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Abstract 

We introduce an average case ~odel and define general notions 

of optimal algorithm and optLmal info~.ation. t~e prove that the 

same algorithm and information are optimal in the ~'orst and average 

cases and that adaptive information is not r.ore powerful than non­

adaptive information. 
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1.1 

1. Introduction 

In two recent monographs (Traub and ~oiniakowski (80~, 

Traub, Wasilkowski, and Koiniakowski ra3]) we studied optimal 

reduction o£ uncertainty for a worst case model. With this paper 

we initiate a corresponding study for an average case model. This 

is the first of a number of papers reporting average case results. 

'!'hese results will eventuall~1 apl?ear as part or a third voluIile 

devoted to the study of various probabilistic settings. 

We indicate earlier work on this subject. Suldin ([59J,[60J) 

studied average case error for the integration problem. Larkin, in 

a series of pioneering papers commencing with [72], studied optimal 

algorithms, mostly for linear problems, utilizing a Gaussian measure. 

Both Suldin and Larkin confine themselves to linear algorithms. 

In this initial paper we confine ourselves to linear problems 

in a finite dimensional space. (Average case analysis for an infinite 

dimensional setting is studied in Wasilkowski and Woiniakowski [82aJ.) 

By a linear problem we mean a problem specified by a linear operator. 

Examples of linear operators are integration, interpolation, and approxi­

mation. Note that the solution of a linear system is not a linear proble~ 

since the solution does not depend linearly on the matrix element. 

We restrict ourselves to the finite dimensional setting for 

two reasons. 

1. 

2. 

This setting is of intrinsic interest. 

The analysis of the infinite dL~ensional setting requires 

rather heavy mathematical machinery. In order to permit 

the reader to focus on the model assum~tions and the 

results we avoid these mathematical complications in 

this first paper. 
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In this paper we specify an average case model and introduce 

general notions of optimal algorithm and optimal information. The 

following results are obtained. 

1. The s~e algorithm is optimal in the worst and average cases. 

2: ~he same information is optimal in the worst and average 

cases. 

3. Adaptive information is not more powerful than nonadaptive 

information. 

We discuss these results. Conclusions 1 and 2 are favorable to 

the user since the same algorithm with the same inforMation minimizes 

both the worst and average error. It was established (see Traub 

and Woiniakowski [80, p.49J for a history) that adaptive information 

does not help for the worst case. Many researchers believe that 

t~is is only true in the worst case setting. We prove the 

counterintuitive result that adaotion doesn't help even on the 

average. 

We illustrate some of the basic concepts of this paper by 

Examole 1.1 . 
Assume we wish to approximate the function f knowing some 

information N(f) and knowing that f belongs to some given class 

of functions F. To be specific let N(f) = [f(tl),···,fCtn)J 

consist of n function samples and let F be the class of trigono-

h r th derivative is bounded metric polynomials of degree m w ose 

by unity. 

An algorithm $ is any mapping acting on the information N(f) 

An example of an algorithm is the linear algorithm 
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n 

¢(N(f» = E 
i=l 

f(t.) (1. 
1 1 

where el. 
1 

are some functions. An 

algorithm is optimal if it minimizes the error according to some error 

criterion. In the worst case setting the error is defined as the 

largest error for all f in F. In the average case setting the 

error is defined in terms of the L2 norm with respect to some measure 

on F . 

Next, assume the t. may be varie9. 
1 

We say that the information 

is optimal if the t. 
1 

are chosen so as to minimize the worst or average 

case error of the optimal algorithm. 

If the t. are given independently of 
1 

f , then the information 

is called nonadaptive. On a parallel computer nonadaptive information 

can be computed simultaneously. If the t. depend on previously 
1 

computed values of f, the information is called adaptive. One 

might hope that choosing points adaptively decreases the error. How-

ever, adaption does not help for either the worst or'average case. 

This example will be continued in Section 8. 0 

':,'e briefly sUmMarize the contents of this paper. In Section 2 

we outline the setting and results of the worst case model which we 

shall constrast with the results of this paper. In Section 3 we 

introduce an average case model and prove that the same algorith~ 

is optimal for both the worst and average case. Very sim91e and 

elegant formulas for the worst and average radii of information 

are given by Theore~ 3.2. In the following section the problem 

of optimal average information is posed and solved. The same 

information is optimal for both the worst and average cases. In 

Section 5 we show that adaptive . f . - ln ormatl0n is no ~ore powerful than 
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nonadaptive infornation in either model. 

In Section 6 we compare the intrinsic uncertainty if only the 

problem setting is known, with the uncertainty when n o~timal 

evaluations are used. In Section 7 we obtain very tight comolexity 

b~unds and prove that the same algorithm enjoys nearly optimal 

complexity in both models. In the concluding section an example 

illustrates the models and some of the results. 



2.1 

2. \vorst Case I>lodel: Optimal Algorithms 

To help the reader we begin with the relatively simple worst case 

model and pass next to an average case model. We summarize the setting 

and main results of the worst case model for a (simplified) linear 

problem studied in general by Traub, Wasilkowski, and Wozniakowski 

[83J, see especially Appendix E, and Traub and Wozniakowski [80J. 

Although we use the terminology and notation presented there, the 

following account is self-contained. 

Let Fl be a finite dimensional real space and let 

(2.1) 

Let F2 be a real Hilbert space. Consider the linear operator 

( 2 • 2) 

The operator S is called the solution operator. 

Our aim is to find an element x = x(f) which approximates Sf 

according to some error criterion. There are many error criteria of 

practical importance some of which we cite here. The absolute error 

criterion is such that II S(f) - x(f) II ~ e: for a given nonnegative 

s. The relative error criterion is such that II S(f) - x(f) II I 

II S (f) " ~ e:. The absolute-relative error criterion is such that 

II S(f) - x(f) II/( II S(f) II + n) ~ e: with a given positive n. 

Sometimes we will want to satisfy the error criterion for f 

from the whole space Fl ' and sometimes for only a subset of Fl' 

This subset can be characterized, for instance, by the condition 
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II Tf II :5: 1 for some operator T. 

We now present a general error criterion which will include the 

above examples as special cases. We have chosen a formulation which will 

also be used for the average case. Let 

( 2. 3) T 

be a one-to-one linear operator where F4 = T(F
l

) is a Hilbert space. 

We call this space F4 (rather than F
3

) to conform to the 

usage in Traub and Wozniakowski [80J. 
Let 

(2.4) 

be .a given function. 

We say that an element x of F2 is an £-approximation to Sf 

iff 

(2.5) II Sf - x 1/ P ( " Tf II) :5: £ 

where £ is a nonnegative number. 

