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Abstract 

This paper surveys a portion of the field of natural language processing. The malO 

arE'ns c-onsidered are those dealing with representation schemes. particularly ""'ork on 

physical object representation, and generalization processes driven by natural lang-uage 

understanding. Five programs serve as case studies for guiding the course of the paper. 

Within the framework of describing each of these programs, sevN3.l other programs, 

ideas and theories that are relevant to the program in focus are presented. Our current 

work which integrates representation and generalization is also discussed . 

. '- ~ 



1. Introduction 
Rpc'cnt advances in natural language processing (l\LP) have generated considerable 

interest within the Artificial Intelligence (AI) and Cognitive Science communities. 

Within :\LP researchers are trying to produce intelligent computer systems that can 

read, understand and respond to various human-oriented texts. Terrorism stories, airline 

flight schedllles and ho\' .. - to fill ice cube trays are all domains that have been used for 

r\LP programs. 

In order to understand these texts and others, some way of representing information IS 

needed. A complete understanding of human-oriented prose requires the ability to 

combine the meanings of many readings in an intelligent manner. Learning through the 

process of generalization is one such mechanism. The integration of representation and 

generalization in the domain of ~LP is the subject of this paper. 

The need to integrate representation with generalization comes about when one is 

faced with the prublem of understanding how sev'eral objects and/or events compare 

with each other. For example, a particular representation system might be able to 

encode that a chair has a seat, a back and legs. Furthermore assume that this system 

has represented within itself several different chairs that all have these three basic parts. 

:'\ow suppose that this system finds out (reads) about a bench that has just a seat and 

legs. In order to recognize that the bench is just like a chair only without a back. the 

representation system needs the ability to make generalizations. Here the generalization 

would be, "an object to sit on must have a seat and and legs." One could argue that a 

complete representation of chairs and benches requires knowledge of their common parts. 

Thus. generalization is intertwined with representation. The generalization process is, of 

course. more than just a way of structuring knO\\!ledge. Generalization is one very 

important 3!"P(·Ct. uf learning. 

As a matter of convenience, representation, generalization and their interrelation will 

be r('ferred to as represelltatio'l/g~"!.:r!!li:;ation in this paper. 

Our C'lIrrf'nt research centers around building an intelligent information system that 

will be able to read, understand and remember a large number of patent abstracts. One 

main problem in designing this system is how best to represent the set of complex 

physical objects that are described. Furthermore. there are many patents about similar 
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objects which an intelligent method for structuring representations tan combine. Bv 

making generalizations about the components. properties and purposes of physical 

obj('cts. a knowledge base that encodes most of the information present in the abstracts 

can be generated. 

This paper surveys a portion of the field of i'l'LP. The main areas considered are those 

dealing with representation schemes, particularly work on physical object representation, 

and generalization processes driven by natural language understanding. An historical 

account of how research has proceeded in these areas is given with emphasis on the past 

few years, during which the field of ~'LP has grown tremendously. 

Because representation and learning are rather extensive fields. we will concentrate 

mostly on work that has immediate relevance to our current research. Somewhat more 

emphasis is given to work done in representation than in learning (generalization). This 

is simply due to the overwhelming amount of research that has been done in conceptual 

representation. Early work in learning did not deal with complex representations of 

events or objects. so there was little need to integrate generalization with representation. 

Therefore. much of the material in this paper will appear to be divided into two distinct 

groups. rl'prespntation and generalization. 

We have chosen to present the work in representation/generalization by following the 

rhronologieal progression of computer programs written for NLP. The reasons for doing 

this are twofold. \Iost researchers in cognitive science with a computer science 

background at some point embody '"th~ir ideas in a program as a vehicle to test them on 

real-world problems. Thus :"iLP programs written to date generally span the body of 

research done in this field. The second reason to discuss these programs is that they 

incorporate ideas from outside the field of A1. Any single functioning ~'LP program 

mllst in some \ .... ay incorporate concept.s that many researchers outside of computer 

science grapple \vith. A fOCliS on programs still allows us to report work done by 

cognitin scientists that lack a computer science leaning, as well as those researchers that 

are program-oriented. By following the chronological progression of these programs we 

can get a feel for where current l'I'LP research came from and where it is headed. 

The five programs that will guide the course of this paper are: SHRDLU [\Vinograd 

72J. ~L-\RGrE [Schank 75J, GL'S [Bobrow et al. 7i!, OPUS [Lehnert and Burstein i9J and 



IPP [ll'bowitz 80. Lebowitz 83a]. Our current work on object 

rC'prcsentationjgC'neralization processes, is discllssed in the concluding sect.ion. Within 

the framework of describing each of these programs, several other programs, ideas and 

theories that are relevant to the program in focus will be presented. 

The first program, SHRDLU, provides a context for discussing a very important 

technique used in representation systems, semantic networks. Some rudimentary 

learning techniques were also explored in conjunction with this program and they are 

me'ntioned in this section. 

Conceptual D~pendency (CD) [Schank 72] forms the backbone of ~1ARGIE. CD and 

ot her similar systems offer language-independent means for representing knowledge 

derived from natural language input. Other related linguistic theories are also 

me>ntioned while describing tvl-\RGIE. 

GCS was Olle' of the first, NLP programs to employ Minsky's frame idea [Minsky 7.5J for 

representing knowledge. KRL [Bobrow and Winograd 77a], a language built 

cOllcurrently with GliS, and designed to provide an environment for developing frame

based syst ellls. is also treated in thi;-s~ction. 

The next two programs presented, OPUS and IPP, are recent developments dealing 

with pliysical object representation and memory-based generalizations, respectively. 

OPl;S uses ObjC'ct Primitives, an extension to CD, to represent real-world objects. IPP 

employs ~[emory Organizational Packets (:\10Ps) [Schank 80. Schank 82] to encode 

action-oriented e\'ents in a system that makes generalizations about terrorism stories. 

These two programs, and several other ones discussed within their contexts, represent 

the state of the art in NLP, as far as physical object representation/generalization are 

conccrned. 

2. SHRDLU - Representation Using Semantic Nets 
We start. by considering a system concerned with problems similar to the ones faced by 

many researchNs working on representation/generalization. Representing physical 

objects and understanding natural language about them, is what SHRDLU [Winograd 72] 

was all :tbou t. 

In the early 60's work III l\i'LP centered on computationally intensive programs that 
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applied a small set of general. usually syntactic. 1 rules to some input text. in order to 

3chieH a desired result. These programs are typified by those that tried to do machine 

transl:ltion of one natural bngu:tge into another, ,-\5 is well known these attempts were 

ul1su(,C'l'ssful [Tennant 81]. Several years later. as researchers realized th:tt more 

specialized rule ... were needed :tnd computers became more capable, ~LP programs 

Ch:lllgl'd in nature. The result was t.hat programs could employ m3.ny specific rules for 

proc('~sing purposes and/or include brge 3.mounts of data for representational uses. 

