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Trends in Gender Segregation in the Choice of Science 
and Engineering Majors 

ABSTRACT 

Numerous theories have been put forward for the high and continuing levels of gender 

segregation, but research has not systematically examined the extent to which these theories for 

the gender gap are consistent with actual trends.  Using both administrative data and three 

education panel datasets, we evaluate several prominent explanations for the persisting gender 

gap in STEM fields, and find that none of them are empirically satisfactory.  Instead, the 

persisting gender gap in STEM fields is plausibly attributable to a females’ greater preference 

relative to males for elite occupational careers that are less “vocationally oriented” in the 

undergraduate years and that permit greater flexibility in undergraduate. This hypothesis is 

supported by an analysis of gendered pathways to medical and law school.  

Introduction 
Women now surpass men in college completion (Buchmann and DiPrete 2006) and attain 

bachelors, masters and doctoral degrees at rates that exceed those of men (Snyder and Dillow 

2010). Yet horizontal gender segregation in fields of study, which had decreased somewhat in 

the 1970s and 1980s, has been stagnant for the past 20 years (Alon and Gelbsiger 2011; Charles 

and Bradley 2002).  In particular, the literature has emphasized the slow gender integration in the 

pursuit of science, technology, engineering, and mathematics (STEM) majors (Turner and 

Bowen 1999; Xie and Shauman 2003). Given concerns about an undersupply of STEM graduates 

in this country, the female shortfall in the pursuit of science majors is an important social policy 

issue. 
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Recent evidence could support an impression that the gender gap in the attainment of 

science and engineering bachelor’s degrees is narrowing.  While only 37 percent of all STEM 

bachelor's degrees were awarded to women in 1977, women had surpassed men in the receipt of 

STEM bachelor's degrees as of 2000 and continue to receive STEM bachelor’s degrees in 

increasing numbers (according to a National Center for Educational Statistics survey of colleges 

and universities that participate in the federal student financial aid programs, Figure 1).   

[Figure 1 about here] 

Aggregate data about share of STEM degrees by gender, however, conceal two related 

trends.  First, more women than men enroll in higher education and receive bachelor’s degrees, 

and the female lead has increased since women achieved parity in the number of bachelor’s 

degrees in 1982.  Yet, women continue to prefer non-science degrees to science degrees, so the 

increased share of science degrees awarded to women obscures a disproportionate female 

preference for non-science majors.  Second, life science degrees became more popular in the 

early 1990s for both males and females.  During the past two decades, women who choose 

science majors disproportionately pursue life science degrees.   The combined consequence of 

these two trends is that the share of life science degrees awarded to women has increased from 

50 to 70 percent over the last 30 years.  At the same time, however, the share of physical 

sciences degrees awarded to women has fallen in the last decade to 30 percent, its lowest level 

since 1979.  The gender disparity is sharpest in engineering, where the share of degrees awarded 

to women has never reached 25 percent.  In other words, any female advantage in science 

degrees is confined to life sciences; the male advantage persists in every other STEM subfield 

(Figure 1).1   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 In 2009, the life sciences subfield represented 60 percent of science majors.  The life sciences generally 
include agricultural sciences, biological sciences, medical sciences, and other life sciences; at the 
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Numerous theories have been put forward for the high and continuing levels of gender 

segregation, but research has not systematically examined the extent to which these theories for 

the gender gap are consistent with actual trends. The question that motivates our study is how the 

gender gap in STEM fields of study has remained constant in the face of both broad trends in 

higher education and narrower trends in gender-specific factors that bear directly on the 

attractiveness of STEM fields of study, specifically concerning gender differences in test scores, 

life goals, expectations about work-family compatibility, and desires for extrinsic or intrinsic 

satisfaction.  To do this, we revisit arguments from prior research to see how they hold up to 

different analytical strategies with better and more recent data.   Turner and Bowen (1999) 

analyzed the College and Beyond data (which are drawn from 12 elite colleges and universities), 

and attributed between one-third and one-half of the gender gap in STEM majors in 1989 to a 

gender discrepancy in math scores, with even larger effects in preceding years.  Using nationally 

representative data and a more inclusive set of test score measures to analyze the effects of test 

scores on major choice, we find that gender differences in test scores explain only a small 

fraction of the gap and play even less of a role in accounting for gender-specific trends in the 

pursuit of STEM majors.  Second, we find that gender differences in life goals explain little of 

the disparity in fields of study (Hakim 2002; Shu and Marini 1998).  We then use a set of 

counterfactual analyses to demonstrate the continuing role of preferences in predicting the major 

choices of women and men.  Finally, we develop a relatively unexplored and potentially 

promising explanation for the continuing gender gap in STEM majors, namely, that women in 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
bachelor’s degree level, the medical sciences subfield is comprised primarily of premed majors and the 
other life sciences subfield is comprised primarily of nursing.  The biological sciences subfield represents 
37 percent of science majors (excluding other life sciences), and, when restricted to biological sciences, 
the female advantage is reduced, but females have comprised more than half of biological science majors 
since the late 1980s.  In subsequent analyses, we focus on the biological sciences, treating other life 
sciences as non-sciences (akin to our treatment of engineering technologies, discussed in the Appendix).  
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four-year colleges favor majors that are less vocationally-oriented and that offer greater freedom 

of course choice during the undergraduate years.  We find support for our hypothesis!with data 

from medical and law school admissions that suggest that there are important consequences for 

choices of major by men and women in the constraints associated with majors that limit 

curricular flexibility.  

1. Background. 
The literature on gender and higher education has documented a substantial decline in 

gender segregation in fields of study through the 1970s, followed by a period in the 1980s in 

which the declines leveled off (Barone 2011; Bradley 2000; England and Li 2006; Jacobs 1989, 

1995, 1996; Turner and Bowen 1999).  Much of the decrease in gender segregation was 

attributed to progress during the 1960s and 1970s toward gender parity in the fields of education 

and business.  The reasons for the stabilization at still-high levels of segregation are less settled, 

although it has been noted that few men have entered female-dominated fields (England 2010; 

England and Li 2006; Jacobs 1995) and that the arts and sciences have been particularly resistant 

to gender convergence (Turner and Bowen 1999). 

Much of the earlier decrease in gender segregation has been attributed to improved 

opportunities for women in the labor market and consequent changes in the attractiveness of 

particular majors; as companies increased their efforts to recruit young women and as it became 

illegal for companies to discriminate in hiring personnel, women made steady progress in labor 

market participation.  This growing opportunity story would suggest comparable progress in 

gender integration in fields of study.  Even in engineering, which is the most segregated STEM 

field, women made steady progress until recently; the number of engineering degrees for women 

increased by a factor of six and raised the female share of engineering degrees from 4.5 in 1977 
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to a peak of 21 percent in 2002 (see Figure 1). Explanations for the persisting shortfall of women 

in engineering (and STEM fields overall) must take account of these broader trends in higher 

education and the labor market.  

The growing share of four-year college students who are women would by itself enhance 

gender integration in male-dominated fields of study. However, the striking persistence of 

segregation in fields of study is difficult to reconcile with gender parity in access to higher 

education (Charles 2011); indeed, gender parity serves to intensify segregation in fields of study 

by increasing the numbers of female students who enter traditional female majors and 

occupations (Alon and Gelbgiser 2011). 

It has been suggested that gender segregation in STEM fields of study is highly resistant 

to change, with the most prominent explanation being a discrepancy in math test scores between 

men and women (Ceci and Williams 2010; Ceci, Williams and Barnett 2009; Halpern et al. 

2007; Hyde et al. 2008; Turner and Bowen 1999; Wai et al. 2010).  However, most research 

concludes that gender differences in average math achievement, as measured by standardized 

tests, are now too small to explain gender segregation in STEM fields or occupations (Hyde 

2005; Hyde et al. 2008; Spelke 2005; Xie and Shauman 2003). Other research has suggested that 

the relative shortage of females having very high math test scores explains part of the gender gap 

in STEM fields (Hyde and Mertz 2009; Machin and Pekkarinen 2008; Pope and Snyder 2010).  

Yet the fact that gender differences in test-score variance is variable across countries suggests 

that socio-cultural factors rather than biological ones explain the gap (Guiso et al. 2008; Niederle 

and Vesterlund 2010; Penner 2008).  Clearly there is a residual gender gap in STEM fields of 

study that test scores do not explain (Halpern et al. 2007; Turner and Bowen 1999).   
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Other explanations have included a slowdown in the shift of women out of traditional 

educational choices (Bradley 2000; England and Li 2006).  But what are these traditional choices, 

and how do they become reflected in preferences?  Preferences have been conceptualized as 

different weights placed on career and family compatibility (England 2005; Frehill 1997; Hakim 

2002), differences in intrinsic and extrinsic motivations that alter the attractiveness of particular 

careers (Beutel and Marini 1995; Bobbitt-Zeher 2007; Bridges 1989; Davies and Guppy 1997; 

Konrad et al. 2000; Johnson 2001; Marini et al. 1996), and different interests in working with 

people as opposed to physical objects and abstract concepts (Barone 2011; Eccles 2007; Hansen 

et al. 1993; Lippa 1998. Men are more likely than women to cluster in fields with higher 

economic returns (Davies and Guppy 1997; Wilson and Boldizar 1990), in part because they 

view work as their primary adult role (Eccles and Hoffman 1984). It is often suggested that these 

differences between the genders explain gender differences in choice of college majors and 

careers. 

While values explanations linked with family/work conflicts have superficial appeal, they 

are undermined by the substantial gender integration that has occurred in medicine, law, and 

business professions, which all are demanding in the number of hours they require (England 

2010; Wilson and Boldizar 1990). There is no obvious difference in the level of work flexibility 

between STEM careers and law, medicine or business.  Boulis and Jacobs (2008) specifically 

consider the explanation that differences in work flexibility account for gender segregation in 

medical specialties and find it wanting.  Growing opportunities for women in these fields may be 

related to the slower rates of women’s progress in physical science and engineering, but prior 

research has not addressed this issue empirically.  Indeed, no existing studies directly test the 

matrix of existing explanations against comprehensive trend data on the gender pattern in STEM 
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fields.  This limitation is significant: trend studies are necessary to investigate dynamic theories 

about changes in either the broader opportunity structure or in the gender-specific distribution of 

values and skills across cohorts. 

