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Abstract

We introduce an average case model and define general notions
of optimal algorithm and optimal information. We prove that the
same algorithm and information are optimal in the worst and average
cases and that adaptive information is not rore powerful than non-

adaotive information.
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1.1

1. Introduction

In two recent monographs (Traub and WoZniakowski (807,

Traub, Wasilkowski, and WozZniakowski [83]1) we studied ootimal
reduction of uncertainty for a worst case model. With this paper
we initiate a corresponding study for an average case model. This
is the first of a number of vapers reportinag average case results.
These results will eventuallv appear as part of a third volume
devoted to the study of various probabilistic settings.

We indicate earlier work on this subject. Suldin ([59],(601])
studied average case error for the integration problem. Larkin, in
a series of pioneering papers commencing with [72], studied optimal
algorithms, mostly for linear problems, utilizing a Gaussian measure.

Both Suldin and Larkin confine themselves to linear algorithms.

In this initial paper we confine ourselves to linear problems
in a finite dimensional space. (Average case analysis for an infinite
dimensional setting is studied in Wasilkowski and Wozniakowski (82al].)
By a linear problem we mean a problem specified by a linear operator.
Examples of linear operators are integration, interpolation, and approxi-
mation. Note that the solution of a linear system is not a linear problerm

since the solution does not depend linearly on the matrix element.

. . .. . .
We restrict ourselves to the finite dimensional setting for

two reasons.,

1. This setting is of intrinsic interest.

2. The analysis of the infinite dimensional setting requires

rather heavy mathematical machinery. 1In order to vermit

the reader to focus on the model assumpntions and the

results we avoid these mathematical complications in

this first paper,




In this paper we specify an average case model and introduce
general notions of optimal algorithm and optimal information. The
following results are obtained.

1. The same algorithm is optimal in the worst and average cases.

2. The same information is optimal in the worst and average

cases.

3. Adaptive information is not more powerful than nonadantive

information.

We discuss these results. Conclusions 1 and 2 are favorable to
the user since the same algorithm with the same information minimizes
both the worst and average error. It was established (see Traub
and WozZniakowski [80, p.49] for a history) that adaptive information
does not help for the worst case. Many researchers believe that
this is only true in the worst case setting. We prove the
counterintuitive result that adaption doesn't help even on the

average.

We illustrate some of the basic concepts of this paper by

Example 1.1

Assume we wish to approximate the function f knowing some

information N(f) and knowing that f Dbelongs to some given class

of functions F . To be specific let N(f) = [f(tl),...,f(tn)]

consist of n function samples and let F Dbe the class of trigono-

metric polynomials of degree m whose r th derivative is bounded

by unity.

An algorithm ¢ is any mapping acting on the information N(£f) .

An example of an algorithm is the linear algorithm




1.3

o (N(£f)) =
1

e s

f(t.) a. where «. are some functions. An
1 i i i

algorithm is optimal if it minimizes the error according to some error

criterion. 1In the worst case setting the error is defined as the
largest error for all £ in F . In the average case setting the

error is defined in terms of the L2 norm with respect to some measure

on F .

Next, assume the ti may be varied. We say that the information
is optimal if the ti are chosen so as to minimize the worst or average

case error of the optimal algorithm.

If the t, are given independently of £ , then the information

is called nonadaptive. On a parallel computer nonadaptive information

can be computed simultaneously. If the ti depend on previously
computed values of £ , the information is called adaptive. One
might hope that choosing points adaptively decreases the error. How-
ever, adaption does not help for either the worst or-average case.

This example will be continued in Section 8. d

e briefly summarize the contents of this paper. In Section 2
we outline the setting and results of the worst case model which we
shall constrast with the results of this paper. In Section 3 we
introduce an average case model and prove that the same algorithm
is optimal for both the worst and average case. Very simnle and
elegant formulas for the worst and average radii of information
are given by Theorem 3.2. 1In the following section the oroblem
of optimal average information is posed and solved. The same
information is optimal for both the wo;st and average cases. In

Section 5 we show that adaptive information is no more powerful than




1.4

nonadapntive information in either model.

In Section 6 we compare the intrinsic uncertainty if only the
oroblem setting is known, with the uncertainty when n ootimal
evaluations are used. In Section 7 we obtain very tight complexity
bounds and prove that the same algorithm enjoys nearly ootimal
complexity in both models. 1In the concluding section an example

illustrates the models and some of the results.




2.1

2. Worst Case Model: Optimal Algorithms

To help the reader we begin with the relatively simple worst case
model and pass next to an average case model. We summarize the setting
and main results of the worst case model for a (simplified) linear
problem studied in general by Traub, Wasilkowski, and WoZniakowski
(83], see especially Appendix E, and Traub and WoZniakowski [801].
Although we use the terminology and notation presented there, the

following account is self-contained.

Let F be a finite dimensional real space and let

1
(2.1) : m = dim (Fl).
Let F2 be a real Hilbert space. Consider the linear operator
(2.2) . S: Fy = F,.

The operator S 1is called the solution operator.

Our aim is to find an element x = x(f) which approximates Sf
according to some error criterion. There are many error criteria of
practical importance some of which we cite here. The absolute error
criterion is such that || S(f) - x(f) || < ¢ for a given nonnegative
€. The relative error criterion is such that || S(f) - x(f)]| /

[ s(f) || < €. The absolute-relative error criterion is such that

1s(f)y - x(£) [|/¢]lS(E)]|+ n) < e with a given positive n.

Sometimes we will want to satisfy the error criterion for f

from the whole space Fl » and sometimes for only a subset of Fl'
This subset can be characterized, for instance, by the condition




| T£ ]| <1 for some operator T

We now present a general error criterion which will include the

above examples as special cases. We have chosen a formulation which will

also be used for the average case. Let

(2.3) T

be a one-to-one linear operator where F4 = T(Fl) is a Hilbert space.
We call this space F4 (rather than F3) to conform to the

usage in Traub and WoZniakowski [80].
Let

(2.4) : D:R++R+
be a given function.

