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ABSTRACT 

The information-based study of the optimal solution of large linear 

systems is initiated by studying the case of Krylov information. Among 

the algorithms which use Krylov information are minimal residual, conjugate 

gradient, Chebyshev, and successive approximation algorithms. A "sharp" 

lower bound on the number of matrix-vector multiplications required to 

compute an E- approximation is obtained for any orthogonally invariant 

class of matrices. Examples of such classes include many of practical 

interest such as symmetric matrices, symmetric positive definite matrices, 

and matrices with bounded condition number. It is shown that the minimal 

residual algorithm is within at most one matrix-vector multiplication of 

the lower bound. A similar result is obtained for the generalized minimal 

residual algorithm. 

The lower bound is computed for certain classes of orthogonally 

invariant matrices. We show how the lack of certain properties (symmetry, 

positive definiteness) increases the lower bound. A conjecture and a 

number of open problems are stated. 
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1. INTRODUCTION 

We study the approximate solution of large linear systems Ax = b, 

by algorithms using Krylov information k b, Ab, ... , A b. Examples of 

such algorithms are minimal residual, conjugate gradient, Chebyshev, and 

successive approximation algorithms. 

We seek the optimal algorithm, that is, the algorithm with minimal 

complexity. In this paper we choose to minimize the number of matrtx

vector multiplications to obtain an £- approximation. It is easy to 

translate our results on the minimum number of such multiplications 

into complexity results; see [6, Section 8J. 

We almost completely solve this problem for any matrix class having 

a certain property. The gap between the lower and upper bounds on the 

minimal number of matrix-vector multiplications is at most unity. 

More precisely, we consider any class of matrices which is ortho-

gonally invariant. Examples of such classes are symmetric matrices, 

symmetric positive definite matrices, and matrices with bounded condition 

number. 

For any orthogonally invariant class of matrices we show that the 

minimal residual algorithm uses at most one more matrix-vector multi-

plication than the lower bound. Indeed, we show even more. For some 

classes F we know the minimum number of vector-matrix multiplications; 

for others there remains a gap of unity. 

We contrast our approach with that which is typical in the approxi

mate solution of large linear systems. One constructs an algorithm ~ 
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which generates a sequence {xk} approximating the solution a= A- 1b; 

the calculation of xk requires k matrix-vector multiplications and 

lies in the Krylov subspace spanned by b, Ab, k The algorithm xk ... , A b. 

<p is often chosen to guarantee good approximation properties of the 

sequence {xk}. In some cases, ¢ is defined to minimize some measure 

of the error in a restrictive class of algorithms. For instance, let 

this class be defined as the class of "polynomial" algorithms, i.e., 

~xk = Wk(A)a ,where Wk is a polynomial of degree at most k and 

Wk(O) = 1. Then choosing Wk as the polynomial minimizing the k-th 

residual II Axk-b II = II Wk(A) a II I we obtain the minimal residual algorithm, 

<p
mr If A is synlTletric, positive definite and a = 1/11 A-III, b = II A II 

are known, then choosing Wk as the polynomial minimizing 

max{IWk(t)l:t ~ [a,b)} , we obtain the Chebyshev algorithm, <p
Ch . 

It seems to us that this procedure is unnecessarily restrictive. 

It is not clear, a priori, why an algorithm has to construct xk of the 

fonn a-xk = Wk(A)a. 

Indeed, we show that for orthogonally invariant classes of matrices 

<p
mr is within at most one matrix-vector multiplication of the lower 

bound without any restriction on the class of algorithms. However, if 

the class is not orthogonally invariant, the optimality property of <p
mr 

may disappear. 

We summarize the results of this paper. In Section 2 we define 

two types of optimality. The main result is established in Section 3. 

We give a lower bound on the number of matrix-vector multiplications for 

any orthogonally invariant class by showing that <p
mr perfonns at most 

one multiplication more than necessary. A series of examples shows the 
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sharpness and applicability of the main result. In particular, it 

follows from the main theorem that the knowledge of all eigenvalues 

of A does not help. Furthermore, we show how the lack of symmetry 

and/or positive definiteness increases the lower bound. 