In the sections that follow, we test existing theories to see how well they explain the 

trends in the gender gap in STEM fields of study, using more recent and comprehensive data 

than prior studies.  We examine test scores to see how much of the gender gap they explain, and 

to determine whether there is evidence of a trend in female major choices when holding test 

scores constant.  We also examine the life goals of male and female adolescents to see how well 

they explain the gender disparity in major choice. 

We then develop an alternative theory that combines gender differences in preferences 

with structural differences in the organization of college majors.  Studies that focus exclusively 

on the attractiveness of STEM fields to women without considering competing opportunities in 

other elite fields cannot address the broader environment in which women make choices about 

their college majors.  To remedy this gap, we consider whether the slow rates of women’s 

progress in the physical sciences and engineering is connected with women’s growing 

opportunities for pursuing non-STEM degrees and careers that are equally prestigious and 

socially important.  We suggest a complex relationship between college major and post-

baccalaureate choices in which high-achieving women are more likely than high-achieving men 

to prefer elite careers that are flexible regarding the requisite undergraduate majors (particularly 

majors that are structured to be less vocational). In other words, women are more likely to prefer 

careers that permit multiple pathways or impose weaker constraints on choice of major. 
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2. Data. 
This paper analyses administrative data from the CIRP (Cooperative Institutional 

Research Program) Freshman Survey for the years 1971-1999 as well as data from three NCES 

(National Center for Education Statistics) longitudinal surveys conducted since 1980.  The 

administrative data comes from the WebCASPAR database maintained by the National Science 

Foundation.2  The CIRP Freshman Survey (1971-1999) permits us to analyze self-reports of the 

probable majors of incoming first-year students over time.  Collectively, the three longitudinal 

surveys permit us to analyze and compare the educational pathways of high school students who 

graduated in the spring of 1982, 1992, and 2004.  The oldest, the High School and Beyond 

Longitudinal Study of 1980 (HSB), was first administered to a stratified, nationally 

representative sample of approximately 30,000 high school sophomores and 28,000 high school 

seniors nested within about 1120 high schools, with follow-ups in 1982, 1984, 1986, and 1992.  

We use the 1980 sophomore cohort sample.  Of these students, 18,500 were selected for the high 

school transcript study; 15,000 of these students were followed every other year through 1986 

and then again in 1992, when the respondents were 27-28 years old.   The second of the three 

studies, the National Education Longitudinal Study of 1988 (NELS), began with a sample of 

25,000 eighth grade students in 1988 within about 1000 schools, with follow-ups in 1990, 1992, 

1994, and 2000.  For each in-school follow-up, the student sample was freshened to obtain a 

representative, cross-sectional grade-cohort (i.e., 10th-graders in 1990 and 12th-graders in 1992).  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 WebCASPAR is maintained by the Division of Science Resources Statistics (SRS) within the NSF and 
is accessible at http://caspar.nsf.gov/.  WebCASPAR includes information from a variety of surveys, 
including some of those conducted by the National Center for Education Statistics.  The SRS harmonizes 
the data to produce multiyear information about individual fields of science and engineering at individual 
academic institutions.  The source data that we use comes from the Higher Education General Information 
Survey and the Integrated Postsecondary Education Data System (IPEDS) that is conducted by NCES.  
IPEDS is a system of interrelated surveys conducted annually, which gathers information from every 
college, university, and technical and vocational institution that participates in the federal student 
financial aid programs. 
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We use the 1990 “freshened” sample, which was nationally representative of high school 

sophomores.  The most recent panel survey is the Education Longitudinal Study of 2002 (ELS), 

which began with a sample of about 15,000 sophomores in 2002 that were followed up in 2004 

and in 2006 when they were typically two years past high school graduation.  

To measure “sophomore” status consistently, we focus on cohorts of standard enrollees; 

thus, we exclude late graduates (beyond July 31 of their graduating year), early graduates (before 

January 1 of their graduating year), and high school dropouts.  We also exclude late 

postsecondary institution enrollees, and those who drop out before the spring of their second year 

in college.  These restrictions ensure that we have a dataset of students of the same age and 

educational status. 

The appendix explains the procedures we use to make the variables comparable across 

the three datasets.3! 

3. Examining Aggregate Evidence of Dissimilarity 
3.1 Trends in Attendance at Four-Year Colleges and Selective Colleges 

The most obvious trend in post-secondary education over the last 20 years is the 

increased rate of enrollment in higher education for women.  To understand the effect of 

increased postsecondary education for women on the propensity to become a science major, we 

estimate changes in the marginal probabilities of being a science major and of being a female 

enrolled in four-year college across the three panel studies (see Table 1). Across the three cohorts, 

there was a statistically insignificant increase in the representation of women among students 

who choose scientific majors (from 33% in HSB to 36% in ELS).  There was also a steady and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3!All sample sizes are rounded to the nearest 10 pursuant to the NCES restrictive data use 

agreement. 
!
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statistically significant increase in the representation of women among attendees at four-year 

colleges: from 52 percent in HSB to 57 percent in ELS.  If this five percentage-point increase in 

the share of college students who are female were evenly distributed across the majors, including 

science majors, it would have led to an increased share of science majors who were female.  At 

the same time, Table 1 suggests that there have been uneven trends in the representation of 

college students in science majors: from 22 percent in HSB to 18 percent in NELS, back to 21 

percent in ELS, with the differences between the NELS estimate and the estimates from both of 

the other surveys being statistically significant.  It is thus not surprising that the propensity of 

women to major in the sciences follows a similarly uneven trend despite the growing share of 

students in four-year colleges who are female. In sum, these data suggest that the rising number 

of women in higher education has made a small but meaningful contribution to narrowing the 

gender gap in STEM fields overall. 

[Table 1 about here] 

Next, we address how the overall proportion of women within the sciences relates to 

female representation in particular subfields.  Figure 2 shows bachelor’s degrees awarded in 

selected science and engineering subfields from 1996 to 2009.  The solid lines represent the 

female-male odds ratios (i.e., the female odds of majoring in the subfield relative to the male 

odds), while the dashed lines represent the proportion of the subfield that is female. Analysis of 

female participation in selected science subfields outside of the life sciences shows the 

complexity of the choices women have made over the last four decades. In the fields of physics, 

computer sciences and mathematics, the trends differ starkly despite the apparent similarity of 

the content.  In physics, female representation has never reached 25 percent.  In computer 

science, female participation grew rapidly during the 1970s and 1980s but fell sharply since then, 
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so that current female representation is about as low as in physics.  For mathematics and 

statistics, by contrast, female representation has remained near 50 percent for the last ten years; 

however, the female-male odds ratios are in steady decline given the rising number of women in 

higher education.  In engineering, female representation has remained less than 25 percent in 

every year in the largest subfields, although female participation did grow somewhat starting in 

the late 1970s and 1980s and continuing through the 1990s.  The only exceptions to this pattern 

are found in the smaller subfields of chemical engineering and materials engineering (also shown 

in Figure 2), where women have had slightly higher rates of participation.  Finally, chemistry and 

earth sciences stand out along with mathematics as fields in which female participation has 

steadily risen to a current level of about 50 percent (of all Bachelor’s degrees).  While the 

female-male odds ratios are declining in mathematics, they are steadily increasing in chemistry, 

with women in 2009 being only 25 percent less likely to obtain a degree in chemistry (OR=0.75) 

and representing fully half of chemistry degree recipients. 

[Figure 2 about here] 

These data suggest that the gender differences in STEM subfields have been fluid, with 

women moving into and (in some cases) out of subfields at different rates.  Thus, the slow 

convergence implied by Figure 1 obscures a complex pattern within the many distinct STEM 

subfields. 

A related complexity is that the bachelor’s degree field of study does not necessarily 

serve as an adequate proxy for initial college major.  Students also will often have tentative 

preferences before actually declaring a major, and these considerations affect their course 

choices in the early college semesters. Consequently, even data on declared field of study may 

not reflect the actual distribution of initial choices. Engineering programs, however, are more 
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likely than other academic programs to require students to declare a major in the first year in 

college, and therefore engineering enrollments arguably constitute an indicator of trends in first-

year enrollments in science majors (National Science Board 2010).4   

Administrative data show that full-time, first-year enrollment in engineering programs 

declined in the mid 1980s through 1997, when the trend reversed and enrollment in engineering 

programs increased (Figure 3a).  Male enrollment followed the aggregate trend, while female 

enrollment increased from the late 1980s through the early 2000s, before declining.  The 

combination of those trends produced a peak in the proportion of engineering students who are 

female at about 20 percent in the mid to late 1990s; this enrollment pattern is consistent with 

Figure 1, which shows a peak in female engineering degrees a few years later. 

We can see from Figure 3b that the basic distributional patterns are present at the time of 

college entry, where women are least likely to select engineering fields of study and almost as 

unlikely to select physical sciences fields (presumably the slightly higher odds is influenced by 

the attractiveness of chemistry, demonstrated in Figure 2).  For purposes of our study, it is useful 

to note the differential in the initial choice but to focus more systematically on the choice as of 

the sophomore year; this allows us to make comparisons over time for students at similar points 

in their educational careers. 

[Figure 3 about here] 

To quantify differences in major choices, we calculate an all-inclusive index of 

dissimilarity based on 20 broad field-of-study categories in the National Science Foundation’s 

WebCASPAR database. The index, which uses all degree recipients at NCES institutions for 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 This is not to say that engineering enrollments are fully representative of enrollments in other 
mathematic and scientific fields.   As Figure 2 illustrates, they are not. 
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each year from 1977 to 2008,5 is based on the sum of the absolute value of the differences 

between women and men majoring in each of the 20 fields.  Dividing the sum by two produces a 

measure that captures the percentage of students who would need to change majors in order to 

produce a distribution that matches that of the other group.  In 2008, for example, almost one-

quarter of all women would have to change college majors for women to be distributed in the 

same manner as their male counterparts. 

