
Money for Nothing and Privacy for Free?

Swapneel Sheth, Tal Malkin, Gail Kaiser
Department of Computer Science, Columbia University, New York, NY 10027

{swapneel, tal, kaiser}@cs.columbia.edu

Abstract—Privacy in the context of ubiquitous social com-
puting systems has become a major concern for the society
at large. As the number of online social computing systems
that collect user data grows, this privacy threat is further
exacerbated. There has been some work (both, recent and
older) on addressing these privacy concerns. These approaches
typically require extra computational resources, which might
be beneficial where privacy is concerned, but when dealing
with Green Computing and sustainability, this is not a great
option. Spending more computation time results in spending
more energy and more resources that make the software system
less sustainable. Ideally, what we would like are techniques for
designing software systems that address these privacy concerns
but which are also sustainable - systems where privacy could
be achieved “for free,” i.e., without having to spend extra
computational effort. In this paper, we describe how privacy
can be achieved for free - an accidental and beneficial side
effect of doing some existing computation - and what types
of privacy threats it can mitigate. More precisely, we describe
a “Privacy for Free” design pattern and show its feasibility,
sustainability, and utility in building complex social computing
systems.

Keywords-Design Pattern; Correlation Privacy; Web 2.0;
Concept Drift; Differential Privacy;

I. INTRODUCTION

Today’s college students do not remember when social
recommendations, such as those provided by Amazon, Net-
flix, Last.fm, and StumbleUpon, were not commonplace.
Privacy in the context of these social computing systems has
become a major concern for the society at large. A search
for the pair of terms “facebook” and “privacy” gives nearly
two billion hits on popular search engines. Recent feature
enhancements and policy changes in social networking and
recommender applications – as well as their increasingly
common use – have exacerbated this issue [1]–[4]. With
many online systems that range from providing purchasing
recommendations to suggesting plausible friends, as well
as media attention (e.g., the AOL anonymity-breaking in-
cident reported by the New York Times [5]), both users
of the systems and even non-users of the systems (e.g.,
friends, family, co-workers, etc. mentioned or photographed
by users) are growing more and more concerned about their
personal privacy [6].

Social computing systems, when treated in combination,
have created a threat that we call “Correlation Privacy.”
Narayanan and Shmatikov [7] demonstrated a relatively
straightforward method to breach privacy and identify in-

dividuals by correlating anonymized Netflix movie rating
data with public IMDb data. A similar de-anonymization
approach could potentially be applied to any combination
of such data-gathering systems, so how to safeguard again
these “attacks” is an important concern for the designers of
social computing systems. This is analogous to earlier work
addressing queries on census data but, at that time, there
were relatively few prospective attackers [8], [9].

There has been some recent work on data anonymization
for privacy in software testing [10]–[12]. However, data
anonymization alone may not be sufficient as Narayanan
and Shmatikov show. (For more details on the related work
including de-anonymization approaches, please see Section
VI.) We need other techniques (which may be used orthogo-
nal to data anonymization) to deal with privacy concerns and
general approaches, design patterns, software architectures,
etc. that would work across a wide variety of systems.

In this paper, we propose a design pattern, which we call
“Privacy for Free,” targeted towards online social systems.
In particular, we focus on systems that already have access
to user data such as purchase history, movie ratings, music
preferences, and friends and groups and that use complex
data mining techniques for providing additional social ben-
efits such as recommendations, top-n statistics, and so on to
their users. In our software engineering community, these
are systems like Mylyn [13], Codebook [14], or others(
[15], [16]) that have access to user (developer or end-user)
interactions with software artifacts such as code, bug reports,
and test cases.

The main research question we try to answer here is - Is
there a general purpose architecture or design pattern that
can be used with a wide range of large complex software
systems, that will achieve privacy without spending any extra
resources on computational overhead? We believe it is -
we have discovered a technique for achieving privacy as an
accidental and beneficial side effect of doing already existing
computation.

The already existing computation in our case was weigh-
ing user data in a certain way - weighing recent user data
exponentially more than older data to address the problem of
“concept drift” [17] - to increase the relevance of the recom-
mendations. This weighing is very common and used in a lot
of systems [18]–[21]. Recent work in the databases/cs theory
communities on Differential Privacy [22], [23] made us real-
ize that our already existing computation for weighing user



data is very similar to one of the techniques for achieving
differential privacy. (Intuitively, differential privacy ensures
that a user’s participation (vs not participating) in a database
doesn’t affect his privacy significantly. We provide more
detailed information on Differential Privacy in Section III.)
This resulted in the formulation of our hypothesis - if we
change the existing computation so it matches the technique
for achieving differential privacy (which would be a very
minor and straightforward code change as the two techniques
are very similar), would we get privacy as a beneficial side
effect of addressing a completely different problem?

We show that it is indeed possible to get privacy as a
beneficial side effect of doing some existing computation
- thus, privacy for free - and this is the main contribu-
tion of our paper. We have formulated this technique as
a design pattern that can be used in a wide variety of
software systems to achieve ”privacy for free”, and show the
feasibility, sustainability, and utility of using this approach
to building software systems. We also contribute to the
discussion in the privacy community about how to define
privacy and how to achieve it. Specifically, we suggest a new
direction for designing (differentially, or otherwise) private
algorithms and systems motivated by what is already being
done anyway.