In Section 4 we introduce a family of approximation criteria and 

generalize the previous optimality results (see Theorem 4.2). In 

particular, we show that the conjugate gradient algorithm performs at 

most one multiplication more than necessary and that the minimum error 

algorithm performs the minimal number of multiplications. 

In the final section we pose some open problems concerning the 

optimality properties of the information studied in this paper. 

The problems and proof techniques of this paper follow the infor

mation-based approach of the monographs [5] and [7J. There are many interesting 

relations between the optimality results of this paper and the general 

results of the monograph. For the reader's convenience we do not use 

the general terminology and results of [5J and [7], 

For simplicity we consider only the real case, although the general

ization to the complex case is straightforward. 

This paper is a shortened version of [6J. The paper [6J contains 

a detailed discussion of the concepts presented here, all omitted proofs, 

as well as a complexity analysis. 
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2. BASIC CONCEPTS 

Let F be a subclass of the class of n x n nonsingular real 

matrices. Let b be a given n x 1 real vector such that 

II b II = .; (b,b) = 1. For a given positive E, E ~ I, we seek a 

real vector x whose residual has norm less than E, i.e., 

(2.1) II A x - b II < £, A € F • 

We call x an £- approximation. Since b is normalized to unity, 

(2.1) measures the relative error of the residual vector. In Section 4 

we discuss the problem of finding x with relative error less than £ 

in a variety of norms. 

To find an E- approximation we need some information about the 

matrix A which belongs to the class F. We define an information 

operator Nk as 

(2.2) 2 k 
= [b, Ab, A b, ... , A b] 

for k = 0, I, ... 

(Note that Nk(A,b) is a basis of the Krylov subspace.) 

Remark 2.1 

Let Zo = b, zi = 

can be rewritten as 

Az. I' 1 -
for ; = I, 2, ... , k - 1. Then (2.2) 
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(2.3) 

Thus the computation of Nk(A,b) requires k matrix-vector multi

plications. If A is sparse Nk(A,b) can be computed in time 

proportional to kn rather than kn 2 . Usually, instead of computing 

Nk(A,b), we compute 

where w. is a linear combination of b, Ab, ... , Ai-lb. for 
1 

i = 1, 2, ... k. It is easy to show that all the results of this paper 

also hold for the information operator Nk . • 
Knowing Nk(A,b) we seek an E- approximation by an algorithm ~ 

We define an algorithm ~ = {~k} as a sequence of mappings 

~ k : Nk (F , lRn) -+ lRn. The a 1 gori thm ~ generates the sequence 

xk = <Pk(Nk(A,b)) based on the information Nk(A,b), k = 0,1, .... 

We are interested in the smallest value of k for which xk satisfies 

(2.1), i.e., II Axk - b II < E. In general, there exists many different 

matrices A from F which share the same information as A, i.e., 

Nk(A,b) = Nk(A,b) . Thus xk = <Pk(Nk(A,b)) = <Pk(Nk(A,b)) must satisfy 

(2.1) for A and A. Define 

(2.4) 

Thus V(Yk) denotes those matrices belonging to F which are 

indistinguishable from A knowing the information Nk(A,b) . 



Let 

(2.5) k(q" A) = min {k.: II Axk - b II < s , v A E V(Yk)} 

be the matrix index of p. (If the set of k in (2.5) is empty, 

we set k( q"A) = + co • ) Let 

(2.6) k ( <p , F) = max k ( ~ , A) 
AEF 

be the class index of t . 

Thus, the matrix index of q, denotes the minimal number of steps 

required to find an E- approximation using the algorithm q, for all 

matrices A from F which share the same information Nk as A. 

The class index of <p denotes the same concept for the hardest problem. 

(2.7) 

We seek algorithms with minimal indfces. Let 

k(A) = min k(q"A) 
.p 

be the optimal matrix index and let 

(2.8) k(F) = max k(A) (=min k(q" F)) 
AEF ,p 

be the optimal class index. 

Remark 2.3 

It is possible that k(A)« k(F). For instance, assume that 
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Ab = b. Then, of course, setting xl = ~1(Y1) = b we have AX 1 = b 

for A € V(Y1)' Thus k(A) = 1 for every £. As we shall see later 

k(F) can be equal to n . 