This. of course. brought about the problem of what kinds of rules to use and how to 

con trol t.hem. 

Sf In DLU was one of the first '~r- tbis new wave of r\LP programs. It was a fully 

integrated program that dealt with a very specific domain, the blocks world. As 

implement.ed. the computer created a simple setting containing images of cubes, 

pyramids. etc. on a video display, along with an imaginary arm that could move these 

objects around. Within this world SHRDLU allowed the user to request rearrangements 

of the blocks, ask questions about of the state of the world and converse about what was 

possible within this world. 

What made SHRDLU a truly landmark progra.m was the way it accomplished its goals. 

Three major components made up the system: a syntactic parser based on an 

_-\ugmerited Transition ~etwork (ATN) [Thorne et al. 68, Woods 'iOI; a semantic 

processor used to interpret word meanings; and a logical deductive segment which 

figurl"d out how to perform the user's requests and answer questions about what is 

possible in blocks-\,,·orld. 

The functioning of the various components of SHRDLU proceeded as follows: the ATN

based synt.3ctic parser would figure out what possible meanings the input text might 

have: next the semantic procedures would pick one of these meanings based on its 

knowledge of the state of the blocks-world; finally the logical deductive components 

would create a plan for fulfilling the user's request. Although this process is fairly 

interesting to study, it is not of central importance in this paper. The data 

representation scht'me used by this system is, however. 

lSY71illrtic is used to mean the simple subject, verb. object orderinu of a sentence. 
Whole ur even partial grammars were not used in early machine translation attempts. 
~lost sentences were translated on a word-by-word basis. 
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SHRDLU maintained its kno'."ledge in both proeedural and declarative formats. The 

(h.ebratiw knowledge was represented in the form of a semantic network. Semantic 

nets. as thev 3,re commonly called, v,,'ere first described in [Quillian 68]. They are 
.. .. -- ~ 

arbitrarily complex networks in which nodes represent actions. ideas or, in the case of 

SHRDLLJ. physical objects. Arcs connecting nodes represent relations among them. For 

example, if there is a pyramid on top of a block, where the pyramid is represented by a 

single node and so is the block, then an arc connecting them would represent the relation 

SVPPORTED-BY. An IS-A link (arc) is what is used to represent the concept that one 

node is an instarlC'p of a~other. For example, a dog IS-A mammal AJI of the properties 

that a mammal might have can be inherited by a dog. Thus, if the network had the fact 

that a mammal breaths air encoded in it, then it would be assumed that a dog also 

breaths air. Any relation the programmer chooses can be represented by arcs in 

semantic nets. Aside from static physical relations, like SUPPORTED-BY, and 

classification relations, like IS-A, more emphatic relations, like MUST-BE-SUPPORTED

BY and CAN-NOT-BE-.A, are possible. Thus, a mammal CA1"J"-NOT-BE-A reptile. The 

deductive reasoning procedures in SHRDLU make use of these relations. 

~ruch has been written about semantic nets ( [\Voods i5] for example). They have 

been (and perhaps, still are) the dominant knowledge representation system used in ='JLp, 

if not all of A1. SHRDLU exemplified the best points about semantic networks. The 

simple node-arc formalism provides for easy representation of associations. They are 

useful at encoding static factual knowledge and are versatile in that they permit a wide 

range of data to be encrypted. Because of the limited domain of kilOwledge needed to 

underst.and the blocks-world, few of the difficulties and limitations of this scheme 

surfaced [Wilks j.I], which is one of the reasons why SHRDLU was so successful. Among 

the shortcomings of classical semantic nets are: no universally accepted meanings for 

links; difficulty in repres('nting time'dependent knowledge; problems resulting from the 

need to organize and manipulate a large network. Nevertheless, semantic nets are a very 

useful tool for knowledge representation. 

One of the consequences of picking a good representation system is that some 

seemingly difficult problems become relatively easy to solve. By using semantic nets to 

represent the physical objects in a blocks-world, learning about simple object structures 

can be carried out. Of particular interest is the work Winston [\Vinstoll 77] did with a 

program (ARCH) to learn concepts, such as the form of an arch. An arch can be 
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p'preseIltl'd by a 3-node semantic net. After presenting the ARCH program \vith a 

eeJ{Tect example of an arch, subsequent 3-node nets are inspected by the computer along 

with external input declaring each example to be either correct, nearly correct or 

incorrect. From this data, the program generalizes what it means for a structure 

(semantic nct rE'presentation) to be an arch, and updates the semantic net. Specifically, 

the program compares the training examples it is given and extracts the information 

commnll to the correct examples that does not contradict what has been learned from 

the incorrect examples. Winston's work demonstrated the usefulness of generalization, 

particularly in the context of 0I'LP. The objects generalized were fairly simple compared 

to the type used in later programs, such as IPP. 

In SHRDLU, semantic networks were sufficient to capture simple relations among 

block-like objects. A complex physical object with many sub-parts could be represented 

by a simple semantic network, bllt it would become an unwieldy computational object to 

manipulate. For example, representing an automobile would be a rather messy thing to 

attempt using this scheme. Furthermore, the fact that a car is usually thought of as one 

object is lost to a conventional semantic net representation because all nodes have an 

equal status. Thus, the car's tire could seem as important as the whole car. 

One way to overcome the inability of most semantic net representation systems to deal 

",ffedively with large networks of data, is to chunk information into regions within the 

network and treat these chunks as if they were individual nodes. Thus, a large semantic 

net with 10,000 nodes could logically be reduced to a network of, say, 200 chunks in 

which each of the 200 chunks would contain sub-networks of a small size. This 

partitioni1lg of a network was proposed by Hendrix [Hendrix ;91. 

Several advantages over simple semantic nets are apparent 10 his scheme. By 

separating low-level knowledge from high-level knowledge, the encoding process can 

represent more varied information. For example, the color, shape and size of an object 

could be linked together within a p3rtition and the partition itself could have links to 

other nodes or partitions (e.g., indicating higher level facts about the object's purpose). 

This hierarehical partitioning results in smaller numbers of objects at anyone level 

that need to be manipUlated. Furthermore, partitions are useful for grouping objects so 

that they can be quantified. That is, a section of a semantic net can be designated so 
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that all its members have some particular property while no objects oUlside it do. 

Frames ['\linsky is] are another way of solving many of the same problems as 

partitioned semantic nets (see section 4). 

2.1. Summary 

The SHRDLU program was a milestone in ?\LP research. It made extensive use of 

semantic networks as a means of representing knowledge about a blocks-world. By llsing 

a syntactic parser, it could perform the commands' requested by Ilsers and answer 

questions posed in English. Few limitations of the program were apparent because of the 

very limited domain in which it dealt. 

