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ABSTRACT 

Molecular and Physiological Adaptations to Weight Perturbation in Mice 

Yann Ravussin 

 

From a medical perspective, obesity may be defined as a degree of relative adiposity 

sufficient to derange metabolic physiology in a manner that negatively impacts the health of the 

individual. While population-based cut points based on body mass index (BMI) are frequently 

used as a means of identifying such individuals, this is an imprecise approach since the critical 

levels of adiposity in this regard differ substantially among individuals.  

Our common genetic predisposition to increased adiposity, coupled with an environment 

conducive to positive energy balance results in an increasing prevalence of human obesity. 

Weight loss, even when initially successful, is very difficult to maintain due, in part, to a 

feedback system involving metabolic, behavioral, neuroendocrine and autonomic responses that 

are initiated to maintain somatic energy stores (fat) at a level considered ‘ideal’ by the central 

nervous system (CNS). Circulating leptin is an important afferent signal to the CNS relating 

peripheral energy stores with modulations in key leptin sensing area sensitivity possibly 

implicated in the functional and molecular basis of defense of body weight. These physiological 

responses, which include increased metabolic efficiency at lower body weight, may be engaged 

in individuals at different levels of body fat depending on their genetic makeup, as well as on 

gestational and post-natal environmental factors that have determined the so-called “set-point”.  

In the work presented in this dissertation the following aspects of the physiology of the 

defense of body weight were explored: 1) whether levels (thresholds) of defended adiposity can 

be raised or lowered by environmental manipulation; 2) the physiological and molecular changes 



 
 

that mediate increased metabolic efficiency following weight loss, 3) leptin’s role in setting the 

threshold; 4) the effects of ambient temperature on metabolic phenotypes of weight perturbed to 

assess whether torpor contributes to metabolic adaptation; and 5) whether changes in gut 

microbiota accompany changes in diet composition and/or body weight. 

To assess whether the threshold for defended body weight could be increased or 

decreased by environmental manipulations (i.e. high fat diet & weight restriction), we identified 

bioenergetic, behavioral, and CNS structural responses of C57BL/6J in long term diet induced 

obese (DIO) male mice to weight reduction. We found that maintenance of a body weight 20% 

below that imposed by a high fat diet results in metabolic adaptation - energy expenditure below 

that expected for body mass and composition - and structural changes of synapses onto arcuate 

pro-opiomelanocortin (POMC) cell bodies. These changes are qualitatively and quantitatively 

similar to those observed in weight-reduced animals that were never obese, suggesting that the 

previously obese animals are now “defending” a higher body weight. Maintenance of a lower 

body weight for more than 3 months was not accompanied by remission of the increased 

metabolic efficiency. Thus, the consequence of long term elevation of body weight suggests an 

increase in defended body fat that does not abate with time.  

Mice can enter torpor – a state of decreased metabolic rate and concomitant decrease in 

body temperature – as a defense mechanism in times of low caloric availability and/or decreased 

ambient room temperatures. Declines in circulating leptin concentrations and low ambient room 

temperature have both been implicated in the onset of torpor. To assess the effects of ambient 

room temperature and leptin concentrations on metabolic adaptation, we characterized C57BL/6J 

and leptin deficient (Lep
ob

) mice following weight perturbation at both 22°C and 30°C ambients. 

Weight-reduced C57BL/6J mice show metabolic adaptation at both ambient temperatures and do 



 
 

not enter torpor whereas weight-reduced Lep
ob

 animals readily enter torpor at 22°C. This 

suggests that sufficiently high absolute leptin concentrations may impede the onset of torpor and 

that torpor itself does not contribute to metabolic adaptation in mice that have an intact leptin 

axis.  

To assess whether hyperleptinemia per se was capable of increasing the threshold for 

defended body weight, leptin was infused by minipumps into C57BL/6J mice for 18 weeks and 

body weight and metabolic parameters were studied following cessation of leptin infusion. 

Leptin infused mice did not defend elevated body weights compared to PBS infused mice 

suggesting that leptin alone may not be capable of setting the threshold for body weight defense 

implying that other changes accompanying obesity (i.e. increased free fatty acids, endoplasmic 

reticulum stress and/or inflammation of leptin-sensitive neural areas) are implicated. A caveat 

and possible confound to this study is the possibility of antibody production against the 

exogenous leptin that could have drastically decreased the amount of bioavailable leptin in these 

mice. This experiment did not assess antibody production but subsequent studies should do so.  

Finally, gut microbiota have been implicated in the regulation of body weight possibly by 

impacting insulin resistance, inflammation, and adiposity via interactions with epithelial and 

endocrine cells. We assessed changes in relative abundances of cecal microbiota in mice 

following sustained changes in body weight and diet composition. In diet-induced obese (DIO) 

mice, we find that weight reduction resulted in shifts in specific bacteria abundance 

(Akkermansia and Mucispirillum) and that these changes were correlated with leptin 

concentrations. Leptin modulates mucin production in the gut possibly altering local microniches 

for certain bacteria providing a functional link between adiposity and gut-specific changes in 

bacterial populations.  



 
 

Overall, the major findings of these experiments are that the threshold for body weight 

defense can be raised but not lowered, that metabolic adaptation observed in weight-reduced 

mice is not a result of torpor, and that hyperleptinemia (if no anti-bodies were produced)  per se 

isolated from other obesity-related changes does not appear capable of raising the threshold.  
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CHAPTER 1: INTRODUCTION 

 

BACKGROUND AND SIGNIFICANCE 

 

Homeostasis, from the Greek hómoios meaning “same” and stasis meaning “standing 

still”, is a term first coined by Walter Bradford Cannon in 1926 based on the concept of the 

constancy of the milieu intérieur described by the French physiologist Claude Bernard at the end 

of the 19
th

 century. It refers to the relative stability of open or closed biological systems attained 

through dynamic equilibrium adjustment and regulation mechanisms. Many physiological 

systems are homeostatically controlled such as body temperature 
1
 and blood pressure 

2
. 

Although body weights across a population vary enormously, individuals show remarkable 

weight stability strongly suggesting that body weight is physiologically regulated 
3,4

. Neumann, 

in the beginning of the 20
th

 century, noted the relative stability of his own body weight with no 

conscious attempt by him to regulate energy intake or expenditure 
5
. He used the term 

“luxuskonsumption” to describe the body’s capacity to increase metabolic rate to counteract 

excessive energy intake. Seminal rodent studies placed the hypothalamus as a key center 

involved in body weight regulation 
6
. In the 1940s, Hetherington and Ranson 

7
 showed that 

lesions in the region of the ventral medial hypothalamus (VMH) led to extreme obesity in rats 

and the VMH is often referred to as the satiety center. Lesions in the lateral hypothalamus (LH) - 

subsequently referred to as the hunger center - caused severe anorexia and decreased body 

weight 
8,9

. This suggested that specific centers in the brain may be important in the physiological 

defense of body weight. Interestingly, once the lesioned rats reached a new stable body weight, 

they subsequently defended that body weight against further perturbations. For example, rats 
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with LH lesions that were weight reduced by 20% of their initial body weight through 

hypocaloric feeding and then given ad-libitum access to food readily regained the lost weight at 

rates similar to weight reduced non-lesioned rats
6
. Thermodynamic considerations dictate that 

changes in somatic energy content are the result of differences between energy intake and energy 

expenditure. The matching of energy intake (EI) to energy expenditure (EE), a requirement for 

weight stability, has been shown to be relatively accurate in both short term (0.57% intra-

individual coefficient of variation across 24 hour measurements 
10

) and longer term studies 
4
. Yet 

a very small but persistent mismatch between energy input relative to output would result in 

increased body mass over time (if the mismatch is maintained). Constancy of somatic energy 

content (“energy balance”) is achieved when input (i.e. dietary energy intake) equals output (i.e. 

total energy expenditure).  

EI is the caloric intake of an organism minus the calories lost in stool. Total energy 

expenditure (TEE) is comprised of  three major components: resting metabolic rate (RMR), the 

thermic effect of food (TEF), and non-resting energy expenditure (NREE) that includes all 

volitional activity and ‘exercise’ as well as non-exercise activity thermogenesis (NEAT) such as 

fidgeting. Although the molecular pathogenesis of obesity in humans is not fully understood 
11,12

, 

the disproportionate accumulation of body fat is probably caused by the interaction between 

environmental conditions (such as easy access to calorically dense and highly palatable foods 

and low requirement of physical activity to obtain this food) and genetic factors 
13

. Whereas it is 

true that weight loss improves the health of the obese and is therefore desirable, the fact that 75-

85% of people who have undergone weight loss ultimately regain the lost weight 
14

 indicates that 
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strong metabolic and environmental factors oppose the long-term maintenance of a reduced body 

weight.  

METABOLIC ADAPTATION 

 

The overfeeding studies conducted in a Vermont prison population further confirmed 

Neumann’s idea of “luxuskonsumption”. These studies suggested that in response to excess 

caloric intake, energy expenditure was increased beyond that accounted for by increased 

metabolic mass (fat mass, and fat-free mass) 
15

. Subsequent studies in humans reported that 

excessive caloric intake caused subsequent decreases in hunger 
16

 and concomitant increases in 

energy expenditure 
17

 whereas underfeeding caused subsequent increases in hunger and 

decreases in energy expenditure 
17

. The capacity for one to increase metabolic rate during a 

period of overfeeding was shown to be inversely correlated to the amount of weight gained; the 

higher the metabolic response to overfeeding, the less weight that person gains 
18

. This suggests 

that there are inherent metabolic differences among people in their capacity to raise EE in 

response to a period of hypercaloric feeding. Weight-reduced humans, maintained at either 10% 

or 20% below “normal” weight (defined as maximal lifetime weight, maintained within a range 

of 2 kg for at least six months), show decreased EE in absolute terms, but also when expressed 

per unit of metabolic mass (fat and fat-free mass). This metabolic adaptation to decreased body 

weight seems to result mainly from increased efficiency of  energy utilization in tissues and 

organs such as skeletal muscle 
17

. More specifically, Rosenbaum et al. have shown that a large 

part of the metabolic adaptation, whether assessed by ergometry 
19,20

, magnetic resonance 

spectroscopy (MRS) 
19

, or physical activity logs 
21

, is due to increased skeletal muscle chemo-

mechanical efficiency during low levels of physical activity 
22

. Some of this metabolic adaptation 
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is related to a decrease in sympathetic nervous tone, a concomitant increase in parasympathetic 

nervous system tone and to decreases in concentrations of bioactive thyroid hormones 
23,24

. 

Weight perturbation studies in weight-reduced obese and non-obese individuals show that the 

magnitude of metabolic adaptation is maximal at a weight loss of 10% of initial weight. In other 

words, subjects undergoing a sustained 20% weight reduction do not show significantly larger 

metabolic adaptation in total EE or in non-resting energy expenditure (NREE; both normalized 

for metabolic mass) when compared to subjects with a -10% weight reduction 
17

 (see Figure 

1.1). These data indicate that 10% weight loss may already be beyond the threshold at which all 

facets of metabolic adaptation are engaged to favor weight regain. Furthermore, this metabolic 

adaptation persists even after 6 years of successful maintenance of a lower body weight 
25,26

. 

Understanding the signaling pathways connecting the central nervous system to decreases in 

body weight is crucial if we are to produce meaningful approaches to the successful treatment of 

obesity. The main focus of my PhD work has been to understand the molecular and physiological 

mechanisms involved in metabolic adaptation to perturbations of body weight. 
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FIGURE 1.1: MEAN (±SD) OF OBSERVED – PREDICTED TOTAL ENERGY EXPENDITURE FROM 

HUMAN SUBJECTS 

These residuals were calculated based on a regression analysis of total energy expenditure 

related to fat mass and fat-free mass of the human subjects before weight loss (initial). 10% gain 

represent subjects at 10% above the individual’s customary body weight, “return to initial” are 

subjects that have been brought back down to initial weight following a maintenance period of 

+10% body weight, and “10% loss” and “20% loss” are subjects at 10% or 20% below initial 

body weights respectively
17

.  

 

ADIPOSTAT HYPOTHESIS  

 

There is strong evidence that body energy stores (fat) are physiologically regulated. For 

most, body weight is stably maintained without requiring conscious regulation of intake and/or 

expenditure of calories 
3,4

. An important early attempt to assign a physiological basis of weight 

stability was presented as the “adipostat” hypothesis by Kennedy in 1953 
27

. He presented 

evidence, that calorie intake in rats was correlated with total fat mass and that both were constant 

over time 
28

. His conclusion anticipated the discovery of an adipocyte-derived signal molecule 
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capable of “reporting” peripheral fat content to the brain. Such a molecule would need to fulfill 

several requirements: 1) it must accurately reflect quantity of somatic fat stores and therefore 

must generate a signal in proportion to the amount of adipose tissue: 2) it needs to reach its 

intended site of action (presumably, but not exclusively, the central nervous system): 3) it needs 

to have metabolic consequences that impact energy intake and expenditure. Woods, Porte, and 

others suggested that insulin may play such a role in body weight regulation 
29-31

. Basal insulin 

concentrations are positively correlated with adiposity 
32,33

 and insulin can reach the central 

nervous system (CNS) since it is present in the cerebrospinal fluid (CSF) of many species 
34,35

. 

Subsequently, intracerebroventricular injections of insulin were shown to cause decreases in 

body weight and energy intake 
30,36

. Another such candidate molecule arose from the study of a 

mouse line that contained a spontaneous mutation that caused extreme obesity. The mouse was 

first described at the Jackson Laboratory in the summer of 1949
37

. This mutation was designated 

as ob (for obesity) and the mice segregating for the ob mutation are now designated as Lep
ob

 
37

 

following the cloning of the gene leptin. The Lep
ob

 mice were hyperphagic -  plateauing at 4x 

greater body weight than WT mice 
37

 – and were later shown to have non-insulin-dependent 

diabetes mellitus (this phenotype was shown to be highly strain dependent), defective 

thermoregulation, defective fat oxidation, and infertility 
38

. A second spontaneous mutation that 

was known to be on a separate chromosome by virtue of linkage to somatic phenotypes, 

produced similar phenotypes to the Lep
ob

 animals, yet the affected mice become severely 

diabetic at a much younger age (was also subsequently shown to be strain dependent). This 

mutation was designated as db (for diabetes) and the mice segregating for the db mutation are 

now designated Lepr
db

 following the cloning of the gene leptin receptor. Parabiosis studies 

between the Lep
ob

 and Lepr
db

 mice were performed by Doug Coleman in the 70s. In these 
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experiments, the circulatory systems of two mice were connected by capillary anastomoses at the 

flanks resulting in small interchanges of blood between the animals. A lean wild type mouse that 

was pabariosed to a Lepr
db 

mouse quickly became hypoinsulinemic, hypoglycemic, and died of 

starvation while the Lepr
db

 mouse gained excess body weight (i.e. increased adiposity). A lean 

wild type mouse that was ligated to a Lep
ob

 mouse showed no phenotype while the Lep
ob 

mouse 

decreased food intake, insulin concentrations, and blood sugar levels. A Lep
ob

 mouse ligated to a 

Lepr
db

 had decreased body weight, adiposity, insulin concentrations, and blood glucose levels 

ultimately resulting in death while the Lepr
db

 mouse gained body weight and adiposity. The 

results suggested that the two mutations coded for proteins that worked in the same pathway 
39

. 

From these studies, Coleman inferred that ob might encode a secreted molecule, for which db 

was the receptor, which was later proven to be true. The cloning of the ob gene (Lep
ob

: 1994 
40

) 

and subsequently the db gene (Lepr
db

: 1995 
41

) was the culmination of molecular cloning 

strategies  executed by a investigators  at the Rockefeller University 
42

.  

 

LEPTIN AS AN ADIPOSTAT 

 

Leptin is a strong candidate for Kennedy’s proposed adipostatic signal. As the protein 

product of the ob gene 
43

, its plasma concentrations are highly correlated with total fat mass in  

weight stable rodents and humans 
44-46

. Serum concentrations quickly drop in response to 

reduced food intake therefore reflecting both existing fat stores and acute energy balance 
43

. 

Lep
ob

 mice 
47

, children 
48

, and adults 
49

 with congenital leptin deficiency are severely obese due 

to extreme hyperphagia. In both mice and humans with leptin deficiency, leptin injections result 

in dramatic weight loss due to decreased food intake and increased energy expenditure 
47,48

. This 
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rapid weight loss observed following leptin administration to leptin deficient mice and humans 

prompted the discoverers to name this protein leptin, from the Greek leptos meaning thin or slim 

40
. This name was assigned based upon the effects on obesity of the genetically null animals and 

before any of the hormone had been administered to human subjects. It was believed by some 

that leptin’s primary role was to promote weight loss and avoid weight gain 
40

 and the discovery 

of leptin and its receptor prompted hopes that administration of leptin to obese people would 

result in quick and sustained weight loss.  Human leptin injection studies ultimately found that 

even supraphysiological doses of leptin did not cause significant weight loss in non-obese or 

obese humans 
50

.   

The initial hypothesis with regard to the physiology of leptin did not seem to reflect some 

important aspects of the relevant biology. It is probable that most hominids have evolved in 

regions where food was physically demanding to obtain and relatively scarce. Thus, it is not 

surprising that humans would have evolved more mechanisms that favor accumulation and 

preservation of energy stores than mechanisms that limit excess energy storage. In times of 

excess food availability, the capacity to store extra calories as adipose tissue would have 

conferred to the individual evolutionary advantages during subsequent periods of famine and 

these genes would have been passed down to their offspring. This hypothesis was first put forth 

by Neel as the “thrifty gene hypothesis” 
51

. The thrifty gene hypothesis posited that alleles that 

conferred advantages in the past might become detrimental with progress and a changing 

environment. In the case of obesity, enrichment for alleles that favor weight gain over weight 

loss would become detrimental once caloric availability - especially of highly palatable and 

energy dense foods - became continuous rather than intermittent. Therefore, based on the low 
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energy expenditure and hyperphagia of Lep
ob

 and Lepr
db

 mice, the physiological consequences of 

leptin injection into Lep
ob

 mice, and evolutionary considerations regarding the probable positive 

selection for alleles favoring fat storage, others suggested that the primary role of the leptin axis 

was to protect adiposity, and that the Lep
ob

 and Lepr
db

 animals, due to their inability produce or 

respond to leptin, were in a physiological state similar to perpetual starvation 
13

. Leptin’s role in 

maintaining reproductive capacity further supports these inferences.  

 

LEPTIN AND REPRODUCTION 

 

Sexual maturation and fertility also require critical amounts of energy reserves to ensure 

survival of both the mother and the offspring
52

. Ovulation is often suppressed when a mammal is 

in negative energy balance, whether that state results from hypocaloric feeding, increased EE, or 

a combination of both 
52

. Women who have low body fat mass, such as professional gymnasts, 

often have delayed puberty onset and post-pubertal women with low fat mass become 

amenorrheic 
52

. As mentioned above, Lep
ob

 and Lepr
db

 mice are infertile exhibiting low 

gonadotropin concentrations, stunted development of reproductive organs and generally do not 

reach sexual maturity although these phenotypes seem to be highly strain dependent 
53

. Leptin 

administration to Lep
ob

 mice induces puberty, gonadotropin secretion, gonad maturation, and 

restores fertility 
54,55

. Humans with hypomorphic mutations in leptin or the leptin receptor genes 

recapitulate most of the leptin-deficient reproductive phenotype observed in mice 
48

. Leptin 

treatment of congenitally leptin deficient subjects caused increased concentrations of 

gonadotropin and estradiol, gonadal enlargement and pubertal development 
48

. A 48 hour fast in 

WT mice causes >50% decline in leptin concentrations coupled with a 90% reduction in 
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testosterone and 75% reduction in luteinizing hormone (LH) 
43

 while leptin administration blunts 

the fasting-induced suppression of LH and testosterone secretion and restores fertility 
43,56

. 

Finally, leptin treatment in women with hypothalamic amenorrhea increases mean circulating LH 

concentrations, ovarian volume, and estradiol concentrations 
57

. Allowing reproduction only to 

take place under favorable conditions of somatic fat stores – with high leptin concentrations 

reflecting sufficient adipose tissue energy stores and food availability – would have conferred 

evolutionary advantages to both mother and offspring. Leptin’s importance in regulating energy 

stores to allow for reproduction may have been the initial evolutionary driving force for 

maintenance/development of such a hormonal system defending against decreased adiposity that 

has now turned into a liability in the present environment of high caloric availability with 

decreased requirements of EE.  

