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Science has been called the study of invariants. seeking laws which are 
valid in va.-ied domains. 

An archetypal example is provided by Newtonian mechanics. Before 
Newlon, any "reasonable" person believed that apples and planets were 
very different objects obeying different laws. For some characteristics 
Ihis is true, as can be verified by biting inlo an apple and a planet. But if 
Ihe correcl quantities, which are force. mass. and acceleration, are con
sidered. then there are laws which apply equally to apples and planets as 
well as to carriages, waterwheels, and buildings. 
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For most computational problems we have only partial or approximale 
information and consequently such problems can be solved only wilh 
uncertainty in the answer. Examples of such problems include computa
tions arising in science and engineering, decision theory. prediction, esli
mation, computer science. mathematics, design of experiments, remote 
sensing, and signal processing. Such problems are as different from each 
other as apples and planets. For stich seemingly unrelated problems we 
believe that we have identified the basic quantities and a fundamental 
invariant. which we call the radius of information. 

The radius of information measures the intrinsic uncertainty in the 
solution of a problem due to the available information. In this article we 
shall see some examples of the many and varied domains which can be 
unified by using the concept of radius of information. As we shall see, the 
radius of information is fundamental; it provides limits on how well a 
problem can be solved and leads to very widely applicable notions of 
optimal information and optimal algorithms. 

To emphasize this. we state the Inronnallon principle: There exists a 
quantity called the radius of information which measures the intrinsic 
uncertainty of solving a problem if certain information is known. 

Our work is based on two theses: (I) most problems are approximately 
solved; that is. we live with uncertainty; (2) for problems with partial or 
approximate information, the usual algorithm-centered approach can be 
supplemented. and sometimes replaced, by the information-centered ap
proach. 

We briefly discuss these two theses here. Much of this article will be 
devoted to their expansion. illustrated by numerous examples. 

We begin with the first thesis. It is very common for the information 
concerning a problem to be partial or approximate. Then the problem can 
only be solved with uncertainty. If. on the other hand, the information is 
complete and exact. then a solution without uncertainty may be possible. 
Even in this case the cost of computing an exact solution may cause us to 
settle ror an approximate solution because we are willing to give up cer
tainty to reduce complexity. Finally. many problems will be solved in a 
distrilmted environment and this may cause uncertainty in the answer. 

We brieRy discuss this last point. There are two reasons for using a 
distributed system. The first is that although a centralized system could he 
used. we select a distributed system for the sake of. say, efficiency. The 
second reason is that the problem is inherently distributed; examples 
include resource allocation in a decentralized economy, traffic networks, 
and reservation systems. Because the information How in a distrihuted 
environment may have to be limited, this causes uncertainly in the solu-
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tion. Even problems capable of exact solution on a uniprocessor will be 
solved only under uncertainty in the distributed environments of the fu
ture because complete, exact information on the current state of the dis
tributed system will not be available. 

We proceed to the second thesis. Currently, the algorithm-centered 
approach is in widespread use. In this approach, an algorithm is obtained, 
often on the basis of ad hoc criteria. This algorithm is then analyzed. 
Another algorithm is then proposed and analyzed, and so on. 

We contrast this with the information-centered approach. In this ap
proach, one merely states how well a problem should be solved and 
indicates the type of information available. The theory then discloses an 
optimal information and an optimal algorithm, and yields the bounds on 
the problem complexity. that is. how much it must cost to solve. 

A simple example may illustrate the drawbacks of the algorithm-cen
tered approach. Consider the Gauss algorithm for approximate integra
tion. (We use this numerical example because it is widely known. How
ever, numerical calculations are just one particular application of the 
general theory.) The algorithm is based on the ad hoc criterion that it 
exactly integrates polynomials of maximaJ degree. This is the characteris
tic criterion. There are additional criteria (see Section 5). There is no a 
priori reason why the Gauss algorithm should be good for nonpolynomial 
integrands. Indeed. as we shall show in Section 5.2, even for analytic 
integrands we can pay an exponential penalty for using Gauss information 
rather than the optimal information. 

Another drawback of the algorithm-centered approach is that it 
does not give lower bounds on problem complexity. The information
centered approach yields both lower and upper bounds; these are often 

. very tight. 
What is the place of the algorithm-centered approach? The information

centered theory provides general notions of optimal information, optimal 
algorithm. and problem complexity. For a particular problem it may be 
technically very difficult to obtain these and, to do the job, an algorithm 
must be created and analyzed. This is particularly the case for compli
cated "real-world" models. With time. we expect the technical problems 
to be overcome for harder and harder problems. 

We emphasize that although our model formally includes the case 
where the information is complete and exact. it generally does not yield 
interesting new results for that case. Complete and exact information is 
typical of many discrete problems such as the traveling-salesman prob
lem. The radius of information is then zero and the problem can be ex
actly solved. (See, however, Section 3. where we discuss why even prob
lems with complete and exact information are sometimes not. solved 
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exa.ctly.) ~wer bounds on problem complexity must then be obtained by 
entirely different techniques than the one we will describe. The creation 
of good algorithms can depend critically on the particular problem being 
considered and is often very difficult. We emphasize that for the most part 
our discussion and conclusions apply only to problems which are not 
exactly solved. 

An analogy from physics may be helpful in understanding what we 
believe should be the role of the information-centered approach. An ar
chitect designing a building must know the general laws of mechanics. In 
addition. he must take into account many particulars oflhis building, such 
as its site, the relation of the projected building to existing neighboring 
buildings, and the special needs and desires of his clients. Furthermore. 
the same laws of mechanics are used whether the design is a plan for a 
skyscraper. a bridge. or an auditorium. 

We believe that the information-centered approach provides the al
gorithm designer with general concepts and laws analogous to those pro
vided the architect or the civil engineer by the laws of mechanics. 

We stress that actually obtaining the radius of information, an optimal 
information. and an optimal algorithm for a particular problem mayor 
may not be hard. This is common in science. Although the laws of me
chanics are quite simple, applying them may be difficult. (See Section 
6.4.1 for further discussion.) 

We give a somewhat idealized description of what we believe may be 
the new role of the algorithm designer. He decides which of the informa
tion-centered settings (worst case, average case, asymptotic. average as
ymptotic) are relevant to his problem. Depending on anticipated al
gorithm implementation (VLSI, program) and/or the computer 
architecture on which the algorithm will run (uniprocessor. vector com
puter. a non-von Neumann architecture, systolic array). he chooses a 
model of computation. He applies general results to guide him on his 
selection of the information his algorithm will use and on the selection of 
his algorithm. He may have to perform difficult analysis ifhis problem has 
not been previously investigated. He estimates the problem complexity. 
For numerical algorithms he also concerns himself with algorithm stabil
ity, which, at least today. is dependent on detailed analysis. 

This article is an exposition of the information-centered approach to 
problems that are solved with uncertainty. We are calling the theory and 
application of the information-centered approach e-complexity. (See Sec
tion 10 for a discussion of the history and nature of t:-complexity.) 

To make this account widely accessible. we defer the abstract theory to 
Section 6. Even when we finally turn to the abstract formulations and 
some of the generdl results. we give them as simply as possible. 



40 J F. TRAUB AND H. WOiNIAKOWSKI 

Readers seeking to know more are referred to research papers and 
especially to two research monographs: Traub and Woiniakowski (l980a) 
and Traub el al. (1983). A third research monograph. reporting on aVer
age-case models and probabilistic sellings. is projected. 

We briefly summarize this article. In Section 2 we introduce the funda
mental ideas through the elementary example of integration. We are not 
particularly interested in integration. but have chosen it because readers 
of diverse backgrounds will find it familiar and because most of the basic 
issues arise even in this example. 

In Section 3 we discuss our first thesis and examine the causes of 
uncertainty. Problems cannol be solved exactly because the information 
is partial or approximate or because the class of algorithms is restricted. 
On the other hand. we sometimes choos~ to live with uncertainty to lower 
the complexity. We provide four examples where this choice is made: 
heuristics in artificial intelligence. probabilistic algorithms. approximate 
solutions of hard problems. and iterative solutions of large linear systems. 

We examine when nonadaptive information is just as powerful as adap
tive information in Section 4. Nonadaptive information provides a natural 
decomposition of a problem for solution on a parallel or distributed com
puter. Zero finding. integration. and binary search are used as examples. 

In Section 5 we return to our second thesis and discuss the limitations 
of the ad hoc methods of the algorithm-centered approach. 

An abstract formulation of the worst-case model with uncertainty mea
sured by a 'lorm is given in Section 6. The treatment parallels the example 
of Section 2. 

In Section 7 we discuss some mathematical applications. We confine 
ourselves to two kinds of applications. In Sections 7.1-7.3 we show three 
ways in which we can cut the search space for optimal information and 
optimal algorithms. In Section 7.4 we discuss whether smoother problems 
have lower complexity. We discuss a result regarding information re
quirements of mathematical economics in Section 7.5. 

So far we have confined ourselves to the worst·case normed model. 
Additional models are indicated in Section 8. We discllss a model where 
uncertainty is measured withollt a norm as well as average-case and as
ymptotic models. 

We have received many comments and questions concerning the infor
mation-centered approach. In Section 9 we present some of these. to
gether with our responses. 

In Section 10 we conclude by discussing whether F.-complexity is a new 
discipline. give a brief history. and indicate some of the directions for 
future research. 
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2. Fundamentals 

. We in.'roduce the fundamental ideas through the elementary example of 
mtegratlon. W~ stres~ that we are not particularly interested in integration 
per se but that II proVides a common ground with which all our readers are 
familiar. A general formulation is given in Section 6. When possible the 
same notation is used in Sections 2 and 6. • 

2.1 Problem Formulation 

We wish to compute f~ /(1) dt. Because "few" integrands can be inte
grated exactly. we have to settle for an approximate answer. We want to 
compute a number x such thai 

Ix - f~ /(/) JII < F. 

for some preassigned positive e. If e = O. we wanl to compute a number x 
such that x = f~ /(t) dt. (This distinction between e > 0 and e = 0 is made 
for technical reasons.) We say x is an e-approximalion. 
~e musl kn~w something about the integrand to compute an e-approxi

mahon. We Will assume thai we sample / at n given points I" ' 2 • •••• I~. 
Thus we know Ihe vector (f(t,). /(12) • ...• /(I~)J. We denole this vector by 
N(j) and call N(j) Ihe in/ormation. 

It is easy 10 show that if the number of sample points is fixed. then we 
cannot guarantee that an e-approximation is determined. To see this 
define . 

g(t) = /(/) + c n (t - t;)2. 
j~1 

Then N(g) = N(f) and the two integrands are indistinguishable under the 
information N(/). By choosing c sufficiently large. f g and f / can be 
made to differ by an arbitrary amount. lIence we cannot guarantee that an 
e-approximalion is determined. 

To guarantee that an F.-approximation is determined we must reslrict 
the class of integrands. To fix ideas. assume lis any function whose first 
derivative is bounded. Without loss of generality we can assume 11'(1)1 s 
I on 10. I). because if the bound were L we could scale our error results 
by L. Call the set of all such functions F. (This definition of F serves our 
present purpose; for a precise definition sec Traub and Woiniakowski 
(l980b. pp. 90. 1(9).) 

Thus we can formulate our problem as follows. Given information N. 
compute an F.-approximation to f~ /(1) dl for all / E F. 
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In Section I we stated that in the information-centered approach "one 
merely states how well a problem should be solved and indicates the Iype 
of information available_" We can now be more specific about what we 
mean, in terms of this example. The problem is specified as approximating 
f~ I(t) dt for alii E F. How well the problem should be solved is specified 
by the condition 

Ix - f~ I(n dfl < £ for all IE F. 

The type of information is 

N(f) = (fUI), f(/2), ... , f(l,,)). 

2.1.1 Why We Must Indicate the Type of Information 

Recall that it was stated in Section I that in the information-centered 
approach the type of information available must be indicated. We now 
amplify this remark. 

The type of information appropriate for the e-approximation of an inte
gral might be the values of an integrand or its derivatives at a number of 
points. In the example of Section 2.1 we assumed for simplicity that the 
type of information was integrand values. The problem would become 
trivial if we permitted f~ f(t) dl to be information. 

There are, however, problems for which it is reasonable to permit the 
value of an integral as information. An example is provided by the prob
lem of approximating a zero of a nonlinear function f. For that problem, 
Kacewicz (1976a,b, 1979) has shown that information consisting of f,f', 
and an integral of f is useful. 

2.2 Radius of Information 

As we observed in Section I, there exists a quantity called the radius of 
information which measures the intrinsic uncertainty of solving a problem 
when certain information is available. We use the integration example to 
provide the reader with an intuitive feel for this quantity. 

Let V be the set of integrands, ]. which has two properties: (I) N(h = 
N(j); thus] is indistinguishable from I under the information N; (2) ] E 

. F; thus /],/ s I on [0. II. 
There is. in general, an infinite number of integrands in V. The integrals 

of these functions are, of course, numbers. and it is easy to show that they 
form a finite interval. Because all the] are indistinguishable from f. we 
do not know which point in this interval is the exact answer. The uncer
tainty is minimized by choosing the answer as the interval midpoint. For 
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this example, the radius of information is the distance from the interval 
midpoint to an end point. The formula for the radius of information for a 
particular choice of N is provided in Section 2.7. 

