
SparseLab Architecture

David Donoho, Victoria Stodden, and Yaakov Tsaig
Stanford University 1

Version 2.0
March, 2007

1Acknowledgment of Support. This work was partially supported by NSF
DMS-05-05303 and by other sponsors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161438791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Chapter 1

Introduction

Changes and Enhancements for Release 2.0: 4 papers have been added
to Sparselab 2.0: ”Fast Solution of l1-norm Minimization Problems When
the Solutions May be Sparse”; ”Why Simple Shrinkage is Still Relevant
For Redundant Representations”; ”Stable Recovery of Sparse Overcomplete
Representations in the Presence of Noise”; ”On the Stability of Basis Pursuit
in the Presence of Noise.”

This document describes the architecture of SparseLab version 2.0. It
is designed for users who already have had day-to-day interaction with the
package and now need specific details about the architecture of the package,
for example to modify components for their own research.

For an introduction to SparseLab at an elementary level, see About
SparseLab. This document may be accessed via WWW through the Sparse-
Lab Home Page: http://sparselab.stanford.edu.

Before beginning, we mention the main components of the SparseLab
package, to standardize terminology. First, there are the basic “system
components”:

1. Source. There is source code, in Matlab, TEX, Perl.

2. Build. The source code is assembled into a standard release. The
current release is 2.0.

3. Archives. Compressed archives of the standard release available for
three platforms, Mac, Unix and PC, which users can download and
install on their machines.

4. Web Documents. A web home page (which can be viewed using any
web browser) and a series of postscript and pdf files which explain what

3

4 CHAPTER 1. INTRODUCTION

SparseLab is and how to get it. The URL is http://sparselab.stanford.edu.

Next there are the basic “user components” of an installed system:

1. SparseLab Main Directory. A subdirectory /Sparselab200 of the Matlab/work
directory, containing the currently released version of SparseLab soft-
ware, datasets and documentation.

2. Papers. A directory /Sparselab200/Papers/ in /Sparselab200 contain-
ing scripts reproducing figures in various articles and technical reports.

3. Examples. A directory /Sparselab200/Workouts/ in /Sparselab200
containing pedagogical examples that exercise various aspects of Sparse-
Lab.

4. Solvers. A directory /Sparselab100/Solvers/ in /Sparselab200 con-
taining the various solver engines of SparseLab.

5. Documentation. Both pdf and Postscript files available by WWW
access.

6. Datasets. The largest are included as separate downloads: Sparselab-
vers DataSupplementExtCS and Sparselabvers DataSupplementStOMP,
where vers is replaced by the current SparseLab version. Numerical
and image data used to illustrate various aspects of sparse analysis by
the scripts and workouts.

The following document describes all these various components from a
systems-level point of view. An individual needing to modify SparseLab or
add to it would be interested in this information.

Chapter 2

Papers

We briefly describe the contents and architecture of the /Sparselab200/Papers/
subdirectory of SparseLab.

2.1 Script Philosophy

The makeup of /Sparselab200/Papers/ is the whole raison d’être of the
SparseLab package. The idea is that, when doing research in a compu-
tational science, one works to develop reproducible knowledge about the
results of computational experiments. The /Papers directory is the end
product of such an effort. It makes available to researchers around the
world, via the Internet, the computations that produced figures which have
been published in hardcopy form as technical reports at Stanford University
and in forthcoming journal articles. Other researchers can obtain the Mat-
lab code which generated these figures, and can reproduce the calculations
that underly the figures. They can, if they wish, modify the calculations by
editing the underlying Matlab code. They can use the algorithms on other
datasets. They can try their own favorite methods on the same datasets.

Our idea is that, when doing research, long before we write an article,
we prepare ourselves with the thought that what we do on the computer will
ultimately be made available to others, for their inspection, modification, re-
use and criticism. This implies several things. First, that the work product
which we are aiming to create will be a subdirectory of SparseLab containing
a series of scripts that will generate, from scratch, all the figures of the
corresponding article. Second, that our work product is not the printed
figures that go into the article, but the underlying algorithms and code
which generate those figures, and which will be made available to others.