Observe that for p(x) = 1 , (2.5) becomes the absolute error 

criterion. For p(x) = l/x and T = S , (2.5) becomes the relative 

error criterion. If p(x) = l/(x+n), n > 0 and T = S then (2.5) 

becomes the absolute-relative error criterion. If p(x) = 1 for 

X :5: 1 and p(x) = 0 for x > 1, (2.5) becomes the absolute error 

cri terion for elements f for which II Tf II :5: 1. 

Our aim is to find an £-approximation to Sf for all f from 

Fl. To find an £-approxirnation, information on f is required. 

assume that we know N(f) where N is a linear operator. Without 
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loss of generality we can assume that N has the form 

( 2 • 6 ) 

where Ll , L2 ,···, Ln 

and n < m. We say 

are linearly independent linear functionals 

N is a (partial) information operator and 

n is the cardinality of N. 

since n < m then there exist infinitely 

many elements f from FI which are indistinguishable with respect 

to N(f). (Hence N is called partial.) It is therefore impossible 

to recognize which element S(f) is to be approximated. Let 

( 2. 7) V(N,y) = (i € F
l

: N(f) = y} , y = N(f), 

be the set of indistinguishable elements. 

We seek an ~-approximation x of the form x = ~(N(f» where 

~ is a mapping, 

(2.8) ~ : N (F I) .. F 2 . 

Note that ~(N(f» has to satisfy (2.5) for all f from V(N,y). 

~.ve call ~ an (idealized) algorithm. Let ¢ (N) be the class 

or all (idealized) algorithms, i.e., ¢(N) consists of all mappings 

$ , defined by (2.8), which use the information operator N. 

We stress that our definition of algorithm is extremely general. 

In spite of this we can prove some negative results. This makes the 

negative results even stronger. If one wishes to carry out a computa­

tion, then in genera,l the class of algorithms must be restricted. li'Te 

shall see that for the problem studied in this paper, algorithms which 

are "optimal" in the class of idealized algorithms are relatively easy 
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to implement in.actual computation. 

Let j be an algorithm, ¢ ~ ¢(~). Then 

(2.9) e(~,N) = sup II Sf - ~ (N(f) )11 p( II Tfll) 
fcoF l 

is called the error of ~. 

Note that the error of ¢ is defined as its error for the "hardest" 

f. That is why this model is called the worst case model. For the 

average case model studied in the following sections we replace the 

sup in (2.9) by an integral which measures the average perforTI1c3:nce of 

ell • 

From (2.9) it follows that ~(~(f)) is an £-approxL~ation to Sf 

for all f iff e(~,N) ~ £. 

Definition 2.1 

~..;re shall say r (N) is the radius of information iff 

(2.10) r (N) = in f e ( </l, N) 
</lE:t> (N) 

We shall sayan algorithm </>, ~ co ~(N), is an optimal error 

algorithm iff 

(2.11) e(4),N) = r(~). 

Remark 2.1 

The radius of information can be defined independently of the 

o 
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concept of algorithm and (2.l0) can then be established; see the 

books quoted at the beginning of this section. For simplicity 

we here present (2.l0) as the definition of radius. 

Equation (2.l0) inplies that we can find an E-approxi~ation iff 

r{i~) $ E. If r(N) $ E then an optimal error algorith.rn supplies 

an E-ao~roxi~ation. 

n 

i';e now present a sPline algorithm iDS (see Traub and Wozniakowski 

[80, Chapter 4J) and prove that it is an optimal error algorithm. 

Let a = aCyl be an element of Fl such that 

N (cr) = y 

(2.12) 
liTo II = mir.{ II Tfll: f E V(N,y)}. 

It is obvious that such an element exists and is unique. The 

element a(y) is called a s?line interpolating y. The s9line 

algorithm $s is defined as 

(2.13) :pS(y) = S o(y) 

Since S is linear and 0 depends linearly on y, the spline 

algorithm cps is a linear algorithm. T~1US 

(2.14) 
n 
L 

i=l 
L. (f) 

1 
So. 

1 

where y=N(f) = [Ll(f), ... , Ln(f)] and ai = 0([0, ..• ,~, .•. ,0;). 

The evaluatl'on of ,j.,s(y) . h ~ requlres t e knowledge of 
l. 

so l' ..., S·: n . 

Computing the So. 
l. can be difficult, but since they are independent 

of y , this need be done only once and the cost of computing them 

may be viewed as a precomputation cost. Then to 
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compute ¢s(y) it is enough to perform n multi?lications 0: a 

real number by a m dimensional vector and n-l additio~s of 

m-dimensional vectors. Hence if the SUi are precomputed, then the 

evaluation of ~s(y) requires at most nm scalar multiplications 

and (n-l)m scalar additions. 

The spline algorithm ¢s enjoys very strong optimal error 

properties one of which is stated in 

Theorem 2.1 

The spline algorithm ¢s is an optimal error algorithm and 

(2.15) e(¢S,N) = r(N) = sup xp(x) 
x~o 

with the convention O·oC= O. 

Proof 

sup Ilshll/IIThll 
he-kerN 

o 

This result is established for a more general problem in Traub, 

\'lasi lkowski, and ~qoiniakowski [83], see TheoreM E. 1. For the simpli­

fied linear problem of this section we SU?9ly a short proof. 

(T 

Let 

tJ (y) , 

e ( ql , ~l) 

= sup 
y 

f = o(y) ± h where h E kert; . Then f :: V (~,y) and 

Th) = O. \'Je have 

sup sUP II S ( f) - cP(y) II p( \1 '::'f\\ ) = = 
Y fEV (N ,y) 

sup ~I So(y) + Sh - cI>(y) \\ 0(/1\ Thil
2 

+ 1\ T0(y)-11
7

). 

hEker N 
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Since 

max(\\SC(y) + Sh - ¢l(y)II, I\so(y) - Sh - ~(y)ll) ;:: Ilshll 

for any t (y) 

e(4),N) ;:: sup 
y 

we have 

sup II Sh 110(/11 Th 112 + II To(y) I,l~') = e(os,N). 
h"ker N 

This proves optimality of ¢ls. Observe that. 

e(q,S,N) = sup 
y 

sup 
x;:: 0 

sup 
y 

sup 
X;:: 0 

sup{ II Sh II: h E ker N, II Th II = XI = 

XO (/X2 + II To (y) 1121) sup II Sh 11/11 Th II = 
hEker N 

sup X p(x) sup II Sh 11/11 Th II 
X;:: 0 hEker N 

which proves (2.15) and completes the proof. 