From this discussion it should be clear that the radius of information 
has the following important property. The information determines an £

approximation if and only if the radius of information is smaller than e. 
We denote the radius of information by r(N). We have 

1beorem 2.1 The information N is strong enough to determine an £

approximation for all f E F iff r(N) < e. • 

This result holds very generally and not just for our integration example 
(see Traub and Woiniakowski, 1980a, Chapter I, Sect. 2; Traub et al., 
1983, Chapter I. Sect. 3). 

Note that the existence of an e-approximation depends only on the 
information and is independent of any notion of algorithm. This illustrates 
our information point of view. (See Section 5 for further discussion of the 
contrast between the information and algorithm points of view.) 

2.3 Algorithms 

An idealized algorithm (or simply, algorithm) is any rule for computing 
an approximation knowing the information 

N(f) = (f(/I), f(/2), ... , f(/,,)), 

and knowing that fE F. To indicate the dependence on information, we 
write an idealized algorithm as !p{N(f). Examples of algorithms are 

" 
!p{N(f) = L 0;/(/;), 

I-I 

l:1"-1 b·fi(t·) 
VJ<N(fl) = - , '. 

l:;ml c;!(/I) 

(2.1) 

Our definition of an idealized algorithm is far more general than the 
notions of algorithms prevalent in computer science. Motivation for this 
generality and its relation to notions common in computer science are 
discussed in Section 3.1.3 . 

2.4 Optimal Algorithms 

Which algorithms are best? Indeed, what do we mean by best al
gorithm? We will introduce two notions of best algorithm in this article; 
one of these will be introduced in this section. 
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The error of approximating f~ /(t) dt using the algorithm I{' is defined as 

dl{'. f) = ICP(N(f) .• f /(t) dtl· 

The algorithm error, e(I{'). is the worst eel{'. n for all / E F. 
The radius of information is a lower bound on the algorithm error. We 

have 

Theorem 2.2 For any algorithm I{' which uses the information N(f) 

e(1{') ~ r(N). 

furthermore. this lower bound is the best possible. That is. there can
not be a lower bound which is larger. -

Because we want to make the algorithm error as small as possible. we 
are interested in algorithms whose error equals that of the radius of infor
mation. We say I{' is an optimal error algorithm (or simply. an optimal 
algorithm) if 

e(1{') = r(N). 

We denote an optimal algorithm by I{' •. 
We shall discuss in Section 2.4.1 how to obtain optimal or nearly opti

mal algorithms. A second notion of optimality (optimal complexity al
gorithm) is defined in Section 2.11. 

2.4.1 How to Generate Good Algorithms 

We define two paradigms for generating optimal or near-optimal al
gorithms. 

Recall that we defined in Section 2.2 the set. V. of integrands which 
belong to F and which are indistinguishable under the information N. The 
integrrus of functions in V form a certain interval. An interpolatory al
gorithm, I{'I. chooses any point in this interval as an approximation to 
f:,J(t) dt. A antral algorithm. I{'c. chooses the midpoint. We have 

lbeorem 2.3 

e(1{'1) :S 2r(N). 

e(I{'C) = r(N). _ 

Because r(N) is a sharp lower bound on the error of any algorithm. 
interpolatory and central algorithms provide tight upper bounds. 
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To create an interpolatory algorithm. choose a "simplc" function i 
from F which is indistinguis!lahlc from/und!!r N. Then the interpolatory 
algorithm is the integral off. For cxample. / can he chosen as a polyno
mial or a piecewise polYllomial which interpolates [at the" points (I •• 
[(I.» •...• (In./(tn)). Then f~J(t) dt is an interpolatory algorithm. 

Central algorithms are in general more difficult to genemte. The al
gorithm discussed in the example of Se.ction 2.7 is a central algorithm. 

2.5 Linear Algorithms 

We defined an algorithm as any rule for computing an approximation 
knowing the information N. The simplest rule for combining the integrand 
values is 

n 

I{'(N(f» = 2: a;/(t;) 
;wl 

where the Q; are constants. We caliI{' a linear algorithm. 
Researchers often restrict themselves to considerations of linear al

gorithms. Because they assume a linear algorithm. they cannot rule out 
the existence of a much better nonlinear algorithm. Without assuming 
anything about the structure of the algorithm we will often be able to 
conclude the existence of a linear optimal algorithm. In particular. this is 
true for our integration example. 

2.6 Optimal Information 

We have assumed that the sample points t l • '2 ••••• t" are fixed. We now 
want to consider the best choice of the sample points. 

We hold the number of sample points n fixed. (The number of sample 
points is varied in Section 2.8.) Because the radius of information is a 
sharp lower bound on the error of any algorithm. we say N is optimal 
in/ormation if the sample points are chosen to minimize r(N). We dcnote 
optimal information by N·. 

2.7 Example 

We illustrate the concepts of Section 2.6. Recall that the information 
N(f) consists of n function samples and that the class of integrands con
sists of functions whose derivative is bounded by one on the unit interval. 

Optimal information consists of sampling/at the points t; = (2i - I )/2n. 
i = I, ...• n. Thus 

N·(f) = 1/(ll2n). /(/211) • ... , /(1 - J/2n)J. 
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Note that if the unit interval is imagined to be transformed into a circle 
with I = 0 coincident with I = I, then the sample points are equally 
spaced. 

For the optimal information N· the radius of information is given by 

(2.2) 

There exists an optimal algorithm which uses optimal information, and 
this optimal algorithm is linear. Its formula is given by 

(2.3) 

Thus the optimal algorithm isjust a Riemann sum! Indeed, it is simply 
the average of inlegrand values at equidistant points. In other words, the 
continuous average of I, which is of course J~ I(t) dt, is best approxi
mated by the discrele average of lat property chosen points. We call this 
the aueraging algorithm. 

2.8 Is the Information Strong Enough? 

So far we have fixed n, the number of sample points. RecaU that we 
want to compute an e-approximation for all IE F. It may tum out, even 
using optimal information, that n is not large enough. 

We therefore vary n and ask for the smallest n such that the information 
is strong enough 10 compule an e-approximalion. Recall Ihat, in general, 
we can compute an e-approximation for all IE F iff r(N) < e. Further
more, for oplimal information N·, r(N·) == Jl4n. It follows that if m 
denoles the smallest number of sample points which can determine an e

approximation, then m == I J/4eJ + I. 
To fix ideas, if e == /0-8, we must sample the integrand al 25,000,001 

points. No smaller number of samples will do. If the class of integrands is 
smoother (we assume the functions in F have only one derivative), then 
fewer samples are required (see Section 7.4). 

We require that the error be less than e for any IE F. This is a worst
case criterion. Intuition might suggest that, on the average, substantially 
fewer samples are required. This intuition is often incorrect, as we shaH 
see in Section 8.2. 

2.9 Computational Complexity 

Until now our concern has been with whether an e-approximation can 
be computed. If the answer is amrmative, we want to know how much it 
must cost; thai is, what is the computational complexity? 
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We shall restrict ourselves to time costs. Assume, for simplicity, that 
each arithmetic operation costs unity and that each function evaluati.on 
costs c. We define the e-complexity to be the smaHest cost of com~utang 
an e-approximation by any algorithm. We denote the e-complexl.ty as 
comp(e). We sometimes refer to E-complexity as problem complexity or 
computational complexit y. . 

Observe that the e-complexity is the smallest cost for solvang the pr~b
lem. This concept should not be confused with the algorith~ complexIty, 
which is the cost of a particular algorithm. The phrases algOrithm cost and 
algorithm complexity are used interchangeably. Obtaining the e-~omplex
ity is very difficult and we almost aJwa~s have. to be conte~t .~Ith ~pper 
and lower bQunds. The upper bound IS obtamed by exhlbltmg an a.l
gorithm whose cost then gives the upper bound. The I~wer bou~d IS 
established by a theorem which states that there .cannot ~~Ist an algonthm 
with lower cost. We shall see that under certam conditions the gap be
tween the lower and upper bounds is small (see Sections 2.10 and 6.11). 

2.10 Example 

We obtain upper and lower bounds on the e-complexity of our inte.gra
tion example. We begin with the upper bound. Recall that our optimal 
algorithm is the averaging algorithm 

",*(N.(j) ==! !/ei 
- I). 

n I~I 2n 

We saw in Section 2.8 that the minimal number of function samples m to 

compute an e-approximation is 

m == 1I/4eJ + I. (2.4) 

The cost of evaluating I at m points is mc. In addition, m arithm~t~c 
operations are sufficient to combine the samples. Thus the cost of '" IS 
mc + m, and using Eq. (2.4), 

cost(",.) = (LI/4eJ + I)(c + I). (2.5) 

That gives us an upper bound on comp(e). . 
We tum to the lower bound. Because m samples are reqUired to com-

ute an e-approximation, the cost of evaluating f must be at least ~c. In 
~dition, at least m - I arithmetic ~perations are needed ~o comb me the 
samples. Hence a lower bound is given by mc + m - I, and hence 

comp(e) ~ (l1/4eJ + I)(c + I) - I. (2.6) 
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From Eqs. (2.5) and (2.6) 

(( 1141:1 + I)(c + I) ~ comp(e) ~ (11/41:1 + I)(c + I) - I. (2.7) 

Note that the gap between the upper and lower bounds is very small. 
Hence we essentially know comp(e). The tight bounds are typical of 
"linear optimal algorithms." (Sec Section 6.11 for further discussion.) 

2.11 Optimal Complexity Algorithms 

We introduce our second notion of optimal algorithm. In Section 2.4 we 
introduced the notion of optimal error algorithm. We define an optimal 
complexity algorithm as an algorithm whose cost is the least among all 
algorithms for computing an e-approximation. 

For example. it follows from Eqs. (2.5) and (2.6) that the averaging 
algorithm. 

I ~ (2i - I) 
'P·(N·(f» = - L.J I -- . 

n i-I 2n 

is within. at most. one unit of being an optimal complexity algorithm. 
Recall that this algorithm is also an optimal error algorithm. This con

nection between optimal error algorithms and optimal complexity al
gorithms is often the case. (See Section 6.11 for further discussion.) 

3. Why Are Most Problems Solved with UncertaInty? 

In the previous section we introduced the fundamental ideas of e-colll
plexity through the elementary example of integration. In contrast, this 
section is devoted to a rather general examination of the causes of uncer
tainty. 

We solve problems with uncertainty because we cannot solve exactly 
or we choose nol 10 solve exactly. We will discuss three reasons why we 
(·annot solve exactly: the information is partial, the information is ap

. proximate, or the class of algorithms is restricted. 
As we observed ill Section I, even problems capable of exact solution 

on a uniprocessor will be solved only under uncertainty in the distributed 
environments of the future because complete, exact information on the 
current state of the distributed system will not be available. 

We will give four examples of choosing not to solve exactly: heuristics. 
approximate solut ion of hard problems. probabilistic algorithms, and iter
ative solution of large linear systems. To date we have used e-complexity 
to contribute only to the last of these. The first three are included here to 
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indicate the variety of areas where we choose not to solve exactly. We are 
hopeful that e-complexity will prove useful in some of these areas. 

3.1 Why We Cannot Solve Exactly 

We have given three general reasons why problems cannot be solved 
exactly. There are other causes of uncertainty. For example, we might 
not be able to solve a problem arising in nature because we cannot give a 
mathematical formulation. In the general abstract formulation to be pre
sented in Section 6, however, only the causes of uncertainty arising from 
partial and approximate information or from a restricted class of al
gorithms are considered. We now discuss each of these causes. 

3.1.1 Partial Information 

Recall that in the integration example we consider integrands IE F. 
where F is the set of integrands for which 11'(1)1 ~ I on the unit interval. 
We are given the information N(f) = l.llt.). f(t2), ••• , 1(/ .. ». In general, 
there are many other functions belonging to F which have the same values 
as lat the sample points. All of these functions are indistinguishable using 
the preceding information. Let V be the set of all functions which belong 
to F and which are indistinguishable knowing N(f). Of course, lEV. 

Let J. , 12 E V, J. '" 11. Then n 1.(1) dt can differ substantially from 
J~/1(/) dt. Thus we cannot guarantee that an e-approximation is deter
mined for both I. andji, unless r(N) < e. Because we cannot distinguish 
among the funclions in V, we cannot guarantee an e-approximation for I 
because I could be either fi or ji. 

It is crucia/to understand that the algorithm does not use f It uses only 
N(f) and tire lact thaI I belongs to F. 

We comment on this point. In engineering and natural science we typi
cally do not know f. What we might know are some measurements of I, 
and these measurements have experimental error. In mathematical sci
ence we sometimes know f. Thus we may want to compute J~ 1(/) dl 
where I(t) is a known function. However, the algorithm used to compute 
an e-approximation does not use /(1); it uses a finite number of evalua
tions of /. 

We say the information is parlial if knowing N(f) and IE F does not 
determine I uniquely. Partial information causes uncertainty. (An ab
stract definition of partial information is given in Section 6.) 

If information is not partial, it is complete. An example of complete 
information may be found in Section 3.1.3. 



50 J. F. TRAUB AND H. WOiNIAKOWSKI 

3.1.2 Approximate Information 

Information is approximate for many reasons; some of these are .Iisted 
below. We begin with how approximate information might occur In our 
integration example. 

