
Policy Refinement of Network Services for
MANETs

Hang Zhao
Dept. of Computer Science

Columbia University
zhao@cs.columbia.edu

Jorge Lobo
IBM T. J. Watson

Hawthorne, New York USA
jlobo@us.ibm.com

Arnab Roy
IBM T. J. Watson

Hawthorne, New York USA
arnabroy@us.ibm.com

Steven M. Bellovin
Dept. of Computer Science

Columbia University
smb@cs.columbia.edu

Abstract—In this paper, we describe a framework for a refine-
ment scheme located in a centralized policy server that consists
of three components: a knowledge database, a refinement rule
set, and a policy repository. The refinement process includes two
successive steps: policy transformation and policy composition.
Our refinement scheme takes policies written in our logic-based
abstract policy language as input and generates low level rules
directly implementable by individual enforcement points. We
provide concrete policy examples in a coalition scenario that
forms a mobile ad hoc network (MANET). We demonstrate
policy composition using a distributed firewall scheme named
ROFL (ROuting as the Firewall Layer) and access control list as
enforcement mechanisms.

Keywords: Policy, Refinement, Authorization, MANETs

I. INTRODUCTION

It is increasingly important to develop policy refinement that
automates high level requirements into low level implementa-
tion in policy-based system management. The goal of policy
refinement is to generate low level rules so that syntax and
semantics can be understood by individual enforcement points.
Policy refinement fills the gap between policy authoring and
enforcement. While these two techniques have been studied
intensively, only limited work has addressed policy refinement.

In this paper, we propose a framework to automatically
transform security policies into implementable and enforceable
rules. We introduce a centralized policy server consisting of
three components: a knowledge database recording informa-
tion on the policy domain, a refinement rule set defining rules
for policy transformation and composition, and a policy repos-
itory storing policies written at different levels of specification.
This systematic approach is able to cope with generic access
control policies written in the format proposed in [16]:
{Subject} can (or cannot) {Action} {Target} if {Condition}.

Given the expressiveness of such template, we focus on
a subset of stateless access control policies, where action is
either permitting or prohibiting a service provided by a target.
Such policies on network services are widely used, like the

Research was sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document
are those of the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation hereon.

access control list implementation for mandatory access con-
trol (MAC), firewall policies, etc. Specifically, the refinement
rules presented here work for policies of the following form:
{Subject} can (or cannot) {access Service provided by}

{Target} if {Condition}.
We propose a generic framework of policy refinement

for access control policies (Section II); In Section III, we
introduce a logic-based abstract policy language to assist
refinement, and define rules for network service policies in
Section IV; In Section V, we discuss mechanisms to handle
policy updates due to database maintenance. We provide
concrete examples on policy refinement in a coalition sce-
nario with access control list and ROFL [20], a distributed
firewall mechanism implemented using routing techniques, as
enforcement mechanisms.

II. SYSTEM OVERVIEW

A. Distributed Policy Scenario

We will work with the policy scenario introduced in [11]
for the study of distributed policy analysis and refinement.
Each organization in this scenario owns devices, networks,
command centers, sensors and other equipment; each party
keeps its organization-specific domain knowledge private; and
each organization has its own policy server, which stores
policies and performs policy analysis and refinement tasks.
A coalition is formed of US forces, UK forces, and the Red
Cross (RX). It is a reasonable assumption that the US and
the UK domain have a similar structure. We address the US
domain, focusing specifically on two sample policies written
in natural language:
[Each US device is permitted to access location information from
one US location server with high quality, if communication is
encrypted and both sides are from the same quad.]

(1)
[Devices belonging to non-US organizations for coalition ITA are
prohibited to query sensor data from any US sensor fabric with
high quality between 9am and 5pm.]

(2)
B. Policy Server

Before introducing our policy refinement scheme, we de-
scribe the components and functionalities of a centralized
policy server (Figure 1) where policy analysis and refinement
take place. Each organization participating in a coalition has

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161438711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UML
Description

Domain
Knowledge

Refinement
Rule Set

Knowledge Database

Prolog Implementation

Policy Repository

Policy written in logic-based
abstract policy language

1. Policy Transformation

Policy written as AC tuples
<Sub, Tar, Srv, Cond> ±

2. Policy Composition

Policy written as
low level rules

Fig. 1: A centralized policy server for each domain
a centralized policy server consisting of three main compo-
nents: 1) A Knowledge Database: records information on a
policy domain; 2) A Refinement Rule Set: defines refinement
procedure in terms of rules; 3) A Policy Repository: stores
policies written at different levels of representation.

The Knowledge Database captures two categories of knowl-
edge: intra-domain knowledge of confidential information dis-
closed within an organization, and inter-domain knowledge of
coalition participants outside the organization. Inter-domain
knowledge is limited by how much information an organiza-
tion is willing to share with other coalition participants. For
example, the UK force knows the existence of a sensor fabric
in the US domain as part of inter-domain knowledge, but may
not have further details of the structure and components of the
US sensor fabric. There are different representations to model
a knowledge database. In this work, we describe our database
using UML description and logic representation.

The Refinement Rule Set defines two types of rules: trans-
formation rules that transform policies written in a logic-
based abstract language into access control (AC) tuples
〈Sub, Tar, Srv, Cond〉±; composition rules that gener-
ate low-level rules from those tuples. Our policy refinement
scheme is domain-independent, such that modifications on a
policy domain do not affect refinement rules. Transformation
rules are language-independent, taking policies in our abstract
language as input; composition rules are highly language-
specific, following exactly the syntax and semantics of low-
level rules implementable by individual enforcement points.