Semantic networks have proved to be an extremely useful knowledge representation 

teehnique. They were used in SHRDLU to represent simple physical objects, but can be 

Ilsed to encode practically anything. Although they are very versatile, they have some 

important limitations. including the lack of standardized meanings for links and 

difficulty in manipulation of large network structures. The use of partitioned semantic 

nets generally solves the large network problem by breaking it into groups of small 

sections. 

Th€' structure of semantic nets allows them to be used for generalization. Links that 

allow for inheritance of properties from a higher level nodes in the network, are the key 

to tarrying out simple learning from examples. 

Although SHRDLU and ARCH are among the oldest programs described in this paper, 

they are in some sense t.he most similar to our current work. They addressed the issues 

of representation and gener:1lization in a 0lLP environment. However, they left many 

questions to be answered as far as accomplishing our task of intelligently representing a 

large number of eomplex real-world objects. 

3. l\tlARGIE - Conceptual Dependency and other 
Linguistic Theories 

Syntaetic parsing wurked fine in the blocks-world domain, but a deeper understanding .,- . 
of language is call('<1 for when using representation/generalization schemes that encode 

complex data. This section describes one approach to representing the meanings of 

components that are presented via a natural language. 
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While researchers in psychology, like Quillian, and in computer science, like Winograd. 

were working Ollt representational issues using semantic nets and the like. linguists were 

making great strides forward in a relatively new field called computational linguistics. 

This branch of linguistics is mainly concerned with using computers to simulate :\LP. 

One way of breaking down computational linguistics is into syntax, semantics and 

pragmatics. 

Syntax, in a computational linguistic environment, implies the study of sentence 

analysis and generation from a purely structural viewpoint. Chomsky's theories of 

generative grammars [Chomsky 6.S] and his classification hierarchy of formal languages 

were the modern starting points in this subfipld. In addition to Chomsky's work. there 

has been a fairly large effort in describing and building syntactic parsers. An example of 

the research in this area are ATNs (Augmented Transition Networks) [Thorne et al. 

68, Woods 70]' which form the basis of several powerful computer parsers, including the 

one used in SHRDLU. 

Chomsky is credited with revolutionizing linguistic theory. However, he has aroused 

many erities who point out his failure to deal with semantic and pragmatic issues in 

language compr£'hpnsion. Semantics is generally understood to be the study of language 

m('anings while pragmatics concerns itself with connecting meaning to real-world 

experiences. Although these definitions are easy to state, in practice, the distinctions 

bt't\\,('pn semantics, pragmatics and syntax are often blurred. 

Following the demise of early attempts to do machine translation among natural 

languagps, many computational linguists began focusing their attention on problems of ..... 
semantics. The parly :'\'LPprograms were strictiy syntactic in nature. ~1any researchers 

fl'lt t.hat these programs, were incapable of doing an adequate job of understanding, 

necessary to perform machine translation or paraphrasing.2 Semantics seemed to offer a 

way to greatly improve upon the performance of these programs. Writing programs that 

could understand the meanings of the words that they were reading became one new 

theme of :"LP rl'~earch. 

2[t, sho\~lcl be not~d tha~ early NLP prolTramming att~mpts did not. do an ad.e.quate joh 
of SVni:lC'tlc proce~slU~. SlUce then there gave been major advances III the abIlity to lIse 
synfax as the basis 01 :'\LP systems. ~lanY of today's i'o'LP programs rely on syntax. 
o"ften mixed ".lith other processing techniques, and perform quite wetl. . • 
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One such program. \lillGIE [Schank 75], \\'as created with several objl:'ctin's. 

ineluding the paraphrasing of single sentences, \\ihile serving as a testbed for a new 

tht'ory of semantic representation ca.lled Conceptual Dependency (CD) [Schank 72]. 

Schank, the principle designer of CD, set out to synthesize some recent work in 

linguistics and psychology into a consistent and useful theory that would lend itself to 

computerization. CD is a language-independent. primitive-based representation scheme 

for ;\'LP. It is primarily based on both the ideas of semantic primitives and case 

grammars which will be discussed below. \L\RGIE was the first attempt at testing this 

theory in a computer environment. 

~l\RGIE functioned in two similar modes. In paraphrase mode, ~L.\RGIE would read 

English sentences and parse them into an internal CD repr~sentation. In this fOfm 

various inferencing systems would produce other CD-forms. The last stage of this mode 

would generate an output sentence based on the CD-forms. The inferencing mode of 

\L-\RGIE worked in a similar manner. However, instead of producing a complete 

paraphrase of the original sentence, ~L<\RGIE would output a series of statements 

(·oncerning what. inferences it made about the meaning of the input text. 

To get an idE':1 of what ~L\RGIE's capabilities " .. 'ere, consider the following examples. 

t:lhn from [SCh:lllk /·)1: .,_. ~ 

In paraphrase mode the input text: 

John advised Mary to drink the wine. 

would cause the Olltput: 

John told Mary that drinking the wine would benefit her. 

to 'lppear. 

This shows that ~L\RGIE must. know something about the meanzng of the Hrb 

"advise". In fact, CD provides the program \'w'ith a method for classifying all action

based verbs (ACTs). Although verb classification is not directly applicable to physical 

object represent.ation, CD provides a paradigm for developing primitive-based 

understanding schemes. Before a description of CD is presented, consider how MARGIE 

worked in the inft'rcncing mode. 
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The input: 

John gave Mary an aspirin. 

would cause \IARGIE to display the following inferences it had made (among others): 

1. John believes that Mary wants an aspirin. 

2. Mary is sick. 

3. Mary wants to reel better. 

·t Mary will ingest the aspirin. 

These examples illustrate that CD must also be capable of representing the meaning of 

cansal connectives. That is, inference (1) (and other beliefs) causes inferences (2) and (3) 

to be made, which explain the stated action of John giving ~hry the aspirin. ~L~GIE 

must also have encoded within itself the knowledge that aspirin is usually ingested, in 

order to make inference (4). 

CD works on the theory that all actions (verb.:;) can be reduced in meantng to 

combinations of a small group of primitive ACTs. For each ACT represented, there are 

a fixed number of arguments tha~ ~cc;ompany it. That is, an actor, recipient, object or 

otht'r po=,sible case slots must be filled for each ACT. Thus, for example. "John gave 

\1ary an aspirin ,. would have the representation: 

(URAlS 
ACTOR: John 
FRail: John 
TO: lilary 
OBJECT: aspirin) 

.-\ TR.\:\'S. one of the primitive ACTs, is used to represent the meaning of the verh 

"gave" and indicates .-\bstract TI{k"ISfer (of possession) of an object. Other verbs, such 

as "take". are also represented by ATRA0iS, but have their case slots filled differently. 

CD is capable of representing a wide range of actions and situations. In addition to the 

basic .-\CTs. both mental and physical states of a being or an object can be encoded. 