 

LEPTIN SIGNALING 

 

Leptin signals through a cell-surface receptor that is a member of the type I cytokine 

receptor family 
58

. Alternative mRNA splicing produces multiple isoforms of the leptin receptor 

(LepR) that fall into three categories; long, short, and secreted 
59

. The long leptin receptor 

(LepRb) form mediates physiologic leptin action through activation of the receptor associated 

Janus kinase 2 (Jak2) tyrosine kinase 
60

. Activation of Jak2 stimulates the phosphorylation of 

several residues found on the intracellular portion of the LepRb including Tyr985, Tyr1077, and 

Tyr1138 
61

. Tyr1138 recruits the signal transducer and activator of transcription-3 (STAT3) that, 

once phosphorylated, is translocated into the nucleus regulating gene expression 
62

. The majority 
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of leptin action on EI and EE is through signaling via the LepRb expressed in the central nervous 

system 
63

, although this isoform is also found in the immune system 
64

, the pancreatic β-cell 
65

, 

and within the lining of the intestinal tract 
66

. Within the brain, LepRb is expressed in the 

hypothalamus (including the arcuate nucleus (ARC), dorsomedial hypothalamus (DMH), 

ventromedial hypothalamus (VMH), and lateral hypothalamus, the midbrain, as well as the 

hindbrain 
60,67

. Circulating leptin has to reach its target cells in the brain to function yet is too 

large to cross the blood brain barrier (BBB) by simple diffusion. It has been suggested that a 

specific transport system may function to carry leptin from the periphery into the CNS 
68

. Obese 

humans who have a 3-fold increase in serum leptin concentrations only show a 30% elevation in 

CSF leptin concentrations 
69,70

 and diet-induced obese rodents that are resistant to the effects of 

peripheral leptin administration still respond when leptin is administered directly into the CNS 
71-

73
. Taken together, these results suggest a transport mechanism for leptin between the blood and 

the CNS that functions in a saturable manner 
74

. It has been suggested that 2 of the short form 

leptin receptors, ObRa and ObRc, may be involved in transporting leptin across the BBB 
75,76

. 

Intravenous  infusion of radiolabeled leptin shows more rapid and larger accumulation of the 

protein in the median eminence (ME) and ARC compared to other hypothalamic sites 
77

. The ME 

is a  circumventricular organ and is a specialized structure that contains fenestrated capillaries 

providing an important neuroendocrine connection between hypothalamic neurons and the 

pituitary gland 
78

. Tanycytes are specialized ependymal cells found in the ME with processes 

extending into the hypothalamus 
79

. Leptin and other BBB-impermeable substances quickly enter 

the ARC from the circulation, suggesting possible cellular communication between the ME and 

the ARC through tanycytes. Thus, circulating leptin may have direct access to the ARC. In 

contrast, leptin does not have such access to the VMH and DMH that are believed to be 
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completely behind the BBB. Decreased transport of leptin across the BBB has been implicated in 

what some refer to as leptin “resistance” 
67

, a state in which leptin signaling is attenuated 

(decreased STAT3 phosphorylation) in response to acute leptin administration.  

 

LEPTIN AND ARCUATE HYPOTHALAMUS 

 

One major and well characterized target site for leptin action on metabolism is the 

hypothalamus, a key CNS region involved in the control of food intake and energy expenditure. 

The rat hypothalamic lesion studies discussed previously suggested that the lateral hypothalamus 

is a “hunger center” 
8,9

 and the ventromedial hypothalamus is a “satiety center” 
7
. The arcuate 

nucleus of the hypothalamus contains two distinct leptin-sensitive neuronal populations that have 

opposing effects on food intake and energy expenditure 
60

. Leptin inhibits orexigenic (appetite 

stimulating) neuropeptide Y (NPY), agouti-related protein (AGRP) neurons and stimulates 

anorectic (appetite suppressing) proopiomelanocortin (POMC)/cocaine-amphetamine regulated 

transcript (CART) neurons (see Figure 1.2). Leptin activation of the LepRb in the ARC causes 

STAT3-dependent activation of the POMC/CART cell population and production of POMC. 

Activation/depolarization of LepRb/POMC neurons increases POMC synthesis 
80

 which is 

subsequently cleaved into multiple products, including β-endorphin and α-melanocyte 

stimulating hormone (α-MSH). α-MSH causes decreased EI and higher EE by activating the 

melanocortin-4 receptor (MC4R) and the melanocortin-3 receptor (MC3R) that are found - 

among other places - in the LH and PVH 
81

 that are downstream in the leptin signaling pathway. 

This causes activation of the thyroid axis, sympathetic nervous activity, and brown adipose tissue 

resulting in  increased EE 
82

. Animals and humans lacking the POMC gene or with hypomorphic 



13 

 

 
 

mutations in the MC4 receptor are hyperphagic and obese, recapitulating many of the phenotypes 

observed in Lep
ob

 mice 
83

. NPY is an orexigenic (appetite-stimulating) peptide that also 

suppresses the central LepRb-mediated growth and reproductive axes 
84

. Injection of this  highly 

potent orexigenic neurotransmitter into the third ventricle of mice and rats causes obesity 
85

 due 

to marked hyperphagia 
86

 and decreased EE. The decrease in EE is related to inhibition of brown 

fat thermogenesis 
87

, inhibition of sympathetic nervous activity and suppressed circulating levels 

of thyroid hormone (T3 and T4) 
88

, the reciprocal of the phenotype seen in MC4R activation. 

AgRP, co-expressed with NPY in a special subset of ARC nucleus cells, is an inverse agonist of 

the α-MSH/MC4R signaling pathway thereby decreasing the anorexigenic tone of POMC-related 

signaling
89

. Leptin inhibits NPY/AgRP neurons via LepR mediated signaling suppressing 

expression of these neuropeptides 
89

.  

In summary, LepRb signaling through the ARC stimulates the production of anorectic 

neuropeptides (e.g. α-MSH) and suppresses orexigenic peptide production (e.g. NPY, AgRP). 

Conversely, a decrease or deficiency in leptin concentrations/activity (e.g. such as during 

starvation/fast or in ob/ob and db/db mice) causes increases in appetite via suppressed synthesis 

of anorectic neuropeptides (e.g. POMC) and increased expression of orexigenic peptides (e.g. 

NPY and AgRP). In summary, the overall simplified effects of leptin presence on the ARC of the 

hypothalamus are to decrease food intake and increase EE. As will be discussed below (see 

Leptin and Metabolic Adaptation), leptin’s true biological role may not be invoked upon its 

presence but rather its absence. In this scenario, it is a drop in peripheral leptin concentrations 

below “normal” that invokes strong physiological responses aimed at attenuating the negative 

energy balance and/or weight loss that could jeopardize survival and reproduction.  
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FIGURE 1.2 LEPTIN ACTION IN ARCUATE NUCLEUS AND DOWNSTREAM EFFECT 

Leptin stimulates POMC/CART and inhibits NPY/AGRP causing increase EE and decreased EI 
80

. 

 

LEPTIN AND EXTRA-ARC REGIONS OF CNS 

 

LepRb neurons in the ARC make up only 15–20% of the total number of LRb-expressing 

neurons in the CNS 
90

. VMH and ventral tegmental area (VTA) neurons that are LepRb positive 

clearly mediate important components of leptin action
91-93

. The role of ARC leptin-dependent 

effects on satiety (e.g. via LepRb/POMC and LepRb/NPY) has been well characterized and is 

described above. VMH neurons that are leptin sensitive, affect satiety through direct excitatory 

projections onto ARC POMC neurons
94,95

. Projection density of neuronal connections onto 

POMC cells in the arcuate were shown to be dynamically regulated by leptin concentrations (i.e. 

fed vs. fasted state, Lep
ob

 vs. Lep
ob

 + leptin injection). The provenance of such projections is not 

known at the current time. This technique, championed by Tamas Horvath and his group at Yale 
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University, was used in collaboration with us to explore synaptic plasticity in some of our 

weight-perturbed mice (chapter 2). One subpopulation of leptin-responsive VMH neurons – that 

co-express steroidogenic factor-1 (SF1) – is activated by leptin and is involved in leptin-induced 

satiety
91

.  

Brainstem regions, including the nucleus tractus solitarius (NTS) and the area postrema, 

have also been implicated in regulation of food intake
84,89,96

. The brainstem receives gut-derived 

inputs including vagal afferents, gut peptides such as glucagon-like peptide-1 (GLP1) and 

cholecystokinin (CCK). GLP-1 and CCK, which are released by the gut in response to food 

transit, act synergistically with leptin in neurons of the NTS resulting in increased satiety
97,98

. 

Direct leptin action on brainstem LepRb-positive neurons along with indirect leptin action via 

ARC neurons that send brainstem projections may contribute to the satiety effects of leptin.  

Leptin has also been implicated in the reward aspects of food through modulations of the 

mesolimbic dopamine system (DA)
99

. The LH ‘feeding’ center is extensively connected with the 

mesolimbic DA system and regulates feeding motivation and food reward (Kelley & Berridge 

2002, DiLeone et al. 2003, Fulton et al. 2004). Weight-reduced humans maintained at 10% 

below initial weight, were shown to have altered neural activity (measured by functional MRI) in 

specific regions known to be involved in the regulatory, emotional, and cognitive control of food 

intake and many of these changes were reversed upon leptin administration
100

.  

The neural effects of leptin are numerous and not fully understood. Dissecting the neural 

pathways involved in leptin-mediated changes in energy homeostasis is crucial to understand 

some of the homeostatic principles involved in defense of body weight. Any changes in the 

capacity of leptin to reach and activate the brain, may be translate to altered metabolic outcomes 
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that may underlie changes in apparent defended body weight. This is further discussed in the 

following section (Leptin and Metabolic Adaptation).    

 

LEPTIN AND METABOLIC ADAPTATION 

 

As mentioned above, leptin’s absence may invoke its true biological role. The 

physiological effects of leptin reduction (induced by starvation and/or decreased body weight) on 

increased food intake, decreased EE, and suppressed reproductive capacity are probably very 

important for survival when food is scarce. In contrast to the potent effect of leptin 

administration to humans or rodents with leptin insufficiency (weight reduced, fasted, or 

congenitally leptin deficient), rodents or humans at usual or increased weights administered 

physiological doses of leptin show very little response 
101

. In fact, in overweight and obese 

humans, almost 10-fold elevations of plasma leptin concentrations are required before induction 

of increased EE and decreased EI suggesting that leptin’s major physiological role is the 

metabolic effects incurred in its reduction 
22,50,102

.  

As discussed earlier, studies in humans have indicated that 10% or 20% decreases in 

body weight from “normal” were accompanied by disproportionate decreases in TEE, decreases 

in sympathetic nervous system tone (SNS) with concomitant increases in parasympathetic 

system nervous tone (PNS), and a downregulation of the thyroid axis (Table 1.1). These 

phenotypes are very similar to those observed in leptin deficient rodents and humans suggesting 

that metabolic adaptation observed in weight-reduced humans may be the result of reduced 

circulating leptin concentrations due to reduced body fat. It is important to point out that in these 

human studies the decrease in energy expenditure following weight loss did not reflect any 
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aspect related to the dynamic period of weight loss per se since measurements of energy 

expenditure were similar in the same people at initial weight vs. return to initial weight (subjects 

who had just been brought from 110% back to 100% body weight) following a maintenance of 

10% elevated body weights (Table 1.1). This suggests that some aspect of “initial” body weight 

was being sensed and could actively modulate metabolism; leptin is a prime candidate to 

function in this manner. To validate this concept in humans, leptin was administered to the 

weight-reduced subjects in doses sufficient to restore circulating concentrations of leptin to those 

present prior to weight loss. This protocol of leptin replacement reversed nearly all of the 

phenotypic changes that characterize the weight-reduced state, including the normalization of the 

energy expenditure phenotypes as well as most of the autonomic and endocrine changes 
103

 

(Table 1.1).  
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TABLE 1.1: CHANGES IN ENERGY EXPENDITURE, AUTONOMIC NERVOUS SYSTEM FUNCTION 

AND NEUROENDOCRINE FUNCTION  

Changes in subjects maintaining a reduced body weight with or without leptin ‘replacement’
103

  

 

Rodents, especially rats and mice, are commonly used models to explore leptin’s role in 

body weight homeostasis. Energy-restricted mice fed 80% of the ad-libitum caloric intake of 

control mice are clearly capable of compensating for this decrease in energy intake by reducing 

energy expenditure beyond that expected by decreased body mass (metabolic adaptation)
104

. 

Leptin administration to calorically restricted 
105

 and/or fasted 
43

 mice restores energy 

expenditure to levels similar to pre weight loss and/or fast. In addition, 48-h fasted male mice 

show starvation-induced changes in gonadal, adrenal, and thyroid axes that are all leptin 

reversible 
43

. 

Effects of 10% reduced weight 

maintenance

Effects of leptin administration 

to weight-reduced subjects

Energy expenditure

      24-h energy expenditure Decreased (-15%) Reversed

      Resting energy expenditure Decreased or unchanged No significant change

      Thermic effect of feeding Unchanged Unchanged

      Nonresting energy expenditure Decreased (-30%) Reversed

      Skeletal muscle work efficiency Increased (20%) Reversed

Autonomic function

      Sympathetic nervous system tone Decreased (-40%) Reversed

      Parasympathetic nervous system tone Increased (80%) Unchanged

Neuroendocrine function

      Thyroid-stimulating hormone Decreased (-18%) Unchanged

      Triiodothyronine Decreased (-7%) Reversed

      Thyroxine Decreased (-9%) Reversed

      Gonadotropins Decreased Reversed

      Circulating leptin Decreased (proportional to fat mass) Reversed
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Taken together, the relative absence of response to leptin injections in obese/overweight 

individuals even when given at supraphysiological doses in contrast to the strong physiological 

responses of many of the metabolic phenotypes seen in “hypoleptinemic” rodents and humans 

(weight-reduced, fasting, or congenically deficient) to whom leptin is administered suggests that 

the leptin axis may function primarily to defend body fat. Such a system might operate via a 

threshold mechanism; each individual having a different threshold resulting from genetic and 

developmental effects on the leptin signaling pathway (Figure 1.3) 
13

. We have hypothesized 

that leptin provides a circulating signal that reflects adipose tissue mass, and that the metabolic 

responses of CNS regions to this signal depend on the integrity and function of the pathways that 

assimilate this and other afferent signals 
13

. Variation in the genes that encode these pathways 

and developmental/environmental influences that may affect the expression of these genes and 

possibly the neuronal structural connection of the leptin signaling pathway govern the efficacy 

with which leptin is sensed in the CNS. If environmental changes are capable of decreasing the 

signaling efficacy of leptin by altering any of the subcomponents of the signaling pathway, then 

more leptin will be required to obtain a similar output signal. In this threshold model, higher 

body fat would be a rectification of low leptin signal transmission that would be achieved once 

sufficient circulating leptin is produced 
13

. In accordance with this hypothesis, when plasma 

leptin concentrations fall below this preset level – due to weight loss and/or fasting that can 

imperil survival and reproduction – a strong physiological response ensues including increased 

food intake, decreased energy expenditure, and increased food seeking behavior in an attempt to 

protect against further weight loss. Understanding the physiological and molecular mechanisms 

underlying such adaptation is important to the prevention and treatment of obesity. Whether this 

“threshold” can be raised or lowered through environmental means – such as sustained elevated 
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body weight (for raising the threshold) or maintenance of a reduced body weight (for lowering 

the threshold) – constituted the main thrust of my PhD research.  

 

FIGURE 1.3: LEPTIN THRESHOLD MODEL 

The major biologic response(s) are induced upon a decrease in circulating leptin amount below a 

lower threshold. During weight loss (i.e. fat loss) or decreased leptin production per unit fat mass 

(i.e. negative energy balance) ambient decreases in leptin below this lower threshold results in a 

strong anabolic response 
13

. 

 

ADAPTIVE THERMOGENESIS AND METABOLISM 

 

AMBIENT TEMPERATURE AND THERMOGENESIS 

 

In ectotherms, body temperatures closely track ambient temperatures since they do not 

have endogenous mechanisms of heat production. These organisms, also called poikilotherms, 
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encompass reptiles, amphibians, and most fish. In contrast, homeotherms, organisms that are 

capable of regulating body temperature through specific means of heat production (i.e. 

thermogenesis) such as birds and mammals, can expend  variable amounts of energy on specific 

mechanisms of heat production,  conferring  onto these organisms the capacity to live in 

environments that undergo larger temperature shifts. Max Kleiber, a Swiss scientist who studied 

energy metabolism in animals in the early part of the 20
th

 century, showed that for most 

homeotherms, metabolic rate scaled allometrically to the ¾ power of body mass (EE = M 
¾ 

; 

Figure 1.4) 
106

. The exact biological basis for “Kleiber’s Law” is not fully understood and many 

hypotheses have been proposed. Some believe that it describes the consequence of the physics 

and geometry of the biological systems that transport, distribute, and consume energy in an 

organism.  As the mass of an organism is increased, its surface to volume ratio is decreased with 

a higher proportion of the mass allocated for energy storage (e.g. fat) rather than structure (e.g. 

circulatory and respiratory systems). Since heat loss is directly related to surface area of an 

organism, larger animals are better protected from radiating heat through skin resulting in lower 

energy expenditure rates per unit of metabolic mass when compared to smaller animals. The 

allometric scaling of metabolism would seem to reflect these differences in surface to volume 

ratios at different masses. Others argue that the scaling is a result of the relationship between 

mitochondrial density and/or metabolism 
107,108

 
109

. Whatever the biological basis for such 

scaling, the fact that humans are more than 3 orders of magnitude greater in mass than mice has 

repercussions on the effects ambient temperature has on metabolic rate.  

Mice, a model organism used for much work on the molecular physiology of energy 

homeostasis, have a higher surface to volume ratio than humans 
110

. Furthermore, through the 
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use of clothing and technologies that allow for the regulation of ambient temperature energy 

expended for thermogenesis in most humans is very low 
111

. In most rodent vivaria, the ambient 

temperature is set at 22º-24ºC primarily for the comfort of the personnel working in the facility. 

However, the thermal stress imposed by this ambient temperature – sometimes compounded by 

increased air flow found in ventilated cages – causes higher energy expenditure, energy intake, 

and sympathetic nervous system tone to maintain core body temperature 
110,112,113

. The 

relationship of total energy expenditure (TEE) to ambient temperature for homeotherms is U-

shaped, with the lowest TEE for mice occurring between 30-40°C (“thermoneutral zone”)
114

. 

Above 40°C and below 30°C, increased metabolic rate is required to maintain stable body 

temperature through active cooling and thermogenic mechanisms,  respectively 
114

. Due to this 

higher requirement for thermogenesis, mice may enter torpor, a temporary physiological state 

characterized by a controlled decrease in metabolic rate and core body temperature (<30°C) 

below values considered to be normal, when confronted with low ambient temperatures and/or 

caloric restriction. Metabolic analyses of mice at the conventional 22°C ambient should, 

therefore, take into account that 40-50% of total energy expenditure is allocated to adaptive 

thermogenesis, resulting in reduced ability to detect subtle changes in energy homeostasis such 

as the effects of weight perturbation 
110,114

.  
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FIGURE 1.4: METABOLIC RATE VS. BODY WEIGHT OF DIFFERENT MAMMALS  

Relationship of metabolic rate and mass across many mammal species 106.  

 

LEPTIN AND THERMOGENESIS  

 

Mice can undergo shallow bouts of torpor, characterized by body temperatures of 22°C 

lasting less than 24 hours, in response to decreased food intake, suggesting that short term 

hormonal cues responding to food deprivation may be required for the onset of torpor in 

laboratory mice 
113

. The acute (≈40%) decline in circulating leptin concentrations following a 24 

hour fast and leptin’s known effects on energy expenditure render it a candidate hormone for 

triggering torpor. Lep
ob

 mice, both fed and fasted, become spontaneously torpid 
115-117

. Leptin 

administration to fasted WT mice and ob/ob mice blunts torpor 
105,115

. Yet low leptin levels 
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cannot be the sole signal involved in the onset of torpor since ob/ob mice are not always torpid. 

Other factors, such as nutrient availability, hormones such as ghrelin and insulin, and ambient 

temperature are likely integrated to determine torpor entrance in mice. 

