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ABSTRACT 

This paper describes two applications of decentralized (Pareto) 

optimization to problems of computer communication networks. The first 

application is to develop a generalized principle for optimality of multi-hop 

broadcast channel access schemes. The second application is to decentralized 

flow-control in fixed virtual-circuit networks (e.g., SNA) using power 

maximization as the performance index. Tne decentralized approach to optimum 

network behavior yields, among other results, characterization of fair global 

objecti ve functions, and optimal decentralized greedy network control 

algorithms. The main conclusion of this paper is that Pareto-optimality 

methods can be successfully used to develop optimal decentralized behavior 

algorithms where a centralized approach is (sometimes provably) not 

applicable. 

*This research has been supported in part by an NSF grant No. t1CS 8110319 
and by the Defense Advanced Research Project Agency of t;,e Department of 
Defense. 

*This paper will be presented at the 20-th IEEE conference on Decision and 
Control, Dece~ber 1981 
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1. INTRODUCTION 

How should one derive optimal behavior algorithms for computer 

communication networks? Toe classic approach to the problem views the network 

as a single entity to which a global performance objective is assigned. Tois 

leads to a centralized optimization problem. Toe major shortcoming of this 

approach is that when one has overcome the complexity of deriving an optimal 

solution the network problem is still not solved, since the centralized 

objective usually leads to a centralized behavior policy. Tnis centralized 

optimal behavior needs to be decentralized to serve as an adequate solution. 

The process of decentralization is usually more difficult than that of solving 

the original optimization problem. Therefore decentralization is usually an 

ad-hoc approxLmation process with little formal methodological support. 

An alternative approach is to view the network as a loose collection of 

interfering agents (1. e., nodes, processes), each of which is assigned a 

selfish utility function which it seeks to optimize. The problem then becomes 

that of finding an adequate compromise among the selfish needs of the agents. 

One usually adopts Pareto optLmality as the norm for rational behavior. Toat 

is, the agents should select a policy which is not dominated by any other 

policy*. The major advantage of this selfish approach to optLmal network 

behavior, compared with the global approach, is that it generates policies 

that are immediately decentralized. Toe major disadvantage is that global 

optimization is much better understood, formally speaking, than selfish 

optimization. 

The objective of this paper is to demonstrate the value of selfish 

optimization in providing useful solutions to decentralized network control 

problems. 'tie present two successful applications of the selfish approach to 

two computer network problems: broadcast channel sharing and flow control. 

T.'1e presentation style is intentionally semi-formal, and the models selected 

are as sL'TIple as possible to avoid unnecessary math.:natical complexity that 

would hide the forest behind the trees. ('de do, however, point to some "trees" 

of further research interest). 

*In the sense that no subset of agents can improve their performance without 
a performance degradation of some other agents. 
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2. SELFISH PACKET BROADCASTING 

This section briefly summarizes results published in [YEMI 79J and is 

included for the sake of completeness. We give only a rudimentary description 

of the results: the interested reader may find precise derivations in [YEMI 

79], 

Consider the problem of channel sharing, (i. e., designing a multiaccess 

scheme), in a network of packet switched broadcast units. The single-hop 

access scheme problem, when all the broadcast units can hear each other, has 

been thoroughly explored (see [TOBA 80J for a recent survey). However, the 

multi-hop problem remains a terra-incognita. Therefore, let us consider the 

general case of a network where the broadcast units are not necessarily within 

hearing distance of each other. Let us also assume that packets are routed 

using a fixed routing scheme*. Finally, the communication channel will be 

assumed to be time-slotted to packet-size slots. A transmission may only take 

place within a certain slot, and will be successfully received if it does not 

collide with another transmission at its destination. 

An access scheme is an algorithm to decide which busy units* should be 

selected to transmit in any given time slot, that is, an algorithm to schedule 

channel access rights. 