The fact t.hat an event may enable, disable, cause or generally affect a state, is also 

represt'ntable within CD. Using these connectives, it is possible to represent the meaning 

of a series of sentences that comprise a story with one complex CD structure. 
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Sc-hank's theory of Conceptual Dependency was not completely new to the field of 

linguistics. Two main areas of research contributed to its synthesis. T~e first was the 

development and study of case grammars [Fillmore 58]. Case grammars were a 

byproduct of both classical linguistics and Chomsky's transformational grammar. They 

reflect. classical linguistics in the sense that, they identify the various parts of a sentence 

such as the main verb phrase and noun phrases. However, it is not the surface structure 

of the sentence that is extracted, but rather the meaning. Thus. regardless of the formal 

structure of the sentence the "case frame" extracted by using case grammars will be the 

same for sentences employing the same main verb. Structurally, the case frame looks 

very much like what was presented in the CD examples (above) with actor (or agent), 

object., instrument and a few other slots available. Case grammars classify verbs by 

what slots (cases) must accompany a particular verb. Thus, for example, if the verbs .. -- ~ 

open and throw require the same slots (OBJECT, AGENT and INSTRU~v1ENT) for their 

case frames then they would be grouped together. CD goes beyond case frames by 

defining a system of primitives and rules to manipulate them, that captures the meaning 

of a sentence. rather than having a case frame for every verb. 

The second building block of CD comes from both linguistic and psychological 

research. Semantic primitives are generally defined to be the lowest level of symbolism 

in a representation system. In practice, an understanding/representation system uses 

semantic primitives as a way of classifying some group such as actions or physical 

objects. CD is an example of a non-hierarchical classification scheme using semantic 

. primitives. 

The :; . .;e of semantic primitives in a representation scheme can also be of help in 

processIng. That is, inference rules can be grouped according to which primitive classes 

they apply to. This allows a processing system to easily determine \vhat inference rules 

should be tried, which reduces search time. For example, the ATRANS ACT in CD can 

have the rule if the FROAf slot filler is not specified, then fill it with the ACTOR slot 

value, attached to it. Other ACTs may not need such a. rule and they need not have one 

since rules can be specifically bound to a given semantic group. 

Some recent psychological research (see [Rosch et a1. i5], for example) has investigated 

the existpnce of fundamental classes of physical objects. They give a fair amount of 

evidence which shows tha.t there exist natural categories of objects that people use \ ... hile 
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perceiving physical objects in the real world. Other work by ~{iller [~{iller j.j] has given 

:,;i rong support to the thesis that verbs can be categorized as well. In one :;tudy he found 

that English has over '200 words .which have the semantic component, ··to move". These 

studies show that humans make considerable use of categorization as a way of perceiving 

3ml understanding input from the real world. Furthermore they suggest that .. '- ~ 

fundamental meanings in natural language might be tied to real-world objects and/or 

events. 

The concept of categorization IS related to the idea of semantic primitives. 

Categorization is a hierarchical way of grouping entities so that some organization is 

apparent. Biological taxonomy is an example of such a categorization system. Semantic 

primitives strive to reduce real-world knowledge into meaningful groups, usually in a 

non-hierarchical structure. Thus, categorization and semantic primitives are both ways 

of helping people ano./or machines perceive data from the real-world. 

Wilks has developed a system that he calls preference semantics [Wilks 73] which also 

uses semantic primitives. Preference semantics is a system whereby the meanings of 

some words help to disambiguate the meanings of other words while parsing input text. 

Each word that his system can understand consists of a dictionary entry which classifies 

the word into one of five major categories. Within the definitions are data that include 

how to interpret other words read in the same context. Thus, for example, the sentence 

.. John grasped the idea." is understood by using information encoded in the definitions 

of each word and inferring that if John is grasping a non-physical object then the 

meaning of "grasp" must be "understand". \Vilks also built a program [\Vilks 7.5] that 

uses preference semantics to do translation of English text into French. This was 

accomplished by making use of the fact that preference semantics distinguishes different 

vv'ord senses. Thus. when a given word sense was detected in the English input, its 

equivalent me:l.uing in French was stored for use in output generation. 

I 

Other r\LP systems that use representation mechanisms similar to Wilks's program and 

~L-\RGIE are: The Word Expert Parser [Small 80], a system much like preference 

semant.ics that is totally dictionary-based; SAM [Cullingford 78, Schank and Abelson 77], 

a program that uses CD representations built into higher level knowledge structures 

called scripts; and PAJ\f [Schank and Abelson 77, Wilensky 78]' a high-level 

represl'ntation system tha.t understands stories in terms of plan-based schemes. S.-\...\1 and 
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P.\.\[ share an English language parser called ELI [Riesbeck and Schank 7131. Both 

programs are a continuation of Schank's work; they are more advanced than ~L-\RGrE 

in that ( hey understand stories in terms of real-world events. That is, scripts are used to 

group events into logical units, such as the chain of activities that occur in a restaurant 

setting. Plans are llsed to satisfy goals and explain events by specifying a sequence of 

actions that are needed to achieve a desired result. 

3.1. Summary 

~L-\RGIE was basically a way of testing CD. Later programs like S.~\l and P.~\l used 

CD as the basis for limited natural language understanding systems. CD has proven 

itself as a robust representation scheme that is particularly well suited to action-oriented 

events. It has the expressiveness necessary to accurately capture causality and the 

conciseness to avoid ambiguity. However, it has several drawbacks. The use of a small 

set of primitives results in the loss of some meaning in certain contexts. Furthermore, 

static factual knowledge (e.g., physical object descriptions) is almost completely 

neglected by most CD implementations. 

The main reason for studying CD and similar systems is that they have demonstrated 

the usefulness of primitive-based, semantic representation systems for use in NLP. Case 

frames. suitably modified for physical object relations, and semantic primitives seem to 

offer po\· .. erful tools for formulating a theory of object representation. Furthermore, the 

formalism of case frames is quite helpful for performing generalization, as will be seen 

when IPP is discussed. 

The relevance of the work. presented in this section to representation/generalization 

research. lies in the theory behind a CD-like representation scheme. We believe that a 

primitive-based. Innguage-independent system is essential to an intelligent understander 

of complex physical objects. CD has been successful, and will hopefully serve as a good 

model for developing such systems. 

4. GUS - Frame-based Representation Schemes 
Semantic net.works offer a plausible formalism for physical object representation 

systems. bllt havp several problems. The solution seems to be the partitioning of a 

network into grollps of nodes that are logically compatible. Hendrix introduced 
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partitioof>d semantiC' networks as one possible scheme; another scheme was used as the 

b;)~is of (;CS [Bobrow et al. iiI. 

SfIRDLC and SL\RGIE were very useful experimental programs but they did not have 

much application to real-world situations. GCS was designed to provide information on 

airline flight schedules. Although GUS was still an experimental program, and dealt 

with only a small number of airline flights, it represented a move in the A1 community 

toward using natural language input/output modules (front-ends) for databases. GCS 

was one of the first programs to explicitly make use of Minsky's frame concept. 

