
Efficient Algorithms for Finding

Maximal Matching in Graphs

Zvi Galil
Columbia University and

Tel-Aviv University

February 1983

C:';CS-48 -8 3

1

Abstract: The paper surveys the techniques used for designing

the most efficient algorithms for finding a maximal (cardinality

or weighted) matching in (general or bipartite) graphs. It

also lists some open problems concerning possible improvements

and the existence of fast parallel algorithms for these

problems.

Key words: Shmathematics, algorithmic tools, data struct~es

monsters, matching, polygamy, the asexual case,

~~e assignment problem, moonlighting, augmenting

path, ET, blossoms, shrink, The Main Theorem of

Botany, The ACM Longest Paper Award, generalized

priority queue, d-heap, warm-up, duality, primal­

dual, sexual discrimination, affirmative action,

joint income tax return.

2

1. Introduction.

There are no recipes for designing efficient algorithms.

This is somewhat unfortunate from the point of view of appli­

cations: Any time we have to design an algorithm, we may

have to start (almost) from scratch .. However, it is fortunate

from ~~e point of view of researchers. It is unlikely that

we are going to run out of problems or challenges.

Given a problem, we want to find an algorithm that solves

it efficiently. There are three stages in the design.

1. Shmathematics.

Initially we use some mathematical arguments to characterize

the solution. The Mathematics used is usually quite simple

('sh' for shallow). This leads to a simple algorithm that is

usually not very efficient.

2. Algorithmic tools.

Next, we try to apply a number of algorithmic tools to speed

up the algori thm. Examples of such tools are "divide and

conquer" and dynamic programming [AHU]. Alternatively, we

may try to find a way to reduce the number of steps in the

original algorithm possibly by finding a better way to organize

the information.

3. Data structures and monsters.

Sometimes we can speeo up our algorithm by using an efficient

data structure that supports the primitive operations that

the algorithm uses.

of monsters. These

We may even resort to the introduction

are ~ complicated data structures that

bring about some asymptotic speed up. that usually becomes

meaningful only for very large problem size. (For a real-life

monster see [Ga].)

3

In these three stages we sometimes use a known technique:

a certain result in Mathematics, say, or a known algorithmic

tool or date structure. In the more interesting problems we

need to invent new techniques, or to refine existing ones

for our purposes. We may need to prove new Shmathematics;

to find an appropriate way to organize information, or even

how to use a known algorithmic tool; or to invent a new data

structure or make some observations concerning known data

structures that make them useful for our purposes.

A word of caution about Shmathematics. Indeed, it is

not deep; however that does not mean that its results are

trivial. What counts in our case is not how deep or elegant

a theorem is, but whether it is useful for improving our

algorithm.

In most cases we use all three stages above in this order,

but this is not always the case. We do not always use all

three. Once we have a quite efficient algorithm we may reuse

any of the three and not necessarily in this order. In par­

ticular, we may use Shmathematics again and again: first to

characterize the solution, and then to analyze the ~g

time by justifying an algorithmic tool or by proving the

properties of certain data structures.

In this paper we exemplify the design of efficient

algorithms by surveying algorithms for the four closely

related problems of finding a maximal cardinality or weighted

matching in general or bipartite graphs. Mathematically,

these are all special cases of the case of weighted matching

in general graphs. We, however, will consider them in in­

creasing order of difficulty because the easier the problem,
-

the faster or the simpler its solution.

2. The Four Problems.

The input consists of an undirected graph G = (V,E),

with IVI = n and lEI = m. The vertices represent persons

and each edge represents the possibility that its endpoints

~. A matching M is a subset of the edges such that no

two edges in M share a vertex~ i.e., we do not allow

polygamy.

Problem 1. Max cardinality matching in bipartite graphs.

The vertices are partitioned into boys and girls, and an edge

can only join a boy and a girl. We look for a matching with

the maximal cardinality.

We can make Problem 1 harder in two different ways,

resulting in problems 2 and 3.

Problem 2. Max cardinality matching in general graphs.

This is the asexual case, where an edge joins two persons.

Problem 3. Max weighted matching in bipartite graphs.

Here we still have boys and girls, but each edge (i,j) has

a nonnegative weight w .. associated with it. Our goal is to
~J

find a matching with the maximal total weight. This is the

well known assignment problem of assigning people to jobs

(disallowing moonlighting) and maximizing the profit.

Problem 4. Max weighted matching in general graphs.

This problem is obtained from Problem 1 by making it harder

in both ways.

The four combinatorial problems are important and

interesting in themselves. Moreover, many combinatorial

problems can be reduced to one of them, or can be solved by

using, in turn, the solutions to these problems as subroutines.

5

3. An augmenting path

An important notion for all four problems is that of

an augmenting path. We will solve each one of them in stages,

and in each stage we will have a matching M. Initially M

is empty. A vertex i is matched if'there is an edge (i,j)

in M and single otherwise. An edge is matched if it is in

M and unmatched otherwise. An al~~t~ path (w.r.t. M) is

a simple path, such that every other edge on it is matched.

An augmenting path (w.r.t. M) is an alternating path between

two singles. It must be of odd length, and in the bipartite

case its two endpoints must be of different sex. The following

Theorem is due to Berge (see [L).

Theorem 1: The matching M has maximal cardinality iff

there is no augmenting path w.r.t. M.

