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Abstract. 

For a given nonnegative e we seek a point x* that 

If(x*) I ~ e where f is a nonlinear transformation of the 

cube B = [O,l]m into R (or xP , p > 1) satisfying a Lipschitz 

condition with the constant K and having a zero in B. 

The information operator on f consists of n values of 

arbitrary linear functionals which are computed adaptively. 

The point x* is constructed by means of an algorithm which is 

a mapping depending on the information operator. We find an 

optimal algorithm, i.e., algorithm with the smallest error, 

which uses n function evaluations computed adaptively. We 

also exhibit nearly optimal information operators, i. e., the 

linear functionals for which the error of an optimal algorithm 

that uses them is almost minimal. Nearly optimal information 

operators consist of n nonadaptive function evaluations at 

equispaced points x. in the cube B. This result exhibits 
J 

the superiority of the T. Aird and J. Rice procedure ZSRCH 

(IMSL library [1]) over Sobol's approach [7] for solving non-

linear equations in our class of functions. We also prove 

that the simple search algorithm which yields a point x* = ~ 

such that If(~) I = min If(x.) I is nearly optimal. The complexity, 
l~j~n J 

i.e., the minimal cost of solving our problem is roughly equal 

m 
to (.I</ £) • 
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O. Introduction. 

Let ~ denote the real line, B be the m-dimensional 

unit cube and let E be a ncnnegative number. Two basic 

error criteria are used for cetermining an approximate 

solution x* of a nonlinear equation 

(0. 1) f(x) = 0, 

where f:B ~ ~. (If f:B ~ RP and p > 1, we show in Section 1 

how to transform this to the case p = 1.) Assuming that 

f(a) = 0 these two error criteria are defined as follows: 

(0.2) root cri terion: !lx*-a!! ~ e:, 

(0.3) res idual criterion: I f (x*) I ~ E:. 

We assume that f belongs to the class F of transformations 

satisfying a Lipschitz condition in the infinity norm with a 

constant K and having a zero in B. 

The information operator N on f consists of n function 
n 

'Jalues, or more generaly of n values of arbitrary linear 

functionals which are computed adaptively. The approximation 

x* to ~ is constructed by means of an algorithm ~ which is 

a mapping depending on the information operator. 

It was shown in [6] that there exist functions in F 

such that for every e < 1/2 it is impossible to find x* 
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satisfying the root criterion (0.2) no matter how large is 

n and no matter what algorithm is used. Therefore in this 

paper we deal only with the residual criterion (0.3). 

We define the radius of an information ooerator N which • n 

is the sharp lower bound on the error of every algorithm using 

N. For a given information operator N consisting of 
n n 

adaptive evaluations of function values we determine an algorithm 

~ which has the smallest error, i.e., which is optimal for the 

worst case model. We exhibit information operators N ., 
n,l. 

i = 1,2, ... ,n+l which have almost minimal radius, i.e. are 

nearly optimal. We prove that the operators N . consist of 
n,l. 

n nonadaptive function evaluations at equispaced points x, 
J 

in the cube B. This result exhibits the superiority of T. 

Aird and J. Rice procedure ZSRCH (IMSL library [1]) over Sobol's 

approach [7] for solving (0.3). 

We also consider the complexity (minimal cost) of solving 

(0.3) . 
m 

It is roughly equal to (K/£) . Even for K near 

unity and moderate E the complexity is large for the high 

dimensional case. 

We develop two simple search algorithms ~* and -** ..... 

use the nearly optimal information operators N " The 
n,l. 

which 

algorithm ~* requires the knowledge of the constant K. The 

algorithm ~** which yields a point x* = ~, such that 
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If(~) I = min If(x.) I, does not require the knowledge of K, 
lsjsn J 

but its cost can exceed the complexity by a factor of 2m. 

The cost of the algorithm ~, which also requires the 

knowledge of K, and is"strongly optimal" is not known. 

Sukharev [9] considered the scalar case m = 1. This 

paper generalizes Sukharev's results to arbitrary m. 

We use however, different notation and proof technique. 

Our notation is adopted from Traub and wozniakowski [10] (see 

also [11]). 

We briefly summarize the contents of the paper. In 

Sectionl we define information operator, algorithm and specify 

what we mean by optimal information operator and optimal 

algorithm. In Section 2 we find the radius of information 

operator consisting of adaptive evaluations of function values. 

In Section 3 we exhibit optimal information operators N . n,l. 

and the algorithms ~, ~* and ~**. In Section 4 we deal with 

the class of general information operators and in Section 5 

we find the complexity of the problem (0.3). Finally in Section 

6 we pose some open problems concerning optimal information 

operators and algorithms for different classes of functions. 

