n; . . 

.. , . . ~ i=n+l u. ..... 

'1l '···, l,l, ··· - n n~l 
form an orthonormal basis of 

Let ,,(N{ f » 

as e" (N ( f )) = ,[0: ( f T n) z 
1=1 ~ u i i 

Due to (4.4 ) it can be 

for SOme e l ements 
Zl '· ··'Z ofF 

n 2' Then 



.-

eavg(~,N)2 = 4 !ISf-~(N(f)1I2IJ.(df) = SF nSf112~ (df) + 
211 

+ SF Il~ (N(f))" IJ. (df) - 2 SF (Sf,~ (N(f)))IJ. (df). Note that 
1 1 

(Sf,~(N(f)))= (f'L~ l(f,T il·)S*z.) == L~ l(f,T n.)(f.S*z.). 
~= iJ. 1 ~ ~= u. ~ - ~ 

From (3.7) we have 

J (f,T n.) (f,S*z')IJ.(df) = (S T n.,S*z.) 
F IJ.~ 1 IJ.u.~ ~ 

1 
-1 

= (ST il.,z.). 
IJ. ~ ~ 

Observe next that !b(N(f)1l
2 

= L~ . l(f,T ".) (f,T il.) (z.,z.) 
~,J= IJ. ~ 1..10 J ~ J 

and 

r "",,, (N ( f) 11
2

" (d f ) = n ( j..... .... L . . 1 S T il.,T il')(Z'Jz,) 
~,J= u..u. ~ iJ. J ~ J 

F1 

since (S T n.,T n.) == ('fl.,'TI.) = ~ .. , Thus 
IJ. U. ~ u. J ~: ~J 

avg ( ) 2 e ~,N = S l1sfll
2

IJ. (df) 

F1 

n ( 'I ,,2 (- 1 ) } + L 1 II Z. i - 2 ST Tl . , Z . 
~= ~' C!. ~ ~ 

r 2 n -1 2 
= J ~lsfll '..I. (df) + L_l"z.-ST n.!l 

F1 

n 'I -1 ,,2 
- L. l' ST n'l 1=' ~ ~. 

~- ~ IJ. ~ 

This proves that the average error is minimized iff 

-1 . s 
z. = ST 'fl., ~.e'J ~ is a unique linear algorithm with 

1 lJ. ~ 

13 



s 
minimal average error. The error of ~ is given by 

(4~9) eavg(cos,N)2 = I IISflI
2
w.(df) - L~=11[ST=lTli:12. 

F1 

We now compute SF lis f!l 2w. (df). Since f .-= L~=l (f, Si) Si where 
1 

14 

~. are orthonormal eigenelements of S , S E. = A.S., we have 
~ u. u.~ l.l. 

rL:~. l(f,E.) (f,e:.) (Se:.,Se:.)u.(df) ~ ~,J= .. ~ .oJ -~-J 
1 

Let K Then II ST -lxll = :IKxIl, '-if x E 
U. 

where the first norm is in F2 and 

m 
Observe that Ks· = L. l(Ks. 'Tl·)Tl· 

the second one in Fl' 

2 m 2 
and IIKF. 11 = L. 1 (K;. n·) . 

Thus 

~ J= ~ J J 

S !!Sf!:2u. (df) = L:=1IlK~il!2 = 
Fi 

= r:; =ll1KTlj 112 . 

This and (4.9) complete the proof. 

I -::>~ J= ~ J 

m m 2 
L. lL. l(!:' ,KT1.) 

J= l.= "l. J 

It is well known that spline algorithms enjoy many 

important optimiali ty properties for the wors t case. Theorem 

4.1 states that among linear algorithms spline algorithms are 

also optimal for the average case. 