One part of the Theorem is trivial. If there is an

augmenting path, then by changing the status of the edges

on the path (matched edges become unmatched and conversely)

we increase the size of M by 1. We call this operation

augmenting the matching M. The other part is not trivial,

but is quite easy. While it is immediately clear why the

notion of augmenting path is important for cardinality

matching, it is surprising that it is also important when

we maximize weight (problems 3 and 4).

4. Problem 1.

Theorem 1 gives an immediate algorithm. It consists

of O(n} stages. In each stage a search for an augmenting

path is conducted. If there exists an augmenting path, the

search finds one and the matching is augmented. Since the

search takes O(m) time, th.e algorithm runs in O(mn} time.

The search is conducted as follows. After cleaning all

labels from previous &ages all single boys are labeled

with S. We then apply two labeling rules.

(Rl) If (i,j) is not matched, i is an S-boy and j

a free (unlabeled) girl, ~ label j by T~ and

(R2) If (i,j) is matched, j is a T-girl and i a

free boy, ~ label i by S.

The label contains also the vertex from which the label has

arrived. (In the case of an S label this information is

redundant.) The search continues until either the search

succeeds or it fails. The search succeeds if a free girl

is labeled by T. The search fails if we cannot continue

anymore. The following lemma can be proved by induction.

Lemma 1: a) If a boy i (a girl j) is labeled by S(T), then

there is an even (odd) length alternating path from a single

boy to i (j); and b) if the search fails the converse is

also true.

6

By Lemma 1, if the search fails, then there is no

augmenting path and the algorithm (not only the stage) termi­

nates. If a single girl j is labeled by T we have actually

found an augmenting path to j. The path can be reconstructed

by using the labels. The search can be easily implemented in

time O(m) using any traversal of the graph that starts with the

single boys.

7

The best algorithm for Problem 1 is by Hopcroft and

Karp [HKJ. They found a way how to find many augmenting paths

in one traversal of the graph. Their algorithm is divided

into phases. In each phase a maximal set of vertex disjoint

augmenting paths of shortest length is found and is used to

augment the matching. So, a phase may achieve the passible

effect of many stages.

We now describe one phase. We use rules (Rl) and (R2)

as before. Using breadth-first-search, starting from the

single boys, we identify the subgraph ~ of G consisting of

all the vertices and edges that are on shortest augmenting

paths. This subgraph is layered. In layer number 2m

(2m+l) appear all boys i (girls j) such that the shortest

alternating path from a single boy to i(j) is of length 2m

(2m+l). We finish the construction of ~ in one of two cases.

In case 1, a single girl is reached and we complete the last

layer and delete the nonsingle girls from it. In case 2, we

cannot continue. In this case the algorithm (not only the

phase) terminates. This is justified by Lemma 1.

In ~ we find a maximal set of disjoint augmenting

paths using depth-first-search. Each time we reach a single

girl we find an augmenting path, erase its edges from ~

and start from another single boy. Each time we backtrack

along an edge we delete it from ~. It is quite easy to see

that a phase takes 0 (m) time. The importance of t.~ notion of a

phase is explained by the following lemma [HK].

Lemma 2: The number of phases is at most O(vn).

Co~t1y, Ho?:roft and Ka...rp IS algorithm runs in t.ir.e 0 (rr.'fu) •

It is interesting to note that the algorithm (not the

time analysis, i.e. not Lemma 2) was actually known before.

8

Problem 1 is a special case of the max flow problem for special

networks. (Add a source and a sink, connect the source to all

the boys and the sink to all the girls, and take all capacities

to be one.) Augmenting paths correspond to the flow augment­

ing paths in network flow, and the O(rnn) algorithm is just

the Ford and Fulkerson [FF] network flow algorithm for these

special networks. Similarly, Hopc~ft and Karp's algorithm is

actually Oinic's algorithm [Oil applied to these special net­

words. This was first observed in [ET].

, ~,~------------------------

9

5. Problem 2.

As for Problem 1, Theorem 1 suggests a possible algorithm

of O(n) stages. In each stage we look for an augmenting path.

We start by labeling all single persons S and apply rules

(Rl) and (R2) with the following two ~hanges. First, we

replace 'boys' or 'girls' by 'persons'. Second any time Rl

is used and j is labeled by T, R2 is immediately used to

label with S the spouse of j. We call this rule (Rl2).

The search is conducted by scanning in turn the S-ver­

tices. Scanning a vertex means considering in turn all its

edges except the matched edge. (There will be at most one.)

If we scan the S-vertex i and consider the edge (i,j), there

are two cases:

(el) j is free~ or

(e2) j is an S-vertex.

(e2) cannot occur in the bipartite case. The case in which j

is a T-vertex is discarded.

In case (el) we apply (R12). In case (e2) we do the

following: we backtrack from i and j, using the labels, to

the single persons s. and s. from which i and j got their
~ J

S labels. If s. ~ s. we found an augmenting path from s. to
~ J ~

s. and augment the matching. The trouble begins (or, life
J

starts to be interesting) if s. = s ..
~ J

We next describe Edmonds' remarkable work in Botany,

where the concept of blossoms is introduced. Blossoms play a

crucial role in all algorithms for the nonbipartite case

(problems 2 and 4).

If s. = s. = s, let r be the first common vertex on
~ J

the paths from i and j to s. It is easy to see that, r

is an S-vertex, that the parts of the two paths from i and

j to r are disjoint, and that the parts from r to s

are identical. We have found an odd length alternating path

from r to itself through (i,j). We call this cycle B a

blossom and r its~. (See Fig. 1.)