5

6 CHAPTER 2. PAPERS

Thus, it is no good to print a hardcopy of a figure that we see on the screen
and save that for photocopying into a final version of the paper. Once we
are happy with a figure we see on the screen, we must save the code that
generated the figure, and then edit the code to make it part of a system that
automatically reproduces all the figures of an article.

The philosophy we are adopting can be traced to Jon Claerbout and
Martin Karrenbach’s article Electronic Documents Give Reproducible Re-
search New Meaning (http://sepwww.stanford.edu). We especially like a
thought of theirs which we paraphrase as follows:

A traditionally published article is not the end product of schol-
arship; it is the advertisement for the scholarship. The working
software environment that produced the figures in the article is
the actual end product of the scholarship.

To work in accordance with the philosophy, we must adopt a discipline
of how we structure our computational experiments in Matlab. A benefit
of this discipline is, hopefully, to avoid the sloppiness and errors that are
ubiquitous in computational science.

2.2 Script Architecture

The architecture of the /Papers directory is as follows. At present, it con-
tains these subdirectories, recreating figures in published articles:

ExtCSDemo - ‘‘Extensions of Compressed Sensing’’
HDCPNPDDemo - ‘‘High-Dimensional Centrosymmetric Polytopes with Neighborliness Proportional to
Dimension’’
MSNVENODemo - ‘‘Breakdown Point of Model Selection when the Number of Variables Exceeds the
Number of Observations’’
NPSSULEDemo - ‘‘Neighborly Polytopes and Sparse Solutions of Underdetermined Linear Equations’’
NRPSHDDemo - ‘‘Neighborliness of Randomly-Projected Simplices in High Dimensions’’
SNSULELPDemo - ‘‘Sparse Nonnegative Solutions of Underdetermined Linear Equations by Linear
Programming’’
StOMPDemo - ‘‘Sparse Solution of Underdetermined Linear Equations by Stagewise Orthogonal
Matching Pursuit’’

These subdirectories have been created following several rules, which
should be followed in making future additions.

1. Each article gets one subdirectory of /Sparselab200/Papers/.

2.2. SCRIPT ARCHITECTURE 7

2. Each subdirectory contains: (a) the paper itself, (b) a subdirectory
housing a demo.

3. The files in a subdirectory have stylized names, so that the name
indicates the function of the file.

4. Stylized names are based on a name and a short prefix. The name
should be short but descriptive, for example, Adapt for scripts asso-
ciated with the paper Adapting to Unknown Smoothness via Wavelet
Shrinkage and the prefix should be a related tag, just two-characters
long, for example ad.

5. The subdirectory name reflects the name you have chosen, for example
/Sparselab200/Papers/Adapt.

2.2.1 Demos

The Demo subdirectory contains (a) meta-routines that run the whole figure-
generating process, (b) scripts that generate individual figures, (c) datasets
the scripts draw on, and (d) specialized tools, not present in SparseLab
proper, for generating the figures.

2.2.2 Specialized Tools

There are several tools available in the Utilities directory to help you
with writing scripts. For example, when creating a display through sev-
eral Plot calls, it is preferable to use SparseLab functions like LockAxes
and UnLockAxes rather than to use the low-level Matlab routine hold. See
Chapter 6 below.

2.2.3 Scripting Rules

I. One script creates one complete figure, not a series of figures, and not
just a subplot of a figure.

II. If several scripts need to work with the same variables – for example,
if you want a variable to be created in one script and then used in later
scripts – these variables must be made global (see section 4 below).

III. No pause’s, print’s, of figure calls in a script.

IV. As far as possible try to use the tools in the SparseLab Utilities
directory to perform actions like setting axes.

8 CHAPTER 2. PAPERS

Inspection of existing scripts will help in following these rules. If you
obey these rules, then your scripts should be upwardly compatible with
script-running engines making more sophisticated use of the Matlab user
interface.