We say that an element x of F2 is an e€-approximation to Sf

'.J .
Hh
th

(2.5) [ s - x || o(]|TE]]) s €

where € 1s a nonnegative number,

Observe that for op(x) = 1 , (2.5) becomes the absolute error
criterion. For op(x) = 1/x and T =S8 , (2.5) becomes the relative
error criterion. If op(x) = 1/(x+n), n > 0 and T =S then (2.5)
becomes the absolute-relative error criterion. 1If o{x) =1 for
x €1 and p(x) =0 for x > 1, (2.5) becomes the absolute error
criterion for elements f for which || Tf |l = 1.

Our aim is to find an c-approximation to Sf for all £ from
F. . To find an c-approximation, information on £ 1is required. We

1
assume that we know N(f) where N 1is a linear operator. Without



loss of generality we can assume that N has the form

(2.6) N(f) = [Ll(f), Lz(f), oo Ln(f)]

where Ll, L2"“’ Ln are linearly independent linear functionals

and n <m . We say N 1is a (partial) information operator and

n is the cardinality of N.

Since n < m then there exist infinitely

many elements f from Fl which are indistinguishable with respect
to N(f). (Hence N 1is called partial.) It is therefore impossible

to recognize which element S(f) 1is to be approximated. Let

(2.7) V(N,y) = {f ¢ N N(E) =y} , v = N(£),

be the set of indistinguishable elements.

We seek an c-approximation x of the form x = ¢(N(f)) where

¢ 1is a mapping,

2. : .
(2.8) ¢ N(Fl) > F2
Note that ¢(N(f)) has to satisfy (2.5) for all f from V(N,v).

We call ¢ an (idealized) algorithm. Let &(N) be the class

of all (idealized) algorithms, i.e., ¢(N) consists of all maprings

® , defined by (2.8), which use the information operator N.

We stress that our definition of algorithm is extremely general.
In spite of this we can prove some negative results. This makes the
negative results even stronger. If one wishes to carry out a computa-
tion, then in general the class of algorithms must be restricted. We
shall see that for the problem studied in this paper, algorithms whiéh

are "optimal" in the class of idealized algorithms are relatively easy




to implement in actual computation.
Let % be an algorithm, ¢ < ¢(N). Then

(2.9) e(9,N) = sup || S£ - ¢ (N(E))]| o(|] TEID
feFl

is called the error of ¢.

Note that the error of ¢ is defined as its error for the "hardest"
£ . That is why this model is called the worst case model. For the
average case model studied in the following sections we replace the

sup in (2.9) by an integral which measures the average performance of

3.

From (2.9) it follows that ¢(N(f)) is an e-approximation to SE£

for all £ 1iff e(9,N) < €.

Definition 2.1

We shall say r(N) is the radius of information iff

(2.10) r(N) = inf e(9, N)
ded(N)

We shall say an algorithm ¢, ¢ ¢ ¢(N), is an optimal error

algorithm iff

(2.11) e(9,N) = r(N).

Remark 2.1

The radius of information can be defined independently of the




concept of algorithm and (2.10) can then be established; see the
books quoted at the beginning of this section. For simplicity

we here present (2.10) as the definition of radius. n

Equation (2.10) implies that we can find an e-approximation iff
r{v) < e. If r(N) ¢ £ then an ootimal error algorithm supplies

an £-aoproximation.
s

\"e now present a spline algorithm ¢ (see Traub and Wozniakowski

(80, Chapter 4]) and prove that it is an optimal error algorithm.

Let ¢ = J(y) be an element of F such that

1
N(g) = ¥
(2.12) ~, o~ .
HTo ] = mirn{|| T£li: £ ¢ V(N,y)}.
It is obvious that such an element exists and is unique. The

element o(v) 1is called a spline interpolating y . The soline

algorithm ¢S is defined as

n

(2.13) 95(y) = S oly) , ¥y ¢ N(F.) = R® .

l)
Since S is linear and o depends linearly on y , the spline

algorithm ¢S is a linear algorithm. Thus

n
(2.14) ¢5(y) = § L,(f) so,
i=1 4 .
where y = N(f) = [Ll(f), .., Ln(f)] and o, = a(lo, ..., 1, ..., 0.
i
The evaluation of ¢s(y) requires the knowledge of Sol, cees ST

Computing the Sci can be difficult, but since they are independent

of y , this need be done only once and the cost of computing them

may be viewed as a precomputation cost. Then to




compute @S(y) it is enough to perform n multiplications of a
real number by a m dimensional vector and n-1 additions of
m-dimensional vectcrs. Hence if the So, are precomputed, then the
evaluation of @s(y) reguires at most nm scalar multiolications

and (n-1)m scalar additions.

The spline algorithm S enjoys very strong optimal error

properties one of which is stated in

Theorem 2.1

The spline algorithm ¢S is an optimal error algorithm and

(2.15) e(s>,N) = r(H) = sup xp(x) sup  |Ish]| / llThl

) x20 hekerN

with the convention 0-%<= 0. 0
Proof

This result is established for a more general problem in Traub,
Wasilkowski, and WoZniakowski [83], see Theoren E.l. For the simpli-

fied linear problem of this section we supply a short proof.

Let f = o(y) + h where h e kerk. Then £ ¢ V(N,y) and

(T s(y), Th) = 0. We have

e(o,) = sup _ sup |l S(B) - o(y) Il oCll TEN ) =
y feV(N,Y)

= sup sup H So(y) + Sh - ¢ (y) H D(V/H ThHZ + 1 Tc(y)'ll? ) -
y heker N




Since
max (|| Sc(y) + sh - o(y) |l . Il sa(y) = sh = a(x)il) = I shll
for any ¢(y) ., we have
2 N .S
e(9,N) 2 sup sup | sh || c(/ﬂ Th {2 + || To(y) I[7) = e(s™,N).
Y h:-ker N
This proves optimality of ¢>. Observe that .
.S = /2+”T()HZ').
e(o” ,N) sup sup p(vx oy
Y x20
sup{|l sh||: h e kerN, || Th || = x! =
sup sup xo(vx: + || Ta(y) [|?) sup | shll/llTh ]l =
y x20 heker N
sup  x p(x) sup || sh||/l| Th ||
xz0 heker N
which proves (2.15) and completes the proof. ad

Remark 2.2

The space F2 need not be a Hilbert swace and the snaces Fl, FZ
and F4 need not be finite dimensional in Theorem 2.1. 1In fact

this theorem holds for anv normed linear space F and anyv Hilbert

2
srace F4 , assuming that T(kerN) is closed. The assumption that
Fz is a Hilbert sw»ace and both F, and F4 are finite dimensional will

be used in the next sections. T[or simnlicitv of presentation we assume,

even in this section, that Fy is a Hilbert smnace and FZ and “4

are finite dimensional. O




3.1

3. Average Case Mcdel: Optimal Algorithms

We introduce an average case model, and pose and solve the
problem of optimal algorithms in this model. Ve prove that the spline
algorithm defined by (2.13) is also ootimal for the average case model.