Edmonds' idea was to shrink B: replace it by a single

10

supervertex B

vertices of B

and replace the set A of edges incident with
1

by the set A = (B,j) Ij .i B,3(i,j) € A}. At

most one member of Al (incident with r) is matched. (There ..
are none iff r = s.) If G is the graph obtained from G

after such a shrinking, then the shrinking is justified by

The Main Theorem of Botany:

Theorem 2. There is an augmenting path in G iff there is an
..

augmenting path in G.

8

Figure 1. A blossom.

11

We do not know of any easy proof for Theorem 2. (See

[L] .) One part is obvious. Given an augmenting path in
A

G

it immediately yields an augmenting path in G. If the path

goes through B, then we do the following: we replace the

matched edge, say (B,k), with (r,k); we replace the unmatched

edge, say (j,B), with the edge (j,i) which it originated

from followed by the even alternating path in B from i

to r. Such a path always exists: if i was an S-vertex

when B was formed we use the labels and backtrack from i

to r. Otherwise we use the labels in reverse around the

blossom. Storing B as a doubly li~ list with a marked

base makes this very easy.

The search for an augmenting path uses a queue Q,

where new S-vertices are inserted. During the search, vertices

from Q are scanned and new blossoms are occasionally gener­

ated. So a blossom is a recursive structure because we may

shrink many times. It will be convenient to refer to vertices

that do not belong to any blossom as (degenerate) blossoms of

size 1. When a new blossom B is generated from blossoms

Bl, ... ,B
k

we call the latter the subblossoms of B. We do

not refer to them as blossoms anymore. As a result, at any time

each vertex in the original graph G belongs to one blossom

in the current graph. For each blossom B, the collection of

the doubly linked lists form a tree which we call the structure

tree of B. Its leaves are the vertices that belong to B.

If the search succeeds (in (C2» we find the augmenting

path in the current graph. Then we use the easy part of

Theorem 2 sketched above and the structure trees to recursively

unwind the ~ugmenting path in the original graph. We next

augment the matching, erase all labels and blossoms and start

a new stage. All this takes Oem) time. If the search fails

12

(Q becomes empty), a repeated application of Theorem 2 (each

time a blossom is shrunk) and an application of a modified

version of Lemma 1 (in which'boys' and'girls' are replaced

by 'persons') imply that the current matching is maximal and

we are done.

A naive implementation [El] tak~s o(n
4

) (o(n
3

) per

stage). A more careful implementation takes o(n
3

) [Gll:

since the blossoms are disjoint the total size of all struc­

ture trees at any moment is O(n). When we generate a new

blossom we do not rename the edges; edges retain their

original name. In order to find out quickly which blossom

a given vertex belongs to, we maintain a membership array. When

B becomes a blossom we put the T-vertices into the queue Q, so

we later scan them instead of scanning the new vertex B.

The other vertices of B have already been inserted into Q.

When we consider an edge in (C2) we ignore it if both end­

points are in the same blossom. In this implementation a
2

stage takes O(n) time.

A slightly better bound can be obtained as follows. If

we find the base r of a new blossom B more carefully, by

backtracking one vertex at a time, once from i and once

from j marking vertices on the way, we find the base and

construct the blossom in time O(k), where k is the number of

subblossoms of B. Hence the total time per stage devoted

to finding bases and constructing blossoms is O(n). Using the

'set union' algorithm to manipulate the sets of vertices in

the blossoms for the membership tests takes O(na(m,n» per

stage for a total of O(~na(m,n», where a is the inverse of

Ackermann's function [Tll.

The obvious question that comes to mind is whether the

idea of the phases can be realized in the nonbipartite case.

13

Recall that in one phase we discovered a maximal set of vertex

disjoint augmenting paths of shortest length. This is

important because Lemma 2 holds for general (not necessarily

bipartite) graphs.

In [EK] the authors showed how to execute a phase in

time min(n
2

,m log n). This resulted in an

O(min(n
2

•
S

,min log n» algorithm. A more detailed version

[KJ is a strong contender for the ACM Longest Paper Award.

(It will probably lose only to 5lisenko's real-time palin­

drome recognizer [5].)

A simpler approach was formed more recently [MV]. As in

the bipartite case, a phase consists of two parts: (1) identi­

fying the subgraph G of G that contains all shortest

augmenting paths~ and (2) finding in ~ a maximal set of

disjoint autmenting paths of shortest length. Both parts are

more complicated than in the bipartite case because of the

existence of blossoms. We do not give the details here.

The immediate implementation of the algorithm described in [MVJ

takes O(m~a(m,n» time. The authors claimed that the par­

ticular case of the disjoint set union used by their algorithm

can be shown to require only linear time, and as a result

their algorithm runs in time O(mvn). Quite recently, a

linear-time algorithm for some special cases of the disjoint

set union was found [GTJ. One of these special cases is the

one needed in Problem 2.

14

6. Some Observations on Data structures.

The most efficient algorithms for Problem 3 and Problem

4 use some observations on data structure that we now review.

A. priority queue (p.q.) is an abstract data structure con­

sisting of a collection of elements, each with an associated

real valued priority. Three operations are possible on a p.q. :

1. insert an element i with priority p.;
l.

2. delete an element; and

3. find an (lement with the minimal priority.

An implementation of a p.q. is said to be efficient if each

operation takes O(log n) time where n is the number of

elements. Many efficient implementation of p.q. 's are known;

e. g., 2-3 trees ([AHU] , [Kn]).