2.2.4 Documenting Individual Figures

Each .m file for an individual figure contains a help header which is displayed
in the command window at the time the figure is generated in the plot
window. This provides a kind of on-line narrative, or caption. Here is an
example from ExtCSDemo:

% GenFig1 -- ExtCSDemo Figure 1: Error of reconstruction versus
% number of samples for signals with a controlled number of nonzeros.
%
% Data files used: DataL0_20.mat, DataL0_50.mat, DataL0_100.mat
%
% See also: GenDataL0.m

2.3 Adding New Scripts

To add new demonstration scripts to /Sparselab200/Papers/, having the
same format and effect as ExtCSDemo:

1. Decide on a name for your demo and a short prefix for files implement-
ing your demo. For example, MyOwnDemo and mo.

2. Create a new subdirectory of /Sparselab200/Papers/. For example,
MyOwn.

3. Create the following m-files:

MyOwnDemo - starts the Demonstration, invokes Choices
MyOwnInit - sets up data structures
MyOwnFig - called from Choices
MyOwnIntro - help file, explains contents of directories

Suggestion: copy the corresponding files in one of the other subdirecto-
ries of /Papers into your new subdirectory, giving them these names;
then edit these files to refer to your own new scripts.

2.4. MODIFYING EXISTING SCRIPTS 9

4. Create the scripts which implement your demo: mofig1.m, mofig2.m,
etc. The scripts need to follow thee rules mentioned above in sections
2.2, 2.3 and 2.4.

2.4 Modifying Existing Scripts

You might want to modify an existing script for several reasons:

• To try it out on a different dataset;

• To try it out with different parameters;

• To insert a different method in place of the existing method, using the
same dataset.

Our rules for script creation should help make this possible. Some issues
to keep in mind:

First, the script that generates a certain figure might be dependent on
computations done in the process of generating earlier figures. Therefore,
the script cannot be assumed to work correctly in stand-alone mode. If the
script refers to any global variables then, at a minimum, the corresponding
Init script has to be run before the indicated script in order to set global
variables up.

Second, in order to generate a certain effect, it might therefore be nec-
essary to change earlier scripts, not just the script formally associated with
the figure you are interested in. The change might have to be in the Init
script (to affect global variables), and might possibly have to be in other
scripts as well.

Third, when a set of scripts has been well-written, it should be necessary
only to change the Init script to produce most changes of the type users
will want.

10 CHAPTER 2. PAPERS

Chapter 3

Examples

Here we describe the contents and architecture of the /Examples subdi-
rectory of SparseLab. We’ve included a number of pedagogical examples
in SparseLab, so that the user can familiarize himself or herself with the
software and with our intentions in providing it. Currently we include:

nnfEx Non-negative Matrix Factorization
reconstrutionEx Signal Reconstruction
RegEx Model Selection in Regression
TFDecompEx Time Frequency Decomposition

Each example is documented on the SparseLab website and can be run
by running the correspondingly named .m file in each directory.

3.1 Examples Philosophy

/Examples is a subdirectory of /Sparselab200 that is much like Papers in
that it contains a variety of subdirectories, each of which contains a sequence
of scripts generating figures. However, Examples is different in that its
primary motivation is not to reproduce figures in our own articles. Instead,
its motivation is for more informal, exploratory purposes

3.2 Existing Examples

In the current release, version 2.0, we distribute the following Examples:

/nnfEx Non-negative Matrix Factorization

11

12 CHAPTER 3. EXAMPLES

/reconstrutionEx Signal Reconstruction

/RegEx Model Selection in Regression

/TFDecompEx Time Frequency Decomposition

3.3 Examples Architecture

It is a good idea to follow the same naming practices and file organization
as in the directory /Sparselab200/Papers/.

3.3.1 Naming

In the Regression example, we use the filenames RegEx01.m, RegEx02.m
after the name of the example directory for the main script. We try to
number figures in an obvious way and to stick with names no longer than
eight characters.

3.3.2 Script Contents

Each file should generate one figure, and should avoid the use of clg, figure,
print and pause. This is the same set of rules that we adhere to in /Sparse-
lab200/Papers/.