There’s an added benefit of having privacy for free as
a side-effect - even though privacy is important for users,
many corporations may not be motivated to work hard on
privacy. This may be due business reasons where having
as much user information as possible is useful for targeted
advertising, etc. If privacy could be achieved cheaply (in
terms of computational or other resources), they still may
not opt for it. In such cases, having privacy as a side effect
of doing other computation is a very strong advantage from
the users’ point of view.

The rest of the paper is organized as follows: Section
II describes the motivation of our problem and why mak-
ing privacy sustainable is important. Section III provides
background information on Differential Privacy and Concept
Drift. Section IV describes our “Privacy for Free” design
pattern. Section V presents our empirical evaluations to
show the feasibility, sustainability, and utility of our design
pattern. Finally, we conclude the paper in Sections VI
and VII with a discussion of the related work and our
conclusions.

II. MOTIVATION

Green Computing (or Green IT) is “the study and practice
of designing, manufacturing, using, and disposing of com-
puters, servers, and associated subsystems [...] efficiently and
effectively with minimal or no impact on the environment”
[24]. With our oil reserves projected to exhaust in less than
fifty years [25], and renewable energy sources still providing
only a small fraction [26], Green Computing here and now

is becoming more and more important and, indeed, vital to
our children and grandchildren.

An important research direction will be investigating how
to build greener and more sustainable software systems
from a software engineering perspective, in addition to
the complementary algorithmic efficiency and systems per-
spective such as resource allocation, platform virtualization,
and power management pursued by other computer science
subdisciplines [27]. Ideally, from a sustainable software
system point of view, we want to build systems that solve
real-world problems by spending very little (or no) extra
computational effort.

There has been some recent work in the software en-
gineering community on data privacy [10]–[12]. This has
focused on anonymization techniques to make hide sensitive
data. While this work has been very promising, its goal
hasn’t been to be sustainable. Clause and Orso [10] in their
empirical results show that their technique takes between
2.5 minutes to 9 minutes. The time taken would probably
increase for larger more complex systems. Similarly, the
technique proposed in [11], [12] also requires substantial
computation time. If there are millions of users of these
systems, we are spending a lot of extra computational
resources that aren’t needed as far the original system in
concerned.

This is our main motivation for this paper. We feel that
our “Privacy for Free” design pattern can result in software
systems that are more sustainable and that already have
privacy guarantees built in.

III. BACKGROUND

Here we provide some background information on Dif-
ferential Privacy and Concept Drift.

A. Differential Privacy

In the 1970s, when research into statistical databases was
popular, Dalenius [28] proposed a desideratum for statistical
database privacy - access to a statistical database should not
enable someone to learn something about an individual that
cannot be learned without access to the database. While such
a desideratum would be great for privacy, Dwork et al. [22],
[33] showed that this notion of absolute privacy is impossible
using a strong mathematical proof. The problem with the
desideratum is the presence of “Auxiliary Information”.
Auxiliary Information is similar to, and a generalization of,
the notion of Correlation Privacy mentioned earlier.

Dwork gives a nice example to explain how Auxiliary
Information can be a problem when privacy is concerned
- “Suppose one’s exact height were considered a highly
sensitive piece of information, and that revealing the exact
height of an individual were a privacy breach. Assume that
the database yields the average heights of women of different
nationalities. An adversary who has access to the statistical
database and the auxiliary information “Terry Gross is two



inches shorter than the average Lithuanian woman” learns
Terry Gross’ height, while anyone learning only the auxiliary
information, without access to the average heights, learns
relatively little.” An interesting observation made by Dwork
is that the above example for breach of privacy holds
regardless of whether Terry Gross’ information is part of
the database or not.

To combat Auxiliary Information, Dwork proposes a new
notion of privacy called Differential Privacy. Dwork’s paper
is a culmination of the work started earlier and described
in papers such as [29]–[31]. Intuitively, Differential Privacy
guarantees privacy by saying that if an individual participates
in the database, there is no additional loss of privacy
(within a small factor) versus if he had not participated
in the database. Formally, Differential Privacy is defined
as follows: A Randomized function K gives ε-differential
privacy if for all data sets D1 and D2 differing on at most
one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] (1)

The notion of all data sets D1 and D2 captures the
concept of an individual’s information being present in the
database or not. If the above equation holds, it implies that
if an individual’s information is present in the database, the
breach of privacy will be almost the same if that individual’s
information was not present. Differential Privacy is now
commonly used in the database, cryptography, and cs theory
communities [32]–[35].

We like the definition of Differential Privacy due to its
strong mathematical foundations, which can allow us to
prove/disprove things theoretically. From a software system
builder’s point of view, they can tell their users - “Look, our
system is differentially private. So if you decide to use our
system and give it access to your data, you are not losing
any additional privacy (within a small factor) versus if you
did not use our system. In other words, the probability of
bad things happening to you (in terms of privacy) is roughly
the same whether you use our system or not.”