~ 

Let us establish a mathematical model of the problem. We use numbers 

{1,2, ... N} to denote the broadcast units. Consider an access algorithm: at any 

given slot unit i may be aSSigned a transmission right with probability Pi; it 

will use this right and transmit if it is busy. Therefore the behavior of an 

access algorithm may be described by its choice of transmission policy vectors 

p~ (P1,P2,···,PN)· 

*This assumption may be easily relaxed to allow general models of routing j 
it is only used to simplify the discussion. 

*A unit is said to be busy if it has packets ready for transmission 
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Let Si(£) denote the thruput (i.e., probability of successful transmission) 

obtained by unit i when the transmission policy is E.. The performance of an 

access algorithm is completely described by specifying the transformation 

S(E)~ (s1,s2, ••. ,sN)' of transmission policies to attainable thruputs. 

The global approach might seek to optimize some global function of the 

thruput vector ~(£) (e.g., the average thruput). Clearly an optL~al solution 

to the global problem is to select a maximal set of non interfering units and 

let them transmit with probability 1 while the others are kept quiet. 

Unfortunately, this policy cannot be effectively decentralized. 

The selfish approach considers the thruput Si(P) as the utility of unit i; 

the different units seek to jointly maximize their individual thruputs. A 

thruput vector ~ is said to dominate the vector S' if Si2S' i for all i, with 

at least one strict inequality. A thruput vector is Pareto optimal if it is 

not dominated by any other attainable thruput vector. A transmission policy 

which attains a Pareto optimal thruput is said to be a Pareto optimal policy. 

An access scheme would clearly prefer Pareto-optimal transmission policies. 

The selfish optimization problem' is to characterize Pareto optimal 

transmission policies. 

Let .Eo denote a Pareto optimal policy whose thruput is .§o. A small 

perturbation in the policy /\ £ results in a perturbation 6. ~ in the thruput; 

the two perturbations being related through: 

ioJhere 6S is the Jacobian matrix of the transformation ~(p). It is easily 

demonstrable that a necessary condition for Pareto optLmality of a policy E. is 

that the Jacobian matrix 6S(£) be singular at E' 

Define Ei to be the expected number of slots that are empty at the 

destination of unit i given that unit i is busy, and Si/j to be the thruput of 

unit i, given that unitj is busy and interferes 1..nth unit i. It can be shown 

[YEMI 79] that the necessary condition for Pareto optimality is that there 

exist multipliers <!.§! (ex 1'ex 2' ... ,O::N) such that: 



G:i Ei = L C(. ~/i 
j~I( i) :J 
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where l(i) is the set of units with \mich unit i interferes. 

(1) 

These optimality conditions may be interpreted as follows. Each unit is 

given a multiplier C( which indicates its relative "dollar" value. The left 

hand side of the equation represents the dollar value of channel loss by unit 

i due to silence at its destination; the right hand side represents the dollar 

value of thruput that unit i might interfere with; we thus use silence and 

thruput to denote the two sides of the equation (1) respectively. The 

optimality rule may now be restated: if a transmission policy is Pareto 

optimal than it must equate "silence ll and "thruput" of each unit. This 

optimality principle is intuitively plausible; a broadcast unit should only 

waste its silence IIdollars" if it can expect other units to use this silence 

to gain an equal amount of thruput "dollars". 

Let us briefly apply these optimality conditions to the classic multiaccess 

problem of a single hop network. Suppose the broadcast units use the Slotted

ALOHA transmission policy, i.e., a busy unit tosses a coin with probability of 

transmission p and decides whether or not it should transmit accordingly. The 

problem is to find an optimal transmission policy p. The classic solution is 

to maximize the overall thruput S=np(1-p)n, where n is the number of busy 

units; this is maxLrnized when p=1/n. Let us apply the Pareto optimality 

conditions to this model; equating silence=(1-p)n and thruput=Cn-1)p(1-p)n-1 

yields that the optimal choice of p is p=1/n, in agreement with the global 

approach. 