1. Basic definitions and theorems- formulation of the problem. 

Let B = [O,l]m be the unit m-dimensiona1 cube of 2
m 

and 
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m 
let !lxll = max I x. I be the infinity norm in Ii. Define G 

l~i~m ~ 
as the class of functions f:B ~ R satisfying a Lipschitz 

condition with constant K, i.e., 

(1. 1) G = (f:B .. Ii: If(x)-f(y) I ~ K::x-yll, x,y € B}. 

Let F be a subclass of G defined by 

(1. 2) F = (f € G: :i a € E: f (a) = O} 

For a given E, E 2 0, define the set 

(1. 3 ) S (f, s) = (x € B: I f (x) I s d, ~ f € F. 

This set is not empty since f has a zero in B. The problem 

is to find a point x* satisfying the residual criterion (0.3), i.e., 

(1. 4) x* E S (f, t) . 

Remark 1.1: One may wish to solve (1.4) in the class of 

functiong g:B ~ RP . P > 1, satisfying a Lipschitz condition 

and having a zero in B. This problem is, however, equivalent 

to the case P = 1. 

Indeed, for a given g:B ~ ~ define the function f, 

f:B .. R. by f (x) = max I g. (x) I = llg (x) llco' This f satisfies 
l~j~p J 

a Lipschitz condition with the same constant as g. Note that 

f has a zero in B. Moreover S(f,e:) = (x € B:llg(x):! ~ sJ. 
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Therefore we may assume without loss of generality that p = 1. J 

To find x* satisfying (1.4) we use an information operator 

N and an algorithm ~ using N. These are defined as in Traub 
n n 

and Wozniakowski [10] .. 

Let f € G and 

(1. 5) 

where y. = L. (f;Yl"" ,Yo 1) and 
~ ~ ~-

df 
(1. 6) L. f (. ) 

~, 
= L. (. i Y

l
, ... , y. 1 ) 

~ ~-
G + IR 

is a linear functional, i = 1,2, ... ,n . 

If L. f{') = L. (.), "fI i, i. e., L. f does not depend on 
~, ~ ~, 

the previously computed values Yl ,··· 'Y i - l the information 

operator is called nonadaptive; otherwise it is called adaptive. 

The total number of functional evaluations n is called 

the cardinality of N . 
n 

Knowing N (f) we approximate x* by an algorithm ~ which n 

is a mapping 

(1. 7) 

The error of the algori thm .~ is defined by 

(1. 8) e (~) = supi f{4') (N (f)) I. 
f€F n 

Thus x* = ~{N (f)) satisfies (1.4) for every f in F iff n 
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e (eD) .::;: e:. 

Note that if two functions f and 1 from F have the 

same information, N (f) = N (t), then the value of the algorithm 
n n 

is the same for f and t, ~(N (f)) = ~(N (1)). 
n n 

can be restated as 

(1. 9) e(o) = sup e(~,f) 
fEF 

where the local error e(~,v} is defined by 

Thus (1. 8) 

(1. 10) N (f)). 
n 

Define the radius of the in=ormation operator N (briefly 
n 

radius of information) by 

(1. 11) r (N ) = suo r (N f) 
n - n' 

f€F 

where the local radius r(N ,f) is given by 
n 

( 1. 12 ) r(N ,f) = inf sup[11(x)i:f ~ F,~ (f) = N (f):. n n n 
x€B 

Let ~ = !(N ) be the class of all algorithms using the 
n 

information operator N. It is obvious that 
n 

(1. 13 ) 

and 

(1. 14) 

sup e(o,f) = 
.,,€!(N ) "". n 

r(N ,f), 
n 

inf e <0) 
ME 3 (N ) ,.. - n 

= r (N ). 
n 

f _ F 



We are interested in algorithms for which e(~Jf) and e(~) 

. h so so 
are minimal. An algor~t m ~ ,~ €~, is strongly optimal 

iff 

(1. 15 ) 
so 

e b ,f) = r(N ,f), "f 
n 

f € F. 

o 0 
An algorithm ~ ,~ € ~J is optimal iff 

(1. 16) 
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It is obvious that every strongly optimal algorithm is optimal, 

but the converse is in general not true. It may happen that due 

to some special properties of f, r(Nn(f» «r(Nn ). A strongly 

optimal algorithm ~so takes advantage of this favorable f 

since e(oso,f) = r(N (f». 
n 

For some optimal algorithm ~o it 

o 0 so 
may happen that e(~ ,f) = e(~ ) »e(~ ,f). 