B. Achieving Differential Privacy

Dwork describes a way of achieving differential privacy
by adding random noise. In the Terry Gross height example
above, instead of giving the true average, the system would
output average±δ, where δ would be randomly chosen from
a mathematical distribution. Thus, the adversary wouldn’t be
able to find out the exact height of Terry Gross. Since then,
there have been many papers that have proposed different
mechanisms for achieving differential privacy [32]–[35].

A mechanism of note for achieving differential privacy
was proposed by McSherry and Talwar [23] called the
“Exponential Mechanism” (EM). The EM algorithm is as
follows: Given a set of inputs, and some scoring function
that we are trying to maximize, the algorithm chooses a

particular input to be included in the output with probability
proportional to the exponential raised to the score of the
input using a scoring function. Thus, inputs that have a high
score from the scoring function have an exponentially higher
probability of being included in the output than those inputs
that have a low score. McSherry and Talwar prove that this
EM algorithm is differentially private.

Consider the Terry Gross example from above and let’s
assume that the database has historical data going back 100
years. The average heights of people change over time so
giving an average height over the 100 years is not very
useful. If the scoring function we use is to maximize the
recency of data, newer data elements will be chosen with
exponentially higher probability that older data elements to
be included in the average. Since we are doing this proba-
bilistically, the exponential probability weighing ensures that
the exact answer is not revealed and that differential privacy
is maintained. This EM algorithm is one of the corner stones
of our “Privacy for Free” design pattern and we describe how
it’s used in the next section.

C. Concept Drift

People’s preferences change over time - things that I like
doing today may not be things I liked doing 10 years ago.
If data is being mined or recommendations being generated,
the age of the data needs to be accounted for. To address
this problem, the notion of Concept Drift was formed [17].
This problem needs to be addressed by any field that deals
with data spanning some time frame (from a few hours to
months and years). An example class of systems that need
to address the problem on Concept Drift is Recommender
Systems. Many recommender systems use Collaborative
Filtering (CF), i.e., recommending things to an individual
by looking at what other users similar to the individual like
[21], [36], [37]. CF algorithms typically look at the activities
of individuals from the past (movies watched, things bought,
etc.) and use this to derive recommendations. However,
people’s preferences change over time. For example, when
I am in college and taking a lot of classes, I might buy a
lot of textbooks from Amazon. When I graduate, I may not
need textbook recommendations. This is exactly the kind of
problem that Concept Drift tries to address.

Other example classes of systems that need to address
this problem are systems that mine software repositories
[38], social software engineering systems [14], systems for
collaboration and awareness [39], etc. For these kinds of
systems, there is a lot of old and recent data available and
weighing certain data differently might be essential.

D. Addressing Concept Drift

There have been different solutions proposed to address
the problem of Concept Drift [17], [40], [41]. A particular
solution of note is the Exponential Time Decay Algorithm
[42]. The Exponential Time Decay Algorithm weighs things



done recently exponentially higher than things done in the
past. It gradually decays the weight of things done in the
past so that things done in the distant past do not affect the
outcome as much as things done recently, thus addressing
the problem on Concept Drift. The Exponential Time Decay
Algorithm is very popular and used by a lot of systems [18]–
[21]. For the rest of the paper, we refer to this as the CD
(Concept Drift) algorithm.

Consider the Terry Gross example again and let’s assume
that the database has historical data going back 100 years.
As average heights change over time, the CD algorithm
will weigh newer data exponentially higher than older data
resulting in a weighted average height. This would reflect
the recent trends but also account for older data. The CD
algorithm is the another corner stone of our design pattern
and we build on it more in the next section.

IV. PRIVACY FOR FREE: A DESIGN PATTERN

The CD and EM algorithms are very similar. The CD
algorithm uses exponential weighing over the data while the
EM algorithm chooses inputs with probability proportional
to the exponential of the scoring function. If we choose the
scoring function to be the timestamp of the data, the two
algorithms becomes even more similar. The CD algorithm is
deterministic and weighs new data exponentially higher than
older data; the EM algorithm is probabilistic and chooses
new data with an exponentially higher probability than older
data.

This is the crux of our paper - if existing systems that
already use the CD algorithm modify the code to use the
EM algorithm instead, they would, as an added benefit,
get the main advantage of the EM algorithm - differential
privacy. Further, this privacy would not require any extra
computational overhead and thus, we would get privacy for
free. Systems that do not already use either the CD or the
EM algorithm could still add the EM algorithm and privacy
could still be viewed as being free - an added benefit of
solving some other problem, which in this case is Concept
Drift. Since these two algorithms are very similar, it would
require a very small and straightforward change to the code
to change from the CD algorithm to the EM algorithm.

The important requirement for the differential privacy
guarantees to hold are that all the data access must be done
via the EM algorithm, which could be implemented as a
separate class or be part of a library or the data model, etc.
We describe our design pattern using a modified version of
the template suggested by Gamma et al. [43]. This is shown
below:

Pattern Name and Classification
“Privacy for Free”, Behavioral class pattern

Intent
To provide differential privacy in social computing
systems without any extra computational overhead.