In order to further understand the role of leptin, weight reduction, ambient temperature, 

and energy homeostasis, we examined the bioenergetic, hormonal, and behavioral responses to 

maintenance of a 20% body weight reduction in singly housed C57BL/6J +/+ diet induced obese 

(DIO) and Lep
ob

 mice housed at both 22ºC (sub-thermoneutral) and 30ºC (thermoneutral). The 

results of these two studies are described in chapter 5.  

 

MICROBIOTA AND METABOLISM  

 

The adult human intestine is home to up to 100 trillion bacteria 
118

. Experimental and 

computational advances have given us the tools to comprehensively characterize the nature of 

microbial diversity in the gut 
118

.  Sequencing of gut microbiota from lean and obese humans 

119,120
 and mice 

121,122
 has revealed phylum-level differences in bacterial populations suggesting a 

possible link between the obese phenotype and microbiota composition. Obese humans and mice 

are enriched in the phylum Firmicutes, and depleted in Bacteroidetes 
120-122

 compared to lean 

counterparts. Metagenomic and biochemical analyses and microbiota transplantation 

experiments indicate that the obesity-associated microbiota have increased ability to extract 

energy from a given diet 
121,123

. Microbiota transplanted from genetically (Lep
ob

) or diet-induced 

obese mice into germ-free WT mice caused a larger fractional increase in body adiposity 

compared to WT mice that received microbiota from non-obese animals (approximately 50% vs. 

25% gain in fat mass). Increases in body adiposity were not related to increased caloric intake 
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but rather to an enhanced capacity to extract calories from the food. The increased adiposity was 

attributed to an increased quantity of short chain fatty acids (a by-product of bacterial catabolism 

of dietary fiber; non-starch polysaccharides and other plant components) in the cecum and 

decreased fecal gross energy content (measured by bomb calorimetry)
121

.  

These data suggest that shifts in the microbial community could impact metabolism and 

have subsequent effects on weight gain or weight loss. We therefore undertook a sequencing 

study of cecal bacteria from the mice studied during the first large scale mouse weight 

perturbation study (mice described in chapter 2). We compared the microbiota of four groups of 

C57BL/6J mice: diet-induced obese mice (DIO-AL) and control (10% fat) diet-fed mice (CON-

AL) given ad-libitum access to these diets, and mice weight-reduced to 20% below initial weight 

(DIO-WR and CON-WR, respectively). In collaboration with Dr. Ruth Ley at Cornell 

University, we sequenced cecal microbiota and compared the relative abundance of specific 

bacterial populations with various physiological phenotypes of the mice. We hypothesized that 

part of the metabolic adaptation observed in weight-reduced mice might be related to changes in 

bacterial populations that may confer metabolic advantages to the host. The strategy, 

background, and results of these efforts are summarized in chapter 4. These studies were  

published in Obesity in May of 2011
124

.  

 

SUMMARY 

 

I have organized this dissertation as five manuscripts (chapters 2-6). Each manuscript 

contains an abstract, a specific introduction, materials and methods, results, and a discussion. 

The Introduction above provides the historical and biological context for the studies described.  
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The final chapter (chapter 7) is a discussion of the experiments conducted and how they fit into 

the scientific literature on obesity and metabolism. This chapter also contains questions that 

might be explored in light of the conclusions obtained through the work reported in this thesis. 

The first project I undertook during my PhD work involved the development of a mouse 

model in which to examine the bioenergetic and neurobiologic consequences of sustained weight 

perturbation 
22

. In this experiment, we examined the bioenergetic, behavioral, and CNS structural 

responses to weight reduction of diet-induced obese (DIO) and never-obese (CON) C57BL/6J 

male mice (chapter 2). We tested whether the level of defended body weight could be elevated 

through environmental means, in this case by access to a high fat diet (60% kcal from fat) for 16 

weeks. In the same mice we investigated cecal bacterial populations, by high-throughput DNA 

sequencing, correlating relative changes in abundance of certain species with specific 

physiological parameters of these mice (chapter 3). This sequencing project was undertaken to 

test whether some part of the metabolic adaptation observed in weight-reduced mice might be 

related to changes in bacterial populations that could confer metabolic advantages to the host. 

Finally from the same mice, we used food intake data coupled with changes in body composition 

to calculate energy expenditure using an energy balance technique and compared these results to 

EE obtained by indirect calorimetry. Those efforts are described in chapter 4. Following the first 

weight perturbation study – reported in chapters 2, 3, and 4 – we undertook two weight 

perturbation experiments aimed at further understanding the interplay between metabolic 

adaptation, the leptin axis, and ambient temperature on bioenergetic, endocrine, and behavioral 

responses. These efforts are summarized in chapter 5. Finally, chapter 6 summarizes an 

experiment that aimed at isolating hyperleptinemia, without the confounds of other metabolic 
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phenotypes that accompany obesity and the feeding of a high fat diet, through 18 weeks of leptin 

infusion into non-obese WT mice to determine whether elevated leptin concentrations was 

sufficient to raise the level of defended body weight once leptin infusion was discontinued.  
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CHAPTER 2: EFFECTS OF CHRONIC WEIGHT PERTURBATION ON 

ENERGY HOMEOSTASIS AND BRAIN STRUCTURE IN MICE 

ABSTRACT 

Maintenance of reduced body weight in lean and obese human subjects results in the 

persistent decrease in energy expenditure (EE) below what can be accounted for by changes in 

body mass and composition. Genetic and developmental factors may determine a CNS-mediated 

minimum “threshold” of somatic energy stores below which behavioral and metabolic 

compensations for weight loss are invoked. A critical question is whether this threshold can be 

altered by environmental influences, and by what mechanisms such alterations might be 

achieved.   

We examined the bioenergetic, behavioral, and CNS structural responses to weight 

reduction of diet-induced obese (DIO) and never-obese (CON) C57BL/6J male mice. We found 

that weight-reduced DIO and CON animals showed reductions in energy expenditure – adjusted 

for body mass and composition - comparable (-10 -15%) to those seen in human subjects. The 

proportion of excitatory synapses on ARC POMC neurons was decreased by approximately 50% 

in both DIO and CON weight-reduced mice.  

 These data suggest that prolonged maintenance of an elevated body weight (fat) alters 

energy homeostatic systems to “defend” a higher level of body fat. The synaptic changes could 

provide a neural substrate for the disproportionate decline in energy expenditure in weight-

reduced individuals. This response to chronic weight elevation may also occur in humans.  The 

mouse model described here could help to identify the molecular/cellular mechanisms 



29 

 

 
 

underlying both the defense mechanisms against sustained weight loss and the upward re-setting 

of those mechanisms following sustained weight gain. 
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INTRODUCTION  

 

Long-term maintenance of even modest reductions in body weight ameliorates or eliminates 

many of the co-morbidities of obesity 
125

. The recidivism rate to obesity in formerly-obese 

individuals is 75-85% 
14

, reflecting the potent metabolic and environmental pressures opposing 

long-term maintenance of a reduced body weight. We have previously shown that the 

maintenance of a 10% or greater reduction in body weight in both lean and obese humans is 

associated with a decrease in energy expenditure that is 15-20% below what can be accounted 

for by changes in body mass and body composition. This adaptive thermogenesis does not abate 

over time
25

, and predominantly reflects increased mechanical work efficiency of skeletal muscle, 

decreased circulating concentrations of bioactive thyroid hormones, and reduced sympathetic 

autonomic nervous system tone 
17,19,25,126

.  

Leptin is an adipocyte-derived hormone whose circulating plasma concentrations are correlated 

with fat stores at usual (stable) body weight, but which rapidly decline during food restriction 

and/or fasting 
43,127

.  We have proposed that central nervous system (CNS) energy homeostasis 

mechanisms respond asymmetrically (in a threshold-like mechanism) to changes in circulating 

plasma leptin concentrations 
13

.  This asymmetry is evident in the demonstrations that reductions 

in circulating leptin concentrations in weight reduced/food restricted humans induces a strong 

leptin-reversible metabolic adaptation (energy expenditure reduced beyond expected per unit of 

metabolic mass) 
22

, while increases in plasma leptin concentrations as a result of weight gain do 

not provoke long term changes in energy expenditure 
127

.  Even 10-fold increases in circulating 

plasma leptin concentrations resulting from exogenous leptin administration do not invoke 

consistent increases in energy expenditure or decreases in energy intake 
50

. Regulatory pathways 
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– constituted by specific neurons and their connections – in the hypothalamus 
80

 and brainstem 

98,128
 provide the neural substrate for the proposed threshold mechanism that uses ambient leptin 

as a primary afferent signal 
13

.  This threshold – set by genetic and developmental influences on 

its molecular and anatomic substrates – determines a minimum circulating concentration of 

leptin (hence body fat) that is “accepted” by the CNS as sufficient to ensure reproductive 

capacity 
43

 and survival in circumstances of restricted access to food calories 
13

. The secular 

trend towards increasing prevalence of obesity, and its continued resistance to long-term 

successful therapy 
14,129

, suggest that increasing levels of body fatness are being “defended” and 

that structural/molecular changes in CNS regulatory regions for energy homeostasis  may play a 

critical role in these changes. An important question in this context is whether the “threshold” for 

minimum adiposity can be reset upward by environmental factors, leading to physiological 

defense of an acquired increase in fat mass. 

In rodents, weight loss due to caloric restriction results in decreased  energy expenditure per unit 

of metabolic mass (“metabolic adaptation”) consistent with the “defense” of body fat stores by 

CNS-mediated responses to circulating leptin and other signals (e.g. insulin) reflecting the status 

of somatic energy stores 
130-136

. Rats selected by breeding to be predisposed
 
to diet-

induced obesity defend higher body weights than DIO resistant rats 
137

, readily regain lost weight 

following a switch back to ad-libitum food access after a period of hypocaloric feeding 
138

, and 

have increased arcuate nucleus  (ARC) expression of neuropeptide  Y (NPY), a key anabolic 

neuropeptide  released from leptin-sensitive neurons that increases food intake and decreases 

energy expenditure 
139

. Inbred mouse strains fed a high fat diet gain different amounts of body 
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fat that correlates with differential expression of genes in key regions of the arcuate nucleus 

140,141
.  

The aim of the present study was to assess - in a mouse model - the physiological and molecular 

consequences of maintenance of increased body fat (by high fat diet) and the subsequent 

adaptations following caloric restriction and maintenance of a reduced body weight. Our 

hypothesis was that such a chronic elevation in body fat would invoke changes in the structure of 

the hypothalamus resulting in an upward resetting of the threshold for minimum body fat. To 

assess the neural substrates for changes in energy expenditure and food intake in these 

circumstances, we analyzed excitatory and inhibitory synapses onto the cell bodies of POMC 

neurons in the arcuate nucleus, a cell population that is known to play a role in body weight 

regulation and whose synapses are leptin-responsive. We hypothesized that prolonged 

maintenance of an elevated body weight by DIO followed by weight loss would result in mice 

that were hypometabolic compared to DIO and never-obese mice, indicating that maintenance of 

an elevated body weight results in long-term upward “re-setting” of a minimum threshold for 

body fat 
13

.We anticipated that the ratio of excitatory/total synapse ratios onto the POMC 

population would be lower in the two weight-reduced groups, a phenotype similar to the 

decreases characterizing congenitally leptin deficient mice 
94

.  
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MATERIALS AND METHODS 

 

Animals and Diets: 18 week-old C57BL/6J male mice were obtained from Jackson Laboratory 

(Bar
 
Harbor, ME). Sixteen diet-induced obese (DIO mice – fed a high fat diet starting at 6 weeks 

of age; Research Diets, Inc. D12492i, 60 kcal% fat), and 16 control diet-fed (CON mice – fed a 

low fat diet also starting at 6 weeks of age; Research Diets, Inc. D12450Bi, 10 kcal% fat) were 

used for these studies (Figure 2.1A). Upon receipt, animals were kept
 
in a pathogen-free barrier 

facility maintained at 22-24 ºC with
 
a 12-h dark-light cycle (lights on at 0700 h). The mice were 

individually housed in plastic pens with corn-cob based bedding, fed the same diet they had been 

provided at Jackson Laboratory, and given ad libitum access to food (diet as specified) and water 

during a 30 day acclimatization period. The cages were equipped with feeding baskets specially 

designed to minimize food spillage. During this period, body weight and food intake were 

monitored every 2 to 3 days.  

The protocol was approved by the Columbia University
 
Institutional Animal Care and Use 

Committee. 

Study Design: After the 30-day acclimatization period, mice in each group (DIO or CON) were 

paired by body weight (nearest body weight ± 0 -1.7g) and one member of each pair randomized 

to either an ad-libitum fed group (DIO-AL & CON-AL) or a weight-reduced group (DIO-WR & 

CON-WR). There were 8 mice in each of the 4 groups. Mice in the weight-reduced groups 

received 50% of their average ad-libitum daily food intake until their body weight reached 80% 

of initial value (defined as day 0, Figure 2.1A) at which time the mice were switched to 80% of 

their initial daily food intake. Subsequent adjustments in calories provided were made daily for 

the rest of the experimental period in order to maintain each mouse between 79-81% of initial 
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(pre-caloric restriction) body weight (Figure 2.1A). Weight-reduced mice (DIO-WR and CON-

WR) had free access to water and were given 1/3 of their individual calculated food ration (± 0.1 

g) in the morning (07:45-08:15h) and 2/3 of the food ration in the evening (18:30-19:00). All ad-

libitum fed mice (DIO-AL and CON-AL) had free access to food and water throughout the day. 

In a subsequent study, 7 DIO-AL mice and 12 DIO-WR mice were weight perturbed in the same 

manner as described above and the DIO-WR were subsequently switched to ad-libitum access to 

the high fat diet. Food intake (g) and metabolizable energy intake (kcal/24h) was measured over 

the first twenty four hours (Table 2.3). 

Body weight, body composition and food intake: Body weight was measured (± 0.1 g) daily 

before morning feeding using an Ohaus Scout Pro 200g scale (Nänikon 

Switzerland, between 07:45-08:15h). For ad-libitum fed mice (DIO-AL and CON-AL), body 

composition (fat mass: FM, fat-free mass: FFM, & extracellular fluid) was measured  by time-

domain-NMR (Minispec Analyst AD; Bruker Optics, Silberstreifen,
 
Germany) 

142
before the 

morning feeding every 2-3 weeks; before and after calorimetry measurements (see below); 

before start of the weight reduction protocol; and on the day prior to sacrifice.  Food intake was 

recorded daily for the WR mice, and every 2 to 3 days for the AL mice (by weighing specially 

constructed feeding baskets designed to minimize spillage) during the entire weight perturbation 

experiment (Table 2.1). 

Energy expenditure by indirect calorimetry: Energy expenditure was measured with a 

LabMaster-CaloSys-Calorimetry System (TSE Systems, Bad Homburg, Germany).  O2 and CO2 

measurements were taken every 14 minutes during a 72 hour period while mice were maintained 

on their respective weight maintenance feeding schedules.  Because of possible initial stress 
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related to transfer to the chambers, only the last 48 hours of measurements were used to calculate 

total 24-hour energy expenditure (TEE; expressed in kcal/day) and respiratory quotient (RQ = 

VCO2 / VO2). Resting energy expenditure (REE in kcal/day) was defined as the lowest one hour 

period of energy expenditure, which coincided with the lowest 1 hour of total ambulatory 

activity during the 48-hour period and this value was extrapolated to 24 hours. Non-resting 

energy expenditure (NREE) was calculated as the difference between total energy expenditure 

(TEE) and REE. Physical activity was measured by an infrared beam system integrated with the 

LabMaster system. Total activity (beam breaks) in X, Y, and Z axis was stored every 14 minutes. 

The system is designed to differentiate between fine motor movement (defined as a single X or Y 

axis beam break), ambulatory movement (defined as the simultaneous breaking of two adjacent 

X or Y beams), and rearing, defined as the breaking of the Z axis infrared beam. 

Calculations: Energy expenditure is proportional to body mass and composition [fat-free (FFM) 

and fat (FM mass)]. We related total energy expenditure (TEE; kcal/day) of DIO-AL and CON-

AL mice to both FFM and FM by multiple regression analysis. There was no significant effect of 

diet composition on TEE. We therefore pooled the data from ad-libitum fed mice to create a 

baseline regression equation relating TEE (kcal/24h) to FFM and FM (grams) (TEE = 0.34 * 

FFM + 0.06 * FM + 5.16, R
2
 = 0.66, p < 0.01). This equation was used to predict TEE for all 

mice following experimental weight perturbation, as we have done in similar studies of human 

subjects 
17,127

. The residuals (i.e. the difference between measured and predicted values) were 

calculated for each animal and were tested against the null hypothesis that they were equal to 

zero. Baseline regression equations relating resting energy expenditure (REE – lowest one hour 

period of energy expenditure extrapolated to 24h) and non-resting energy expenditure (NREE = 

TEE - REE) to FFM and FM, predicted REE and NREE values, and residuals were also 
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calculated from data obtained by indirect calorimetry as described above (REE = 0.17 * FFM + 

0.14 * FM + 4.96, R
2
 = 0.74; NREE = 0.18 * FFM - 0.08 * FM + 0.20, R

2
 = 0.53).  

Serum Hormone and Metabolite Profiles: Before initiation of the weight reduction 

protocol, and at time of sacrifice, blood glucose (by tail bleed) and circulating leptin, insulin and 

bioactive thyroid hormone concentrations (by retro-orbital bleed) concentrations were 

determined after a 4-hour fast (see arrows on Figure 2.1). Blood for hormone and metabolite 

assays was allowed to clot for 1 hour at room temperature, spun at 4°C for 10 minutes at 1000g, 

and serum collected and frozen at -80°C until time of assay. Leptin was assayed using 

Quantikine ELISA kit (R&D Systems, Minneapolis, USA); insulin using the Mercodia 

Ultrasensitive Mouse Insulin ELISA (Mercodia AB, Uppsala, Sweden); T3 and T4 using RIA at 

Hormone Assay & Analytical Services Core at Vanderbilt University (Vanderbilt University, 

Nashville, TN); TSH by RIA at the National Hormone and Peptide Program (UCLA Medical 

Center, Torrance, CA). All assays were conducted according to manufacturer’s protocols.  

HOMA2 (calculator developed by University of Oxford -

http://www.dtu.ox.ac.uk/index.php?maindoc=/HOMA/index.php based on 
143

) was used to 

estimate insulin resistance (HOMA IR) and insulin sensitivity (HOMA S). 

Synaptic quantification on POMC neurons: Animals were deeply anesthetized then 

transcardially perfused with 50 ml of heparinized saline followed by 200 ml of fixation solution 

(4% paraformaldehyde 0.195% Picric acid and 0.1% glutaraldehyde in 0.1M phosphate buffer 

(PB, pH 7.4) and then brains processed for immunolabeling for POMC for subsequent electron 

microscopic examination.  Ultrathin sections were cut on a Leica ultra microtome, collected on 

Formvar-coated single-slot grids and analyzed with a Tecnai 12 Biotwin (FEI Company) electron 
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microscope.  The quantitative and qualitative analysis of synapse number was performed in an 

unbiased fashion as described earlier 
94,144

. To obtain a complementary measure of axo-somatic 

synaptic number, unbiased for possible changes in synaptic size, the dissector technique was 

used. On consecutive 90-nm-thick sections we determined the average projected height of the 

synapses and used about 30% of this value as the distance between the dissectors. On the basis of 

this calculation, the number of axo-somatic synapses was counted in two consecutive serial 

sections about 270 nm apart ("reference" and "look-up" sections) of 7 perikarya profiles in each 

animal.  Synapse characterization was performed at a magnification of 20,000. Symmetric and 

asymmetric synapses were counted on all selected neurons only if the pre- and/or postsynaptic 

membrane specializations were seen and synaptic vesicles were present in the presynaptic 

bouton.  Synapses with neither clearly symmetric nor asymmetric membrane specializations 

were excluded from the assessment.  The plasma membranes of selected cells were outlined on 

photomicrographs and their length was measured with the help of Scion image software (NIH). 