Figure 4 displays changes in the dissimilarity index over the past 30 years for bachelor’s, 

master’s, and doctoral degrees.  The index shows a pronounced decline in gender segregation for 

bachelor degree recipients through the mid-1990s, at which point the declining segregation trend 

began to stagnate.  This illustrates the slowdown in gender integration identified a decade ago by 

Turner and Bowen (1999).6  The trends for master’s and doctoral degrees in Figure 4 are less 

pronounced than are those for bachelor’s degrees, suggesting that segregation is more resistant to 

change for those degree levels. 

[Figure 4 about here] 

A potentially important issue when measuring trends in STEM fields of study relates to 

the admission of foreign students, because research has shown that sex segregation in STEM 

fields across countries is not necessarily uniform (Barone 2011; Charles and Bradley 2002, 2009; 

Penner 2008).7 The index for bachelor’s degrees displays little difference between foreign and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 The 20 field of study categories used in the calculation of the dissimilarity index are architecture and 
environmental design, arts and music, business and management, communication and librarianship, 
education, engineering, geosciences, humanities, interdisciplinary or other sciences, law, life sciences, 
math and computer sciences, other non-sciences or unknown disciplines, physical sciences, psychology, 
religion and theology, science and engineering technologies, social sciences, social service professions, 
and vocational studies and home economics. 
6 Turner and Bowen (1999) observed a substantial reduction (a 10-percentage point drop) in the 
dissimilarity index from 1973 to 1983, followed by a cessation of the downward trend in the mid 1980s. 
7 Boulis and Jacobs (2008), for example, argue that foreign medical students contributed to the 
feminization of medicine. 
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U.S. students.  For master’s and doctoral students, however, the trends are strikingly different, 

with more consistent declines in gender segregation among foreign students than among 

domestic students.  The impact of foreign students on post-secondary trends is especially large 

because foreign students make up a higher proportion of the master’s and doctoral degree 

recipients than bachelor’s degree recipients in science-related fields (National Science Board 

2010).  Figure 4 suggests that at least for bachelor’s degrees the exclusion of foreign students 

from the education panel studies is unlikely to be problematic for understanding the gender 

composition of undergraduate majors.  

We also computed trends in the index of association using WebCASPAR data (Charles 

and Grusky 1995).  The index of association measures the factor by which women are 

underrepresented in the average field of study and is not affected by changes in the share of 

students in particular fields. Using the same 20 broad composite categories, the solid line in the 

first panel of Figure 5 represents the all-fields index; the dashed lines represent the indices for 

the subgroups education-business-other, arts and sciences, and sciences.  The second panel 

magnifies the y-axis, showing the index for the years since 1980.   

[Figure 5 about here] 

The large decrease in the all-fields index before 1980 (dropping from more than 6 in the 

late 1960s to about 3 in 1980) is consistent with our previous findings. The trend in the 

education-business-other index demonstrates that gender segregation in those fields has 

continued to diminish, albeit at slower rates than it did before the 1980s.  The arts and sciences 

(and especially the sciences), however, have actually experienced increasing levels of 

segregation in the past ten years.  
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Because the decomposition and regression analyses in the sections that follow rely on the 

three panel datasets, it is useful at the outset to compare the dissimilarity of fields of study in 

those panel datasets with the dissimilarity index reported above from the administrative data.  

The data in Appendix Table A1 suggest that the health professions and education are the most 

gender segregated non-science fields.8  Consistent with Figure 1, engineering has remained the 

most gender segregated science field throughout the period of study (Appendix Table A1).  

Because the panel data necessarily uses more aggregated categories than does the WebCASPAR 

data, it is not surprising that the dissimilarity indices for those three years would be smaller than 

the indices reflected in Figure 4.  Both the panel datasets and the WebCASPAR data show a 

slight increase in segregation since the 1980s. 

4. Gender, Test Scores, and Trends in Field of Study 
The most widely discussed determinant of major choice in the literature is math ability.  

The argument is that males might be more likely to pursue majors and careers that depend on 

math skills if they perform better on standardized math tests.  While gender differences in 

average math tests have always been small and have converged in recent decades (Hyde et al. 

2008), males at all relevant times have received a disproportionate share of the very best math 

scores. Turner and Bowen (1999) found that the gender disparity in SAT math scores explains 

nearly half of the disparity in choice of physical science majors for their sample of students 

drawn from largely selective colleges and universities.  

Using tenth grade test scores from the panel datasets allow us to compare students from a 

representative sample of high school students, including those who do not take the SAT.  We use 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 The sample includes college sophomores in the three panel datasets that were enrolled in 16 composite 
categories in the fields of science, business, education, and the social sciences, with a large residual 
“Other” category. 
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standardized achievement measures, which provide an estimate of achievement relative to the 

population of tenth graders for that year.9 The scores show a gender difference, with males more 

likely than females (by a ratio varying from about 1.4:1 to 1.8:1) to perform at 1.5 or more 

standard deviations above the mean (Table 2). 

[Table 2 about here] 

It is easy to overstate the importance of math scores in predicting the gender gap in 

STEM majors.  If the relative rarity of women with high math achievement were the primary 

cause of the gender gap in the sciences, we would expect the propensity for high scoring students 

to major in the sciences to be nearly identical for men and women.  But Table 3, which displays 

the distribution of men and women with math test scores above the mean in each respective 

survey, shows, as others have observed (Ceci and Williams 2010; Ceci et al. 2009; Hyde et al. 

2008), that this expectation is not accurate.  For each of the three surveys, males with high math 

scores have a higher propensity to major in science than females with high math scores.  In 1982, 

about 45 percent of males with math test scores more than 1.5 standard deviations above the 

mean majored in science, compared to only 29 percent of females; in 2002, 38 percent of high-

scoring males and 29 percent of high-scoring females chose science majors.  The declining 

proportion of high-scoring students who major in the sciences may reflect both competitive 

opportunities in other fields and declining interest in science.  Regardless of the explanation for 

this trend, the differential propensity of males and females to translate high math scores into 

science fields of study has remained roughly constant across the three surveys. 

[Table 3 about here] 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 The test scores come from cognitive test batteries given to the respondents of each survey during the 
spring of their tenth-grade year; by construction, it is normalized by cohort. The tests are similar but not 
identical across surveys. 



! 18!

Next, we decompose the contribution of tenth-grade test scores on the choice of a science 

major as of the sophomore year in college using the NCES panel datasets, which provide a 

representative sample of the entire college population.10  To explore the sensitivity of the 

decomposition to sample selection, we also use subsamples of students who attend four-year 

colleges and those who attend selective institutions, based on the Barron's Selectivity Index for 

the applicable year.11 We define science major to include the fields of computer science, math 

and statistics, engineering, biological and life sciences, and physical sciences.12   

Table 4 summarizes the results of separate regressions for all male and female college 

students in the HSB, NELS and ELS, of science major on tenth grade math and reading test 

scores.  Standardized test scores are categorized in .5 standard deviation increments above the 

mean, with less than the mean as the reference category.  Because the test score distribution has 

longer tails in the ELS, there are more test score categories for that regression.  We use these 

estimates to decompose the gender gap in field of study and consider the extent to which the 

gender gap would be reduced if the test scores were the same for boys and girls.13   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10 We define college sophomores as those who graduate from high school on or before July 31 of their 
senior year, enroll in college before January 1 of their graduating year, and remain enrolled through the 
spring (interview date) of their sophomore year in college. 
11!The Barron’s classification is based on SAT scores, grade point average, class rank required for 
admission, and overall admissions acceptance rate. Using the selectivity ratings for 1982, 1992, and 2004, 
Barron’s is comparable across datasets. Barron’s classifies the schools in the following categories: most 
competitive; highly competitive; very competitive; competitive; less competitive; and non-competitive.  
We use the first two categories for our selective subsample. In these categories, there are 90, 115, and 174 
schools, in the three years, respectively; however, many of those institutions are not represented in the 
panel datasets.  As a result, the samples of students in those categories for HSB and NELS are small, and 
the decomposition analysis did not produce significant results.!
12 The observed difference between the proportion of female and male science majors differs slightly from 
the data reported in Appendix Table A1 because of the treatment of undeclared majors (explained in the 
Appendix). 
13 High school course-taking patterns are also relevant.  Gender variation in completion of advanced 
mathematics or science courses would be likely to influence college major.  The data suggest that, in 1982, 
a higher percentage of males than females enrolled in advanced mathematics courses, but by 2004, there 
were no differences in enrollment between male and female twelfth graders (Ingels, Dalton, and LoGerfo 
2008).  Similarly, in 1982, there was no difference in the percentages of males and females enrolled in 
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[Table!4!about!here]!
!

The logistic regression coefficients are consistent with a relative female aversion to 

science majors net of test scores.  The math test score coefficients suggest that test scores are 

more consequential for males at the lower levels (closer to the mean), but become equally or 

more consequential for females at the very highest levels.  Yet test score differences account for 

only a small part of the observed difference between the distributions in science majors for 

women and men.  Among HSB respondents, only 12 percent of the observed gender gap can be 

attributed to test scores when we use coefficients from the regression equation for males and the 

actual test scores of women.  An even smaller portion of the gender gap is explained when we 

use coefficients for females and test scores for males.  In ELS, the observed difference is about 

the same, and the percentage attributable to test scores is about 14 percent.   

This finding (that achievement test scores explain less than 15 percent of the gender gap 

in STEM fields of study) on a representative sample of the entire sophomore college population 

(for three sophomore cohorts between 1984 and 2006) is in contrast to the finding of Turner and 

Bowen (1999), who attribute almost half of the gender gap in majoring in physical science to 

SAT test scores.14   

One possible explanation for the difference between our results and those of Turner and 

Bowen is that the difference reflects the different scope of the two studies:  Turner and Bowen 

(1999) using a narrower sample of graduates of highly selective schools, and our analysis using a 

nationally representative sample of college sophomores.  To repeat, we find that up to 15 percent 

of the gap can be attributed to test scores for the subset of sophomores attending postsecondary 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
advanced science courses, but by 2004, females enrolled in advanced science courses at higher rates than 
males.  
14!For the 1989 cohort, they find that 44 percent of the overall gap in fields of study, 45 percent of the gap 
in the physical sciences and math, and 33 percent of the gap in engineering were attributable to SAT test 
scores.  For the 1976 cohort, the numbers are 52 percent, 100 percent, and 29 percent. 
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institutions.  However, when we limit attention to sophomores attending selective colleges and 

universities, the fraction of the gender gap explained by test scores rises to roughly 22 percent. 