Motivation
See Section II.

Applicability
Software systems that already have access to user
data such as purchase history, movie preferences,
interaction with software artifacts like code and
bug reports.

Participants
The rest of the design of an existing system can
remain unchanged. A new system can be imple-
mented as per the necessary requirements. The
only mandatory class is the EM algorithm and this
must be used to access the data. There will be no
other change in participants.

Collaborations
There are no requirements on participant collabo-
rations. The only restriction is that all access to the
data should be via the EM algorithm, which could
be implemented as a class (or part of a library or
data model).

Consequences
The design pattern will provide privacy for free
without any extra computational overhead. The
tradeoff is a small loss in accuracy of recommen-
dations/data mining. See Section V-C.

Implementation
Any programming language can be used for the
implementation. The only requirement would be
the ability to generate pseudo-random numbers as
the algorithm is probabilistic.

Related Patterns
None as we focus on systems that already have
access to user data. For other kinds of systems
(such as network systems), there are existing pri-
vacy patterns [44], [45].

V. EVALUATION

Our design pattern requires implementing (or substituting
an existing implementation of the CD algorithm with)
the EM algorithm. To evaluate our design pattern, we
implemented the EM and CD algorithms and investigated
the differences in these. Our goal was to answer the
following research questions:

RQ1: Feasibility—Does using our design pattern guaran-
tee differential privacy?

RQ2: Utility—Does using our design pattern affect the
utility of the system to give meaningful recommen-
dations or mine data?

RQ3: Sustainability—Can our design pattern be
sustainable? Can using our design pattern result in
no additional computational resources for privacy?



With RQ1, we aim to prove the primary benefit of our
design pattern - guaranteeing privacy. Our goal is to show
that it does indeed guarantee differential privacy making it
suitable to be used in a variety of large social systems.

With RQ2, we explore the utility of using our design
pattern. A “straw man” way to guarantee privacy for any
recommender/data mining system is to give a random answer
every time. This would not require any clever technical solu-
tions, but this would be very bad for the overall utility of the
system - the goal of most such systems is to provide relevant
information. There exists a tradeoff between accuracy and
privacy and we explore this here. We aim to show that, using
our technique, there is a small loss in accuracy and that this
loss in accuracy scales very well (roughly constant) as the
size of the system increases. Thus, if a small loss in accuracy
is acceptable, we can get privacy for free without spending
any additional computational resources.

With RQ3, we aim to show the sustainability benefits of
using our design pattern. We show that using our design
pattern (and the EM algorithm) requires less CPU time than
the equivalent CD algorithm. Not only do we not need any
additional computational resources, we should be able to
reduce computational needs by using our design pattern.

A. RQ1 - Feasibility

Our design pattern requires the use of the EM algorithm
for all access to the data. The EM algorithm that we require
is exactly the same as the one proposed by McSherry and
Talwar [23]. The algorithm they propose can work with
different scoring functions that weigh the data differently -
in our case, the scoring function we use is the timestamp of
the data. Our use of the EM algorithm in our design pattern
can thus be viewed as an instantiation of the general EM
algorithm. McSherry and Talwar show a theoretical proof
for the EM algorithm to be differentially private. We do
not repeat the proof here and we encourage the interested
reader to look at the paper (page 5 of [23]). As all data
access happens via the EM algorithm, our design pattern
also guarantees differential privacy.

B. Methodology

For RQ2 and RQ3, we carried out experiments to validate
our hypotheses. We use synthetic data as there are no
benefits of using real world data for our hypotheses. We
create an array of size n and randomly fill it with values
from 0 to n − 1. Each element has a timestamp associated
with it to simulate user activity - for the purpose of this
experiment, we assume that the timestamp is the array index.
A lower array index indicates that the item is newer. Thus,
we want to prefer items with a lower index in the output as
these items indicate things that are done recently.

Using the differential privacy EM algorithm [23], we
choose the scoring function to be maximized by returning
a value with as low an array index as possible. Thus, we

Figure 1. RMS and NRMS Error vs Size of data set

choose elements from the array with probability based on
their array index.

In the experiments, we randomly generate the array and
compute the score using the CD and the EM algorithms.
We then plot the RMS and normalized RMS errors between
these two algorithms. We discuss the results in the following
subsections.

C. RQ2 - Utility

For the first set of experiments, we varied the size of
the array and plotted the RMS and normalized RMS errors
between the CD and EM algorithms. The results are shown
in Figure 1. To smooth out the noise in the experimental
results (as CD is a deterministic algorithm while EM is
a probabilistic one), we ran the experiment 1000 times
with each array size and took averages. The graph shows
us that as the size of the input array increases, the RMS
error increases linearly - this is expected as with larger
array sizes, the entries in the array have correspondingly
larger values (due to our methodology), resulting in linearly
increasing RMS error. Meanwhile, the normalized RMS
error is roughly constant.