GuS's domain of discourse was very limited; in fact, it only knew about airline flights 

scheduled for cities within California. It played the role of a travel agent during a 

conversation with a user. An initial database was extracted from the Official A.irline 

Guide. With this data in a suitable frame format, and a pa'rsed user request, GCS 

reasoned out a correct and appropriate response. 

Frames are conceptual objects that are used as an organizational mechanism for 

grouping pieces of knowledge into logically consistent blocks. They are most easily 

thollght of as an extension of semantic networks where each node is a comparatively 

large structure that contains enough information to adequately describe an item at some 

level of detail. \Vhile a node in a semantic net usually is simply the name of an item. a 

framE:' can possess information about how to classify an item, how to use it. what 

attributes it has and virtually anything else that might be useful to know about an event 

or object. Furthermore, the knowledge encoded in a frame need not be static 

(declarative). it may be dynamic (procedural), or it can be a combination of these 

[Winograd 751. For example, if an airline reservation system used a frame to represent 

each date a plane reservation was made on, it might have slots in the frame as follows: 

YEAR: 
WOITH: 
DAY-OF-WOITH: 
DAY-OF-WEEK: 

The information filling the YEAR, MONTH and DAY-OF-MONTH slots might be 

filled with static data (probably single numbers). The DA Y-OF-\VEEK slot might 

contain procedural knowledge as follows: 

(It YEAR and MOITH and DAY-OF-YOITH are filled 
then (FICURE-WEEKDAY» 



GCS ran by uSing information encoded within several different frames to gnide its 

operation. For example, at the st.art of a conversation, GCS would t.ry to find the data 

needed to satisfy the requests of a prototypical dialog frame. The attempt at filling in 

slots would lead to the need to fill in lower level frames before the dialog frame would be 

complete. Thus thE' date frame might have to have its slots filled in before it could be 

included as part of the dialog frame. By having a sequence of prototype frames to 

follow. GUS achieved its goal of acting like a travel agent. 

The term slots refers to the "important elements" [Winograd 751 in a frame. Slot 

fillers can be thought of as references to other frames, which is what ;"'linsky originally 

proposed. In any particular application of a frame system, a considerable amount of 

thought must. be given to how many'slots should be used and what they should contain. 

A guiding principle for frame slot selection is, "A frame is a specialist in a small domain" 

[Kuipers 7·)1. 

One very important aspect of the use of frames as a knowledge representation scheme 

is the default filling of slot values for instantiated frames from stereotypical frames. An 

instantiated frame is simply Olle that has its slots filled, at least partially. Default values 

for frame slots can be easily set up by placing them in a stereotype frame and 

programming a system so that if no value for a particular slot is specified. then it is 

inferred from the stereotype. Generally, this default processing seems to make sense. 

For exampll'. if the YEAR was not explicitly given in the date frame (shown abon) then 

it would be r(,:lsonable to assume that the value of the slot should be the current year (as 

most airline reservations are not booked too far in advance). However if the D.-\ )"-OF

\10:\"TH was not given. it wO~lld obviously be a mistake to assume some value from a 

stereotype (assuming that only a few reservations are made on any given day). 

In order to effectively use frames as a representation system several other operations, 

aside from default processing, are essential. These include: matching one frame against 

another: allowing for inheritance of properties from higher level frames: type checking 

the values that can fill a slot in order to ensure that only certain ones are accepted: and 

general abilities to manipulate a connected network of frames. KRL [Bobro\ .. · and 

Winograd 77:1], a language that was developed specifically to allow for knowledge 

representation in the form of frames, includes facilities for the aforementioned functions 

and others. \bny of these functions, particularly matching and inh('ritance, are of 
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importanct.> for Ilse In systems that perform some sort of g(lneralization abfJllt their 

knowledge . 

. -\lthough Gl'S was not a particularly intelligent or robust system, it was a great asset 

in the refillE'ment of some of \-Iinsky's ideas about frames. It also served as a model for 

other programs written in KRL, such as COIL (by Lehnert [Bobrow and \Vinograd iib]), 

an \'LP program that concerns itself with drn.wing inferences about physical objects. 

OthN )iLP systems that are also strongly framE'd based includ~: ~ls ~[alaprop [C'harniak 

771. a progrn.m that reads stories about painting; S.-\..V[ [Cullingford 781 and P.-\..\1 

[Wilensky 781 discussed earlier; and IFP [Lebowitz 801. 

~1any other very high level representation languages for AI exist. KLO~E [Brachman 

7g1 and FUL [Roberts and Goldstein iiI are two systems that are similar. in purpose, to 

KRL. 

KLONE is both a language (embedded in LISP) and a methodology for orgamzlllg 

partit.ioned semantic networks. Objects represented in KLONE are structured much like 

they are in a frame-based scheme. However, KLONE's st.ructural formalism also 

provid(>s a way of establishing inheritance hiern.rchies. A distinction is made between 

stereotypical objects and instantiated ones. Thus, the properties of an object can be 

att,lcheu either to a stereotype for that object or to the object itself. Because of the 

hierarchical nature of KLOI\c, complex, but well organized inheritance dependencies 

can be established. By using a limited set of possible links, the semantics of the netv,!ork 

are clearly defined. The meanings of the allowed links have been chosen so that 

consistency and accuracy prevail in the final representation. 

FRL is much like KLO l\f£ , but instead of imposing restrictions on the semantics of 

links. it forces the network of frames to be hierarchically connected. That is. all frames 

must be joined together using INSTANCE and A-KIND-OF links. Therefore. the 

representation tree (actually a network that is tree-like) has as its root t.he most general 

object (frame) ;lnd its leaves are the lowest level instances of whatever the network is 

represpnling. For example, if one were representing car models, the root frame might be 

all automohiles: below that, frames encoding General Motors, Ford and Toyota cars; and 

at the bottom of the tree there would be Ceiicas, Skylarks, Mustangs and so rorth. The 

.-\-KIND-OF links point backward, so that Buicks are A-KIND-OF General ~fot.ors car. 
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l:nless otherwise specified. Buicks w.ould inherit all the properties t.hat are common to 

General \lotors cars. This type of representat ion is very helpful in forming anJ storing 

generalizations made about objects or events. 

4.1. Summary 

GUS uSPS frames as a way of representing data on airline flight schedules. It also 

makes use of framed knowledge to guide its goal-oriented processing. Frame 

representation schemes are an improvement over those using simple semantic nets. They 

allow for grouping data, much like part.itioned semantic networks. Furthermore, most 

systems employing frames allow for them to be structured in a hierarchical manner so 

that categorization and inheritance dependencies can be established. 