A second possibility looks to their use of SAT scores rather than the NCES 10th grade 

math and verbal scores.  The sample of SAT test takers is not representative of the applicable 

population of high school students; in particular, more females than males take the SAT 

(Buchmann, DiPrete, and McDaniel 2008; Halpern et al. 2007; Spelke 2005).  Thus, it is likely 

that the set of female students who take the SAT dips farther into the female talent pool than 

does the set of male SAT test-takers.  When we repeat our decomposition analysis for the subset 

of students whose SAT scores were reported in the NCES panel data,15 and use the same set of 

cutpoints (mean, .5σ, 1σ, 1.5σ, 2σ, 2.5σ), we find some support for the conjecture that SAT 

scores have greater explanatory power; 20% of the gender gap in STEM majors can be explained 

using SAT scores for the ELS SAT test-taker sample as compared to 15 percent for the same 

sample using tenth-grade test scores  

Third, we note that Turner and Bowen (1999: 305-06) used a categorical dependent 

variable for major rather than the binary variable we use here; however, this is unlikely to 

explain the divergent results because they report that the share of the differential attributed to test 

scores was larger when they used a binary variable for science and non-science fields (about 65 

percent, compared to 44 percent using multiple categories).  

A final possible explanation is that test scores explained more of the gap in 1976 and 

1989, the period of their data analysis, than they do in the period from 1984 to 2006, which we 

analyze.  To evaluate whether the relationship between math scores and the gender gap has 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
15 There is a continuing disparity in SAT math scores that favors men, particularly at the highest score 
levels; women have a slight advantage in verbal scores at the highest levels (Wai et al. 2010).  Although 
male–female ratios in mathematical reasoning are substantially lower than 30 years ago, they apparently 
have been stable over the last 20 years and still favor males (Wai et al. 2010), thus providing some 
support for the theory that stagnation in gender segregation is attributable to test score differences. 
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changed in the past 30 years, we estimate a logistic regression of science major on gender, cohort 

(or survey), and math and reading scores, with two-way interactions involving gender, cohort, 

and test scores.  Table 5 presents the results for the four-year college sample.  Model 1 includes 

categorical variables for cohort (with HSB as the reference group), along with gender and two-

way interactions involving cohort and gender.  Model 2 adds the main effect of the standardized 

math and reading test scores to the regression. Model 3 includes the interactions between test 

scores and survey and between test scores and gender.  The main effect of being female remains 

significant and of similar magnitude, and the effect of math scores continues to be significant, 

but these models provide no evidence that the translation of math test scores into science majors 

varies by gender.  Nor do they uncover a female-specific trend in science majors in the three 

panel datasets.  Finally, the interaction terms for test scores and survey suggest that the relation 

between test scores and major choice has also not changed significantly over time.16 

[Table 5 about here] 

Models 4, 5, and 6 use different STEM subfields as the dependent variable -- 

mathematics, statistics, or physical sciences (Model 4), biological sciences (Model 5), or 

engineering (Model 6), estimating the effects of the independent variables in Model 3 on those 

dependent variables.  The female odds ratios are less than one for all three of the broad science 

fields, but the lowest and only statistically significant deviation from equal odds is for the 

engineering and computer sciences field.  The trend variables suggest a reduction in the 

female/male odds ratio over time of majoring in engineering for women, and an increased odds 

ratio for majoring in the biological sciences.  But these models do not find clear trends in the 

relationship between math or reading tests, gender, and choice of major. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
16 A likelihood-ratio test suggests that Model 2 shows a significant improvement from Model 1 (the chi-
squared is significant at the .05 level).  Model 3 does not show significant improvement from Model 2. 
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The conclusion drawn from these models is that men are more likely to choose a science 

major at every combination of math and reading levels.  For example, the marginal effects in 

Model 2 suggest that men in the highest math and reading categories (more than 1.5 standard 

deviations above the mean) are twice as likely as women with scores in those same categories to 

select a science major (42 percent versus 21 percent).  Conversely, for students in the lowest 

math and reading categories (below 0.5 standard deviations above the mean), men continue to be 

twice as likely as women to select a science major, but at lower probabilities (19 percent versus 8 

percent.  We find no significant gender difference in the translation of test scores into science 

majors, and we find that the relation between test scores and STEM fields of study has not 

changed significantly over the past 30 years.  Women, in short, have a substantial preference for 

non-STEM majors.  The nature of this preference, however, is ill defined.  We turn to this topic 

in the next section.!

5.#The#Relevance#of#Life#Goals#in#Explaining#the#Gender#Gap#
The literature includes several explanations for the way in which gender differences in 

values and preferences relate to the female tendency to choose non-STEM majors.  Hakim’s 

(2002) theory argues that women and men frequently differ in the centrality of work-centered, 

home-centered, or adaptive lifestyles to the respondent’s identity.  Similarly, Bobbitt-Zeher 

(2007) suggests that gender differences in values influence decisions regarding higher education 

and occupation; she measures values through a single survey question about the importance of 

having lots of money.  And using 23 job-values survey questions loading on seven different 

constructs, Marini et al. (1996) suggest that the sexes attach different values to extrinsic and 

intrinsic rewards associated with work (see also Frehill 1997).  Although men once attached 

greater value to extrinsic rewards, women and men now do so to the same extent.  Conversely, 
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although both sexes attach importance to the intrinsic rewards of work, females consistently have 

attached greater value than males to intrinsic rewards. 

However, this research has not established that aspirations, values, and identities have a 

strong influence on the gender gap in field of study, occupation, or pay (Frehill 1997; Hakim 

2002, 2003; Polachek 1978).  For example, Hakim finds that most men are work-centered, 

compared to only a minority of women; yet lifestyle preferences have little impact on women’s 

choice of occupation (Hakim 2000, 2002, 2003).  Similarly, Bobbitt-Zeher (2007) finds that 

aspirations for earning lots of money have only a modest effect on the gender income gap.  Using 

HSB data, Frehill (1997) finds that gender differences in high school preparation and work-

related values explain 30.2 and 2.4 percent of the gender gap in engineering, respectively. 

We use survey questions about respondent life goals from the NCES panel studies 

(similar to those used in Marini et al. (1996) and Frehill (1997)) to consider whether males see 

their life goals as more compatible with STEM careers than do females. We estimated a 

multinomial logistic regression using college sophomore major choice as the dependent variable, 

with categories for biological sciences, physical sciences, mathematics and statistics, engineering 

and computer sciences, and a baseline “other” category.  In the first model, the predictor 

variables are gender and standardized math and reading test scores (categorized in 0.5 standard 

deviation increments above the mean, with less than the mean as the reference category).  In the 

second model, we add factors derived from 15 survey questions that capture respondent life 

goals as of twelfth grade.17  The life goals variables are dichotomous indicators of whether the 

respondent selected the goal as being “extremely important”.  Using principal axis factor analysis 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17 These questions are based on a single survey stem that takes the form:  “How important is each of the 
following to you in your life?  (Not important; Somewhat important; Very important)”:  a. Being 
successful in my line of work b. Finding the right person to marry and having a happy family life c. 
Having lots of money d. Helping others in the community, etc. 
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with varimax rotation, we extracted 5 distinct factors.  We refer to the factors as (1) importance 

of success; (2) importance of marriage and children; (3) importance of being a community 

leader; (4) importance of money and leisure time (correlation with the importance of success 

= .15); and (5) importance of being close to parents.  We then interact those variables with 

gender to assess the extent to which men and women differ in the way that life goals influence 

their major choices.  

Model 1 suggests that differences in math and reading scores largely explain the female 

preference for the biological sciences major; with test scores controlled, the relative risk ratio 

(RRR) on female does not differ significantly from one.18  However, despite controls for test 

scores, the relative risk ratios on female for the other subfields are significantly below one (0.68 

for mathematics, statistics, and physical sciences and 0.14 for engineering and computer 

sciences).  This suggests a different explanation for female choices related to those fields, as we 

discussed above.  In particular it is worth noting two things about the engineering majors 

compared to non-science majors.  First, engineering majors tend to have lower reading and 

higher math scores than non-science majors (while other science majors tend to have higher math 

scores than non-science majors, but either the same or higher reading scores than non-science 

majors).  Second, this model reaffirms the finding above that women are much less likely to 

choose engineering majors compared to non-science majors than they are physical science or 

biological science majors.  These two factors suggest that engineering does not allow females to 

take advantage of a diversity of interests that they wish to pursue, a point the next section 

pursues at length. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
18 The RRR measures the relative risk, for a unit change in the predictor variable, of each STEM major 
relative to the referent group of non-science majors, assuming the other variables in the model are held 
constant. 
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Model (2) suggests that life goals have an important relation to major choice (see Table 

6).  Students who said that success is important have significantly higher odds of entering any of 

the science subfields relative to the non-science fields. However, these effects are not gendered, 

and hence are consistent with other reports in the literature that extrinsic motivations have 

become more important to both females and males (Marini et al. 1996). Model (2) also suggests 

that students who think it is important to make money have significantly lower odds of majoring 

in the biological sciences, but the point estimate for the gender-values interaction implies that 

these attitudes are more characteristic of men than women. Students who said that marriage and 

children are important have significantly lower odds of majoring in engineering or computer 

sciences, but the interaction terms suggest this preference is more consequential for women than 

for men.  Females who said that marriage and children are important are also less likely to 

choose biological science majors.  These findings are consistent with the idea that females are 

more likely to see any type of science major as leading to a career that is incompatible with their 

aspirations regarding family. 