Let us apply the Pareto optimality condition to the Urn scheme [YEMl 78J; 

again, we consider a single hop network with n busy units. The Urn scheme 

selects at each slot k random units out of the N units and gives them access 

rights. The problem is to find a k which optimizes the performance. Toe global 

approach yields [YEMI 78J k=(N-n+1)/n as the value which optimizes the overall 

thruput. Now, one can easily verify that: 

silence = 
( N-k-1) 

n-1 --[---) N-1 
n-1 



(~(N-k-1\ 
thruput = ~1 ~~)-~_~_ 

N-1 
n-1 
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If silence and thruput are equated the conclusion is that the optimum 

policy is to select k=(N-n+1)/n, again in agreement with the global 

optimization result. 

There is more, however, to these results than the mere reassurance that 

global optimization results may be rederived using selfish optimization. Both 

Slotted-ALOHA and the Urn scheme require knowledge of the channel load n for 

their control. This knowledge is not readily available. The characterization 

of Pareto optimality in terms of silence and thruput suggests new access 

control algorithms for both schemes. Namely, rather than estLmating n, which 

is not directly observable, the control algorithm should estimate silence and 

thruput and adjust the control parameters (p or k) to equate the two 

quantities at each unit. While these algorithms require further study (e.g., 

how do we guarantee convergence), they are inherently decentralized and do not 

depend on information which is not observable. In addi tion , the 

characterization of Pareto optimal policies is parameterized by the cost 

multipliers <!.. By assigning different values to the broadcast units, one 

obtains a priority mechanism for access schemes. Finally, the selfish approach 

was successfully applied to a very general multi-hop network, a problem that 

has so far resisted the global approach. 

3. SELFISH POWER CONTROL 

A major objective of flow-control mechanisms in computer communication 

networks is to regulate the use of shared co~munication resources to achieve 

an adequate delay-thruput response. As with other queueing systems, one has 

two conflicting objectives: to maximize thruput and to minimize delay. It was 

suggested by Giessler et a1. [GIES 78] that the dilemma may be resolved by 

using a single performance measure power, defined as the ratio of thruput to 

delay. In [GIES 78] and then [KLIE 79J the properties of power and its 
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generalizations were explored. It was shown that maximization of power offers 

a desirable network objective. 

Bharath-Kumar and Jaffe [KUJA 81] considered power-maximization as a 

mechanism to control flow over virtual circuits (VCs). They show that certain 

notions of global network power, when optimized, lead to unfair flow control 

mechanisms. 

In another paper [JAFF 81] it is shown that different notions of power 

cannot be optimized by decentralized algoritn~s based on local observations of 

thruputs and delay. This negative result epitomizes the shortcomings of using 

the global optimization approach and supports our application of the selfish 

optimization approach to derive decentralized optimal power control 

algorithms. 

To fix the ideas, consider a packet-switched computer communication network 

which provides virtual circuit communication between nodes. We assume that a 

VC, once established, uses a fixed path through the network. This is the view 

on which the SNA and TYMNET architectures are based, for instance. 

The VCs share the communication resources over which their traffic is 

multiplexed. The problem is to derive a flow control mechanism for the VCs to 

adjust their mutual thruputs in order to maximize their power. In this paper 

we consider a simple example to illustrate the issues and derive optimal 

selfish policies. (The generalization of our results to a network is discussed 

in a forthcoming paper). 

Consider the case of two VCs sharing a single link. This is illustrated in 

figure 3-1 below. 

Let x and y denote the thruput rates of VC-1 and VC-2 respectively and let 

~ be the capacity of the physical 'li~k shared by the two virtual circuits. We 

assume that arrivals to the virtual circuits are 
time is exponentially distributed with rate 1. 

VCs is giv~~ by Di(x,y)=1/(~-x-y). 

