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Abstract 

For which error criteria can we solve a nonlinear scalar 

equation f(x) = 0 where f is a real function on the interval 

[a,b]? The information on f consists of n adaptive eval-

uations of arbitrary linear functionals and an algorithm is 

any mapping based on these evaluations. 

For the root criterion we prove there does not exist 

an algorithm to find a point x such that Ix-al ~ € where a 

is a zero of f and e < (b-a)/2. This holds for arbitrary 

n and for the class of infinitely many times differentiable 

functions with all simple zeros. We. do not assume that 

f(a)f(b) ~ O. 

For the residual criterion we show almost optimal in for-

mation and algorithm. More precisely, we prove that if x 

-r 
is the value computed by our algorithm then f(x) = O(n ) where 

r measures the smoothness of the class of functions f. 

Finally a general error criterion is introduced and some 

of our results are generalized. 



1. Introduction 

A number of error criteria are commonly used in practice 

for the approximate solution of a nonlinear scalar equation 

f(x} = 0 where f:[a,b1 ~ I. For instance one may want to find 

a number x such that one of the following conditions is 

satisfied: 

root criterion I x-a I ~ f:, 

2 

(1. l) 

(1. 2 ) 

(1. 3) 

(1. 4) 

relative root criterion 

residual criterion 

Ix-al ~ E:(l al+6l. 6 2 0, 

If(x)1 ~ £, 

relative residual criterion I f (x) I ~ £ I f I (x) I 

where a is a real zero of f and f: is a given nonnegative 

number. 

We study for which error criteria it is possible to find 

such a number x and, if it is possible, what is an optimal 

algorithm for finding x. 

We assume that f belongs to a class of functions and 

that we know n adaptive evaluations of arbitrary linear func

tionals on f. By an algorithm we mean a mapping depending 

on these n evaluations; see [61. 

For the root criterion we prove that there does not exist 

an algorithm to find x satisfying (1.1) with f: < (b-a}/2 for 
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the class of infinitely many times differentiable functions 

with simple zeros and whose seminorm is bounded by one. (We do 

not assume that f has opposite signs at a and b.) Note 

that this result holds for arbitrary large nand indepen-

dently of which linear functionals are evaluated. The same 

result holds for the relative root criterion with 

t < (b-a)/(b+a+26) and a 2 o. 

For the residual criterion we deal with the class of 

functions having zeros and whose (r-l)-st derivative is abso-

lutely continuous and the infinity norm of the r-th derivative 

is bounded by one, r 2 1. We find almost optimal information 

and algorithm by the extensive use of the Gel£and n-widths. 

This information consists of n nonadaptive function evalua-

tions and the algorithm is based on perfect splines interpo-

lating f. This algorithm yields a point x such that 

For small r, we present in section 4 a different algorithm 

which is also almost optimal and whose computation is much 

simpler than the computation of the algorithm based on perfect 

splines. 

If n 
-Vr 

is large enough, n = e(e ), then the residual 

criterion is satisfied. By contrast we prove that the relative 

residual criterion is never satisfied. 

In Section 5 we discuss a general error criteria and 
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find a lower bound on the error of optimal algorithm in terms 

of the Gelfand width. 

2. Root Criterion 

00 00 

Let C = C [a,b] be the linear space of infinitely often 

differentiable functions f,f:[a,b] ~ t. Let S(f) denote the 

set of all zeros of f, 

(2. 1) S (f) = (z € [a,b] :f(z) = OJ. 

00 

Let 11.11 be an arbitrary seminorm defined on C. We consider 

the subclass 
00 

F of C consisting of functions which have only 

simple zeros and whose seminorm is bounded by one, i.e., 

(2.2) 
00 

F = (f € C :5(f) F~, f' (z) F 0, z € S(f) and Ilfll ~ l}. 

For a given €, € 2 0, we want to find a point z satisfying 

a root criterion, i.e., such that 

(2. 3 ) dist(z,S(f» ~ €.* 

To solve this problem we use an adaptive linear information 

operator N which is defined as follows, see [6], Let fEe and 
n 

*For two subsets X and Y of R, by dist(X,Y) we mean 
dist(X,Y) = inf inflx-yl. 

x€X y€y 



(2.4) 

where y. = L. (fiYl,···,y. 1) and 
1. 1. 1.-

(2. 5 ) L. f (. ) 
1., 

df 00 = L. (. i Y
l

, ... , y. 1): C ~ i. 
1. 1.-

is a linear functional, i = l,2, ... ,n. 