So far. we have assumed that the sample values were exact. In practice, 
the sample values are often approximate for a number of reasons: they are 
computed with uncertainty; even if they are exact. roundi~g errors occu.r 
when they are entered into the computer; or they are obtamed by expen
ments with error. More generally. information is approximate for many 
reasons. These include the stochastic nature of information. computer 
errors, transmission errors, limitations of number representation and 
arithmetic. adversary's lies, limitations on measurement accuracy due to 
instrument limits. and intrinsic measurement limitations due to Heisen-
berg uncertainty. . . " 

We comment on just two of these. The case of stochastic mformatlon IS 
of great importance in many applications. It is not included in the models 
we have studied so far but will be incorporated in future models. 

As an example of ad~ersary's lies we consider binary search (w~ich is 
popularly called "20 Questions"). Is there a good strategy for playmg 2~ 
Questions with a liar? More precisely, what questions should you ask If 
you know k of your adversary's answers will be lies. (Of cours~ y~u do 
not know which answers are lies.) Rivest et al. (1980) show that If k IS not 
too large relative to the total number of questions. then there is a se
quence of questions such that the complexity i.s n~t m.uch greater than for 
the case of no lies. An e-complexity formulation IS given by Traub et al. 
(1983) for both the discrete and continuous versions of this proble~. 

Traub et al. (1983, Chapter 2) introduce the concept of appro~'mate 
iflformation, Np(fl. where p is a measure of error. an~ t~e notion of 
approximate radius of information r(Np)' As the generahzahon of Theo
rem 2.1, we have the following theorem. 

Theorem 3.1 The information Np is strong enough to determine an e
approximation iff r(Np) < e. -

3.1.3 Realizable Algorithms 

Even if the information is complete and exact we may not be able to 
compute an exact answer because we restrict what we mean by an al-

gorithm. . . . 
Recall that an idealized algorithm is any rule usmg the mformalton 

N(n. One of the reasons for this extremely general no~ion ?f algorithm is 
the following: if we want to show that an e-approxmlatlon cannot be 
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computed (because the information is not strong enough), then it is desir
able to establish this with the most general notion of algorithm. If, on the 
other hand. the information is strong enough to determine an e-approxi
mation and we want to compute an e-approximation. we are faced with 
the fact that we may not be able to implement an idealized algorithm. 

We may therefore restrict the algorithms under consideration to a class 
of realizable algorithms. What we define to be a realizable algorithm is up 
to us. We emphasize that restricting the notion of algorithm can only 
increase uncertainty. 

We illustrate the idea of a realizable algorithm by a simple and practical 
example. Let F be the set of nonnegative real numbers and let N(fl = f. 
We wish to compute an e-approximation to Vj. 

The information is certainly complete because we know f. It is also 
exact. If we permit any algorithm, then we take ~N(n) = f{J(fl = 0. 
There is no uncertainty (e = 0). This is as we would expect. If the infor
mation is complete and exact and if idealized algorithms are allowed. the 
answer can be computed exactly. 

We now restrict our notion of algorithm. For this problem, a realizable 
algorithm is any rule which uses N(fl and a finite number of arithmetic 
operations (+. -, x. +) and comparisons. Now there is uncertainty in the 
answer. 

The computation of square roots is a special case of computing an 6-

approximation to a polynomial zero. There has been much recent pro
gress on computing e-approximations with realizable algorithms (see 
Kuhn el al., 1983; Murota. 1982; Schonhage, 1982; Shub and Smale, 
1982a,b; Smale. 1981), 

What we elect to call a realizable algorithm is up to us. Examples of 
realizable algorithms include Turing-machine algorithms, algorithms that 
are computable functions, on-line algorithms, algorithms that are linear 
functions of the input, and stable algorithms. 

We discuss the relation between the concepts of algorithm used else
where in computer science and our notion of realizable algorithm. Recall 
that an idealized algorithm is an arbitrary rule for computing an approxi
mation knowing certain information. Clearly, if an e-approximation can
not be computed using an idealized algorithm, it cannot be computed by 
an algorithm in any formal system. Only if an e-approximation can be 
computed by an idealized algorithm does it become of interest whether an 
e-approximation can be computed in a formal system, say a Turing-ma
chine model. Of course, for many computer science problems there is an 
exact solution and the issues of decidability and complexity in a formal 
system become paramount. ISee Traub el al. (1983, Chapters 3 and 5) for 
further discussion of restricted classes of algorithms. J 
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3.2 Why We Choose Not to Solve Exactly 

We choose not to solve problems exactly because it is significantly 
cheaper to solve approximately and we are content with an approximate 
solution. Hence we live with uncertainty to lower the complexity. We will 
illustrate this with four examples. 

3.2.1 Heuristics 

What is the difference between an algorithm and a heuristic? A thor
ough discussion of heuristics would carry us too far afield. Roughly 
speaking. the distinction is that an aJgorithm guarantees a correct answer 
whereas a heuristic is a rule of thumb; a correct answer is not guaranteed. 
IAn informal discussion of algorithms and heuristics may be found in 
Traub (1978).1 

Heuristics are used for a number of reasons: we could solve algorithmi
cally. but it is too expensive; no algorithm is known; and/or the goal is not 
well defined. 

We discuss only the first of these here. using chess as an illustration. 
The problem is to find a winning strategy for white (if it exists) against all 
possible strdtegies of black. The set F consists of the rules of chess and 
the initiaJ position. The information is complete and exact; there is there
fore an idealized algorithm. Indeed. we have the following gedanken al
gorithm. Generate the tree of all possible moves. If there exist one or 
more winning strategies against all moves by black. choose one of these 
strategies. This is an algorithm which guarantees a win. If no such stnd
egy exists. no algorithm for winning exists. 

Such a "brute-force" approach would be far too expensive (McCor
duck. 1979). We live with the uncertainty of the heuristics to decrease 
complexity. 

3.2.2 Approximate Solution 01 Hard Problems 

Consider problems which we COUld. in principle. solve exactly (f: = 0). 
but for which the algorithm complexity of all known algorithms is so high 
that we cannot solve the problem exactly on even the fastest computers. 
lIence we use an algorithm of low complexity and solve the problem 
approximately (t: > 0). 

We illuslrate the idea with a well-known instance of combinatorial opt i
mil.ation. bin packing. Let f = If I • Ii . .... fn 1 be a given sequence of 
positive numbers on the unit interval. Let DIN,. B1N 2 •••• be a sequence 
of bins. each of unit capacity. In bin packing. we assign each/; to a bin in 
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such a way that the sum of numbers in each bin does not exceed one and 
the total number of bins used is minimal. 

Because bin packing has complete and exact information. the radius of 
information is zero. Hence the problem can be solved exactly. What is the 
t:-complexity (with e = 0) as a function of n? Let comparison and the four 
arithmetic operations each cost unity. The cost of all known algorithms is 
an exponential function of n. It is known that bin packing is NP-complete 
(see Garey and Johnson. 1979) and it is therefore very likely that the f:
complexity (with f: = 0) is also an exponential function of n. In that case. 
we cannot'solve bin packing on even the fastest computers for even 
moderate values of n. 

A packing is an f:-approximation if it lIses at most (I + e) times more 
bins than the optimal one. Can we compute Iln t:-approximation III milch 
lower cost? The answer is affirmative for arbitrarily small positive f:. ISee 
Karrnarkar and Karp (1982) for recent results and a survey of earlier 
work.} 

This idea of trading increased uncertainty for lower complexity docs 
not always work. There are problems (Garey and Johnson. 1979) for 
which the complexity is unchanged (more precisely. the problem remains 
NP-complete) no matter how much we increase the uncertainty. 

3.2.3 Probabilistic Algorithms 

We briefly indicate the use of probabilistic algorithms to decrease com
plexity. [See Rabin (1976) for additional material.) 

Randomization is introduced into the aJgorithm. If I{J, is a random al
gorithm. we say thatl{J, solves Ihe problem with confidence greater than 
I - f: if for every f E ,.. the probability that I{J, produces an incorrect 
solution is smaller than £. 

As Rabin observes. il may at first seem surprising that employing ran
domization decreases complexity. He gives two examples. The first is to 
find the nearest neighbors of n points in k dimensions. The second is to 
determine whether a number is prime. Solovay and Strassen (1977) give a 
different probabilistic algorithm for determining primaJity. 

We briefly discuss primality. Given an integer fwe wish to determine if 
it is prime. Note that the information is complete and exact. Hence. in the 
class of all algorilhms. there exist algorithms which solve the problem 
exactly. that is, which delermine whether or not fis prime. To decrease 
complexity we settle for an answer with uncertainty; that is. we some
limes gel the wrong answer. However. the probability of a wrong answer 
is "small." 
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3.2.4 Iterative Solution of Large Linear Systems 

The approximate solution of NP-complete problems and the use of 
mndomized algorithms to reduce complexity are recent developments. A 
far earlier use of the idea that it might be possible to reduce cost by 
solving approximately may be found in the iterative solution of large 
linear algebraic systems. 

Let the linear system be specified by Ax = b, where A is an n by n 
matriX. "Direct" methods can be used which (neglecting round-off er
rors) solve the system exactly at a cost proportional to n). (Direct meth
ods based on fast matrix multiplication are not used in computational 
practice.) The values of n occurring in practice are so large that direct 
methods may take too much time or space. For large values of n the 
matrix A is usually sparse, i.e., only a few elements are nonzero. Systems 
of linear equations with sparse matrices are especially well suited for 
solution by itemtive methods. 

More precisely, suppose we want to find an £-approximation, i.e., a 
vector x such that IIAx - bl! < £, where IIbll = I and £ E (0, I). An £
approximation can be computed using an iterative method based on par
tial information. Depending on the size of £, the size of n, the information 
N, and the class F to which A belongs, it may be that an £-approximation 
can be iteratively computed at substantially lower cost than the exact 

solution. 
To be specific, let F be the class of symmetric positive definite matrices 

whose condition number is bounded by M. Let the information be 

This is called Krylov information and is commonly used in the itemtive 
solution of large linear systems. If k < n, the information is partial. It is 
easy to show that N,(A, b) can be computed with k matrix-vector multi
plications. If A is sparse, one matrix-vector multiplication takes time 
proportional to n instead of n 2, and N,(A, b) can be computed in time 
proportional to kn. 

How many matrix-vector multiplications do we need to determine an £-
approximation? This problem was studied by Traub and Woiniakowski 
(l980b), who showed that for large n (relative to M and 1Ie) we must 
perform k matrix-vector mUltiplications where 

k :i!! (YMl2)ln(2h). 

The minimal cost of finding an e-approximation, comp(e), is given by 

comp(t:} :i!! n(v'M/2)ln(2h). 
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This should be contrasted with the cost of a direct method. If the sparse
ness of A is not utilized, then typically the cost of a direct method is 
proportional to n), which for large n is much greater than n(YMI2)ln(21£). 

There do exist efficient direct methods which utilize the sparseness of A 
and whose cost is substantially less than n]. These methods are usually 
heavily dependent on the structure of A and cannot be as widely applied 
as iterative methods. 

4. Nonadapllve Information and Parallel ComputatIon 

One achievement of the information-based approach is general results 
on when nonadaptive information is just as powerful as adaptive informa
tion. Indeed, it is the notion of the radius of information that permits us to 
pose this question in general. In this section we give some examples; 
general results are reported in Section 7.1. In Section 4.5 we show that on 
a parallel computer, the use of nonadaptive information can lead to linear 
speedup. 

We indicate the difference between nonadaptive and adaptive informa
tion through an example (see Section 7.1 for a general formulation). Let 
the information be n evaluations of /. Thus 

N(fl = [/(1,), ... , /UA))' 
If the 1/ are independently chosen, we say this is nonadaptive informalion. 
Now, assume that lis evaluated at I,. Then 12 is chosen, knowing I, and 
/(1,). Aner /(1') is evaluated, I) is chosen, knowing I" /(1,), Iz, and /Uz). 
Generally, I; is chosen, knowing I" fUll • ... , II-!. /(1/_,). We call this 
adaplive informalion. 

Because the radius of information r(N) measures the intrinsic uncer
tainty if N is used, we determine the power of information N by consider
ing r(N). Let N" be optimal adaptive information. If there exists non
adaptive information N""", so that r(N""") is comparable to r(N"), then we 
conclude that adaptive information is no more powerful than nonadaptive 
information. This is made precise in Section 7.1. 

Adaptive algorithms based on adaptive information are widely used. 
We shall see that for certain problems, adapt ion cannot help. There are 
also problems for which adaptive information is exponentially better than 
nonadaptive information. 

Our interest in the power of nonadaptive information is motivated by a 
number of considerations. 

I. If the optimal information is nonadaptive, we have a natural decom· 
position for parallel computation. Because nonadaptive information mini-
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mizes comlllunication requirements, it is desirable for distributed compu

tation. 
2. If we know that the optimal information is nonadaptive, we can very 

significantly cut the search space when we seek optimal inform~tion. 
Nonadaptive information is much simpler and therefore much easier to 
analyze than adaptive information. ., .. . 

3. Because the stmcture of nonadaptive mfonnatlon IS so much slm~ler 
than the structure of adaptive information, it is of intrinsic mathematical 
interest when nonadaptive information is just as powerful. 

4.1 Example: Zero Finding for Functions Which Change Sign 

We give an example where adaptive information is exponentiall~ more 
powerful than nonadaptive information. Let F be the class ~f continuous 
functions / which change sign on (0, I J. Therefor~, / vam~hes at least 
once on the interval. Lei (l be any poinl where /val1lshes. Without loss of 
gcneralit y we can assume /(0) < 0, /(1) > O. The information is values 

~f . . 
Given only that / belongs to F. we can compule an c.-approximation 

provided c. > •. We simply take as our c.-approximation, .I = •. If c. ::s • we 
must have more information. . 