The Policy Repository stores policies written at different
levels of representation. For instance, it stores policies written
in a structured natural language, ROFL rules ready to be
shipped to individual enforcement points, and any intermediate
results generated during refinement process.

In the rest of this section, we present a 2-step procedure for
constructing a knowledge database: 1) drawing an UML class
diagram to describe the structure and components of a policy
domain; 2) building a database using logic representation.

C. UML Description

We present a UML description that describes a subset of the
US policy domain in Figure 2. Each class in the UML diagram
represents a group of objects stored in the knowledge database.
A class also has properties, such as attributes and methods. For
example, the Device class has four attributes named devID,
devName, devType and devLoc automatically inherited by all

orgName
Organization

coName
Coalition

memberssupports
0..*

0..*

0..*

1..*

senFabName
SenFab 10..*

devID
devName
devType
devLoc
ip

Device

1

1..*

CtrlNode

1

senType
Sensor

controls
1

StillCam
LocServer

humType
HumanOp

Soldier

Commander

vehType
Vehicle

Tank

getData()

srvName srvType
qos sec port

Service

getSenData()

SenSrv

Gateway

Action Zone

getLoc(accuracy)

accuracy
LocSrv

getPic(resolution)
resolution

PicSrv

getVid(bitRate)
bitRate
VidSrv

getAud(snr)
snr

AudSrv

condName
condType

Condition

0..*

0..*

provides

0..*

0..*

0..*

VidCam AudSnsr

belongs owns

nodeOf sensorOf

Ambulance

Helicopter

start
end

Time
pos

Location

Condition Zone

Target/Subject Zone

1

Fig. 2: UML class diagram for the policy domain
its child classes. Child classes are also allowed to have their
own attributes and methods.

A line connecting two classes defines an association be-
tween them. Three types of associations are supported: gen-
eralization (i.e., IS-A relationship) describing relationship
between parent and child classes; aggregation (or composition)
representing relationship between aggregate (or whole) class
and part class; and regular associations not falling into the first
two categories. Each association, except for generalization, is
named uniquely, and can have their own attributes to form
an class. For example, association class Condition describes
additional information on service provision (i.e., association
named provides) between class Device and class Service with
two attributes condName and condType.

To facilitate policy representation, we group classes into
different zones. Instances from the target zone define tar-
gets in such policies; those from the subject zone represent
subjects. Those two zones coincide in Figure 2. The action
zone describes actions that a target can take. Finally, the
association class Condition captures additional constraints on
service provision.

D. Domain Knowledge

We construct domain knowledge using logic representation
from the UML class diagram defined previously. Six types of
definitions are maintained. Each class in the UML diagram is
defined using predicate class(C), where C is a class name.

class(device). class(service). class(condition).

Instances of individual classes are described by predicate
obj(O, C), where O is an object name and C is the name
of class that O belongs to.
obj(sc1, device). obj(pic1, service). obj(time1, condition).

We use predicate att(O, X, Y) to represent an attribute named
X with value Y for instance O.

att(sc1, devName, sc1). att(sc1, devType, stillCam).

Predicate assType(X, C1, A, C2) defines an association of type
X (agg for aggregation, comp for composition and reg for

regular association), identifiable by an unique name A between
two classes C1 and C2. Service provision (i.e., provides) is a
regular association between device class and service class.

assType(agg, organization, members, coalition).
assType(reg, device, provides, service).

The actual relationship between two instances O1 and O2

is described using predicate ass(X, O1, A, O2) that takes
instances rather than classes as arguments.

ass(agg, us, members, ita). ass(agg, uk, members, ita).
ass(agg, sc1, owns, us). ass(reg, sc1, provides, pic1).

Unlike other associations, a generalization is defined as isa(C1,
C2) between a pair of child class C1 and parent class C2:

isa(sensor, device). isa(stillCam, sensor).
isa(senSrv, service). isa(picSrv, senSrv).

Attribute port (i.e. port number) from class service is often
determined by other attributes of the same class as follows:

F(att1, . . . , attn) = port
As an example, port number for web service is determined by
its security feature such that regular http traffic goes through
port 80 and encrypted https traffic goes through port 443.

E. Implementation

We choose Prolog [10], a popular general purpose logic pro-
gramming language, for a reference implement of the policy
server in Figure 1. We use an open source implementation
called SWI-Prolog [3] together with its plugin ProDT [2]
developed for Eclipse [1].

III. POLICY LANGUAGE

To assist policy refinement, we present a logic-based ab-
stract language, intended to serve as a generic formal language
which multiple policy languages can be translated into and out
of during the refinement process. The language grammar writ-
ten in Backus–Naur Form (BNF) is summarized in Figure 3.
Comparison operators (=, 6=, >, ≥, <, ≤), logical connectives
(¬, ∧, ∨, →) and quantifiers (∀, ∃) are integrated into our
language to provide expressiveness. Terms in italic are ground
Instance, Class, Attribute, Association names and association
types from the UML description and the knowledge database.

A policy consists of an authorization rule auth, a sign to
indicate positive authorization + (permitting a service) and
negative authorization − (prohibiting a service). Each auth
rule is a tuple 〈Sub, Perm, Cond〉 of three fields: Sub is
the subject of an authorization policy; Perm is further defined
as a tuple 〈Tar, Srv〉 that represents a service Srv provided
by target Tar; Cond denotes an optional condition field. More
specifically, Sub defines that a refined subject Sub′ is an
object O satisfying predicate Exp, where O belongs to class
C (i.e. obj(O, C)) from subject zone satisfying both attribute
constraints (C att) and association constraints (C ass). Tar
and Srv are also defined in a similar way. Quantifier Q
appears preceding with Sub, Perm, Tar and Srv for greater
expressiveness. Cond is represented as a logic expression on
condition element d and cross-field attribute constraints C cf .