The total number of functional evaluations n is called 

the cardinality of N . 
n 

5 

Knowing N (f) we approximate a zero of f by an algorithm 
n 

~ which is a mapping 

(2.6) 

(2.7) 

co 
~:N (C ) ~ [a,b]. 

n 

The error of the algorithm ~ is defined as 

= sup dist(~(N (f»,5(f». 
fEF n 

Let !(N ) be the class of all algorithms using information N . n n 

From [6] and [7) we know that 

(2.8) inf e (~) = 
ecE~(N ) 

n 

r(N ) 
n 

where r(N ) is the radius of information. It is easy to show 
n 

that 

(2. 9) r(N) = sup(dist(s(1),S(~»/2:f,r,!EF,N (r)=N (~)=N (f)}. n n n n 

Let 'n be the class of all adaptive linear information operators 



6 

of the form (2.4). We are ready to prove the following theorem. 

Theorem 2.1: 

(2.10) r(N ) = (b-a)/2, \IN E 'f . 
n n n 

Proof: Setting ~(N (f)) = (a+b)/2 we get e(~) ~ (b-a)/2. 
n 

o 

Thus r(N ) ~ (b-a)/2 due to (2.8). To prove the reverse inequal
n 

ity we construct for every y, 0 < y < (b-a)/2, two functions 

1 and ¥ from F such that N (1) = N (1) and 
n n 

dist(S(t),S(~) 2 b-a-2y. Then (2.10) will follow from 

(2.9) with y tending to zero. 

We first construct the function 1. Define the points 

(2. 11) 

for i 

x, = a + iy/(n+l) 
1. 

= O,l, ... ,n+l and the functions 

4 2 2 
exp(16«n+l)/y) exp(-l/«x-x, 1) (x-x,) )) 

h, (x) = 
1. 

o 

1.- 1. 

i f x E [ X . lX']' 
1.- 1. 

otherwise 

00 

for i = 1,2, ... ,n+l. Note that hi E C and max Ihi(x) I = 1. 
x€(a,b] 

Next let d = max(!lllI,maxllh,I!). Take a positive <5 such that 
1. 

lsisn+l 

o <1/(4(n+1)d) if d > O. 



Let 6(X) = 6 for x € [a,b]. Applying N to the function ~(.) 
n 

we get the information operator Nn,~' see (2.5), 

N (f) = [L
1 

(f), ..• ,L (f)]. 
n,6 ,~ n,6 

Let C = (Cl, ... ,cn+ l ) be a nonzero solution of the homogeneous 

system of n linear equations with n + 1 unknowns, 

Let I~I = 

n+1 
~. 1 c.L. (h.) = 0, 

1.= 1. J, ~ 1. 
j=1,2, ... ,n. 

max 'c. ,. 
l~isn+l 1. 

Define the function H 

Let c E (1,3]. Define the function 

__ [~~ + cH(x) 
f (x) 

c 
- cH(x) 

co 

if c
k 

< 0, 

if c
k 

> O. 

co 
E C as 

Note that f 
c 

€ C • If d = 0 then 'If " = O. d Cll If d > 0 then 

IIfc!! ~ 611 1 11 + clIH!!'::;: 11 1 I!l(4(n+l)d) + 36(n+l)d 

~ 1/4 + 3/4 = 1. 

7 

Observe that fc(x i ) = 6 and fc((~_1+~)/2) = ~ - c~ < O. Thus 

f has a zero. It is easy to see that f has at most 2(n+l) 
c c 
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zeros and S(f ) c [a,a+y]. Further, note that f' (x) = a iff 
c c 

x = x., x = (x. l+x. )/2, x € [x. l'x.] if c. = a or x € [a+y,bJ. 
1. 1.- 1. J- J J 

There exists c = c* € (1,3] such that c* IH( (x. l+x. )/2) I F 0 for 
1. - 1. 

i = 1,2, ... , n+ 1. Therefore the function 1 = f has only 
c* 

simple zeros and I € F. 

To construct f we proceed as above with x. replaced by 
1. 

x~ = b - iy/(n+l), i = O,l, ... ,n+l. 
1. 