(ii) Affine Algcrithms 

Let S be the correlation operator of u.. S 
c c 



, 

Define 

(4.10) T 
c 

-1/2 :: S 
c 

1/2 
where Gc :: Sc (F l )· Let ~lJn2J'" Jn n be an orthonormal 

ba_c:::';s of the l' b l' (Sl/2 1/2) h ~ ~near su space ~n glJ""S g . T en 
c c n 

there exists a n x n nonsingular matrix C :: (c .. ) such that 
c Jl. 

(4.11) [(f,T n
1
),(f.T n

2
)J ... ,(f,T ~)] == N(f)C 

c c c n c 

Define the element a :: a(N(f)) as 

(4. 12) 
n -1 

a == L. l(f - m .T n.)T n. + m 
~:: ~ C ~ C ~ ~ 

where m is the mean element of 
u. 

u. • Then (a,T n.) == 
c ~ 

= (f-m .T n.) + (m ,T n.) == (f,T ~.) which yields N(c) == ~(f). u. c ~ u. c ~ c .~ 

Thus c interpolates f with respect to N. 

The algorithm 

(4. 13 ) 
as 

o (N (f)) == SO' (N (f) ) 
n -1 

== L. 1 (f-m . Tn· ) ST n. + Sm 
~== u. c ~ C'~ U. 

is called an affine spline algorithm. 
as 

Note that 0 differs 

from a linear algorithm by the constant element 

n -1 
w = Sm - L. l(m ,T :.)ST n .. Due to (4.11) one can 

u. ~== u. C l. C 1 

equivalently rewrite (4.13) as 

oas (N(f)) 
n n -1 

= L, l(f J g,)rL. lc .. ST n.} + w. 
~== ~' J:: J l. C J 

is 



16 

This means that ~as is affine in N(f). 

It is easy to check that the element cr - m is a unique 
iJ. 

solution of the problem 

N(cr-m) = N(f-m ), 
u. iJ. 

(4. 14) 

tI T (cr-m ) 11 
c u. 

= inf(tlT gil :geG ,N(g) = c c 

Thus cr - m 
u. 

is a T -spline. 
c 

Observe that 

as 
e,? (N(f» = S(cr-m ) + Sm 

u. u. 

N(f-m )}. 
u. 

where S(cr-m ) is a spline algorithm. Thus the algorithm 
u. 

as 
~ is a spline algorithm tra~slated by Sm. This motives 

u. 
our terminology. Note that m = 0 implies T = T and 

u. u. c 

(pas(N(f» = e.oS(N(f», i.e., (4.13) coincides with (4.7). 

We are now ready to prove that the affine spline algorithm 

has minimal average error among all affine algorithms using 

N, i.e., among algorithms of the form 

~ (N(f» 
n = 2:. 1 (f, 9 . ) w. + wo 
1.= 1. 1. 

Theorem 4.2: The affine spline algorithm ~as defined by 

(4.13) and (4.11) is a unique affine algorithm with minimal 

average error among affine algorithms using Nand 

1 



17 

(4. 16) 

form an orthonormal basis of 

Proof: Let ~(N(f)) = 2:~ l(fJg.)w. + w00 Due to (4.11) it 
1.= 1. 1. 

n 
can be written as ~(N(f)) = 2:. 1(f-m ,T ~.) 21.' + 20 for some 

1.= ~ C 1. 

avg 2 
elementsz

O
"" JZ

n of F
2

, Then e (~,N) = 

S IIS f -:,,(N(f))11
2
u.(df) = S ~IS(f-m )-~(N(f))+Sm 1I

2
u.(df) = 

F, F1 u. u. 
- 2 - 2 

SF llS(f-m)\I u.(df)+J :b(N(:))-Sm II u,(df)-2S (S(f-m ),~(N(f) -
1 u. F1 ~ F1 u. 