Plasma membrane length values measured in the individual animals were added and the total 

length was corrected to the magnification applied. Synaptic densities were evaluated according 

to the formula NV=Q-/Vdis where Q- represented the number of synapses present in the 

"reference" section that disappeared in the "look-up" section. Vdis is the dissector volume 

(volume of reference) which is the area of the perikarya profile multiplied by the distance 

between the upper faces of the reference and look-up sections, i.e., the data are expressed as 

numbers of synaptic contacts per unit volume of perikaryon. The synaptic counts were expressed 

as numbers of synapses on a membrane length unit of 100 µm. We analyzed 6 POMC 

immunolabelled neurons per animal (DIO-AL n = 6, DIO-WR n = 8, CON-AL n =7, and CON-

WR n = 8) 
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Statistical analysis: Data are expressed as means ± SEM. Statistical analyses
 
were performed 

using JMP (ver. 7; SAS, North Carolina). Where applicable, 2-way ANOVA’s were conducted 

using diet (DIO or CON) and treatment (WR or AL) as grouping variables. To determine 

whether the relationship between circulating leptin and fat mass differed among treatment 

groups, within group regressions were performed relating leptin to FM (Figure 2.1C) and then 

re-analyzed by ANCOVA using group as a covariate for all groups wherein the relationship of 

leptin to FM was statistically significant, i.e., all groups except CON-WR. To ascertain that 

circulating leptin concentrations were reduced following weight loss, comparisons of absolute 

leptin concentrations were made between DIO-AL and DIO-WR and between CON-AL and 

CON-WR. To ascertain that any metabolic differences between DIO-WR and CON-AL groups 

were not due to lower circulating leptin concentrations in DIO-WR, a comparison of absolute 

circulating  leptin concentrations was  made between DIO-WR and CON-AL. Statistical 

significance was prospectively defined as Pα<0.05. 
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RESULTS 

Body Weight & Body Composition  

At the start of the weight-reduction phase of the study (day 0, mice aged 22 weeks), DIO 

mice weighed 54±3% more than ad-libitum fed CON mice and had significantly higher 

fractional body fat (DIO, 29±1%; CON, 5±1% fat) (Figures 2.1 and 2.2A). From days 0 to 183 

of the weight reduction phase, both ad-libitum-fed groups (DIO-AL and CON-AL) gained a 

significant amount of body mass (Figures 2.1 and 2.2A). The increase in mass of both DIO-AL 

and CON-AL mice was primarily the result of increased fat mass (81±4% of weight increment in 

DIO-AL and 79±6% CON-AL). At time of sacrifice, DIO-AL body weight was 62±3% higher 

than CON-AL body weight; 75±3% of this excess weight was accounted for by increased FM.  

By design, caloric restriction (from day 0 to day 183) resulted in a 20% decrease in body weight 

in both DIO-WR and CON-WR groups. DIO-WR mice lost significant amounts of FM and FFM 

(FM accounted for 65±4% of weight loss), whereas CON-WR mice showed a significant 

decrease only in FFM (FFM accounted for 87±3% of lost weight). Weight and body composition 

of DIO-WR and CON-AL mice were not significantly different (Table 2.1 and Figure 2.2A and 

B). 

Energy Expenditure (TEE, REE, and NREE)  

Absolute TEE and REE of DIO-AL-fed mice were significantly higher than in CON-AL (Table 

2.1). While DIO-AL mice were heavier and fatter than CON-AL, the relationships between TEE 

and REE and body composition (FM and FFM) were not significantly affected by diet 

composition. Residuals for 24-hour TEE and of REE of WR mice were significantly below 

predicted (p<0.001; Figure 2.3) indicating that TEE and REE were reduced beyond what could 
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be attributed to changes in body mass and composition. Residuals were calculated based on 

actual values minus those predicted based on FFM and FM in all AL mice. However, similar 

results were obtained regardless of whether residuals were calculated based on FFM alone or 

FFM & leptin (data not shown). In addition, the absolute values of TEE in DIO-WR mice were 

significantly lower than in CON-AL mice despite the near-identity of body weight and body 

composition in these two groups (Table 2.1). REE of DIO-WR mice was 7.4±2.7% lower than 

predicted, accounting for 67% of the reduction in total 24-hour TEE (-0.7 kcal/day); in CON-WR 

mice, REE was 32.8±4.5% lower than predicted. This decrease of REE (-2.5 kcal/day) in CON-

WR exceeded the decrease in TEE (-2.2 kcal/day). The difference of 0.3 kcal/day is accounted 

for by an increase in NREE (0.3 kcal/day) due to increased locomotor activity - probably related 

to food seeking behavior - as reflected in the measures of physical activity (see Physical Activity 

and Figure 2.4A and 2.4C). 

Non-resting energy expenditure (NREE = TEE - REE) of CON-AL mice was 

significantly higher than the two DIO groups (Table 2.1).  When adjusted for body mass and 

composition, residuals of NREE for DIO-WR mice were significantly decreased (-0.3kcal below 

expected when adjusted for FFM and FM; p<0.05), while NREE residuals were significantly 

increased in the CON-WR group (+0.3kcal, p<0.05,).  

Physical Activity 

Total 24 hour physical activity (ambulatory movement), measured by the TSE infrared 

movement system, was highest in CON-WR and lowest in DIO-AL (Figure 2.4A); these were 

the only groups that were significantly different from one another (p<0.05) in this regard. DIO-

WR mice and CON-AL mice had nearly identical 24h total activity (Figure 2.4A), yet DIO-WR 
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group had significantly lower NREE (2.9±0.1 units vs. 3.4±0.1 respectively; Table 2.1) 

indicating that the DIO-WR were expending approximately 15% less energy per unit of 

movement than CON-AL although some of this decrease in NREE may be attributable to 

decreased thermic effect of feeding (TEF) (see Discussion). Cumulative ambulatory activity 

rhythms (sum of every 14 minute measuring period; Figures 2.4B for DIO & 2.4C for CON) 

over 48 hours show higher peaks of movement for WR mice, irrespective of diet, in the 1 hour 

period prior to AM and PM feeding times (see black bars on bottom of figures). Quantification 

of ambulatory activity in the 1 hour periods prior to feeding of WR mice showed  that WR mice 

have higher levels of ambulatory activity than AL mice, probably as a result of increased food 

seeking behavior (see Figure 2.4D) 
145

. 

Leptin 

  The key comparison is that of absolute circulating leptin concentrations in CON-AL and 

DIO-WR mice. If circulating leptin concentrations were significantly reduced in the DIO-WR 

mice compared to CON-AL mice, then the study would be biased towards our hypothesis: i.e.  

that DIO-WR mice will be hypometabolic and hypothyroid compared to CON-AL. In fact, the 

opposite was true and circulating leptin concentrations were significantly higher in DIO-WR 

mice compared to CON-AL (by t test comparison: Table 2.2B). There was no effect of diet 

composition on circulating leptin concentrations since the regression equations relating leptin to 

fat mass are almost identical between the DIO-WR and CON-AL groups (Figure 2.1C), and so 

the inter-group differences in circulating leptin concentrations are attributable to the higher fat 

mass of DIO-WR.  

Overall, leptin concentrations were highly correlated with total fat mass (by NMR) at the 

start and end of the experiment (respectively, r = 0.97 & 0.93, both p<0.001; see Figure 2.1B; 
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(Data prior to weight stabilization of all 4 groups of animals are not shown). The best fit for the 

relationship of leptin to fat mass was non-linear (r = 0.96, p < 0.0001), suggesting that the 

relationship between leptin and fat mass might differ at extremes of adiposity. To determine 

whether there were differences among groups in the relationship of leptin to fat mass, regressions 

relating leptin to FM for each of the four groups were made (see Figure 2.1C). As reported by 

others 
139,146

, DIO mice showed a disproportionately greater increase in circulating leptin 

concentrations relative to fat mass (Figure 2.1C). Regression equations relating leptin to FM 

were almost identical between CON-AL and DIO-WR, indicating no significant effect of diet 

composition on this relationship. There was no significant correlation of leptin and fat-mass in 

the CON-WR animals which is similar to what has been reported in studies of leptin in humans 

with extremely low FM 
147,148

. The lack of significant difference in absolute circulating leptin 

concentrations between CON-AL and CON-WR probably reflects the non-linearity of the 

relationship of leptin to FM in CON-WR animals. 

 

Other Hormones and Metabolites 

Prior to the start of the weight loss protocols, circulating glucose and insulin 

concentrations were all significantly higher in DIO mice than CON mice (Table 2.2). Weight 

reduction resulted in significant decreases in circulating insulin, T3, and glucose concentrations 

in DIO-WR compared to DIO-AL mice. T3 concentrations significantly decreased in the CON-

WR compared to CON-AL mice. Weight reduction, irrespective of diet, significantly decreased 

circulating glucose concentrations and increased insulin sensitivity (HOMA2). 
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Synapses onto POMC neurons in the arcuate nucleus 

Figure 2.5A and B are examples of electron microscopy images of POMC cell bodies 

with either asymmetrical/excitatory synapses (Figure 2.5A – large white arrows) or 

symmetrical/inhibitory synapses (Figure 2.5B – large black arrows). Figure 2.5C is a magnified 

section showing both asymmetrical/excitatory (large white arrow) and symmetrical/inhibitory 

synapses (large black arrow). Small black arrows point to the specialization below the 

postsynaptic density of the asymmetrical contact (Figure 2.5A and C). Figure 2.5D represents 

consecutive serial sections of the symmetrical contact shown on in Figure 2.5B. CON-AL mice 

had the highest excitatory/total synapse ratios of the 4 groups (Figure 2.5E) indicating a 

predominance of excitatory synapses over inhibitory ones in these animals during a period (ad-

libitum feeding) of relative satiety. In the weight-reduced groups of CON and DIO mice, there 

was a similar decrease in this ratio (-52% in DIO-WR and -53% in CON-WR when compared to 

CON-AL mice; p<0.01).  In these groups of demonstrably more hungry animals, inhibitory 

synapses dominated over excitatory ones. DIO-AL mice also had decreased ratios of 

excitatory/total synapses (37% below CON-AL), revealing a predominance of inhibitory inputs 

on POMC perikarya at the time of relative satiety. DIO-WR mice had lower ratios than DIO-AL, 

although this difference did not quite reach statistical significance (p = 0.13). 
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DISCUSSION 

 

The major findings of this study are: 1.) As in humans, mice maintaining a reduced body 

weight (DIO-WR and CON-WR) show decreases in REE and TEE (adjusted for FM and FFM). 

Most notably, the DIO-WR animals “defend” a higher body weight following an extended period 

of diet-induced obesity. 2.) There are no significant differences in the relationships in TEE or 

REE and body weight/composition between CON-AL mice on a chow diet and DIO-AL 

maintaining an elevated body weight; 3.) Mice maintained at a reduced body weight – regardless 

of initial weight - have a significantly lower ratio of excitatory/total synapses onto POMC cell 

bodies than CON-AL fed animals, ratios that are similar to those observed in leptin deficient 

Lep
ob

 animals 
94

. These changes are accompanied by increased ad libitum food intake – i.e. 

increased hunger and food seeking behavior (Table 2.3 and Figure 2.4 B, C, & D) that has been 

documented in weight-reduced humans 
149

, mice 
43

, and rats 
133,134,145,150

. The relative 

hypometabolism and decreased excitatory input into hypothalamic POMC neurons in DIO-WR 

mice compared to never-obese animals (CON-AL) with similar body composition and 

circulating leptin concentrations is consistent with the hypothesis that prolonged maintenance of 

an elevated body weight results in an upward “resetting” of the leptin threshold. 

The magnitude of the decline in energy expenditure (both TEE and REE) following weight 

loss observed in the DIO-WR compared to the CON-AL in this study is similar to those seen in 

humans (36). Interestingly, non-resting energy expenditure (NREE) was lower in DIO-WR 

compared to CON-AL (2.9±0.1SEM vs. 3.4±0.1 kcal/day respectively) although they had similar 

body weights (Table 2.1A; 33.3±1.2 vs. 32.3±1.4 g, respectively) and total activity counts 

(Figure 2.4A) suggesting that the DIO-WR require less energy to accomplish similar amounts of 



45 

 

 
 

activity (i.e. their skeletal muscles may be more efficient). Such an effect is, in fact, observed in 

weight-reduced human subjects 
19

.  

In relating rodent data to human studies, it is important to consider the differences in the 

fractional contributions to energy expenditure, behavioral changes as a result of weight loss, and 

even definitions of the different components of TEE. TEE of weight-reduced obese humans (who 

have lost 10% or 20% of their initial body weight) and never-obese humans (who have lost 10% 

of their initial body weight) - adjusted for body composition - is approximately 15% below that  

predicted by the losses of fat-free and fat mass 
17

. In humans, most of this relative decline in 

energy expenditure is attributable to an increase in skeletal muscle work efficiency 
19,22

. In mice, 

our estimates of energetic cost of locomotion suggest that there may be an increase in activity-

related efficiency following weight loss, but its contribution to the overall decline in TEE 

remains unclear. Unlike humans, the major component of decreased TEE in WR mice is 

decreased REE rather than NREE.   

Comparisons of rodent and human TEF data are complicated by different definitions. In 

humans, TEF refers specifically to the energy expended during digestion in a sedentary subject 

17
, while in rodents this term  includes postprandial changes in energy expended in physical 

activity 
151

, which may in part account for  the lower NREE observed in DIO-WR vs. CON-AL 

mice. TEF in mice accounts for a significantly greater fraction of TEE (>15%) than in humans 

(<10%) 
17,151

.  It is possible that changes in TEF, either due to the decreased caloric intake of WR 

animals or to an actual decline in the fraction of caloric intake utilized in digestion, accounts for 

some of the observed declines in TEE and NREE. Given the significant decline in circulating 

concentrations of T3 in WR animals, and the report that hypothyroidism, is associated with a 
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decrease in TEF in rats 
152,153

, it is possible that WR animals would expend a lower percentage of 

their ingested calories in TEF. However, studies of human subjects 
17

 and rats 
151

 who are being 

maintained at an approximately 10-15% reduced weight have reported no changes in TEF,  

suggesting that maintenance of a reduced body  weight is not associated with a significant 

decline in TEF expressed as a fraction of caloric intake.  

Studies in humans suggest that there is no remission of the relative hypometabolism that 

accompanies the chronic maintenance of a weight-reduced state 
25

. Similarly, in rats, 

maintenance for 16 weeks of a stable lower body weight was accompanied by a persistent 

hypometabolic phenotype and hyperphagia, and weight regain once ad-libitum feeding was 

resumed 
134

. This apparent “irreversibility” of the metabolic and behavioral consequences of 

sustained weight loss does not seem to occur following sustained weight gain; the data presented 

here suggest that prolonged elevation of body weight results in an upward “resetting” defended 

levels of energy stores. 

In the present study, long-term (16 weeks) diet-induced obese mice (DIO-AL) mice were not 

hypermetabolic (adjusted TEE) when compared to CON-AL mice by ANCOVA or multivariate 

regression. In shorter term overfeeding studies in rats 
154

 and humans 
17

, 10-15% increases in 

adjusted TEE are observed. Our data suggest that over longer periods of time, energy 

expenditure in weight-gained individuals returns to levels (adjusted for body mass and 

composition) that are comparable to those of individuals maintaining their usual (pre-gain) body 

weight.  Such an inference is supported by the fact that weight-stable obese and non-obese 

humans have comparable adjusted energy expenditures 
17

. Unlike mice that return to their usual 

body weight after short-term overfeeding and are then eumetabolic compared to their never-
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obese littermates, long term DIO mice who were weight-reduced (DIO-WR) are hypometabolic 

compared to both DIO-AL and CON-AL mice, but are metabolically similar to CON-WR mice 

(Figure 2.3). The reduction in energy expenditure in the weight-reduced DIO mice – to levels 

less than those of age, genotype and body mass/composition-matched CON-AL mice – is 

consistent with our hypothesis that sustained maintenance of an increased body weight results in 

an upward resetting of the “threshold” for minimum body fat. It might be argued that the decline 

in energy expenditure of the DIO-WR is related to CNS effects that are specific to the HFD. 

However, the same responses are seen in the CON-WR mice being fed a low fat diet, and high 

fat diets are certainly prevalent among human populations.  Nevertheless, it would be interesting 

to examine the responses of DIO-WR to a lower fat diet in terms of energy intake and 

expenditure. 

Relevant to this issue, others have found that DIO mice “settle” at higher body weights (i.e. 

increased adiposity) than never-obese animals when switched from an ad-lib HFD to an ad-lib 

chow diet 
155

 (personal communication, Dr. Silvia Corvera). Chow-fed formerly DIO rats also 

resist weight reduction when fed a hypocaloric diet by becoming hypometabolic (like non-DIO 

weight- reduced rats) 
155

. Furthermore, mice that are switched from a high fat diet to a low fat 

diet and then back to the high fat diet readily regain weight to levels similar before the diet 

switch 
156

. 

Epidemiological  observations of the increasing prevalence of obesity in humans 
129,157,158

 

and long-term difficulties in sustaining even mild degrees of weight loss, suggest that the 

threshold for the minimal body weight that is metabolically defended may be elevated via 

maintenance of greater adiposity for prolonged periods of time and/or at specific time-points 
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during development. In both humans and rodents, weight reduction results in decreased 

concentrations of circulating leptin, T3, and insulin. In the present study, as expected, we 

detected significant effects of treatment (AL or WR) on insulin sensitivity as reflected by 

HOMA2 
143

 : CON-WR HOMA2 was 197% higher than CON-AL,  and DIO-WR was 241% 

higher than DIO-AL; p<0.05. Circulating concentrations of leptin are closely proportional to 

body fat mass in weight-stable mice and humans
159,160

. Leptin’s capacity to reverse metabolic 

phenotypes seen in both rodents and humans following weight loss and/or during caloric 

restriction, and its effects on energy homeostatic processes in the brain, renders it a prime 

candidate as a mediator of metabolic adaptation under conditions of decreased somatic energy 

stores and/or negative energy balance 
22,43,161

. The higher circulating leptin concentrations 

relative to fat mass in DIO-AL mice, and the loss of linearity in the relationship of leptin to fat 

mass in CON-WR mice are consistent with other studies of weight maintenance in rodents 

following overfeeding and underfeeding 
146,162

.  A non-linear regression analysis improved the 

leptin to FM ratio (r
2 = 

0.96, p < 0.0001) when including all groups because of DIO-AL increased 

production of leptin per unit fat mass (see slope of linear regression in Figure 2.1C). The 

differences in the relationship of leptin to fat mass during weight maintenance following extreme 

weight loss or gain are less pronounced than the striking decreases or increases in the ratio of 

leptin to fat mass observed in humans 
127

 and rodents 
159

 during dynamic weight loss or gain, 

respectively. The observation that the relationship between leptin and fat mass was not different 

between DIO-WR and CON-AL groups in this study (i.e. that they fell on similar regression 

lines: Figure 2.1C) is an indication that these animals were, in fact, in similar states of energy 

balance. Since the regression of leptin on fat mass has a “non-zero Y-axis intercept”, the ratios of 

leptin to FM, as used by some laboratories, are not appropriate for   assessing “leptin 
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sufficiency/insufficiency” as they reflect solely the slope but not the intercept of the relationship 

between the variables (see Figure 2.1C for individual group regressions). Similar considerations 

dictate our use of multivariate regression to assess energy expenditure related to both FFM and 

FM as opposed to using ratios of TEE/FFM 
163

. 

Thyroid hormone concentrations in blood correlate with energy expenditure by mechanisms 

that are not fully understood
164,165

. T3 is increased during overfeeding 
23,166

 and reduced during 

underfeeding and/or weight loss 
23

. Serum T3 in the CON-WR was decreased by 51% and by 

47% in DIO-WR mice compared to their respective AL controls (Table 2.2). These changes in 

T3 concentrations following weight loss are similar to those noted in humans 
23

. 