We find its error and compare with the worst case model.

e begin bv defining a probability measure on Fl. Mithout loss
of generality assume that Fy =1Rm. Let B be a o-field of Borel

sets in R™. By

(3.1) forae=§ - (-ar, ar ... e
R R R
we mean the Lebesgue intearal, £ = Tfl,fz,;..,fm].

Let w, w: R, - TR, be a function such that

(3.2) 5 w(l| TE ||)af =1
m

R

The function w is a scalar weight function. lote that || -]} in

(3.2) denotes the norm in the Hilbert space F,. Let A be a Borel

set in Fy , A ¢ B. Ve define a measure u on F, as
(3.3) u(a) = f w(l|| Tf ||)af
A

Note that u is a probability measure, i.e.,

(3.4) u(F,) = 1.

. . s
The measure u - generates the Lebesgue integral in F,. Thi

F. - fR then

integral is denoted by j - u(df). Thus if g: F,
A




(3.5) S g(e) w@n ¥ S g(£) w(ll T€{)at.
A A
Remark 3.1

It may seem somewhat arbitrary to restrict ourselves to measures
defined as in (3.3). However it is shown by WoZniakowski
(82] that any measure which enjoys a certain orthogonality invariance

property must be of form (3.3).

The use of orthogonal invariance is also discussed by llicchelli 782].
Remark 3.2

The operator T plays two roles in our setting. It is used
with the function p in (2.5) to define an e-approximation and it
is used with the function w in (3.3) to define a probability

measure on Fl .

Although we could analyze a more general setting with different
operators in (2.5) and (3.3),6 we shall use only one operator to simplify
our analysis and, more importantly, to show that the same (snline)

algorithm is optimal for both models.

We are ready to define the average error of an algorithm ¢.

Definition 3.1

Let ¢ ¢ ¢(N). e shall say eav?(¢,N) is the average error

of ¢ iff

(3.6) e®V9 o ,n) = {5 I S(E) = o (N(EV)|[2 02 (]| TEI]) w(df)1r, 0
F
1

Thus the squared average error of ¢ is defined as the average value of

[l s(£) - o (N(E)) [ p2¢(]| TE ). Recall that the worst error of ¢

is defined as [ S(f) - o ((E)) || o(|| TE|]) Zor a worst f . Since

[l s(£) - o(u(£)) |2 p? (Il TE) s sup || S(f) - SWN(EN) 12 02 (f] TE |])

feFl

and f u(df) = 1 then
Fy




(3.7) eI, M) < e(s,N).

This verifies the expected condition that the average error of @

does not exceed the (worst case) error of &,

Vie comment qn Definition 3.1.

Remark 3.3

The average error is defined only for algorithms ¢ such that
Il s(£) = o (M(£)) ||2 p2(|] TE]|) is a measurable function of f , i.e.,
the integral in (3.6) exists. It is possible to define the average
error for an arbitrary algorithm by using the concept of local
average errors, see Wasilkowski and WoZniakowski [ 82b]. For

simplicity we restrict the class ¢(N) to algorithms with well-

defined average errors. 0

Remark 3.4

One may also study the p-th average error defined as

eI (o,n) = 1§ sy - suneen) 1P o2l TE ) wan) 1L/P
P Fl

for some p ¢ [1l,»]. Note that for o = 2 , eavq(¢,N) coincides

2
with e2V9(¢,N). We have chosen p = 2 to avoid technical difficulties
and not to distract the reader from the main model assumptions of this
paper. For p = 1 we have the expected value of

|| S(£) - ¢ (N(E))|| o(]] TE|l) whereas if p tends to infinity then




e®V9(p,0) = ess sup || S(f) - o (N(EN i i TE D) .
® feF

This coincides with the worst case model modulo sets of measure zero.

As in Definition 2.1 we now introduce the average radius of
information and an optimal average error algorithm.
Definition 3.2

We shall say r3V9 () is the average radius of information iff
(3.8) V9 ) = inf e (e,N) .

ded(N)

We shall say an algorithm ¢, ¢ ¢ ®(N), is an optimal average
error algorithm iff
(3.9) eV ,n) = r2VImy. 0

Thus, we can find an e-approximation with average error not
exceeding ¢ iff r2VIN) <. If r®¥9(N) < ¢ then an optimal

average error algorithm suppliss such an c¢-approximation.

We are now ready to prove that the spline algorithm, see (2.13),
has minimal average error. Let {al,az,...,am} be an orthonormal

basis of F4 such that

T (ker N) *

lin {al,az,...,an},

(3.10)
T(ker N)

,a_t.

lin {an+l,an+2,... o

W .
e say two algorithms, ¢l and ¢, , are equal iff

/Hfr'{-'”)___o})=l
!




3.5

Theorem 3.1

. P S . .
The spline algorithm o 1S a unique optimal average error

algorithm and

avg, s _ ,avg ... _ ‘ Akl & _ L
(3.11) e (¢~ ,N) r (W) = {gﬂ Tf'IZOZ(H Tf!l)u(d:)}‘{i 25: | sT la.