Remark 2.2 

o 

The space F2 need not be a Hilbert space and the s;,aces F l , F2 

and need not be finite di~ensional in Theore~ 2.1. In ~act 

this theorem holds for an'.' normed linear space F2 and any Hilbert 

s~ace :4 ' assuming that T(kerN) .is closed. The assUIn!1tion that 

is a Hilbert s?ace and both and ~4 are finite dimensional will 

be used in the next sections. For si~?licity of presentation we assume, 

even in this section, that r.' .. 2 is a Hilbert s~ace and ,... 
': 2 and 17 

4 
are finite dimensional. [J 
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3. Average Case Medel: Optimal Algorithms 

~\'e introduce an average case model, and pose and solve the 

problem of optimal algorithms in this model. He prove that the spline 

algorithm defined cy (2.13) is also optimal for the average case modeL 

We find its error and compare wit~ the worst case model. 

We begi~ by defining a probability measure on r·7i thout loss 

of generality assume that F 1 = 1P,m. Let 1B be a a-field of Bore 1 

. IR m sets':':1 . 

(3.1) 

By 

S . df = S 
rP.,M fR 

df 
m dfm-l· .. d£ 1 

we mean the Lebesgue integral, f = r f l ,f2 ,··· ,fmJ· 

Let w, .. 1: fR.+ ... 1Rt-' be a function such that 

( 3. 2) 5 w(11 Tf II)df = 1 
m 

1R 

The function w is a scalar weight function. t~ote that II· II in 

(3.2) denotes the norm in the Hilbert space F 4 · Let A be a Borel 

set in l:' 
. 1 ' A E ffi We define a measure IJ on as 

( 3 • 3 ) IJ (7\) = S "1 ( II Tf II )d£ . 
A 

~ote that ~ is a probability measure, i.e., 

( 3. 4) 

. generates the Lebesgue integral in Fl· This 
The measure \.l 

denoted by 5 . \.l (df) . Thus if g: Fl ~ ~ then 
integral is 

A 



(3.5) 5 g(f) :.;(df) d} 5 g(f) v.J(\\ Tf II)df. 
A A 

Remark 3.1 

It may seem somewhat arbitrary to restrict ourselves to measures 

defined as in (3.3). However it is shown by Wozniakovlski 

[82] that any measure which enjoys a certain orthogonality invariance 

property must be of form (3.3). 

The use of orthogonal invariance is a.lso c.iscussed by ::icc:1elli ~ 82]. 
Remark 3.2 

The operator T plays two roles in our setting. It is used 

with the function p in (2.5) to define an £-approxi~ation and it 

is used with the function w in (3.3) to define a probability 

measure on Fl . 

Although we could analyze a more general setting with different 

operators in (2.5) and (3.3),we shall use only one o~erator to simplify 

our analysis and, more inportantly, to show that the sane (s~line) 

algorithm is optiwal for both models. 

;ve are ready to define the average error of an algorithm ¢' 

Definition 3.1 

Let <P € 1> on. \07e shall say e avg (ep ,N) is the averaqe error 

of ep iff 

(3.6) e a vg (¢ ,N) = {S II S ( f ) - iP (N ( f) ) II 2 p 2 ( I! T f II) ~ ( d f) ~ ~ • 
Fl 

o 

Thus the squared average error of ¢ is defined as the average value of 

1\ S(f) - q, (N(f» 112 p2 (II Tf 1/). Recall that the worst error of q, 

is defined as II S (f) - 0';' (tI(E» II p (1/ Tf II) -~ ror a ~orst f. Since 

"S(f) - <P(N(f» 112 p2(11 Tf II) s sup 1/ S(f) - q,(N(f» 1/20 2 (11 Tf III 
f€F 1 

and f IJ (df) = 1 
FI 

then 
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(3.7) e avg ('" , N) $ '!' e(Q,N). 

This verifies the expected condition that the average error of 

does not exceed the (worst case) error of ~. 

vIe comment Qn Definition 3.1. 

Remark 3.3 

The average error is defined only for algorithms $ such that 

II S(f) - tP (N(f» 112 p2 (II Tf II) is a measurable function of f , Le., 

the integral in (3.6) exists. It is possible to define the average 

error for an arbitrary algorithm by using the concept of local 

average errors, see Wasilkowski and Wozniakowski [82bJ. For 

simplicity we restrict the class ¢(N) to algorithms with well-

defined average errors. 0 

Remark 3.4 

One may also study the p-th average error defined as 

eavg(tP,N) 
p 

for some p € [1,00]. Note that for p = 2 eavo(¢,N) coincides 
2 

with eavg(.,N). We have chosen p = 2 to avoid technical difficulties 

and not to distract the reader from the main model assumptions of this 

paper. For p = 1 we have the expected value of 

II S(f) - • (N(f» II p( II Tf 11) whereas if p tends to infinity then 



-

ess sup 
fEF 

3.4 

II s ( f ) - <P (~J ( f) ) :! c ( : i T f II) . 

This coincides with the worst case model modulo sets of measure zero. 

As in Definition 2.1 we no~ introduce the averaqe radius of 

infornation and an optimal average error algorithm. 

Definition 3.2 

fT h 11 r avg (~') ,'.e s a say l~ is the averaqe radius of information iff 

( 3. 8) ravg(~) = inf eavg(<p,N) 
¢d)(N) 

He shall sayan algorithm ., • € 4> (N), is an optimal average 

error algorithm iff 

( 3 • 9) eavg(¢,N) = ravg(N). 

Thus, we can find an E-approximation with average error not 

exceeding E iff ravg(N) 5 E. If ravg(N) ~ E then an optimal 

average error algorithm supplies such an E-approximation. 

o 

o 

t'le are now ready to prove that the spline algori thIn, see (2.13), 

has minimal average error. Let {a l ,a2 , ... ,a
m} be an orthonormal 

basis of F4 such that 

(3.10) 

We say two algorithms, <PI and .2 ' are equal iff 

," 'l'i= 1/) = 0 }) = , 1 . 
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Theorem 3.1 

The spline algorithm ~s is a unique optimal average error 

algorithm and 

(3.11) e avg(,..S,N) = ravg(~.,) {S'I 112 2 II ~ 1 m 1 
'+' .~ = I T f 0 ( T f II) u (d f) } 2 {- ~ : I ST - a,'::l 

F m. 1 J 1 J=n+ 

Proof 

Let Then f = m -1 
L z. T a .• Note that 

j=l J J 

(3.12) 

Define the n x n matrix N as 

M 
-1 n 

= (L.(T a.» 
J 1... 1 

1. , J = 

Note that H is nonsingular and 

(3.13) y = N(f) = [zl,z2, .•. ,znJM. 

n -1 
(J = L z. T a .• 

j=l J J 
Then (3.12) yields Let L. ( f) 

1. 
and 

N(cr) = N(f). Let h E ker~. Then Th E lin{an+l, ... ,am} and there­

fore (Ta,Th) = o. Thus (J is a spline interpolating y and 

n -1 
(3.14) q,s(N(f» = Sa = !: z. ST a .. 

j=1 J J 

Take an arbitrary algori thrn <P from <I> (N). y.)e change variables 

in (3.6) by setting 



(3.15) f = 

Since 

and 

m -1 
iz.T a. 

j=l ) J 

3.6 

are orthonormal, II Tf II 

-1 -1 I I -1 I Idet(T al, ... ,T an) = det(T ) . 