3.3.3 Meta Routines

By following the above rules it is easy to write wrapper code to print all
figures or to cycle through all figures. Such wrapper code typically has
suggestive names like BBPrintAllFigs or BBShowAllFigs.

Chapter 4

Datasets

The scripts we have just discussed make use of several datasets, which are
made available in the directory /Sparselab200/DataSets/. In this chapter
we describe the architecture of our dataset library.

4.1 Dataset Philosophy

We make available datasets through centralized readers. The idea is that
the knowledge of how to access a dataset should be concentrated in a single
place, and that the access to any dataset should be made in a stereotyped
way, through a simple function call, not through explicit input and output
routines.

In this way, if a dataset is available in the system because it has been used
for one script, it automatically becomes available throughout the system for
any other purpose one would wish, without others needing to know the
format or location of the data.

If, in the future, the dataset needs to be moved to some other location
in the file system, or if it needs to be stored in some other format, no
scripts that use the data for demonstrations will need to change. Instead,
one changes only the code implementing the access method rather than the
scripts which want to use the dataset.

(The alternative is, of course, that any such changes in the future require
rewriting all existing scripts!)

The same philosophy applies for datasets which are synthetic – those
created by Matlab formulas. They are accessed in a stereotyped way through
access to a centralized synthesizer. In this way, a synthetic signal designed
for one use in one script automatically becomes available for other purposes.

13

14 CHAPTER 4. DATASETS

4.2 Dataset Directory

The Contents.m file in the Datasets directory contains the following infor-
mation. It shows that there are several tools for accessing data, 1-d datasets
and 2-d datasets.

It is possible that at some time in the future, we will also have 3-d
datasets (probably movies) or collections of still images.

% Data Fabricators
%
% MakeBlocks - Make artificial blocky signal
% MakeBumps - Make artificial bump signal
% MakeMatrix - Make artificial random matrix
%
%

4.3 Dataset Documentation

Each dataset in the system has a documentation file, with suffix .doc. Here
is an example of a documentation file for a 1-d signal:

caruso.asc -- Digital signal of Caruso singing

Access
Enrico = ReadSignal(’Caruso’);

Size
50,000 by 1

Sampling Rate
8192 Hz

Description
In MATLAB, the command sound(Enrico,8192) will play this sound
back at the right pitch.

Source
Obtained by anonymous FTP from the xwplw package
developed by R.R. Coifman and Fazal Majid at Yale University.
You can get this X-windows adapted waveform analysis

4.3. DATASET DOCUMENTATION 15

package by anonymous FTP to math.yale.edu.

Here is an example of a documentation file for a 2-d image:

canaletto.raw -- Gray-scale image of Canaletto painting

Access
Canal = ReadImage(’Canaletto’);

Size
512 by 512

Gray Levels
256

Description
This image was used in an article by P. Perona and J. Malik,
"Scale-Space Filtering by Anisotropic Diffusions," IEE PAMI.

Source
Obtained from John Canny and Jitendra Malik, of EECS at
U.C. Berkeley.

16 CHAPTER 4. DATASETS

You will notice the following fields in the documentation:

1. Title. A one-line header at the start of the file, giving the filename,
and, after two hyphens, descriptive text.

2. Access. A code fragment indicating the stereotyped access method.

3. Size. The size of the signal or image.

4. Gray Levels. Applicable for Images only.

5. Sampling Rate. Applicable for Sounds only.

6. Source. Indication of the original source of the data.

7. Description. Additional description of the data.

4.4 Adding New Datasets

To add new datasets to SparseLab, do the following:

1. Installation. Place the dataset, in stereotyped format, in the Datasets
directory. Modify one of the existing access functions to read in the
dataset. (You can, in a pinch, place the dataset elsewhere, or keep it
in a nonstandard format).

2. Documentation. Insert a .doc file in the Datasets directory to explain
the dataset.

To add a new synthetic matrix type to SparseLab, simply modify the
function MakeMatrix, by inserting a new case in the “compound if”; the
new case tests for a new, previously unused name, and contains a for-
mula defining the signal in that case. Add a separate function, similar
to UniformSphericalMatrix for example, with the build instructions. It
is best if the formula is designed to work the same way the other formulas
work – to produce an output at any given signal length or image extent.