In p.q. 's elements have fixed priorities. We consider

the following question. What happens if we allow the priority

of the elements to change? Obviously, an additional operation

which changes the priority of one element can be easily imple­

mented in time O(log n). On the other hand, it is not natural

to allow arbitrary changes in an arbitrary subset of the

elements in one operation simply because one has to specify

all these changes.

We consider two generalized types of p.q. 's which we

denote by P.q'l and P.q'2' The first simply allows a uniform

change in the priorities of all the elements currently in it.

The second allows a uniform change in the priorities of an

easily specified subset of the elements.

More precisely, P.q'l enables the following additional

operation:

4. decrease the priorities of all the current elements

by some real number C.

A. version of P.q'l was used in [T2].

15

To define P.q'2 we first need some assumptions. We

assume that the elements are partitioned into groups. Every

group can be either active or nonactive. An element is active

if its group is active. Assume that the elements are totally

ordered. By splitting a group accor~ing to an element e

we mean creating two groups from all the elements in the

group greater (not greater) than e. Note that unlike the usual

split operation we split a group according to an element and

not according to its priority.

The operations possible for P.q'2 are:

(1)' insert an element i with priority p. to one
l.

of the groupsi

(2)' delete an element;

(3)' find an active element with the minimal priority:

(4)' decrease the priorities of all the active elements

by some real number &;
(5) I generate a new empty group active or not;

(6)' change the status of a group from active to

nonactive or vice versa; and

(7)' split a group according to an element in it.

It may look at first that one may need up to n steps to

update all the priorities as a result of one change, However,

it is possible to implement efficiently P.q'l and P.q'2' In

particular, the change of priorities will be achieved implicitly

by one operation [GMG]:

Theorem 3. P.q'l and P.q'2 can be implemented in time O(log n)

per operation,

We will also make use of Johnson's d-heap [J], The d

refers to the number of sons of L'1tertW nodes. (The usual heap is a

2-heap) ,

16

We partition the primitive operations into two types.

Type 1 includes inserting an element and decreasing the priority

of an element, and type 2 includes deleting an element and

increasing the priority of an element. Type 1 involves

'sifting up' the heap for a cost of lOgd n while type 2

involves sifting down the heap for a cost of d lo"gd n.

Consequently, the following theorem holds.

Theorem 4. Let t = frn/nl + 1. An L-heap supports m

operations of type 1 and n operations of type 2 in time

O(m log n).
t

17

7. Problem 3 or A Warm-up for Problem 4.

We use duality theory of linear programming. We

define the problem as a linear program. We then consider

the dual problem, and then use complementary slackness to

transform our optimization problem in~o a problem of solving

a set of inequalities (constraints). A pair of feasible

solutions for the primal and the dual problems are both

optimal iff for every positive variable in the one the

corresponding inequality in the other is satisfied as

equali ty.

In the case of Problem 3, defining the problem as a

linear program is immediate. We describe it as an integer

program and replace the integrality constraints x .. € (0,1)
~)

by 0 ~ x... Since the matrix of constraints is unimodular
1.)

we must have an optimal integral solution.

We will .have a primal solution--a matching Mi and a

dual solution--an assignment of dual variables u.,u. (cor­
~)

responding to boys i and girls j). For convenience we

define slacks ~ .. for
~)

every edge (i, j): TT.. = u. + u. - w .. '
~J ~) ~J

~ .. .2 0 are the constraints
~J

of the dual problem. (Whenever

we mention n .. below we always
1.J

assume that (i,j) € E.) By

duality (see [L] for details), M has a maximal weight if

(3.0)-(3.2) hold. (This fact can be proven directly by a

one line proof.)

(3.0) For every i,j, u.,u.,n .. 2 o.
1. J 1.J

(3.1) (i, j) is matched 0 n .. = O.
1.)

(3.2) Boy i is single. u. = O.
~

So, we only have to find a matching M and an assign-

ment of tha dual variables that satisfy (3.0)-(3.2). We use

the primal-dual method. The method starts with a simple solu­

tion which violates some of the constraints. The solution is

then modified in a way that guarantees that the number of

violations is reduced. In our case, we start with M = ~,
u. = max w for boys and u. = 0 for girls (a typical case

1. k,,t k,t J

of sexual discrimination). The initial solution satisfies

(3.0), (3.1) but violates (3.2) (single boys have positive

dual variables). The algorithm makes-changes that preserve

(3.0), (3.1) and reduce the number of violations of (3.2).

18

The algorithm consists of O(n) stages. In each stage we

look for an augmenting path as in the simple algorithm for

Problem 1 except that we use only edges with zero slack

(n .. = 0). If the search is successful we augment the matching
1.)

(i.e. change the primal solution) and start a new stage.

This is progress because one single boy gets married (and can

file a joint income tax return).

If the search fails we change the dual variables as

follQ\t,ls. Let ~ = min(6 l ,6 2), &1 = min u i ' 62 =
i:S-boy

min n ..
1.)

i: S-boy
j: free girl

For an S-boy i we set u. ~ u. - 6, and for a
1. 1.