= II z 1\ 

Thus df = Idet(T- l ) Idz and (3.6) can be rewritten due to (3.15) I 

( 3 • 13) and (3. 14), as 

(3.16) eavg(¢>,N)2 = Idet(T- l ) I S II ±z. ST-laj - $([zl, ••. ,Zn]M) 112 
1P.m )=1) 

p 2 ( II z II) w (II z II) dz = 

S ( m -1 
Idet(T- l ) I {~_ II $s([zl' •.. 'z ]M) + r z.ST a. - $([zl" •. ,Zn]M) 1,1

2 

rp.,n JR' n, n j=n+l ) ) 

m 2 ~ m 2 ~ 
p2« r z. ) ) w« r z. ) )dz +l •.• dz } dzl .•. dz n • 

j=l ) j=l ) n m 

note that in the expression in braces we integrate over all elements 

indistinguishable from f under N. 

* 
~'7e again change variables, setting z. = z. for i = 1,2, ... ,n 

1. 1. 
* and z. = 
1. 

-z. 
1. 

for i = n+l, •.• ,m. Then dz* = dz and 

m * -1 
t z . ST a. 

j=n+l ) 1 
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Dropping the asterisk in (3.17). We add (3.16) and (3.17) getting 

eavg(cp,N) 2 = !2/det{T-l), (n{fm-n{11 ~ Z .. ST-1a. S 

), £. + cp ([zl,···'ZnJl~) -IR fR.: j =n+l ) ) 

Note that 

m 1 
gl = 2: z .ST- a. 

j=n+l ] ] we get 

Setting 

eavg($.N), ~ eavg($S.N), + 5 1/ $5(1I(f) - $(N(f»I/' P'(I/ Tf /i)w(/I Tfll )df. 
Pl 

e
avg

(tj>,:-1) = eavg(tj>s,N) iff 

].l({f: I/CPS(N(f» cp (N(f»/Ip (IITfll) = OJ) = 1 

which means that cps(N(f» and $(N(f» are equal. 

Hence, cps is a unique optimal average error 

algorithm and e avg (cp s ,N) = ravg (N) • 

To prove (3.11) observe that 

/I In - 1 , In 2 - 1 'z: -1 ST _ 1 ) ~ z.ST a. II = ~ zJ' II ST a). II + 2 z,;zJ' (ST ai' a
j

. ~ ] ] J' -~n+l .; < J' ... j=n+l ... 

Since z.z. p2(11 z II)w(11 z 1/) ~ J is odd then 

f 
Z.Z. p2(11 Z lI)w(11 Z l/)dzn+1 ... dZ

m 
= 0, Vi < j, i,j c [n+l,mJ. m-n ~ ] tP\ 
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Thus we have 

(3.18) eavg('1>S,N) 2 

Note that Jm zj 0
2 (11 z II)w(11 z II)dz does not depend on j . Thus 

S. 1 m 5 ~ z j 0 2 (II z II) '''; (II z II) d z = rn ~l \1<,!Tl zip 2 (II z II) w ( II z II) dz 

From this we finally get 

from which (3.11) follows. This completes the proof. o 

Theorem 3.1 states that the spline algorithm is uniquely optimal 

for the average case. It is also optimal for the worst case due to 

Theore~ 2.1. It is very desirable that the sane algorith~ is ootimal 

for both error criteria. 

Remark 3.5 

For the average case we prove that the spline algorithm is the 

unique algorithm which minimizes the average error. For 

the worst case, the optimal error algorithm is, in general, not 

unique. However, the spline algorithm is the unique algorithm which 

minimizes the local errors, see Traub and Woiniakowski [801. For 

simplicity, we do not define or discuss local average errors in this 
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paper. As we shall show in Wasilkowski and Wo~niakowski [82b:, an algor-

ithm which minimizes the averase error also mi~imizes the local average 

errors. Thus, the spline algorithm is the unique algorithm which 

minimizes the local errors for both the average and worst case 

models. 

He now compare the radii of information for the worst and 

average cases. The radius r(N) of information (for the worst 

case) is given by (2.15). Note that he kerN is of the form 

m -1 L: x.T a. 
j=n+l J J 

for some numbers x. 
J 

and h = 

(3.19) II Sh 112 

Ii Th 112 
m -1 -1 m 2 = LX. x . (ST a., ST a . ) / LX. • 

., 1 l. J l. J. 1 J l.,J=n+ J=n+ 

Define the (m-n) x (m-n) matrix A such that 

(3.20) 
-1 -1 

A = (( ST a., ST a . ) ) 
l. J i,j=n+l 

m 

Note that A is symmetric and positive definite and 

Thus 

where 

II Sh 112 = 
11 Th 112 

)~ 

( Ax , x ) = II Ax II 2 

(x,X) IIxl1 2 

sup II shll / II Thll 
h€kerN 

= .;), (A) 
n+l 

denotes the spec~ral norm of the matrix 

A
n

+
1

(A) is the largest eigenvalue of A. 

and 

o 



Let 

(3.21 ) 

and let 

3.10 

p(x) = x p{x), x ~ 0, 

II 0 1100 = sup 
x~O 

I p{x) I· 

Then (2.15) can be rewritten as 

h d · rav9(1') We now express t e average ra 1US • in a form similar to 

(3.22). The radius ravg(m is given by (3.11). From (3.20) we 

have 

m 1 m -1 -1 ~ 
(3.23) 1: II ST- a·11 2 = 2: (ST a

J
. ,ST a.) = trace(A) = II A -liE = 

j=n+l J j=n+l J 

= v An+l (A) + An+2 (A) + ... + A (A) m 

where II A~II = / ..t 
E i, j=n+l 

2 a.. , 
1J 

A~ = (a .. ), denotes the Euclidean 
1J 

(or Frobenius) norm of the matrix A and An+l(A) ~ An+2 {A) ~ ~ 

Am(A) ~ 0 are eigenvalues of A. 