::t:1 
Then f € F and 

S(~) c [b-y,b]. Hence dist(S(1),s(1» 2 b-a-2y. Note that 

N (1) = N (f) = N (5(·» for small ~. This completes the 
n n n 

proof. 0 

Theorem 2.1 states that the error of any algorithm is 

at least (b-a)/2. Thus if e < (b-a)/2 then there exists no 

algorithm for which the root criterion is satisfied. 

3. Residual criterion 

Let Wr[a,b] be the space of functions f:[a,b] ~ I 
00 

whose (r-l)-st derivative is absolutely continuous and such 

that the infinity norm of the r-th derivative is finite, 

Recall that S(f) = (z € [a,b] :f(z) = OJ. Let 

(3. 1) 
r 

F· = (f € W : S ( f) ",0}' 
00 

For a given e > a we seek a point x for which the 



residual criterion is satisfied, i.e., 

(3. 2 ) If(x) I ~ e. 

To solve this problem we use adaptive linear information 

N and an algorithm ~ using N as defined by (2.4) and (2.6) 
n n 
• 00 r 

w~th C replaced by W [a,bJ. The error of the algorithm is 
00 

now defined as 

e (c::l) = sup I f (CD (Nn (f) ) ) ! . 
fEF 

Then (2.8) holds with the radius of information given by (see 

also [3J and [7J) 

(3. 3 ) r (N ) 
n 

= sup inf sup(!t(x)!:l E F,Nn (1) = Nn(f)}. 
fEF,xE[a,bJ 

Let C = C[a,bJ be the space of continuous functions defined on 

[a,b] and equipped with the norm !If!! = max If(x)j. 
c 

xE[a,bJ 

n r r 
By d (W ,C) we mean the Gelfand n-th width of W in the 

~ ~ 

space c, i. e. , 

9 

(3.4) d
n 

(W
r

, C) = inf sup (H fll : f 
r 

( f) o} E W ,L 1 (f) = ... =L = 
00 c co n 

L
1

, ... ,Ln 

where L1 ,· .. ,Ln are linear functionals. It is known, see [5 ], 

that 

dn(Wr,C) = (b;a) rd:1(W~,C[-l, 1]) = (b- a) r K ( 1 + 0 ( 1) ) , 
00 TTn r 

as n ~ 00 



where K is the Favard constant, K € [l,~/2]. 
r r 

We first show that the radius r(N ) of any information 
n 

operator N from 1 is no less than dn+l(Wr,C). 
n n 00 

Theorem 3.1: 

N € 'f • 
n n 

Proof: Let ~ be any algorithm using N . 
n 

and take ~ € (0,d
n

+ 1
). Applying N to the function 6('), 

n 

{

d n+l 

&(x) = n 
- '11 if dn

+
l < +00 

otherwise, 

we get the information operator N , 
n,6 

N (f) = [L
1 

(f), ... ,L (f)], see (2.5). Let 
n,~ ,6 n,6 

z = ~(N (6». Choose a function f* from wr 
such that 

n 00 

N (f*) = 0, f*(z) = ° and 
n,6 

if a < +00 

otherwise, 

where a = sup[lIfll :f E Wr,N (f) = 0, f(z) = OJ. From (3.4) 
c 00 n,6 

we conclude that 

if d n+ l < +00 

otherwise. 

10 

o 
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Thus there exists a point y € [a,b] such that 

'f dn+ l 
1. < +00 

otherwise. 

Define 

dn+l_~-sign(f*(Y»f*(x) . f d n+ l 
1. < +00, 

g(x) = 
n - sign(f*(y»f*(x) otherwise. 

Note that !Ig(r):/ = !!f*(r)!I, g(y) ~ 0 and g(z) > o. Thus 9 € F. 

Since N (g) = N (.S) then ~ (N (g» = z. By taking the supremum 
n n n 

over F we get 

otherwise. 

Since ~ is arbitrary we get e(~) 2 d
n
+ l 

which completes the 

proof. 0 

We now exhibit an infromation operator N* and an algorithm n' 

~* using N*, such that e (~*) ~ 2d
n 

(W*, C) • n 00 

Following [2], [5] pp. 130-135, 261-263 and [6J p. 129 

assume that n 2 r and define X as the class of perfect 
n-r, r 

splines s:[a,b] ~ E of degree r which have n - r knots, 

i.e., for every s from X there exists t. = t. (s), 
n-r,r 1. 1. 

a ~ tl ~ ... ~ t ~ b and a, = a, (s) such that 
n-r 1. 1. 
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s (t) 
r 

= (t-a) 
r! 