T-girl j

we set u. ~ u. + 6 (affirmative action). It is easy to see
))

that ~ > 0 and the change preserves (3.0), (3.l). Also

61 = u
io

for any single boy io' If 6 = ~l' then after the

change (3.2) holds and we are done. Otherwise, for each edge

(i,j) with n .. = 02 (there exists at least one)
1.J

TT •• becomes
1.J

zero and we can continue the search. Since at least one girl

gets a T label as a result, 6 = 6
2

at most O(n) times per

stage,

The naive implementation of the algorithm above takes

o (mn
2

) time, The most costly part is maintaining 62 , For

every free girr j, let n. = min n.. and let
) 1.)

i: S-boy

Ej = (i,j)li is an S vertex and TT.. = TT.). Then
~J J

62 = min TT.;
. f ~ . 1

Note that when we make a change of
J: ree g1.r

in the dual variables TT. is reduced by
J

6, and the E.' s do
J

not change. Also, if 6 = 6
2

= TT. ,
J O

then the slacks of the

19

edges in E. become 0 and they all can be used for continu­
J o

ing the search. By maintaining TT. and E. for all free girls j,
3 J J

an O(n) implementation of the algorithm follows.

In a different implementation, we maintain the collection

C = (i,j) ITTj > 0, i an S-boy, j a free girl) as a P.q'l' since

all these TT •• 's are reduced by 6. Whenever we scan an S-
1.)

vertex i we consider all edges (i,j) with j a free vertex.

Those edges with TT .. > 0 are inserted into the P.q'l' Con-
1.)

sequently, this implementation takes O(mn log n) time.

A small improvement is achieved if we maintain C as

(We do not need here the split operation and

nonactive groups never become active.) For every girl j

we have the group C. = (i,j) ITT .. > 0, i an S-boy}. The group
J ~J

is active if j is free. One can see that the p.q. IS used here

satisfy the conditions of Theorem 4, and consequently we get

the best time bound for Problem 3: O(mn log rnvn+D n).

A closer look at a stage reveals that an augmenting path

is found using Oijkstra's algorithm for all shortest paths from

a single source [OJ. The source is a new vertex which is

connected to all single boys with new edges of length zero.

The lengths of the other edges are the slacks at the beginning

of the stage. The reduction of a stage to a shortest path

problem is well known [GIJ. The various implementations of
2

Dijkstra's algorithm are (1) the naive implementation O(n),

(2) using p.q. 's Oem log n), and (3) using Theorem 4

20

O(m lOgrmln+D n). Hence, the corresponding time bounds for

n stages immediately follow. The main purpose of this section

was to serve as a warm-up for the next section.

21

8. Problem 4.

If we try to solve Problem 4 exactly as we solved Problem

3, we immediately face difficulty. The linear program obtained

by dropping the integrality constraintS from the integer

program may have no integer optimal solution. Edmonds (E2]

found an ingenious way to remove this difficulty, which led

to a polynomial time algorithm for Problem 4. He added an

exponential number of constraints of the form

r x .. ~ \!..B1/2J for every odd subset of the vertices B.
(i,j)€E 1.)

i, j €B

These new constraints must be satisfied by any matching and

surprisingly their addition guarantees an integer optimal

solution. This fact follows from the correctness of the algori­

thm, which can be proven directly.

We now proceed as before. We will have a primal solution-­

a matching Mi and a dual solution--an assignment of dual

variables u
i

for every vertex i and ~ for every odd subset

of vertices ~. We now define slacks n .. slightly differently:
-k 1.)

n. . = u. + u. - w. . + r zk' (Again n. . 2 0 are the con-
1.) 1.) 1.) 1.) i,j€Bk

straints of the dual problem.) By duality, M has maximal

weight if (4.0)-(4.3) hold:

(4.0)

(4.1)

(4.2)

(4.3)

In fact, as

For every i,j and k, u. ,n. "zk 2 0,
1. 1.)

(i, j) is matched = n. . = 0,
1.)

i is single = u. = 0,
1.

~ > 0:= Bk is full (\(i,j)€Mli,j€BkJ\ = ~Bkl/2J).
in Problem 3, we need duality for motivation only.

The sufficiency of (4.0)-(4.3) for optimality can be proven

directly by a one line proof [GMG].

We can use (4.0)-(4.3) to derive a polynomial algorithm

because we will have zk > 0 only for blossoms Or subblossoms,

and their total number at any moment is 0 (n). Since we will

consider only ~ .. for i,j not in the same blossom,
1.J

TT •• = U. + u. - w .. as in Problem 3.
1.J 1. J l.J

We again use the primal-dual me~od. We start with

22

M =~, u. = (max w
k

)/2 and z,. = 0 (no blossoms). The initial
1. k ,t I\. , t

solution violates only (4.2). The algorithm makes ~hanges

that preserve (4.0), (4.1), (4.3) and reduce the number of

violations of (4.2).

As in Problem 3, the algorithm consists of O(n} stages.

In each stage we look for an augmenting path using the labeling

(R12) and the two cases (el), (e2) as in the simple algorithm

for Problem 2, except that we use only edges with zero slack.

If the search is successful we augment tie matchL~.

To preserve (4.3) we keep blossoms with ~ > 0 shrunk at

the end of the stage. As a result we have two new kinds of

blossoms in addition to the S-blossoms we had in Problem 2.

(Recall that the newly generated blossom is labeled by S.)

Since the labels are erased at the end of a stage we may have

free blossoms at the beginning of a stage. During the search,

a free blossom can become a T-blossom. (Recall that a blossom

is just a vertex in the current graph.) We call the vertices

of an S-blossom (a T-blossom or a free blossom) S-vertices

(T-vertices or free vertices). When during the search a new

S-blossom Bk is formed, the vertices in its T-blossoms (which

now become subblossoms) become S-vertices and are inserted

to the queue Q. We also initialize a new ~ to zero.