1 T j=n+l
a

Proof
i -1
Let f ¢ Fl. Then f = ¥ 2. T “a.. ©Note that
j=1 J ]
2 -1
(3.12) Li(f) = I z. Li(T a.l.
j=1 4 J
Define the n x n matrix M as
-1 n
M= (L.(T a;))
J i,9-1
Note that M 1is nonsingular and
(3.13) y = N(f) = [zl,zz,...,szM.
n -1
Let o= I 2. T "a.,. Then (3.12) vields L. (o) = L.(f) and
.27 b i i
j=1
N(o) = N(f). Let h ¢ ker N. Then Th ¢ lin{an+l,...,am} and there-
fore (To,Th) = 0. Thus ¢ 1is a spline interpolating vy and
n
s -1
(3.14) ¢ (N(f)) = So = L z. ST "a
o1 j 3
]
Take an arbitrary algorithm ¢ from ¢(N). We change variables

in (3.6) by setting




o -1
(3.15) f = .Z zj T aj . Z = [21'22""’zm]'
j=1
ul
NS
Since {a.,...,a_} are orthonormal, |{Tf}{l =|lz]l = (£ 2.7)
1 m =1 3
and
- -1 -1
lget(r™la), ..., 27 a )| = [det(TTH .
Thus df = Idet(T-l)ldz and (3.6) can be rewritten due to (3.15),

(3.13) and (3.14), as

=l T -1 2
(3.16) e3V9(op,N)? = |det(T 7| I z. ST Ta., - 6(lzy,een,z_IM) ||
| S gy oy et

p2(llz D w(ll z[az

m

-'1 S —l - I- I 2
|det (T )| %é{éb_n||¢'([zl,...,zn]M) + j=§+lszT ay ¢(-zl,...,zn]M)J
m m
oz((jilzjz)*) w((jilzjz)*)dzn+l...dzm} dz,...dz_.

llote that in the expression in braces we integrate over all elements

indistinguishable from £f wunder N.

tle again change variables, setting z; = zi for 1 =1,2,...,n
*
and z, = -z4 for i =n+l,...,m. Then dz* = dz and
- * * m -
(3.17) e®V9(¢,N)? = |det(T 1)| 5;{5;_n||¢S([zl,...,szM) - 1 zistia,
R R j=n+1 .

n m
- 0Tz ..,z M2 0200 I 25 Hu(( T 2
n j:l 3 i=1 J

d * * * *
zn+l...dzm} dzl...dzn




Dropping the asterisk inp (3.17)

+ We add (3.1e6) and (3.17) getting

avg vz 1 -1 o -
e (0,N)? = S{get(p ) ﬁf {j { 2877 1y 4 4 -
2 G j;§;1 : 3Tz a
o ([ K - 1 s
Ziieea, 2 IM) + ST *a5. - ; "
1 n f fijELIZJST aj ¢ (le,...,szM) + @([zl,. .,szM%P
oz(!!zil)dzn+l...dzm} dzl...dzn.
Note that
Fgy+9,11% + lg,~g, 112 = 201 g, 1% + IMa,ll7y, Y9109, € F,.
m
: _ -1 .
~ Setting 9, = j;%;lszT ay  and g, = $5(y) - ${y) we get
av
e, M2 < eI (68 ny2 g l¢Snie)) - PONEENNZ 02 ()] T |1y wy TE[ )dt.
1

This shows that eavg(¢,N) 2 eavg(¢s,N) and
e ,v) = eV (65, N)  iff

WOl ] o5v(e)) - SINCEN ol TE)

=0}) =1
which means that ¢S(N(f)) and

¢$(N(f)) are equal,

s . . ,
Hence, ¢ 1S a unique optimal average error

algorithm ang ean(¢s,N) = ravg(N)-

To prove (3.11) observe that

m m _ _ -
i > z.ST-la.H"= ST 22 [l sT la.[]2+ 227 252 (ST lai,ST laj).
j=n+1 J J j=n+1 J J i<y 13

Since 2324 PPl z w2 [1)  is odd then

ﬁ&n-n zizj e (]] 2 Hw(]l z H)dzn

= . , . .’. [+l,m].
+l...dzm 0, vi <3, i J e [n



Thus we have
-1 il -1 2 S 2 .2 1 !y
(3.18) ean(d)s,N)z = !det (T )| Z || sT ajH’ Zj (1]l z Mw(l] 2 llydaz.

j=n+1 .

Note that [{? zg 02(|l zIDw(]|l z|l)dz does not depend on j . Thus

1 m
ﬁ;“ 2d otz hwill 2 1hdz = 5 E;%‘é? 2} of (Il z IDw(ll 2z )dz

_ 1 2 2 ’ Y
- aﬁ{mﬂ 2112 p* Il 2wl 2 Dz,

From this we finally get

m
_l 2
V965, w2 = L e 202 e Duw@n 3 (st el
m & ]
F j=n+1
1
from which (3.11) follows. This completes the proof. 0

Theorem 3.1 states that the spline algorithm is uniquely optimal
for the average case. It is also optimal for the worst case due to
Theorem 2.1. It is very desirable that the same algorithm is optimal

for both error criteria.

Remark 3.5

For the average case we prove that the spline algorithm is the

unigue algorithm which minimizes the average error, For

the worst case, the optimal error algorithm is, in general, not
unique. However, the spline dlgorithm is the unique algorithm which
minimizes the local errors, see Traub and WoZniakowski [801. For

simplicity, we do not define or discuss local average errors in this




paper. As we shall show in Wasilkowski and Wozniakowski [82b!, an algor-
ithm which minimizes the averace error also minimizes the local averace
errors. Thus, the spline algorithm is the unicue algorithm which
minimizes the local errors for both the average and worst case

models. 0

e now compare the radii of information for the worst and
average cases. The radius r(N) of information (for the worst

case) is given by (2.15). Note that h ¢ kerN 1is of the form

m

h = x.T Ya., for some numbers x. and
j=n+1 J ] J
T m _ - m
(.19 llsh 1 . ¢ xoxgstlay, sTTran)/ Iox,?.
I} Th || 2 i,j=n+l * 3 3 j=n+1

Define the (m-n) x (m-n) matrix A such that

m
(3.20) A= (st ta., st tal)) )

1 i, j=n+1

Note that A is symmetric and positive definite and

5

Ish]l? _ (ax,x) _ |[ax ]’

il Th || (x,%) =1l 2
Thus

sup sl / Il Thil = 1A%}, = /3 ___®

he<kerN n+1l

£ i Z\.!'i and

where || A%l] denotes the speczral norm of the matrix
2

’ Rn+l(A) is the largest eigenvalue of A.