Thus even if the optimal class index is large it can happen, due 

to favorable properties of A with respect to b , that the optimal matrix 

index is small. The algorithms with small matrix index are therefore 

very useful for applications. This motivates our interest in algorithms 

with small matrix index. • 

We are ready to introduce two concepts of optimal algorithms. 

An algorithm ~ is called strongly optimal iff 

(2.9) k (~ , A) = k CA) , 'If A € F , 

and is called optimal iff 

(2.10) k(~ , F) = k(F) • 

We can sometimes establish that the matrix or class index of an 

algorithm is slightly larger than the optimal index. It is convenient 

to introduce the concepts of almost strongly optimal algorithm and 

almost optimal algorithm as follows. An algorithm ~ is almost strongly 

optima 1 iff 

(2.11) k(~, A) s k(A) + c , 'If A € F , 
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and is almost optimal iff 

(2.12) k($,F) ~ k(F) + c 

for some small integer c. 

Thus an almost strongly optimal algorithm requires at most c 

more steps than a strongly optimal one. Usually k(A) » c and 

therefore an almost strongly optimal algorithm is as useful in practice 

as a strongly optimal one. 

Remark 2.4 

All concepts introduced in this section also depend on the size 

n , the information Nk , the vector band E. To simplify nota

tion and terminology we do not make this explicit but the reader should 

keep in mind that all the results are relative to n, Nk, b- and E •• 
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3. OPTIMALITY OF THE MR ALGORITHM 

In this section we study optimality properties of the minimal 

residual algorithm defined as follows. Let 

= with 

Knowing the vectors zi d f " * * we e 1 n e c 1 ' . • . ,c k as the coefficients 

which minimize the norm of the residual in the space spanned by 

(3.1) min 
c" 1 

The minimal residual algorithm ~mr , briefly the mr algorithm, is 

defined as 

(3.2) o , 

k-1 
= ci b + ... + ck A b, k ~ 1 , 

see, for instance, [4]. 

We now prove that the mr algorithm is an almost strongly optimal 

algorithm provided the class F is "orthogonally invariant". This 

concept is defined as follows. We say F is orthogonally invariant iff 
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(3.3) 

for every orthogonal Q. 

For example, the class of symmetric matrices, the class of symmetric 

positive definite matrices, the class of matrices with condition 

number bounded by a given constant, and the class of matrices with 

fixed eigenvalues are all orthogonally invariant. 

The main result is 

Theorem 3.1 

If F is orthogonally invariant, then 

(3.4) k ( cj> mr, A) ~ k (A) ~ k ( cj> mr, A) -1, V A E F. 

Furthermore, both the upper and lower bounds can be achieved. • 

Proof 

Let cj> = {cj>k} be any algorithm. Let k = k(cj> ,A) < + 00. 

This means that 

(3.5) II A xk - b \I < E , A E V(Yk) 

where Xl = cj>(Nk(A, b)) Decompose Xl = z1 + z2 k k 

where z1 is a linear combination of b, Ab, .•. , Akb and z2 is 
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orthogonal to b, Ab, •.. Akb Define 

w = 

o otherwise 

Clearly (w t Aib) = 0 for = 0, 1' .. 0, k. Let 

A = Q A Q with Q T = I - 2w w . 

Then A EO F and 

Ai b ,,' = I 2 k , , ... , . 

Note that (w t xk) Aw = AZ2 which yields 

Observe that 

" AZ I - b /I s i (1IAz I - b - AZ 2 II + " AZ I - b + AZ 2 " ) 

= i ( " A xk - b" + " A xk - b II) < E 
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due to (3.5) 

Recall that xk+1 = ~ ~:1 (N k+1(A, b)) lies in the same subspace 

as zl and 

II Ax k+1 - b II s II AZ 1 - b II < €. 

Due to (3.2) we have Axk - b = Axk - b , VA E V(Yk) . Thus 

k (cp mr, A) ~ k + 1 = k (cp , A) + 1 . 

Since cp is an arbitrary algorithm ... Je have 

k( cp mr ,A) :5 k(A) + 1 . 

On the other hand it is obvious that k(A) s k(cp mr ,A). This proves (3.4). 

The fact that the lower and upper bounds in (3.4) can be achieved 

is established in Examples 3.2 and 3.4 . • 
We illustrate Theorem 3.1 by a number of examples of classes F 

to exhibit the importance of this Theorem and the sharpness of both the 

assumption and the results. 