If the search is not successful we make the following

changes in the dual variables. We choose 0 = min(6
l
,6

2
,6

3
,64),

where a
l

= min u
J
' ~-\; , 02 -

i: S-vertex

min ~ ..
l.J

i: s-vertex
j: free vertex

23

63 = min(n i j/2) 04 = min(zk/2) We then set

i,j: S-vertices Bk aT-blossom
not in the same blossom

(a) u. -+- U.-6 for every S-vertex i;
1. l.

(b) u.
l.

+ ui +6 for every T-vertex i;

(c) zk + zk +26 for every S-blcssom ~; and

(d) zk + zk -25 for every T-blossom ~.

Such a choice of 6 preserves (4.0), (4. 1) and (4.3).

If 6 = !l' then after the change (4.2) is satisfied and

we have a matching with maximal weight.

If 6 = !4' we expand all T blossoms Bk on which the

minimum was attained. (Their~ becomes 0.) Expanding a

blossom B is described in Fig. 2. B stops being a blossom

and its subblossoms become blossoms.

00

a b

Figure 2. Expanding a T blossom: a) before and b) after the

expansion.

All vertices of the new S-blossoms are inserted into Q.

If 6 = 6
2

(6 = 6
3
), we consider all edges (i,j) with i

an S-vertex ana j a free vertex (an S-vertex not in the

same blossom) on which the minimum was attained. For each such

an edge n .. becomes 0 and we can use it for the search.
l.)

At the end of each stage we also expand all S-blossoms

Bk with ~ = O.

24

Let us call a substage each change in the dual variables.

Each S-blossom corresponds to a unique node in one of the

structure trees at the end of a stage. Each T-blossom (free

blossom) corresponds to a unique node in one of the structure

trees at the beginning of the stage. Consequently, ~ = ~
3

(~ = 6
4

) at most O(n) per stage. ~ = ~2 at most O(n) times

per stage, since when ! = ~2 a blossom becomes aT-blossom.

Finally, ~ = ~l at most once. Consequently, there are O(n)

substages per stage.

The most costly part in a substage is computing 5.

The obvious way to compute it takes O(n) steps and yields an

o (mn
2

) algorithm. Edmonds time bound was o(n4
).

The only parts which require more than o(n3) are main-

taining ~2 and 6
3

, ~2. is handled as in the o(n
3

) algorithm

for Problem 3. To take care of ~3' we define for every pair

of S-blossoms Bk,B ~k = min(n .. /2). We record the edge
L , L l.)

~eBk
)€B t

~,L on which the minimum is attained and maintain ~ = min ~,!.
t

We do not maintain ~_ ,but any time we need it we compute it
-}C;,t

by using ~,t' Obviously ~3 = min~. A change in the dual
k

variables and computing ~3 costs o(n
3

) as for ~2' We have to

update (~) and (~,l} any time an S-blossom ~ is constructed

from B. , ... ,B .. Recall that (r+I)/2 of the subblossoms
1.1 lor

are S-blossoms and (r-l)/2 of them are T-blossoms. We first

"make" each -T-blossom B an S-blossom by considering all its edges
m

and computing for it (~) and (e }. Then we use the
m,L m,l

25

~m,tIS of B
il

,··· 'Bir to compute~, (ek,t) for the new

blossom ~, and to update (~j) for j ~ k. The total cost

(per stage) to make T-blossoms S-blossoms is O(E). We now

compute the rest of the cost T(n), where n is the number of

S-blossoms plus the number of non S-vertices in the graph.

T(n) ~ crn + T(n-r+l) because rn is a bound on the number

of ~k IS considered after making the T-blossoms S-blossoms,
,t 2 3

T(n) = O(n), and the total cost of computing ~3 is O(n),

The discussion above results in an o(n
3

) algorithm [Gl], [Ll,

The most costly part of the algorithm is the frequent

updates of the dual variables, which cause changes in (~ .. J,
~J

Note that all the elements that determine each 6. are decreased
~

by ~ each change in the dual variables. We maintain

61) 03' 64 by a P,q'l' We also have one P.q'l to maintain

u i for T-vertices, and another P,q'l for zk for S-blossoms B
k

.

If we try to maintain 6
2

by a P.q'l' we have difficulty,

Consider Fig, 3. Initially there may be a large free blossom B
l

,

At that time all edges in Fig, 3 should be considered for

finding the value of 6
2

, B1 may become a T-blossom. Then

these edges should not be considered for finding the value of

3
2

, Later on Bl may be expanded and one of its subblossoms,

B
2

, may become free, The latter may later become aT-blossom

and so on, A simple implementation requires the consideration

of each such edge an unbounded number of times (up to k in

Fig, 3),

I
i

i
i

26

Figure 3. Edges from a single vertex to the innermost blossom

that we may have to scan again and again if the blossoms

Bl, ... ,B
k

are eventually expanded.

To maintain 52 we have a P.q'2' For every free blossom

(T-blossom) ~ we have an active (a nonactive) group of all

the edges from S-vertices to vertices in B
k

. Note that if

(i,j) is in a nonactive group (i is an S-vertex and j is a

T-vertex), then n .. does not change when we make a change in
~J

the dual variables. It is now easy to verify that the seven

27

operations of P.q.2 suffice for our purposes.

Consider a group g which corresponds to a blossom B.

The elements of the group are the edges

(i,j) Ii an S-vertex, j € B}. The order on the elements is

derived from the order on the vertices of B. The latter is

taken to be the left to right order of the leaves of the

structure tree. The order between two edges (il,j) and

(i
2
,j) is arbitrary. The order enables us to split the group

corresponding to B to the groups corresponding to B
l
,· .. ,B

r
when we expand B to its subblossoms.