Let 

(3.24) 

Of course, IIpl12 $ 11011 00 
(3.24) getting 

We can rewrite (3.11) using (3.23) and 
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(3.25) 

Thus we have proven 

Theorem 3.2 

--
Let A and p be defined by (3.20) and (3.21). Then 

r(N) = 110" II eo II A~II I 

2 

(3.26) 

From the definition of the ~atrix norms, Theorem 3.2 can be 

ret ... ritten as 

Corollary 

where 

3.1 

r (:~) = 

ravg (H) = 

ravg(N) = 

c = II 0- 112 
fIn' " p II 

!ioll eo f An+l (A)' 

II P 112 
( An+l (.~) 

c r(n) 

00 

An+2 (A) 
1 + 

+ + 

In 

+ ••• + 

[ 
'I P 112 I V mm-n I ] 

-1m IIplleo 

A (A) , 
m 

A (A) 
m 

o 

o 
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FrOM Theorem 3.2 and Corollary 3.1 it follows that if all eiaen-

values of A are of comparable Magnitude, II - ': 
,1 C !, and 

of comparable magnituce and n is much less than M, the~ 

r
avg ('.r) - ("1) • r I: •• 

are 

On the other hand, if :1 P 11 is significantly smaller than II ~ I 

2 -.e 

or the eigenvalues A. (.;) for i > n+2 
~ 

are significantly smaller t~an 

'''n+l (A) (i.e., A is close to a matrix of rank one) or if n is 

close to m , then 

ravg on «r (N) . 
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4. Ooti~al Infornation Operators 

In the ~revious sections we studied optiDal algo~ithr..s (:or the 

worst and average cases) which use a given information ooerator N 

of cardinality n of the for.n 

(4. l) 

where the L. 
~ 

are linearly independent linear furictionals. 

In this section we determine the best choice of linear functionals 

in (4.1). Since the radius r(N) of information and the average 

radius ravg (:,1) of information are the errors of optimal alaorithms, 

we want to select linear functionals in (4.1) in such a way t~at the 

corresponding radii of information are minimized. 

Let w on be the class of all linear information operators of 

cardinality n of the form (4.1). 

Definition 4.1 

We shall say r(n) (r avg(n» . h h ~s t e nt ~inimal radius of 

information (the nth minimal averaqe radius of info~ation) i:f 

( 4 • 2) r (n) 

We shall say 

inf r(N) 
N·.ji 

~ . n 
(ravg(n) = inf ravgW». 

UEIJi 
n 

N n' N F. ~ , is an nth optimal information ooerator n n - . 

(an nth optimal averaae information operator) iff 

(4.3) r (:J ) = r (n) 
n 
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We exhibit nth optimal and nth optimal average information 

operators in te~s of eigenvectors of the li~ear operator ., 
:-.., 

.l. 

which is defined as follows. Let 

By K* we mean the adjoint operator to K, K*: K(F 4 ) - F4 and 

( 4. 4) (Kf,g) ( f , l< * g), \II f - F 4' I,1g E K (F 4) • 

~ote that the inner product of the left-hand side of (4.4) is in F2 

and the inner product of the right-hand side of (4.4) is in =4' Let 

(4. 5) K dJ 
1 ~*K: F4 - F 4 · 

Of course, Kl is symmetric and nonnegative definite. Then there 

exist and an orthonormal basis 

( 4 • 6) Kl z. Ao Zo i = l,2, ... ,m. 
1. 1. 1. 

Thus Ai(K l ) is the ith largest eigenvalue of Kl and corresponds 

the eigenvector Zo Define the information o~erator 
1. 

( 4 • 7) 

to 

and N £ '!' • n n 
We now establish the optimality of ~n' 

':'heorem 4.1 

N def1.°ned by (4.7) is an nth optimal The information operator n -
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and nth optimal average information operator and 

( 4 • 8) r()Jn) = r{n) = I! 01100 ( \n+1 (i\) 

V An+ l (K 1 ) + + A (K ) 
ravg (~J ) avg !I ~ !I ~ 1 

(4.9) = r . (n) = n 2 
::l 

Proof 

~he optimality of N 
n 

for the wo~st case and (4.8) follows 

from (2.15) and Theorem 5.3, Chapter 2, of Traub and woiniakowski 

[80J. So we need to ~rove only (4.9). 

We first compute the average radius of 

Then (7h,z.) = 0, i = 1,2, ... ,n, and Th = 
~ 

N Let 
n 
rti z:. X.z. 

j=n+l J J 

h € ker N 
n 

for some 

x .• 
J 

Thus form an orthonormal basis of T(kerN) 
n 

o 

HenCE 

we can set a. = z. 
J J 

in (3.11) for j = n+l, ... , m. \oJe can rewrite 

(3.11) as 

( 4 • 1 0 ) r a vg (N ) 2 
n II P 112 

2 

1 m - L (K l z· ,z .) = 
m j=n+l ~ J 

We now show that ravg(N) ? for any 

( 3 . 11) we have 

(4.11) m(ravg(N)/1I p" ) 2 = 
I. 

m 
k'. (K

l 
a.,a.) 

j=n+1 J J 

From 

where an+l, ... ,am form an orthonormal basis of T(ker N). Then 

m . df m 
I: (K l aj,a.) ? c = min{ E (K

1 
b.,b.): (b.,b.) = 6 .. : 

j=n+l J j=n+1 J J 1 J 1J 
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F rom Theorem 4.1. 4 of Chapter 2 of Marc'..ls and !·linc C 64] it follows that 

Combining this with (4.11) and (4.10) we have ravg(~) ~ ravq(N ) 
n 

which completes the proof. 