Compute /m. If /m > 0, there is a zero on (0. U. If /m < 0, th.e~e IS a 
zero on U. I). If /m = O. then (l = .. In all cases, ~h~re~s we.onglnally 

knew (l lay in an interval of length I, we now know It lies man mterval of 
length •. 

We will describe one more step of this process. Without loss of general-
ity assume there is a zero on (0, U. We are now in the same situation as 
we' started except that we have evaluated / at one po.int ~nd we ~ave 
halved the interval. We can now compute an c.-approxlmallon proVided 
t: > 1. We take as our c.-approximation, .I = 1. If c. ::s 1 we must have 
lIlore information. . 

Compule /(1). If /W > 0, there is a zero on (0. ~). If /m < 0: Ihere IS. a 
l.ero on (1, H. If /W = 0, Ihen (l = 1. We have agam halved the mtervalm 
which (l lies. 

The general pallern should now be clear. At each slep we evaluate fin 
the center of the interval where (l is known to be. This information is 
called biseclion information. It is clearly adaptive because we ca~not 
decide where to sample next until we know the result of th~ prevIOus 
sample. After sampling at n poinls, we have reduced the size. of !he 
interval in which (l lies to 2 - ft. If c. > rl" t I), we take our c.-approxllnallon 
as the midpoint of the interval in which a is known to lie. 
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Thus bisection information usihg n points cuts the uncertainty to 
Z-'''+II. Furthermore. it is known that this is optimal udaptive information 
(see Sikorski. 1982). 

How much can we reduce Ihe uncertainly if we reslrict ourselves to 
nonadaplive information'! The optimal nonadaplive information is 10 sam
ple/at n equispaced poinls (see Traub and Wofniakowski. 1980a, p. 166). 
nlen (l lies in an inlerval of length lI(n + I). If c. > 1I(2(n + I). Ihen we 
lake our c.-approximalion as Ihe midpoinl of the interval in which (l is 
known to lie. 

Thus the oplimal nonadaplive informal ion culs the uncertainly 10 II 
(2(n + I)). In contmst, the optimal adaplive information cuts Ihe uncer
lainty 10 2- lfttu• Thus. for this prohlem (zero finding) and this set of 
funclions (contin'uous funclions which change sign on 10. I)). adaptive 
informal ion is exponentially beller than nonadaplive information. 

4.2 Example: Integration 

In Ihe previous section we saw an example where adaplive information 
was exponentially stronger Ihan nonadaptive informal ion. We now give 
an example where adaptive informal ion is no stronger than nonadaplive 
information. 

Recall Ihe integmtion example of Seclion 2. We said that the optimal 
evalualion points were 1/ = (2i - 1)/2n, i = 1.2 ..... n. This informal ion is 
nonadaptive. There exists no adaptive information which is superior. 

This is a special case of a very general result. We will relurn to this in 
Section 1.1 when we discuss results of Ihe geneml Iheory. 

The fact thai adaption does nol help is counterinluilive. II might be 
expecled Ihat it is possible 10 sample 10 see where Ihe integrand is chang
ing rapidly and once such a region is identified to pul more sample points 
Ihere. The Iheory slales that this inluilion is fallacious. 

RecaJllhallhe example of Seclion 2 is in a worst-case selling. It may be 
hoped Ihat on Ihe avemge, adaplation helps. Recent work shows adaptive 
information is nol slronger, even on the average (see the discussion in 
Seclion 8). 

4.3 Example: Zero Finding for Lipschitz Functions 

In Section 4.1 we considered zero finding for funclions which changed 
sign and found thai adaplive informal ion was exponenlially more power
ful than nonadaplive inforination. Our second example was integration. 
where adaplion docs nul help. Now. integral ion is a linear operation. 
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That is, the integral of a sum is the sum of the integrals. As we shall see in 
Section 7.1. adapt ion does not help for linear operations. Zero finding is 
lIot linear because the zeros of the sum of two functions are not the slim of 
the zeros. This suggests that perhaps adapt ion helps for nonlinear prob
lems and does not help for linear problems. The following example shows 
that such a general result does not hold. 

The problem is once more zero finding. Now let F be the class of 
functions I such that I has a zero and such that 

I/(x) - l(y)1 :5 Klx - yl 
for all real x and y. This condition is called a Lipschitz condition and we 
therefore call ,.. a Lipschitz class. As in Section 4. I. we assume the 
information N(f) consists of function vaJues. Thus N(f) = [/(11). 1(/2), 
'" ,f(l,,»). Sukharev (1976) shows that adapt ion does not help. Further
more, the optimal nonadaptive information is the values of I at almost 
equispaced points. The radius of information of this optimal informa
tion is lK/(n + I). lienee an e-approximation can be computed iff KI 
2(n + I) < e. 

These results have been genemlized to any number of dimensions by 
Sikorski (1983). 

We review what we have learned from these examples. For the same 
problem. root finding. we have found that for one class offunctions adap
tive information is exponentially beller than nonadaptive information. 
whereas for another class of functions adapt ion does not help. To date. 
there are no general results on when adaption helps for nonlinear prob
lems. This should be contrasted with linear problems (see Section 1.1). 

4.4 Example: Binary Search 

We turn to a very different kind of example. Zero finding and integra
tion are examples of continuous problems. We now give a discrl'lc ex
ample. 

Our example is an instance of binary search. popularly called the game 
of 20 Questions. Binary search models many important applications. in
cluding disease diagnosis and drug prescription. 

We present a simple version as a game between players A and B. A 
thinks of an integer a. where I :5 a :5 m. Player Iltries to identify a by 
asking whether a belongs to certain subsets of the integers {I. 2, .... m}. 
For each question. A answers "I" if a belongs to the subset. and "0" 
otherwise. The goal of the game is for B to identify a with the minimal 
number of questions. The information in this example is the sequence of 
leros and ones which B gets in answer to his questions. 
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~ssume for simplicity that m = 2". If B asks "bisection" questions 
which at each step halve the size of the set to which a belongs then I} 
I 'd'f . . ) can 

a ways I enll y a With n = log2 m questions. 
Bisection information is adaptive. Is there nonadaptive inform- t' 

h· h '11 I . ,l Ion '!' IC WI a so rc:rmlt B to identify a with log2 m questions? The answer 
IS yes. and we ~III leave it as a small puzzle for the reader to see what 
pattern of questIOns B should ask. 

Thus. for this .example of binary search. adapt ion does not help. A 
gener~ .theorem Is.~stablished in Traub el al. (1983. Chapter 4. Theorem 
3.1) glVlllg a condlhon under which adapt ion does nol help. The slate
~ent of the general theorem requires more machinery than we want to 
Introduce here. Suffice it 10 say that if the general theorem is used for the 
special selling of this example, il slates Ihat adapt ion does not help 
because any question on subsets is allowed. 

There .are close conneclions belween zero finding for functions that 
change sl~n and for binary search. Yet, for zero finding. adapt ion helps 
exponentially whereas for binary search il does not help at all. The reader 
may want to consider why. 

4.5 Parallel Computation and Nonadaptive Information 

~I the beginning of our discussion of nonadaptive information we 
po~nled oul tha! nona~aptive information is well suited 10 parallel compu
tatIOn because It proVides a natural decomposition. Here we use a simple 
example to quantify this notion. 

4.5.1 Parallel Speedup 

Firsl we review the methodology for determining how much fasler 
parallel computation is than sequential computalion (sec also Traub 
1974). . 

Let Ihe minimal cost to compute an &-approximation on a sequenlial 
compuler be Ihe sequential e-complex;ly, denoted by comp(e). We re
ferred to Ihis as e-complexity, or problem complexity. in Section 2. We 
~ssume a parallel computer with p processors which arc identical and 
Independent. Let the minimal cost 10 compute an e-approximation on 
such a parallel compuler be Ihe parallel e-complexity, denoted by 
comp(t:. p). Of course, comp(e, I) = comp(e). 

The speedup R(t:, IJ) is defined as 

R(e. p) = comp(E:)/comp(e, p). (4.1) 

.We comment on Ihis definilion. Researchers somelimes misinterprel 
thiS measure and compare Iheir favorite parallel algorilhm wilh .rome 
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sequential algorithm. To see what has been achieved by parallelism. the 
comparison must be with the c-complexity, that is. with the cost of the 
optimal sequential algorithm. 

The speedup R(t:. (J) measures how much parallelism can speed the 
solution of a problem. It is an algorithm-independent measure. It is easy 
to see Ihat 

R(t:. p) :S p. (4.2) 

Therefore. linear speedup is optimal. The speedup of some problems is 
only log p or even a constant independent of p (see Traub. 1974). 

In Section 4.5.2 we shall see that under simple. nonrestrictive assump
tions. the speedup of the integration problem studied in Section 2 is close 

to p. 

4.5.2 An Example Where Parallel Speedup Is Close to Optimal 

Recall that for the integration problem studied in Section 2 a lower 
bound on the c-complexity is given by 

comp(e) ~ me + m - I 

where the number of function samples. m, is given by 

m = l1/4e1 + I. 

(4.3) 

Our sequential model of computation is that every arithmetic operation 
costs unity and each evaluation of / at a point costs c. 

Recall that the optimal sequential algorithm is 

I ~ (2; - I) 
.p(N(fl) = - 2."/ -- . 

m /_1 2m 
(4.4) 

We use this as a parallel algorithm. Assume that the cost of evaluating/at 
a point is again Co That is. we do not use parallelism in the computation of 
/. Assume for simplicity that P. the number of processors. divides m. 
Then the cost of computing the m values of / is emlp. The arithmetic 
operations to form tp can be performed at cost mlp + IIog2 p1. Hence the 
cost of computing tp on our parallel computer is 

cost(tp. p) = emlp + mlp + IIog2 pl. (4.5) 

Because comp{t:, Il) is the minimal cost of computing an £-approxima
tion, we conclude from Eqs. (4.3) and (4.5) that 

comp(£) me + m - I me p) = ~ . , comp(£. p) emlp + mlp + lIog2 pi 
(4.6) 
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From Eqs. (4.2) and (4.6), 

p 2: R(E, p) 2: P [ m(e + I) - I ]. 
m(l' + I) + pliog2 pi (4.7) 

Observe that if me is large compared to p log2 p, which is a very reason
able assumption in practice. then R(E. Il) = p. 

We concl~de that the parallel speedup is close to linear; that is, it is 
close to ophmal. 

We h~ve carried out this analysis for the special problem of integration 
and for mformation consisting of function evaluations. The same conclu
sion, that the parallel speedup is close to optimal. holds whenever the 
optimal information is nonadaptive and there is a linear optimal error 
aJgorithm. (See Section 7 and Traub and Woiniakowski (1980a. Chapters 
2 and 3).] 

5. Limitations of the Algortlhm-Centered Approach 

As we mentioned in Section I. we believe that for problems with partial 
or approximate information the usual algorithm-centered approach can be 
supplemented. and somelimes replaced. by the information-centered ap
proach. 

There will. of course. be problems for which it is technically difficult to 
apply the information-centered approach and it will still be necessary to 
resort to the aJgorithm-centered approach. This will be particularly the 
case for complicated "real-world" models. With time. we expect the 
technicaJ difficulties to be overcome for harder and harder problems. 
Today. algorithms are often obtained on the basis of ad hoc criteria. Using 
such criteria has several disadvantages: ad hoc criteria may not be very 
good; and. if ad hoc criteria are used. there is no idea of how far the 
algorithm is from optimal. and, in practical terms. how much money is 
being wasted. 

We use one well-known algorithm to illustrate the limitations of the ad 
hoc approach. 

5.1 Example of Ad Hoc Criteria: Gauss Quadrature 

The family of Gauss quadrature methods is widely used in practice. The 
methods are derived under three assumptions: 

I. Methods of the form tp = ~i" I 1IJ'(1;) nre considered. 
2. The information fUll • .... /(1,,) is nonadaptive. 
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3. The 2n parameters a,. "', a", I, • ... , I" are chosen by the criterion 
that the error of integration should be zero if lis a polynomial of degree, 
at most. 2n - I. 

We discuss these three criteria. It is unlikely that the first two criteria 
will be found in a text; the assumptions are made implicitly. 

The first criterion is that the algorithm is linear. Smolyak (1965) showed 
that under a fairly weak assumption regarding the class of integrands. it 
can be concluded that the optimal algorithm for integration is linear. The 
advantage of proving that the optimal algorithm is linear, rather than 
deciding to study only linear algorithms. is clear. If an ad hoc decision is 
made to study only linear algorithms. a much better algorithm which is 
not linear may be missed; ifit is proved that an optimal algorithm must be 
found among the linear ones. that cannot happen. 

The second ad hoc criterion is that the information is nonadaptive. 
Under the same assumption mentioned previously regarding the class of 
integrands, Bakhvalov (1971) proved that nothing is lost by considering 
only nonadaptive information. 

The third ad hoc criterion is that polynomials of sufficiently low degree 
are exactly integrated. Is there any reason to think this is a good criterion 
if the integrand is not a polynomial? As will be shown in Section 5.2. we 
can pay an exponential penalty by using Gauss information rather than 
optimal information even for analytic integnmds. 