Example 3.1 KNOWN EIGENVALUES 

Suppose one knows all eigenvalues of the matrix A and asks what 

algorithm should be used for the approximate solution of Ax = b ? 

The surprising answer is that we still should use the mr algorithm 



3.5 

(although the mr algorithm does not make use of the eigenvalues of A). 

The explanation is given by Theorem 3.1 applied to 

F = 1 
{-A A = Q A Q T , Q is orthogona l} . 

Note that all matrices in F1 have the same eigenvalues as A. Since 

F1 is orthogonally invariant, Theorem 3.1 guarantees that the mr 

algorithm performs at most one step more than is necessary. This shows 

that the knowledge of eigenvalues does not help for the approximate 

solution of linear systems. • 

Example 3.2 ~1ATRI CES OF THE FOR"1 A = I - B 

Suppose one knows that A = I - B and II B II is known not to 

exceed p, p < 1. This is a typical situation for the approximate 

solution of x = Bx + b by iterative algorithms. One asks what algorithm 

should be used in this case. The answer depends on what more is known 

on B. We report some results from Section 6 of [6J. See also [2J 

especially pp.19-20. 

Consider first the symmetric case, i.e., let 

F 2 = {A A = I - B , B = B T , II B II s p < l} . 
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Since F2 is orthogonally invariant, Theorem 3.1 guarantees that the 

mr algorithm takes at most one step more than the minimum. In fact 

the matrix index of the mr algorithm is equal to 

k(ep mr, F2) = m;n(n, q (e:) + 1) 

where 

For the Chebyshev algorithm we have 

k (ep ch, F 2) = q (E) • 

Thus 

k (F 2) = m; n (n, q ( e:)) . 

If q ( e: ) < n then 

(3.6) 

This shows that the mr algorithm takes exactly one step more than the 

optimal one. Thus the knowledge of p, which ;s not used by the mr 

algorithm, causes the loss of one step. This example shows that the 

lower bound can be achieved in Theorem 3.1 and hence the result is 

best possible. 

Furthermore, (3.6) shows that the Chebyshev algorithm is optimal 

whenever q ( e:) < n. Thi s holds if e: is not too sma 11 and p not 

too:e.l.o.:s.e to unity. However, the Chebyshev algorithm is not strongly 

optimal. 
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Consider now the non-symmetric case, i.e., let 

F3 = {A A = I - B , 1/ B 1/ $ P < l}. 

Theorem 3.1 still applies since F3 is orthogonally invariant. We have 

(3.7) k ( <p mr, F 3) = mi n (n, L~ (1 - 0 ) J + 1) 
ln p 

For small e:, p close to unity and n so large that the minimum 

in (3.7) is obtained for the second argument, we have 

1 
k(F3) = k (<p mr, F3)(1 + 0(1)) = 1n E (1+0(1)), 1 - p 

1 
k(F2) = k (<p mr, F 2) - 1 = 

ln E (1 + 0(1)) . 
12(1-p} 

From this we get 

_ / 2 (1 + 0(1)) . 
- 1- p 

This shows how the lack of symmetry in B increases the optimal class 

index. • 

Example 3.3 BOUNDED CONDITION NUMBER 

Suppose one knows a bound M on the condition number 

cond (A) = 1/ A II II A-I II and asks how this bound influences the 

optimal class index. We report some results from Section 5 of [6] 

for three orthogonally invariant classes of matrices. See also [2], 

especially pp.19-20. 
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F4 = {A A = AT > 0, cond (A) s M} , 

F- = {A A = AT , 
~ 

F6 = {A 

cond (A) s M} , 

cond (A) ~ M} • 

Thus, F4 is the class of symmetric positive definite matrices with 

condition number bounded by M, FS differs from F4 by the lack of 

positive definiteness and F6 differs from F5 by the lack of symmetry. 