Chronic changes in leptin signaling have been associated with structural changes in the 

hypothalamus
94

. These are plausible neural substrates for the consequent attenuations in energy 

intake and expenditure
167

. Leptin deficient Lep
ob

 mice had decreased ratios of excitatory/total 

synapses onto POMC arcuate neurons when compared to wild type mice and exogenous leptin or 

estrogen normalized this phenotype 
94,144

. In the DIO-WR and CON-WR mice we observed 

ratios of excitatory/total synapses onto POMC neurons that were 52% and 53% below those in 

ad-lib animals and comparable to those observed in the leptin deficient Lep
ob

 mice
94

. We have 

previously shown that the excitatory/total synaptic ratio positively correlates with POMC mRNA 

expression
94,168

. The comparability of these changes in DIO-WR and CON-WR animals supports 

our inference that the DIO-WR animals are now “defending” a higher level of body fat, and that 

the reduced excitatory/total synapses onto POMC neurons constitute a “signature” of relative 

leptin deficiency. Consistent with the reduced excitatory tone in POMC neurons in the weight 

reduced state, POMC mRNA in the arcuate is reduced in chronically food restricted rats 
150

, and 
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restored to fed levels by exogenous leptin. It is possible that opposite changes in 

orexigenic/anabolic NPY/AgRP neurons contributes to the phenotype 
141

. If these structural 

differences have functional consequences – a likely possibility given the physiology of leptin 

signaling in POMC neurons – the bioenergetics and endocrine profiles of the animals in this 

study could be accounted for
13

. The bioenergetic/neuroendocrine, behavioral, and fMRI 

responses of weight-reduced humans to low dose exogenous leptin are consistent with this 

inference
100,169

. The DIO-AL animals had lower excitatory/total synapse ratios than CON-AL, 

possibly reflecting effects of diet composition, the obese phenotype (i.e. increased leptin levels), 

or both. Feeding mice a high fat diet reduces apparent arcuate leptin sensitivity as early as 6 days 

after switching to high fat diet
170

. Enriori et al. showed that decreases in leptin responsiveness in 

the arcuate nucleus following diet-induced obesity could be reversed by decreasing the fat 

content of the diet
171

. These effects may account for the smaller difference in excitatory/total 

synapse ratios observed between DIO-AL and DIO-WR ratios. There may be a “floor” to this 

ratio.  
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PERSPECTIVES AND SIGNIFICANCE 

 

These data suggest that prolonged maintenance of an acquired elevation in body weight 

induces changes in energy homeostatic systems that lead to “defense” of a body weight higher 

than that dictated by genetic/developmental status of the animal. Structural changes in the 

arcuate nucleus (and elsewhere) may play a role in upward resetting of defended body 

weight
94,167,172

. Comparable processes, if present in humans, could account for some aspects of 

the secular trend to increasing obesity that clearly cannot be attributed to intercurrent genetic 

change. Understanding the neuro-biological predicates of such an acquired upward resetting of 

the minimum defended level of adiposity “threshold” could provide novel approaches to the 

prevention and treatment of obesity. For instance, the observations presented here suggest that 

pharmacological elevation of melanocortinergic tone may be particularly effective in the 

prevention of weight regain in formerly obese subjects.  These studies are also consonant with 

studied in humans indicating that the neurobiological responses to maintenance of a reduced 

body weight do not accommodate over time; i.e. that the physiology of the weight-reduced state 

persists.   
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Table 2.1. DIO-AL 

(n=7) 

DIO-WR 

(n=8) 

CON-AL 

(n=8) 

CON-WR 

(n=8) 

Indirect calorimetry measurements (days 132-144) 

Body Weight (g) 49.6±1.2
 a 

33.3±1.2
 b
 32.3±1.4

 b
 21.7±0.5

 c
 

Fat-Free Mass (FFM, g) 23.5±0.6
 a
 20.0±0.3

 b
 20.3±0.3

 b
 15.0±0.3

 c
 

Fat Mass (FM, g) 17.9±0.8
 a 

6.7±0.7
 b
 5.4±0.9

 b
 1.7±0.1

 c
 

Food Intake (g/day) 3.1±0.1
 b
 2.2±0.0

 c
 3.4±0.1

 a
 2.3±0.1

 c
 

MEI (kcal/day) 16.1±0.6
 a
 11.3±0.2

 c
 13.1±0.3

 b
 8.7±0.2

 d
 

24-hour energy expenditure (TEE, 

kcal/day) 

14.2±0.4
 a
 11.4±0.2

 c
 12.3±0.3

 b
 8.2±0.3

 d
 

Resting energy expenditure (REE, 

kcal/day) 

11.4±0.3
a
 8.5±0.3

 b
 9.0±0.3

 b
 5.2±0.4

 d
 

Non-resting energy expenditure 

(NREE, kcal/day) 

2.9±0.2
 b
 2.9±0.1

 b
 3.4±0.1

 a
 3.0±0.2

 a,b
 

Respiratory Quotient (RQ) 0.72±0.01
b 

0.71±0.01
b
 0.87±0.02

a 
0.85±0.01

a
 

TABLE 2.1: BODY WEIGHT, BODY COMPOSITION, FOOD INTAKE AND ENERGY EXPENDITURE  

Mean (± S.E.). MEI is metabolizable energy intake calculated by multiplying food weight in 

grams by caloric density of respective diet (CON – 3.85 kcal/gram: DIO – 5.24 kcal/gram). Data 

for any variable not marked by same letter are significantly different by two way ANOVA with 

Tukey post-hoc analysis.  
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Table 2.2. A. Data obtained during initial bleed – day 0 (Figure 2.1) 

DIO (n=15)  CON (n=16)  

Leptin (ng/ml) 74.4 ± 6.5
a 4.8 ± 1.6

b 

Insulin (ug/l) 3.7 ± 0.5
a 0.8 ± 0.1

b 

Glucose (mg/dl) 153.7 ± 3.8
a 121.7 ± 4.0

b 

T3 (ng/dl) 60.8 ± 8.8
a 19.9 ± 2.8

b 

T4 (ng/ml) 55.9 ± 2.0
a 48.2 ± 1.2

b 

TSH (ng/ml) 205.3 ± 32.5 170.2 ± 22.9 

 B. Data obtained during terminal bleed – days 173-179 (Fig 1) 

 DIO-AL (n=7) DIO-WR (n=8) CON-AL (n=8) CON-WR (n=8) 

Leptin (ng/ml) 121.7 ± 14.9
a 25.1 ± 2.9

b 14.0 ± 3.6
b* 9.0 ± 1.3

b* 

Insulin (ug/l) 3.7 ± 0.7
a 1.6 ± 0.2

b 1.2 ± 0.2
b 0.6 ± 0.1

b 

Glucose (mg/dl) 125 ± 3
a 105 ± 3

b 110 ± 3
b 94 ± 2

c 

T3 (ng/dl) 31.6 ± 5.3
a 16.8 ± 1.8

b 31.8 ± 8.1
a 15.7 ± 4.4

b 

T4 (ng/ml) 45.8 ± 4 49.9 ± 2 46.1 ± 2.2 50.6 ± 2.6 

TSH (ng/ml) 283.1 ± 30.5 252.8 ± 35.5 221.7 ± 52.7 226.8 ± 42.6 

HOMA2 S 10.1 ± 1.2
a 24.3 ± 4.3

ab 30.6 ± 4.5
b 60.2 ± 11.2

c 

HOMA2 IR 11.1 ± 1.8
a 4.9 ± 0.7

b 3.8 ± 0.6
bc 2.0 ± 0.3

c 

 

 

TABLE 2.2: SERUM HORMONES AND METABOLITES AT INITIAL AND SACRIFICE BLEEDS 

 Mean (± S.E.) Data not marked by same letter are significantly different by two way ANOVA 

with Tukey post-hoc analysis. T-test comparisons of CON-AL and CON-WR against DIO-WR 

are marked by * (p <  0.05).  
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Table 2.3 Food Intake (g/24h) Metabolizable 

Energy Intake 

(kcal/24h) 

DIO-AL (n=7) 3.5±0.1
*
 18.5±0.6

 *
 

DIO-WR (n=12) 5.2±0.2 27.0±1.0 

TABLE 2.3: FOOD INTAKE  AND METABOLIZABLE ENERGY INTAKE 

Food intake (g/24h) and metabolizable energy intake (kcal/24h) in DIO-AL and DIO-WR during 

first 24 hours after DIO-WR mice were given ad-libitum access to high fat diet (60% kcal from 

fat). Group means were compared by Student’s t test (* p < 0.001).  
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FIGURE 2.1: BODY WEIGHT, AND LEPTIN CONCENTRATIONS IN WEIGHT PERTURBED WT 

MICE 

A. Mean (±S.E.) body weight (grams) of 4 groups of 22 week-old mice from start of food 

restriction protocol. Arrows represent 4 hour fasted bleeding. Small upward inflections in body 

weights of DIO-WR and CON-WR mice (days 36-43) was due to a batch of corn cob-based 

bedding that contained corn kernels that was resolved by switching mice to wood-based bedding 

material on day 39. B. Leptin (ng/ml) to fat mass (g). Linear regression using DIO-AL and CON-

AL mice; solid line. Non-linear regression using all mice groups; dashed line.  C. Relationship 

between leptin and fat mass in DIO-AL (●, black solid line), DIO-WR (○, black dashed line), 

CON-AL (■, red solid line), and CON-WR (□, red dashed line) animals. DIOAL:   Leptin =12.6 

(FM) - 130.3, r=0.85, p=0.014 ; DIOWR:  Leptin = 4.3 (FM) - 5.4, r=0.84, p=0.009 ; CONAL:  

Leptin = 4.6 (FM) - 9.8, r=0.95, p=0.0003; CONWR: Leptin=  4.7 (FM) + 0.4, r=0.53, p=0.17. 
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FIGURE 2.2: BODY COMPOSITION IN WEIGHT PERTURBED WT MICE 

Mean (±S.E.) body weight and body composition (grams, fluid is defined as extracellular fluids) 

of DIO and CON mice either ad libitum fed  (A) or weight-reduced mice (B) at initial (day 0) vs. 

termination of experiment. n=8 in all experimental groups except DIO-AL, n=7. *P < 0.001, t-

test vs.CON. at same time point, † P < 0.001, paired t-test vs. initial .  
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FIGURE 2.3: ENERGY EXPENDITURE PHENOTYPES IN WEIGHT PERTURBED WT MICE 

Mean (±S.E.) Observed-minus-Predicted 24-hour total (black bars), 24-hour resting (grey bars) 

and non-resting (white bars) energy expenditure (kcal/24hr).  Predicted values obtained by 

multivariate regressions relating 24-hour total (TEE = 5.16 + 0.34 * FFM + 0.06 * FM), 24-hour 

resting (REE = 4.96 + 0.17 * FFM  + 0.14 * FM) or non-resting (NREE = 0.20 + 0.18 * FFM - 

0.08 * FM) energy expenditure with FFM and FM of ad lib fed mice (DIO-AL + CON-AL). *p < 

0.05, **p < 0.01, T-test of residuals vs. 0. 
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D DIO-AL (n=7) DIO-WR (n=8) CON-AL (n=8) CON-WR (n=8) 

N1 = Night feed 1 4.9±1.6
 a
 13.8±2.3

 b
 3.6±1.1

 a
 19.2±2.6

 b
 

M1 = Morning feed 1 8.3±3.5
 a
 11.3±3.6

 a, b
 5.3±1.4

 a
 19.2±2.5

 b
 

N2 = Night feed 2 4.5±0.7
 a
 14.4±2.1

 b
 6.9±2.2

 a
 24.1±2.1

 c
 

 

FIGURE 2.4: MEAN ACTIVITY AND FOOD INTAKE IN WEIGHT PERTURBED WT MICE: 

A. Mean (±S.E.) 24hr ambulatory movement beam breaks (sequential breaking of two adjacent x 

or y beams). B & C. Total cumulative ambulatory activity for each 14 minute period. N = night; 

M = morning. Black bars at bottom are 1h periods prior to feeding WR mice that are quantified 

in D. D. Cumulative ambulatory activity for 1h time period prior to feeding of WR mice (1000x 

beam breaks ±S.E.). Data not marked by same letter are significantly different by two way 

ANOVA with Tukey post-hoc analysis.  
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FIGURE 2.5: ELECTRON MICROSCOPY AND EXCITATORY/TOTAL SYNAPSES ON POMC 

NEURONS IN WEIGHT PERTURBED WT MICE 

A. Sample of EM image showing asymmetrical/excitatory connections (large white arrows) onto 

POMC cell body and unlabeled dendritic spine. Small black arrows point to an electron dense 

band below the postsynaptic membrane specialization, a characteristic sign of asymmetrical, 

excitatory synapses. B. Sample of EM image showing a symmetrical/inhibitory connection onto 

POMC cell body (large black arrows).  Small white arrows point to both pre-and postsynaptic 

thickening of the membranes typical of symmetrical synapses. C. An electron micrograph 

showing an asymmetrical (large white arrows) contact and a symmetrical contact (large black 

arrows) on a POMC-immunolabeled (light immunoperoxidase in cytosol) dendrite.  Small black 

arrows point to the specialization below the postsynaptic density of the asymmetrical contact.    

D. Consecutive serial sections of the symmetrical contact shown on panel B.  Note that no 

electron dense band (a characteristic of asymmetrical, stimulatory synapses) ever appears below 

the postsynaptic density. E. Mean ratio excitatory/total synapses on POMC cell bodies in the 

arcuate nucleus (arbitrary units±SEM): *p<0.05. White A in panel A and B mark axon terminals. 

Bar scale on A represents 1 μm for panels A and B and 0.5 μm for panel C. 
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CHAPTER 3: RESPONSES OF GUT MICROBIOTA TO DIET 

COMPOSITION AND WEIGHT LOSS IN LEAN AND OBESE MICE 

 

ABSTRACT 

Maintenance of  a reduced body weight is accompanied by a decrease in energy 

expenditure beyond that accounted for by reduced body mass and composition, as well as 

by an increased drive to eat.  These effects appear to be due – in part – to reductions in 

circulating leptin concentrations due to loss of body fat.  Gut microbiota have been 

implicated in the regulation of body weight.  The effects of weight loss on qualitative 

aspects of gut microbiota have been studied in humans and mice, but these studies have 

been confounded by concurrent changes in diet composition, which influence microbial 

community composition.  We studied the impact of 20% weight loss on the microbiota of 

diet-induced obese (DIO: 60% calories fat) mice on a high-fat diet.  Weight-reduced DIO 

(DIO-WR) mice had the same body weight and composition as control (CON) ad-

libitum (AL) fed mice being fed a control diet (10% calories fat), allowing a direct 

comparison of diet and weight-perturbation effects. Microbial community composition 

was assessed by pyrosequencing 16S rRNA genes derived from the ceca of sacrificed 

animals. There was a strong effect of diet composition on the diversity and composition 

of the microbiota. The relative abundance of specific members of the microbiota was 

correlated with circulating leptin concentrations and gene expression levels of 

inflammation markers in subcutaneous white adipose tissue in all mice. Together, these 

results suggest that both host adiposity and diet composition impact microbiota 
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composition, possibly through leptin-mediated regulation of mucus production and/or 

inflammatory processes that alter the gut habitat.   
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INTRODUCTION 

Interactions between  modern environments and strong biological mechanisms 

favoring energy storage have contributed to a dramatic increase in the prevalence of 

obesity over the past three decades 
173

. In humans and rodents, responses to weight 

reduction include reduced energy expenditure per unit of metabolic mass and increased 

hunger 
19,100,104,134

 (
124

).  These responses favor recidivism to obesity 
17

.  

Recent studies in rodents and humans implicate gut microbiota in energy 

homeostasis (reviewed in 
118

). Sequence-based studies have highlighted differences in gut 

microbial community composition between obese and lean humans 
119,120

 and mice 
121,122

.  

Altered gut microbial communities can impact host body weight in several ways.  For 

example, compared to lean animals, mice rendered obese either by a high-fat diet (HFD) 

or by leptin deficiency (ob/ob), harbor a gut microbiota enriched in the phylum 

Firmicutes, and depleted in Bacteroidetes 
120-122

. Metagenomic and biochemical analyses 

and microbiota transplantation experiments indicate that the obesity-associated 

microbiota has an enhanced ability to extract energy from a given diet 
121,123

. In this 

context, “extraction” means an increased amount of short chain fatty acids (a bi-product 

of bacterial catabolism of dietary fiber; non-starch polysaccharides and other plant 

components) in the cecum and decreased fecal gross energy content (measured by bomb 

calorimetry) indicative of increased absorption of short chain fatty acids by the host 
121

. 

Finally, specific microbiota may trigger low grade inflammation that reduces insulin 

sensitivity and may affect body weight by reducing neuronal (e.g. hypothalamic) 

sensitivity to circulating hormones such as leptin and insulin 
174,175

.  
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 Turnbaugh et al. reported strong effects of a HFD on the composition of the 

microbiota in mice 
123

.  Since the switch to a HFD resulted in host weight gain, it is 

unclear if alterations in the gut microbiota were due to dietary changes, to host adiposity, 

or to interactions between diet and adiposity.  To show that a HFD per se can cause an 

alteration in the microbiota, Hildebrandt and colleagues used RELMβ KO mice that 

become only slightly overweight when fed a HFD 
176

, yet still have significantly higher 

body weight and body fat content than low fat fed WT mice. 

In the studies reported here we examined the effects of weight loss on the gut 

microbiota in the context of high and low fat diets (60% and 10% of calories derived 

from fat, respectively), while controlling for body weight.  We compared the microbiotas 

of four groups of C57BL/6J mice: diet-induced obese mice (DIO-AL) and control (10% 

fat) diet-fed mice (CON-AL) given ad-libitum access to these diets, and mice weight-

reduced to 20% below initial weight (DIO-WR and CON-WR, respectively). The DIO-

WR mice had body weights and body compositions similar to those of the CON-AL 

mice. This design allowed us to: I. Compare diet effects on gut microbial community 

composition independent of body weight (DIO-WR vs. CON-AL); II. Compare the 

effects of weight loss in both lean and obese mice (DIO-WR vs. CON-WR); and III. 

Assess correlations between circulating leptin concentrations, inflammation marker 

expression levels in white adipose tissue, and the relative abundance of various gut 

bacteria.  
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MATERIALS AND METHODS 

 

Animals: 

The animals used in this study are described in detail in Ravussin et al. 2010 (in 

review 
124

. Thirty-two 18-week old C57BL/6J-male mice were obtained from the Jackson 

Laboratory (Bar Harbor, ME); 16 (DIO) had been fed Research Diets, Inc. D12492i (60% 

kcal fat, 20% kcal protein), and 16 (CON) had been fed Research Diets, Inc. D12450Bi 

(10% kcal fat, 20% kcal protein) from 6 weeks of age. Mice were individually housed 

upon arrival.  Animals from both diet groups were randomized to remain on the ad-

lib diets (AL) or to be calorically restricted to decrease their body weight by 20% over a 

1-2 week period by twice daily feeding of reduced (50%) quantities of their respective 

diets.  The feeding regimen was then altered to keep each individual mouse weight stable 

20% below their initial weight (WR).  This reduced weight was maintained for 23 

additional weeks to avoid “carryover” effects of the negative energy balance state 

required for weight loss, and to permit additional physiological analyses not reported 

here. All mice had ad-libitum access to water containing no bacterostatic agents 

throughout the entire experiment. Fat mass and fat free mass were assessed by time-

domain-NMR (Minispec Analyst AD; Bruker Optics, Silberstreifen,
 
Germany). Mice 

were sacrificed after a 4h fast during deep anesthesia.  The cecum (among other organs) 

was removed from each mouse.  Cecal content was aseptically removed, flash frozen, and 

stored at -80C until processing.  The protocol was approved by the Columbia University 

Institutional Animal Care and Use Committee. 
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Inflammation Markers 

qRT-PCR in Inguinal White Adipose Tissue 

Inguinal fat pads were removed, flash frozen in liquid N2, and stored at -80ºC.  

RNA was extracted using the RNeasy Mini Kit (Qiagen, Valencia, CA) (including the 

DNAse purification step) and reverse transcribed with the Transcriptor First Strand 

cDNA Synthesis Kit (Roche, Indianapolis, IN) using random primers. To quantify 

transcript levels in the various organs, qRT-PCR was performed on a Roche 480 

LightCycler using Syber green (Roche, Indianapolis IN) and normalized to cyclophilin b 

and presented as arbitrary units. Primers were as follows: Saa3 forward: 

AGCGATGCCAGAGAGGCTGTTC, reverse: AGCAGGTCGGAAGTGGTTGG; Pai1 

forward: TCCTCATCCTGCCTAAGTTCTC, reverse: GTGCCGCDCTCGTTTACCTC; 

F4/80 forward: CTTTGGCTATGGGCTTCCAGTC, reverse: 

GCAAGGAGGACAGAGTTTATCGTG; Slc25a forward: 

GGGTGTCAAGATCTCGGAACA, reverse: GTAGTCCCTCCACTCGTTCCA; 

Angptl4 forward: TTCCAACGCCACCCACTTACA, reverse: 

ACCAAACCACCAGCCACCAGA; Tnfα, forward: CCAGACCCTCACTAGATCA, 

reverse: CACTTGGTGGTTTGCTACGAC; Il10, forward: 

GCTCTTACTGACTGGCATGAG, reverse: CGCAGCTCTAGGAGCATGTG; DioII, 

forward: GCTGCGCTGTGTCTGGAA, reverse: TGGAATTGGGAGCATCTTCAC; 

iNos, forward: AATCTTGGAGCGAGTTGTGG, reverse: 

CAGGAAGTAGGTGAGGGCTTG, Cd11c, forward: 

CCTACTTTGGGGCATCTCTTTG, reverse: GCACCTCTGTTCTCCTCCTCTC. 
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Leptin Assay: 

Following a 4h fast on the day of sacrifice, mice were bled retro-orbitally. Blood 

for leptin assays was allowed to clot for 1 hour at room temperature, centrifuged 10 min. 

at 1000 x g at 4°C, and serum was collected and frozen at -80°C until time of assay. 