To maintain the generalized priority queues, we make a

change in the scanning of a new S-vertex i. We also take

into account edges (i,j) with n .. > 0 and have three more
~J

cases in addition to (Cl) and (C2) for edges (i,j) with

n .. = O. Assume j is in blossom Band n .. > O.
~J ~J

(C3) «C4» B is a free blossom (T-blossom).

We insert (i,j) with priority n .. to the active (nonactive)
~J

group corresponding to B.

(CS) B is an S-blossom.

We insert (i,j) with priority n .. /2 to the P.q.l that computes
~J

Remark 1. Since ~l = u. for any single vertex iO' we do not
~O

need a generalized p.q. to compute ~l. Nevertheless, we have

a P.q.l for the ui's of the S-vertices and also a P.q.l

for the u. 's of the T-vertices for computing n .. when the edge
~ ~J

(i,j) is considered.

Remark 2. We have a P.q.l for the ~'s of S-blossomsJbecause

at the end of a stage they all become free and in the next

stage they may become T-blossoms.

28

Remark 3, The P,q'l for computing ~3 contains also edges

(i,j) with i and j in the same blossom. We do not have

time to locate them each time a new blossom is constructed.

Consequently, if 6 = ~3 and 63 = ~ij' we first check whether

i and j are in the same blossom. If they are, we delete

the edge and possibly compute a new (larger) 6,

Remark 4. All edges (i,j) in the generalized p.q. 's that

compute ~2 or 63 have n ij > O. Similarly, all ~'s in the

P.q'l that computes 54 are positive. (Since an element is

deleted as soon as its priority becomes 0.) Consequently,

6 > o.
To derive an O(mn log n) time bound we need to implement

carefully two parts of the algorithm:

1. We maintain the sets of vertices in each blossom

(for finding the blossom of a given vertex) by concatenable

queues [ABU]. Note that the number of finds, concatenates

and splits is O(n) per stage.

2. In (C2) we use the careful backtracking described

for Problem 2.

The time bound is easily derived as follows. There are

at most n augmentations (stages). Between two augmentations

we consider each edge at most twice and have O(m) operations

on (generalized) p.q. 's. (This includes 1 and 2 above.)

9. Conclusion.

We have considered four versions of the max matching

problem and discussed the development of the most efficient

algorithms for solving them. By "most efficient algorithms"

we mean those that have the smallest ~syrnptotic running times.

We now mention briefly a number of closely related additional

topics} and give some references. These are intended to serve

as examples and certainly do not form an exhaustive list.

I. Applications of Matching.

29

We do not list here the many applications of solutions to

problems 1-4. For some applications see [L].

II. Generalization of Matching.

There are various ways that problems 1-4 can be general­

ized. For example Gabow [G3] has recently considered similar

problems where some kinds of polygamy are allowed. He

found efficient reductions to the corresponding matching

problem.

III. Special cases of Matching.

Many applications solve one of the problems 1-4 but

with only special graphs. possibly, the extra information

may lead to better algorithms. For example, Problem 1 is

used to find routing in superconcentrators [GG]. The graphs

that arise in this application have constant degree} and

hence the solution given here takes time o(nl • S). Perhaps

this can be improved.

IV. Probabilistic Algorithms.

Several algorithms that work very well for random

graphs or for most graphs have been developed. They are

usually faster and simpler than the algorithms discussed

here ([AVJ, [Raj). An interesting problem is to find

improved probabilistic algorithms which use random choices

(rather than random inputs).

V. Approximation algorithms.

30

As for all optimization problems, we may settle for

approximate solutions. For cardinality matching, the solution

with the phares yields a good approximation by executing

only a constant number of phaSes. For simple, fast and

very good approximation algorithms for special graphs see

[IMM] , [I<S].

We next discuss possible improvement of the algorithms

considered in this paper. All the time bounds discussed in

this paper can be shown to be tight. One can construct

families of inputs for which the algorithms require the number

of steps that is specified by the stated upper bounds. There

are no known lower bounds for any of the four problems. I~

proving the O(mYn) bound for cardinality matching must involve

the discovery of a new approach that does not use stages.

Similarly, except for a logarithmic factor, improving the

bound for weighted matching requires the use of an approach

that does not make O(n) augmentations. Perhaps the intro­

duction of phases may lead to improved algorithms for problems

3, 4. Note that the solution to Problem 3 is slightly better

than the solution to Problem 4 due to the use of Theorem 4.

It may still be possible to find a similar improved solution

for Problem 4.

There_are several theoretical questions concerning

problems 1-4. Their solution may lead to simpler or faster

algorithms:

Ca~ we solve efficiently any of the problems without

augmenting paths?

Are blossoms necessary?

can we solve Problem 4 without duality?

Assume we have solved an instance of a weighted match-

31

ing problem, and then make a small change such as adding or deletL~g

~ edges or changing the weight of a few edges. It is not

clear how to make use of the solution of the original problem.

It seems that using the algorithms described here we may have

to spend O(mn log n) time to find the new solution.

Finally. we briefly consider parallel algorithms:

Can we solve anyone of the four problems in time

O(logkn) with polynomial number of processors?

Is Problem 4 log-space complete for P?