Our language supports compound constraints by defining
C att as an arbitrary propositional composition of constraint

policy ::= auth sign ;
auth ::= "〈" Q Sub "," Q Perm ["," Cond "] 〉" ;
Perm ::= "〈" Q Tar "," Q Sub 〉" ;
Sub ::= "Sub’" ∈ "{" O "|" Exp "}" ;
Tar ::= "Tar’" ∈ "{" O "|" Exp "}" ;
Srv ::= "Srv’" ∈ "{" O "|" Exp "}" ;
Cond ::= C_d | C_cf | Cond ∧ Cond

O ::= Instance ;
C ::= Class ;
X ::= AssType ;

Att ::= Attribute ;
Ass ::= Association ;

Q ::= ∀ | ∃ ;
sign ::= + | − ;

op ::= = | 6= | > | ≥ | < | ≤ ;
s ::= O "." Att | a ;
c ::= s op s ;

C_att ::= c | ¬ C_att | C_att ∧ C_att | C_att ∨ C_att
F ::= "Tar’" | "Srv’" | "Sub’" ;
e ::= F "." Att ;
f ::= e op e ;

C_cf ::= f | ¬ C_cf | C_cf ∧ C_cf | C_cf ∨ C_cf
d ::= obj "(" O "," C ")" ∧ C_att ;

C_d ::= d | C_d ∧ C_d | C_d ∨ C_d

l_c ::= Q O "(" ass "(" X "," O "," Ass "," O ")"
[∧ C_att] → C_att ")" ;

l_o ::= Q O "(" ass "(" X "," O "," Ass "," O ")"
[∧ C_att] → [C_att ∧] ;

L ::= l_c | ¬ L | L ∧ L | L ∨ L
C_ass ::= L | l_o C_ass ")" | ¬ C_ass |

C_ass ∧ C_ass | C_ass ∨ C_ass
Exp ::= obj "(" O "," C ")" [∧ C_att] [∧ C_ass] ;

Fig. 3: Grammar for a logic-based abstract policy language. Meta-symbol |
specifies multiple choices. Optional items are enclosed in [and]. Repetitive
items (zero or more times) are enclosed in { and }. Terminals of one character
are surrounded by quotes (") and ; is the termination symbol.
element c, including negation (¬) given that op is closed
under negation. Each constraint element c compares two sub-
expressions of form s, where s is either an instance attribute
O.Att or a constant a. We also support cross-field attribute
constraints C cf that compares attributes of different fields
(i.e., Sub′, Tar′ and Srv′). The condition C att is limited to
the object and class in the field where they appear.

C ass defines the association constraints held for an object
O. Expression l c, the basic building block for any compound
association constraints, describes a closed relationship be-
tween two objects that traverse exactly one link (association).
Quantifiers are required for one-to-many or many-to-many
associations with scope of the entire expression l c. Since
association name Ass uniquely defines the two end classes, the
class definition for O′ is omitted. Notice that l c contains two
optional attribute constraints: C att appearing before “→”
further restricts the selection of O′; whereas C att′ after “→”
specifies properties held for selected O′. Thus l c states that
for all objects (or exists one object) O′ associated with object
O through Ass with property C att held, C att′ must also
hold for those O′. Figure 4 depicts the four cases. Shaded
nodes represent instances that satisfy ass(X, O, Ass, O′) with
optional attribute constraints C att on O′. Underlined nodes
are instances further selected by the quantifier. The four cases
are able to describe any subset of objects O′ associated with
O. L defines an arbitrary propositional composition of l c,
as O can be associated with objects through multiple asso-
ciations. Consider the following C ass associate constraint
[an organization that is a member organization of a coalition

(b) ∀O’ (ass(O, A, O’)
 ∧C_att) …

(c) ∃O’ ass(O, A, O’)
 …

…

1/*
*

bn b2 b1

ClassB

…

1/*
*

ClassB

bn b2 …

1/*
*

a1

ClassA

ClassB

bn b2 b1 …

1/*
*

bn b2 b1

ClassB

a1

ClassA

a1

ClassA

a1

ClassA

b1

(a) ∀O’ ass(O, A, O’)
 …

(b) ∃O’ (ass(O, A, O’)
 ∧C_att) …

Fig. 4: Quantification for association.
named ita with all its sensor fabric located at west quad, or
it is a supporting organization of the same coalition].

C ass ≡ (∃O′ (ass(agg, O, members, O′)
→ (O′.coName = ita)) ∧

∀O′′ (ass(agg, O, belongs, O′′)
→ (O′′.strLoc = westquad))) ∨

(∃O′ (ass(agg, O, supports, O′)
→ (O′.coName = ita)))

Unlike l c, l o is an open link between O and O′ that allows
O′ to be further associated with other objects in a recursive
manner. The last element on a path of consecutive association
constraints must be L for C ass to terminate properly.

Cond is an arbitrary propositional composition of condition
element d, excluding negation. Each condition element d is of
the form obj(O, C)∧C att, where O is an instance of class
C from the condition zone, like time and location, satisfying
attribute constraints C att.