We have 

= min (n, 11 n 1 + Ip / 1 n / M+ 1 J + 1) I 

L .7M-l 

where Ct. = 0 
1 

or Ct. = 
1 

1 a rge ~1 we can simp 1 i fy to 

k(F4) = min 

k(F5) = min 

If n is large then 

-1 for 

(n, 1M 
2 

(n , ~1 

~ 
l~ 

= min (n,2 ln 1 + v 1-e: / ln 
e: 

= 1, 2 . For small e: and 

ln t (1 + 0(1))) + Ci
l 

ln ~ (1 + 0(1))) + Ci
2 

M+l J + 2) I 

M-l 
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k ( F 5 ) = 2 1M Cl + 0 (1 )) • 

k(F4) 

This shows that the lack of positive definiteness increases the optimal 

class index by a factor of about 21M For large M, which arise 

frequently in practice, this is a very significant difference. 

For the class F6 we have k(F6) = n. Thus if fewer than n 

matrix-vector multiplications are permitted it is impossible to find 

an E- approximation no matter what algorithm is used. Note that 

this result holds for arbitrary £ and M ,i.e., £ and M can 

even be equal to unity. It is the lack of symmetry which causes the 

increase of the optimal class index to its maximum possible value. I 

Example 3.4 UNBOUNDED CONDITION NUMBER 

Suppose one does not know a bound on the condition number and 

agrees to enlarge the class F4 to 

F = {A A = AT > O} • 
7 

Then, as was observed in a short note [1], the mr algorithm is 

strongly optimal, i.e., 

(3.8) k(ep mr, A) = k(A) VA € F , 

and this shows that the upper bound can be achieved in Theorem 3.1. 

To show this we use a slightly different proof then the proof of 



Theorem 3.1. 

Suppose that 

3.10 

x' does not lie in span 
k 

for some algorithm ~ 

k-l (b, ... , A b) Then 
- T 

sup { II A xk - b" : A E: V(Yk)} = + co. Indeed, take A = A + c u u 
k-1 1 

where u is a projection of xk onto span (b, ... ,A b) 

and c is a positive constant. Then." A xk - b" ~ c I u\k III u " 

IIAxk - b" goes to infinity with c as claimed. Thus "A xk - b" < £ , 

k-1 ) VA € V(Yk) implies that xk belongs to span (b, ... ,A b . Due to 

the definition of the mr algorithm we have k(~ mr, A) ~ kt~,A) 

which proves (3.8). 

Since k(F4) increases with M to the value n it comes as no 

surprise that 

This shows that the class F7 is too large and one has to decrease 

the .:lass F7 to find an E- approximation in fewer than n matrix

vector multiplications for all matrices A from a given class. • 

Example 3.5 NOT ORTHOGONALLY INVARIANT 

We end this section by an example of a class F which is not 

orthogonally invariant. Then none of the optimality properties of 

the mr algorithm hold. More precisely we present an example of F 

for which the mr algorithm can be arbitrarily far from optimal. 

Let TRI be the class of n x n synmetric tridiagonal matrices 

whose diagonal elements are equal to unity. Thus A € TRI implies 
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1 " 

A = 1 
lR • 

Let 

F8 = {A A € TRI cond (A) $ M} 

for a given M, M > 1. The class F8 is ~ orthogonally invariant 

since the matrix QAQ
T 

with orthogonal Q is not necessarily tri
diagonal. 

Assume that 

Then knowing 

T b = [1/ in, 1/ In , ... , 1/ In] 

z = Ab T 
= [zl"" ,zn J we get 

1 + a 1 = Z 1 In , 

a. 1 + 1 + a" = z," In , i = 2, ... , n - 1. , - 1 

From this we find the coefficients a
i 

aI = Zl In 1, 

1 - a. - 1 , = 2, ... ,n -1. 
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Since we know the matrix A ~ the algorithm 

is well defi ned and II A x i - b II = o. Thus 

It can be verified that for sufficiently small E ~ the algorithm 

4>mr has to use the information Nn(A ~ b) which means that 

Hence we get the smallest possible value of k(F8) and the largest 

possible value of k(4) mr~ Fa) • • 
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4. GENERALIZED CRITERIA 

In this section we introduce a family of approximation criteria 

depending on a parameter p. The criterion used in Sections 2 ·and 3 

corresponds to p = 1. The values of p of greatest practical 

importance are p = 0 , 1/2 , 1 . 