If the class of integrands is sufficiently "polynomial-like." then these 
criteria lead to good algorithms. Thus. if F is the class of analytic func
tions with uniform bounded norm on the disk of radius r, then. for large r. 
Gauss nodes and Gauss quadrature formulas are nearly optimal (Barnhill. 
1968; Larkin. 1970; Pinkus. 1975). Note that the restrictions on Fare 
severe. The integrands must be "almost" entire and uniformly bounded. 

We have no particular quarrel with Gauss quadrature. We usc it be
cause it is widely known and because it is typical of the numerous al
gorithms obtained on the basis of ad hoc criteria. Indeed. there is a very 
beautiful mathematical theory involving families of orthogonal polynomi
als (Ralston and Rabinowitz, 1978) that is used to analyze Gauss quadra
ture. However. the elegant theory of orthogonal polynomials does not 
necessarily lead to good information and algorithms. 

5.2 How Bad Can Gauss Information Be for Analytic Integrands? 

The title of this section refers to Gauss information rather than to Gauss 
algorithms. We will show that Gauss information can be poor, and there-
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fore any algorithm using Gauss information must be poor (By G 
• f< t" . auss 
III orma Ion we mean mtegrand evaluations at the Gauss nodes.) 

Let F be the c1as~ of.real functions on I-I. IJ which can be analytical! 
extended to the umt disk and whose extension is uniformly bounded i~ 
nor ..... Let Nfl de~ote Gauss information and let N· denote optimal infor
mation. Kowalski et al. (1983) show that 

r(NG) _ ",,2. 
whereas Bojanov (1974) has shown that 

c > O. 

Thus. an exponential penalty is paid for using Gauss information rather 
than the optimal information. 

5.3 Is There a Relation between the Exactness Criterion and 
Optimal Algorithms? 

The G~uss quadrature coefficients are chosen to exactly integrate all 
polynomials of degree. at most, 2n - I. Is there any relation between 
exactness and optimal algorithms? 
. The ~nswer is negative. For example. the optimal algorithm discussed 
In Section 2.7, 

turns out to be exa~t only for first-degree polynomials. Werschulz (1983) 
has shown there eXists a class of integrands for which not even constants 
are exactly integrated by an algorithm which is optimal for that class. 

6. An Abstract Model 

. We present an abstract model; the following sections are numbered and 
htled to ~orrespond to those of Section 2. We emphasize that even though 
a numencal example was used in Section 2. the abstract formulation is not 
confined to stich applications. 

This is a normed worst-case model because uncertainty is mea. 
~ured by a norm. A model where uncertainty is measured without a norm 
~s briefly mentioned in Section 8; average-case models are also discussed 
I? Section 8. We limit ourselves to uncertainty caused by partial informa
hon. IThe theory of approximate information and further development of 
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a model where uncertainty is measured without a norm may be found in 
Traub ~I al. (19113).1 

Allhough we will formulate an abstract model and present a number of 
importanl results, we will keep the presenlation as simple as possible. For 
example, we will not cover r'dther deep conneclions with pure approxima
lion Iheory Ifor which, see Traub and Wofniakowski (l980a, Chapter 2. 
Sect. 6; Chapter 3, Sect. 5; Chapter 7, Sect. 4)). 

6.1 Problem Formulation 

Let S be a linear or nonlinear operator (mapping) 

S: F-+ G. 

We wish 10 compute the element S(f), /E F. In general, we have to settle 
for an approximation to S(/). We want to compute an element x = x(/) 
such Ihat 

liS(/) - xII < £ (6.1) 

for some preassigned £ > O. and x = S(f) if £ = O. We say x is an £
approximation. II measures the uncertainty in our knowledge of S(/). We 
assume F is a subset of a linear spac.:c F' over the real or complex field and 
that G is a normed linear space. 

We must know something about Ito compute an £-approximation. We 
assume we know the element N(f) where 

N:F-+II 

is a linear or nonlinear operator (mapping). We say S is the solution 
opnator, F is the class of problem elements. N is the in/ormation opna
lor. and N(f) is the information. 

The operators Sand N and the abstract set F are the basic concepts of 
our formulation. We call this the SFN model. We seek an £-approxima
lion for all / E F. This normed worst-case model may be formulated as 
follows: 

Problem: Compute an £-approximation to S(f). VIE F. 
Inromutlon: N(f). 

In Table I we relate these concepts to the integration example of Sec
tion 2. The left-hand column has the abstract concepts and on the right are 
the corresponding concepts for the integration example. 

By special choices of S, F. and N. we specialize to areas which arc 
major disciplines. Thus S = I (the identity operator) is the approximation 
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problem (optimal estimation). On the other hand, N = I is typical of the 
problems treated in algebraic and combinatorial complexity. 

6.1.1 Linear Problems 

The case lhal S is a linear operalor is of special interest for two reasons. 
For many applications. S is linear. Examples include approximation 

(optimal estimation). integration (especially multivariate integration). in
terpolation (especially multivariate interpolation). and linear partial dif
ferential equations. Furthermore. the theory. not surprisingly. is far more 
developed for linear S. [See Micchelli and Rivlin (1977) and Traub and 
Wofniakowski (l980a. Chapters 1-6) for the worst case; see Traub et al. 
(1981). Wasilkowski and Wofniakowski (1982). and Woiniakowski (1982) 
for the average case.) 

It is desirable to consider the case that the set F is generated by a linear 
operator. Recall thai F is a subset of a linear space F'. We now add the 
assumption that T. T: F' -+ K. where T is linear and where K is a linear 
normed space over the real or complex field. Assume 

F = (fE F' and IITJ1I s I). (6.2) 

We assume S. S: F -+ G is also linear. If these assumptions hold we say 
the probl~m is linear. 

The definition of linear problem may seem artificial. but many problems 
are of this form. The integration example formulated in Section 2.1 is 
linear. Often. T/ = p". The assumption N Till s I is for convenience; it is 
equivalent to the assumption that" Till is uniformly bounded. 

The important assumption is that Tf exists. The quantity U TJ11 appears in 
the formula for radius of information. If II Tfll is unbounded. the radius of 
information and therefore the uncertainty are also unbounded. 

In Section 7.2 we will discuss whether linear problems have "linear 
optimal algorithms." 
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6.2 Radius of Information 

There exists a quantity called the radius of information which measures 
Ihe inlrinsic uncertainty of solving a problem when information N is avail
able. The concept of radius of information is motivated by the following 
considerations. 

Fix I E F. We know y = N(J). Assume that N is a many-.'o-one operd-
tor Ihal is. N(J) is parlial itiformalion. Let V(y) be Ihe prelmage set of y 
in j ... ThaI is, it is the set of elements in F indistinguishable under N (see 
Fig. I). Let U(y) be the image set of V(y) under S. ... 

It should be clear that with the infonnation N(f) we cannot dlstmgUlsh 
the element S(f) among the elements U(y). Hence the "size" of the set 
U(y) is a measure of the intrinsic uncertainty due to N. A .standard.me~
sure of the size of a sel is the minimal radius of a "ball" which contams It. 
Let rad(U(y» denote the radius of U(y). We now vary land define the 
radius of information (for the worst case) by 

r(N) = sup rad( U(y». 
, e NlFl 

The preceding discussion serves as a sketch of the proof of 

Th~rem 6.t The infonnation N is strong enough to determine an e

approximation. V IE F. iff r(N) < e. -

F 
S (F) 

FlO. I. 
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A fonnaJ definition of radius of information and proof of Theorem 6.1 
may be found in Traub and Woiniakowski (l980a. Chapter I, (}efinition 
2.1. and Theorem 2.1). 

Observe that the radius of information should be wrillen r(N. S. F). 
We write it simply as r(N) for simplicity and because we will usually keep 
Sand F fixed and study the radius as a function of information. Of course 
Sand F also supply information (see Tmub el al. (1981. Sect. 6) for a 
quantification). 

The radius of information defined here bounds the uncertainty caused 
by partial infonnation. The generalization that includes uncertainty 
caused by appn~ximate information and restriction to a class of realiz.able 
algorithms may be found in Traub el al. (1983. Chapters 2 and 3. Appen
dix H). 

6.3 Algorithms 

An idealized algorilhm (or simply. algorithm) is any mapping for com
puting an approximation knowing the information N(J) and knowing 
Ihal IE F. Thus. an algorithm is any linear or nonlinear mapping 
tp: N(F) -+ G. 

6.4 Optimal Algorithms 

The error of approximating S({) using the aJgorilhm tp is defined as 

e(tp. f) = IIS(f) - tp(N(f»II· 

The alKorilhm error e(tp) is the worse e(tp. f) for all I E F. That is. 

e(tp) = sup e(tp. J). 
Ie r 

The radius of information is a lower bound on the algorithm error. We 
have 

Theorem 6.2 For any algorithm tp which uses the infonnation N(J) 

e(tp) ~ r(N). 

Furthennore. this lower bound is best possible. -

We say tp is an optimal error tllKorithm (or simply an optimal algorithm) 
if 



60 J. F. TRAUD AND H. WOiNIAKOW51(1 

We denole an opljmal algorithm by",·. A second notion of optimality 
(optimal complexity algorithm) is defined in Section 6.11. 

6.1.1 How to Generate Good Algorithms 

We deflne two pamdigms for generating optimal or near-optimal al
gorithms. 

An interpolatory algorithm. ",I. simply chooses any element of U(y) 
(defined in Section 6.2) as an approximation to S(f). An example of an 
interpolatory algorithm is given in Fig. 2. ·Which element of U(y) should 
bc chosen'! The set V(y) consists of all IE F indistinguishable from 
I under N. Choose an element i from V(y) which is "simpler" than f 
Then the interpolatory algorithm is S(j). 

For example. if F is some class of scalar functions. then! can be chosen 
as a polynomial or piecewise polynomial p such that p E F and N(P) = 
N(J). Then the interpolatory algorithm is S(P). 

Although this seems like a very crude process. any interpolatory al
gorithm (in the worst-case normed linear space selling described in Sec
tion 6.1) is within at most a factor of two of having optimal error! Let 
",I(N(/)) be any interpolatory algorithm. We have 

Theorem 6.3 

r S If) 

yaHtf) 

FIG. 2. 
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A central algorithm «pc chooses a "center" of the sct U(y). if it exists, 
as an approximation to S(J). (Not every set has a cen(er.) A central 
algorithm is always optimal. That is, we have 

Theorem 6.4 

Formal definitions of interpolatory and central algorithms and proofs of 
the two theorems may be found in Traub and Wofniakowski (I 980a , 
Chapter I, Sect. 2). 

Note that because r(N) is a sharp lower bound on the error of any 
algorithm, interpolatory and centml algorithms provide tight upper 
bounds. 

If it is desired to actually construct a good algorithm for a particular S, 
F. N, it is possible to proceed as follows: (I) the definitions of interpola
tory and centml algorithms provide simple paradigms for generating good 
algorithms, and a decision is made about which of these to use; (2) apply 
the paradigm for a particular S, F. N. 

Although the first step is conceptually easy. the second may be hard. 
Depending on S, F. and N, it can be technically difficult to obtain the 
radius of information and the optimal algorithm. Furthermore, these 
quantities vary ifany of S, F. or N change. For fixed S, F, N, the optimal 
algorithm need be obtained only once. Therefore the analysis may be 
viewed as a precomputing cost. An interpolatory algorithm is often far 
easier to construct than a central algorithm. 

Many examples of the radius of information and optimal algorithms 
may be found in Traub and Wofn!akowski (l980a, Chapters 6 and 8) and 
in Traub et al. (1983, Chapter 6). 

We emphasize that Theorems 6.3 and 6.4 hold for the normed worst
case selling. If uncertainty is not measured by a norm, an interpolatory 
algorithm might be useless (see Traub el al •• 1983. Appendix A). In this 
more gcneml selling, we introduce "interior" and "midpoint" algorithms 
and show that they have good error properties. 

6.4.2 Spline Algorithms 

We briefly discuss spline algorithms which have many desirable prop
erties. 

Let the class F be given by 

F = II: IITflI s I). (6.3) 
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where T is a linear opemtor. Let i E F. be indistinguishable from funder 
N. and have minimal T-norm. that is, 

111j11::: min(IJTglI: N(g) = N(J)). (6.4) 

A .fpline algorithm. 4>'. is defined by 4>' ::: S(f>. 
We mention some of the desirable properties of spline algorithms. They 

are interpolatory and therefore close to optimal. If the norm of Eqs. (6.3) 
and (6.4) is a Hilbert norm. S a linear operator. and T(ker N) is closed. 
then the spline algorithm is a linear centred algorithm. (See Section 6.5 for 
the definition of linear algorithm.) Traub and Wotniakowski (l980-d. 
Chapter 4) develop other useful properties of spline algorithms for the 
worst-case model. Spline algorithms also enjoy optimality properties for 
the average case (see Traub t't al., 1981; Wasilkowski and Wotniakowski. 
1982). 

6.5 Linear Algorithms 

We sayan algorithm tp is a linear algorithm if 

• 
tp(N(J) ::: ~ L;(J)I:;. 

'-I 
where the K/ are elements uf G and where N(J) ::: I LI(f) •... , L"<J)J. 

Linear algorithms are easy to implement. Because g •• ... , Kn are inde
pendent of f. they can be precomputed. Given the g/, we perform at most 
n multiplications of elements from G by a scalar and n - I additions of 
elements from G. Given the information N(J), the cost of forming 
tp(N(J) is linear in n and usually small with respect to the complexity of 
computing N(J). Traub and Wotniakowski (l980a, Chapter 5) present a 
discussion of the complexity of linear algorithms. 