Authorization policies written in natural language with a
constrained lexicon and syntax designed for policy expression
can be translated into our language. We assume an auto-
mated process that accomplishes the translation. Therefore, our
policy refinement scheme starts from an authorization policy
already written in our language. We translate initial policies
(1) and (2) into our abstract language as follows:
[Each US device is permitted to access location information from

one US location server with high quality, if communication is

encrypted and both sides are from the same quad.]

⇓
policy ≡ 〈∀Sub, ∀〈∃Tar, ∀Srv〉, Cond〉+ such that,

Sub ≡ Sub′ ∈ {O | obj(O, device) ∧ (∀O′ (ass(agg, O, owns, O′)

→ O′.orgName = us))}
Tar ≡ Tar′ ∈ {O | obj(O, locServer) ∧ (∀O′ (ass(agg, O, belongs, O′)

→ O′.orgName = us))}
Srv ≡ Srv′ ∈ {O | obj(O, locSrv) ∧ (O.qos = high ∧O.sec = crypto)}
Cond ≡ Tar′.devLoc = Sub′.devLoc

(3)
[Devices belonging to non-US organizations for coalition ITA are

prohibited to query sensor data from any US sensor fabric with

high quality between 9am and 5pm.]

⇓
policy ≡ 〈∀Sub, ∀〈∀Tar, ∀Srv〉, Cond〉 − such that,

Sub ≡ Sub′ ∈ {O | obj(O, device) ∧ (∀O′ (ass(agg, O, owns, O′)

→ ((O′.orgName 6= us) ∧
(∃O′′ (ass(agg, O′, members, O′′)→ O′′.coName = ita) ∨
∃O′′′ (ass(agg, O′, supports, O′′′)→ O′′′.coName = ita))))}

Tar ≡ Tar′ ∈ {O | obj(O, senFab) ∧ (∀O′ (ass(agg, O, belongs, O′)

→ O′.orgName = us))}
Srv ≡ Srv′ ∈ {O | obj(O, senSrv) ∧ (O.qos = high)

Cond ≡ obj(O, time) ∧ (O.start = 9am ∧O.end = 5pm)

(4)

IV. POLICY REFINEMENT

The refinement scheme presented in this section starts with
authorization policies written in our logic-based abstract policy
language (Section III). The goal of policy refinement is to
translate those policies to low level rules so that their syntax
and semantics can be understood by individual devices, i.e.
enforcement points.
Definition 1. We define the following transitive closure on
generalization (IS-A relationship):

isa trans(C, C′)← isa(C, C′)

isa trans(C, C′′)← isa(C, C′), isa trans(C′, C′′)
(5)

Similarly, we define transitive closure on predicate obj(O,C):

obj trans(O, C)← obj(O, C)

obj trans(O, C′)← obj(O, C), isa trans(C, C′)
(6)

Definition 2. In UML, the difference between aggregation
and composition is subtle. Aggregation is more like a has-a
relationship (also known as weak-aggregation); composition
is more like a part-of relationship (also known as strong-
aggregation). Thus we define the following transitive closure
on aggregation and composition associations:

ass trans(ac, O, Ass, O′)← ass(agg, O, Ass, O′).

ass trans(ac, O, Ass, O′)← ass(comp, O, Ass, O′).

ass trans(ac, O, Ass + Ass′, O′′)

← ass(ac, O, Ass, O′),

ass trans(ac, O′, Ass′, O′′).

(7)

where Ass + Ass′ indicates that object O is associated with
object O′′ that traverses an aggregation (weak or strong) link
Ass and a path Ass′ in sequence.

Definition 3. Association provides describing service provi-
sion is treated as a regular association between services and
their providers. We define transitive closure on predicate ass
for provides as follows:

ass trans(reg, T, provides, V)← ass(reg, T, provides, V).

ass trans(reg, T ′, provides, V)← ass(reg, T, provides, V),

ass trans(ac, T, Ass, T ′).

ass trans(reg, T, provides, V ′)← ass(reg, T, provides, V),

ass trans(ac, V ′, Ass, V).
(8)

The above definition states that target object T ′ transitively
provides service V if T ′ is an aggregate of object T and T
provides V . Similarly, target object T transitively provides
service V ′ if V ′ is a part of service object V provided by T .

Definition 4. Let policy be an authorization policy written in
the logic-based abstract policy language defined in Section III.
A refinement rule is an expression:

policy ≡ 〈QSSub, QP 〈QT Tar, QV Srv〉, Cond〉 ±
⇓ ref

policy′ ≡ 〈Sub′, Tar′, Srv′, Cond′〉 ±
(9)

that translates higher-level policy policy into a rule policy′

at the lowest level through a gradual refinement. Positive and

negative authorization signs are preserved automatically. There
are many argument values of policy′ to satisfy the refinement
rule (9). The selection of policy′ is determined by quantifiers
QS . . . QV in the policy expression, and will be discussed in
details during the refinement process.

We propose a policy refinement process of two successive
phases (see Figure 1):

1) A policy transformation phase, that transforms policies
written in that logic-based abstract language to tuples by
querying the pre-constructed knowledge database using
refinement rule (9);

2) A policy composition phase, that composes policy rules
at lowest level from query results.

A. Policy Transformation
The implementation of refinement rule (9) consists of six

successive steps. It starts with policies written in our abstract
language so one can easily adapt it to another policy domain.