[Table 6 about here] 

The closest measure of intrinsic rewards in the panel datasets is the community outreach 

factor, which predicts a higher likelihood of a biological science major relative to a non-science 

major.  There is some evidence in the literature that students who aspire to medical careers are 

likely to have extrinsic and intrinsic or altruistic goals that they expect to satisfy by pursuing a 

medical career (Boulis and Jacobs 2008).  If biology is a pathway to medical school, then this 

finding makes sense and is consistent with previous findings in the literature.  However, there is 

no evidence in our data of an interaction with gender, which suggests that the aspiration affects 

major choice the same for students of either gender.   
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Taken together, the various gender-related variations documented by the life goal 

questions explain little of the female preference for the non-sciences.  A comparison of Models 1 

and 2 illustrates this point.  The addition of the life goals variables in Model 2 move the RRR for 

females only slightly closer to 1 for mathematics and physical sciences when compared to non-

science fields, and they have essentially no impact on the RRR for females in the engineering 

and computer sciences fields (see Table 6).  In short, females and males with similar test scores 

seem to resemble each other more than they differ in terms of the translation of life goals into 

majors.  The somewhat greater tendency for females to experience family-related goals as a 

deterrent to entering science majors explains little of the gender gap in science majors.  

Importantly, and contrary to the preferences literature, life goals do not appear to be a driving 

force behind major choice, at least when separated from the broader opportunity structure that 

influences competition among majors. 

6. Competition Among Majors and the Gender Gap 
 

As mentioned previously, the apparent reduction of the overall gender gap conceals both 

a relative increase in the female choice of biological science majors and a continuing scarcity of 

women in physical science and engineering majors.  The multivariate analyses document the 

limited extent to which differences in life goals and in mathematics ability can explain these 

trends.  With the multivariate analyses in hand, we can illustrate better (Figure 6) the nature of 

trends by comparing observed and counterfactual trend lines that we constructed using 

WebCASPAR data.  The “Observed” line in Figure 6 shows the actual trends in the female-to-

male odds of majoring in the physical sciences, engineering, or math (the hard sciences).  The 

“Equated Science/Non-Science Distribution” line is a counterfactual trend line constructed by 
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assigning the male propensity to major in the sciences to females, but retaining the actual female 

preference for life sciences, conditional on majoring in the sciences.  The “Equated Science 

Subfield Distribution” counterfactual line was constructed by assigning the male propensity to 

major in the physical sciences and engineering, conditional on majoring in science, to females 

but retaining the actual female propensity to major in the sciences.   

[Figure 6 about here] 

The final two lines explore the importance of the gender difference in math test scores.  

We estimated a logistic regression estimated with HSB data in which the dependent variable was 

whether the student majored in the physical sciences or engineering, and where gender and math 

scores are the only independent variables.  We use the model to construct two counterfactual 

scenarios:  (1) a monotonic convergence in male and female math scores to zero over a thirty 

year period, assuming residual female preferences (as measured by the coefficient for female) 

remain constant; and (2) a monotonic convergence in residual male and female preferences to 

zero over thirty years, assuming math score differentials remain constant  

Figure 6 shows that the observed trend in the female-male odds ratios peaked at about 

0.25 in the late 1980s, but fell back to early 1970s levels (about 0.20) around 2007.  In the 

counterfactual trend that equates the gender preferences for science vs. non-science distributions, 

the female-male odds ratio approached 0.75 before 1980 but dropped to below 0.50 in more 

recent years.  Conversely, in the past 30 years, the counterfactual trend that equates the gender 

preference for physical sciences and engineering, conditional on a science major, increases from 

less than 0.25 to nearly 0.50.  This implies that the choice of subfields within the sciences—and 

specifically, the choice of biological science as opposed to physical science, mathematics or 

statistics, or engineering—has become increasingly important to understanding the gender gap in 
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the physical sciences and engineering.  Still, under either of those counterfactuals, the physical 

sciences odds ratios in 2009 would be slightly less than 0.50 as compared to the observed odds 

ratio of less than 0.25. 

The counterfactuals in which we alternately converge math scores and female preferences 

illustrate the greater importance of preferences compared with test scores in contributing to the 

gender gap.  If females had developed the same preferences over time as males, we would see 

the gender gap narrowing, with the odds ratio rising above 0.75 by 2009.  Conversely, if average 

male and female math scores converged over time from the level found in HSB, there would 

have been no substantial effect on the gender gap.  Again, the data document the importance of a 

female preference apart from math scores or other variables in the regressions. 

Taken together, the preceding analyses establish that preferences are important – both in 

the form of preference for biological sciences compared with physical sciences and engineering, 

and preferences for science majors compared to non-science majors.  However, Section 5 

suggests that we cannot explain preferences simply as a set of aspirations that relate to one’s 

choice of major.  We need a better understanding of the role those majors play in the pathway 

toward an eventual career.  Gendered socialization may well be a substantial factor predicting 

major choice, but the mechanism through which it operates may be a choice process directed not 

by gender differences in long-term life goals, but rather by gender differences in relative 

preferences for specific majors, and for their implications for general education as well as for 

pathways leading to particular occupations.  Just as some young people choose a particular post-

secondary educational strategy because it leads to a desired occupation, others may make their 

occupational decisions because of the freedom or constraint those decisions imply for the 

undergraduate courses they would prefer to take. College-oriented females clearly differ from 
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males in their preference for careers in education, nursing, and many health therapist fields. 

Moreover, females and males may differ in their preference for specific educational courses even 

net of gender differences in occupational preferences.  To the extent that a specific occupational 

choice allows females and males to exercise their gendered curriculum preferences, then gender 

differences in that occupational pathway may be smaller.  To the extent that a specific 

occupational choice differentially frustrates females or males from satisfying curricular 

preferences, then gender differences in that occupational pathway may be larger.  In particular, 

occupational pathways that allow relative freedom in curricular choices at the undergraduate 

level may thereby reduce gender differences relative to occupational pathways that reduce 

freedom in curricular choice at the undergraduate level in a way that differentially disadvantages 

one gender relative to the other. 

The contrast between engineering and law or medicine is a prime example of differently 

structured curriculums differentially relate to gendered preferences.  Upon completion of a 

bachelor’s degree in engineering, a graduate might have choices to take a job in the engineering 

field (making the time spent in postsecondary education shorter than that for other professions), 

to pursue graduate studies in many STEM disciplines, or to enter professional school (law 

school, medical school, or business school).  This degree field thus would appear to open 

multiple career pathways.  However, the engineering degree is associated with vocationally 

oriented coursework and involves a relatively large number of required undergraduate courses 

(Frehill 1997). Engineering is also unusual in typically requiring a commitment in the first or 

second semester of college (Frehill 1997).  Students who do not select engineering in the first 

few semesters but decide to move into engineering later in their college career will spend more 

time before graduation than those that committed earlier.  At the same time, the structure of most 
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engineering degree programs requires that engineering majors be relatively restricted in their 

ability to pursue coursework in other fields of interest.  The engineering major thus comes at the 

expense of a broad undergraduate education.   

In contrast to engineering, a humanities student might be able to select a major late in the 

undergraduate career and pursue a broad range of coursework, but upon graduation will have a 

more limited set of post-baccalaureate options:  entering graduate school (with a long path to a 

PhD, see Menand (2010)), attending professional school, or possibly obtaining a job teaching in 

primary or secondary schools.  Because women generally prefer education fields to a substantial 

extent (see Appendix Table A1), it is easy to see that a humanities student’s second or (even) 

third choice of teaching following a terminal bachelor’s degree might be preferable to women 

(Barone 2011).   But it is also the case that women can readily indulge a preference for 

humanities courses or even a humanities major while then enrolling in a professional program in 

law, medicine, or business.  It is much more difficult to indulge this preference if one adopts the 

goal of being a professional engineer. 

If women have a disproportionate desire to maintain flexibility in coursework and career 

choices later into their college career, and a consequent distaste for professional undergraduate 

majors organized around physical science or engineering, this gender difference might explain 

part of the gender gap in STEM fields of study. Because the choice of majors is a “zero sum” 

constraint, gender equality in the physical sciences and engineering must be seen as a 

competition between those more constraining major choices and disciplines that structure their 

undergraduate curricula in a more flexible way.  Post-baccalaureate professional schools 

(medicine, law, business) typically require little or no specialization in undergraduate field of 

study.  If women are disproportionately likely to expect careers that do not require undergraduate 
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specialization, then they have relatively little affirmative reason to select into a constraining 

field.19   

One way to investigate this conjecture is to examine the post-baccalaureate aspirations of 

college sophomores.  If males and females have different aspirations and if these aspirations 

relate to their major choices, we can gain better insight into the pathways that might guide major 

choices.  Table 7 displays a cross-tabulation of aspirations for elite post-baccalaureate careers by 

gender from the NCES panel studies.20  Table 7 documents a substantial shift in aspirations for 

elite careers.  In 1984, males were more likely to aspire to elite careers than females (39 percent 

versus 37 percent); by 2006, the balance had shifted to females (69 percent versus 63 percent).  

Breaking this down, in 2006 females were nearly 40 percent more likely to aspire to an elite 

career with a non-science major than were males (58 percent versus 42 percent), and they were 

about equally likely to aspire to a non-elite career with a non-science major (28 percent versus 25 

percent).  Finally, of the relatively small number of women that choose science majors, in 2006 

about 86 percent aspire to elite careers, compared to only 69 percent of men that choose science 

majors. 