Sm )~(df), Note that (S(f-m )J~(N(f»-Sm ) = 
u. ~ ~ 

n 
(f-m ,L, 1(f-m ,T Tl.)S*z. + s*(zO-sm ) = 

~ 1.= U. C '1. 1. ~ 

n 
L l(f-m JT -r:.) (f-m ,S*z.)+(f-m ,s*(zO-sm)), From (3.2) 

1.= I", C 1. U, 1. U. 

and (3.1) we have 

S (f-m ,T ~.) (f-m ,S*z.)u.(df) = 
F u. C 1. U. 1. 

1 

(S T ~. ,S*z.) 
C C 1. 1. 

-1 = (ST ~ .• z')J 
C 1. 1. 

- (m,S*(z-Smll.=O. 
:J. 0 ~ 

2 
Observe next that ~IY (N (f)) - Sm 11 = 

u. 
n 

L . l(f-m ,T ~.)(f-m ,T ~.)(z.,z.) + 
1.,J= u. c 1. U. C J 1. J 

n II 1\2 22:. l(f-m ,T 11.) (z .. zO-sm ) + :lzO- sm , 
1.= U. C 1. 1. U. U. 

Thus 



J l\~ (N(f) )-Sm 1\2!.1 (df) = r~ , 1 (S T TJ, IT 1,) (z, I z,) 
F u. ~,J= C C J c J l J 

1 

II - 112 - n I' It 2" 112 + Zo Sm - 2;'_111Z'1 + IlzO-Sm,i . !.1 L- ~ U. 

From this we have 

e
avg

(eo,N)2 = J IlS(f-m )11 2
w.(df) 

Fl !J, 

n 2 -1 2 
+ L;=l(llz;!l - 2 (ST TJ, ,z,)} + Il z

0
- sm :1 

•• ell !J, 

= S IIS(f-m )!1 2
u(df) + L:~_11Iz,-sT-lil,lI2 

u. l- l C l 
Fi 

II 112 n 'I - 1 112 + i zO-sm - L'-l' ST TJ, • !.1 l- C ~ 

This proves that the average error is minimized iff 

-1 d . as , z, = ST TJ, an Zo = Sm , ~.e., ~ ~s a unique affine 
~ c ~ !.1 

algorithm with minimal average error. 
as 

The error of ~ is 

given by 

avg (as ) 2 e (',:) ,N = 

Repeating the last part of the proof of Theorem 4.1 one can 

show that 

J !IS (f-m ) ~12u (df) = 
F ;,:. 

1 

m I' -1 ,[2 L, 1 I'ST 11 , • 
~= C~' 

This completes the proof. 

Theorem 4.2 establishes optimality of the affine spline 

algorithm in the class of affine algorithms. Note that the 

18 
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I 

errOr of H\ as h 
~ as a form similar to 

the errOr of the 
algorithm s as 

eL! ; al though (D depends a T s n c whereas .:" 
on T . 

u 

If m = 0 then th r' 

19 

spline 

depends 

the spline algorithm. 

u. e a r~ne spl ine algori thm coincides with 

This yields the foll owing 
corollary. 

CorOllary 4 . 1: 
If mu = 0 then the spline algorithm 

is a unique 
linear algorithm with 

minimal average error among affine 
algorithms using N. 

(ii i ) Ootima l Average Error Algorithms 

In this subsection we provide a condition on the measure 

u which guarantees tha t the affine spline algorithm is an 

o ptimal average error algori:hm. This condition is expressed 

in terms of the mapping 0 : :1 ~ Fl defined as 

(4. 16) Of 
n -1 = 2 0:. 1 ( f-m ,T n.) T n. 
~= u c ~ c ~ 

+ m ) - f. 
u 

Here we use the notation of subsection ( ii ) . The mapping 0 

~s affine and has two important properties 

N(f) = N ( Of ), 

(4.17 ) 

Indeed , (Of , T n.) = 2 (( f-m ,T n.) + (m ,T '. )) - ( f,Te n ; ) = 
Cl. U Cl. !.!. Cl. .... 