Leptin was assayed using the Quantikine ELISA kit (R&D Systems, Minneapolis, MN). 

 

Fecal DNA extraction 

Frozen fecal samples from the cecum were ground under liquid N2; a subsample 

of ~100mg was used for whole community DNA extraction 
122

:  A 100mg aliquot of each 

homogenized sample was suspended while frozen in a solution containing 500l of DNA 

extraction buffer [200mM Tris (pH 8.0), 200mM NaCl, 20mM EDTA], 210l of 20% 

SDS, 500l of a mixture of phenol:chloroform:isoamyl alcohol (25:24:1)], and 500l of a 

slurry of 0.1-mm-diameter zirconia/silica beads (BioSpec Products, Bartlesville, OK). 

Microbial cells were then lysed by mechanical disruption with a bead beater (BioSpec 

Products) set on high for 2 min (22°C), followed by extraction with 

phenol:chloroform:isoamyl alcohol, and precipitation with isopropanol. The quantity and 

quality of purified DNA was assessed using the Quant-iT PicoGreen dsDNA Assay Kit 

(Invitrogen, Eugene, OR) and a plate reader.  

 

16S rRNA gene PCR amplification and sequencing 

16S rRNA genes were amplified from each sample using a composite forward 

primer and a reverse primer containing a unique 12-base barcode 
177

 which was used to 

tag PCR products from respective samples 
178

. We used the forward primer 5’-
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GCCTTGCCAGCCCGCTCAGTCAGAGTTTGATCCTGGCTCAG-3’: the italicized 

sequence is 454 Life Sciences® primer B, and the bold sequence is the broadly conserved 

bacterial primer 27F. The reverse primer used was 5’-

GCCTCCCTCGCGCCATCAGNNNNNNNNNNNNCATGCTGCCTCCCGTAGGAGT-

3’: the italicized sequence is 454 Life Sciences’ primer A, and the bold sequence is the 

broad- range bacterial primer 338R.  NNNNNNNNNNNN designates the unique 12-base 

barcode used to tag each PCR product, with ‘CA’ inserted as a linker between the 

barcode and rRNA gene primer.  PCR reactions consisted of HotMaster PCR mix 

(Eppendorf), 200 µM of each primer, 10-100ng template, and reaction conditions were 2 

min at 95°C, followed by 30 cycles of 20s at 95°C, 20s at 52°C and 60s at 65°C on an 

Eppendorf thermocycler.  Three independent PCRs were performed for each sample, 

combined and purified with Ampure magnetic purification beads (Agencourt Bioscience 

Corp., Beverly, MA), and products visualized by gel electrophoresis.  No-template 

extraction controls were analyzed for absence of visible PCR products. Products were 

quantified using Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen).  A master DNA 

pool was generated from the purified products in equimolar ratios to a final concentration 

of 21.5 ng mL
-1

. The pooled products were sequenced using a Roche 454 FLX 

pyrosequencer at Cornell University's Life Sciences Core Laboratories Center. Data have 

been deposited in GenBank under SRA022795. 

 

Statistical analysis of mouse phenotypes 

Body weights, fat mass, leptin and inflammation marker levels (Table 3.1) are 

expressed as arithmetic means ± SE.  Statistical analyses
 
were performed using JMP (ver. 
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7; SAS, North Carolina). 2-way ANOVAs were conducted using diet (DIO or CON) and 

treatment (WR or AL) as grouping variables with Tukey post-hoc ANOVA. T-tests were 

conducted when directly comparing phenotypes of DIO-WR and CON-AL mice using 

JMP (ver. 7; SAS, North Carolina). All statistical tests were two-tailed. 

 

16S rRNA gene sequence analysis  

Sequences generated from pyrosequencing barcoded 16S rRNA gene PCR 

amplicons were quality filtered. Sequences were removed if they were shorter than 200 

nt, longer than 1000 nt, contained primer mismatches, ambiguous bases, uncorrectable 

barcodes or homopolymer runs in excess of six bases. The remaining sequences were 

denoised 
179

 and analyzed using the open source software package Quantitative Insights 

Into Microbial Ecology (QIIME, 
180

).   16S rRNA gene sequences were assigned to 

operational taxonomic units (OTUs) using UCLUST with a threshold of 97% pair-wise 

identity, then classified taxonomically using the Ribosomal Database Project (RDP) 

classifier 2.0.1. Two highly abundant OTUs (716 and 303) were not classified beyond the 

phylum level (Firmicutes) with this method.  For these two noteworthy OTUs, we used 

BLASTn against the NCBI non-redundant database, which yielded 98% and 97% ID 

matches to a 800bp 16S rRNA gene sequence of a bacterium that has not been cultured 

(accession number FJ836349).  This matched sequence was classified as belonging to the 

genus Allobaculum, family Erysipelotrichaceae (Firmicutes) with 100% confidence in 

RDP (the lack of a match with the shorter fragment is likely due to the many regions of 

low complexity in the short fragment which, when broken into random 7bp words by the 

algorithm, leads to incongruent classifications).   
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For tree-based analyses, a single representative sequence for each OTU was 

aligned using PyNAST 
181

, then a phylogenetic tree was built using FastTree.  The 

phylogenetic tree was used for measuring the-diversity (phylogenetic diversity, PD) 

and -diversity (using unweighted UniFrac 
182

) of samples.  Student’s t-tests were 

conducted and p-values corrected for multiple comparisons. The "nearest shrunken 

centroid" method was used to identify OTUs that are specifically over (or under)-

represented in a given category (diet, treatment or diet-treatment combinations). The 

amount of shrinkage was chosen in order to minimize the overall misclassification error. 

The analysis was performed using the PAM-R (Predictive Analysis of Microarrays) 

package under R software. 
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RESULTS 

The denoised sequence library comprised 1,276 distinct operational taxonomic 

units OTUs (from >300,000 reads).  Measures of -diversity reflect phylogenetic 

richness in each sample; we measured phylogenetic diversity or PD, a phylogenetic-tree 

based measure of diversity calculated as the tree-branch length present in each sample 

(Figure 3.1A). The average PD of each treatment group was significantly different from 

the others, and DIO mice had higher PDs than the CON mice (p < 0.05; Student t-test, p-

values corrected for multiple comparisons).  Bacterial communities of DIO-WR mice had 

the highest PD. Interestingly, the effect of weight reduction (i.e., WR vs. AL) had 

opposite effects on PD for the two diets: in the DIO mice the PD increased with weight 

reduction (t = 3, p-value = 0.004), while the PD in CON mice declined with weight 

reduction (t = 6.7, p-value = 7.31x10
-10

). Finally, DIO-WR mice microbiotas had a higher 

PD than CON-AL mice (t = 5.6, p-value = 1.4x10
-7

) despite equivalent body weights and 

body composition.   

Overall effects of diet - We performed a Principal Coordinates Analysis (PCoA) 

on the unweighted UniFrac distances between samples to determine to what extent diet 

(i.e. DIO and CON) and treatment (i.e. WR or AL) affected gut microbial community 

diversity 
182

.  Figure 3.1B shows a clear separation between the diets when principal 

coordinates (PCs) 1 and 2 are plotted.  In the DIO mice, the AL (blue dots) and WR (red 

dots) weight states can be distinguished, but such differences cannot be appreciated in the 

control mice between AL (purple dots) and WR (green dots) weight states. Globally, 

these results indicate that different diets promote different bacterial community diversity, 
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and that weight reduction affects the gut community composition of DIO (60% fat) mice 

but not that of mice fed a 10% fat control diet (CON-WR).  

Figure 3.1C summarizes the relative abundances of bacterial phyla in the 

different mouse groups. CON mice have greater abundance of Firmicutes than DIO mice: 

this difference reflects the dominance of two OTUs classified as the genus Allobaculum. 

Mice eating a HFD (DIO-AL and DIO-WR) have greater abundances of Firmicutes 

(excluding Allobaculum OTUs), and lower abundances of Allobaculum OTUs, when 

compared to animals fed the control diet (CON-AL and CON-WR).  Bacteroidetes levels 

are elevated in all mice ingesting the high fat diet (DIO-AL and DIO-WR) when 

compared to CON-AL and CON-WR mice. DIO-AL and DIO-WR mice also have a 

higher abundance of Defferibacteres due to the presence of Mucispirillum. 

We performed a nearest shrunken centroid classification analysis to determine 

which OTUs account for differences in composition of the gut microbial community 
183

. 

In addition, this analysis assesses how well a mouse microbiota is assigned to its 

treatment group based on its composition.  In this analysis as well, the two diets are very 

well separated: the class error rate between the two diets is very low (p=0.08, 2 mice out 

of 25 are misclassified).  However, when analyzing diet in the context of treatment, it is 

not possible to distinguish between CON-AL and CON-WR (misclassification error rate 

= 1) while DIO-AL and DIO-WR are readily distinguishable (only 1 out of 5 and 1 out of 

6 respectively, were misclassified).  The "classifying OTUs" (i.e., those driving the 

community differences) were retrieved from this analysis and an unsupervised 

hierarchical clustering was performed on their abundances (Figure 3.2A). The resulting 
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heatmap (Figure 3.2B) shows an OTU (Firmicutes; Allobaculum) that is almost absent 

from all of the DIO samples and is present in all but one of the CON samples. 

Nearest shrunken centroid classification revealed 8 OTUs that discriminated 

between the two diets. Seven of the eight OTUs are under-represented in CON mice and 

over-represented in DIO.  The OTU with the greatest contrast between CON and DIO 

was a member of the Lachnospiracaea family of the Firmicutes phylum: this OTU 

is underrepresented in CON (score of -0.82) and over-represented in the DIO mice (score 

of +1.04).  An OTU classified to the genus Allobaculum was over-represented in CON 

(score of +0.61) and under-represented in DIO (score of -0.78).  Members of an OTU 

classified as the genus Mucispirillum were also positively correlated with the DIO mice 

(score of +0.51) and negatively correlated with the CON mice (scores of -0.4). 

Effect of weight reduction on composition of the microbial community - The 

DIO-WR mice form a separate cluster from the DIO-AL (ad-libitum) group and are 

intermediate between the DIO-AL and the CON animals in the PCoA plot of unweighted 

UniFrac distances (Figure 3.1B). There is no significant difference in mean unweighted 

UniFrac distances within and between treatments (WR vs. AL, t = 0.82, p-value = 0.41). 

The average unweighted UniFrac distances within and between diets is significantly 

different, indicating that diet type is a strong factor in bacterial diversity regardless of the 

abundances of specific types of bacteria (t = 9.47, p-value = 9.13x10
-19

). 

Nearest shrunken centroid analysis, which takes into account OTU abundances, 

indicated that 4 of the 5 DIO-AL mice, and 5 out of the 6 DIO-WR mice, could be 

correctly classified (overall error rate = 0.176).  Five OTUs discriminated between the 

DIO-WR and DIO-AL.  Allobaculum was enriched in the weight reduced mice and 
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contributed most to the separation of these communities. Others, listed in order of effect 

size, are OTUs classified as members of the Ruminococcaceae and Lachnospiraceae 

families, and a member of the genus Lactococcus, all of which were enriched in AL; and 

an OTU classified as a Firmicute that was enriched in DIO-WR.  

Unlike DIO mice, CON-AL and CON-WR microbiotas did not segregate in the 

unweighted UniFrac PCoA nor on the basis of shared OTU abundances.  When 

comparing the relative OTU abundances and the effect of the weight reduction in DIO 

mice (Figure 3.1C), there was an increase in the abundance of Allobaculum in leaner 

mice, but the overall abundance of Firmicutes was constant.  In the CON mice, the 

relative abundances of Firmicutes and Allobaculum stayed approximately the same 

between the AL and WR, but in the CON-WR mice there was an increase in the 

abundance of Allobaculum OTU_303, and a decrease in the abundance of 

Allobaculum OTU_716. We also noted a decrease in the relative abundance of members 

of the Proteobacteria phylum. 

 Mice of the same weight but ingesting different diets: comparison of DIO-

WR and CON-AL - In the overall analysis using unweighted UniFrac, the DIO-WR 

formed an intermediate cluster between the DIO-AL and the CON.  PAM-R analysis 

comparing the microbiotas of mice of same body weights and body composition, but 

ingesting different diets (DIO-WR vs. CON-AL), identifies 5 OTUs (Figure 3.2A) that 

accounted for differences between these two groups of mice: OTUs classified as 

members of the Lachnospiraceae family, the Firmicutes phylum, and the genera 

Bacteroides and  Mucispirillum were found to be enriched in the DIO-WR mice, 

and Allobaculum was found to be enriched in the CON-AL mice.  Abundances of OTUs 



77 

 

 
 

belonging to the Lachnospiraceae and the Deferribacteraceae accounted for the majority 

of the differences between the DIO-WR and CON-AL mice.  At the phylum level 

(Figure 3.1C), the DIO-WR mice harbored higher abundances of Bacteroidetes than the 

CON mice.  Although the CON-AL mice had higher relative abundances of Firmicutes, 

this trend was driven exclusively by Allobaculum OTUs: when Allobaculum OTUs were 

excluded, the CON-AL mice showed lower Firmicutes abundance than the DIO-WR. The 

Deferribacteres (e.g., genus Mucispirillum), although present in low percentage in the 

DIO-WR, were absent from the CON-AL. 

Circulating leptin, inflammation markers in inguinal fat, and bacterial 

community composition - I) Circulating Leptin.  As expected, serum leptin 

concentrations were highly correlated with total fat mass (by NMR) (Figure 3.3A; r
2
 = 

0.92, p < 0.0001), and there was no effect of weight loss per se on this relationship.  DIO-

WR mice lost significant amounts of fat mass (FM) and fat free mass (FFM) (FM 

accounted for 65±4% of weight loss), whereas CON-WR mice showed a significant 

decrease only in FFM that accounted for 87±3% of lost weight.  As a result, circulating 

leptin concentrations in DIO-WR mice were reduced about 80% compared to initial 

concentrations in DIO; whereas in CON animals, weight loss reduced leptin 

concentrations by only 12%.  Consequently, DIO-WR mice had significantly higher 

circulating leptin concentrations, and slightly but not significantly higher fat mass, than 

CON-AL mice when these phenotypes are compared by direct t-test.  These differences 

in absolute circulating concentrations of leptin reflected differences in fat mass only, i.e. 

were not due to differences in circulating leptin normalized to fat mass (Figure 3.3A).  

Figure 3.3 shows that circulating leptin concentration is positively correlated with OTU 
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abundance of the genera of Mucispirillum, ρs = 0.61 p=0.002, Lactococcus ρs = 0.52 

p=0.008, and Lachnospiraceae, ρs = 0.63 p<0.001, respectively (Figure 3.3b-d). 

Allobaculum abundance was negatively correlated (Figure 3.3e) with leptin 

concentration (ρs = -0.73 p=0.001). No patterns were detected when comparing 

circulating concentrations of T3, T4, insulin, or adiponectin to relative abundances of the 

microbiota (data not shown). 

II) Inflammation markers.  Expression levels of selected inflammatory markers 

and the solute carrier Slc25a25 were examined in inguinal fat pads (Table 3.1). Slc25a25 

is a mitochondrial transporter that is believed to be involved in energy expenditure 

homeostasis; its gene expression in WAT correlates positively with diet composition and 

cold stress (personal communication Dr. Kozak). Weight reduction was associated with 

significant decreases in Pai1 and Saa3 mRNA levels in DIO-WR compared to DIO-AL 

mice.  Slc25a25 levels were higher in DIO mice than CON mice, regardless of weight 

reduction.  F4/80 levels were significantly lower in CON-WR mice compared to all three 

other groups.  Cd11c expression was significantly higher in DIO-AL than all other 

groups, although weight reduction per se, showed (by 2-way ANOVA) near significance 

(p=0.07).   No significant differences in levels were seen for Il10 and Tnfa across all 

groups.  Expression level of DioII, a gene that influences energy expenditure by 

peripheral tissue conversion of thyroxine (T4) to the more physiologically active 

triiodothyronine (T3), was decreased in DIO-WR but increased in CON-WR animals. 

iNos expression was significantly decreased in DIO-WR animals  but significantly 

increased  in CON-WR animals. Figure 3.4 is a heatmap showing the correlations 

between the inflammation markers and the abundances of selected OTUs.  Expression 



79 

 

 
 

levels of Slc25a25 were strongly positively correlated with relative abundance of 

Bacteroides, Mucispirillum, and an unclassified Lachnospiraceae, and negatively 

correlated with Allobaculum.  Saa3 and Pai1 were positively correlated with Lactococcus 

and a Lachnospiraceae. Allobaculum OTUs showed the opposite trend. 

We also measured expression levels in adipose tissue of Angtpl4 (also known as 

Fiaf) and found the WR mice to have lower levels of expression than the AL mice (Table 

3.1).  Figure 3.4 shows a very strong correlation between Angtpl4 levels and an 

unclassified member of the Clostridiales. Angtpl4 levels also correlated with relative 

abundance of  Lactococcus and  unclassified Ruminococcaceae and Lachnospiraceae 

OTUs. 
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DISCUSSION  

 

In this study, diet composition per se had the biggest effect on the gut microbiota.  

Our DIO-WR and CON-AL groups had similar body composition and weights, allowing 

a comparison of their gut microbiotas without the confounding effects of 

weight/adiposity. The differences in relative bacterial abundances between DIO-WR and 

CON-AL corroborate those of Hildebrandt et al., who reported an effect of diet 

composition independent of host body weight, although the body weights in those 

experiments were not as closely matched as those in the present study and the mice in our 

study are not segregating for a monogenic mutation (RELMβ) 
176

. Significant differences 

have been demonstrated in the diversity of the microbiotas of rodents and humans 

ingesting high fat and low fat diets 
123,176,184

, but these studies do not adequately control 

for differences in body mass or body composition.  In addition, these studies do not 

distinguish whether effects on gut microbiota are a result of increased caloric intake per 

se or the fact that the composition of the diet was higher in fat content. Our results 

confirm unambiguously that dietary fat content, and not increased caloric intake, affects 

gut microbiotas in animals of similar weights. 

Weight reduction affects the composition of the gut microbial community in mice 

and humans 
118-120,122,123

.  However, the weight loss in these studies resulted from changes 

in diet composition and/or changes in number of calories ingested, potentially 

confounding the respective contributions of diet composition, weight loss, and their 

interactions.  We show here that, in mice fed a high fat (60%) diet, maintenance of a 20% 

reduced body weight affects the composition of the gut microbiota.  This effect is not 
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seen in weight-reduced mice fed a low fat (10%) diet. The different effects of weight 

reduction on the gut microbial community composition between these two groups of mice 

may reflect effects of diet, initial body weight/composition (and attendant biological 

consequences), and/or their interactions.  

The changes in gut microbiota observed in weight-reduced mice on the DIO diet 

but not on the CON diet is intriguing.  This difference may be attributable to the 

differential effects that weight loss has on absolute changes in leptin concentrations 

between the DIO and CON mice. Leptin concentrations are linearly correlated with fat 

mass - Figure 3.3A. DIO-WR mice lost significant amounts of fat mass (FM) 

(accounting for 65±4% of weight loss), whereas CON-WR mice showed a significant 

decrease only in fat-free mass (accounting for 87±3% of lost weight). As a result, leptin 

concentrations in DIO-WR mice were reduced about 80% compared to initial 

concentrations in DIO, whereas in CON animals, weight reduction lowered leptin levels 

by only 12%.   Our results suggest that the effects of body weight change on the gut 

microbiota may be mediated, in part, by changes in circulating leptin concentrations.  