4.5 Dataset Sources

We would like to take this opportunity to thank the sources of our datasets.
We reprint here from the file THANKS.m in /Sparselab200/Documentation/.

% Contributors of Data
% Yaakov Tsaig

Chapter 5

Documentation

There has been extensive concern for the documentation of the code in
SparseLab. We try to use all the features of Matlab as well as other features
to produce a coherent, understandable system.

5.1 Help Headers

Each function in the SparseLab system has documentation contained inside
the .m file with its Matlab code. This documentation can be accessed on-line
by typing help Name where Name is the name of the function. For example,
typing help SolveMP gives:

% SolveMP: Matching Pursuit (non-orthogonal)
% Usage
% [sol iters activationHist] = SolveMP(A, b, maxIters, NoiseLevel, verbose)
% Input
% A dictionary (dxn matrix), rank(A) = min(d,n) by assumption
% y data vector, length d.
% maxIters number of atoms in the decomposition
% NoiseLevel estimated norm of noise, default noiseless, i.e. 1e-5
% verbose 1 to print out detailed progress at each iteration, 0 for
% no output (default)
% Outputs
% sol solution of MP
% iters number of iterations performed
% activationHist Array of indices showing elements entering
% the solution set

17

18 CHAPTER 5. DOCUMENTATION

% Description
% SolveMP implements the greedy pursuit algorithm to estimate the
% solution of the sparse approximation problem
% min ||x||_0 s.t. A*x = y
% See Also
% SolveOMP
% References
% Matching Pursuit With Time-Frequency Dictionaries (1993) Mallat, Zhang
% IEEE Transactions on Signal Processing
%

This illustrates the main components of the format we have adopted: a
one-line help header, and sections for Usage, Inputs, Outputs, Side Effects,
Description, Examples, Algorithm, See Also and References.

1. Header. The first line of the help header is called the H1 line by the
Matlab folks. It is special to Matlab, and to SparseLab. When you use
the lookfor command, Matlab examines this line for each .m file in its
path to find text matching the request. When a release of SparseLab
is built, these lines are compiled and sorted in alphabetical order to
make files in the documentation directory. Format: a percent sign,
a single blank, the name of the function, a blank followed by double
hyphens and a blank, and a short description of the function. The
description should contain as many helpful keywords as possible.

2. Usage. Here, indicate the calling prototype. Format: the output
argument(s) (enclosed within square brackets if there is more than
one output argument), an equals sign, the function name followed by
the input argument(s) enclosed within parentheses. Optional input
arguments are enclosed within square brackets.

3. Inputs. Here, one line per input variable, indicating the name of the
variable, the formal data type and the interpretation. Also, indicate
if the input is optional by enclosing it within square brackets.

4. Outputs. Here, one line per output variable, indicating the name of
the variable, the formal data type and the interpretation.

5. Side Effects. Here, indicate any side effects the routine may have
(graphics, sound, etc.). Omit if the function has no side effects.

6. Description. Here, describe what the function does in as much detail
as possible.

5.2. DOCUMENTATION DIRECTORY 19

7. Examples. Here, list examples of how the function is called in practice.
This field is optional.

8. Algorithm. Here, describe the algorithm used by the function. This
field is optional.

9. See Also. Here, mention other routines which this routine calls or
which call this one, or routines with a special relationship to this func-
tion. This field is optional.

10. References. Here, list references from which the user may obtain fur-
ther information about the function. This field is optional.

5.2 Documentation Directory

The directory /Sparselab200/Documentation/ contains a variety of informa-
tion about SparseLab. There are a number of general files, which describe
various terms and conditions and goals. The contents of any of these files
may be examined by typing its name.