r i-I 
+ i:. 1 a. t 

~= ~ 
+ 2 i:~- r

l 
(-1) i (t- t. ) r, 

r! ~= ~ + 

There exists a unique (up to multiplication by -1) perfect 

spline s from X with the minimal norm, i.e" 
n-r,r n-r,r 

The spline s has n distinct zeros x*l"" ,x*n and n-r,r 

n r = d (W , C) • 
co 

Define the information operator 

N~ ( f ) = [f (x* 1) , , . , J f (x~) } , 
r 

f € W • 
co 

We now define the algorithm ~* using N* as follows. Let u 
n 

and v be perfect splines of degree r with n-r knots ~. and 
~ 

s. respectively, i = 1,2, .. , ,n-r, interpolating f at~, 
~ ~ 

i. e. , u(X~) = v{x~) = f(x~), and such that 
~ ~ ~ 

for ~. < x<~. l' i = 0,1",. ,n-r, 
~ ~+ 

where n = x* n = x* 
"0 l' "n-r+l n' 

(r)() (-:-l)i+l v x = for '::i < x < ;i+l' i = 0,1, ... ,n-r, 

where ~O = x*l and ~ - x* '" ':>n-r+l - n' 
Define 

f- (x) = min{u{x) ,v{x», 
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f + (x) = max (u (x) , v (x) ) . 

- + 
It is shown in (1] that f and f are the envelopes for the 

family of functions from wr 
having the same information as 

co 

f, i.e., 

f (x) ~ 1 (x) ~ f+ (x) , X € [a,b], 

r 
where 1 € wand N (1) = N (f). 

co n n 

Let f* = (f+ + f )/2 and let z* satisfy the equation 

If*(z*) 1 = min If*(z) I. Then the algorithm ~* is defined as 
z€(a,b] 

ec * (N~ ( f)) = z * . 

We now prove 

Theorem 3.2: 

n r 
e (CXl *) ~ 2 d (W ,C). 

co o 

Proof: Let f € F and z be a zero of f. It is known (see 

[2] and [6]) that Il f *-fll
c 
~ d

n 
for every f. 

Therefore 

If*(z*) 1 ~ If*(z) 1 = If*(z)-f(z) I ~ [If*-fll c ~ d
n 

and 

n 
If(z*) 1 ~ If*(z*)-f(z*) 1 + If*(z*) 1 ~ 2d . 
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The proof is completed by taking the supremum over F. 0 

From Theorems 3.1 and 3.2 we have the following corollary. 

Corollary 3.1: The information N* and the algorithm ~* are 
n 

almost optimal, i. e. , 

and 

r(N*) 
n 

b-a r = c ( 1 +0 ( 1) ) in f r (N ) = (-) K (1 +0 (1) ) , 
n N €'Y n TTn r 

n n 
as n ~ co, 

e(et)*) = c'r(N*) (1+0(1», as n ~ co, 
n n 

for some c and c' from [1,2]. 
n n 

To guarantee that the residual criterion is satisfied 

with x = ~*(N*(f» it is enough to define n such that 
n 

e(et)*) ~ e. Due to Corollary 3.1 we have 

Furthermore this n is almost the minimal one for which the 

residual criterion is satisfied. 

4. Alg9rithm with small combinatory cost. 

The almost optimal algorithm ~* from Section 3 is, in 

general, nonlinear since the computation of ~* requires the 
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solution of two nonlinear systems of size n - r (see [1] 

and [6]). Therefore its combinatory cost may be large. In 

this section we define the information N** and the algorithm 
n 

0** which are almost optimal and easy to compute. 

Let n = k·r where k is a nonnegative integer. Let 

h = (b-a)/k and [a.,b.] = [a+(i-l)h,a+ih] for i = 1,2, ... ,k. 
~ ~ 

Let 

g. (x) = 
~ 

a.+b. 
~ ~ 

2 

a.-b. 
1 ~ 

2 x 

be the linear transformation of [-1,1] on [a.,b.]. Denote 
~ ~ 

x .. = g. (z.) where z. = cos«2j-lhT/(2r», j = l, ... ,r, 
~,J l. J J 

are the zeros of Chebyshev polynomial T . 
r 

Let F be defined by (3.1). For f E F define the infor-

mation N** as 
n 

(4. 1) N**(f) = [f(xll), ... ,f(x
l 

), ... ,f(x.. l), ... ,f(x.. )}, n , ,r k, k,r 

and the interpolatory polynomials w. of degree r-l satisfying 
~ 

(4.2) w. (x .. ) = f(x .. ), j = 1,2, ... ,r. 
l. ~,J l.,J 

We know that 

(4.3) 
r 

I () f ( ) I ~, (b-a) _1_ sup wl.' x - X ~ = 
[ b] r. 2k 2 r-l 

X€ a., . 
~ ~ 

Note that 

r 
(b-a) 

n 

r 
r 

'22 r-l' r. 