This shows us the tradeoff between accuracy and privacy.
We observe that in these experiments, the loss of accuracy is
relatively small - the normalized RMS error is less than 0.4.
Thus, irrespective of the data set size, switching to the EM
Algorithm (as required by our design pattern) from the CD
Algorithm will not worsen the accuracy of the algorithm
by more than the constant factor, and we have the added
benefit that the EM algorithm also guarantees differential
privacy. Whether the loss of accuracy is acceptable or not
(or a worthy price to pay for the free privacy) is subjective
and we deliberately do not enter a philosophical debate here.

For our second set of experiments, we varied the number
of trials keeping the size of the array fixed to 1000. The
graph plotting the RMS error vs the number of trials is
shown in Figure 2. This graph shows us that as the number
of trials increases, the RMS error reduces. Thus, initially,



Figure 2. RMS Error vs Number of Trials

Figure 3. CPU Time (in msec) vs Size of data set

even though there may be a bigger error between the CD
and EM algorithms, in the long run, the error will be small.

With these set of experiments, we explored the utility of
our design pattern. For an existing system (that may already
use an algorithm similar to the CD one), a one-time change
would be required to add in the EM algorithm and retrofit
the system to our design pattern. This change is relatively
straightforward and could even be automated. Making such
a change, albeit results in a small loss of accuracy, gives the
huge benefit of getting privacy for free without spending any
additional computational resources.

D. RQ3 - Sustainability

For RQ3, we want to show the sustainability of our
design pattern. With the EM algorithm in place, what we
ideally want is that our system does not take any additional
computational resources. We decided to use the CPU pro-
cessing time to estimate the computational resources needed
by the two algorithms. We instrumented the CD and EM
algorithms and measured how long they took in the first set
of experiments in Section V-C above. The resultant graph
is shown in Figure 3. The graph shows us that for all data
sizes the EM algorithm took less CPU time than the CD
algorithm.

Not only does the EM algorithm not require any additional
computational resources, it actually reduces the existing
computation. Thus, changing to our design pattern will make
the software system even more sustainable.

E. Threats to Validity

The notion of Differential Privacy may not relate to the
user-centric view of Privacy as users might think it “strange”
that the system assumes that bad things can happen anyway
- the guarantee it gives is just regarding whether the user
data is part of the system or not. While that is true, we feel
that differential privacy has many compelling arguments in
its favor - the biggest, for us, is not having to decide what
data is sensitive and what is not. The differential privacy
algorithms treat all data as sensitive making it easier not
to leak data by accident. One would, therefore, not have to
deal with the subjective nature of deciding what’s sensitive.
We also feel that the guarantee might actually make it even
more compelling for the user. From their point of view -
“if bad things are going to happen anyway, it’s not going to
hurt me much more if I participate.. so there’s no harm in
participating.”

We used synthetic data in our evaluations rather than real-
world data. For the research questions that we had - feasibil-
ity, utility, sustainability - synthetic data was sufficient. The
only benefit of using real world data would be to answer
some other research questions that are outside the scope of
this paper.

VI. RELATED WORK

There have been some recent papers on data privacy and
software testing. Clause and Orso [10], proposes techniques
for the automated anonymization of field data for software
testing. They extend the work done by Castro et al. [46]
using novel concepts of path condition relaxation and break-
able input conditions resulting in improving the effectiveness
of input anonymization. Our work is orthogonal to the papers
on input anonymization. The problem they address is - how
can users anonymize sensitive information before sending
it to the teams or companies that build the software? The
problem we address is - how can systems that already
have access to user data (such as purchase history, movie
preferences, and so on) be engineered so that they don’t leak
sensitive information while doing data mining on the data?
Further, the aim of our approach is to provide privacy “for
free,” i.e., without spending extra computational resources
on privacy. The input anonymization approaches require
spending extra computation as they address a different prob-
lem. We believe that the our approach can be combined with
the input anonymization approach if needed based on user
needs. If users are worried about developers at the company
finding out sensitive information, input anonymization is
essential. If, however, they are worried about accidental data
leakage through the data mining of their information, using



the “Privacy for Free” design pattern may be more suitable.
This would also make the software system more sustainable
as we don’t spend any computation doing the anonymization
of the inputs.

Taneja et al. [11] and Grechanik et al. [12] propose using
k-anonymity [47] for privacy by selectively anonymizing
certain attributes of a database for software testing. Their
papers propose novel approaches using static analysis for
selecting which attributes to anonymize so that test coverage
remains high. Similar to above, our approach is orthogonal
as we focus on a design pattern that will prevent accidental
leakage of sensitive information via data mining or similar
techniques. Further, these approaches using k-anonymity
also require significant additional computational resources
and thus, may not be sustainable when energy resources are
scarce.

Our differential privacy approach has the added benefit of
being able to work with any kind of data and not being
limited to just integers or such. Finally, work on input
anonymization and k-anonymization both focus on software
testing whereas our approach focuses on a design pattern
for building privacy preserving systems with a specific goal
- to make privacy sustainable and not require additional
resources.