KRL, FRL and KLO~'E are languages that are based on frame or frame-like 

representations. They all offer ways for describing inheritance. matching one frame 

against another, and various other functions. KLONE is the newest and most successful 

of t.hese. It provides a consistent set of semantics for linking together frames, and thus 

solves one of the problems that has plagued semantic network schemes. 

The use of frames linked together into hierarchical structures is a representation that 

lends itself to generalization processing. I~STANCE and A-KIND-OF links correspond 

to specialization and generalization, respectively. J\1any representation/generalization 

schemes use this basic formalism in c.onstructing complex network descriptions of 

physical objPcts. Still needed is a method for adding, deleting or modifying knowledge 

encoded in the network so that it reflects the changing status of information presented to 

the program. 

5. OPUS - Physical Object Representation Schemes 
SHRDLU addressed the problem of representing small numbers of block-like objects. 

An obvious extension of this is to intelligently encode information about large numbers 

of arbitrarily complex real-world objects. This section describes several methodologies 

for doing this. 

Physical object representation schemes for N"LP seem to fall into three major groups. 

The first group consists of those schemes that are mainly concerned with representing 

the way in which objects are used. That is, the functionality of a physical object or the 
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way humans think of an object while performing a task involving it [Crosz 77]. The 

~e('ond group is formed by those schemes that strive to encode some fundamental 

properties. (e.g. melting point or density) of physical objects. The remaining group 

ineludes those systems that seek to represent physical objects from a visual perspective. 

and are therefore useful for describing an object's structure. These groups are not 

necessarily distinct. in that some representation schemes can be members of more than 

one group. To get a better idea of what these groups are, one example system from each 

group will be examined. 

Object Primitives [Lehnert i81 are an excellent example of a physical object 

representation scheme that is a member of the first group. This representation scheme 

was designed to be an extension of CD. Each of the seven primitives stands for a basic 

attribute of an object. By combining several of these attributes together, any object can 

be described. For example, an ice cube tray might have the Object Primitive 

representation (taken from [Lehnert 78]): 

[Ice Cube Tray 
(a SOURCE with 

<output = Ice Cubes» 
(a COISUllER 'lith 

<input = Water»] 

Here the SOURCE and the CONSUMER are two of the seven possible Object 

Primitives. Notice that no attempt is made to encode the physical form of an ice cube 

tray. However. the functional features of an ice cube tray are represented by this 

scheme in a manner which is consistent with other CD-forms. 

The primary purpose of OPUS [Lehnert and Burstein i91 was to read sentences about 

physical objects and convert them into Object Primitive representations. OPUS can be 

classified as an expectation-based parser that uses its knowledge about physical objects 

to aid in understanding input text. 

The program "understands" physical objects III an everyday type environment. The 

representation scheme concentrates on how objects are to be used and allows utilitarian 

inferences to be made. For example, the sentence: 

John opened the bottle and poured the wine. 

would be rE'prE'sented by a structure that includes such inferenced facts as: 
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- a cap was removed from the bottle 

- wine was in t.lle bottle 

- wine was emptied from the bottle 

This idea fits in well with the original concept in CD that ACT representation is 

central to understanding and that various connectives allow for merging ACTs into 

complex events. The work that Lehnert did to extend CD was to define seven Object 

Primitives that function. in object representation, much like Schank's ACTs, which deal 

with human oriented events. 

An example of a scheme from the second class of physical object representation 

schemes is the work Novak [Novak 77J did to develop a canonical physical object 

representation system for use in a program called ISAAC. This program reads and 

solves elementary physics problems stated in English. Although this is a NLP 

application program, the representation for the objects being described in the problems is 

fundamental in the sense that only the physical properties of the object are encoded. 

Thus, for example, a dog standing on an inclined plane might be represented by a point 

mass: the fact that the animal is a dog has no significance in this context. 

This scheme is canonical because many different objects are reduced to the same 

representation that contains all the information to uniquely classify these objects. 

Canonical representation is typical of physical object representation schemes that fall 

into this second class. Schemes in this class are generally very useful in specific domains, 

but are not too applicable to everyday type situations. The Object Primitives scheme is 

canonical in the sense that an ice cube tray has only one purpose (and therefore only one 

representation). However, it is qualitatively different from ISAAC's representation 

seheme because Object Primitives does not try to capture fundamental physical 

properties of an object. 

R€'presentation~ that. relate to visual processes constitute the third class of object 

encoding systems. A program written by Kosslyn and Shwartz [Kosslyn and Shwartz Til 

attempts to simulate how people'1:lS~ visual data. Their program models only a few 

aspects of visual processing. It is able to search an input image for various sub-parts and 

identify their position relative to other parts, regardless of the scale or, to some extent, 



thE' :lngle of new. Running in reverse, the program is also able to construct well 

proportioned images by using its knowledge of how parts can interconnect. This type of 

ability may be useful in :\LP systems that need a structural description of an objec-t. 

There has been a rather large amount of research relating to physical object perception 

in recent years. Both experimental psychology and robotic vision processing are 

concerned with how humans recognize real-world objects. Much of this work is based on 

r.he idea that scenes are decomposed into sets of primitive elements with relational 

elements holding an image together. Some strong evidence that this kind of processing 

takes place in children has been uncovered [Hayes 781. Vision research spans a wide 

range of image representation levels (see [Cohen and Feigenbaum 821 for an overview). 

At the lov.·est level, scenes are usually encoded on a point-by-point basis, '\fhile the 

higher levels may approach abstractions characteristic of schemes used for natural 

language processing. Kosslyn and Shwartz's model of vision processing fits somewhere in 

the lower to middle range of these schemes. 

5.1. Summary 

OPUS is primarily concerned with the way objects are used in everyday-type settings. 

It. is a fairly simple system designed to test a physical object representation scheme that 

serves as an extension to CD. 

Most physical object represent.ation schemes for NLP have one particular specialty. 

opes offers a system, Object Primitives, that mates with CD but lacks the ability to 

(-apt-ure detail of the structure of objects. Other systems, like Kosslyn and Shwartz·s. 

allow for great detail but miss out on the higher level abstractions. such as how physical 

objects are used. Encoding an object's purpose for use in a task-oriented environment is 

also a shortcoming of most curreIlt ... ~y~tems (OPUS and Grosz's task domain are notable 

exc-E'ptions). 

Having an appropriate, robust scheme for representing complex physical objects is of 

central import:1nce in our \\'ork. There seems to be a need for processing techniques 

from each of the three classes: visual, utilitarian, and fundamental physical property. A 

shortcoming of all of the schemes mentioned, in this section, is t.heir inability to deal 

with time-varying physical structures. Furthermore, none of them deal with a domain 

where there are many complex physical objects that need to be organized into a unified 
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memory st.ruct lire representation. such as patents. 

6. IPP - Generalization and Memory 
Assuming that the representation problems for a single complex physical object have 

been solved. we are now faced with the problem of organizing many such descriptions in 

an intelligent manner. IPP [Lebowitz 80, Lebowitz 83a], and similar programs. 

demonstrate how generalization can be used to achieve this. 