% ADDINGNEWFEATURES - How to Add New Features to SparseLab
% BUGREPORT - How to report bugs about SparseLab
% COPYING - SparseLab Copying Permissions
% DATASTRUCTURES - Basic data structures in SparseLab
% FEEDBACK - Give feedback about SparseLab
% GETTINGSTARTED - Ideas for getting started with SparseLab
% INSTALLATION - Installation of SparseLab
% LIMITATIONS - SparseLab known limitations
% PAYMENT - No Charge for SparseLab Software
% REGISTRATION - SparseLab Registration
% SUPPORT - SparseLab Support
% THANKS - Thanks to contributors
% VERSION - Part of SparseLab Version v$VERSION$
% WARRANTY - No Warranty on SparseLab software

To add or modify the first group of files, very little is required. Simply
add new files. The second group of files, being automatically generated at
build time, should not ordinarily be modified. Instead, modify the source
from which they are automatically compiled.

Because of the automatic build process, it is important to maintain the
integrity of certain files. These include:

20 CHAPTER 5. DOCUMENTATION

• Contents files. Every directory should have a Contents.m file. When
adding a new function to a directory, be sure to add it to the directory’s
Contents file as well.

• H1 Lines of Help documents. Every .m file should contain a help
header, and the H1 line of the help header should follow the rules
specified above.

• $VERSION$ marker. Every Contents.m file has, in the H1 line, a
description of what the directory contains, as well as a version marker.
The text $VERSION$ is replaced, automatically upon build, by the
current version number.

5.3 Examples Directory

Another useful component of the system documentation is the /Examples
directory, which contains scripts that exercise the software in various ways.

The user can look through the graphics generated by this documentation
and, upon seeing something interesting, inspect the corresponding script to
see how the graphic was created.

Currently, the /Workouts directory contains three subdirectories:

nnfEx Non-negative Matrix Factorization
reconstrutionEx Signal Reconstruction
RegEx Model Selection in Regression
TFDecompEx Time Frequency Decomposition

5.4 TEX Documents

The system also comes with several documents, written in TEX, which func-
tion as manuals for system-maintenance people.

The file SparseMacros.tex within SparseLab Documentation contains
macros that define the current version of SparseLab, filenames, file sizes, file
locations, etc. This file should be modified appropriately for new releases of
SparseLab. It is included by all the documents described below.

5.4.1 About SparseLab

About SparseLab helps a new user with installing and getting started with
SparseLab. The corresponding pdf and postscript documents are available

5.4. TEX DOCUMENTS 21

at:
http://sparselab.stanford.edu. The source is written in LATEX. It is
contained within the About SparseLab folder Documentation.

5.4.2 Architecture

You are currently reading the SparseLab Architecture document. It contains
system-level information about the SparseLab distribution. The correspond-
ing postscript document is available via http://sparselab.stanford.edu.
The source is written in LATEX. It is contained within the SparseLab
Architecture folder in SparseLab Documentation.

22 CHAPTER 5. DOCUMENTATION

Chapter 6

Utilities

Several utilities are available in SparseLab mainly for the purpose of cen-
tralizing various programming idioms. If SparseLab is ever to be ported to
Octave, for example, these allow one to modify only the utilities to the new
platform and achieve the desired effect of platform-independent scripts.

The current Contents.m file for /Sparselab200/Utilities/ goes as follows:

% Contents.m - This file
% aconv.m - Convolution Tool for Two-Scale Transform
% AutoImage.m - Automatic Scaling for Image Display
% DownDyadHi.m - Hi-Pass Downsampling operator (periodized)
% DownDyadLo.m - Lo-Pass Downsampling operator (periodized)
% dyad.m - Index entire j-th dyad of 1-d wavelet xform
% dyadlength.m - Find length and dyadic length of array
% FWT_PO.m - Forward Wavelet Transform (periodized, orthogonal)
% FWT_TI.m - translation invariant forward wavelet transform
% iconv.m - Convolution Tool for Two-Scale Transform
% IWT_PO.m - Inverse Wavelet Transform (periodized, orthogonal)
% IWT_TI.m - translation invariant forward wavelet transform
% LockAxes.m - Version-independent axis command
% lshift.m - Circular left shift of 1-d signal
% MakeONFilter.m - Generate Orthonormal QMF Filter for Wavelet Transform
% MirrorFilt.m - Apply (-1)^t modulation
% Noisemaker.m - Add Noise to Signal
% NormNoise.m - Estimates noise level, Normalize signal to noise level 1
% packet.m - Packet table indexing
% PlotSpikes.m - Plot 1-d signal as baseline with series of spikes
% PlotWaveCoeff.m - Spike-plot display of wavelet coefficients