[Table 7 about here] 

Another important test of this conjecture involves the different choices that women and 

men make in college, conditional on their enrolling in professional school. We obtained data on 

medical school matriculants from the American Association of Medical Schools.  The data 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
19 Because of changes in the last 30 years, females now receive professional degrees at approximately the 
same rates as males, but they are not yet more likely to pursue those degrees than are males.  As of 2008, 
females received 47 percent of law degrees and 49 percent of medical degrees (Digest of Education 
Statistics 2009, Table 300). 
20 Table 7 aggregates survey data regarding anticipated level of degree as of the senior year in high school, 
along with field of study (science or non-science) as of the sophomore year in college.  “Elite” careers 
involve graduate school or professional school (unfortunately the data do not differentiate).  “Non-elite” 
careers terminate with an undergraduate degree. 
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include the number of matriculants coming from each undergraduate major by year and sex.  The 

data suggest that women are less likely than men to enroll in medical school with a primary 

undergraduate degree in a STEM field: in 2009, 40 percent of women matriculated into medical 

schools with a non-science undergraduate degree, but only one-third of males did so.  This 

difference suggests that women are able to attend medical school and reach a high-status 

profession without compromising their gendered preferences for a more humanistic 

undergraduate education.21  Female enrollees had about the same odds as males of coming from 

the biological sciences fields, lower odds of coming from the physical sciences (0.61) and 

mathematics (0.90), and higher odds of coming from the humanities (1.36) or the social sciences 

(1.12).22  Further, the data suggest that a science undergraduate education has become less 

important to medical school entry during the last 30 years: in 1981, 75 percent of matriculates 

had undergraduate degrees in the sciences, compared to only 63 percent in 2009.  This coincides 

with the dramatic increase in female enrollment in medical schools during that time.23 

Because of medicine’s close connection to the sciences, medical school entrants are 

probably the most interesting case for understanding the implications that constraints on 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
21 We might assume that more women are majoring in the biological sciences so that they can enter 
medical school more easily, by performing better on the MCAT or appearing more attractive to 
admissions committees.  However, even though we find that male and female medical students have 
roughly equivalent odds of coming from the biological sciences, the larger number of females majoring in 
biological sciences means that a lesser percent of female biological sciences majors applied to medical 
school.  Using data from 1974-1995, Hall et al. (2001) find that 61% of female biological sciences majors 
compared to 97% of male biological sciences majors entered medical school.  Similarly, Sax (2001) finds 
that male biological science majors are more likely than female biological science majors to enter medical 
school. 
22 AAMC data for 2009 matriculates suggest that 51% come from biological sciences, 12% from physical 
sciences, 1% from math, 5% from humanities, 12% from social sciences, 2% from specialized health 
sciences, and 16% from other majors.  Females on average had lower MCAT scores and lower science 
GPAs, but higher non-science GPAs. 
23 This is not entirely related to a shift in female preferences.  The MCAT was restructured in the early 
1990s to broaden the types of knowledge tested; the restructuring was intended to, and did, lead to an 
increase in the percentage of medical school students with social science majors (Boulis and Jacobs 2008; 
Cooper 2003; Singer 2001). 
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undergraduate curricular choices have for the gender gap in STEM fields of study.  Nonetheless, 

an examination of pathways to law school is also illuminating for our conjecture. We obtained 

data from the Law School Admissions Council on the undergraduate majors of law school 

applicants during the past 5 years.  These data suggest that in 2009 female law school applicants 

had higher odds of coming from the humanities and arts (1.25), the social sciences (1.05), and 

other non-science fields (1.37), but lower odds of coming from the natural sciences (0.83), 

engineering and computer sciences (0.26), and business (0.67).  Law school applicant data also 

suggest that women pursue a broader set of pathways to law school than males.  Looking to some 

of the largest “feeder” majors, 19 percent of men major in political science, 17 percent in 

business, and 7 percent of men major in history (collectively 43 percent).  For women, by 

contrast, those numbers are 17 percent, 11 percent, and 4 percent, respectively (collectively 32 

percent). Women also are much more likely to major in fields that are not traditional pathways to 

law school; thus, 7 percent of women major in English, and 7 percent of women major in 

psychology (compared to 5 percent and 4 percent, respectively, for males). 

The data on law school and medical school applicants affirm that a substantial group of 

women follow the traditional pathways both to law school (political science) and to medical 

school (biology).  Nonetheless, it is more common for women to pursue nontraditional pathways 

than it is for men.  Women are more likely than men to apply or enter medical school or law 

school from non-science majors, and, although it is less clear what the expected feeder routes 

might be for law school applicants, women tend to pursue a broader set of pathways.  Thus, these 

data support the hypothesis that females contemplating a professional career are more attracted 

to degree fields where there are “weak” constraints on majors (multiple pathways) than when 

there are “strong” constraints (few and male-gendered pathways). 
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Conclusion 

Although women have closed much of the gender gap in the pursuit of STEM majors in 

the last 30 years, their progress has been uneven outside of the biological sciences.  Despite some 

moderate success in chemistry and mathematics, the share of women obtaining math and 

physical science degrees is not markedly higher than it was 30 years ago.  Moreover, women 

have made virtually no progress in engineering fields since the mid 1990s, and they earn fewer 

degrees in engineering than they do in the physical sciences, math, and computer sciences.  

Indeed, the gender gap in subfields other than life sciences is wider now than it was ten years 

ago. 

Conventional narratives explain little of the continuing (and, in some ways, worsening) 

gender gap.  Although a gender differential in top mathematics test scores remains, this gap has 

been narrowing and thus would not explain a widening gender gap in quantitative-based fields 

like computer science and engineering.  Further, the success of women in some strongly 

quantitative science fields (such as chemistry) undercuts the math score rationale.24  Our 

decomposition analysis buttresses those points; contrary to earlier work, we show that (at least 

since the 1980s) the math score gap explains at most a small fraction of the variation in field of 

study choices.  The same is true for reading: while engineering majors are most likely to fall 

within the high math/low reading group even net of gender, our multivariate analyses suggest 

that the relatively greater reading skills of women do not directly or indirectly account for the 

continuing large gender gap in engineering majors.25 The increasing female representation in 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
24 It is difficult to measure either the demands on math ability for particular majors or the rigor of required 
coursework.  It is possible, therefore, that the subfields selected by women are less quantitatively 
challenging.  
25 In any event, the effect of reading scores seems somewhat circular.  High reading scores might suggest 
a proficiency that incentivizes students to choose non-science majors, or high scores might stem from a 
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four-year and selective institutions is consequential for the absolute numbers of female students 

majoring in STEM fields, but is not closing the gender gap in rates of majoring in STEM fields; 

the increased numbers of women in postsecondary education are equally if not more likely to 

pursue non-science fields of study. Finally, although research into life goals appears to be a 

relevant and important line of inquiry for future research into how males and females choose 

majors, our analyses suggest that values or life goals alone will contribute little to understanding 

gender disparities in undergraduate major choice, because they do not account for the different 

ways that majors fit into life plans. 

Recognizing the limitations of the dominant existing explanations, we instead suggest a 

greater focus on curriculum and the vertical as well as horizontal structure of the educational 

pathways to alternative elite careers.  Although it has become more likely for women to follow 

what have been traditionally “male” pathways into higher education, they have not altered their 

underlying preferences for science majors to a significant extent.  At the same time, with more 

choices among elite occupations, women also tend disproportionately to enter new fields that 

permit greater diversification in undergraduate majors.  We cannot be sure why women enter 

these fields, but we observe that the women that do so come from a broader set of undergraduate 

majors than the males that do so.  Men, in contrast, appear more bound to traditional, less 

flexible, more vocationally oriented pathways. Our results suggest the possibility that if 

engineering professions were organized like medicine with some training in the undergraduate 

years followed by intensive training in graduate school, the fraction of engineers who were 

women would be higher than is currently the case. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
breadth of knowledge derived from reading (that signals an interest in non-science fields).  The latter 
perspective, emphasizing the failure of engineering to tap into this diversity of interests, resonates with 
our emphasis in Section 6 on vocationally constraining major choices. 
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The data we use about professional school applicants offer an interesting glimpse of a 

much larger puzzle and provide a strong indication that the gender gap in STEM fields cannot be 

explained by focusing on individual-level determinants such as test scores, or job values and life 

goals as expressed in current survey data.  We need a better way to model competition among 

majors and between science careers and other elite professional careers including especially law, 

medicine, and business.  Such a model also needs to incorporate the gendered nature of selection 

into these schools; thus, future trends in the gender gap in STEM fields could be affected if 

professional schools enforce a gender-parity policy and increasingly become more selective for 

female students than they are for male students.  

In sum, the analyses in this paper suggest that the contribution to the gender gap of 

competition among majors is a promising avenue for further research.  They imply that the 

curricular structure of undergraduate and professional education and the differing constraints 

they place on curricular choice may play a role in gender segregation in STEM fields that is as 

important as the factors implicated in the major existing theories.  This is a conjecture that merits 

additional investigation.  

Appendix#
Field of Study   

All three studies asked in slightly different ways about students’ field of study.  Field of 

study generally is reported using a standard taxonomy known as the Classification of 

Instructional Programs, or CIP. The CIP originally was developed by the NCES in 1980 and was 

revised in 1985 and 1990. The 2000 edition (CIP-2000) is the third and current revision of the 

taxonomy and has 53 general categories and more than 2000 specific categories.  The CIP 

categorizes fields at the most granular level under six-digit codes of the form xx.yyzz.  Fields of 
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study can be further aggregated according to two- and four-digit prefixes of the code. For 

example, “Organic Chemistry” has the six-digit code 40.0504, which places it in “Chemistry” 

(40.05) and “Physical Sciences” (40).    

Beginning in the second follow-up, HSB classified field of study information using six-

digit CIP codes (High School and Beyond Fourth Follow-up Methodology Report p.78), a list of 

which can be found in High School and Beyond, 1980: Sophomore Cohort Second Follow-up 

(1984) (ICPSR 8443).  This is the most detailed information we have about field of study in any 

of the datasets.  Consistent with the CIP taxonomy, “Organic Chemistry” has the code 40.0504 in 

the HSB.   

NELS uses a 3-digit field of study coding system.  The first two digits and associated 

titles seem to follow the CIP coding system.  The third digit provides additional detail, but not 

necessarily in a way that is parallel to the specific categories in CIP.  For example, NELS 400 

represents chemistry, but the final digit does not map in any way to the CIP coding system.  

Moreover, we are not able to distinguish organic chemistry from other chemistry subfields.   