We are also interested in algorithms for which the errors 

1 
. h ao ao . 

e(~) are close to minimal. An a gor~t m ~ ,0 €~, ~s 

almost optimal iff 

(1.17) e (~ao) = cr(N)(l+o(l» asn-+CIJ 
n n 

where the constants c are in the range 1 ~ c ~ 2. n n 

The radius of information measures the strength of an 

information operator. We can solve the problem (1.4) iff 

r (N ) ~ e. 
n 



For a given n we want to find the functionals in (1.5) 

such that the radius of information is minimized. More pre-

cisely let ~ be the class of all. adaptive or nonadaptive, 
n 

information operators with cardinality at most n. Then the 

information operator N~, N~ E ~n' is optimal iff 

(1. 18) 
o 

r (N l = inf r (N) . 
n 

NE~n 

The information operator N
ao

, N
ao 

E ~ , is almost optimal iff n n n 

(1.19) b inf r (N) 
n 

NE~ n 

(1 + 0(1» as n ~ 00 

where the constant b are in the range 1 ~ b ~ 2. 
n n 

We are now in a position to state the main problems of 

this paper. 

(1.20) 

(1.21) 

(1.22) 

What is the optimal information NO? 
n 

What is the minimal cardinality of the optimal 

o 0 
information N , such that r(N ) ~ e? 

n n 

What is a strongly optimal. optimal or almost 

optimal algorithm using the optimal information NO? n 

In Sections 2 and 3 we deal with the information operator 

consisting of adaptive evaluations of function values, i.e., 

(1.23) 

8 
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where xl is some point chosen a priori, xl € B, and 

x. = i. (f(xl),···,f(x. 1»' 
~ ~ ~-

i = 2,3, ... ,n 

h . f' "'" JR i - l B were x. ~s a trans ormat~on x.: -+. 
~ ~ 

In Section 4 we consider the general information operator 

given by (1.5) and in Section 5 we deal with the problem of 

complexity (minimal cost) of solving (1.4). 

2. Local Radius of Information 

In this section we show how to calculate the local radius 

r(N , f) see (1.12), for the' information operator consisting 
n 

of adaptive evaluations of function values (1.23). 

Let y = N (f), Le., y. = f(x.), j = 1,2, ... ,n. Define 
n J J 

the set 

(2. 1) Z =Z(N (f» = (z€B:~1€F:N (1) =N (f) and1(z) =O}. n n n 

Thus Z is the set of zeros of all functions 1 in F which 

share the same information operator value with ~ 
.1... From the 

definition of the class we have 

(2.2) y. - K:lx-x.:1 ~ l(x) ~ y. + Kllx-x.:l 
J J J J 

for all j, x € Band 1 € F such that N (1) = N (f). 
n n 

Define the functions 



(2. 3 ) 

+ 
g (x) = 

n 

max (y. - Kllx-x.I\), 
l~j~n J J 

min (y. - Kllx-x.ll). 
l~j~n J J 

Thus, in view of (2.2), (2.3) implies that 

(2.4) + 
gn (x) ~ f (x) ~ gn (x) , 

for all 1 E F such that N (1) = N (f). 
n n 

10 

m 
Let B(x,r) = (y E 2 :ny-x1! .:s;; r). Then it is obvious that 

(2.5) Z c Z 

..... 
Take any z E Z and define the function 1 by 

(2.6) 1 (x) = max(g-(x),-Kllz-x:!). 
n 

This f satisfies a Lipschitz condition with the constant K. 

Moreover from (2.5) we have Kllz-x
j 

~l 2 IY
j 
I, for all j, which 

implies by (2.3) and (2.6) that g-(z) ~ 0 and r(z) = O. Similarly 
n 

N (r) = N (f) which means that rEF and z E Z. From (2.5) we 
n n 

conclude that 

(2. 7) 

Define B(c ,r ) as a cube of the minimal radius containing 
n n 

the set Z. Thus c is a center of Z and r is the radius of 
n n 

Z. Denote 
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(2.8) D = Kr . 
n n 

Let 1 € F and N (1) 
n 

= N (f). Then there n exists a zero z, 
- of f such that lIc -2'1\ So Hence z € Z, r . 

n n 

(2. 9) 

for all 1. 