Remark 4.1 

J 

Theorem 4.1 gives us a very useful property; the same information 

operator is opti~al for the worst and average cases. In Section 3 

we proved that the same algorithM is optimal in both the worst and 

average case models. Thus the information (4.7) and the soline 

algorithm ~inirnize the error for both models. o 

Remark 4.2 

Theore~ 3.2 states that the radii of information can be 

expressed in terms of eigenvalues of the matrix A defined by (3.20) 

Note that for the information operator Nn' A = «K l zi' Zj) ) is 

(K
l 

z. ,z.) = A.O ..• Thus )... (A) = )... (K l ) 
1 J 1 1J J J 

fo!" diagonal since 

j = n+ 1, ... , m and (3.26) agrees with (4.8) and (4.9) for ~l = 

o 

As in Section 3, 'ole note that ravg(n) ;; r(n) if II -;)11 00 and 

II P 112 are of comparable magnitude, all eigenvalues Aj (K l ) 

comparable magnitude and n is much less than m. 

are of 
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5. Ada~tive In:ormation 

In the previous sections we studied linear infor~ation operators 

of the form 

where linearly independent linear functionals L. 
~ 

are simultaneously 

given. Such information operators are called nonadaPtive and denoted 

by N = Nnon . A natural generalization is an adaptive linear informa-

tion operator Na defined as 

'(5.1) 

( 5. 2) 

and L. is a linear functional with respect to the first arg~~ent 
~ 

f. See Traub and Woiniakowski [80 p.47J. This means that the choice 

of the ith functional ~ay now depend on the previously cOD?uted values 

From (2.15) and Theorem 7.1, Chapter 2, of Traub and Woiniakowski 

[80J it follows that adaptive informa~ion operators 

are not more powerful than nonadaptive infornation operators for linear 

problems in the worst case setting. 

Does adaptive infornaticn help for linear problems in the averacre 

case setting? We prove the surprising result that the answer is 

negative. In fact, we prove an even stronger result. We construct 
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a nonadaptive linear information operator which has the same 

cardinality and which consists of the same functionals as a given 

adaptive information o?erator and whose average radius does not 

exceed the average radius of the given adaptive information. In 

order to prove this we proceed as follows. 

Let Na be an adaptive information operator of the form (5.1). 

Nithout loss of generality we can assume that the functionals Ll , 

L2 ('; Yl)' ... , Ln ('; Yl' .•. , Yn-l) are linearly independent for 

every Yi = Yi(f), i = 1, 2, ... , n-l. Let ~ be an algorithm using 

!'la. Then the average error of Q> is defined by (3.6). Sirnilarily 

to (2.10) and (3.8) we define ~he average radius ravg(Na ) as 

( 5. 3) ravg(Na ) = inf edvg(Q>,Na ). 
Q>€ <P (N

a ) 

t'le now construct a nonadaptive linear information operator N
non 

which consists of the same functionals as N
a 

and such that 

define the linear functionals 

( 5 .4) L. (f) = L~ (f; Yl' ... , Yi-l)' i = l,2, ... ,n. 
~,v ... 

We assume that for every f, L. (t) I as a function of v, has 
~/V 

a continuous first derivative for almost all v. 

Define the information operator 

( 5.5) Nnon ( f) = [L ( f ) L ( f) , •.. , L ( f) ]. 
v l,v' 2,v· n,v 
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Note that is a nonadaptive linear information operator of. 

cardinality n which consists of the same functionals as ~la. Let 

-1 
L. (T aj(v)) = 
~,v 

( 5. 6) 

( a
k 

( v), a j (v)) = 

6. 
~ , j 

Ok . , J 

Since Li,v depends only on Yl""Yi-l' 

i = 1, 2, ... , !i, 

j = 1, 2, ... , ffi, 

k n+l, ... , m, 

j = 1, 2, ..• , m. 

we choose a. (v) 
~ 

depending 

.Due to regularity of L. (f) we can choose a; (v) such that they 
~,v ... 

are continuously differentiable for almost all v. 

Let 

(5.7) q = irf I 
VE~-

Let the infimum in (5.7) be attained for v = v*, i.e., 

~ 
i=n+l 

IIST- l a.(v*) 112 = q. 
~ 

I'Ve are ready to prove 

Theorem 5.1 

Proof 

We proceed similarily as in the proof in Theorem 3.1. 

o 

Let 
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,~ - ¢ (N a ) . The average eror of :: is defined by (3.6) . i":e cha~ge 

variables in (3.6) by setti~g 

d== 
n -1 ;:'\ 

-1 ( 5.8) f G(y) 2: y. T a~ (v) + L: y~ T a~ ('l) 
j=l J j j=n+l .J J 

where v = [y l' Y 2' .•. , Y n-l J and ~lote t!-1at 

the mapping G is one-to-one. Indeed, knowing f we have, due ~o 

( 5. 6), Y j = L j ( f), j = 1, 2, ... , n. T h u s v an d a j (v), j = 1, 2 , ... :-l , 

are also known and Yn+l' ... , Ym are a part of the unique components 

of f in the basis al(v), ... , am(v). The mapping G is continuously 

differentiable almost everywhere. Frnm (5.8) we have 

(5.9) 
-1 t 

G(y) = T Q(v)y 

( ) ] is an orthogonal matrix and 
where Q(v) = [al(v) ,a 2 (v) , ... ,am v 

t denotes the transpose. From (5.6) we get 

aak aa j (v» = 
(v), a j (v» + (ak (v), ayp 

ayp 
o • 

Since a
k 

depends only on Yl' Y2'···' Yk-l' 
we have 

aak (v) = 0 for p ~ k . Thus 
av -p aa j k 

(a
k 

(v) , (v) ) = 0 'If j , "1p ~ . 
(5.10) ayp 

Let 

Due to (5. 10) the (k, j ) element of 

and let w (v) = Qt(v)Q (v) • 
p p 

w (v) 
p 

is equal to 

aa· 
( a

k 
(v), _J (v» = 0 

ayp 
for any j and p ~ k . Thus the first P 

rows of w (v) 
p 

G' (y) 

are equal to zero. From (5.9) we have 
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Since the first p components of W (v)yt are equal to zero, the p 

matrix 
t t 

[W
1 

(v) Y , ••• , Wm (v) y ] is a lower triangular matrix with 

zero diagonal. This yields 

Idet G' (y) I = Idet T-
1

1 • 

Let n -1 '12 g(v) = !I E Y
J
' T aj(v) . 

j=l 
Then 

m 
11 Tf 112 = 9 (v) + E 

j=n+1 

2 y .• 
J 

Using the properties of G VIe 

transform (3.6) by techniques similar to those used in (3.16) and 

(1.17). Thus 

eavg(4),Ha)2 = ~I detT-ll S {S [II t y. ST- 1a.(v) + ~ y.ST-1aJ.(v) 
IRn Rm- n j=l J J j=n+1 J 

2 m 2 ~ m 2 ~ 
o «g (v) + ~ YJ' ) ) w « 9 (v) + ~ Y

J
· ) - Jdy ... dy } dy ••• dy ~ 

j=n+1 j=n+1 n+1 m 1 n 

S m -1 m 2 ~ I{ II!, y.ST a.(v)1I 2 p 2«g(v) + r. y.) ) 
RM

-
n j::n+l J J j=n+l J 
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In 

w((g(v) + 2: y.2)~) dy ... dy } dv 
j=n+l J n+l m - 1 

In 

dv = -n 

{ ~ IIST-1 a.(v)/l2 
j=n+l J 

S 22 m 
YJ' p ((g(v) + ~ y.2)~) 

rR:n- n j =n+l J 

J1l. 2!..: 
w((9(v) + L y. )2)dy + .•. dy} 

j=n+l J n 1 m 

Let 

dYl •.. dv -n 

c(v) = 5 mm-n 
2 y. 