It is desirable to use an optimal algorithm which is linear. A linear 
optimal algorithm always enjoys close to optimal complexity (see Section 
6.11). When does a linear optimal algorithm exist? It might be hoped that 
linear problems always enjoy linear optimal algorithms. but this turns out 
not to be the case (see Section 7.2 for further material). 

Another desirable property of linear optimal algorithms is that if they 
use optimal nonadaptive information, they enjoy close to optimal parallel 
speedup. An example was given in Section 4.5.1. 

6.6 Optimal Information 

We have assumed that the information operator N is fixed. We now 
vary N and pose the problem of optimal information. 
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We confine ourselves to linear information. Arbitrary nonlinear infor
mation operators are usually too powerful and all problems become trivial 
(see Traub and Wotniakowski, 1980a. Chapter 7). 

Without loss of generality we say N is a linear information operator if 
N = II ... .... L" J, where the I." i::: I .... , ". are linearly independent 
linear functionals. We call n the cardinality of N. To stress dependence on 
cardinality we sometimes write N". 

Note that in the integration example we chose L;(f) ::: fUi)' The 
cardinality was the number of sample points. Linear information is very 
commonly used in pmctice. It generalizes information such as evaluation 
of functions and derivatives. 

Fix n. Let N: be such that 

r(N:) = inf r(Nn ). 
N. 

Then we say that N! is optimal itiformation of cardinality n (or simply. 
optimal information). The infimum is taken over all linear information of 
cardinality n. Sometimes the infimum is taken over a restricted class of 
linear information of cardinality n. For example, for the integrdtion exam
ple, we restrict ourselves to information consisting of function evalua
tions. 

6.7 E)(ample 

An illustration of these concepts can be found in Section 2.7. 

6.8 Is the Information Strong Enough? 

So far, we have fixed n, the cardinality of information. Recall that we 
want to compute an £-approximation. It may turn out, even using optimal 
information. that n is not large enough. 

We therefore vary n and ask what is the smallest n such that the infor
mation is strong enough to determine an £-approximation. Recall that we 
can determine an £-approximation. V fE F, iff r(N) < e. As before, let 
N: denote the optimal information of cardinality n. Define the £-cardinal
ity number as 

{
min(n: r(N:) < e} 

m £ = () min(n: r(N:) = O} 
for #; > 0, 
ror E: = 0, 

with the convention min(0) = 00. In words, we consider the optimal infor
mation of cardinality" and then vary fI, seeking the optimal information 
of smallest cardinality whose radius of information is less than E:. 
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Can it happen that r(N!) = 00 for all finite n 1 This would imply that no 
£-approximation is possible for any finite E. no mailer how large. using 
optimal linear information ortinite cardinality. The answer is yes. even if 
S is linear (see Traub and Woiniakowski, 1980a, Chapter 2, Sect. 3). 

6.9 Computational Complexity 

If r(N) < £, an £-approximation can be determined and we can ask what 
is the computational complexity. First we must define our model of com
putation. 

6.9.1 Model of Computation 

We indicate our model of computation. which consists of a set of primi
tive operations, permissible information, and permissible algorithms. 

I. Let p be a primitive operation. Examples of primitive operations 
include arithmetic operations. comparisons. taking the maximum of n 
numbers. lind the evaluation of a radical. an integral. a linear functional. 
or a nonlinear functional. Let comp(p) be the cost of p. We assume that 
comp(p) is finite. Suppose that P is a given collection of primitives. The 
choice of I) and comp(p). pEP, are arbitrary and can depend on the 
particular problem being solved. 

2. Let N he an information operator. We say N is permissible with 
respect to P if there exists a program using a finite number of primitive 
operations from P which computes N(f) for all f E F. If N(f) requires the 
evaluation of primitives 1'1, P2, .... Pl. then 

l 

comp( N(f» = L comp( p;). 
.-1 

We call comp(N(f» the in/ormation complexity of computing N(f). 
3. Let", be an algorithm which uses the permissible information N. To 

evaluate !P{N(f» we 

compute y = N(f). 
compute !p{y). 

The complexity of computing y is given by (2). We say that", is permissi
ble with respect to P if there exists a progmm using a finite number of 
primitive operations from P which computes ",(y) for all y = N(J),fE f'. 
Let comp(",(y)) be the combinatory complexity of computing ",(y). Thus. 
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if tp(y) requires the evaluation of primitives qlo .... 'Ij. then 
J 

comp('I'<Y)) = L comp(q;). 
;-1 
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In the model of computation i~ Section 2.9. the primitive operations are 
function evaluation and the four arithmetic operations. In the algorithm 
tp·(N·(f» in Section 2.10. Ie = j = m. Therefore the information complex
ity is mc and the combinatory complexity is m. 

6.9.2 Definition of e-Complexlty 

Suppose that r(N) < e for a permissible N and let 4I(e) denote the class 
of permissible algorithms that use N and for which e(tp) < e. Assume that 
4>(E) is not empty. let tp E 4I(E). Then the algorithm complexity of tp is 
defined by 

comp(tp) = sup(comp(N(f» + comp('I'<N(f»))). 
IE " 

We define the e-complexily for Ihe in/ormation N as 

comp(N. E) = inrtcomp(tp): '" E 4I(E)} 

with the convention that inf(0) = +00. 

To define E-complexity we must first specify a class of permissible 
information. '1'. An example will show why this is necessary. We wish to 
approximate f~ f(l) dl. If all linear functionals were pennissible informa
tion. the integral could be exactly computed with one piece of informa
tion. For this problem it is natunsl to assume that only function evalua
tions (or its derivatives) are permissible. 

For a given class of permissible information operators we define the E
complexity in the class 'I' as 

comp('I', E) = inf(comp(N. e): N E "'I. 
Nnte that all the concepts presented here depend on the solution opera

tor S. The E-complexity in the class 'I' might be denoted by comp("'. S. t:} 
mther than by comp("', E). Decause S is fixed. it is omitted for simplicity. 

If the class 'I' is understood from the context. we can write comp(E) 
instead of comp("', e). We calt comp(e) the E-complexity. We sometimes 
,'efer to E-complexity as problem ~olllplexity or computational com
plexity. 

6.10 Example 

An example of computing upper and lower bounds on E-complexity 
may be found in Section 2.10. 
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6.11 Optimal Complexity Algorithms 

We say tp •• is an optimal complexity algorithm in the class 'If iff tp •• 

uses an information operator N from 'If and 

comp(tp··) = comp(t:). 

Note that we have two major notions of optimality: optimal error al
gorithm (which we have been calling optimal algorithm) and optimal com-

plexity algorithm. 

6.11.1 When Is an Optimal Error Algorithm Nearly an Optimal 
Complexity Algorithm? 

We discuss the relation between an optimal error algorithm and an 
optimal complexity algorithm. Suppose there exists an optimal error al
gorithm whose combinatory complexity is small relative to the informa
tion complexity. Such an algorithm is close to being an optimal complex-

ity algorithm. . . . . 
This is a very favorable situation because the algOrithm minimizes both 

error and cost. This suggests the question: For which solution operators S 
does there exist an optimal error algorithm with small combinatory com-

plexity? . 
Fortunately. for many practical problems S. we can find an opltmal 

error algorithm with small combinatory complexity. For instance. for 
many linear S (although not for all; see Section 7.2) ~here exis.ts a linear 
optimal error algorithm. It is easy to show that a linear optimal error 
algorithm is always close to an optimal complexity algorithm (see Traub 
and Wofniakowski. 1980a. Chapter 5). 

For some nonlinear S we can also find an optimal error algorithm with 
small combinatory complexity. An example is provided by the zero-find
ing problem for functions which change sign .. The hisection a~gorithm. is 
an optimal error algorithm with constant combmatory c?m~le,uty.' thai IS. 

the combinatory complexity is independent of the cardmallty of mforma
tion (see Traub and Woiniakowski. 19803. Chapter 8. Sect. 3). 

What is the relation between these notions? Because the combinatory 
complexity of an optimal error al~orithm .may be v.ery high. there .i~. in 
general. no relation. In the follo~l.ng. sectIOn we Will present condlh?n.s 
under which an algorithm that minimiZeS error must come close to mml-

mizing cost. 

1. Some Results 

In this section we give some results in the model introduced in Section 
6. In Sections 7.1-7.3 we state three types ofresulls which enable us to 
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cut the search space for optimal information and optimal algorithms: (I) Is 
nonadaptive information optimal? (2) Is a linear algorithm optimal? (3) Is 
a jpecial type of information optimal? 

We emphasize that we cut the search space by proving that the optimal 
information or algorithm must be of a particular. simple form. This should 
be contrasted with cutting the search space heuristically. as in artificial 
intelligence. 

In Section 7.1 we give conditions under which nonadaptive linear infor
mation is optimal in the class of adaptive linear information. The signifi
cance of such results is that. when we seek optimal information. we can 
confine our attention to nonadaptive information. Because the stmcture 
of nonadaptive information is far simpler than that of adaptive informa
tion. this is most advantageous. 

·In Section 7.2 we give conditions under which a linear algorithm is 
optimal in the class of all algorithms; in Section 7.3 we give examples 
where function evaluations are optimal in the class of adaptive linear 
information. 

We move to a different theme in Section 7.4. Intuitively, the smoother a 
problem. the lower the complexity for its solution. We discuss what has 
been established to date. 

In the concluding section we quote a result from mathematical eco
nomics and a result regarding locally convergent iterations. each of which 
indicates that some n l scalar pieces of information are required to solve 
nonlinear equations in n dimensions. 

7.1 Can Adaption Help? 

In Section 4 we discussed why it is of interest to know whether non
adaptive information is as powerful as adaptive information. We gave 
examples where adapt ion is much more powerful. as well as examples 
where adaplion does not buy you anything. Here we present some 
general results regarding this question. 

7.1.1 Some Concepts 

First we must define some concepts. We begin by defining nonadaptive 
and adaptive information for the case of linear information operators. If 
Noon(f) = (LI(f) ..... LII(f)I. where L I , .... L" are n independently given 
linear functionals. then N-(.f) is nonadaptive linear information. and we 
write N",·n to denote a nonadaptive information operator. 

If NA(J) = (LI(f). I.l(!;YI) • ... , LII(!;YI ..... Y,,_I)). where L, depends 
linearly on its first argument and Yi = l.i(!;Y' • .... Yi- d. then N"(J) is 
adalJtive linear information. Note that adaptive information can use any 
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funclion of any previously compuled funclionals 10 delermine the next 
funcliona!. 

7.1.2 Two Theorems 

Theorem 7.1 For any linear problem and any adaptive linear informa
lion N°. of cardinalilY n, there exists a nonadaptive information operator, 
N",·n. of cardinality at most n. such that 

r(Nt) ~ tr(N-). D (7.1) 

ISee Gal and Micchelli (1980) and Traub and Woiniakowski (l980a, Chap
ler 2. p. 48).) 

We discuss the implications of this theorem. Because the radius of 
informalion, r(N), is a sharp lower bound on the error of any algorithm 
using N. we measure the power of the information operator N through 
r(N). That is. if r(N) is smaller. then N is more powerful. The theorem 
tells us Ihat adaption. at best, can reduce the radius by one-half and this 
is independent of n. For many linear problems we have the stronger result 
that 

r(Nt) = r(N-). (1.2) 

Theorem 7.1 is a special case of a more generaJ result (see Traub et al. 
1983. Chapter 4. Theorem 3.2). 

A second theorem giving a condition under which nonadaplive informa
lion isjust as powerful as adaptive information may be found in Traub et 
al. (1983, Chapler 4. Theorem 3.1). The facl that adapt ion does nol help 
for binary search (discussed in Section 4.4) is a special CClse of Ihis 
them·em. 

7.2 Does a Linear Optimal Algorithm Exist? 

As we discussed in Section 6.11.1, a linear optimal algorithm is always 
close to being an optimal complexity algorithm. Therefore. linear optimal 
algorithms are very desirable. If the problem is linear, must an optimal 
linear algorithm exist? 

The answer is negative. C. A. Micchelli (private communication, 1978) 
has const~cted an example of a linear problem for which no linear opti
mal aJgonthm exists (see Traub and Woiniakowski. 1980a, Chapter 3, 
Example 4.1). To get his counterexample. Micchelli uses a nonstandard 
norm. We know of no linear problem arising in pmctice which does not 
have a linear oplimal algorithm. 
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We state three theorems which give positive results. 

Theorem 7.2 Assume the problem is linear and that S is a real linear 
functional. Let N be a real linear operator. Then there exists a linear 
oplimal algorithm. r.J 

This result is due to Smolyak (1965). We state il here in our termi
nology. 

Next we consider the case where S is any linear operator. Then we 
have 

Theorem 7.3 ~el the problem be linear. Lei N be a linear informa
lion opcralor of finite cludinality. Then there exisls a linear algorithm 
",(N(f» such that r(N) s e(",(N(f») S ('f(N), where c depends only on 
N(ker 1). -

Theorem 7.4 In addilion, lei Ihe range of T be a Hilbert space and lei 
T(ker N) be closed. Then c = I in the previous theorem and", is a linear 
optimal algorithm. _ 

The proofs for the theorems may be found in Traub and Wolniakowski 
(I 980a, Chapter 3, Theorems 4.1 and 4.2). These are constructive and 
indicate how the linear algorithms are obtained. 