Poisson and that transmission 

The expected delay over the 
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Figure 3-1: Two interfering virtual circuits 

The utility of each VC is its power, given by 

p1(X,y)~ x/D1(x,y) = x(~-x-y) 

p2(x,y)~ y/D2(x,y) = y(~-x-y) 

respectively. The objective of a selfish power control policy is to have each 

node select a Pareto optimal thruput.-

A necessary condition for a thruput pair (x,y) to be Pareto optimal is that 

the Jacobian matrix of the transformation .!:(x,y)~ (p1,p2) is singular. T..'1is 

is equivalent to the existence of a multiplier ~ such that: 

= ~ (~-2x-y) - x 

= - ~y +(~-x-2y) 

INhere P~ and P~ denote the partial derivatives of pi(x,y). 

(2) 

It is easy to see that if a: =-1 then these optimality conditions are 

equivalent to x+y=~ while for ~~-1 these conditions are equivalent to x+y=~/2. 

Clearly the first case i. e., C( =-1 is not an adequate policy (the physical link 

will be saturated with the flows causing the power of both VCs to be 0). 

Tnerefore, we conclude that the set of Pareto optimal thruput pairs is the 

line x+y=p/2. 
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3.1. Fair Global Performance Measures 

In [KUJA 81J a number of global performance measures, based on the 

functions of the individual powers, are examined. The main concern of that 

paper is with fairness of global objectives. A global performance objective is 

fair if it does not lead to a policy which provides zero power to any of the 

VCs. 

Given a global objective measure, one may consider its level curves in the 

(x ,y) thruput plane, i.e., the curves on which the performance measure is 

constant. A sound global objective should not select an optimal thruput pair 

which is not Pareto optimal. Therefore, optimal thruput pairs lie at the 

meeting points of the line x+y=~/2 and the highest attainable level curve of 

the global objective. 

One can see ilnmediately that any linear combination of individual powers is 

not a fair global objective,* since its level curves in the (p1,p2) plane are 

straight lines and would select the policy yielding the power pair (O,(~/2)2) 
(i.e., corresponding to the thruput pair (O,~/2)) if VC-2 is given more weight 

and the policy (~/2,O) if VC-1 is given more weight. Tnis lack of fairness may 

be easily generalized to any global objective function, the level curves of 

which are concave with respect to the Pareto optimal line when observed in the 

direction of the origin. 

On the other hand, consider the global objective function 

g(x,y)~ p1(x,y)p2(x,y). The level curves of this function in the (p1,p2) plane 

are strictly convex with respect to the line of Pareto-optimal powers. Tne 

optimum global policy thus intersects the Pareto-optimal line in its interior. 

Moreover, g(x ,y) is symnetrical so that the optimum thruput pair allocates 

identical thruputs to both virtual circuits. Tnese properties of the product 

measure clearly render it fair [KUJA 81 J. * To summarize, the geometry of 

Pareto-optL~al solutions provides an easy explanation of fairness. 

*That is, except for the trivial case when all powers are taken '...nth equal 
weights and thus any Pareto optL~al policy is globally optimal. 

*If we choose a product measure with the pi,s raised to different powe:s, 
other fair optimum behaviors are obtained. 
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3.2. Greedy Algorithms For Selfish Optimization 

How can individual VCs adjust their thruputs on the basis of local 

observations, to reach a Pareto optimal policy? 'tie shall consider greedy 

algorithms Le., algorithms where a VC adjusts its thruput rate according to 

the gradient of its utility (power). Formally, let opi be the gradient of the 

power of VC-i, a greedy algorithm is one where 

(3) 

Here the vectors ai represent directions along which the gradient is 

projected. The idea behind greedy algorithms is that a VC should change its 

thruput (the left hand sides of the above equations) proportionally to the 

increase in utility incurred to it. The increase in utility is represented by 

a projection of the respective gradient, given by the right hand side of the 

equations 3. Note that we use a continuous-time approximation of a discrete

time process. This helps simplify the computations while not influencing the 

results since our model is essentially stationary and the model of time has no 

intrinsic significance. 