23

24 CHAPTER 6. UTILITIES

% RegisterPlot.m - Add legend with file name, date, flag
% reverse.m - Reverse order of elements in 1-d signal
% rshift.m - Circular right shift of 1-d signal
% ShapeAsRow.m - Reshape 1d vector as row
% ShapeLike.m - Reshape first argument like second argument
% TIDenoise.m - Translation invariant denoising of a 1-D signal
% twonorm.m - Computes ||v||_2
% UnlockAxes.m - Version-independent axis command
% UpDyadHi.m - Hi-Pass Upsampling operator; periodized
% UpDyadLo.m - Lo-Pass Upsampling operator; periodized
% UpSample.m - Upsampling operator

The functions of these utilities can be loosely classified into the cate-
gories: Graphics, Random Numbers, Shaping Arrays, and Scripting.

Chapter 7

Source and Build

This chapter describes how SparseLab source is compiled into archives for
distribution.

7.1 Development System

1 The source for SparseLab development has several components in dif-
ferent directories:

2 TeX Source in a directory named Documentation inside the SparseLab100}
folder.

3 Shell Source in a directory named shell tools inside the SparseLab100}
folder.

7.2 Shell Tools

Here is an up-to-date list of the high-level files:

append_footer.sh - Appends a footer to all non-Contents .m files
SparseLab_Footer.txt - the footer that gets appended

These can be used outside of the Master build process.

7.3 Standard Release

The process of building a “standard” release involves:

25

26 CHAPTER 7. SOURCE AND BUILD

1. Appending copyright notices and date-of-modification information to
all files in the library;

2. Adding the Matlab Source files to a zip file. This .zip file is the final
version that will be made available on the WWW sites.

7.4 Compiling .ps

The Documentation directory within SparseLab Master contains one folder
for each of the SparseLab documents: About SparseLab and SparseLab Ar-
chitecture. These folders contain the LATEX code for the documents, which
are compiled into .ps and .pdf files. These .ps and .pdf files are then made
available on the WWW sites.

7.5 Distribution

The uniform download process is chosen for Sparselab. By uniform download
process we mean that all the users, independent of the platforms they are
using, download the file SparseLabvers.zip in which vers is replaced by the
version of the Sparselab. Then during the installation process Sparselab will
recognize their platform. Therefore, there is no need for releasing different
files for different platforms anymore. The only thing that the distributor
should do is just putting the SparseLabvers.zip on the WWW site.

Because of the size of some of the precomputed data files included in
SparseLab, two separate download packages, SparseLabvers DataSupplementExtCS.zip
and Sparselabvers DataSupplementStOMP.zip (where vers is replaces by the
appropriate version number) are created for download. Optimally, all three
.zip files should be downloaded and installed together.

Chapter 8

Distribution and
Maintenance

This chapter describes how SparseLab is distributed and maintained.

8.1 Archive Directory

The Archive directory within SparseLab is a depository for old versions of
the software and documentation.

8.2 SparseLab Account

An account named SparseLab is maintained on the leland system at stan-
ford.edu, as is the website. The account serves several varied purposes:

1. The sub-directory WWW holds the files used to maintain our Web page.

3. The current version of SparseLab is always present on this account in
the sub-directory SparseLab.

4. Feedback – questions, comments, suggestions, etc. – may be sent to
the development team by e-mailing sparselab@stanford.edu.

8.3 Web Page

The URL of the SparseLab WWW page is http://sparselab.stanford.edu.
The html files for the home page are stored in the Documentation subdirec-

27

28 CHAPTER 8. DISTRIBUTION AND MAINTENANCE

tory of SparseLab100/. The home page is constantly changing and evolving.
New versions and updates are always announced on the home page.