7.3 Is a Certain Type of Information Optimal? 

We can sometimes cut our search space by proving that a certain type 
of information must be optimal. We provide Iwo illustrations selected 
from recent research. 

The first illustration is provided by the zero-finding problem already 
discussed in Section 4.1. for which we now discuss a further result. Recall 
Ihat the problem is to find an t:-approximation to a zero of the nonlinear 
(unction 1 where 1 is continuous on [0, I) and 1(0) < 0./(1) > O. We 
assumed that the type of information available is n evaluations of 1 and 
concluded that, relative to this type of information. bisection information 
(which is, of course, adaptive) is optimal. The radius of optimal informa
tion is 2 -In +1) and the bisection algorithm is optimal. 

Suppose now that we assume only that we can use adaptive linear 
information as defined in Section 7.1. What is the oplimal information in 
this very large class'! 

In Traub and Woiniakowski (I980a. p. 170) we conjectured that Ihe 
optimal adaplive linear infomlation is just funclion evaluations. This con-
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jecture was estahlished by Sikorski (1982). Thus any algorithm using any 
linear adaptive information must have error of at least 2-("tll. Proving 
such a result is difficult, and Sikorski uses a very ingenious argument. 

The second illustration is provided by the problem of approximating the 
inverse function, j- '. Let F be the set of all monotonically increasing 
functions on (0, I J. We seek an e-approximation to 1-' in the supremum 
norm. 

Wasilkowski (1982) proves that if Na is arbitrary adaptive linear infor-
mation, then 

reNa) ~ 1I(4(n + I». 
Let 

N·(f) = (f(t,), ... '/(/ .. )), I; = il(n + I). 

Note that N* uses only [unclion values at equispaced points and is non
adaptive. Yet 

r(N·) = J/(2(n + I». 
Thus nonadaptive function evaluations are almost optimal in the class of 
adaptive linear information. 

It is interesting to contrast the inverse function and zero-finding results. 
Zero finding can be staled as evaluatingr'(O). Thus, it is a special case of 
computing [- '. However, optimality results are in sharp contrast. For 
zero finding, adaptive information is exponentially stronger than non
adaptive information. For the function inverse, nonadaptive information 
is nearly optimal. Furthermore, the inverse function problem is exponen
tially harder than the zero-finding problem. 

7.4 Do Smoother Problems Have Lower Complexity? 

Intuitively, smoother problems have lower complexity. We quanlify 
this for a particular problem and briefly indicate what has been established 
in general. 

7.4.1 An Example 

In Section 2 we considered scalar integration for the class of integrands 
for which 11'(1)1 ~ I, 1 E (0, II. It would be of interest to consider the 
integration problem for smoother functions. 

More precisely, we seek an e-approximation to J~[(t) dl using the 
information N(f) = [[(I,), ... ,f(/,,)]. Let Fbe the set of periodic functions 
wilh period one such Ihal 11'''(1)1 5 I, I E 10, I J. IThis definilion of F 
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serves our present purpose; for a r .. . . 
Wot~iakowski (l980a, pp. 90, 109).1 P eClse definition, see Tl'aub and 

ThiS problem has been studied by M t . 
resulls using our terminology The ) t. 0 0

1 
r.ny.til (197~) a~ld we report his 

. ( puna '" onn.ltlon IS 

N*(f) = [1(2~J ···./(2;2: I), ... ,f(2n2~ I) J. 
(7.3) 

The radius of optimal information is 

r(N*) = K,/(21m),. 

Here K, is the rth Favard constant defined as 
(7.4) 

-
K, = 411T 2: (- 1);('+ I) 1(2i + l)'tI. 

~ ~~ 

It is known that K, = 1T/2 K = z/8 K _ )1 
... < 411T < ... < K < K' _z 1211' Th' ) - 11' 24, and that I = Ko < Kz < 

.1 I - 11'. us the smallest b f . 
samples, m, such that we can co t .num. er 0 Integrand 

mpu e an e-approxlmallon is 

m = l (2~)' ~)'" J + I. (7.6) 
Furthermore, the averaging algorithm 

(7.7) 

is an optimal algorithm usin f aI· t; . 
of the form N(f) == 1[(1

1
), .~.~j(~~J) .. n ormation (relative to information 

Assume each arithmetic opention t. . 
ation costs c. Then the '1. cos s unity ,.,"d each function evalu-

e-comp eXlty, comp(e), IS given by 

comp(e) = (c + I) (l(~ !)"'J + I) + (211'), t:: a, (7.8) 

where a == -lor 0 Thus ·(N·(f»· aI 
algorithm. . rp IS an most optimal complexity 

We discuss these results. Observe the Knuth·' 
and (7.5). We do not have ·ust an order- _ . Ian nalure of Eqs. (7.4) 
of optimal informal ion- weJ kno th of magOitude resu" for the radius 

.. ' w e constanl. 
m~~en O:~~~:I~nf~rmation and the optimal algorithm using optimal infor
the 0 ;im I I Y . qs. (!.3.) and (7.7), are extraordinarily simple. Indeed 
POint: W: :s~~n:~~ IS !ust I ~he av~raging algorithm at n equispaced 
simple, IS ex.lmp e preCisely because Ihe answers are so 
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The approximation of integmls where the set of integrands is generated 
by a linear reslriction operator T always enjoys n()nadapl;v~ optimal in
formation and linear optimal algorithms (as defined in Section 6.1.1). 
However. the formulas arc not always simple (see, for example, Traub 
and Woiniakowski. 1980a, Chapter 6, Sect. 4). 

Nole how well we know the problem complexity. It has exactly one of 
two possible values an integer apart. The tight lower and upper complex
ilY bounds arc typical when there is a linear optimal algorithm. (See Traub 
and Woiniakowski (1980'.1, Chapter 3) for a geneml investigation of when 
a linear optimal algorithm exists.) 

Ohserve that if r = O. then Eq. (7.4) shows that the radius of optimal 
information is unity. This implies that no e-approximation exists, for any 
F. no greater than unity, for the class of integrands which are periodic, 
continuous, and bounded. no matter how large the number of function 
samples! 

Finally. we want to discuss an important implication of Eq. (7.8). It 
shows quantitatively howe-complexity decreases with the smoothness of 
the class of illtegrands which is measured by the parameter r. In particu
lar, we see that complexilY decreases as smoothness increases. 

Observe that an argument based on the simple observation that the 
class of functions with smoothness r + I is contained in the class of 
functions with smoothness r fails because the class offunctions such that 
If'" "I ~ I is not contained in the class for which If"1 ~ I. 

Does complexity genemlly decrease as smoothness increases? We dis
CIISS this in the next section. 

7.4.2 An Open Question and a Partial Result 

It seems inluitive that more regular problems should be easier to solve 
and should therefore enjoy lower e-complexity. Traub and Wozniakowski 
(l9HOa, p. 147) asked whether this is true in general. 

A partial answer is provided by Werschulz (I982a). He answers the 
question affinnatively in the case that S is linear and that regularity is 
measured by a Sobolev norm or seminorm. 

7.5 An Example From Mathematical Economics 

The examples we have used, such as integration, zero finding, and 
hinary search. are drawn from numerical .malysis and computer science. 
We want to provide the reader with an example of an information result 
from mathematical economics. We do not define the concepts used in this 
section, but refer the interested reader to the papers cited below. 
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Saari and Simon (1978) consider how much information is required for a 
price mechanism to converge to an economic equilibrium. They formulate 
this as obtaining a solution of a certain nonlinear system in n dimensions. 
Usually, the nonlincar systcms arc solved by an iteration which uscs/aml 
/' (or its appro)(imation) al each step. In n dimcnsions Ihis re1luircs Ihe 
evaluation of Ihe " componcnts of f and the ,,1 components of r. The 
economic interpretation of knowing/, is that it is nccessary to knllw hllw 
changes in demand for Ihe jth cOlllmlldity affect changcs in thc price of 
the kth commodity. whcrej and" rangc from I to fl. We quole Saari allli 
Simon (1978): 

For prdclical prohlems. Ihis is a slaggcring amounl or inrormalion. Consc'lucnlly. Ihc 
nalural '1ueslion is whelher Ihere cxisl efTeclive mcchanisms wilh a morc modc\1 dcpen. 
dencc on informal ion conlcnl. ... We invesligale Ihis '1uesliun in Ihis paper, and our 
rcsulls show Ihallhc inrorrnalioll rcquircd cannot be relaxcd by any signilicanl allluuni. 

Price mechanisms studied by Saari and Simon correspond to iterations 
which are not necessarily locally convergent. The problem of what infor
mation is required by locally convergent iterations for the solution of 
nonlinear equations has been studied in many papers (see Tmub and 
Woiniakowski (1980a, Part 8)). Here we report a result of Traub and 
Woiniakowski (1976. Lemma 4.3 and Theorem 4.2) which is of the samc 
flavor as the result of Saari and Simon. 

We wish to approximate a simple zero of / where / is a nonlincar 
opcrator./: /) C III -+ liz, where II, and liz are Ilanach spaces of dimcn
sion fl. I ~ " ~ +00. We have 

Theorem 10.1 Any locally convergent one-poinl iteration Ihal uscs 
lincar information re(luires at Icast the evaluation off amJ r. • 

Thus. for both effective price mechanisms and locally convergcnt onc
point iterations. roughly n2 scalar pieces of information must be used. 
This gives a measure of the inherent difficulty of solving nonlinear e()UlI
tions. 

8. Olher Models 

So far we have made three major model assumptions: (I) uncertainty is 
measured by a norm, (2) the model is worst case, and (3) information is 
exact. We briefly discuss models where these assumptions are not made. 
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8.1 Measuring Uncertainty without a Norm 

The normed selling we have used so far is appr~priate for some ~ontin 
uous problems such as integration, approximation, and .computln~ al 
extremum of a continuous function. There are, however, simple contlnu 
ous problems which cannot be formulated in the normed model presente, 
in Section 6. For example, find x such that If(x)1 < E. ISee Wer~chul: 
(1982b) for a discussion of this example.) Furthermore, there are dlscret, 
problems where uncertainty is not measured by a norm. . 

Traub ef (II. (1983) show how uncertainty can be measured without 
norm. Thc modcluses abstract sets and the .solution o~rator is.assume, 
to satisfy two "nonrestrictive" axioms. ThiS formulatIOn permits a syn 
thesis between the study of discrete and continuous problems. 

8.2 Average-Case Models 

The model we have discussed so far is worst case. That is, we guaran 
tee an t:-approximation for every element of F. Worst-case models ar 
sometimes too pessimistic and we therefore study the average case. . 

Average-case analysis is far more difficult than wors~-case analysl~ 
This is because integration with respect to a mea.sure IS far harder t 
analy:r.e than the supremum operation. This is espeCially the case becau~ 
the sct ,.. usually lies in an infinite-dimensional space and the analysl 
therefore requires rather heavy mathematical machinery such as measur 

theory in inlinite-dimensional spaces. . . 
A general study of the optimal reduction of uncertal.nty for an av.eragt 

case model was initiated by Traub el al. (1981). We briefly summanze th 

results. . ' 
The setting is linear problems on a finite-dimensIOnal spa~e eqUl~pe 

with a weighted Lebesgue measure. An ~verage~case mod.el IS speclfic( 
and general notions of radius of information. optimal algo~lthm. and opt 
mal information are introduced. Among the results obtained are (I) th 
same algorithm is optimal in the worst and average cases, (2) the sa~ 
information is optimal in the worst and average. cas.es. and ~3) adaptlv 
information is not more powcrful than nonadaptive information. 

We discuss thesc results. The first two conclusio.ns are fa.vorab~e :o:h 
user bccause the same algorithm with the same information mll1lml~( 
b~th the worst and average error. This is the splinc algorithm (see Sectlo 
6.4.2). As we saw earlier. adaptive information does not help for the w~r: 
case. Many researchers believe this is true only in the worst-cas~ sellin, 
The last conclusion states the counterintuitive result that adaptlon dot 

not help even on the average. . 
How docs the average radius of information. ,"V'(N). compare With It 

worst-case radius of information ,(N)? It is possible that ,"VI(N) 4 r(N 
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However, for "reasonable" measures and "typical" problems the two 
are comparable (see Traub el al., 1981. Sect. 6). 

The infinite-dimensional case is under investigation. Wasilkowski and 
Wotniakowski (1982) obtain optimal algorithms and optimal information 
for linear problems in infinite-dimensional Hilbert spaces. They show that 
for any measure, a spline algorithm is optimal among linear algorithms. 
The spline algorithm is defined in terms of the covariance operator of the 
measure. If the measure is "orthogonally invariant," then the spline al
gorithm is optimal among all algorithms. Orthogonal invariance means 
that the measure of a set is invariant under certain linear mappings. Ex
amples of orthogonally invariant measures include Gaussian measures 
and, for the finite-dimensional case, weighted Lebesgue measures. Under 
the assumption of orthogonal invariance of the measure, Wotniakowski 
(1982) has shown that adaption does not help even on the average. 

8.3 Approximate Information 

In Section 3 we listed three reasons why problems cannot be solved 
exactly. In our discussions we have confined ourselves to just one of 
these causes of uncertainty, partial information. 

Approximate information is a very important cause of uncertainty. Op
timal aJgorithms and optimal information for approximate information are 
studied in Traub eI al. (1983). 

In many application areas the information is stochastic. Of particular 
importance is the average case with stochastic information, and this will 
be one of the focuses of future research. 