3.10

Let
(3.21) 5(x) = x p(x), x 20,
and let
Il o, = sup [D(x}].
x20
Then (2.15) can be rewritten as
(3.22) r(N) = IIEIIG,IIA%HZ .
We now express the average radius r2V9 ) in a form similar to

(3.22). The radiué 290 s given by (3.11). From (3.20) we

have
m m
(3.23) 2, || sT la.||2 = > (st ta.,sT"ta.) = trace(a) = || A%HE: =
j=n+1 J j=n+l ) )
= vA B+ S(A) + L.+ A (A)
» yAEEN -*5 ‘
where || A HE== b ai, . A" = (a,;), denotes the Euclidean
: i, j=n+1 J 3
(or Frobenius) norm of the matrix A and An+l(A) > An+2(A) 2 >
Xm(A) 2 0 are eigenvalues of A
Let
(3.24) Well = {$52(|ITf!])u(df)};’
z F
1
Of course, || EH2 s [lell, . We can rewrite (3.11) using (3.23) and

(3.24) getting




(3.25) 29 (n) el I a5
2

Thus we have proven

Theorem 3.2

Let A and o be defined by (3.20) and (3.21). Then

r(N)

0|

%
[T
(3.26)

Of

avg _ X =1
Y0 = I, Al /T

From the definition of the matrix norms, Theorem

rewritten as

J.z can be

Corollary 3.1

r (W)

=5, VI A,
Ay - gy YD T P G
V9N = ¢ r(
where
. - Ul - iﬂiﬁlgil .. A, (B) A E
vm e, An+1(a) ‘e ()

H Tl / m-n nI j] a
vm il o H




Frocm Theorem 3.2 and Corollary 3.1 it fcllows that if all eigen-
values of A are of comparable magnitude, ''2 ) and . Z |_  are
of comparable magnitucde and n is much less than m, thern

2V90en .
On the other hand, if || El]z is significantly smaller than Il 2 '_

or the eigenvalues li(A) for 1 > n+2 are significantly smaller than

Hh

s

[N

; (A) (i.e., A 1is close to a matrix of rank one) or i n

A
n+1l

close to m , then

V9 << r(N).




4. Ovotimal Information Operators

In the orevious sections we studied optimal algorithms (Zor the
worst and average cases) which use a given information overator N

of cardinality n of the form

(4.1) N(Z) = [Ll(f)' Lz(f), “eo Ln(f)]

where the Li are linearly independent linear functionals.

In this section we determine the best choice of linear functionals
in (4.1). Since the radius «r () of information and the average

. avg
radius r |

N) of information are the errors of optimal algorithms,
we want to select linear functionals in (4.1) in such a way that the

corresponding radii of information are minimized.

Let ?n be the class of all linear information operators of

cardinality n of the form (4.1).

Definition 4.1

We shall say r(n) (ravg(n)) is the nth minimal radius of

information (the nth minimal average radius of information) iff

(4.2) r(n) = inf r(N) (r®V9(n) = inf r?V9w)).
Nre ¥ e ¥
n n
We shall say Nn' Nn € ?n' is an nth optimal information overator

(an nth optimal averace information operator) iff

(4.3) r(ﬂn) = r(n) (ran(Nn) = ran(n)).




We exhibit nth optimal and nth optimal average information

operators in terms of eigenvectors of the linear operator KX,
- 1
which is defined as follows. Let

1f -1, .
K= ST°° : F, - K(F,) < F,.
By X* we mean the adjoint operator to X, K*: X(F,) - F, and
(4.4) (Rf,g) = (f,X*g), ¥f ¢« F,, ¥g ¢ K(F,).

Note that the inner product of the left-hand side of (4.4) is in F2
and the inner product of the right-hand side of (4.4) is in T4- Let

g 1f ..
(4.5) Kl = K*K: F4 - F4.

Of course, X is symmetric and nonnegative definite. Then there
1

exist Ai = Ai(Kl), kl 2 Az 2 ... 2 Am 2 0 and an orthonormal basis
ZyrZgreeaa2y of F4 such that

(4.6) hl z, = Ai z, 1= 1,2,...,m.

Thus ki(Kl) is the ith largest eigenvalue of Ky and corresovonds to

the eigenvector z; - Define the information overator

(4.7) Nn(f) = [(Tf,2 (Tf,zz),..., (Tf,zn)]

D

Then card(¥_ ) = n and Nn € Wn. We now establish the optimality of Nn'
n !

Theorem 4.1

The information operator N_ defined by (4.7) is an nth optimal




and n th optimal average information operator ansd

(4.8) r(Nn) = r{n) =l 3”30 "‘n+1“21) ,
A (K;) + ... + 3_(K)
(4.9) %) = V9 ) = | ol \[ n+l'"1 xR AN

The optimality of N, for the worst case and (4.8) follcws
from (2.15) and Theorem 5.3, Chapter 2, of Traub and WoZniakowski

{80]. So we need to prove only (4.9).

We first compute the average radius of N_ . Let h ¢ kean

n
il
Then (Th,z.) =0, 1 =1,2,...,n, and Th = X.z2. for some
i j§+133

- rA e uy T i T
x] Thus n+l’ z. form an orthonormal basis of L(Rean) . Hence

we can set aj = zj in (3.11) for j = n+l,..., m. We can rewrite
(3.11) as
- 1 m ' _ m
(4.10) r2Y9m )2 = 1312 = S (K, z..z.) = UBil? S AL (X.)/m.
n 2 mgSRh LTS 2 j5ms1 1L
We now show that r2'9(n) » ran(Nn) for any N « ?p. From

(3.11) we have

m
(4.11) m(r®TM /N5 ) = (k) ag.al)
¢ j=n+1 3

n+l’ 2 form an orthonormal basis of T(ker N) . Then

1%

df n
)2 (K, a.,a.) c =min{ f (X, b.,b.): (b.,b.) = &

j=n+1 RS




From Theorem 4.1.4 of Chapter 2 of Marcus and Minc 64] it follows that

m
= 3 X
c _ZJ J(f\l)
j=n+1
Combining this with (4.11) and (4.10) we have r3V9(y) » rVIN )
which completes the ovroof. 3
Remark 4.1

Theorem 4.1 gives us a very useful property:; the same information
operator is optimal for the worst and average cases. In Section 3
we proved that the same algorithm is optimal in both the worst and
average case models. Thus the information (4.7) and the soline

algorithm minimize the error for both models. g

Remark 4.2

Theorem 3.2 states that the radii of information can be
expressed in terms of eigenvalues of the matrix A defined hy (3.20).
Mote that for the information operator Nn’ A = ((Kl zi,zj)) is

i i Y = A6, XL (3 = X. (K for
diagonal since (Kl zi,zj) xlélj Thus J(A) )( l)

j = n+l,..., m and (3.26) agrees with (4.8) and (4.9) for ¥ = XN_.