J 

2 In In 
p ((g(v) + ~ y.2)~) w ((g(v) + t y.2)~) 

j=n+l J j=n+l J 

Since c(v) does not depend on j , (5.7) yields 

(5.li) eavg(~,Na)2 ~ {ldetT-lIS 

fRn 

Take now the nonadaptive linear information operator and 

repeat the above transformation with v = v* and with the spline 

algorithm ,+,s(Nnon*(f» = ~ L (f) -1 ( ~ v j~l i ST a j v*). Then we find that the 

right-hand side of (S.li) is equal to avg(~s Nnon ) = ravg(~non) e "". v* - .. v* . 

Thus eavg(~,Na) ~ ravg(Nnon*) d thO h Id f : '" an ~s 0 s or every ~ ~rom v 
which completes the proof. o 

Theorem 5.1 states that for every adaptive information operator 

one can find a nonadaptive information operator of the same structure 

and cardinality as the given adaptive information and with no greater 

average 
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radius. This means that adaptive information operators do not supply 

more information than nonadaptive ones. This result and the corresponc­

ing result for the worst case model may be summarized in 

Corollary 5.1 

Adaption does not help for linear problems in either the average 

or worst case models. o 
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6. How Much Can Information Reduce Uncertainty? 

Ne considered the information operator N = [L
1 

,L
2

, ••• ,Ln J for 

n ~ 1 and proved that r(N) and ravg(N) are sharp lower bounds 

on uncertainty. Observe that the radii also depend on the setting 

of the problem, i.e., r(N) depends on S,T,N and p ,and ravg(~n 

depends additionally on w. Thus the total information is specified 

by the linear operators S,T,N and the functions p and w. Since 

S,T,p and ware fixed we call N the info~ation. 

We pose and answer the following question. What is the uncertainty 

if only the setting of the problem is known? Or equivalently, what 

is the minimal E for which we can find an s-approximation knowing 

only S,T,p and w? 

This corresponds fornally to the zero information operator N = o. 

By convention zero information has cardinality zero. Then an algorithm 

using zero information takes only one value since ~(~(f» = ~(O). 

The value ~(O) should be thus an E-approximation for all f from 

Fl. It is easy to observe that the proof technique of Sections 1 

through 5 work for N = 0 with n = o. 

Thus, the radii of zero information are given by 

r ( 0 ) = II p II 00 I~ 

(6.1) 

t K defined 
where 8. = A. (K

l
) is the ith eigenvalue of the opera or 1 

~ ~ 

) Note that (6.1) formally agrees with (4.8) and (4.9) for 
by (4. 5 • 

n = o. Thus, if r(O) ~ E or ravg(O) ~ E then we can find an 



6.2 

E-approximation for the worst or average model without the evaluation 

of any linear functionals. Note that the optimal error and the 

o?timal average error algorithm is equal to zero, ~(o) = O. This 

also formally agrees with the definition (2.14) of the spline 

algorithm for n = O. 

Let 

(6.2) r(n) = 
r(n) ravg(n) = 

ravg(n) 
rror 

ravg(o) 

Then r(n) and ravg(n) measure how much the uncertainty is reduced 

after n optimal evalutions of linear functiona1s. From Theorem 4.1 

and (6.1) we have 

r(n) = /£n+l
i 

81 
(6. 3) 

ravg(n) /-n+l 
+ ... + 8m = 81 + ... + 8m 

Note that r(n) and ravg(n) are independent of the measure 1.1 

(i.e., the function w) and the function P. They depend only on 

the eigenvalues of Kl • We consider three, rather typical, distribu­

tions of eigenvalues of K
l

, 

Case 1. 

Let Bi = B for some positive constant 

for instance, to the case when S = ;-s- T 

B. This corresponds, 

and the operator K - 51 1 -
where I is the identity oD .. erator. Th f en or n < m, 
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r(n) = \I 011"" .'-8- ravg (n) = II 0 11_ .r--s-V (m-n) /m 

ravg(n) = v (m-n)/m 

In the worst case it is impossible to solve the problem with any 

amount of information. In the average case for n« m, there is 

almost no reduction in uncertainty since' all the radii are close to 

unity. This means that such a problem cannot be solved either in 

the worst or average case for small E. 

Case 2. 

Let 
2i 8. = cq 

~ 
for sone positive constants c and q with 

q < 1. This corresponds, for instance, to the approximation problem 

-1 -2 -n 
S = I with Tf = .;--c- [q f l' q f 2' ••• ,q fn ] • Then 

For n « m, 

I - II n+l r(n) ={21 P ceq 

n = q 

-avg - n r (n) = q = r (n) • 

ravg (n) ={2II"O II qn+l ,;;;;;.1_-0;;0,..-__ _ 
( 

:2 (m-n) 

2 m(1-q2) 

ravg(n) (1 2 (rn-n) 
= qn .~-_q~ ____ _ 

1 2m -q 

This means that the reduction of 

uncertainty after n evaluations is approximately the same for the 

worst and average case. 

Case 3. 

Let 
.-2r 8. = ~ for 

~ 

S = I with 

r >~. This corresponds to the approximation 

r -r f , This choice of Tf = [f
l

, 2- f 2 ,···, n r~· problem 
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Sand T is a discrete analogue of the continuous approximation 

problem Sf = J: .. , ( r-1) where f is a scalar 

absolutely continuous function whose nth derivative belongs to 

L2 . Observe that 

m 2 m 2 i: i - r ~ S x - r dx = 
i=n+l n+l 

1 (n+l) -(2r-l) (l_(n+l) 2r-l ) 
2r-1 m· 

From this and for n« m we have 

r(n) = 1/ p lI
oc

(n+l)-r ravg (n) ~ II '0 112 1 (n+l) -r /n+l 
/2r-l m 

r(n) (n+l)-r 

Thus, the reduction of uncertainty is larger, in this case, for the 

worst case model. 
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7. Comolexitv . 