One common feat.ure that most of the preceding programs (including ~1ARGIE, Gl'S 

and OPUS) have. is their use of frames3 as knowledge structures. IPP is no exception. 

Th€' frame structures used in IPP are forms of ~10Ps (Memory Organizational Packets) 

[Schank 80, Schank 82]. ~lOPs are very high level representational structures that 

organize sc('nes. scripts and supplemental data into a coherent picture of an event. In 

this sense. ~lOPs work much like plans, but are more powerful and allow for dynamic 

seript building. That is, the scripts that a \10P employs need not be a permanent part 

of the ~10P. They can be modified, deleted or re-positioned within the \'lOP in order to 

reflect a better understanding of what the MOP is encoding. The dynamic nature of 

~10Ps is an important element in a understanding system that uses them. This ability 

to dynamically r('sl ructure memory is the princiRle difference bet\ ... ·een MOPs and simple 

frames or partitioned semantic nets.- ~By allo\\'ing for a representation scheme that can 

reorganize its own data. ~fOPs go far beyond the capabilities of static frame-based 

processing techniques. 

IPP uses ~lOPs as long term memory representations of stories it reads about 

terrorism. Its approach is to scan stories from wire services and newspapers and 

understand them in terms of what information it has gathered from previous stories. 

The use of ~10Ps residing in memory in understanding the current input text is one of 

the import.ant features of this program. IPP recognizes similarities and differences 

between events stored with MOPs it has in memory and then uses this observational 

data to build other MOPs that can be used as stereotypical knowledge. This process is a 

form of generalization. 

3The tE:'rm frames is used here to include anv rerresentation scheme which groups 
data into logical blocks and provides for individua access to the slots within these 
blocks. It shollid be noted that the frames used in IPP are equivalent to those used in 
\l:\RGIE or GUS in only the broadest sense. 
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To exemplify this type of generalization, consider the following (taken from [Lebowitz 

80]): 

l"Pr. -! April 1980, Northern Ireland 

"Terrorists believed to be from the Irish Republican Army 
murdered a part-time policeman ........ " 

UPI. 7 June 1980, Northern Ireland 

"The outlawed Irish Republican Army shot dead. a part-time 
soldier in front of his ll-year-old son in a village store Sunday." 

From these stories, IPP would made the generalization: 

"Terrorist killings in Northern Ireland are carried out by 
members of the Irish Republican Army." 

This gener:llization is made possible by a comparison of MOP slot fillers. The 

stereotypical ~[OP for a terrori&t ... killing event has slots for place and actor, among 

others such as victim, method, etc.. The program assumes that all facts it knows about 

are relevant. to compare. AIter forming this generalization, IPP will use it to make 

inferences while reading other stories. Thus, if a new story about a terrorist act in 

Northern Ireland came across the UPI wire, and no mention of who committed the act 

was made, t.hen IPP would assume that the Irish Republican Army was responsible. 

This sort of assumption is 3.n example of default processing mentioned in the context of 

GlJS, but carried out at a higher level of represent3.tion, and, dynamically. 

To get a better idea of what MOPs can represent, consider the following MOP skeleton 

(partially taken from [Schank 82]): 

level ot representation 

!.lOP 
scene 
scene 
scene 
scene 
scene 
script 
script 
script 
script 

content of representation 

[ll-AIRPLAIE 
(PLA) TRIP) 
(GET liONEl) 
(CALL AIRLIliE) 
(GET TICKETS) 
(DRIVE TO AIRPORT) 

{FIID KEYS} 
{PLAI ROUTE} 
{LOAD LUGGAGE} 
etc. 

Here we see that the ~\'1-AIRPLA1'\ffi ~fOP is composed of several scenes, which in turn 



contain scripts, which are complex CD descriptions of a simple activity. That is, scenes 

are at. a higher level of representation than are scripts. and MOPs are at a still higher 

leHI. This diagram shows only what th'e DRTVE-TO-AIRPORT scene expands to. All 

of the other scenes have some script representation as well. Although ~10Ps are a form 

of frame, they are far removed from something as simple as the date frame exemplified 

in t.he GUS description. 

IPP ('orrectly reads and understands hundreds of separate stories. The strong 

performance of this program is partially due to the fact that it reads only a limited 

domain of stories. By using a small number of stereotypical ~'10Ps that are initially 

input by the programmer, the generalization process is made somewhat easier. Only a 

relatively small number of similarities and/or differences among MOPs need be analyzed. 

Lebov.·itz's work is not the only recent research into using generalization processes in 

conjunction with natural language understanding systems. GYRUS [Kolodner 80], a 

program developed concurrently with IPP, uses a similar generalization process in order 

to understand events concerning the activities of individuals (Cyrus Vance was the 

prototype). They differ in the way that they make use of knowledge gained through 

generalizat.ion. IPP uses its inferred knowledge in order to help itself in understanding 

further input text, while CYRUS answers user questions by employing this knowledge to 

help it r.e('onstruct episodes in memory. These reconstructed episodes can be thought of 

as a re-creation of the mental state that the understanding system had while reading the 

original text. 

Recent work by McCoy, on a program called E;\iHA1'ICE [McCoy 82] uses 

generalization as a way to restructure an existing database. It sub-divides entity classes 

in a database according to a set of world knowledge axioms. These sub-classes form a 

structured hierarchy that is tailored to a particular use by the information contained 

within the axioms. The enhanced database is then used by a text generation program to 

provide intelligent responses to user queries. Thus, the work done by the generation 

program is simplified because most of the inferencing it needs to perform has already 
I 

been pre-computed by ENHANCE. 

There has been much work done III psychology in human cognitive modeling (see 

[Kintsch iiI for an overview). As a consequence of this work, and other's, many 



diffen" .. nt. ways of thinking about generalizat.ion have emerged. Some researchers prefer 

to think that all IE'arning is in some way generalization. while others reserve the term 

"gen~r:llization" for a specific cognitive process, such as, building stereotypes from a 

limited number of examples. Concept building and rule learning [Stolfo 80] are phrases 

that are often used to describe generalization processes ( [\[itchell 82] and [~[ichalski 83]' 

pro\'icie useful cla.ssifications of learning research). 

Rule learning is the term that Mitchell applies to his notion of version spaces [~litchell 

77]. Version spaces refers to a representation/generalization method for finding the set 

of all possible rules t.hat can account for the outcome of some particular action given the 

results of this act.ion. They are used in a program called Meta-DEI'.ITIRAL [Buchanan 

and ~1itchell i8] which learns rules for use in the production system that DE0IDRA..L 

[Lindsay et a1. 80] uses. Although this program does not do natural language processing, 

it uses a dual form of generalization based on the version space method. It can produce 

production rules that are as general as possible, but still fully account for the observed 

data, or it can produce very specific rules, or both. This type of multi-level 

generalization ability seems potentially quite useful in ~LP applications, but has yet to 

be implemented. 