Observe also that 

(2. 10) 

Define the functions f 
n 

and f+ b n Y 

(2.11) f-(x) = max(g-(x),-D - Kllx - c !!), 
n n n n 

(2. 12) f+(x) = min(g+(x),D + Kllx - c II). 
n n n n 

From (2.4) and (2.10) it is obvious that for all 1 € F 

such that N (1) = N (f) we have n n 

(2. 13 ) + 
fn (x) ~ 1 (x) ~ fn (x), Tf x € B. 

- + This shows that f and f are the envelopes of the functions 
n n 

We are now ready to prove: 

Lemma 2.1: Let I = (i:y. > O} and J = (j :y. < OJ. Then 
~ J 

(2. 14) 

...... r. 
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where d = 1/2 K min(lIx. - x.lI - Y./K + Y./K}. 
n i€I ~ J ~ J 

j €J 

(Assuming that min ~ = +00.) o 

Proof: If Y = 0 for some p then obviously r(N ,f) = o. 
p n 

Thus we can assume that yp = 0 for all p. Note that 

:lx. - x.ll 2 y./K - y./K 'rI i E I and j € J, which implies that 
~ J ~ J 

d 2 o. 
n 

Denote D = min(lyll, ... , Iy I,D ,d}. We first prove that n n n 

(2. 15) r (N ,f) ~ D, \f f € F. 
n 

Settingx=x in (1.12) we observe that'r(N ,f)~ Iy' = If(x )1. 
p n p p 

Taking x = c in (1.12), (2.9) yields r(N ,f) ~ D. Thus it 
n n n 

is enough to prove that 

(2. 16) r(N , f) ~ d , 'V f E F. 
n n 

for nonempty I and J choose iO € I and jo E J such that 

d = (I\x. - x. 11 - y. /K + y. IK) K/2. 
n ~o J o ~o J o 

Define 

(2.17) 

where 



x. x. n aB(x. 'Yo /K), 
~o J O ~O ~O 

(P2} = X. x. n oB (x. ,-y. /K), 
~O J 0 J 0 J 0 

and oB(X,y) denotes the boundary of B(x,y). 

We now prove 

(2. 18) 
+ 

f (p) ~ d . 
n n 

From (2.17) we get d 
n 

= KIIP2 - plI. Thus 

= y. + d - y. 
JO n J O 

The definition of f+ implies (2.18). 
n 

= d . 
n 

13 

Similarly we can show that f (p) 2 -d. Thus (2.13) yields 
n n 

11(p) I ~ d for every 1 E F such that N (1) = N (f). Hence 
n n n 

(1.12) implies (2.16) and (2.15). 

We now prove that r(Nn,f) 2 D. For an arbitrary Xo E B 

we construct a function 1 in F such that N (1) = N (f) and n n 

(2.19) 

Define 1 by 

(2.20) 1(x) = 
min (f: (x) ,-D+K!lxO -xll) otherwise. 
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This f satisfies a Lipschitz condition with the constant K. 

Suppose that x O .i U . B(x .,(O - y.)/K) . If j E J then 
JEJ J J 

II x o - Xj II > '(0 - y j )/K. Thus 0 - Kll xj - xo il < y j' This imp lies 

1 (x. ) = f (x. ) . If i E I then 0 - Kll x . xo ll i: Y i ' so 
J J , 

1 (x . ) = f (x. ) . Thus N(1) = Nn ( f ) . From the definition , , n 

there exists z in Z (N (f)) such that Kr - Kll z - xo ll ~ n n 

Thus 0 - Kll z - xo ll i: o. Of course f (z) ~ 0 wh ich yields 
n 

of 

O. 

1(z ) i: o. Thus r has a zero in B since 1(x
O

) 2 02 O. 

Therefore 1 € F. Hence (2 . 19 ) holds. 

r 
n 

Similarly we can show (2.19 ) if Xo E U . J B(x ., (0 - y .)/K) . 
J E J J 

Note that (2.19 ) y ields sup ( 1" (x O) I: f , F: N
n 

(1 ) = N
n 

(f )} 2 o . 

Since Xo is arbitrary , (1.12 ) i mplies that r (N , f ) 2 o. 
n 

bining this with (2 . 15 ) we get (2.14). 

3 , optimality Results. 