As in Section 3, we note that r2'9(n) = r(n) if {5l and

i1 s |l are of comparable magnitude, all eigenvalues Aj(Kl) are of
2

comparable magnitude and n is much less than m




5. Adantive Information

In the previous sections we studied linear information omerators

of the form

where linearly independent linear functionals Li are simultaneously

given. Such information operators are called nonadaptive and denoted

by N = NP°% A natural generalization is an adaptive linear informa-

tion operator N? defined as

. a = . . )
(S.l) N (f) = [Ll(f)’ Lz(f:}’l), e oy Ln(f'Yl' e yn_l)-
where
(5.2) y, = y;(8) = Li(Er yys eeer ¥ig)

and Li is a linear functional with respect to the first argument
f. See Traub and WoZniakowski [80 p.47]1. This means that the choice
of the ith functional may now depend on the previously computed values

Ly(f), Ly(f: yy)o wees LiCE: ¥y ey ¥y 40

From (2.15) and Theorem 7.1, Chapter 2, of Traub and WoZniakowski
{80] it follows that adaptive information overators
are not more powerful than nonadaptive information operators for linear

problems in the worst case setting.

Dces adaptive informaticn help for linear problems in the averaae
case setting? We prove the surprising result that the answer is

negative. 1In fact, we prove an even stronger result. We construct




a nonadaptive linear information operator which has the same
cardinality and which consists of the same functionals as a given
adaptive information omerator and whose average radius does not
exceed the average radius of the given adaptive information. 1In

order to prove this we proceed as follows.

Let N2 be an adaptive information operator of the form (5.1).
Without loss of generality we can assume that the functionals Ly,
Lz(': yl), reey, Ln('; Yyr eees yn—l) are linearly independent for
every y; = yi(f), i=1, 2, ..., n-1. Let ¢ be an algorithm using
N2, fThen the average error of ¢ is defined by (3.6). Similarily
to (2.10) and (3.8) we define the average radius VI (n®) as

(5.3) rAV9w®) = inf. e?V9(e,NY).
ded (ND)

. . . . non
e now construct a nonadaptive linear information operator N

which consists of the same functionals as N® and such that

-1
ran(Na) > ravg(Nnon)‘ For a given vector v = Eyl,yz,...,yn_l] ETRF
define the linear functionals

(5.4) Ly o(8) = Li(Er vy, woey vy q)s 8= Le2Zoeeoone

We assume that for every £ , L, V(f), as a function of v , has
!

a continuous first derivative for almost all wv.

Define the information operator

(5.5) NPORE) = (L (B). Ly (Eheeee Ly (83




Note that Nngn is a nonadaptive linear information operator of
. oa
cardinality n which consists of the same functionals as 1. Let

al(v), az(v), . ooy am(v) be a basis of F4 such that

-1
T vy = 8. ., 1=1, 2, ..., n,
L,y (T aytv i3
j =1, 2, , m,
(5.6)
(ak(v), aj(v)) = dk,j k = n+l, ..., m,
j =1, 2, ..., m

Since Li v depends only on Yyree:¥i g0 We choose ai(v) depending

[4

also on Yl""’yi—l’i'e" ai(v) = ai(yl,...,yi_l)

.Due to regularity of Li v(f) we can choose ai(v) such that they
’

are continuously differentiable for almost all wv.

Let
fi 1 2
(5.7) q = irf | sT ~a,(v) || 2.
VEBP_I j=n+l J

Let the infimum in (5.7) be attained for v

v*, i.e.,

Q -1
X istTha en |17 = q.
i=n+1

We are ready to prove

Theorem 5.1

ravg(Na) > ravg(Nngf).

Proof

We proceed similarily as in the proof in Theorem 3.1. Let




o = 2(n%). The average ercr of : 1is defined bv (3.6). Ve change
variables in (3.6) by setting

= n _ m -
(5.8) fF=cw T oy, Tram + T oy, 7l

j=1 J j=n+l 7 J

where v = [yl, Yoo ...,yn_lJ and vy = [yl, Yor «onn yql. Note that
the mapping G is one-to-one. Indeed, knowing f we have, due o
(5.0), yj = Lj(f), j =1, 2, ., n. Thus v and aj(v), j o =1,2,...n,

are also known and Ya+1’ *cvr Yy @are a part of the unique components

of f in the basis al(v), oo am(v). The mapoing G 1is continuously
differentiable almost evervwhere. From (5.8) we have
. -1 t
(5.9) Gly) = T "Q(v)y
is an orthogonal matrix and

where Q(v) = Cal(v),az(v),...,am(v)]

£ denotes the transpose. From (5.6) we get

Ja..

Ja
X —J v =0 .
= L(v)) + (a, (V)
have
Since a, depends only on  Yq: Yprecev Yy-1° we hav
3a,
3—5 (v) =0 for p 2k . Thus
v
P Ja. . -
(5.10) (a (V) gg= (V)) =0 vj, vp 2

9a . N
(v) ’ - otwia_(v) .
Let Qp(v) = [ == (V),eeners §§g——— ] and let wp(v) Q 5

p P
j i ual to
Due to (5.10) the (k,3) element of Wp(v) is eq

aaj i and p 2 k . Thus the first P

(a, (V) , (v)) = 0 for any 1]

3
k yp

rows of W_(v) are equal to zero. From (5.9) we have
P

R t t
G'(y) = T-lQ(y) {1 + LWl(V)y peee W (V)Y 1}




Since the first p

matrix

[wl(v)yt,...

zero diagonal.