( f,T n. ) . This and (4.11) yield N(f ) = N (Of ) . Then (4.16 ) e , 
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can be rewritten as 

DWf) • 

-1 
Thus D2 is the identity operator, hence D = D 

Note that 

the mapping D on the information operator 
depends 

We are ready to prove 

Theorem 4.3: Assume that 

(4. 18) u. (D (B)) = u. (B) 

N. 

for any Borel set B of Fl' Then the affine spli~e 

algorithm ~asdefined by (4.13) is a unique optimal average 

error algorithm. i.e., 

a vg a vg as I m -1 2 
r (N) = e (4' ,N) ="/2:. +lIlST n.:1 . 

l.=n c 1. 

Proof: Take an arbitrary algorithm ~ from ~(N). Observe 

that (4.18) implies 

J 11 S f-~ (N ( f) ) 112 u. (df) = 
Fl 

S IISDf-,~ (N(Df» 112 u. (df). 

Fl 

Since N(Df) = N(f), we can express the average error of ~ as 

(4.19 ) e
avg 

b!N) 2 = ~ J (l'Sf-:" (N(f» :1
2 

Fl 

+ :lSDf-:,,(N(f»1I
2

)u.(df). 

Observe that 



(4.20) 

From (4.19) we get 

avg 2 
e (~,N) 2 J IISf-~ as (N (f) ) 112 u. (df) 

F1 

avg (as ) 2 = e c;l ,N • 

Thus '" a s 1.' s t' 1 1 'h ~ an op lorna average error a gor1.t m. We new prove 

uniqueness. (Of course, uniqueness is understood to be up 

to a set of measure zero.) If CD is an optimal average error 

algorithm then (4.20) holds with equality almost everywhere. 

This yields 

Since 

2 
+ llSDf-~ (N(f))!~ -2 (Sf-y (N(t)) ,SDt-~ (N(t))) 

then 

2 2 o = IlSf-e,?(N(f))\l + l!SDf-~(N(f))!l 

+ 2 (Sf-~ (N(f)) ,SDf-y (N(f))) 

21 



Hence 

2 = !!Sf-~ (N(f» + SDf-;? (N(f» 'I . 

co (N(f» = 1 (Sf+SDf) = 
as 

.~ (N(f». 

22 

as 
The average error of ~ which is equal to the average radius, 

is given by Theorem 4.2. Hence Theorem 4.3 is proven. • 
Theorem 4.3 states that the invariance of the measure 

~ under the mapping D yields optimality of the algorithm 

as 
~ We now show that (4.18) holds for two examples which 

we presented in section 3. Measures satisfying (4.18) are 

characterized in [8]. 

Example 1 (continued from Section 3): Since m = 0 and 
w. 

~(D(B» = S W(d
l
/

2
'IT f;l)df. 

D(B) ~ 

Let g = Df. Note that 

Since D is linear and Idet DI = 1, we have 

~(D(B) = u. (B) . 

Thus (4.18) holds for every information operator N. 

Example 2 (continued from Section 3): It is enough to show 



that (4.18) holds for the sets B of the form 

B = [f € F1 :(f,x) S d} where x E F1 and d E R. From (3.13) 

we have 

where 

that 

1 
~(B) =--=--

A./2r,cr x 

dJ -(t-m )2/2_ 
e x ""x dt 

-00 

~ = (S x,x) and m 
"x c x 

= (m ,x). 
u. 

(Df,x) = (f,D
1

X) + (b,x) 

We find u. (D(B)). 

n -1 
where D

1
X = 2L. leT n. ,x)T n. - x and 

~= c ~ c ~ 

Note 

n -1 
b = 2 (m - L. l(m ,T n.)T 11.). From this we conclude that 

\..I. ~= u. C ~ C ~ 

Observe that 

Thus 

(Dm ,x ) - ( b , x ) 
u. 