Com-

In this section we find th e optimal info rmation operator 

of the form (1 . 23 ), the minimal cardinality n ( El of the in for-

J 

matien operator N such that ~ ( N ) ~ E, and optimal algorithms . 
n n 

We firs t assume tha t the cardinality of Nn is of the form 

n : Mm _ 1 for some integer M, M > 1. 
The c ase of general n 

will be discussed later . Let 

( 3.1 ) R = l/ (2M). 
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Define the set X* by 

X* = (z € B: z = [(2jl-l)R, ... J (2jm-l)R] jk=l, ... ,M, k=l, ... ,rnL 

The set X* has M
m = n + 1 elements. Let xi,x2, ... ,x;+l be 

distinct elements of X*, i.e., X* = (xi"" ,x~+l)' Note that 

X* is the set of centers of the cubes B(x~,R) which form the 
~ 

optimal covering of B. Here optimal covering means that 

B c U~+ll B(~,R) and for every pointsz, such that B c U~+ll B(z"r) 
J= J J J= J 

it may be shown that r 2 R, see Sukharev [8J. 

Let us fix i € (l,2, ... ,n+l} and define a nonadaotive 

N ,by 
n,~ 

(3. 2 ) N ,( f) = [f (~l) , . . . , f (x~ 1)' f (x~ l)"'" f (x* l) J • 
n,~ ~- ~+ n+ 

Note that we do not compute f(x~) and therefore the cardinality 
~ 

of N , is equal to n. We are now ready to prove optimality 
n,~ 

of the information operator N " 
n,~ 

Theorem 3.1: For every i € (1,2, .. , ,n+1} the information 

operator N ,is optimal and r(N ,) = K/(2M), where n = Mm - 1. 
n,~ n,l :..J 

Proof: 

(3.3) 

Let f 

Let v = KR = K/(2M). W f' e ~rst show that 

r (N ,),/ v n, ~ ~ . 

be an arbitrary element of 
F. 

j. 
SUppose that there ex;sts 

... an index j such that Iy ,I ~ v. 
J 



Then (2.14) yields r(N .,f) ~ v. We can assume now that 
n,~ 

ly.1 > v for all j. Let Z € Z = ZeN . (f». From (2.7) 
J n, ~ 

z tInt B(Xj' IYj 11K). Thus !lz-xjil > v/K = R. Thus 

Z € B(x~,R) and consequently Z c B(x~,R). From (2.8) we 
~ ~ 
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conclude that D ~ v and (2.14) implies r(N .,f) S v. Hence n n,~ 

r(N .,f) ~ v, ~ f € F. Taking the supremum we get (3.3). 
n,~ 

We now show that for every information operator N
n 

in ~n 

there exists a function g in F such that 

(3.4) r(N ,g) = v. 
n 

Recall now that the information operator N is of the 
n 

form Nn(f) = [f(x
l
), ... ,f(x

n
)], where xl is given a priori, 

xl €B, andx. =X.(f(xl),···,f(x. 1»' 
~ ~ ~-

Define the function g by 

(3.5) 

where zl 

(3.6) 

g(x) = max (v - Kllx - zj:l), 'i x € B 
lsjsn 

= x 1 and Z 1 = x. (v, V , • • • , v) . 
~ . 1 . 

~- t~mes 

N (g) = [v,v, ... ,v]. 
n 

Then 

Of course 9 satisfies a Lipschitz condition with the constant 

K. To guarantee that 9 € F it is enough to show that the set 

A = (z € B: g (z) = O} is not empty. From ( 3 • 51 we have 

n B(z.,R) I'" B. (3.7) A = 0 U. 1 J= J 



Suppose that A = ~. n 
This implies that Bell Int B (z . ,R) 

j=l J 

and due to (2.7) Z = 01 }U. Thus it is enough to prove that 

Z = ZeN (g» F~. We shall show more by proving that 
n 

(3. 8) Vol(Z) 2 (2R)m 

where Vol denotes the m dimensional volume. 

To obtain (3.8) observe that 
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Vol(Z) 
n n 

= Vol(B - U. 1 B(Z.,R» 2 Vol(B) - L:. lvol(B(z.,R» 
J= J J= J 

This yields that g has a zero and belongs to F. From (3.8) 

we conclude that the radius of Z is at least R. Thus from 

(2.8) D 2 v. From (2.14) we finally conclude that r(N ,g) = v. 
n n 

This proves that r(N ) 2 v for any information operator N . 
n n 

Theorem 6.1 now follows from (3.3). 

Theorem 6.1 says that the nonadaptive information operator 

is optimal. Thus even if adaptive information operators are 

permitted it does not help. The nodes of the optimal information 

operator are given a priori. 

There are a number of problems for which the same result 

holds. For instance it is known that for the linear problems 

adaptive information operators do not help, see [3J and [101, 
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There are known cases of nonlinear problems for which adaptive 

information operators do not help. See for example [2J, [4J, 

[ 6 J, [ 8 J, ( 9 J, and (12]. 