In this secticn \ .. e briefly discuss the cOMplexity, Le., the 

minimal cost, of finding an E-approximation for the average case 

model. We obtain extremely tight upper and lower bounds on the 

complexi ty. vle show that the spline algorithm is essentially an 

optimal complexity algorithm. 

The complexity for the worst case model is studied in Traub 

and v;oi'niakowski [80] where very tight complexity bounds are obtained. 

The spline algorithm is shown to achieve nearly optimal complexity. 

1'1e first outline the model of computation. Assume that the cost 

of adding two vectors from F2 and the multiplication of a vector 

from F2 by a scalar is taken as unity. (Recall that F2 is the 

image space of the solution operator S.) Suppose that the evalua-

tion of an arbitrary linear functional is allowed and costs c. 

To find an E-approximation using linear infornation N = 

CL
l

,L
2

, ... ,L
n

J we have to guarantee that ravg{N) S E. Let 

(7 • 1) avg{) . { avo{) } m E = m~n n: r . n S E 

. rob Thus mavg{~) dotes the be the s-average cardinal~ty nu er. ~ en 

smallest cardinality of information whose average radius does not 

exceed e: • 

Let ~ be an algorithm using N with eavg{~,N) S s. Since 

eavg{~,N) ~ ravg{N), the cardinality of N has to be at least 

avg 1 . f N{f) requ;res the como.utation of m (e:). 7hus the eva uat~on 0 • 

avo . 1 Hence the complexity of N(f), at least m J(e:) linear funct~ona s. 
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i.e., the cost of computing N(f), is at least avg m (E)C. 

To produce an E-approximation,the algorithm ~ has to use at 

least 
avg m (E) linear functionals. It is natural to postulate that 

the computation of $O~(f» given N(f) has complexity at least 

avg m (E) - 1. Let the algorithm complexity (total cost) of producing 

an E-approximation by the algorithm $ be compavg(~). A lower 

bound is given by 

(7. 2) com p a vg ($) ~ n a vg ( E) (c+ 1 ) - 1. 

Note that (7.2) holds for any algorithm ~ usin~ an arbitrary 

linear information operator N. Let 

(7.3) 

be the E-average complexity. An algorithm $ is called an optimal 

average complexity algorithm iff 

( 7. 4) avg avg comp ($) = comp ( E ) • 

From (7.2) we have a lower bound on the E-average complexity, 

( 7. 5) 

We now show that the spline algorithm is a nearly optimal 

average algorithm $s using the information N 
n defined by (4.7). 

Recall that Nn is an nth average optimal information operator, 

ravg(Nn ) = ravg(n). The spline algorithm $s is linear, 
s n 

$ (Nn(f» = i:l Li(f)gi for some gi from F
2

• Since the elements 

gi can be precomputed, the evaluation of $s(Nn(f» given N(f) 

requires only n multiplications and n-l 
additions each of unit 



• 

• 

cost. 

(7. 6) 

Thus if avg n=m (e:) 

7.3 

then 

Combining (7.6) with (7.5) we see that the spline algorit~~ is 

a nearly optimal average complexity algorithm. 

A similar result holds for the worst case model. In fact, 

worst case definitions and results are obtained by deleting the 

superscripts "avg" in (7.1) through (7.6). 

We summarize this in 

Theorem 7 .1 . 

The spline algorithm is a nearly optimal complexity algorithm 

in both the average and worst case models. The complexity is given 

by 

comp (e:) = m (e:) (c+al ) - l, 

compavg(e:) = mavg(e:) (c+a
2

) - 1 

o 
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8. Example . 

We continue the example of the Introduction. Recall that example 

deals with the approximation of a trigonometric polynomial of degree m 

We choose approximation as our example because it is of such wide interes 1 

in applications. We discussed in the Introduction why we confine ourse~vl 

in this paper to finite dimensional Fl. Throughout this section we use 

the approximation example while illustrating the effects of choosing 

various error criteria and measures. 

Identifying a trigonometric polynomial with its coefficients 
m 

we can set F 1 = F 2 = F 4 = IR equipped 

with the spectral norm and 

m Sf = f , \If € I? . 

vlithout loss of generality we can assume that T is a diagonal 

matrix since the dependence on T is through the norm "Tf II which 

is orthogonally invariant. ~hus let 

Tf = [vB"' f 
1 l' 

where 

(i) The absolute error criterion, p(x) _ 1. Then p(x) = x and 

II p "co = +<0. Thus LTTlplies that 

r(n) = +co \In < m. 

Thus, it is impossible to find an E-approximation for the worst case, 

no matter what the value of E . 

For the average case, "p" 
2 

may be finite or infinite 

depending on the function w • For instance, let 

(8.1) w (x) = (8 .. -8 )~ 
1 m 

A rather lengthy 

1m w ( /1 Tf II ) df = 
calculation shows 

1, and 

that w satisfies (3.2), i. e. , 

• 



8.2 

Hence 'I 0 II is finite although it goes to infinity with m. The . 2 

nth average radius is given by 

ravg(n) = + ••. + 

2 

B i 
m 

~;e can find an e:-approximation for the average case using n evalua­

tions whenever ravg(n) s e:. 

On the other hand, let 

( 8. 2) 

Then (3.2) holds and \I p 112 = +co. Thus 

r avg(n) = +co u , Tn < m. 

Hence, it is impossible to find an e:-approximation for the average 

case (as in the worst case) no matter what the value of E. 

( i i) The relative error criterion, p(x) = l/x. Then 

and II p II co = II p II = 1 for an arbitrary function w 
2 

(3.2). We have in this case 

r(n) = ./Sn+l 

ravg(n) 
+ ... + 

m 

S ' 
m 

o(x) 

satisfying 



8.3 

(ij i) The absolute errcr criterion for a subset of Fl' Let 

-- {lo p (x) 

o ::;: x ::;: 1, 

x > 1. 

Thus we approximate Sf only for elements f such that 

11 Tf!1 $ 1. t'!e have O{x) = x for x € [0,1] and O(x) = 0 for 

x >1. Hence 

110" 110> = 1. 

Note that II Tf II $ 1 defines an ellipsoid in 1R m. h'e define 

w such that it3 support is on this ellipsoid, i.e., 

w (x) = (6 • "S )~ rr-m/ 2 n~2 + 1) 
1 I!\ x > 1. 

o $ x $ 1, 

Then w satisfies (3.2) and 

For large m, \I 0" "2 = 110" IICD = 1. In this case we have 

r (n) = 

ravg(n) = 
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