A = r r b- a r f£ e r b- a r (-) = - (-4) (-) (1+0 (1)) as r ~ co. 
'22r-l n nr n r. 

Define the algorithm ~** as 

(4.4) ~**(N**(f)) = x** n 

where x** is chosen from [a,b] such that min Iw. (x**) I ~ A. 
l~i~ 1. 

Note that such a point exists. Indeed, since f has a zero 

in some subinterval [a.,b.], then (4.3) yields 
J J 

(4.5) min m~n IW
i 

(x) I ~ IW
J
. (a) I ~ A. 

l~i~ x€[a. ,b.] 
1. 1. 

Inequality (4.3) yields 

If (x**) I ~ 2A 

and therefore e(~**) ~ 2A. From this we have the following 

corollary . 

corollary 4.1: The information N** and the algorithm ~** are 
n 

almost optimal since 

and 

where 

r(N**) = 
n 

e (1:fJ**) = 

c inf 
n 

N €'" 
n 'n 

c'r(N**) n n 

r (N ) 
n 

16 

a 



17 

r 1-r 
for B = (nr) /(r~K)4 (1+0(1» as n ~ 00. 

r o 
Note that for large r we have 

For small r, r ~ 4 say, it is easy to implement (4.4). For 

instance we may compute f(Xl,l)" .. ,f(x
1
,r) and check if 

min If(x
l 

.) I ~ A. If so we are done, If not we construct 
l~j~r ' J 

wl and compute a point xl such that Iwl(x
l

) I = min IW l (x) I, 
x€[al,b l ] 

If lwl(x l ) I ~ A then we are done, if not we compute the next 

at x 2 ,1"",x2 ,r and repeat the above procedure, 

As in (5,5) there exists a point x. € [a.,b.] such that 
~ ~ ~ 

values of f 

Iw. (x.) I ~ A for some i where x. is defined by 
~ ~ ~ 

5, General Error criterion 

One may want to solve a nonlinear equation using an 

error criterion different than (1.1) or (1.3), This can be 

done as follows, 

Let F be a given subclass of functions from a linear 

space G, and let 

(5.1) E:G x [a,b] ~ X+, 

For a given ~ € R+ and any function f from F we want to 

find a point x = x(f,~) such that 
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(5.2) E(f,x) ~ t. 

We call (5.2) a general error criterion. The examples of 

the general error criterion are as follows 

(5.3) E(f,x) = inf( Ix-al:a € S (f») 

corresponds to the root criterion (1.1), 

(5.4) E(f,x) = inf( Ix-al/( lal + ~):a € S (f») 

corresponds to the relative root criterion (1.2), 

(5. 5 ) E(f,x) = If(x)1 

corresponds to the residual criterion and 

I f(x)/f' (x) I if f' (x) F 0, 

(5.6) E(f,x) = iff (x) F 0 and f' (x) = 0, 

if f(x) = 0 and f' (x) = 0 

corresponds to the relative residual criterion. To find x 

satisfying (5.2) we use an information operator Nand 
n 

algorithm ~ using N which are defined as in (2.4) and 
n 

(2.6). By the error of the algorithm ~ we now mean 

e(=) = sup E(f,~(Nn(f»). 
f€F 

Thus x = ~(N (f» satisfies (5.2) for any f € F iff e(~) ~ €. 
n 



It is easy to generalize (2.9) and (3.3) by showing that 

( 5. 7 ) inf e(~) = r(N ) n 
~ E t (N ) 

n 

= sup inf sup(E(l,c) :lEF,N (1) = N (f)}. 
n n 

fEF cE[a,b] 

We illustrate (5.7) by an example. 

Example 5.1: Let F be defined by (2.2) and E by (5.4). 