A connection between circulating leptin concentrations and the composition of the 

microbiota is suggested by the following observations: (1) several operational taxonomic 

units (OTUs) have abundances that are correlated with circulating leptin concentrations, 

and (2), these OTUs have been shown to interact with intestinal mucin, an important 

component of the intestinal milieu made up of heavily glycosylated proteins produced by 

endothelial cells. Mucin is important in creating micro-niches that are favored by some 

bacterial populations. For instance, Akkermansia and Allobaculum abundances and 

circulating leptin concentrations were negatively correlated, whereas Mucispirillum 
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abundance was positively correlated with circulating leptin concentrations and showed 

highest relative abundance in the obese mice. These OTUs are also noteworthy because 

Akkermansia can subsist on mucin 
185

, and Mucispirillum is known to colonize the mucus 

layer 
186

.  These relationships raise the question of whether leptin concentration affects 

mucin production and/or composition in the gut, which then in turn could influence the 

preponderance of specific populations of bacteria 
187

. Administration of leptin into the 

colon of rats strongly stimulates mucin production; and leptin stimulates mucous 

production in vitro in human intestinal mucin-producing cells (HT29-MTX) 
187,188

.  

Humans segregating for  a single nucleotide polymorphism (Q223R) in the leptin 

receptor (LEPR) are more susceptible to infection by Entamoeba histolytica (in press JCI 

189
). Mice segregating for this same mutation, also showed increased susceptibility to 

Entamoeba histolytica infection, and increased apoptosis of cecal epithelium cells, 

suggesting that there is a direct link between leptin biology and mucosal immunity. 

Together, these results suggest that circulating leptin concentrations may affect the 

composition of the gut microbiota by affecting mucin production in the intestine.  A 

decline in circulating leptin concentrations, such as those seen in the DIO-WR mice could 

have a larger impact on the microbiota than a relatively small decrease in CON-WR 

mice. 

   The OTUs that account for the differences between DIO (WR & AL) and CON 

(WR & AL) mice, and are also negatively correlated to circulating leptin concentrations, 

belong to the genus Allobaculum, a member of the Firmicute family Erysipelotrichaceae 

(formerly Mollicutes).  Interestingly, members of this family have been shown in several 

independent studies to change in abundance in response to changes in relative amounts of 
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dietary fat intake 
123,190

. Furthermore, Allobaculum relative abundance has been reported 

to be positively correlated with plasma HDL concentrations in hamsters fed a diet 

supplemented with grain sorghum lipid extract (GSL) 
191

. In our study, both diet 

composition (i.e. relative amount of dietary fat; DIO vs. CON) and body weight status 

(AL vs. WR) correlated with Allobaculum abundances, indicating that diet composition 

alone cannot account for changes in relative abundance,  and that some metabolic or 

phenotypic change caused by maintenance of lower body weight must also be involved 

(see Figure 3.3E). 

Does the composition of the microbiota itself contribute causally to host 

adiposity?  Several studies suggest that the absence of micriobiota (gnotobiotic mice 

raised in a germ-free environment) is protective against diet-induced obesity 
192-194

, 

although perhaps not in all mouse strain/diet combinations 
190

.  There are several ways in 

which the specific composition of microbiota might influence host adiposity
118,195

. One is 

via the increased availability of short chain fatty acids produced by microbial breakdown 

of complex polysaccharides, giving the host access to more of the ingested calories 
121

. 

Another is by inducing inflammation, which can lead to insulin resistance and 

hyperphagia 
175

. A change in microbiota induced by a high fat diet can trigger metabolic 

inflammation when increased gut permeability allows lipopolysaccharides to enter the 

circulation 
174,196

. Specific changes in microbiota preponderance that are either increased 

(Allobaculum) or decreased (Lachnospiraceae) following maintenance of a WR state 

(irrelevant of diet composition), and correlated with hormones known to influence energy 

homeostasis (e.g. leptin), suggest that the specific composition of the microbiota may 

play a role in host energy balance in weight-perturbed individuals. 
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We observed a correlation between certain gut microbiota (e.g. Lactococcus and 

Lachnospiraceae) and gene expression levels in inguinal fat of inflammation markers 

(Saa3 and Pai1) and a mitochondrial transporter (Slc25a25). Contrary to what we 

anticipated, certain inflammation markers, such as Tnf-α and F4/80, were not 

significantly elevated in DIO-AL mice when compared to CON-AL mice (Table 3.1). 

These discrepancies may be related to the fat pad (inguinal) in which gene expression 

was tested.  Koren et al (2010) have reported correlations between relative abundance of 

specific members of the gut microbiota (e.g. Lachnospiraceae) and circulating markers 

(e.g. LDL concentrations) known to correlate with inflammation 
197

.  Specific gut 

microbial communities induce low-grade inflammation in white adipose tissue: mice 

deficient in toll-like receptor 5 developed increased visceral fat, hyperlipidemia,  

hypertension, and decreased insulin sensitivity,  an aggregate phenotype similar to that 

seen in humans with  “metabolic syndrome”; this constellation of phenotypes can be 

transferred to germfree wild-type recipients by microbial transplantation from affected 

animals 
175

.  Thus, specific phylotypes observed in our study could be drivers of 

inflammation, although establishing a causative role will require further testing. 

Host adiposity, diet composition, and gut microbiotas interact in complex, 

probably reciprocal ways. Figure 3.5 is a schematic of these possible interactions. Leptin 

concentration, both circulating and within the gut, and dietary fat, may interact to affect 

gut mucous production, the microbiota, and barrier integrity in ways that ultimately 

influence adiposity.  The studies described here begin to disarticulate the effects of diet 

and weight perturbation, per se, on relative abundances of gut microbiota.  The molecular 

mechanisms underlying these effects on gut microbiota, and the consequent roles of these 
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bacteria in energy homeostasis and “metabolic inflammation” are clearly areas of clinical 

importance.  Establishing the strength and direction of the relevant arrows of causality 

will require some relatively straightforward extensions of the studies and techniques 

reported here (Figure 3.5).  
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FIGURE 3.1: EFFECTS OF DIET AND WEIGHT REDUCTION ON THE GUT MICROBIOTA 

 (A) Phylogenetic Diversity (PD) of the cecal samples from the 4 groups of mice 

(mean±SEM compared by two-way ANOVA) and (B) PCoA plot of 

the unweighted UniFrac distances. PC1 and PC3 values for each mouse sample are 

plotted; percent variation explained by each PC is shown in parentheses: DIO-AL: blue; 

DIO-WR: red; CON-AL: purple; CON-WR: green. (C) Relative operational taxonomic 

unit (OTU) abundances of the different phyla in each of the mice. The phylum Firmicutes 

was broken down into OTU 303, OTU 716 (which are both classified as Allobaculum), 

and all other Firmicutes that did not fall into these two OTUs. 
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FIGURE 3.2: MEMBERS OF THE MICROBIOTA THAT DIFFER IN ABUNDANCE BY DIET COMPOSITION AND TREATMENT (WR VS. 

AL) 

(A) Nearest shrunken centroid analysis of the 15 OTUs accounting for the differences among the four groups of mice. For each 

OTU listed at right, direction of the horizontal bars indicates relatively over-represented (right) and under-represented (left); 

the length of the bar indicates the strength of the effect. (B) Heat Map of the “classifying” OTUs. Columns show, for each 

mouse, the abundance data of OTUs listed at left. The abundances of the OTUs were clustered using unsupervised hierarchical 

clustering (Blue=low abundance, Red=high abundance). The Phylum;Genus of each of the classifying OTUs is noted.  
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FIGURE 3.3: ASSOCIATIONS BETWEEN HOST SERUM LEPTIN CONCENTRATIONS AND GUT 

MICROBIOTA 

(A) Correlations of fat mass content (by NMR) with circulating leptin concentrations. (B, 

C, D, E).  Correlations between leptin concentrations and the abundance of OTUs of 

interest. The colors of the points correspond to a given diet- treatment combination (red: 

CON-WR, dark blue: CON-AL, light blue: DIO-WR and green: DIO-AL). 
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FIGURE 3.4: HEATMAP DESCRIBING THE CORRELATION OF THE ABUNDANCES OF DIFFERENT 

OTUS AND TRANSCRIPTION LEVELS OF INFLAMMATION-RELATED GENES IN INGUINAL 

ADIPOSE TISSUE  

The colors range from Blue (Negative correlation; -1) to Red (Positive correlation; 1). 

Significant correlations are noted by *P<0.05 and **P<0.01(The computed false discovery rate  

is about 0.25 using the Benjamini Hochberg procedure 
198

) 
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FIGURE 3.5: SCHEMATIC DEPICTING POSSIBLE INTERRELATIONSHIPS AMONG DIET 

COMPOSITION, GUT MICROBIOTA, CIRCULATING LEPTIN, BODY FAT, MARKERS OF 

INFLAMMATION, AND GUT MUCIN  

Body fat directly determines leptin production and elevated body fat increases 

macrophage infiltration (with associated production/release of inflammatory molecules 

such as TNFα, SAA3, and CCL2 (MCP-1) in adipose tissue). The results presented here 

suggest that diet composition (fractional fat content) directly affects gut microbiota 

independent of effects mediated by body weight and body composition. Leptin promotes 

proliferation, differentiation, and survival of immune cells. Leptin also stimulates mucin 

production in mouse and human intestinal cells 
187,188

. Mucin affects local bacterial 

“microniches” in the gut by favoring the growth of some bacteria 
185,186

. Leptin can affect 

intestinal barrier function by inhibiting apoptosis and promoting regeneration of intestinal 

epithelium 
199,200

.  These changes in epithelial composition may in turn affect microbiota 

populations in the gut. The dashed line between body fat and gut microbiota suggests 

biologically possible connection(s) that might be mediated by adipocytokines or other 

molecules secreted from adipose tissue. 
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TABLE 3.1: BODY WEIGHT, FAT MASS, LEPTIN AND INFLAMMATION MARKER 

*Body weight, body composition and circulating leptin concentrations (mean±SEM): previously published data. $ denotes a 

significant difference between DIO-AL and CON-WR mice by t-test (p < 0.05)
124

. 

# mRNA levels (normalized to cyclophilin b and presented as arbitrary units) for inflammation markers measured by qRT-

PCR in inguinal fat pads normalized to cyclophyllin b (mean±SEM). Data not marked by same letter are significantly different 

by two-way ANOVA with Tukey HSD post-hoc analysis. Direct t-tests were conducted for body weight and body composition 

of DIO-WR and CON-AL mice. Significant differences are indicated by $ (p < 0.05). 

* AL (n=7) WR (n=8) AL (n=8) WR (n=8) Diet Treatment Diet * Treatment

Body Weight (g) 52.0±1.0
 a

33.6±1.0
 b

32.2±1.1
 b

22.0±0.6
 c F = 292.5 ** F = 243.9 ** F = 20.2 **

Fat-Free Mass (FFM, g) 23.5±0.5
 a

20.0±0.3
 b

20.3±0.3
 b

15.1±0.4
 c F = 111.4** F = 135.4** F = 5.4*

Fat Mass (FM, g) 20.1±1.0
 a

7.0±0.6
 b

5.1±0.7
 b

1.8±0.1
 c F = 230.6** F = 151.8** F = 53.3**

Leptin (ng/ml) 121.7 ± 14.9
a

25.1 ± 2.9
b$

14.0 ± 3.6
b

9.0 ± 1.3
b F = 75.8** F = 51.0** F = 41.4**

#

F4/80 1.06 ± 0.06
 a

1.06 ± 0.09
 a

1.0 ± 0.08
 a

0.58 ± 0.05
 b

F = 14.4** F = 8.9** F = 9.2**

Slc25a 1.08 ± 0.06
 a

1.01 ± 0.06
 a

0.63 ± 0.06
 b

0.60 ± 0.04
 b

F = 40.9** F = 0.6 F = 0.1

DioII 1.34 ± 0.46
 a

0.06 ± 0.03
 b

0.87 ± 0.26
 a b

1.64 ± 0.19
 a

F = 4.1 F = 0.9 F = 14.3**

IL 10 0.87 ± 0.14 1.63 ± 0.23 1.17 ± 0.24 0.99 ± 0.23 F = 0.6 F = 1.9 F = 4.7*

Tnfa 1.07 ± 0.23 1.64 ± 0.15 1.58 ± 0.14 1.36 ± 0.19 F = 0.5 F = 1.0 F = 5.1*

INOS 1.29 ± 0.10
 a

0.79 ± 0.08
 b c

0.72 ± 0.03
c

1.06 ± 0.10
 a b

F = 3.6 F = 1.0 F = 28.7**

Cd11c 1.11 ± 0.16
 a

0.86 ± 0.09
 b

0.86 ± 0.08
 b

0.71 ± 0.08
 b

F = 3.7 F = 3.6 F = 0.2

Saa3 2.2 ± 0.55
 a

0.89 ± 0.34
 b

0.03 ± 0.02
 c

0.02 ± 0.02
 c

F = 23.5** F = 4.4* F = 4.3*

Pai 1 1.81 ± 0.29
 a

1.25 ± 0.24
 a

0.1 ± 0.05
 c

0.18 ± 0.03
 c

F = 54.8** F = 1.6 F = 2.8

Angptl4 1.80 ± 0.23
 a

0.72 ± 0.08
 bc

1.07 ± 0.09
 b

0.38 ± 0.12
 c

F = 15.6** F = 42.6** F = 2.1

DIO Diet CON Diet

Body weights, fat mass, leptin and inflammation marker levels
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CHAPTER 4: ESTIMATING ENERGY EXPENDITURE IN MICE USING 

AN ENERGY BALANCE TECHNIQUE 

 

ABSTRACT 

Assessment of energy expenditure in laboratory rodents is critical in understanding the 

metabolic consequences of environmental (i.e. calorie restriction, exercise paradigms) or genetic 

(i.e. knockout & overexpressing models) manipulations. Indirect calorimetry is the “gold 

standard” for such assessments.  However the cost and maintenance of the relevant equipment, 

the stress resulting from moving animals into these devices, and the generally limited periods of 

residence limit the use of these instruments.  Here we describe an energy balance method using 

food intake and changes in body weight and composition (TEEbal) in mice over 37 days  to 

determine  mean 24 hour energy expenditure; the results obtained are  compared with those 

obtained by  indirect calorimetry (TEE IC). The two methods are highly correlated (TEE IC ; r
2
 = 

0.88: TEEbal = 1.04 * TEEIC – 0.06, p < 0.0001). TEEbal estimates are slightly higher than those 

obtained by TEEIC (+0.45 kcal/24h), probably due to small losses of chow into the cage bedding. 

TEEbal can be performed in “home cages” and provides integrated long term measurement of 

energy expenditure.  
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Introduction 

Changes in body mass and chemical composition in response to over- or under- feeding 

must conform to a biological restatement of the first law of thermodynamics: 

∆ Somatic Energy Content = Total Energy Intake – Total Energy Expenditure   

[Equation 1] 

Measurement of any two components allows calculation of the third.  Each component can be 

directly measured, but experimental circumstances may favor indirect estimates because of a 

desire to obtain prolonged measures, the relative accuracies of the respective measurements, and 

the availability of suitable instrumentation. 

The energy balance method (EBM) has been used in human studies to estimate energy 

expenditure (EE) by titrating energy intake (EI) to achieve stability of body weight and 

composition 
17,201

. Conversely, measures of EE, by the  “doubly labeled water”  technique, have 

been used in conjunction with changes in body composition to estimate EI in human subjects 
202

.  

Here we describe the use of an energy balance technique that can be used to measure long term 

energy expenditure (or intake) in mice. We measured energy intake and changes in body mass 

and composition over a 37-day period, and used these measurements to estimate total energy 

expenditure (TEEbal) in mice being fed high and low fat diets. These estimates of TEEbal were 

highly correlated with those obtained by indirect calorimetry (TEE IC ; r
2
 = 0.88: TEEbal = 1.04 * 

TEEIC – 0.06, p < 0.0001). This technique is particularly useful for long term measures of energy 

expenditure, and does not require a calorimeter.  
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MATERIALS & METHODS 

 

Experimental Design: 

Sixteen diet-induced obese (DIO – fed Research Diets, Inc. D12492i, 60%  kcal as fat = HFD), 

and sixteen control diet fed (CON – fed Research Diets, Inc. D12450Bi, 10 % kcal as fat = CON) 

C57BL/6J-male mice were obtained at 18 weeks of age from the Jackson Laboratory (Bar 

Harbor, ME). These animals had been fed these respective diets since 6 weeks of age. 

Individually housed animals from both diet groups were randomized to remain on the ad-lib diets 

(DIO-AL and CON-AL) or to be calorically restricted to decrease their body weight by ~20% 

over a 1-2 week period by twice daily feeding of reduced quantities (50% of ad-libitum intake) 

of their respective diets.  After a 20 ±1% weight reduction, weight-reduced (DIO-WR and CON-

WR) mice were provided calories sufficient to stabilize their weights for an additional 23 weeks. 

Nine weeks after initiation of the weight reduction protocol (Figure 4.1A, denoted day 0), body 

weights (daily for all mice) and food intake (FI; daily for WR and every two days for AL mice) 

were recorded for the next 93 days, except on days when mice were in the calorimeter. The first 

day of this 93 day period is designated as day 0 (Figure 4.1A). The 93 days following day 0 are 

divided into 3 measurement periods (Figure 4.1A):  

 

1) TEE bal: A 37-day period used to estimate TEE using an energy balance method (days 0 – 37)  

2) TEE IC: A 28-day period during which mice underwent 48 hour indirect calorimetry to 

estimate TEE (days 37 – 65) 



95 

  

 

 

9
5
 

3) All days excluding indirect calorimetry days (when MEI was not recorded) were used to 

determine – by autocorrelation and power analyses - the minimum number of days of FI required 

to estimate MEI to within various levels of accuracy.   

One DIO-AL mouse died during the study and data from one CON-AL mouse was not included 

due to a malfunction in one of the calorimetry chambers. Aspects of this study have been 

described earlier 
203

. 

On day 0, day 37,  and following each 72-hour calorimetry period, body composition was 

determined using a Bruker Minispec mouse TD-NMR analyzer (Bruker Inc, Billerica MA) that 

had been calibrated with 30 mouse carcasses also subjected to chemical analysis 
142

. All body 

composition measurements were made at 8-9 am, before weight reduced animals were fed.  

Measures of Metabolizable Energy Intake (MEI) and Energy Expenditure (TEE): 

Metabolizable energy intake (MEI), defined as grams of food ingested per 24h (weighed using 

custom-made stainless steel feeding baskets that minimized spillage - Dieter Wenzel; Detmold, 

Germany) multiplied by the metabolizable energy for the respective diets (5.24 Kcal/g for high 

fat (HFD) and 3.85 Kcal/g for the control (CON) diet), was recorded every two days for the ad 

libitum-fed mice. For WR mice, MEI was recorded daily and 1/3 and 2/3 of the daily food ration 

was provided at 8-8:30 am and 6:30-7 pm, respectively.  

Energy expenditure was measured with a LabMaster-CaloSys-Calorimetry System (TSE 

Systems, Bad Homburg, Germany).  Calibration of the system was performed as per the 

manufacturer’s guidelines. The rates of O2 consumption and CO2 production were measured 

every 14 minutes during a 72 hour period. In calculating TEE, potential confounds due to stress 

of being  placed in calorimetry chambers was  minimized by using data from only the final 48 

hours of the 72 hour period 
203

.   
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Estimates of TEE using energy balance (TEEbal):   

MEI and interim changes in body mass and composition were used to estimate TEE over a 37-

day period (TEEbal) 
17

. Energy expenditure was calculated as MEI +/- the change in somatic 

energy stores 
204,205

 (see equation 2 below). The energy cost of depositing dietary calories as 

somatic tissue is greater than that released by their oxidation.  We assigned 13.2 kcal for each 

gram of fat mass gained, and 9.0 kcal for each gram of fat mass lost; 2.2 kcal for each gram of 

fat-free mass gained and 1.0 kcal for each gram lost 
204,205

. 

Equation 2 (below) was used to calculate TEEbal:  

TEEbal = MEI + (∆somatic Fat Energy + ∆somatic Fat-Free Energy)  [Equation 2] 

TEEbal was compared to TEEIC – expressed as kcal per 24 hrs – on a per mouse basis (Figure 

4.1B).   