1) Permission Refinement:
A permission, i.e., perm(T, V), defines a service V pro-

vided by a target T . Given the target (Tar) and service (Srv)
expressions specified in our logic-based abstract language, we
get a set of permissions using rule (10):

refPerm(

Tar

obj(T, CT), C attT , C assT ,
Srv

obj(V, CV), C attV , C assV , C cf, perm(T, V))←
obj trans(T, CT),

checkAttConst(T, C attT),

checkAssConst(T, C assT),

obj trans(V, CV),

checkAttConst(V, C attV),

checkAssConst(V, C assV),

ass trans(reg, T, provides, V),

checkCFConst(C cf, perm(T, V)).
(10)

such that, T is an object transitively belonging to target class
CT , satisfying attribute constraints C attT and association
constraints C assT ; V is an object transitively belonging to
service class C attV , satisfying attribute constraints C attV
and association constraints C assV . Besides, target T transi-
tively provides service V . Each resulting permission also sat-
isfies any cross-field constraint specified in C cf comparing
attributes from Tar′ and Srv′. The resulting set of permissions
are further selected using Eq.(13) based on the quantifiers
QT , QV and their order. As ∀ and ∃ are not commutative,
we have all together six different cases.

2) Subject Refinement:
Subject refinement finds all the subjects S that transitively

belong to class CS and satisfy attribute constraints C attS
and association constraints C assS based on rule (11).

refSub(

Sub

obj(S, CS), C attS , C assS , sub(S))←
obj trans(S, CS),

checkAttConst(S, C attS),

checkAssConst(S, C assS).

(11)

3) Access Refinement:
Access refinement generates a set of access predicates

acc(S, perm(T, V)) by computing the Cartesian product of
permission set {perm(T, V)} and subject set {sub(S)} using
rule (12). The resulting access predicates must also satisfy cor-
responding cross-field constraints specified in C cf . Similarly,
the set of accesses are further selected based on the value of
QS , QP and their order using Eq.(13).

refAcc(C cf, QS , QP , acc(S, perm(T, V)))←
perm(T, V),

sub(S),

checkCFConst(C cf, acc(S, perm(T, V))).

(12)

4) Quantification Refinement:
Let P = {(x, y) : value pairs that make predicate p(X,Y)

true by assigning variables X = x and Y = y}. Quantification
refinement selects elements from P based on the value of
quantifiers Q1 and Q2 for X and Y respectively. The order of
quantifiers also matters. In Eq.(13), R is a non-deterministic
function that returns a maximal set of refined value pairs P ′

for the initial set of value pairs P given the combination of
quantifiers Q1 and Q2.1 Notation p.X (p.Y) returns the X
(Y) value of an element p.

R(Q1, Q2, P), where P = {(x, y)}

=

8>>>>>>>>>>>><>>>>>>>>>>>>:

P ′ = P if ∀X∀Y ;
P ′ ⊆ P ∧ |P ′| = 1 if ∃X∃Y ;
P ′ ⊆ P ∧ ∀i∀j(i 6= j ∧ pi, pj ∈ P ′ if ∀X∃Y ;

⇒ pi.X 6= pj .X)
P ′ ⊆ P ∧ ∀i∀j(i 6= j ∧ pi, pj ∈ P ′ if ∀Y ∃X;

⇒ pi.Y 6= pj .Y)
P ′ ⊆ P ∧ ∀i∀j(i 6= j ∧ pi, pj ∈ P ′ if ∃X∀Y ;

⇒ pi.X = pj .X ∧ pi.Y 6= pj .Y)
P ′ ⊆ P ∧ ∀i∀j(i 6= j ∧ pi, pj ∈ P ′ if ∃Y ∀X;

⇒ pi.Y = pj .Y ∧ pi.X 6= pj .X)
(13)

5) Granularity Refinement:
Given a set of access predicates after quantification refine-

ment, the goal of granularity refinement is to traverse all
the aggregation and composition associations for each field
and produce the actual low-level objects that participate in
the enforcement of access control. Note that comparing with
ass trans predicate for provides, here we want the low level
target Tar′ and low level service Srv′ directly associated
through ass predicate.

refGran(acc(Sub′, perm(Tar′, Srv′)))←
acc(S, perm(T, V)),

ass(reg, Tar′, provides, Srv′),

ass trans(ac, Tar′, , T),

ass trans(ac, Srv′, , V),

ass trans(ac, Sub′, , S).

(14)

6) Condition Refinement:
Since Cond is an arbitrary propositional composition of

condition element d, in rule (15), each d ≡ obj(O,C)∧C att

1The non-determinism can be restricted by other semantic considerations
that select, for example, the most appropriate target to perform a service in
the current situation.

is refined to a list of condition instances connected using
disjunctions, that belong to condition class C and satisfy at-
tribute constraints C att. Logic connectives among condition
elements are automatically preserved. Notice that cross-field
constraints C cf have already been refined in previous steps.

Cond ≡ d | C d ∧ C d | C d ∨ C d

⇓ refCond

Cond′ ≡ ∨i≥1
i Oi | C d′ ∧ C d′ | C d′ ∨ C d′

(15)

7) Examples:
Following our previous policy examples, we apply refine-

ment rule (9) on policies (1) and (2) by querying the pre-
constructed knowledge database to produce the following
results:

policy ≡ 〈∀Sub, ∀〈∃Tar, ∀Srv〉, Cond〉+
⇓ ref

policy′ ≡ 〈sc1, ls1, loc3, ∅〉+
(16)

policy ≡ 〈∀Sub, ∀〈∀Tar, ∀Srv〉, Cond〉−
⇓ ref

policy′ ≡ 〈ls3, sc1, pic3, time1〉−
(17)

Rule (16) refines policy (1) into a low-level rule policy′ saying
that US still camera sc1 is allowed to access location service
loc3 (high quality with encryption) provided by US location
server ls1. There are many other policy′ satisfying rule (16)
but rule (13) ensures that each subject is allowed to access
one location server, i.e., 〈sc1, ls2, loc3, ∅〉+ is not a valid
refinement if 〈sc1, ls1, loc3, ∅〉+ already exists. Similarly,
policy′ in rule (17) is one possible refinement of policy (2),
saying that UK location server ls3 is prohibited to access
picture service pic3 (high quality) provided by US still camera
sc1 at given time time1 (9am− 5pm).