There has also been a lot of work related to data
anonymization and building accurate data models for statis-
tical use (e.g., [48]–[52]). These techniques aim to preserve
certain properties of the data (e.g., statistical properties like
average) so they can be useful in data mining while trying to
preserve privacy of individual records. The broad approaches
include aggregating data to a higher level of granularity or
adding noise and random perturbations. As we are interested
in sustainable ways of achieving privacy, these approaches
are not applicable as they typically require (a lot of) extra
computational effort.

While there has been a lot of interest (and research) in
data anonymization, we would like to reiterate that only
data anonymization might not be enough. Narayanan and
Shmatikov [7] demonstrate a relatively straightforward way
of breaking the anonymity of data. They show how it is pos-
sible to correlate public IMDb data with private anonymized
Netflix movie rating data resulting in the potential identifi-
cation of the anonymized individuals. Backstrom et al. [53]
also describe a series of attacks for de-anonymizing social
networks that have been anonymized to be made available
to the public. They describe two categories of attacks -
active attacks where an evil adversary targets an arbitrary
set of users and passive attacks where existing users try to
discover their location in the network and thereby cause de-
anonymization. Their results show that, with high probability
and modest computational requirements, de-anonymization
is possible for a real world social network (in their case,
LiveJournal [54]).

VII. CONCLUSION

As social computing systems that collect users’ data
proliferate, privacy has and will continue to become a major
concern for the society at large. The main research question
that we wanted to answer is - Is there a general purpose
architecture or design pattern that can be used with a wide
range of large complex software systems, that will achieve
privacy without spending any extra resources on computa-
tional overhead? Our “Privacy for Free” design pattern can
achieve privacy as an accidental and beneficial side effect
of doing some existing computation. The results of our
evaluations show the feasibility, utility, and in particular, the
sustainability of our approach as it does not require any
additional computational resources to guarantee privacy.

ACKNOWLEDGMENT

Sheth and Kaiser are members of the Programming Sys-
tems Lab, funded in part by NSF CNS-0717544, CNS-
0627473 and CNS-0426623, and NIH 2 U54 CA121852-06.
Malkin is a member of the Crypto Lab, funded in part by
NSF 0831094 and 0347839 and DHS N66001-09-C-0080.

REFERENCES

[1] B. Bosker, “Facebook CEO ‘Doesn’t Believe In
Privacy’,” http://www.huffingtonpost.com/2010/04/29/
zuckerberg-privacy-stance n 556679.html, April 2010.

[2] D. Fletcher, “How Facebook Is Redefining Privacy,” http:
//www.time.com/time/business/article/0,8599,1990582.html,
May 2010.

[3] S. Johnson, “Web Privacy: In Praise of Oversharing,” http:
//www.time.com/time/business/article/0,8599,1990586.html,
May 2010.

[4] M. Zuckerberg, “Making Control Simple,” http://blog.
facebook.com/blog.php?post=391922327130, May 2010.

[5] M. Barbaro, T. Zeller, and S. Hansell, “A face is exposed
for AOL searcher no. 4417749,” New York Times, vol. 9,
2006. [Online]. Available: http://www.nytimes.com/2006/08/
09/technology/09aol.html? r=1&pagewanted=all

[6] M. Shiels, “Germany officials launch legal action against
Facebook,” http://news.bbc.co.uk/2/hi/technology/8798906.
stm, July 2010.

[7] A. Narayanan and V. Shmatikov, “How to break anonymity of
the netflix prize dataset,” CoRR, vol. abs/cs/0610105, 2006.

[8] N. R. Adam and J. C. Worthmann, “Security-control methods
for statistical databases: a comparative study,” ACM Comput.
Surv., vol. 21, no. 4, pp. 515–556, 1989.

[9] L. L. Beck, “A security mechanism for statistical database,”
ACM Trans. Database Syst., vol. 5, no. 3, pp. 316–3338, 1980.

[10] J. Clause and A. Orso, “Camouflage: automated
anonymization of field data,” in Proceeding of the 33rd
international conference on Software engineering, ser. ICSE
’11. New York, NY, USA: ACM, 2011, pp. 21–30. [Online].
Available: http://doi.acm.org/10.1145/1985793.1985797



[11] K. Taneja, M. Grechanik, R. Ghani, and T. Xie, “Testing
software in age of data privacy: a balancing act,” in
Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software
engineering, ser. SIGSOFT/FSE ’11. New York, NY,
USA: ACM, 2011, pp. 201–211. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025143

[12] M. Grechanik, C. Csallner, C. Fu, and Q. Xie, “Is data privacy
always good for software testing?” Software Reliability En-
gineering, International Symposium on, vol. 0, pp. 368–377,
2010.

[13] M. Kersten and G. C. Murphy, “Using task context to
improve programmer productivity,” in Proceedings of the
14th ACM SIGSOFT international symposium on Foundations
of software engineering, ser. SIGSOFT ’06/FSE-14. New
York, NY, USA: ACM, 2006, pp. 1–11. [Online]. Available:
http://doi.acm.org/10.1145/1181775.1181777

[14] A. Begel, K. Y. Phang, and T. Zimmermann, “Codebook:
discovering and exploiting relationships in software repos-
itories,” in ICSE ’10: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering. New
York, NY, USA: ACM, 2010, pp. 125–134.