= (m ,x) - (b,x), 
u. 

n ~-1 -1 2 = 112L 1(- n.,x)11.- T xl! 
~= c ~ ~ c 

1 
u. (D (B)) =-=---

4~ 

dJ-(b,X) -(t-m +(b.x))2/2crx ex' dt 
-00 

x 

1 = --=-- dS e-(t-ffix)2/2crx dt = ~(B). 
-00 

23 
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Hence (4.18) holds for every information operator N. a 
We now show an example of a measure ~ for which (4.18) 

does not hold and for which the algorithm (4.13) is far from 

being optimal. 

Example 3: 

Define 

~«(,;l) = u.«(-C.}) = p. 
.... ~ ~ 

00 1 
where Li=l Pi = 2 for different positive Pi' 

atomic measure concentrated on the elements 

It is easy to check that m = 0 and 
~ 

S f = 
u. 

S f 
c 

00 

= L;-_l 2p. (f,e.),.· 
.... 1 . ~ ~ 

6 •.• 
~J 

Thus is an 

00 

Let N(f) = (f,gl) with gl = L. 1 p.L. and let Sf = f. The 
l= ~.~ 

a 19ori thm (4. 13) (and (4. 7)) takes now the form 

00 3 -1 00 2 
= (1;. 1 2p.) (f,gl)L 12p.,. 

~= ~ ~= ~ ~ 

and has positive average error. 

Define the algorithm 



,. if N (f) = p. , 
~ ~ 

co*(N(f)) = -, . if N (f) = -p. , 
~ ~ 

g otherwise 

where g is an arbitrary element of Fl' The algorithm ~* 

is nonlinear in N(f) and discontinuous at zero. Observe that 

5 !/f-I::l* (N(f)) 112~ (df) 

Fl 

Th . . 1 d as . 
us~ * loS opt1.ma an q> loS not. 

the form 

The mapping D has now 

To see that (4.18) is not satisfied, set B = (C.}. 
"1. 

Then 

~ (B) = Pl and ~ (DB) = o. a 

25 

We end this section by a property of optimal average error 

algori thms. 

Theorem 4.4: An algorithm ~* is an optimal average error 

algorithm iff 

(4.21) 1 ( S f -ep * (N ( f) ) 'CO (N ( f) ) ) ~ (d f ) = 0, V ~ E ~ (N) . 

Fl 

Proof: Assume that ~* is an optimal average error algorithm 

D 



and let ~ be an arbitrary algorithm using N. Define the 

algori thm 

CPl (N(f» = co* (N(f» + c~(N(f» 

for some real c. We have 

(4.22) a vg ( ) 2 _ a vg ( * N) 2 
e col,N - e CO' 

- 2c S (Sf-~* (N(f» ,et) (N(f»)~ (df) 

Fl 

+ c
2 S 1l~(N(f»1l2~(df). 

Fl 

a vg ) a vg (.. ) f . Since e (col,N 2 e et) ,N or an arb~trary c, then the 

coefficient multiplying c in (4.22) must vanish. This 

yields (4.21). 

Assume now that (4.21) holds. Take an algorithm ~ and 

let i:Pl(N(f» = ::p(N(f» - ep*(N(f». Then 

avg 2 S 2 e (::p,N) = II Sf-co (N(f» II ~ (df) 

Fl 

= 5 \\Sf-cp* (N(f») \\2>J. (df) (s: 

Fl 

- 2 5 ( S f -~ * (N ( f) ) '~l (N ( f) ) ) ~ (d f ) 

Fl 

S 2 avg 2 
+ ~lcpl(N(f»II~(df) =e (q*,N) 

Fl 

f 2 avg 2 
+ J Ilcpl(N(f»11 :.J,(df) 2 e (~*JN). 

l:" .. 1 

This proves that cp* is an optimal average error algorithm 

which completes the proof. 