B. Policy Composition

It is often the case that access control tuples generated
from the policy transformation phase cannot be directly im-
plemented because their syntax may not be understood by
low-level devices. Thus the goal of policy composition is to
generate low-level policies from those tuples. This step is
highly language-dependent, because the final output is a set
of low-level rules written in a policy language specification
determined by the choice of underlying enforcement mecha-
nism.

So far we have been focusing on network services in
MANETs, therefore we choose the following two mechanisms
for enforcement: 1) Access control lists (ACLs) that are
maintained locally at each service provider; 2) ROFL scheme
that implements packet filtering using routing mechanisms.

1) ACLs:
Local access control lists maintained at servers are com-

posed from results of policy transformation using rule (18):
policy′ ≡ 〈Tar′, Srv′, Sub′, Cond′〉±
⇓ ACL

acl(Tar′) = 〈Sub′, ±Act′, Cond′〉
(18)

where policy′ is a refined policy produced by transformation
rule (9), acl(Tar′) denotes an access control list on object
Tar′. The operation field Act′ is defined as a method provided

by the object class C of Tar′. This method may take zero
or more attributes of Tar′ as parameters, such that Act′ =
C.method(Tar′.Att1, . . . , Tar′.Attn), where n ≥ 0 and
obj(Tar′, C). The positive or negative authorization sign is
placed in front of Act′ to indicate whether certain operation
is allowed to performed or not. Alternatively, only positive
authorization rules are maintained in ACLs. Hence any oper-
ation that is not explicitly granted is prohibited. Finally, the
condition field Cond′ is required only if the implementation
support complex ACLs with additional constraints.

As concrete examples, we generate ACLs for refined rules
(16) and (17) respectively.

policy′ ≡ 〈sc1, ls1, loc3, ∅〉+
⇓ ACL
acl(ls1) ≡ 〈sc1, +getLoc(loc3.accuracy), ∅〉

(19)

policy′ ≡ 〈ls3, sc1, pic3, time1〉−
⇓ ACL
acl(sc1) ≡ 〈ls3, −getP ic(pic3.resolution), time1〉

(20)

2) ROFL Scheme:
Now we demonstrate the composition process for rules

written as ROFL advertisements. ROFL is based on a simple
notion: services — that is, port numbers — should be treated
as part of the IP address in the routing system. (Full details
are given in [20], [19].) If a certain service is not advertised to
a particular network, no host on that network can reach it; the
routing system will not deliver the packets. We thus use every
router along the path as a firewall. There are many benefits
to this scheme, especially in MANETs where battery power
is limited. If unwanted packets are dropped very early, a lot
of power can be saved by not transmitting those packets. A
ROFL route advertisement looks like the following:

R = {d : s/m, S, L, M}

where d denotes the target host IP address, s specifies the
service provided by that target, m is the destination prefix
length (and m ≤ 48), S represents a set of authorized subjects,
L is a list of traffic labels, with M 6=∞ indicating a positive
authorization and M =∞ indicating a negative authorization.
R is only disseminated to hosts in the subject set S. Upon
receiving R, all the fields in R including traffic label L enter
into a receiver’s local routing table.

With ROFL, a host knows which ports are needed for which
sources, and can emit proper route advertisements. Nor are
routers turned into firewalls, except in effect; they simply
listen to routing advertisements and forward packets as usual,
albeit with longer addresses. No extra administration or state
is needed, [20] presents calculations showing that the increase
in table size is acceptable. Other potential issues are routing
table computations ([20]) and increased routing traffic ([19]).
We have shown that the increase in traffic for routing messages
is more than outweighed by the savings by early drops of
unwanted traffic.

Generation of ROFL advertisements from refined policy rule
is defined in rule (21):

policy′ ≡ 〈Tar′, Srv′, Sub′, Cond′〉±
⇓ ROFL

R ≡ {Tar′.ip : Srv′.port/48, Sub′.ip, L(Cond′), M}
(21)

where M = ∞ for negative authorization policy. Now let us
discuss the mapping for each field in more details.

In rule (21), mapping from target or subject to its IP address
is straightforward as IP is an attribute for Tar′ or Sub′.
However, it is often the case that a ROFL announcement R
propagates to a set of permitted subjects. Thus it is more
efficient to enclose the whole set of subjects in a single
announcement to minimize overhead. Therefore, it is possible
to implement it as a Bloom filter [8] on the set of source
addresses or networks of a given prefix length. Bloom filters
are a space-efficient data structure that can compress the repre-
sentation of a set of members in a compact manner, albeit with
some chance of false positives. Bloom filters are particularly
useful in MANETs, where there is little topological structure
and each allowed node may be identified by a flat address.

Mapping from service to port number is obtained by calling
Srv′.port. Function F in section II computes port number
from service attributes. The more attributes involved in F , the
more effective a ROFL advertisement is as more unwanted
traffic is filtered out. For instance, if port is determined
by both qos and sec, an announcement R can filter more
unwanted traffic if one of the attribute constraints unsatisfied.