[15] C. Treude and M.-A. Storey, “Awareness 2.0: staying aware of
projects, developers and tasks using dashboards and feeds,” in
Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ser. ICSE ’10. New
York, NY, USA: ACM, 2010, pp. 365–374. [Online].
Available: http://doi.acm.org/10.1145/1806799.1806854

[16] T. Fritz and G. C. Murphy, “Using information fragments
to answer the questions developers ask,” in Proceedings of
the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ser. ICSE ’10. New York,
NY, USA: ACM, 2010, pp. 175–184. [Online]. Available:
http://doi.acm.org/10.1145/1806799.1806828

[17] G. Widmer and M. Kubat, “Learning in the presence of con-
cept drift and hidden contexts,” Machine Learning, vol. 23,
no. 1, pp. 69–101, 1996.

[18] Y. Ding and X. Li, “Time weight collaborative filtering,”
in CIKM ’05: Proceedings of the 14th ACM international
conference on Information and knowledge management. New
York, NY, USA: ACM, 2005, pp. 485–492.

[19] F. Heylighen and J. Bollen, “Hebbian algorithms for a digital
library recommendation system,” Parallel Processing Work-
shops, International Conference on, vol. 0, p. 439, 2002.

[20] Y. Koren, “Collaborative filtering with temporal dynamics,”
Commun. ACM, vol. 53, no. 4, pp. 89–97, 2010.

[21] C. Murphy, S. Sheth, G. Kaiser, and L. Wilcox, “genSpace:
Exploring Social Networking Metaphors for Knowledge Shar-
ing and Scientific Collaborative Work,” in 1st Intl. Workshop
on Social Software Engg. and Applications, September 2008,
pp. 29–36.

[22] C. Dwork, “Differential privacy,” IN ICALP, vol. 2, pp.
1–12, 2006. [Online]. Available: http://research.microsoft.
com/en-us/projects/databaseprivacy/dwork.pdf

[23] F. McSherry and K. Talwar, “Mechanism design via differ-
ential privacy,” in FOCS ’07: Proceedings of the 48th An-
nual IEEE Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE Computer Society, 2007, pp.
94–103.

[24] S. Murugesan, “Harnessing green it: Principles and practices,”
IT Professional, vol. 10, no. 1, pp. 24 –33, jan.-feb. 2008.

[25] J. Vidal, “The end of oil is closer than you think,” http://www.
guardian.co.uk/science/2005/apr/21/oilandpetrol.news, April
2005.

[26] U.S. Energy Information Administration, “International En-
ergy Outlook 2010 - Highlights,” http://www.eia.doe.gov/oiaf/
ieo/highlights.html, May 2010.

[27] Microsoft, Green Computing. The Architecture Journal,
2008, vol. 18.

[28] T. Dalenius, “Towards a methodology for statistical disclosure
control,” Statistik Tidskrift, vol. 15, pp. 429–444, 1977.

[29] A. Blum, C. Dwork, F. McSherry, and K. Nissim,
“Practical privacy: the sulq framework,” in PODS ’05:
Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems.
New York, NY, USA: ACM, 2005, pp. 128–138.
[Online]. Available: http://portal.acm.org/ft gateway.cfm?
id=1065184&type=pdf&coll=GUIDE&dl=GUIDE&CFID=
66968033&CFTOKEN=33132357

[30] I. Dinur and K. Nissim, “Revealing information while
preserving privacy,” in PODS ’03: Proceedings of the twenty-
second ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. New York, NY, USA: ACM,
2003, pp. 202–210. [Online]. Available: http://portal.acm.org/
ft gateway.cfm?id=773173&type=pdf&coll=GUIDE&dl=
GUIDE&CFID=68522881&CFTOKEN=78987266

[31] C. Dwork and K. Nissim, “Privacy-preserving datamining on
vertically partitioned databases,” Lecture Notes in Computer
Science, pp. 528–544, 2004.

[32] A. Blum, K. Ligett, and A. Roth, “A learning theory ap-
proach to non-interactive database privacy,” in STOC ’08:
Proceedings of the 40th annual ACM symposium on Theory of
computing. New York, NY, USA: ACM, 2008, pp. 609–618.

[33] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrat-
ing noise to sensitivity in private data analysis,” Theory of
Cryptography, pp. 265–284, 2006.

[34] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and
S. Vadhan, “On the complexity of differentially private data
release: efficient algorithms and hardness results,” in STOC
’09: Proceedings of the 41st annual ACM symposium on
Theory of computing. New York, NY, USA: ACM, 2009,
pp. 381–390.

[35] A. Roth and T. Roughgarden, “Interactive privacy via the
median mechanism,” in STOC ’10: Proceedings of the 42nd
ACM symposium on Theory of computing. New York, NY,
USA: ACM, 2010, pp. 765–774.



[36] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. T. Riedl, “Evaluating collaborative filtering recommender
systems,” ACM Trans. Inf. Syst., vol. 22, pp. 5–53,
January 2004. [Online]. Available: http://doi.acm.org/10.
1145/963770.963772

[37] J. Zhang and P. Pu, “A recursive prediction algorithm for
collaborative filtering recommender systems,” in RecSys ’07:
Proc. of the 2007 ACM conference on Recommender systems,
2007, pp. 57–64.