26 
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Observe that Theorem 4.4 can be rewritten in a somewhat 

stronger form. Namely, ~* is optimal in a given subclass of algor

i thrns~ 0 (N) iff (4. 211 holds :or all algori t!1ms from~ 0 (N) '..;henever 

the subclass ~O(N) has the property: ~*,~ E ~O(N) implies 

cl~* + c2~ E ~O(N) for real c l and c 2 · 

class of linear or affine algorithms. 

This holds for the 
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5. optimal Information 

In the previous section we studied optimal average error 

algorithms using the information operator N of cardinality 

n of the form 

In this section we find the optimal choice of elements 

gl,g2""Jg
n

. By optimal choice we mean elements for which 

the average error is minimized for a given class of algorithms. 

We shall need the following result. Let K F ~ F be 
1 1 

a self-adjoint nonnegative definite operator, K = K* 2 O. Let 

(5. 1) Kz, = A. z , , 
J. J. J. 

i = 1,2, ... 

where zl,z2"" is an orthonormal basis and A-
1 

2 >"2 2 .... 

Lemma 5.1: 

n 
max ( l:, 1 (Kb , J b, ) 

J.= J. J. 
(b"b,) = ~,,} 

1. J l.J 
n = L. 1 (Kz , J z . ) 
J.= 1. J. 

n 
=l:. 1>" .. J.= J. 

Proof: Although Lemma 5.1 f~llows from Theorem 4.1.4 of [2] we 

provide a short proof for completeness. m 
Let b. = L. 1 a, ,z, 

1. J= 1.J J 

where a, , = (b"z,) and nS m. Since both b, and z, are 
J.J J. J J. J 

orthonormal J 
m 2 m 2 

L, 1 a, , = L 1 a, , = l. Then 
J= J.J J.= J.J 

II 
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n n 2 n 2 /' r. l(r. 1 A.a .. + A 1(1 - r. 1 a .. )} 
.::::. 1.= J= J l.J n+ J= l.J 

n n 2 
= n". 1 + r. 1 ( A . - ). 1 ) L 1 a. . n+ J= J n+ 1.= l.J 

n 
= l:. 1 A.. 

J= J 

Equality is obtained for b. = Z,. 
1. 1. • 

We now solve the problem of finding an information operator 

of cardinality n for which the average error of linear or 

affine algorithms is minimized. 

Let K 
iJ. 

Let 

(5.2) K z ,= A ,Z 'J K z ,= A ,Z , 
U ~,l. ~Jl. iJ.,1. C C,l. C,l. C,l. 

where (z ,) and (z ,} are orthonormal basis and 
iJ.,1. C,l. 

" ,2 A 2""'''. 1 2 A 2 2 .... Observe that 
iJ.,1. ~J C, C J 

2 -1 -1 
(K x,x) ~ ~lsll (T x,T x) = 

iJ. iJ. u. 

2 lISI1 (S x,x) J 

iJ. 

This yields that K and K have finite traces and 
\J. c 

trace(K 
:J. 

trace(K ) c 

= [m A 
i=l u., i 

m 
= [1.'=1 A " C,l. 