8.4 Asymptotic Models 

We motivate our interest in asymptotic models with the following ex
ample. We seek to approximate gf(t) dl knowing the information 

Let F be the set of integrands such that /"(t) is continuous on 10. I). 
Unlike the approach developed in Section 2, we do not assume a hound 
on/,,(I). 

It is not difficult to show that r(N) = 00 for any finite n. Therefore it is 
impossible to compute an e-approximation for any finite e. 

Despite the infinite radius of information, we can proceed as follows. 
Let 
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We choose as our algorilhm Ihe composite trapezoidal rule 

","(N.(n) = Ih(f(O) + f(l)) + h ~ fe ~ J ,-I 

Then Ihe error is given by 

8" E (0. I) 

This error is of the form 

~"(",.J) = h(f. n)g(n). 

where MI. II) = 1"(8.), K(n) = 1I(l2(n - 1)2). Observe that ~f ~e .var) 
over all inlegrands in F, then "(f. n) is unbounded for any n. fhls IS wI 
Ihe radius ofinforrnation is infinite in the worst-case model. However, f 
any fixedf. the sequence (",.(N.(f))) converges to f U( I) dl and the Spel 
of convergence is proportional to n -2. 

The way that this algorithm is used in practice is that the sequence 
approximations is terminated with some finite n, w~ich depends on 
according 10 some "termination criteria." The user IS n~t s~Ire .that : 
r.-approximation is computed whenever th~ termin~tion cntenon IS satl 
tied. Thus, the user is gambling that rm hlsfhe Will be lucky. 

If the user knows 11"(1)1 s L. 1 E \0, I), then he can guarantee: 
I:-approximation hy choosing n such that 

LI(l2(n - 1)2) S E. 

This is, however, equivalent to the worst-case model. 
Trauh ami W01.niakowski (1980a, Chapter 10, Sect. 5) present: 

asymptotic model which is an abstraction of the example prese~" 
here. SOllie interesting results on the asymptotic case have been ohtam. 
hy J. M. Trojan (private communication, 1982). The current. state o~ 0 

knowledge indicates that for linear problems. the asymptollc c.ase IS 

"had" as the worst case! Further research should be done on Itus mot" 
which is very important in practice. The average asymptotic model shOll 
also be investigated. 

9. Comments RegardIng the Information-Centered Approach 

Our information-centered approach has stimulated many com~en 
and questions. Some of these have been very perceptive a~d have 111ft 
enced ollr work. We have also received some comments which we rega 
as missing the point. but feel they deserve a thoughtful response. 
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One frequent comment is that in real-world problems, the user docs not 
know how to choose F. This is true; dealing with this case is extremely 
important and will be the area of much future work (see Section 10.2.1). 

It has been pointed out that in many applications. the information is not 
exactly known. Furthermore, the available information may come from 
various sources. be of varying quality, and may even be contradictory. 
This is true, and the models will be extended to deal with this. 

One scientist complained that it took as much work to specialize the 
general theory to his application as to just solve his problem from scratch. 
This addresses the fundamental intellectual claims of science. Most scien
tists would agree that scientific progress is made by showing that diverse 
phenomena can be uniformly explained. A sound general theory exhibits 
structure which is invisible to someone looking at a particular problem. It 
also suggests entirely new questions and approaches. For example, som~ 
diseases could be cured before the germ theory of disease transformed 
medicine, but many more could be cured after that understanding was 
achieved. 

8ecause of our emphasis on information, people have asked whether 
information theory contains our results. It does not. Indeed, Shannon and 
Weaver called what they did the mathematical theory or communication, 
which is very descriptive of their work. One of us (JFf) benetitted from a 
discussion with Robert Gallager. Our conclusion was that although there 
is some overlap between our work and information theory, the subject 
matter and methodology are very ditTerent. Traub ~t al. (1983, Sect. 6.9) 
show how an example from information theory can be formulated in our 
frclmework. 

We have been told that what we want to achieve with the notion of 
radius of information has been accomplished by the notion of Shannon 
entropy. The notion of Shannon entropy has been found useful in many 
applications. but it is not the same as our fundamental invariant, radius of 
information. Traub et al. (1983, Sect. 6.9) give an example where Shan
non entropy is shown to be related to our !lotion of average cardinality 
number. 

Many people have expressed surprise that adapt ion does not help for 
linear problems. There is widespread belief that adapt ion helps for prob
lems such as quadrature. Furthermore, there is much current research on 
algorithms using adaptive information. 

Why are people's beliefs that adaption helps at such variance with our 
theorems that adapt ion does not help for either the worst or average 
case? There are a number or possible explanations. First, our results m;IY 
not be applicable. For example. one of our results is that adapt ion docs 
not help for linear problems. If a problem is linear, then F is convex and 
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balanced (see Traub and Woiniakowski (1980a, p. 32). If someone wishes 
to solve a problem where S is linear but F is not convex or not balanced, 
then the results obtained so far do not apply and adapt ion may help. 

Furthermore, the evidence cited in support of adaptive quadrature is 
obtained by tests run for particular integrands. As Einstein noted in a very 
different context, "It is the theory which decides what we can observe." 
Once the theory has shown that it is the structure of a class of integrands 
which determines whether adapt ion helps, this can be verified by 
testing. 

Our theory has been called too hard. Many theories which were initially 
considered difficult are no longer so regarded. We believe the informa
tion-centered approach is not difficult, just new. Indeed, the information
centered approach permits vast simplifications. 

We have been asked if we are serious about algorithms. We are very 
serious. We want to create real algorithms used to solve real problems on 
real computers. The comment refers to the fact that we do not work 
within a formal model of computation, such as the Turing-machine model. 
We refer the reader to Section 3.1.3 for a discussion of the relation be
tween our notions of idealized and realizable algorithms and other notions 
of algorithms. 

One scientist commented that the optimal algorithm is never wanted. 
We believe this comment was made in the mistaken belief that an optimal 
algorithm need be complicated. Although that may be true for some areas. 
we hope we have convinced the reader that the optimal algorithm is often 
simple. Indeed. one of the contributions of this theory is to ascertain 
when the optimal algorithm is simple. and Sections 7.1-7.3 are devoted to 
this topic. 

Finally, a scientist said to us, "I never solve problems for a class of 
matrices. just for a single matrix. Therefore your notion of the class F is 
irrelevant to me." The person who made this comment was referring to 
his experience with matrix eigenvalue problems. but our response applies 
generally. We believe it is fairly uncommon for someone to be interested 
in only one matrix (or, more generally. in a single n. although there are 
circumstances when this is so. After all. we expect to solve these prob
lems on a computer. Our program will have to work not just for one 
matrix, but for a variety of matrices. 

10. Where Are We and Where Are We Going? 

We discuss the history and nature of E:-complexity and indicate some of 
the directions for future work. 
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10.1 E:-Complexity 

.We refer !o the information-centered approach for dealing optimally 
":Ith uncertamty as E:-complexity. We will give a brief history of the field. 
diSCUSS whether e-complexity is a new discipline. and discuss alternate 
names. 

10.1.1 A Very Brief History 

We indicate the work which we believe initiated research in analytic 
complexity, iterative complexity. and E:-complexity. 

The pioneering work on analytic complexity was done by Kiefer, Sard, 
and Nikolskij around 1950. Regrettably, Kiefer and Sard both passed 
away recently. 

Kiefer (1953) showed that if function evaluations are used, then Fi
bonacci search is optimal in searching for the maximum of a unimodal 
function. Professor Kiefer has informed us that this work was done as a 
master's thesis at the Massachusetts Institute of Technology in 1948, but 
was published only later with the encouragement of J. Wolfowitz. 

Sard (1949) studied optimal algorithms for quadrature which use runc
tion evaluations at fixed points and discussed extending his results to the 
approximation of linear functionals. Independently, Nikolskij (1950) 
posed the same problem and permitted the points of evaluation to be 
optimally chosen. Sard and Nikolskij assumed that the algorithms were 
linear. 

Iteration complexity had its inception in the work of Traub (1961, 19(4). 
Itcrative algorithms are classified by the information they usc. Theorems 
are obtained and conjectures are proposed on the maximal order of itera
tive algorithms for solving scalar nonlinear equations. Such maximal or
der results are needed to obtain lower bounds on complexity. 

The work on analytic and iterative complexity was brought together for 
the first time in the research monograph of Traub and Wozniakowski 
(1980a). This monograph includes a brief history and an annotated bibliog
raphy with over 300 of the most important "core" papers and books. 

The general study of e-complexity has been initiated by Traub 1'( Cli. 
( 1983). 

10.1.2 Is E:-Complexity a New Discipline? 

Only time will provide an answer to this question. The program of E

complexity is ambitious: a general theory for dealing optimally with lIn-
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ceJ1ainty. Many of the concepts and points of view are novel. We regard 
the information-centered point of view as fundamental and powerful. . 

!low is c-complexity related to other disciplines? \I has been heavily 
influenced hy computational complexity, the mathematical theory of ap
proximation, applied mathematics, and numerical analysis. Because 
much of (;-complexity deals with infinite-dimensional prohlems, the tech
niques and language of functional analysis are he~vil~ us~d. I? the ~ver
age-case selling, the tools of measure theory III IIlfimte-dlmenslonal 

spaces are utilized_ . 
As we have repeatedly stressed, most mathematically fo~mu.lated prob-

lems can be solved only with uncertainty. Therefore, applications can.be 
found everywhere. A partial list of applications that have been ~tU(hed 
and plans for the investigation of new applications may be found III Sec-

tion 10.2.2. 

10.1.3 What's in a Name? 

The name we have suggested is e-compll'xity. Other names could also 
be used. Some people prefer to use optimal algorithm tht'ory (see, for 
example, 8elforte t't al., 1982). We often refer to the information-centered 
approach, which suggests that in/ormation-aliterI'd theory should be the 

name of the field. 
An ide&tl name would be information theory. That, unfortunately, has 

been used to denote something else. 

10.2 Future Work 

Although much has been accomplished. a vast amount remains. to be 
done. There are numerous open problems ranging from very theoretical to 
<Ipplicd. We indicate just a few of these in the following. 

10.2.1 Future Theoretical Research 

We briefly indicate some directions for .future th~oretical res~a~ch. 
AlIt'wgl'-CaSt' !tI1I//ds. This has been discussed III some det,ul In Sec

tion 8.2. We list it here without further comment. 
F Not Kno .... n. In numerous applications. the user does not know the 

class of problem clements. We give a simple example. ~.et / repres~nt the 
temperature distribution of the atmosphere as a function of the distance 
ahove the earth's surface. The smoothness of the class would depend on 
whether there was a temperature inversion. 

Dealing with the case thatf" is nol known is essential if we are to extend 
our methods to the solution of certain important problem areas. 
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N Not Kno .... n. In numerous applications. N is not known exactly. For 
example. N mighl he stochastic. We plan to extend our models 10 deal 
with this case. 

Optima/In/ormation and Optimal Algorithms for ParticlIlflr S.F.N. We 
have provided concepts and generallheorems. Applying our methodology 
to particular inslances of S. F, and N. can be lechnically dinicult (see 
Tmub and Wolniakowski. 1980a. for numerous examples). This musl be 
done if Ihe Iheory is to be widely applied. 

10.2.2 Future Applications Research 

Numerous applications have already been studied. Areas for which 
resulls are reported in Traub and WOlniakowski (1980a) and Traub I't al. 
(1983) are integration. interpolalion. large linear syslems. linear function
als, linear partial differential equations, nonlinear equations. oplimal re
covery. optimization. and polynomial zeros. We have also illustrated our 
theory by examples from algebraic coding theory. binary search. continu
ous binary search, database security, decision theory, and information 
theory. 

These applications are for prohlems arising in scienlific computation 
and compuler science. There are numerous areas and disciplines dealing 
with uncertainly which we plan to investigate using the information-cen
tered approach_ We give some very brief examples in the following. 

Remote St'nsinR. Numerous important applicalions involve remote 
sensing. Examples include seismology. remote sensing of Ihe atmo
sphere, and lomography (see, for example. Twomey. 1977). We hope to 
answer questions such as: What are the best measuremenls'! Whal is the 
besl way to combine Ihese measurements? What is the minimal number of 
measurements 10 guarantee a good answer in eilher a worst or average 
case'! 

()ne of the remole-sensing areas we plan to investigale is seismology. In 
particular. we will apply our techniques to the Backus-Gilbert theory [for 
Which, see 8ackus and Gilbert (1970) and Burridge (1974-1975)). 

Estimation. Prt'diction. Control. A group at the Politecnico di Torino 
has been using the information-centered appmach to solve problems in 
estimation (8e1forte I't al .• 1982). They also report excellent results in 
prediction (G_ Milanese. private communication, 1982). We anticipate 
that this will be a very active area for future research. 

Distributed Complltatio". As we observed earlier. even problems capa
ble of exact solution on a uniprocessor will be solved only under uncer
tainty in the distributed environments of the future because complete. 
exact information on the current state of the distributed system will not be 
avail;lble. 
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We plan to model distributed systems. In particular. we wish to investi
gate distributed databases. 

Signal Rewuery and Proce.uing. This very important area seems well 
suited to our techniques. 

Statistics. This is a huge discipline which deals with uncertainty. We 
wish to understand how it is related to our work. We are hopeful that we 
can pose and solve problems of interest to statisticians. 

A first step has been taken by Kadane and Wasilkowski (1983). who 
investigate relations between our average-case model and optimal deci
sions and experiments in Bayesian statistics. 
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