[38] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta, “Social
interactions around cross-system bug fixings: the case of
freebsd and openbsd,” in Proceeding of the 8th working
conference on Mining software repositories, ser. MSR ’11.
New York, NY, USA: ACM, 2011, pp. 143–152. [Online].
Available: http://doi.acm.org/10.1145/1985441.1985463

[39] J. Whitehead, “Collaboration in software engineering: A
roadmap,” in 2007 Future of Software Engineering, ser.
FOSE ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 214–225. [Online]. Available: http:
//dx.doi.org/10.1109/FOSE.2007.4

[40] R. Klinkenberg, “Learning drifting concepts: Example selec-
tion vs. example weighting,” Intell. Data Anal., vol. 8, no. 3,
pp. 281–300, 2004.

[41] I. Koychev and I. Schwab, “Adaptation to drifting user’s
interests,” in Proceedings of ECML2000 Workshop: Machine
Learning in New Information Age. Citeseer, 2000, pp. 39–46.

[42] E. Cohen and M. Strauss, “Maintaining time-decaying stream
aggregates,” in Proc. of the 22nd ACM SIGMOD-SIGACT-
SIGART symposium on principles of database systems
(PODS), 2003, pp. 223–233.

[43] E. Gamma, Design patterns: elements of reusable object-
oriented software. Addison-Wesley Professional, 1995.

[44] M. Hafiz, “A collection of privacy design patterns,” in
Proceedings of the 2006 conference on Pattern languages
of programs, ser. PLoP ’06. New York, NY, USA:
ACM, 2006, pp. 7:1–7:13. [Online]. Available: http:
//doi.acm.org/10.1145/1415472.1415481

[45] M. Sadicoff, M. Larrondo-Petrie, and E. Fernandez, “Privacy-
aware network client pattern,” in Proceedings of the Pattern
Languages of Programs, 2005.

[46] M. Castro, M. Costa, and J.-P. Martin, “Better bug reporting
with better privacy,” in Proceedings of the 13th international
conference on Architectural support for programming
languages and operating systems, ser. ASPLOS XIII. New
York, NY, USA: ACM, 2008, pp. 319–328. [Online].
Available: http://doi.acm.org/10.1145/1346281.1346322

[47] L. Sweeney, “k-anonymity: a model for protecting privacy,”
Int. J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5,
pp. 557–570, 2002.

[48] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza,
Y. Saygin, and Y. Theodoridis, “State-of-the-art in privacy
preserving data mining,” SIGMOD Rec., vol. 33, no. 1,
pp. 50–57, 2004. [Online]. Available: http://portal.acm.
org/ft gateway.cfm?id=974131&type=pdf&coll=Portal&dl=
GUIDE&CFID=57274250&CFTOKEN=66855356

[49] H. Polat and W. Du, “Privacy-preserving collaborative
filtering using randomized perturbation techniques,”
in Data Mining, 2003. ICDM 2003. Third IEEE
International Conference on, Nov. 2003, pp. 625–628.
[Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=1250993&isnumber=27998

[50] N. Lathia, S. Hailes, and L. Capra, “Private
distributed collaborative filtering using estimated
concordance measures,” in RecSys ’07: Proceedings
of the 2007 ACM conference on Recommender
systems. New York, NY, USA: ACM, 2007, pp. 1–8.
[Online]. Available: http://portal.acm.org/ft gateway.cfm?
id=1297233&type=pdf&coll=GUIDE&dl=GUIDE&CFID=
68527902&CFTOKEN=13699967

[51] D. Agrawal and C. C. Aggarwal, “On the design
and quantification of privacy preserving data mining
algorithms,” in PODS ’01: Proceedings of the twentieth
ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems. New York, NY, USA: ACM, 2001,
pp. 247–255. [Online]. Available: http://portal.acm.org/
ft gateway.cfm?id=375602&type=pdf&coll=GUIDE&dl=
GUIDE&CFID=66967289&CFTOKEN=36056860

[52] A. Evfimievski, J. Gehrke, and R. Srikant, “Limiting
privacy breaches in privacy preserving data mining,”
in PODS ’03: Proceedings of the twenty-second ACM
SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. New York, NY, USA: ACM, 2003,
pp. 211–222. [Online]. Available: http://portal.acm.org/
ft gateway.cfm?id=773174&type=pdf&coll=GUIDE&dl=
GUIDE&CFID=68523084&CFTOKEN=11687137

[53] L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore art
thou r3579x?: anonymized social networks, hidden patterns,
and structural steganography,” in WWW ’07: Proceedings
of the 16th international conference on World Wide
Web. New York, NY, USA: ACM, 2007, pp. 181–190.
[Online]. Available: http://portal.acm.org/ft gateway.cfm?
id=1242598&type=pdf&coll=Portal&dl=GUIDE&CFID=
57274250&CFTOKEN=66855356

[54] Brad Fitzpatrick, “LiveJournal,” http://www.livejournal.com/,
1999.