This yields

components of wp(v)yt

, Wm(V)yt]

3.5

are equal to zero, the

is a lower triangular matrix with

ldet G'(y)| = |det T7%| .
n -1 "2
Let g(v) =1 £ y. T "a.(v)|?. Then
2y 03 j
J
2 2
Nrefl? = g(v) + 3] V. Using the properties of G we
j=n+l J
transform (3.6) by techniques similar to those used in (3.16) and
(3.17). Thus

ean(¢,Na)2

= !sldet'r'llg
n

{SEIIZY ST~ a(v) + Z y;ST laj(v)

R Rmn j=1 j=n+1
n m
-1 -1
-y ey N2+ S yiST AL (V) - Y.ST “a.(v)=o(yyse.., v ) |l?
1 n 55179 j;gll ] ] 1 n
2(g) + 3 v w (g i‘ v.2)"
j=n+1 j=n+l‘j )dyn+l... dym} dy, °r* dy
-1
| det T |S S z Y ST j('v')llzoz((q(v) + Z yj

J =n+l

j=n+1

]

n

>



m
witgv) + 3 v. 9% ay

jon+l nel 70 gl dyy eeedy -

n

-1 o -1 , m
ldee™[(  { $} It as ()12 f_ vif o lgv + B v H%
I.Rn 3=n+l rR.’n n j=n+l J

wilg(v) + ﬁ v.2) ay ay } dy, +-- ay_.

j=n+1" 3 n+l n
Let
S 2 - . 2% - . 2,%
clv) = ) yyT eTUgv) + L YD w gy ¢+ Ty
R j=n+1" j=n+l °
dyn+l o dym‘
Since c(v) does not depend on j , (5.7) yields
- m
(5.1) e®V9(9,8%) 2% > { | detT 1|S c(v)dy;---dy } 2} | st La, (v*) 12
20 j=n+1 J '

. . . . non
Take now the nonadaptive linear information operator N 3* and

repeat the above transformation with v = v* and with the spline

. s ,,,ion ] -1 .
algorithm ¢~ (N er(£)) = ¥ L. (f) ST aj(v*). Then we find that the
. 321

avg s ynon, _ ravg(NnOT).

right-hand side of (5.11) is equal to e ox) =

Thus e?V9(¢,N%) = ravg(ans) and this holds for every & <ZIrom

¢ (N®) Hence r3V9(x%) ravg(Nngs) which completes the proof. g

Theorem 5.1 states that for every adaptive information operator
one can find a nonadaptive information operator of the same structure

and cardinality as the given adaptive information and with no greater

average




radius. This means that adaptive information operators do not supply
more information than nonadaptive ones. This result and the corresponé-

ing result for the worst case model may be summarized in

Corollary 5.1

Adaption does not help for linear problems in either the average

Oor worst case models. 0




6. How Much Can Information Reduce Uncertainty?

We considered the information operator N = [Ll, 2""'Ln] for
n 2 1 and proved that r(N) and r2VI ) are sharp lower bounds
on uncertainty. Observe that the radii also depend on the setting
of the problem, i.e., r(N) depends on S,T,N and o , and r2Ve ()
depends additionally on w . Thus the total information is specified

by the linear overators S,T,N and the functions ¢ and w . Since

S, 7,0 and w are fixed we call N the information.

We pose and answer the following guestion. What i1s the uncertainty
if only the setting of the problem is known? Or equivalently, what
is the minimal € for which we can find an e-approximation knowing

only S,T,p and w?

This corresponds formally to the zero information operator N = O.

By convention zero information has cardinality zero. Then an algorithm

using zero information takes only one value since ¢(N(f)) = (o).
The value ¢(0) should be thus an ec-approximation for all £ from

F It is easy to observe that the proof technique of Sections 1

1°
through 5 work for N =0 with n = 0.

Thus, the radii of zero information are given by

r0) = ||8ll, v El
(6.1)
r2V9(g) = o ll, v (B *+...* B8 ) /m
i i i t X defined
where Bi = Ai(Kl) is the ith eigenvalue of the operator 1
(4.9) for.

by (4.5). Note that (6.1) formally agrees with (4.8) and

0 Thus, if r(0) s € or ravg(o) < € then we can find an
n = 0. , if <




e-approximation for the worst or average model without the evaluation
of any linear functionals. Note that the optimal error and the

optimal average error algorithm is equal to zero, ¢(0) = 0. This

also formally agrees with the definition (2.14) of the spline

algorithm for n = 0.

Let

r(n) TaV9 (n) = r2V9 (n)

(6.2) f(n) = W [
r avg

r (0)
Then T(n) and r2Y9(n) measure how much the uncertainty is reduced

after n optimal evalutions of linear functionals. From Theorem 4.1

and (6.1) we have

3]
1
(6.3) :
1
t3V9(n) = /Bn+l i T
81 +...F Bm
Note that T(n) and T>'9(n) are independent of the measure vy

(i.e., the function w) and the function o . They depend only on
the eigenvalues of Kl. We consider three, rather typical, distribu-

tions of eigenvalues of K

1
Case 1.

Let Bi = B for some positive constant 8 . This corresponds,
for instance, to the case when S = VB T and the overator K, = 81

1
where I is the identity operator. Then for n < m,




ran (n)

1]
o|
-
w

r(n) - 3, = !IOII, v~ 5 v(m=-n)/m
T(n) =1 , V9% = e e .

In the worst case it is impossible to sclve the problem with any
amount of information. In the average case for n << m, there is
almost no reduction in uncertainty since all the radii are close to
unity. This means that such a problem cannot be solved either in

the worst or average case for small €.

Case 2.

Let B, = cq21 for some positive constants ¢ and gq with

g < 1. This corresponds, for instance, to the approximation problem

-1 -2 -
S=1 with Tf=/c (q £;,9 “£y,...,q £, 1. Then
(m-n)
- n+l avg _ - n+l 1-g?
r(n) =l p [l ;o7 (n) =&l Bl a /—-——2
m(l-g<)
2 (m=-n)
- _ . 1-
r(n) = q" , V9 = ¢ /T
1-q°
For n <<m, r29(n) = q" = T(n). This means that the reduction of

uncertainty after n evaluations is approximately the same for the

worst and average case.

Case 3.

Let Bi = i-2r for r > %.

This corresponds to the approximation

- “TE his choice of
1 with TE = [£,, 2 rfz,..., n £ . This

problem S




S and T 1is a discrete analogue of the continuous approximation

= f(r) where f is a scalar (r-1l)

th

problem Sf = £ , T

absolutely continuous function whose nth derivative belongs to

L.. Observe that

-2r

m . m _ - _
3o § ey - sEr (ne1)T(2F7D) (0L 2emly

From this and for n << m we have

- - ~ - 1 ~-r /n+l
r(n) = || o || _(n+1) r ’ ravg(n) = || o || (n+1) -—
= 2 J2r-1 m
T(n) = (n+l)7F . 2Y9(n) T (ne1)”(F9)

Thus, the reduction of uncertainty is larger, in this case, for the

worst case model.