In (2.1) we defined an E- approximation as a vector whose 

residual has norm less than E. Here we assume that the E- approxi

mation x satisfies the inequality 

(4.1) 

where 

II AP (x - a.) II 

II AP a. II 

< E 

a. = A-I band P is a nonnegative real. Note that for 

p = 1, (4.1) coincides with (2.1). For p = 0, (4.1) means that 

the relative error of x is less than E 

If p is not an integer we assume that A is symmetric and 

positive definite to guarantee the existence of AP. 

We genera 1 i ze the concept of the rna t ri x index of rp to 

(4.2) 

where rp = {cf>k}, xk = cf>k (Nk(A, b)) and V(Yk) is given by (2.4) . 

(If the set of k is empty, we set k(cf>, A) = +00 .) Then all concepts 

introduced in Section 2 may be generalized in an obv~ous way using the 

new definition of the matrix index of cf> 
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For given A and m define the coefficients cO' ci , •.. , c; 

and the error e(A, m} as 

(4.3) 

Let 

m(A} = min {m e(A , m} / \\ p.,P 0.\\ < E, 'V A E V(ym)} 

where 
~-1 

C1 = A b. We prove 

Theorem 4.1 

If F is orthogonally invariant then 

(4.4) k(A) ~ m(A} , '! A E F. • 
Proof 

As in the proof of Theorem 3.1 1 et tP = {tP k} be any a 1 gori thm 

such that k = k(tP,A) < +00. This means 

(4.5) 

where xk = tPk(Nk(A, b)). Decompose 
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k where zl € span(b,Ab, ... ,A b) and z2 is orthogonal to 

b, Ab, ... , Akb. Define Al = QA Q with Q = I - 2wwT and 

w = z/ II z2 II for a nonzero Z2 and w = 0 for z2 = O. Then 

Al € F and Aib ~ Aib, i = 1,2, •.• ,k. Thus Al € V(Y
k

) . 

Observe that 

(4.6) 

Furthermore, 

(4.7) 

From (4.5), (4.6), and (4.7) we get 

e(A , k) 

II AP ;;: II 

~ 1 
2 

+ 

II AP ( z 1 - ;;-) + AP z 2 II \ 
/I AP ;;: II ) 
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Thus k;,: m(A) Since ~ is an arbitrary algorithm we conclude 

k(A) ;,: m(A). Hence (4.4) is proven. 

Theorem 4.1 provides a lower bound on the optimal matrix index. 

The next part of this section is devoted to finding algorithms whose 

class indices are close to this lower boundo As we shall see, this 

can only be done for certain values of p . 

We check when the coefficients c~ defined by (4.3) can be 
1 

computed in terms of the information Nk(A, b). From (4.3) it follows 

that * [ * * *JT 
C = cO' c c 1'" ., m satisfies the linear equations 

(4.8) Hc* = h 

where H = ((Ai+Pb, Aj+Pb)) , i, j = 0, 1, ... , m, and 

h = [APb, AP-1 b) , ... , (Am+Pb, AP-1b)JT . 

We consider two cases. 

(i) A = AT. Then if 2p is integer, 2p;,: 1 and 

m = k - rpl, the vector c* depends only on Nk(A, b) • 

(ii) A f AT. Then if p is integer, p;,: 1 and m = k - P , 

the vector c* depends only on Nk(A, b) • 

If either (i) or (ii) holds then the algorithm ~mr = {~~r} , 

(4 9) - 0 - mr(N (A b)) - * b * Ak-rP'b • xo - ,xk-~k k' -co + ... +ck-rp1 , k ;,: 1 , 

is well defined and is called the generalized minimal residual algorithm. 

Note that for P = 1, (4.9) coincides with (3.2). Assuming that 

A = AT > 0 we can set P = 1/2 and the algorithm ~mr is known as the 

classical conjugate gradient algorithm. See for instance [4J. 
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For p = 0 and A = AT the first component, which is the inner 

product (b ,a), of the vector h is in general unknown. If, how-

ever, one considers the consistent system Mx = g and if one agrees 

to multiply this system by MT then A = MTM, b = MTg, and (b, a) = (g , g) 

is computable. Then the generalized minimal residual algorithm is well 

defined and is known as the minimum error algorithm. In this case we 

can compute xk as follows. Let Xo = 0 

define 

Fori=O,l, ... ,k-l 

(4.10) xi+1 = x. + 1 {f·1(x. - x. 1) - r.}, r. = Ax. 
1 q. 1 - 1 1 - 1 1 1 

1 

where 

(r.,r.) 
1 1 

qi = - f. 11 
IIMx i -g11

2 1 -

(4.11) 

II MX i 
_ g 112 

f_l = 0, f i _1 
= 2 q. 1 

II Mx i -1 - g II 
1 -

- b , 

We are ready to show that the generalized minimal residual algorithm 

is almost strongly optimal. 