For some nonlinear problems it may happen that adaptive. 

information operators are significantly better than nonadaptive, 

see [5], [9] and Chapter 8 of [10). It may be noted that for 

the class F'= {f:ra,bJ~lR: f(a)~0,f(b)20 and If(x)-f(y) I~Klx-Ylx,YE[a,b 

which is similar to our class F for m = 1, Sukharev proved 

in [9] that adaptive information operators are much more power-

ful than nonadaptive. This means that the assumption of 

opposite signs at the endpoints is much stronger than the 

assumption about existence of a zero. 

We now want to find the minimal cardinality of N such that 
n 

r(N ) ~ e. Note that Theorem 3.1 states that N . is optimal n n,~ 

if n is of the special form n = M
n 

- 1. We are unable to 
I 

find the exact radius for an arbitrary n. We can however prove: 

Theorem 3.2: Let nee) be the minimal cardinality of the in for-

mation operator N such that r(N ) ~ e. Then 
n n 

(3.9) ned 

where aE(-l,OJ. o 
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Proof: Theorem 3.1 states that r(N .) = K/(2M) with n = Mm - 1. n,l. 

To guarantee that r(N .) ~ € we choose the minimal n* such that 
n,l. 

(3.10) K/ (2 M*) ~ €, n * = M* m - 1. 

This yields M* = rK/(2E)1. m 
Suppose that n ~ q = (M* - 1) - 1. 

Then for arbitrary information operator N we have 
n 

(3.11) r (N ) .2 r (N .) = K/ (2 (M* - 1» > e. n n,l. 

From (3.10) and (3.11) we conclude that neE) satisfies 

(3 . 12 ) (M* - 1) m - 1 < n (E) ~ M* m - 1. 

m 
This can be rewritten as neE) = (M* - a) - 1 with a E (-1,0). 

Hence (3.9) is proven. 

Suppose that K = 2. Then (3.9) implies that neE) is 

r 
W 

essentially equal to 
m 

(1/ E) • Note that n(~) depends strongly on 

the dimension of the problem. Suppose we can solve the problem 

using n = 10
6 

function evaluations. Then the accuracy E 

which can be guaranteed is no better than lO-6/m. Thus for 

6 -2 
m = 1 we get E.2 10- , for m = 3, E.2 10 and for m = 6, 

E.2 10-1~ 

We now wish to find an optimal algorithm. 

Let N be any information operator in ~. Define the 
n n 

algorithm ~ by 



x. if ly·1 = D, 
J J 

(3. 13) ep(N (f» = c if Dn = D, 
n n 

p if d = d, 
n 

where D, c , D , d and p are defined as in Section 2. 
n n n 

20 

Then (2.14) and (1.10) imply that e(ep, f) = r(N ,f), 'r1 f € F. 
n 

Thus ~ is a strongly optimal algorithm. The combinatory com-

plexityof ep, i.e., the cost of computing ~(y) for a given 

y = N (f) may be large since it requires' the computation of a 
n 

center c of the set Z(y). It is an interesting combinatorial 
n 

problem to find the complexity, i.e., minimal cost, of 

n 
computing a center of the set B - I.J. 1 Int(B(x.,b.». 

J= J J 

For the ootimal information operator N . we propose an • n,~ 

algorithm which has combinatory complexity linear in n. Recall 

that v = KR. Define ~* by 

(3. 14) ~* (N . (f» = 
n,J. 

X~ 
J. 

if IYj I > v for all j, 

X*. otherwise, where 
J 

Thus the computation of w = ~*(y) for a given y = N . (f) 
n,~ 

requires only n comparisons. Equations (3.14) and (2.9) 

imply that 
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From the proof of (3.3) it follows that D* ~ v. Thus e(~*) ~ v. 

By Theorem 3.1 r(N .) = v which yields e(~*) = r(N ,). Hence 
n,~ n,~ 

~* is optimal. We summarize these results as: 

Theorem 3.3: The algorithm ~* defined by (3.14) is optimal, 

but not strongly optimal. The combinatory complexity of ~* is 

equal to the cost of n comparisons. o 

We stress that to compute ~*(y) we have to know the con-

stant K. The user may not know K. Thus we propose a third 

algorithm which is almost optimal, does not require a knowledge 

of K and has cOmbinatory compl.exi ty linear in n. 

Define ca** by 

(3. 15) .... * * (N . (f)) = x~ ..., n,-~ J 

where Iyjl = min(IY11, ... ,IYi_11,IYi+ll, ... ,IYn+ll}. 