7.1

7. Complexity

In this secticn we briefly discuss the complexity, i.e., the
minimal cost, of finding an t-approximation for the average case
model. We obtain extremely tight upper and lower bounds on the
complexity. We show that the spline algorithm is essentially an

ortimal complexity algorithm.

The complexity for the worst case model is studied in Traub
and wWoZniakowski (80] where very tight complexity bounds are obtained.

The spline algorithm is shown to achieve nearly optimal complexity.

We f£irst outline the model of computation. Assume that the cost
of adding two vectors from F2 and the multiplication of a vector

from F2 by a scalar is taken as unity. (Recall that F is the

2
image space of the solution operator S .) Suppose that the evalua-

tion of an arbitrary linear functional is allowed and costs c .

To find an e-approximation using linear information N =

(L L2,...,Ln] we have to guarantee that V9 (N) < e. Let

ll

avd(n)

(7.1) mn?V9(e) = min{n: r < g}

av
be the e-average cardinality number. Thus m 9(e) denotes the

smallest cardinality of information whose average radius does not

exceed € .

Let ¢ be an algorithm using N with e®V9(¢,N) s €. Since

e®V9(s,N) 2 r2V9 (), the cardinality of N has to be at least

m3V9(e). Thus the evaluation of N(f) requires the computation of

at least m2V%(e) 1linear functionals. Hence the complexity of N(f),




. . avg, _
i.e., the cost of computing N(f), is at least m (2)c.

To produce an e-approximation,the algorithm 4 has to use at
least mavg(e) linear functionals. It is natural to postulate that
the comoutation of ¢ (NW(£)) given N(f) has complexity at least
man(s) - 1. Let the algorithm complexity (total coct) of producing
an c-approximation by the algorithm ¢ be compavg(¢). A lower

bound is given by

(7.2) comp?V9(9) 2 n?V9(e) (c+1) - 1.

Note that (7.2) holds for any algorithm ¢ wusing an arbitrary

linear information operator N . Let
(7.3) compan(e) = inf{compavg(¢): eavg(¢,N) < g}

be the e-avérage complexity. An algorithm ¢ is called an optimal

average complexity algorithm iff

(7.4) compavg(¢) = compavg(e).
From (7.2) we have a lower bound on the g-average complexity,
(7.5) comp?V9(e) 2 mVI(e) (c+l) - 1.

We now show that the spline algorithm is a nearly ootimal
average algorithm ¢° using the information N~ defined by (4.7).
Recall that N, is an nth average optimal information operator,

ravg(Nn) = r®9(n). The spline algorithm ¢°5 is linear,

n
s
¢ (Nn(f)) = I Li(f)gi for some g; from F, . Since the elements

i=1

9; can be precomputed, the evaluation of ¢S(Nn(f)) given N({f)

requires only n multiplications and n-1 additions each of unit




cost. Thus if n = mavg(a) then
(7.6) conp?V9(65) = m®V9(e) (c+2) - 1.

Combining (7.6) with (7.5) we see that the spline algorithm is

a nearly optimal average complexity algorithm.

A similar result holds for the worst case model. In fact,
worst case definitions and results are obtained by deleting the

superscripts "avg" in (7.1) through (7.6).

We summarize this in

Theorem 7.1

The spline algorithm is a nearly optimal complexity algorithm
in both the average and worst case models. The complexity is given

by

comp (€) m(e)(c+al) -1,

-1

V9 (¢y) = m?V9 () (c+a

comp 5)

where al,a2 e [1,21].




8. Example

We continue the example of the Introduction. Recall that example

deals with the approximation of a trigonometric polynomial of degree m ,
!

We choose approximation as our example because it is of such wide interes
in applications. We discussed in the Introduction why we confine ourse.lv
in this paper to finite dimensional Fl . Throughout this section we use
the approximation example while illustrating the effects of choosing
various error criteria and measures.

Identifying a trigonometric polynomial with its coefficients

m .
we can set Fl = Fz = F4 = R equipped

with the spectral norm and

SE = f , ¥f e ™ .

Without loss of generality we can assume that T is a diagonal
matrix since the dependence on T is through the norm || Tf || which

is orthogonally invariant. Thus let

—_ ~0
TE = (v B, £,

— g
'/ 82 leo.-, f ] L]
where 8, 2 3

(i) The absolute error criterion, p(x)

1. Then o(x)

:

Il EHm = +o, Thus implies that
r{(n) = += , ¥Yn< m,

Thus, it is impossible to find an €-approximation for the worst case,
no matter what the value of ¢

For the average case, | Ellz may be finite or infinite

depending on the function w . For instance, let

2
(8.1) wix) = (31...3 )5 /2 o™X
m .
A rather lengthy calculation shows that w

ﬁ& wil| TE |)df = 1, and

satisfies (3.2), i.e.,




Hence | Ell2 is finite although it goes to infinity with m. The

nth average radius is given by

3 +...+ 8’
ran(n) _ / n+l > m )

Ve can find an t-approximation for the average case using n evalua-

. av
tions whenever r g(n) < £,

On the other hand, let

- -
(8.2) wix) = (8,...8 )7 12 B+ pa+xh @
Then (3.2) holds and || Ellz = 4+, Thus
ran(n) = 4+ , ¥n <m.

Hence, it is impossible to find an e-approximation for the average

case (as in the worst case) no matter what the wvalue of ¢.

(11) The relative error criterion, p(x) = 1/x. Then o(x) =

and |lofl, =l EH2 = 1 for an arbitrary function w satisfying

{3.2). We have in this case

r(n)

B +...+ B_
ran(n) =V/ n+1l m




(1iii) The absolute errcr criterion for a subset of Fl. Let
1 0 < x < 1,
p(x) =
0 X >1.

Thus we approximate Sf only for elements £ such that

l TE !l < 1. te have p(x) = x for x ¢ (0,11 and »p(x) = 0 for
x >1. Hence
llell, = 1.
Note that || Tf] < 1 defines an ellipsoid in R ™. We define

w such that its support is on this ellipsoid, i.e.,

wix) = (3p--3 )7 172 (24

Then w satisfies (3.2) and

s, = /25 .

For large m, || Ell2 = |9, =1. In this case we have
- JE
r(n) = v Bn+l p
ravg(n) ) V/’3n+l +...+ Bm
m+2 ‘
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