19 

Assume for simplicity that a 2 O. In the proof of Theorem 2.1 

we used two functions with the same information whose zeros are 

arbitrarily close to the endpoints of [a,b]. From this we 

conclude that 

) . f (Ic-al Ic-bl} r(N 2 ~n max , = 
n [b] a + 6 b + 6 CE a, 

b - a 
b+a+2 ~. 

Further note that ~(N (f» = c* = (2ab+6(a+b»/(a+b+2~) has 
n 

the error 

e(~) = sup Ic-c*\/(c+o) 
cE[a,b] 

= (b-a)/(a+b+25). 

Due to (5.7) we have 

(5.8) r(N ) = ..n e (~) = b - a 
a+b+2 ~ . 

= max la-c*1 Ib-c*1 
(a+o'b+o) 

Note that for 6 = 0, ~(N (f» is the harmonic mean of a and 
n 

b. Since (5.8) holds for any information operator N we 
n 
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conclude that if € < (b-a)/(a+b+2~) then there exists no 

algorithm for which the relative root criterion is satisfied. w 

We now assume a special form of the operator E. Let 

r 
F be defined by (3.1), G = W (a,b], and let 

co 

(5.9) A(f,x) = [Ll(f,x), ... ,~(f,x)] 

where L. (.,x):G ~ R is a linear functional, i = 1,2, ... ,k. 
1. 

Assume that E is of the form 

(5.10) E ( f, x) = E (A ( f, x) , x) , 

i.e., the dependence on f is through A(f,x). Let 

d n+k + l = dn+k+l(Wr,C) by the Gelfand (n+k+l)-st width, see 
00 

Section 3. We generalize Theorem 3.1 by proving 

Theorem 5.1: Let E be s-homogeneous, i.e., 

E(A(cf,x) ,x) 
s = c E (A ( f, x) , x) 

for all (c,f,x) € R x G x [a,b]. Then 

(5.11) 

Proof: 

r(N ) 2 (dn+k+l)s inf E(A(l,z),z). 
n zE[a,bJ 

We sketch the proof since it is similar to the proof 

of Theorem 3. 1. 
n+k+l 

Let 11 E (0, d ) . Apply N to the function 
n 
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~(x) = d
n

+k+ l - ~ getting N . Let Z = ~(N (~» for an 
n,~ n 

algorithm ep. Choose f* from wr 
such that N (f*) = 0, 

00 n, 0 

A(f*,z) = 0, f*(z) = ° and 

r 
IIf*lI + ~ 2 sup(llfli :f€W:N (f)=O,A(f,z)=O,f(z)=O}. 

c coon, 6 

n+k+l 
Then I f* (y) I = II f*lIc 2 d - ~ for some y from [a,b]. 

The function g(x) = d n
+

k
+

l 
- ~ - sign(f*(y»f*(x) belongs to 

n+k+l 
F, ~(Nn(g» = z and e(ep) 2 E(A(d -~z),z) 

n+k+l s = (d -~) E(A(l,z),z). Since ~ and ~ are arbitrary, 

(5.11) is proven. 0 

We illustrate Theorem 5.1 by two examples. Consider the 

relative residual criterion, i.e., E is given bv (5.6) and 

A(f,x) = [f(x),f' (x)]. Then s = ° and E(A(l,z),z) = +00, Vz. 

Thus (5.11) yields r(N ) = +00, iN. This means that there n n 

exists no algorithm for which the relative residual criterion 

is satisfied no matter how large €. 

As the second example consider A(f,x) = f(x) and 

E(f,x) 
s 

= I f (x) I . 

Then E is s-homogeneous and (5.11) holds with K = 1 and 

E(A(l,z),z) = 1. Using Theorem 3.2 it is easy to verify that 

th ' t 'f t' N such that r(N ) ,/ 2 s (dn)s. ere ex~s s an ~n orma ~on operator ~ 
n n 



22 

This shows that (5.11) is essentially sharp for this case. 

6. Final Remark 

We stress that in this paper we do not assume that a 

function f from the class F has opposite signs at the 

endpoints of the interval. If we shrink the class F to 

the subclass F
l

, defined as P
l 

={f € F:f(a) ~ O,f(b) 2 0 and 

f has one zero which is simple} then the results of the paper 

for the root criterion do not hold. It turns out, see [4], 

that the bisection algorithm and the bisection information are 

, l' th' d h . (b_a)/2 n+ l , opt~ma ~n ~s case, an t e error ~s This shows 

that the assumption of different signs at the endpoints 

carries much more information than the smoothness of f. 
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