Before proceeding to analyze the dynamics of greedy algorithms let us 

consider the steady state limit of the proceS:i described by equations 3. 
During a steady state the thruput pair (x,y) satisfies: 

(4) 

Let us note in passing that the greedy algorithm presented in [KUJA 81J is 

obtained by selecting ~ 1 ~ (1,0) and ~2~ (0, 1). This selection represents a 

process where the VCs take turns adjusting their thruputs; each VC, in its 

turn, maximizes its power for the given thruput of the other VC. Therefore, 

the thruput adjustment process is such that each VC only considers its own 
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influence on its power (Le., the respective component of the gradient) 

ignoring the changes of power resulting from the choices of the other VC. The 

solution of the steady state equations for this choice of ai is easily 

computed to be (~/3,~/3), which is not Pareto optimal. Clearly, the reason why 

this greedy algorithm does not lead to an optimal solution is the lack of 

coordination in the choice of direction vectors ai (the two nodes are pulling 
the cart in orthogonal directions). 

It may be easily demonstrated that the steady state equation (4) is 

equivalent to the necessary conditions for Pareto optimality (equation (2» if 

and only if the direction vectors ai are equal. Therefore, in order to ensure 

that the greedy algorithm will converge to the Pareto optimal line x+y=~/2, 

all that is required is to select the direction vector a in the linear space 

spanned by «(, 1) where C( ~-1 . 

Having seen the significance of the projection vectors a i for proper 

coord ination, let us study their role further. Returning to equation 3, we 

may interpret the right hand side as the directional derivatives of pi in the 

direction specified by ..§.i. Therefore, one possible interpretation of the 

greedy algorithms is that the two VCs alternate synchronous ely adjusting their 

thruputs to maximize their power in the direction indicated by the respective 

ai . ltJhen the two direction vectors are identical, another useful 

interpretation of the greedy algorithm arises. Namely, suppose each VC 

iterates adjusting its thruput proportionally to the observed changes of its 

power. However, let us assume that the two VCs iterate at different speeds. 

Toe coordinates of the common direction vector a represent the relative speeds 

of iteration of the two VCs. 

Finally, let IJS consider the stability of convergence of the greedy 

algorithm when both VCs use the same direction vector ..§.=(C(, 1). The equations 

describing the evolution of the greedy algorithm (equation 3) are linear with 

a matrix whose eigenvalues are «+1 and 2«(+1). Therefore when a:: <-1 the 

algorithm is stable (note again the singular role of the value a:: =-1) • 
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3.3. Open Problems 

When one tries to add more realistic details to the simple model of 

interaction described above, a few major mathematical difficulties arise, 

requiring the development of adequate tools. The first problem is that of the 

interaction between the control algorithms and the underlying stochastic 

processes. In our model it is assumed that convergence to a steady state is 

much faster than the speed of iteration of the control algorithm. Tois renders 

the algorithms quasi-static; that is, the time between any two iterations of 

the algorithm must be greater than the time constant of the steady state 

convergence. What if we wish the control algorithm to proceed at faster 

speeds? The simple mathematics above is no longer applicable. What is the 

dynamics of the control algorithm when it is no longer a quasi-static process? 

Another problem is that of incorporating delayed and partial observations 

into the model. In the model above the information required for control (e.g., 

the change of power incurred) is available instantaneously. This makes sense 

for quasi-static control algorithms, but what if the control algorithm 

proceeds at a speed comparable to the time it takes to obtain observations? 

Finally, modelling the stochastic asynchronous operation of the distributed 

agents is important. The model above assumed that the control algorithms 

executed by the different agents are synchronous. The physical significance 

of the relative speeds in which the agents execute their algorithms was 

discussed. In reality, however, one can expect asynchronous operation. How 

should the models account for this? 

4. CONCLUSIONS 

The two examples discussed here demonstrate the advantages of the selfish 

optimization approach in providing an explanation of optimal decentralized 

behavior and offering useful decentralized optimality algorithms. In a recent 

work [BROO 82] similar ideas have been successfully applied to generate 

optimal decentralized traffic light control algorithms. other applications of 

selfish optimization to network problems are currently being pursued. 
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