Theorem 4.2 

Let F be orthogonally invariant. Suppose that the following two 

conditions hold: 

( i ) If A E F implies then 2p is an 

integer, otherwise p is an integer. 
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(ii) If (b, Cl) is known and A E F implies A = AT, ~ AE F, 

then p ~ 0 0' otherwise p > 0 . 

Then the generalized minimal residual algorithm is almost strongly 

optimal, 

(4.14) 

where 

k(~mr ,A) = m(A) + rpl . 

Proof 
mr 

Note first that (i) and (ii) guarantee that the algorithm ~ 

is well defined. From (4.3) and (4.9) we have 

Thus 

k(~mr, A) = m(A) + rpl . 

Obviously k(~mr, A) ~ k(A) which due to (4.4) yields 

o ~ k(~mr, A) - k(A) ~ rpl . 

This proves (4.14). 

Observe that for p = 1, the conditions (i) and (ii) are always 

satisfied and Theorem 4.2 coincides with Theorem 3.1. 
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For p = 1/2, Theorem 4.2 states that the classical conjugate gradient 

algorithm is almost strongly optimal and the matrix index of the classical 

conjugate gradient differs by at most unity from the optimal matrix index. 

If p can be set equal to zero, then (4.14) states that 

k(A) = k(<j>mr, A) = m(A) , 

Thus, the minimum error algorithm is strongly optimal. 

The optimal class index k(F) for the class F = F2 for arbitrary 

p , and for the class F = F 3 with P = 0 is found in [6J. Recall that 

q(e:) L ln 
e: / ln l+D J = 

1-/~ p 

Then 

k(F2) = min (n ,q(e:)) . 

For the Chebyshev algorithm <j>ch we have 

Thus, if q(e:) ~ n then the Chebyshev algorithm is optimal (but not 

strongly optimal). 

For the class F = F3 with P = 0 we have 

k (F 3) = mi n (n , tl n e: / 1 n p J) • 
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The successive approximation algorithm (i.e., 

with x = b) has the class index given by o 

x. 1 1+ 
Bx. + b 

1 

Thus, if L1n E/ 1n PJ ~ n then the successive approximation 

algorithm is optimal (but not strongly optimal). 
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5. OPEN PROBLEMS 

In this paper we studied optimal algorithms for the so-

lution of Ax = b using the information operator Nk (A, b) = 

We have focused on this information 

operator because it is widely used in practice and because 

it is susceptible to a very thorough analysis. It would of 

course be desirable to generalize results of this paper to 

more general information operators. Until this is accom-

plished we won I t know if Nk (A, b) is "optimal" information. 

For instance, let 

(.5.1) 

where zi = zi(b, AZ l , .. ·, Az i _ l ) for i=l, 2, ... ,k. That 

is, we still compute the matrix-vector multiplications 

but now the vector z. is an arbitrary function of the pre
~ 

viously computed information. For information (5.1) we can 

generalize the definition of the optimal matrix and class in-

dices in an obvious way. We ask what is the optimal choice 

of the i. e., for which z. are the optimal indices mini
~ 

mized. We propose 

Conjecture .5,1 

If F is orthogonally invariant then the optimal matrix 

and class indices are minimized for the vectors z. = Ai-lb, 
~ 

i=l,2, .. ,k. That is, the information Nk(A,b) 
k = [b, Ab, ... ,A bJ 

is optimal in the class of information operators of the form 

(5.1) . 
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We now consider more general information operators than 

( 5. l) Let 

(5.2) 

where u. = L. (A7 b, u l ' ... , u. l)' i = l, 2, . " s - l, and L; is a 
~ ~ ~- ... 

functional which depends linearly on the first argument. The 

L. can depend nonlinearly on b and on the previously com
~ 

puted information u l ' u 2 ' .. , u i _ l . Note that (5.2) is the 

general form of adaptive linear information and (5.l) as well 

as (2.2) are special examples of (5.2). We ask what is the 

optimal adaptive linear information, i.e.,what functionals Li 

minimize the optimal matrix and class indices. It would also 

be interesting to know the minimal value of s for which we can 

find the exact solution of a linear system. From [3] we 

can conclude that s ~ (n + 1) (n + 2) /2 - 1 with no restriction 

on the class F. 