Cond′ is mapped to labels by calling function L(Cond′):
L(Cond′) = L(∨n

j=1 ∧m
i=1 (∨p

k=1Oijk))

= L(∧n′

j′=1 ∨m′

i′=1 Oi′j′)

= l∧
n′

j′=1 (m′

i′=1li′j′)

where it is firstly rewritten into a conjunctive normal form
by applying distributive property of logical connectives; then
each condition object Oi′j′ is mapped into a label li′j′ . Log-
ical operator ∨ is automatically implied between consecutive
labels, and operator ∧ is replaced by a special label l∧.

Now we describe the encoding algorithm from a condition
object O to a label l. Each l is a string of 8 consecutive bits,
where the first 4 bits denote O.condType and the remaining
represent O.condName. Together they uniquely identify a
condition instance in the knowledge database. Condition type
0000 is reserved, and l∧ = 00000000. Thus our scheme
supports 15 types of conditions (although Figure 2 shows only
two types of conditions in this scenario) and 16 different values
for each type. More bits can be added to represent more labels.

Optimization can be made in different ways. The goal is to
minimize the length of label list L in a ROFL advertisement,
and hence reduce processing time. Wildcard character ∗ rep-
resents a bit value of either 0 or 1. Thus 2n consecutive labels
(logical connective ∨ implied) different by n bits at fixed posi-
tions b1, . . . , bn can be replaced by one label with wildcard ∗
at those positions and the rest remain unchanged. For example,
00010010|00010000 (vertical bar | is for presentation purpose
only) can be replaced by 000100 ∗ 0.

A more efficient encoding mechanism can also reduce the
length of L. We propose an encoding tree (Figure 5(a)) to
generate labels of the same type, i.e. those have the first 4 bits
in common. Root node represents the entire value space for a

00 01

10 11
00

(a) Encoding tree for label value of N bits (b) Encoding scheme for Location label

… …

… ……

… … … …

T1 = 2n1

T2 = 2n2× 2n1

T0 = 1n1

n2

n3

N = n1 + n2 + n3 + …
…

00 01

10 11
01

00 01

10 11
10

00 01

10 11
11

Fig. 5: Encoding scheme for label value
certain type of label; T1 denotes 2n1 sub-spaces identified by
first n1 bits; similarly, T2 further divides each sub-space into
2n2 partitions using the next n2 bits, and so on until all N bits
for label values are used. Thus, only one label is necessary to
represent a node or a subtree. Figure 5(b) depicts a possible
encoding scheme for Location labels with N = 4. The entire
battle field is divided into 4 quads identified by the first 2
bits, and each quad is further split into four sub-quads using
the remaining 2 bits. Due to the space limitation, we will not
further discuss other optimization schemes for label encoding.

As a concrete example, we compose ROFL advertisements
from the refinement results obtained previously.

policy′ ≡ 〈sc1, ls1, loc3, ∅〉+
⇓ ROFL
R ≡ {10.0.0.1 : 443/48, 10.0.0.10, 00000000, M}

(22)

policy′ ≡ 〈ls3, sc1, pic3, time1〉−
⇓ ROFL
R ≡ {10.0.0.10 : 80/48, 20.0.0.1, 00010001, ∞}

(23)

V. POLICY UPDATES

In this section, we focus on how our policy refinement
process can cope with policy updates when the knowledge
database changes. We will not discuss situations when new
initial policies are introduced, as those new policies will go
through the same refinement process as existing ones.

A. Correctness of Knowledge Database

To generate consistent policies, knowledge database D must
be conflict-free with the following requirements enforced:

1) The definition of class and associations among classes
is self-contained, such that: if isa(C, C ′) ∈ D, then
class(C), class(C ′) ∈ D; if assType(X, C, A, C ′) ∈
D, then class(C), class(C ′) ∈ D.

2) The definition of instances and associations among
them is self-contained, such that: if obj(O,C) ∈
D, then class(C) ∈ D, att(O,Atti, Vi) ∈ D,
for all Atti of class(C); if ass(X,O, A, O′) ∈
D, then class(C), class(C ′), assType(X, C,A, C ′),
obj(O,C), obj(O′, C ′) ∈ D.

3) The definition of service instances cannot stay alone
without their service providers: if obj(O,C) ∈ D and
class(C) is from the service zone, then obj(O′, C ′) ∈
D such that class(C ′) is from the target zone, and
ass(reg,O′, Ass,O) ∈ D, where Ass is an association
describing service provision.

Standard techniques [17], [15] for constraint verification and
integrity checking on knowledge database can be applied there.
We implement those techniques using logic programming.

B. Update of Knowledge Database

From the system point of view, adding new objects (or
classes) or removing existing ones only affects knowledge
database not the rest of the policy server (Figure 1). Table I
summarizes the changes one needs to perform for operations
in the first column, where Y means the modification is
mandatory, − implies optional, and N means not required.

Operation class isa obj att assType ass
Add/Remove Tar/Sub O N N Y Y N −
Add/Remove Tar/Sub C Y − N N − N
Add/Remove Srv O N N Y Y N Y
Add/Remove Srv C Y − N N Y N
Add/Remove Cond O N N Y Y N −
Add/Remove Cond C Y − N N − N

TABLE I: Update of knowledge database upon operations

Clearly, adding or removing target (or subject) objects only
affects predicate obj and att. It might affect associations, such
as aggregation, composition, etc. On the other hand, adding
or removing target (or subject) classes only affects the class
definition class, and definition on associations among classes
(i.e. isa and assType) may be updated as well. Update on
service objects (or classes) is handled in a similar way except
that predicates assType and ass must be updated to enforce
requirement 3) discussed in previous subsection. Updates on
condition objects (or classes) is handled the same as target
objects (or classes).