ELS uses a classification system that is “largely” based on CIP-2000, but with 33 general 

categories and 192 specific categories (ELS: 2002 Base-Year to Second Follow-up Data File 

Documentation, p. 117). In the restricted dataset, F2MAJOR4 is a four-digit code, with the first 

two digits (equivalent to F2MAJOR2 in the public dataset) indicating one of the 33 general 

categories, and the last two digits indicating a specific category.  Unfortunately, the numerical 

designations do not track the CIP coding system; thus, we were compelled to rely on the titles of 

the major groups to construct our major variables. For example, in the two-digit codes, physical 

sciences are categorized with the code 25; in the four-digit codes, the chemistry subfield is 

separately designated as code 2503. However, based on our examination of the major group titles, 
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it appears that ELS merely aggregated CIP general categories in a few cases (presumably those 

with small enrollment) and then renumbered the resulting categories.  For this paper, the more 

granular general categories in HSB and NELS were collapsed into the 2-digit codes found in 

ELS.   

A related issue is the source of the field of study information.  The field-of-study 

variables for college sophomores are all based on self-report, but the treatment of undecided or 

undeclared majors varies across datasets.  This produces substantial variation in the proportion 

that report a particular field of study across datasets; thus, in ELS, about 22 percent of college 

enrollees have undeclared majors, but the proportion declining to identify a field of study is 

much lower in the other datasets.   

The data are consistent with an increase in college sophomores with undecided majors 

over time.  However, the form of the survey question might influence the apparent trend.  In 

HSB, college sophomores are asked: “(During the last month enrolled), what was your actual or 

intended field of study or training (for example...)?”  Similarly, in NELS: “(During your last 

month of attendance,) what is(was) your actual or intended major field of study at 

`INSTNAME’?” However, in ELS, students first were asked: “Now in 2006, have you declared a 

major yet at [spring 2006 school]?” Then, students who answered yes were asked, “What is your 

major or field of study?”   

To account for the disparate number of students without declared majors in ELS, we use 

students’ expectations in cases where students have not declared a major.  The expected major 

variable was collected in the spring of 2006 and asks, “When you began at [first attended 

postsecondary institution], what field of study did you think you would most likely pursue?  

(Please choose one).” 
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Weights   
We use panel weights to tabulate findings for the population of base-year 10th graders (or 

first follow-up for NELS).  These weights allow us to adjust for unequal selection probabilities 

and to more accurately represent the sophomore field of study decisions of a national population 

of tenth graders. 

 

[Appendix!Table!A1!about!here]!
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Figures and Tables 

Figure 1: Bachelor’s Degrees Awarded to Men and Women in Science and Engineering 
Fields of Study, 1977-2009 

!

Source: National Science Foundation WebCASPAR Database
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Figure 2: Bachelor’s Degrees Awarded to Men and Women in Selected Science and 
Engineering Subfields, 1966-2009

!

Source: National Science Foundation WebCASPAR Database 

!
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Figure 3a: First-Year Enrollment in Engineering Major 

 
Source:  NSF Women, Minorities, and Persons with Disabilities in Science and Engineering 

!
Figure 3b: Trends in the F/M Odds of Selecting Science Subfield as a Probable Field of 

Study During Freshman Year  

 
Source: CIRP Freshman Survey (1971-1999).
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Figure 4: Total Dissimilarity Index by Degree Level and Citizenship Status 

 

Source: National Science Foundation WebCASPAR Database 
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Figure 5: Index of Association, B.A. Recipients, by Components 

 

!
Source: National Science Foundation WebCASPAR Database 
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Figure 6: Counterfactual Odds Ratios for Physical Science, Engineering, and Math Majors

!

Source: WebCASPAR Database (data excludes nursing and therapy subfields).   
Explanatory Note:  The solid line represents a trend line for the observed female to male odds of majoring in the 

physical science, engineering, or mathematics subfields from the late 1960s through the present date.  The broken 
lines each represent a different counterfactual trend line, as described in the text. 
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Table 1: Probability of Being Female if a Science Major (Four-Year College Sophomores: 
1982, 1992, 2004) 

 HSB NELS ELS 

 Mean S.Err. Mean S.Err. Mean S.Err. 

P (F|S) 0.327 0.022 0.347 0.018 0.361 0.016 
% Science 0.218 0.009 0.166 0.006 0.202 0.006 
% Female 0.519 0.011 0.542 0.008 0.563 0.007 
P (S|F) 0.136 0.011 0.106 0.007 0.130 0.003 
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Table 2: Cross-Tabulation of Tenth-Grade Math Test Scores (Standardized) for College 
Sophomores, by Gender and Survey 

 HSB (1980) NELS (1990) ELS (2002) 
 Male Female Male Female Male Female 
Below mean 28.1 34.7 23.1 25.8 23.1 31.5 
Mean to .49σ above 17.3 17.5 16.2 19.8 18.9 22.1 
.5σ to .99σ 23.8 22.7 20.2 19.9 23.5 22.0 
1σ to 1.49σ 19.2 17.5 22.1 21.3 19.6 16.3 
1.5σ and above 11.6 7.6 18.4 13.2 14.9 8.1 
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Table 3: Cross-Tabulation of Combined Science Majors and High Math Test Score 
Categories 

 HSB NELS ELS 
 Male % Female % Male % Female % Male % Female % 
1.5 standard deviations above mean or higher 45.2 28.7 38.0 19.1 37.6 29.4 
1-1.49 standard deviations above mean 42.1 18.0 26.4 13.7 32.6 13.2 
0.50-0.99 standard deviations above mean 27.6 13.2 16.4 6.3 24.1 8.7 
0-0.49 standard deviations above mean 17.8 9.0 12.9 6.0 18.4 7.9 
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Table 4: Regression and Decomposition of Science Major on High School Test Scores 

 Regression Decomposition 
 Female  Male    
 Coef. Std. Err. Coef. Std. Err. Observed Diff. 

(%W-%M) 
Due to 
Scores 
(M. Coef.) 

HSB     -.153 12.67% 
Math2 -0.26 0.40 0.43 0.29   
Math3 0.30 0.34 0.78** 0.29   
Math4 0.60 0.34 1.34** 0.28   
Math5 1.22** 0.42 1.54** 0.33   
Read2 0.23 0.33 0.31 0.25   
Read3 -0.01 0.31 -0.20 0.28   
Read4  0.33 0.35 0.07 0.28   
Read5 0.26 0.47 0.45 0.35   
Constant -2.30** 0.23 -1.78** 0.22   

NELS     -.113 15.00% 
Math2 0.29 0.25 0.07 0.24   
Math3  0.23 0.29 0.41 0.22   
Math4 1.05** 0.24 0.98** 0.23   
Math5 1.45** 0.31 1.60** 0.25   
Math6 1.99** 0.52 2.17** 0.42   
Read2 -0.30 0.25 0.05 0.22   
Read3 -0.11 0.27 0.09 0.22   
Read4 0.10 0.28 0.01 0.21   
Read5 -0.26 0.32 -0.33 0.27   
Constant -2.84** 0.20 -2.05** 0.16   

ELS     -.147 14.57% 
Math2 0.31 0.25 0.11 0.20   
Math3 0.29 0.27 0.42* 0.18   
Math4 0.75** 0.28 0.90** 0.20   
Math5 1.43** 0.32 1.04** 0.23   
Math6 2.58** 0.44 1.48** 0.29   
Math7 2.62** 0.78 1.53** 0.44   
Read2 -0.20 0.22 -0.12 0.18   
Read3 -0.14 0.25 0.11 0.18   
Read4 -0.11 0.28 -0.09 0.19   
Read5 -0.08 0.31 -0.61* 0.25   
Read6 -0.53 0.37 -0.02 0.32   
Read7 -.59 0.68 -0.95 0.56   
Constant -2.50** 0.16 -1.52** 0.15   

Notes: Calculations are based on logistic regression estimations that include binary variables for high math and high reading 
scores on the sophomore achievement tests.  Test scores are categorized in .5 increments from 0 to 2.5 standard deviations above 
the mean (Math 2-Math7, for example, with Math7 representing 2.5 standard deviations or more above the mean), with less than 
the mean as the reference category.  The decomposition columns show the observed difference in the share of women in science 
and the share of men in science and the percentage of the difference attributable to test scores using the coefficients from the 
estimation for men.  Standard errors are adjusted for school clusters.  * p ≤ .05; ** p ≤ .01 (two-tailed tests)  
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Table 5: Logistic Regression of Science Major on Covariates and Interaction Terms (Clustered on School) 

 1 2 3 4 (Phys. Sci.) 5 (Life Sci.) 6 (Engin.) 
Female 0.325*** (0.039) 0.349*** (0.043) 0.373*** (0.056) 0.651 (0.236) 0.725 (0.204) 0.325*** (0.066) 
NELS 0.701*** (0.068) 0.603*** (0.06) 0.751 (0.123) 0.686 (0.298) 1.971* (0.601) 0.514** (0.110) 
ELS 0.810* (0.075) 0.762** (0.073) 0.963 (0.143) 0.827 (0.320) 1.484 (0.441) 0.671* (0.129) 
Female x NELS 1.129 (0.169) 1.141 (0.174) 1.096 (0.173) 1.058 (0.357) 0.894 (0.254) 0.819 (0.180) 
Female x ELS  1.175 (0.168) 1.233 (0.179) 1.205 (0.178) 1.458 (0.473) 1.502 (0.415) 0.528** (0.113) 
Test Scores (Base:<.5σ 
above mean) 

            

1.Math .5σ - .99σ   1.371*** (0.107) 2.071*** (0.356) 1.883 (0.379) 1.879 (0.638) 1.863** (0.392) 
2.Math 1σ – 1.49σ   2.211*** (0.175) 2.811*** (0.496) 2.394* (0.575) 1.237 (0.478) 2.794*** (0.594) 
3.Math 1.5σ and above   3.865*** (0.339) 4.149*** (0.86) 3.091** (0.818) 2.825** 1.085) 3.241*** (0.807) 
1.Read .5σ - .99σ   0.923 (0.068) 0.893 (0.151) 0.973 (0.382) 0.910 (0.309) 1.081 (0.218) 
2.Read 1σ – 1.49σ   0.888 (0.069) 0.882 (0.163) 1.944 (0.717) 1.400 (0.467) 0.667 (0.153) 
3.Read 1.5σ and above   0.752** (0.069) 1.104 (0.27) 3.095** (1.340) 0.610 (0.352) 0.977 (0.282) 