We also want to pose a complexity problem. It is known that for 

k T the information Nk (A,b) = [b,Ab, .•• ,A b], where A = A > 0 1 

there exist algorithms which are optimal (or almost optimal) and 

which have linear combinatory complexity. These two proper-

ties guarantee finding an E-approximation with minimal (or 

almost minimal) complexity. 

Let Ns(A,b) be an optimal adaptive linear information 

of the form (5.2). Does there exist an almost optimal algo

rithm using Ns(A,b) with linear combinatory complexity? Or 

conversely, is it true that if an information operator is 
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better than Nk(A,b) = [b, Ab, .. , AkbJ, then the combinatory 

complexity of an almost optimal algorithm cannot be linear? 

We can establish one result for N (A,b). The functionals s 

L. in (5.2) must depend on b. Otherwise the information 
~ 

Ns(A,b) does not supply enough knowledge to find an €-approxi

mation. To show this assume that 

(5.3) 

where u. = L. (A~ul' ... ,u. 1) is independent of b. As in (2.8), 
~ ~ ~-

let k (F) be the minimal value of s such that there exists an 

algorithm which uses Ns(A,b) and finds an €-approximation in 

the sense of (4.1). 

For simplicity we establish the desired result only for 

the class F2. Without loss of generality we assume that 

€ s; P • (Otherwise the algorithm <Ps (Ns (A, b» = b yields an 

€-approximation.) 

Theorem 5 . 1 

Let € s; p, F = F 2 and p be arbitrary. There exists a 

vector b such that 

n (n + 1) 
~ 2 

Proof 

Let A = I + B where 

(5.4) i=l, 2, .. , s, 

o 
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and u. = L. (I, u l "" u. 1)' Note that (5.4) corresponds to s 
~ ~ ~-

homogenous linear equations in coefficients of B. Since B 

is an nxn syrrunetric matrix, we have n (n + 1) /2 unknowns. 

If s < n (n + 1) /2 then there exists a nonzero matrix B sat-

isfying (5.4) We can normalize B such thatllB II = p. De-

fine a vector b, II b II = 1, such that Bb = cb with c = ±P. Let 

A = I-B. Then A E F2 and Ns (A,b) = Ns (A, b). Let cP = {ct>k} 

be an algorithm and x k = CPk(Nk(A,b». Let 

-1 -where a = A b and a = 

IIAP a II = (1 + c)p-l, -a = 

--1 1 
A b. Then a = l+c b I 

.....L band IIp?a II = (1 - c)p-l. 
l-c 

where c l = (xk' b) and x is orthogonal to b. Then 

«I ± B)Px,b) = 0 and 

Thus 

Let 

a ~ max (I c 1 (1 + p) - 11, I c 1 (1 - p) - 11) ~ p ~ s • 

Since cP is arbitrary I this proves that it is impossible to 

find an E-approximation for s < n (n + 1) /2. This completes the 

proof. o 
Note that for the class we can recover the matrix 

A = (akj ) knowing a sui table chosen Ns (A, b) with s = n (n + 1) /2. 
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Indeed, it is enough to define 

Knowing A, we can define <Ps (Ns (A, b)) = A-lb. This and Theorem 

5.1 shows that n(n+l)/2 evaluations of linear functionals 

are necessary to find an E-approximation for any E E [O,p]. 

Thus, even for very moderate values of E, the information 

operators (5.3) do not supply enough information with sIess 

that n (n + 1) /2 for F = F2 . This is in sharp contrast with 

the information Nk(A,b) = [b, Ab, .. , AkbJ (where all evalua

tions depend on b ) and where only a few evaluations of Aib 

are sufficient to find an E-approximation for moderate E. 
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