We first find the error of this algorithm. Let f be 

a function, f:B ~ R, satisfying a Lipschitz condition with the 

constant K. If If(xj) I > 2v for all j then (2.2) shows that 

the set Z = (z € B: f(z) = OJ is empty. Thus f t F. This implies 

(3 . 16) "f f € F:Ij such that If(xj) I ~ 2v. 

Hence 

(3.17) e (~**) ~ 2v. 



Let 

(3. 18) 
-

g (x) = 
n 

max 
l~j~n+l 
jFi 

(2v - K!lx - x~ II) . 
J 

Then gn satisfies a Lipschitz condition with the constant K. 

Furthermore g (x~) = 0 since there exists jo such that 
n 1. 

nx~ - x~ II = 2R and IIx~ - x~li .2 2R for all j. Thus 
1. J O J 1. 

-g € F. 
n 

(3.19) 

This and (3.17) yield 

e(~**) = 2v = 2r(N .). 
n,1. 

This inequality says that ~** is almost optimal, see (1.17). 
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The combinatory complexity of ~** is equal to the cost of n - 1 

comparisons. We summarize these results as: 

Theorem 3.4: (i) The algorithm ~** is almost optimal, and 

(It is not strongly optimal.) 

(ii) The computation of ~** (y), for a given y = N . (f), 
n,1. 

does not require the knowledge of the constant K. 

(iii) The combinatory complexity of ~** is equal to the 

cost of n - 1 comparisons. 

4. General Information Operators 

In Sections 2 and 3 we were dealing with the information 
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operators (1.23) comprised ~f n function evaluations at some 

adaptively chosen points in the cube B. In this section we 

shall study the class ~ of general information operators (1.5) 
n 

consisting of adaptive evaluations of arbitrary linear func-

tionals. It is surprising that even in the class ~ the non­
n 

adaptive information operator N ., see (3.2), is almost optimal. n,l. 

This is proven in Theorem 4.1. 

Theorem 4.1: 
m m 

Let n = M - 2 and n' = (M - 1) - 1 for some 

integer M > 1. Then 

(4.1) K/ (2M) ~ inf 
N €'? 

n n 

r (Nn ) ~ K/ (2 (M- 1» = r (N , .), 
n .J 

j = 1,2, ... , (M-l) m. 

Proof: Since n' ~ n we have that 

o 

inf 
N €on n n 

r (N n ) ~ in f r (N ,) ~ r (N , .) = K/ ( 2 (M - 1) ) , 
N €~ n n ,J 

n' ln' 
j = 1,2, ... , (M-l) m. 

This establishes the two right-nearest relations in (4.1). 

Therefore it is enough to show that for every N
n 

from ~n 

K/(2M) ~ r(N ). 
n 

Let R(x) = R = K/(2M), x € B. Applying the information operator 

N to the function R we get the nonadaptive information n 

operator, see (1.6), 



Let 

N (. ) 
n,R 

h. (x) = 
l. 

= [Ll,R(·),···,Ln,R(·)]· 

o if x t B(x~,1/(2M» 
l. 

otherwise, 

where r. is defined in section 3, (3.2), and i = 1,2, ... ,n+2. 
l. 

-+ 

24 

Let c = (c l ,c
2

' ... ,cn+ l ) be a nonzero solution of the homogeneous 

system of n linear equations with n + 1 unknowns: 

n+l 
~. 1 c. L. R (h.) = 0, 

l.= 1.), 1. 
j = 1,2, ... ,no 

max Ic.l. 
1.' 

Define the functions 
l~i~n+l 

H(x) 

R + H(x) if ~ < 0 

f(x) = 
R - H(x) otherwise. 

H and f 

The function f satisfies a Lipschitz condition with the 

by 

constant K and has a zero in B, since f(~) = O. Therefore 

f belongs to the class F. Note that f (x) = R for x € B {x* 2 J 1/ (2M) n+ 

Choose an arbitrary point Xo from 

for some iO € (1,2, ... ,n+2]. 

B. E B(x~ ,1/(2M» 
1.0 

-+ 
As before, letc= (cl, ... ,c. _l'c. +1""'c+2 ) bea 

1.0 1.0 n 

nonzero solution of the system 



n+2 r. 1 c.L. R(h.) = 0, j = 1,2, .... n. 
1.= 1. J, 1. 

i~iO 

Let ''1<' = max(lci,:i ~ iO}' Define the functions Ii and r 

by 

R(x) = 

rex) = 

Note that l(x) = 

It is crucial to 

n+2 
c i hi (x) / , ck I ' r. 1 1.= 

i~iO 

R + H(x) if c
k 

< 0 

R - H (x) otherwise. 