Test Score Interactions             
NELS x 1.Math     0.596* (0.13) 1.114 (0.613) 0.519 (0.199) 0.709 (0.208) 
NELS x 2.Math     0.841 (0.182) 1.152 (0.603) 1.060 (0.443) 1.101 (0.310) 
NELS x 3.Math     0.929 (0.229) 1.701 (0.925) 0.463 (0.195) 1.712 (0.547) 
ELS x 1.Math     0.694 (0.135) 0.763 (0.379) 0.904 (0.327) 0.722 (0.188) 
ELS x 2.Math     0.704 (0.142) 0.914 (0.433) 1.267 (0.521) 0.693 (0.185) 
ELS x 3.Math     0.853 (0.201) 1.020 (0.515) 0.743 (0.309) 1.025 (0.313) 
Female x 1.Math     0.795 (0.126) 0.764 (0.318) 0.639 (0.157) 1.037 (0.261) 
Female x 2.Math     0.927 (0.148) 1.378 (0.538) 0.815 (0.206) 1.177 (0.290) 
Female x 3.Math     1.052 (0.185) 2.459* (0.990) 1.039 (0.278) 0.935 (0.269) 
NELS x 1.Read     1.06 (0.219) 0.821 (0.392) 1.423 (0.536) 0.707 (0.188) 
NELS x 2.Read     1.017 (0.223) 0.551 (0.251) 0.995 (0.371) 0.899 (0.257) 
NELS x 3.Read     0.584 (0.163) 0.420 (0.219) 2.12 1.285) 0.317** (0.113) 
ELS x 1.Read     1.081 (0.206) 0.847 (0.380) 1.149 (0.414) 0.727 (0.183) 
ELS x 2.Read     0.992 (0.208) 0.527 (0.237) 0.727 (0.265) 1.310 (0.364) 
ELS x 3.Read     0.658 (0.176) 0.515 (0.260) 1.389 (0.831) 0.546 (0.186) 
Female x 1.Read     0.963 (0.144) 0.850 (0.303) 1.358 (0.317) 0.523** (0.130) 
Female x 2.Read     1.014 (0.162) 0.500 (0.179) 1.367 (0.334 0.797 (0.198) 
Female x 3.Read     1.105 (0.206) 0.358** (0.137) 1.392 (0.404 1.029 (0.306) 

Observations 10190  10190  10190  10190  10190  10190  
Note: The logistic regression estimations use a combined dataset from HSB, NELS and ELS.  Major choice was rendered comparable as explained in the Appendix.  Math scores 
are based on standardization of the sophomore test data for each survey.* p ≤ .05; ** p ≤ .01; *** p ≤ .001(two-tailed tests).!
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Table 6: Multinomial Logistic Regression of Major Choice on Female, Test Scores, and 
Life Goals 

 Model 1 Model 2 
Life Sciences RRR Std. Err. RRR Std. Err. 
Female 0.929 0.111 0.871 0.119 
Test Scores (Base:<.5σ above mean)     

1.Math 0.5σ - 0.99σ 1.417** 0.246 1.520** 0.267 
2.Math 1σ – 1.49σ 1.687*** 0.321 1.866*** 0.365 
3.Math 1.5σ and above 2.868*** 0.585 3.437*** 0.727 
1.Read 0.5σ - 0.99σ 1.300* 0.198 1.349* 0.208 
2.Read 1σ – 1.49σ 1.329 0.247 1.397* 0.271 
3.Read 1.5σ and above 1.077 0.230 1.140 0.257 

Life Goal Factors     
Success   1.530*** 0.218 
Family   1.024 0.159 
Community outreach   1.567** 0.284 
Money   0.621** 0.118 
Close to parents   1.435 0.473 

Interactions     
Success x female   0.955 0.205 
Family x female   0.596*** 0.111 
Community outreach x female   1.107 0.252 
Money x female   1.456 0.389 
Close to parents x female   0.705 0.281 

     
Math & Physical Sciences     
Female 0.682** 0.125 0.737 0.147 
Test Scores (Base:<.5σ above mean)     

1.Math 0.5σ - 0.99σ 1.706* 0.506 1.793** 0.525 
2.Math 1σ – 1.49σ 3.350*** 0.949 3.529*** 0.999 
3.Math 1.5σ and above 6.916*** 2.097 7.864*** 2.407 
1.Read 0.5σ - 0.99σ 0.866 0.236 0.916 0.252 
2.Read 1σ – 1.49σ 0.774 0.223 0.832 0.239 
3.Read 1.5σ and above 0.914 0.265 0.999 0.289 

Life Goal Factors     
Success   1.733** 0.425 
Family   0.806 0.144 
Community outreach   0.993 0.209 
Money   1.024 0.288 
Close to parents   1.050 0.525 

Interactions     
Success x female   0.633 0.200 
Family x female   1.221 0.316 
Community outreach x female   1.330 0.371 
Money x female   1.066 0.415 
Close to parents x female   1.905 1.208 

     
Engineering and Computer Sciences     
Female 0.143*** 0.019 0.142*** 0.022 
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Test Scores (Base:<.5σ above mean)     
1.Math 0.5σ - 0.99σ 1.493** 0.237 1.519*** 0.241 
2.Math 1σ – 1.49σ 2.183*** 0.391 2.196*** 0.397 
3.Math 1.5σ and above 3.892*** 0.737 4.023*** 0.760 
1.Read 0.5σ - 0.99σ 0.817 0.125 0.817 0.124 
2.Read 1σ – 1.49σ 0.947 0.155 0.943 0.156 
3.Read 1.5σ and above 0.661** 0.130 0.635** 0.127 

Life Goal Factors     
Success   1.249*** 0.100 
Family   0.853* 0.080 
Community outreach   1.089 0.114 
Money   1.057 0.142 
Close to parents   0.706* 0.146 

Interactions     
Success x female   0.914 0.208 
Family x female   0.596*** 0.113 
Community outreach x female   0.757 0.209 
Money x female   1.451 0.453 
Close to parents x female   0.980 0.465 

     
Observations 4700  4700  
     

Source:  Education Longitudinal Study of 2002.  Note: The base category for the dependent variable is “other” major.  * p<0.10, 
** p<0.05, *** p<.01.  Standard errors are clustered on schools. 
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Table 7: Elite Aspirations and Major Choice, by Gender 

! HSB! ! NELS! ! ELS! !

! Male (%)! Female (%)! Male (%)! Female (%)! Male (%)! Female (%)!

Elite Non-science! 24.5! 29.7! 52.9! 66.3! 41.8! 57.9!
Elite Science! 14.7! 7.2! 20.1! 9.6! 21.6! 11.2!
Non-elite Non-science! 41.2! 50.5! 21.2! 22.0! 24.5! 27.7!
Non-elite Science! 16.0! 6.6! 5.2! 1.5! 9.6! 1.8!
Does not expect to 
complete college!

3.6! 6.0! 0.6! 0.6! 2.5! 1.4!

Source:  HSB, NELS, ELS.  Note:  Elite aspirations refer to the expectation of receiving an advanced degree as of the sophomore 
year in college.  The analysis is restricted to sophomores in four-year colleges. !
 !
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Appendix Table A1: Trends in Enrollments by Gender and Field of Study 

 HSB NELS ELS 
 F% M% Diff. F% M% Diff. F% M% Diff. 

          
Agriculture 1.3 3.2 -1.9 0.8 1.2 -0.4 0.7 1.2 -0.5 
Architecture 0.5 0.9 -0.4 0.5 1.1 -0.6 0.7 1.2 -0.5 
Business 27.8 24.8 3.0 15.5 18.6 3.1 11.9 16.4 -4.5 
Communications 4.7 4.8 -0.1 3.5 3.6 -0.1 4.7 2.7 2.0 
Education 11.0 4.6 6.4 16.2 5.8 10.4 10.3 4.5 5.8 
Engineering Techn. 0.3 3.4 -3.1 0.2 2.3 -2.1 0.0 0.2 -0.2 
Fine Arts 2.6 3.8 -1.2 4.4 4.0 0.4 5.1 4.7 0.4 
Health Professions 13.7 3.5 10.2 15.9 6.9 9.0 16.1 4.0 12.1 
Law 0.9 0.6 0.3 1.3 0.8 0.5 0.5 0.3 0.2 
Psychology 3.4 1.8 1.6 5.2 2.3 2.9 5.7 2.1 3.6 
Social Sciences 5.3 6.2 -0.9 5.4 6.9 -1.5 5.1 6.1 -1.0 
Other, unknown or undecided 15.1 14.2 0.9 21.6 25.6 -4.0 30 35.7 -5.7 
Nonscience subtotal 86.6 71.8  90.5 79.1  90.8 79.1  
          
Biological Sciences 3.3 2.8 0.5 4.3 5.2 -0.9 5.1 5.0 0.1 
Computer Science 5.9 7.8 -1.9 1.4 3.7 -2.3 0.8 3.6 -2.8 
Engineering 2.4 13.8 -11.4 1.5 9.3 -7.8 1.3 9.4 -8.1 
Math and Statistics 0.8 0.9 -0.1 1.4 0.9 0.5 0.6 1.1 -0.5 
Physical Sciences 1.0 2.9 -1.9 0.9 1.8 -0.9 1.4 1.8 -0.4 
Science subtotal 13.4 28.2  9.5 20.9  9.2 20.9   
Gender Gap  -14.8   -11.4   -11.7 
Index of Dissimilarity  22.9   23.7   24.2 
Note:  We treat agriculture, engineering technologies, and health professions as non-science fields of study; if those fields 
were consolidated with the core science fields, there would be a considerable reduction in the gender gap.   Source: High 
School and Beyond Longitudinal Study of 1980 (HSB); National Education Longitudinal Study of 1988 (NELS); Education 

Longitudinal Study of 2002 (ELS). 

 
 