A positive answer to the latter implies that a positive answer

to the former is unlikely. Recently, the problem of Network

Flow has been shown to be log-space complete for P [GSS]. As

was observed in [BGH] there is a nonuniform algorithm that

computes the size of the maximal matching in time O(log2 n) with

a polynomial number of processors. It is not clear how to use

it in order to find a similar algorithm that finds a maximal

matching.

Acknowledgements: I would like to thank Dannie Durand and

Stuart Haber for their helpful comments, Kerny calaway for

her help with the figures and Bella Galil for preparing

Figure 3.

References

[ABU] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The
Design and Analysis of Computer Algorithms, Addison­
Wesley, Reading, Mass., 1974.

[AV] D. Angluin and L.G. Valia~t, Fast probabilistic
algorithims for Hamiltonian paths and matchings, JCSS
18 (1979), 144-193.

32

[BGH] A. Borodin, J. von zur Gathen and J.E. Hop~roft,

Fast parallel and gcd computations, Proc. 23r~ IEEE
symp. on FOCS (1982), 64-71.

[D] E.W. Dijkstra, A note on two problems in connexion
with graphs, Numer. Math. 1 (1959), 263-271.

[Di] E.A. Dinic, Al~orithm for solution of a problem of
maximal flow in a network with power estimation, Soviet
Math. Dokl. 1J (1970), 1277-1280.

[El] J. Edmonds, path, trees and flowers, canad. J.
Math. 17 (1965), 449-467.

[E2] J. Edmonds, Maximum matching and a polyhedron with
0,1 vertices, J. Res. NBS, 698 (April-June 1965), 125-130.

[EK] S. Even and o. -Kariv, An O(n2. 5) algorithm for
maximum matching in graphs, Proc. 16th IEEE Symp. on
FOCS (1975), 100-112.

[ET] S. Even and R.E. Tarjan, Network flow and testing
graph connectivity, SIAM J. on Comput. ~ (1975), 507-518.

[FF] L.R. Ford, and D.R. Fulkerson, Maximal flow
through a network, canadian J. Math. ~, 3 (1956),
399-404.

[Gl] H.N. Gabow, Implementation of algorithms for
maximum matching on nonbipartite graphs, Ph.D. Thesis,
Department of Computer Science, Stanford University, 1974.

[G2] H.N. Gabow, An efficient implementation of
Edmonds' algorithm for maximum matching on graphs, ~
ACM 23 (1976), 22 1-2 3 4 .

[G3] H.N. Gabow, Personal communication.

[Ga] Z. Galil, An O(E2/ 3v5/ 3) algorithm for the maximal
flow problem, Acta Information ~ (1980), 221-242.

[GG] o. Gabber and Z. Galil, Explicit construction of
linear-sized super concentrators, JCSS ll, 3 (1981),
407-42 o.

[GMG] Z. Galil, S. Micali and E.N. Gabow, Priority
queues with variable priority and an O(EV log V)
algorithm for finding a maximal weighted matching in
general graphs, Proc. 23rd IEEE Symp. on FOCS (1982),
255-261.

[GT] E.N. Gabcw and R.E. Tarjan, A linear time
algorithm for a special case of 'disjoint set union,
manuscript, July 1982 (to appear in Proc. 14th ACM
STOC) .

[GSS] L. Goldschlager, R. Shaw, and J. Staples, the
:-:md...'1!llm flow problan is log space carplete for P', .
TCS 21 (1982), 105-111.

[IMM] M. Iri, K. Murota and S. Matsui, Linear time

33

approximation algorithms for finding the m~n~mum weight
perfect match ing on a plane, Info. Proc. Letters
12 (1981), 206-209.

[J] D. Johnson, Efficient algorithms for shortest
paths in sparse graphs, J. ACM 24 (1977), 1-13.

[K] o. Kariv, An o(n
2

• 5) algorithm for maximal matching
in general graphs, Ph.D. Thesis, Department of Applied
Mathematics, The Weizman Inst., Rehovot, Israel, 1976.

[Ka] R.M. Karp, An algorithm to solve the assignment
problem in expected time O(mn log n), Network 10,
2 (1980), 143-152.

[Kn] D.E. Knuth, The Art of Computer Programming. Vol 3~

Sorting and Searching. Addison-Wesley, Reading, Mass.,
1973.

[KM] T. Kameda and I. Munro, A O(/vl' lEI) algorithm
for maximum matching of graphs, Computing 12 (1974),
91-98.

[KS] R.M. Karp and M. Sipser, Maximal matchings in
sparse graphs, Proc. 22nd IEEE Symp. on FOCS (1981),
364-375.

[L] E.L. Lawler, combinatorial optimization: Networks
and Matroids, Holt, Rinehart and Winston, New York, 1976.

[MV] S. Mica1i and v.v. Vazirani, An O(\ffVl' /EI)
algorithm for finding maximum matching in general graphs,
Proc. 21st IEEE symp. on FOeS (1980), 17-27.

•
34

[S] A.O. Slisenko, Recognition of palindromes by
multihead Turing machines, in Problems in the Constructive
Trend in Mathematics, VI (Proc. of the Steklov Institute
of Mathematics 129), V.P. Orevkov and N.A. sanin (eds.),
Academy of Sciences of the USSR (1973), 30-202; English
translation by R.B. Silverman, American Math. Society,
Providence, Rhode Island (1976); 25-208.

[T1l R.E. Tarjan, Efficiency of a good but not linear
set union algorithm, J. ACM 11, (1975), 215-225.

[T2] R.E. Tarjan, Finding optimum branchings, Network 7
(1977), 25-35.