R for x E B(x~ ,1/(2M» and 
1.0 

notice that N (1) = N (f). 
n n. 

belongs to 

Thus for every information operator N we constructed a 
n 

function f E F and for every Xo € B we constructed a function 

1 E F such that Nn(f) = N
n

(l) and t(x
O

) = R. Due to (1.12) 

25 

F. 

and (1.10) it follows that r(N ) 2 R which proves the left-most 
n 

relation of (4.1). 

Hence the proof of Theorem 4.1 is completed. 

Corollary 4.1: Let n(s) be the minimal cardinality of the 

information operator N in 7( such that r(N ) ~~. Then 
n n n 

n ( e:) m = (K/ (2 E» (1 + 0 (1» as e: -+ O. 

Proof: Theorem 3.2 implies that 

(4.2) neE) ~ (K/(2S) + 2)m - 1. 
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Choose the maximal M such that K/ (2M) > e, i. e., M = K/(2e:) - b 

for some b € [0,1]. Theo rem 4. 1 yields that r (N ) 2 K/ (2 M) n 
. f m 
~ n = M - 2. Thus n ( E:) has to satisfy 

(4.3) n ( s) > M
m - 2. 

The inequalities (4.2) and (4.3) imply that 

m 
n(d = (K/(2E:)) (l+o(l)). This completes the proof. 

5. Complexity of the Problem 

As in [10] by the complexity comp(s) of the problem we 

mean the minimal cost of solving (1.4). Thus comp(s) is the 

sum of the computational cost of evaluation an information 

operatorN and the minimal combinatory cost (combinatory complexity) 
n 

of an optimal algorithm using N ,where n is the minimal cardi­
n 

nality such that r(N ) ~ t. 
n 

The results of Section 3 and 4 enable us to find the com-

plexity comp(E). Assume that c
l 

is the cost of one functional 

evaluation and that arithmetic operations and comparisons cost 

unity. Moreover, assume that any optimal algorithm has to use 

each y. at least once. This implies that its combinatory com­
J 

plexity has to be at least equal to n - 1. Thus the algorithm 

~* has an almost minimal combinatory complexity. We summarize 

these results in 
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Theorem 4.2: (i) The complexity of the problem (1.4) is 

comp(~) = n(L) (c l + b) 

where b E [1 - l/n(E),l). 

(ii) The complexity cornp(~*,e) of the algorithm ~*, i.e., 

the sum of the computational cost of the information 

operator N . and the combinatory complexity of ~*, is 
n,l. 

almost minimal since 

comp(~*,e) = comp(E) (1 + u) 

where u = (1 - b)/(c l + b) and u ~ l/(cln(£». 

(iii) The complexity comp(~**,e) of the algorithm ~**, 

which does not require the knowledge of K, is 

comp(~**,e) 

where 

and 

Thus asymptotically 

m 
comp (~* * , e) = 2 co:np (E ) (1 + 0 ( 1» as to. ... O. 
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6. Final Remarks. 

It is important to note that our negative complexity result 

depends significantly on the class of functions F. Indeed, 

define the class Fl by 

fo r a 11 x, Y E [ 0 , 1] and ~ z € [ 0 , 1]: f ( z ) = O}. 

Thus it is a class of functions satisfying a two-way Lipschitz 

condition with the constants Kl and K
2

, 0 < Kl ~ K
2

, and 

having a zero in [0,1]. As in Sections 2 and 3 we can prove that 

r (N .) = ( K2 - K 1 ) / (2 (n + l)) n,l. 

where n 2 2 and i € {1,2, ... ,n+l}. 

Thus n(e) defined as in Section 3, Theorem 3.2, is no 

greater than M* = max(r (K
2 

- K
l
)/(2e)1-l,2). We can prove 

that there exists an optimal algorithm using N . with combinatory 
n,l. 

complexity no greater than cn, where c is a constant. There-

fore the complexity comp(s) is no greater than M*(C
l 

+ c). 

Note that if Kl is close enough to K2 then the complexity 

comp(£) is essentially equal 2 c
l

' This is intuitively obvious 

since for Kl tending to K2 the class Fl shrinks to the class 

consisting of linear functions, A linear function f is 

uniquely determined by the formula If(x) - f(y) I = K2lx-yl 
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and the values at two different points. 

It is an open problem to generalize the above result for 

the class Fl to the m dimensional case. We conjecture that 

the complexity is roughly (r(K2 - Kl)/(2e)1-1)m(cl + 1). 
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