VI. RELATED WORK

Early research [4] performs theoretical work on refinement
mappings to prove that a lower-level specification correctly
implements a higher-level one. Recent studies [5], [6], [7],
[9], [18] address subsets of the problem, such as taking the
goal-oriented approach for goal decomposition using Event
Calculus, mapping policy objectives to specific configuration
details using transformation algorithms, etc. In [12], some
initial work on policy transformation is presented that applies
syntactic and algorithmic ideas adapted from the concepts
of data integration. In [13], the same group proposes action
decomposition techniques towards a framework for automated
distributed refinement of both authorization and obligation
policies. Our approach describes a framework systematically
for access control policies in general, specifically focusing
on network services enforced by authorization policies. We
address the needs of policy composition to produce directly
enforceable low-level rules through concrete examples. Other
related work includes [14], where harnessing knowledge em-
bodied in information models and ontologies is used to rep-
resent relationships between policy components that could
indicate potential conflicts between policies.

VII. CONCLUSION

In this paper, we have described a refinement process
for network service policies in a generic policy refinement
framework. Future work includes further development to sup-
port access control policies with complex actions. Moreover,
refinement and consistency checking could be interleaved to

verify that refined policies are consistent with respect to
existing policies. On the other hand, in a fully distributed
scenario, partial refinement may be more desirable with local
domain knowledge and a relevant subset of refinement rules.

REFERENCES

[1] “Eclipse,” http://www.eclipse.org/.
[2] “ProDT: Prolog development tools,” http://prodevtools.sourceforge.net/.
[3] “SWI-Prolog,” http://www.swi-prolog.org/.
[4] M. Abadi and L. Lamport, “The existence of refinement mappings,”

Theoretical Computer Science, vol. 82, pp. 253–284, 1988.
[5] A. K. Bandara, E. C. Lupu, J. Moffett, and A. Russo, “A goal-based

approach to policy refinement,” in POLICY ’04: Proceedings of the 5th
IEEE International Workshop on Policies for Distributed Systems and
Networks. IEEE Computer Society, 2004, p. 229.

[6] A. K. Bandara, E. C. Lupu, A. Russo, N. Dulay, M. Sloman, P. Flegkas,
M. Charalambides, and G. Pavlou, “Policy refinement for diffserv quality
of service management,” in IM 2005: Proceedings of the 9th IFIP/IEEE
International Symposium on Integrated Network Management, 2005.

[7] M. S. Beigi, S. Calo, and D. Verma, “Policy transformation techniques
in policy-based systems management,” in Proc. 5th IEEE International
Workshop on Policies for Distributed Systems and Networks (POLICY,
2004, pp. 13–22.

[8] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of ACM, vol. 13, no. 7, pp. 422–426, July 1970.

[9] G. A. Campbell and K. J. Turner, “Goals and policies for sensor network
management,” in SENSORCOMM ’08: Proceedings of the 2008 Second
International Conference on Sensor Technologies and Applications.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 354–359.

[10] W. F. Clocksin and C. S. Mellish, Programming in Prolog, 1984.
[11] R. Craven, J. Lobo, E. Lupu, J. Ma, A. Russo, and M. Sloman,

“Distributed policy scenario,” ITA Technical Report, 2010.
[12] R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman, “Security policy

refinement using data integration: a position paper,” in SafeConfig ’09:
Proceedings of the 2nd ACM workshop on Assurable and usable security
configuration. New York, NY, USA: ACM, 2009, pp. 25–28.

[13] ——, “Decomposition techniques for policy refinement,” in To appear
in proc. of the 6th International Conference on Network and Service
Management, 2010.

[14] S. Davy, “Harnessing information models and ontologies for policy
conflict analysis,” Ph.D. dissertation, 2008.

[15] P. Grefen and J. Widom, “Protocols for integrity constraint checking in
federated databases,” in Proceedings 1st IFCIS International Conference
on Cooperative Information Systems, 1996, pp. 38–47.

[16] M. Johnson, J. Karat, C.-M. Karat, and K. Grueneberg, “Usable policy
template authoring for iterative policy refinement,” in POLICY ’10: Pro-
ceedings of the IEEE International Workshop on Policies for Distributed
Systems and Networks, POLICY, 2010.

[17] R. Kowalski, F. Sadri, and P. Soper, “Integrity checking in deductive
databases,” in Proceedings of the VLDB International Conference.
Morgan Kaufmann Publishers, 1987, pp. 61–69.

[18] J. Rubio-loyola, J. Serrat, M. Charalambides, P. Flegkas, and G. Pavlou,
“A functional solution for goal-oriented policy refinement,” in Proc. 7th
IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY), 2006.

[19] H. Zhao and S. M. Bellovin, “High performance firewalls in MANETs,”
in The 6th International Conference on Mobile Ad-hoc and Sensor
Networks (MSN’10), Hangzhou, P.R. China, December 2010.

[20] H. Zhao, C.-K. Chau, and S. M. Bellovin, “ROFL: Routing as the
firewall layer,” in New Security Paradigms Workshop, September 2008,
a version is available as Technical Report CUCS-026-08.