Generalizations based on high-level representations, such as those that MOPs encode, 

differ from learning driven by simple semantic nets. Winston's ARCH program could 

learn t.he concept of an arch by analyzing several correct and erroneous examples. It did 

this by studying the form of the semantic net that represented each example. IPP 

makes its generalizations by using ,the content of ~IOPs. This form verses content 

distinct.ion is not clear-cut. Both semantic nets and MOPs use links to encode 

knowledge, and both use nodes (frames) to hold data. The difference lies in the 

realization that ~10Ps encode their low-level knowledge in frame slots and their high

level knowledge as links, while semantic nets store all their data as links. 

Knowledge gained through generalization is certainly of this high-level type. IPP uses 

this knowledge as a way of structuring its memory. That is, the act of forming 

generalizations actually results in a different overall memory structure (only if a new 

concept is created). Furthermore, the system can use its newly acquired knowledge to 

help it underst.and additional input during the parsing process. This type of 

representation/generalization integration is extremely powerful as the basis for a )JLP 
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program that needs to deal with varied levt'ls of representation. 

6.1. Summary 

IFP, C-YRCS and E0.tIA..1"ICE represent recent developments in using generalization as 

an active orgnnizational mechanism for knowledge. IFP can read hundreds of stories 

about terrorism and understand them in terms of the previous knowledge it has acquired. 

The use of \10Ps, along with the ability to dynamically structure them, is the key to 

this learning process. 

The \10P form of knowledge representation is very versatile. \hny levels of 

description can be encoded within a hierarchy of conceptual frames. This ability seems 

to be a necessity for a physical object understanding system that hopes to handle 

complex objects. Complex physical objects are often described by a series of part, sub

part relations. Thus, a representation scheme would need to encode the whole object, its 

major C'omponents, the parts of the major components, etc. 

The problems that arise in static frame-based representation schemes. having to do 

with their inability to easily reorganize the data that they encode, have largely been 

solved by dynamic MOP-based systems. IPP and CYRUS have demonstrated the 

usefulness of integrating generalization with representation to form adaptable 

understanding programs. This integration is a consequence of the use of generalization 

processes as a way of structuring data. 

\IOPs and generalization seem to offer a viable approach for building 

representation/generalization systems that seek to understand knowledge in a complex 

domain. 

7. Conclusion 
The five programs presented above by no means completely span all of the NLP 

programs that have contributed to the progress made in knowledge representation and 

genl'ralization. They do, however, form a representative set of programs that 

demonstrate the kind of research into physical object understanding and generalization 

systems that has taken place in the past ten years, or so. 

The large number of programs that are intended to investigate the benefits of some 



partic-Hlnr knowledge structure are not unexpected. Obviously, one of the first 

considerations in any --\1 system is how to represent necessary information. Thus, many 

researchers concentrate on developing a good representation system, often with the 

intt'nt of using it in a full natural language comprehension program at some later time. 

This argument goes a long way in explaining the dearth of programs that make use of 

some generalization process. Only a few systems, :such as IPP, CYRUS and E:"nL;\NCE, 

focus much attention on the use of generalization as an understanding mechanism. It 

seems that using generalization as the basis (instead of as an add-on) of a NLP program 

would be a good way t.o proceed, as IPP suggests. 

Our current work on physical object understanding with RESEARCHER [Lebo\vitz 

83b. Lebowitz 83cj, a program to read and make generalizations from patent abstracts, 

uses this generalization-type approac;h. In addition, we use a MOP-like representation 

system that has the power to encode complex physical objects in a semi-canonical form. 

Relations between parts of an object are understood in terms of semantic primitives 

[Wasserman and Lebowitz 821. This semantic primitive scheme differs from Object 

Primitives in that it seeks to capture the way that a group of objects may be positioned 

relative to one another (i.e., its physical structure), as opposed to the way objects are 

used. 

The object representation scheme developed for RESEARCHER embodies 

characteristics from all three classes of systems discussed under OPUS. Its primary mode 

is to serve in a NLP program as the backbone of an object understanding system. To 

this end. it encapsulates data about the purposes of physical objects along with simple 

attributes, such as an object's color. Because RESEARCHER deals with the domain of 

patents. it needs the ability to store detailed information about how objects are 

constructed. Using its relation scheme, it can process knowledge about the relative 

position of parts. Furthermore, unitary, one-piece, parts are encoded by a visual-type 

representation that is intended to function much like the Kosslyn-Shwartz model. 

The brief history of ~LP programs presented here has demonstrated that in a fairly 

short time span great progress has been made. The next ten years should see even more 

rapid growth, particularly in the area of applying generalization principles to natural 

language processing programs. 
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8. Bibliographic Notes 
Several of the references listed are surveys of work done in NLP and related areas. 

- A good overview of NLP is [Tennant 81]. This book covers the history and 
recent developments in all NLP sub-fields. J\[any examples are provided by 
means of case studies of individual programs. Further descriptions of several 
of the systems mentioned in this paper can be found. 

- The Handbook of Artificial Intelligence Volume 1 [Barr and Feigenbaum 81] 
is largely devoted to NLP and knowledge representation. It also provides 
case studies of various programs. Although not quite as readable as 
Tennant's book, it does offer excellent references. 

- Chapter 6 of [Kintscb 77] is an interesting survey of psychological research in 
language comprehension. 

- ~luch of the work mentioned in this paper was done by the A1 project at 
Yale University. A good overview of the IPP, OPCS, PA1\1, SA . .:.\I, ELI and 
CYIUJS programs can be found in [Schank and Burstein 82]. Also a brief 
description of ~fOPs is given. A detailed description of the earlier programs 
(PA.\'!, SA.\1 and ELI) can be found in [Schank and Riesbeck 81]. 

Certaiu books and conference proceedings are particularly rich in articles pertaining to 

the issues raised in this paper. 

- The proceedings from the Fifth International Joint Conference on Artificial 
Int.elligence contain many papers on representation and generalization. These 
include: KRL [Bobrow and Winograd 77b], ISAAC [Novak 77] and version 
spaces [\fitchell 77]. Other papers not referred t.o here, but of interest, can 
also be found. 

- "Representation and Understanding: Studies in Cognitive Science" [Bobrow 
and Collins 75], is the name of the book containing [Kuipers 75, Winograd 
75, Woods 75]. These papers and other's give an excellent in-depth discussion 
of knowledge representation. In particular the semantic network and frame 
formalisms are explored. 

- Several well written papers about representational issues can be found in 
"Associative Networks" [Findler 79]. .\Iost of the works contained here are 
concerned with semantic networks, but not exclusively. Many of the authors 
referenced in this paper have contributed sections of "'Associative Networks", 
including [Hendrix 79]. 
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