Note also that K 
~ 

-1 -1 -1 = T S*ST and A .T z . = S*ST z .. 
~ ~ ~,~ ~ ~,~ ~ ~,~ 

Thus T z . is well defined whenever A . is nonzero. 
~ ~,~ ~,~ 

Similarly, T z . is well defined whnever \ . is nonzero. 
c c,~ c,~ 

Define the information operators 

N (f) = [(f,T z l),(f,T z 2), .. ·,(f,T Z k)], 
~,n >J. ~, ~ ~, !J. Uo, 1 

N (f) = [(f,TZ l),(f,TZ ), ... ,(f,TZ k)] 
c,n c c, c c,~ c c, 2 

where 

kl = min(n,max(i \ > OJ) 
~,i 

k2 = min(n,max(i \ > OJ). 
c,i 

30 

Note that A 
~,l 2·· ·2 A 

~,kl > o and "- c,l 2·· ·2 A c,k
2 

> 0 which 

yields that N and N are well defined. Of course, 
:.J.,n c,~ 

card (N ) = kl ~ n and card (N ) = k ~ n. 
~,n c,n 2 

10 10) 
We say that N ,card (N ~ n, is nth linearly 

ootimal iff 

avg (s 10) 
e e::l ,N = inf(eavg(~,N) :card(N) ~ n,y-linear), 

ao ao 
N card(N) ~ n, is nth affinely optimal iff 

avg( as ao) 
e ~,N = 

o 
and N , card(~) ~ n, is nth optimal iff 
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We are ready to prove the following theorem. 

Theorem 5.1: The information operator N is nt~ linearly 
).l,n 

optimal and 

(5.4) 

The information operator N is nth affinely optimal and 
c,n 

(5. 5 ) avg as J m 
e (I:P, N ) = E. 1 A " c,n k=n+ C,k 

If (4.18) holds for arbitrary information of cardinality at 

most n then the information operator N is nth optimal and 
c,n 

(5.6) 
avg / m 

r (N ) =~r._ 1 A . c,n k-n+ C.k 

Proof: To prove (5.4) we use (4.8) of Theorem 4.1 . Then 

avg 2 m -1 2 
e (I:P,N):2 L_ +l!1 ST 11.11 = m E. +l(K 11.,11.) for orthonormal 

yields 

Thus 

(5.7) 

k-n IJ. k k=n IJ. k k 

Since K has finite trace, Lemma 5.1 
IJ. 

m n r. 1 (K 1].,1].) = trace (K ) - r. 1 (K 1].,11. ) 
k=n+ u. k k IJ. k= U. k k 

:2 t r ace (K ) - max ( 2: ~ 1 (K b., b. ) : (b. J b . ) = Ii. .} 
U. k= U. k k k J kJ 

= trace(K ) 
u. 2:~ 1 A . = E~-_n+l A'L'~' k= U. , k ... ,.. .... 

• 



We now compute the average error of the spline algorithm 

OS using N . From (4.2) we have ~, = sl/2T Z ,= Z 
lJo,n l. IJo IJ. lJ.,l. lJ.,i' 
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eavg(Ms,N )2 m i = 1,2, ... ,k l · Thus (4.8) yields ..... = z:. k 1\ " 
lJ.,n l.= 1+ lJ.,l. 

r k h = a ' k 1 a vg s I_ 1 < n t en A~,i ' l. 2 1 + and e (~'~~,n) = O. 

Thus in both cases kl < nand kl = n we have 

avg s J m 
e (~, N u. , n) = '\/ t: i=n+ 1 \, i' 

This and (5.7) complete the proof of (5.4). 

To prove (5.5) it is enough to repeat the same argument 

with T and K reo laced by T and K • 
IJ. u. - C c 

Assume now that (4.18) holds for arbitrary information of 

cardinality at most n. Theorem 4.3 and (5.5) yield that 

= r avg (N ) / m = tV r., +1 A , , c,n l.=n C,l. 

which proves (5.6) and completes the proof. 

We stress that (4.18) holds for measures introduced in 

Examples 1 and 2, i.e., for measures of the form (3.9) in a 

finite dimensional Hilbert space and for the Gaussian measures. 

Remark 5.1: We discuss uniqueness of optimal information. 

We say two information operators are equal iff they have the 

same kernel. From the proof of Theorem 5.1 it immediately 

follows that N is unique nth linearly optimal whenever 
~,n 
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A > A and N is 
~,n ~,n+l c,n 

unique nth affinely optimal 

whenever A > A The information N is also nth 
c,n c.n+l' c,n 

optimal whenever (4.18) holds for arbitrary information of 

cardinality at most n. Thus if the (n+l)st corresponding 

eigenvalue is strictly less than the nth we have unique opti-

mal information operators. • 
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