Determination of minimal duration of FI to accurately estimate MEI 

In order to test the day-to-day independence of the MEI data collected over days 0 – 37 and days 

67 – 104 (total of 65 days: Figure 4.1A), a condition that must be fulfilled in order to perform a 

power calculation estimating the minimum duration of FI measurements required to obtain a 

specific level of accuracy of MEI, autocorrelation analyses were conducted on all mice 
206

.  

To determine the minimum number of days that are required to estimate an individual animal’s 

24 hour food intake to within 5% and 10% of the mean MEI for all animals as a group, we used 

the relationship:  

 ̅     
     

√ 
         [Equation 3] 
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Where  ̅ is the mean 24 hour food intake (over 65 days) of each of the 15 AL mice, and y is a 

specified degree of error expressed as a percentage.  The product of mean MEI for a mouse and 

the selected level of error (5% and 10% for each mouse) is related to an estimate of the 95 % 

confidence interval for the SEM (
     

√ 
) of the mean MEI for each AL-fed mouse where σ is the 

standard deviation for MEI and n is the number of days of measured energy intake.  ̅ and σ were 

estimated for each mouse using the entire 65 day period during which MEI was measured. Here 

we arbitrarily stipulate that the SEM for any mouse should be less than or equal to 5% or 10% of 

the mean (i.e. 0.05 or 0.10 *  ̅) and then solved for the requisite n (number of days of food intake 

measurement) for each mouse.  Mean ± sem and confidence intervals were constructed for the 

estimates of n obtained for the 15 AL mice using both 5% and 10% error in equation above. By 

using equation 3 and solving for all y% (assigning n in unit integers from n1…n67) a plot was 

constructed for 15 AL mice, indicating the number of days of energy intake needed to obtain a 

given level of accuracy of energy expenditure: Figure 4.1E). 

Statistical Analysis 

Data analysis was performed using JMP 8.0.2 Statistical Discovery Software (SAS Institute, 

Cary, NC). Student’s t-test for paired samples was used to assess differences in estimates of 

TEEbal and TEEIC.  
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RESULTS 

 

TEEIC vs. TEEbal: Correlation Analysis 

Estimates of TEEIC and TEEbal (37 day measurement) were highly correlated (TEEbal = 1.04 * 

TEEIC – 0.06, r
2
 = 0.88; p < 0.0001 Figure 4.1B). No significant differences between TEEIC and 

TEEbal were identified by direct t-test comparison (p = 0.60) and by paired t-test analysis using 

only WR mice, whose food intake is the most precisely known since rations – that were 

completely consumed – were provided by us twice daily (p = 0.65). 

TEEIC vs. TEEbal: Bland-Altman and Relative mean differences plots 

A Bland-Altman plot (aka Tukey difference mean plot 
207

), a method used to assess the 

concordance between two methods measuring the same variable, indicates that TEEbal estimates 

are slightly but significantly higher (3.8±1.7%; p < 0.05) than TEEIC estimates (Bias = 0.45 

kcal/24h; see solid black line Figure 4.1C) when including all groups of animals. A relative 

mean difference value for each mouse was calculated by dividing the difference between the 

methods (TEEbal - TEEIC) by TEEIC for each pair of measures (Figure 4.1D). Close agreement 

was found between estimates of TEEbal and TEEIC, in both absolute (mean difference of 

0.47±0.17 kcal/24h; 95% CI: 0.1 to 0.8 kcal/24h; Figure 4.1C) and relative (mean difference of 

0.6±3.0%; 95% CI: −5.3 to 6.5%; Figure 4.1D) terms.  

Duration of MEI required 

Temporal analyses revealed strong and significant (p<0.01) autocorrelation of daily energy 

intake  in the WR but not the AL mice, presumably because, in the WR, food rations were 

adjusted daily in 0.1 g units based on the previous days ration and intercurrent changes in body 

weight. No autocorrelation was detected for AL mice (n = 15), establishing the independence and 
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randomness of the FI measurements in mice from these groups and so power calculations were 

conducted using equation 3 on AL mice only. The average minimal days required for AL mice to 

fall within 10% and 5% of the mean was 4.3±0.5 (CI: 3.3 – 5.3) and 17.2±1.9 (CI: 13.1 – 21.4) 

days, respectively. Twenty one days of continuous energy intake measurements provide 95% 

confidence  that the surrogate measure of energy intake will be within  5% of “true” mean energy 

intake for that animal and can be used in conjunction with intercurrent changes in body 

composition over the time period MEI was measured (using equation 2) to estimate TEEbal 

(Figure 4.1E).  

Body weight and body composition used in TEEbal 

Body weight increased slightly in DIO-AL (+0.6g), DIO-WR (+0.5g), and CON-AL (+0.4) but 

was unchanged in CON-WR mice during the 37-day TEEbal measurement. Most of the increased 

body weight was explained by higher fat mass. The changes in body composition fell within the 

range of the sensitivity of the NMR device. We have previously shown that NMR estimates of 

FFM and FM are virtually identical to chemical composition analysis (r
2
 = 0.99 for both FM and 

FFM; p < 0.05) and intra-individual within-day CV (4 measurements per mouse) were  2.8±2.7% 

(CI: 0.0-10.0) for FM and 2.2±1.0 (CI: 0.6-5.0)% for FFM 
142

.  
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DISCUSSION 

 

   The strong correlation between TEEbal and TEEIC (r
2
 = 0.88; p < 0.0001) indicates that 

the TEEbal method – using energy intake and changes in somatic mass and composition - can 

provide a valid estimate of long term TEE (Figure 4.1B). The Bland-Altman plot - used to assess 

the degree of agreement between the two measures 
208

 - indicates that the methods are closely 

concordant.  The two methods differ by only 0.45 kcal/24h (3.8±1.7%)  (see bias; Figure 4.1C). 

4 out of 7 DIOAL mice showed a difference between TEEbal and TEEIC greater than 10%, 

whereas only 2 mice from all other groups combined showed such a difference (Figure 4.1D). 

The larger differences seen in the DIO-AL group may be the result of the fragility of the high fat 

diet, which is easily concealed in the bedding, leading potentially to overestimates of ad-libitum 

food intake measurements. This problem is minimized when using less friable diets, and is 

reflected in the smaller range of relative mean differences seen in the CON diet fed groups of 

mice (Figure 4.1D). When the four DIO-AL mice that showed a greater than 10% difference 

between estimates of TEE are excluded from the analysis, the correlation between methods is 

improved (TEEbal = 0.92 * TEEIC + 1.04, r
2
 = 0.94; p < 0.0001) and the difference between 

methods is decreased (bias = 0.17 kcal/24h).  

 

TEEbal has advantages in comparison to TEEIC. Indirect calorimetry systems require that 

mice be transferred from home cages to specialized units whose novelty can create stress and/or 

behavioral modification.  Logistical considerations frequently limit the duration of calorimetry 

studies to 48-72 hours.  Balance measurements can be conducted over extended periods of time 

with animals in their home cages.  Long duration studies conducted in this way will detect subtle 
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differences in energy expenditure not detectable by short term calorimetry.   However, the 

balance technique cannot assess diurnal variations in energy expenditure or directly determine 

RQ (which could, however, be estimated from diet composition and changes in body 

composition).  

The power analyses using AL fed mice only suggests that 21 days (upper CI limit; see end of 

results section) of FI measurements will provide a measure of MEI to within +/- 5% of true mean 

95% of the time (Figure 4.1E). This estimate is quite conservative and therefore shorter time 

periods may be acceptable depending on the accuracy of the FI measurements.  

Additional considerations 

Accuracy of body composition measures are critical for correctly estimating energy expenditure 

using TEEbal technique with these errors being amplified as the number of days of food intake 

measured decreases 
142

. The accuracy and precision of the Bruker Minispec TD NMR that we 

use in the laboratory has been shown to be able to detect changes in body composition observed 

in our cohort of mice (Table 4.1) 
142

. Since we used 37 days for the TEEbal calculation and we 

estimated that 21 days was sufficient to be within 5% of mean MEI (Figure 4.1E), and that some 

of the discrepancies between TEEbal and TEEIC, especially in the DIO-AL group, may be a result 

of the overestimation of MEI due to the fragility of the HFD as mentioned above. Finally, 

indirect calorimetry used with both humans and rodents - the nominal “gold standard” – has 

technical limitations affecting both the sensitivity and accuracy of the instrument 
209

. Differences 

in estimated TEE observed between TEEbal and TEEIC are necessarily the product of aggregate 

errors in all measurements obtained to permit the comparison.  

The approach described here can also be used to estimate long term spontaneous energy 

intake by solving equation 2 for MEI, using direct measures of TEE and body composition. 
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Serial measurements of TEE and body composition would be best, to control for intercurrent 

changes in both parameters due to growth. In humans, the determination of ad-libitum energy 

intake to the level of accuracy required to assess the relative contributions of energy intake and 

expenditure to weight change using currently available methods is often inaccurate, sometimes 

by up to 50% 
210

.  By combining long term measurements of energy expenditure (differential 

rates of excretion of 
2
H2O and H2

18
O) with precise measurements of body composition, the 

energy balance equation can be “solved” for energy intake 
202,211

.  This approach could be tested 

for accuracy by conducting such a study in a room calorimeter in conjunction with bomb 

calorimetry of a weighed diet. 
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FIGURE 4.1: BODY WEIGHTS, TEEBAL AND TEEIC COMPARISON, AND FOOD INTAKE 

ACCURACY 

 

A. Body weights during experimental periods. TEEbal estimated using energy balance method 

and TEEIC determined using indirect calorimetry. During the 30 day interval shown, each mouse 

spent 72 hours in the chamber; the last 48 hours of this period were used to estimate TEEIC. B. 

Regression analysis of total energy expenditure (TEE) by energy balance method (TEEbal) and 

indirect calorimetry (TEEIC). Dashed line is y = x. 4 large symbols represent group means and 

error bars are SEM for both TEEbal (ordinate) and TEEIC (abscissa). C. Bland-Altman plot (aka 

“Tukey difference-mean plot”) of both methods. Solid black line represents “bias” (arithmetic 

mean of differences: TEEbal - TEEIC) and dashed black lines represent “bias” ± 1.96SD of 

differences =“limits of agreement” (LOA). D. Relative mean difference plot: (TEEbal - 

TEEIC)/TEEIC).Solid black bars are mean values for each group. E. Plot showing number of days 

of energy intake needed to achieve a specified accuracy true mean food intake. 
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TABLE 4.1: BODY WEIGHT AND BODY COMPOSITION  

Mean body weight and body composition (g±s.e.m) at initial and final days of TEEbal period.  

  

BW (g) FFM (g) FM (g) BW (g) FFM (g) FM (g)

DIO AL 49.0±0.9 23.5±0.4 16.1±1.0 49.6±1.2 23.5±0.6 16.7±0.9

DIO WR 33.6±1.1 19.7±0.2 6.6±0.7 34.1±1.1 20.1±0.3 7.1±0.7

CON AL 32.4±1.0 20.3±0.3 4.7±0.7 32.8±1.0 20.2±0.2 5.1±0.8

CON WR 21.7±0.5 14.7±0.3 1.6±0.1 21.7±0.5 14.8±0.3 1.7±0.1

Initial - Day 0 Final - Day 37
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CHAPTER 5: EFFECTS OF AMBIENT TEMPERATURE ON ADAPTIVE 

THERMOGENESIS DURING CHRONIC WEIGHT PERTURBATION. 

 

ABSTRACT 

 

Food-restricted rodents, may become torpid, a state of decreased metabolic activity and 

core body temperature.  The rapid suppression of leptin production during fasting may play an 

integral role in the induction of torpor.  We previously showed that, at ambient room temperature 

(22°C), mice maintained at 20% below their initial body weights (WR) by calorie restriction 

expend energy at a rate lower than that which can be accounted for by the decrease of fat and fat-

free mass.  The relevance of these studies in rodents to the decreased energy expenditure that 

characterizes weight-reduced humans could be confounded if there is a contribution of torpor in 

the hypometabolic phenotype observed in the WR mice (at 22°C). We examined the 

bioenergetic, hormonal, and behavioral responses to maintenance of a 20% body weight 

reduction in singly housed C57BL/6J +/+ HFD and Lep
ob

 mice housed at both 22ºC (sub-

thermoneutral) and 30ºC (thermoneutral). Weight-reduced high fat-fed +/+ mice (HFD-WR) 

showed similar quantitative reductions in energy expenditure – adjusted for body mass and 

composition –  at both 22ºC and 30ºC:  -1.4kcal/24h and -1.6kcal/24h  below predicted,  

respectively. Even though they did not enter torpor (defined as core body temperature below 

30°C)  there were small but significant declines in core body temperature in +/+ HFD-WR mice 

at 1400h and 0500h when compared to ad-libitum fed mice at both ambient temperatures. In 

contrast, WR mice lacking circulating leptin (OB-WR) housed at 22ºC entered torpor in the late 

lights off period (0200h – 0500h) with core body temperatures reaching 23ºC in some of the 

animals. The similarity in absolute calories conserved in HFD-WR mice whether housed at 22 ºC 
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or 30 ºC suggests that torpor does not account for the hypometabolic phenotype. In contrast, 

weight-reduced mice lacking functional leptin become torpid when housed at 22 ºC but not at 30 

ºC. These studies confirm that mice with an intact leptin axis display metabolic adaptations to 

weight reduction similar to those seen in weight-reduced humans.  Awareness of the effects of 

ambient temperature on metabolic homeostasis in mice should inform the design of a wide 

variety of experiments aimed at defining the molecular physiology of weight regulation.  
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INTRODUCTION 

 

We are interested in the physiology of the weight-reduced state 
17,203

.  Understanding the 

neurobiologic bases of the reduced energy expenditure that accompanies maintenance of a 

reduced body weight is important to devising effective long term treatments of obesity 
103

.  

While the mouse is a useful model for many aspects of this problem, their bioenergetics are, of 

course, not entirely comparable to those in humans.  One important difference – in part a 

consequence of their higher somatic surface-to-volume ratio - is the mouse’s higher zone of 

thermoneutrality (30°- 40°C) relative to that of a clothed human (22° - 25°) 
111

.  This difference 

contributes to the animal’s use of torpor (see below) to conserve energy in the face of 

metabolic/thermal stress 
110,113

.  To the extent that such changes are invoked by weight reduction, 

they constitute confounds to the use of mice as models in this context.  In the studies described 

here, we have attempted to characterize and quantify the contribution of such potential 

confounds to studies of energy homeostasis in weight-reduced mice. 

 

In response to restricted access to food, mice can adapt by decreasing energy expenditure 

and lowering core body temperature – torpor - , a phenomenon that is not observed in humans 

212-214
. Daily torpor, usually defined as a hypometabolic state (> 50% decline in total energy 

expenditure) followed by hypothermia (core body temperature < 30°C), is a commonly used 

adaptation in many small mammals under conditions of low food availability and/or decreased 

ambient temperature 
113

. The initiation of daily torpor in mice is thought to result from decreased 

availability of calories in conjunction with sub-thermoneutral ambient temperatures.  

The pre-optic/anterior hypothalamus (POAH) contains temperature sensitive neurons. 

Direct manipulation of POAH temperature produces reciprocal changes in metabolic rates (i.e. 
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cooling causes increased energy expenditure and heating causes decreased energy expenditure) 

215,216
. Caloric deprivation results in the up-regulation of the sympathetic nervous system tone to 

white adipose tissue leading to decreased leptin production, a signal that seems to be intricately 

linked to the onset of torpor during acute responses to caloric reduction 
217

. The decline in leptin 

and increase in ghrelin concentrations accompanying negative energy balance have been 

proposed to jointly act by increasing NPY activity in hypothalamus 
218

.  Increased NPY activity 

causes a decrease in metabolic rate  leading to bouts of torpor that are interspersed with periods 

of increased food-foraging based activity 
219

. Prolonged caloric restriction with sub-

thermoneutral ambient temperature can result in a subsequent decrease in metabolic rate and core 

body temperature (torpor) 
113,214

. Due to their low mass and high surface-to-volume ratio, the 

body temperature of mice is very responsive to food deprivation and sub-thermoneutral ambient 

temperature (<30°C).  In these circumstances, their body temperature can decline to near ambient 

temperature following a drop in metabolic rate 
110

.  In mice, brown fat thermogenesis is an 

important source of heat production, resulting from UCP1-mediated mitochondrial uncoupling of 

the synthesis of ATP from the proton gradient through uncoupling protein 1
220

. Heat production, 

including brown fat thermogenesis, is primarily under the control of the sympathetic nervous 

system (SNS) and thyroid hormones, both of which are suppressed at reduced body weights  

103,112
 and are implicated in torpor 

113
. 

In most rodent vivaria, the ambient temperature (22º-24ºC) is set for comfort of personnel 

working in the facility. This ambient, however, constitutes a constant thermal stress on these 

animals, requiring higher energy expenditure, energy intake, and sympathetic nervous system 

tone to maintain core body temperature 
110,212

. The relationship of total energy expenditure (TEE) 

to ambient temperature is U-shaped, with the lowest TEE for mice occurring between 30-40°C 
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(“thermoneutral zone”). Above 40°C and below 30°C, increased metabolic rate is required to 

maintain stable 5.body temperature through active cooling and thermogenic mechanisms,  

respectively 
114

. These responses are frequently inadequately controlled for, or ignored, in 

metabolic studies of mice 
110,114

. For example, mice deficient in UCP1 protein (Ucp1-/-) are 

resistant to diet-induced obesity (DIO) at 22 ºC 
221

 but highly susceptible to the same diet when 

housed at 30 º C 
222

, a reflection of the greater thermogenic stress imposed at 22 ºC. Likewise, 

mice lacking type 2 deiodinase (DioII-/-), a protein involved in the conversion of T4 to T3 in 

BAT and other tissues, are susceptible to DIO at 30ºC but not at 22ºC 
223

. Thus, ambient room 

temperature can clearly affect inferences reached with regard to energy homeostasis in rodents 

110,114,222,224
.  

The leptin axis is implicated in fasting-related phenotypes including torpor 
43,113

. At 22 ºC  

ambient,  in comparison to +/+ animals,  Lep
ob

 mice maintain a 2 – 2.5ºC lower body 

temperature and have suppressed SNS tone 
225

. At ambients 12°C or lower, administration of 

leptin protects mice null for both Ucp1 and Lep from hypothermia and death 
226

.  Leptin 

administration also increases energy expenditure in food-restricted lean mice 
105

 and inhibits 

daily torpor in a 25g  marsupial (Sminthopsis macroura) 
227

.  

To further investigate the interplay of ambient room temperature, leptin, and metabolic 

adaptation to weight reduction, we examined the bioenergetics, hormonal and behavioral 

responses to weight reduction of +/+ (WT) DIO and Lep
ob

 mice housed at both 22ºC and 30ºC. 

We studied energy expenditure phenotypes (TEE, REE, and NREE), ambulatory movement and 

core body temperatures in 5 groups of animals: 10 low-fat (10% kcal from fat) diet-fed WT mice 

(LFD-AL); 7 DIO WT (60% kcal from fat, HFD-AL);  5 high fat diet fed Lep
ob

 (OB-AL) mice; 

12 weight-reduced high fat diet fed WT (HFD-WR); and 9 weight-reduced high fat diet fed Lep
ob
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(OB-WR) mice housed at both sub-thermoneutral (22ºC) and thermoneutral (30ºC) ambient 

temperatures. We also measured serum T3, glucose, and insulin concentrations in the WT mice.  

Finally, we assessed the same parameters in the weight reduced (HFD-WR) and low fat diet fed 

never-obese (LFD-AL) WT mice following a switch to ad-libitum access to a high fat diet. We 

hypothesized that torpor would  not account for a significant portion of the hypometabolic 

phenotype anticipated in our weight-reduced WT animals 
203

,  but would  play a major role in 

Lep
ob

 mice.   
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MATERIALS AND METHODS 

To assess the role of ambient temperature, caloric restriction/diet composition, and leptin 

deficiency on bioenergetic, behavioral, and hormonal responses to weight perturbation in mice, 

we examined wild type (WT) C57BL/6J (Experiment 1) and Lep
ob

 (Experiment 2) mice before 

and during maintenance of a 20% weight loss at both thermoneutral (30°C) and standard housing 

sub-thermoneutral (22°C) ambient temperatures.  

Animals and Diets:  

Experiment 1 – Wild type mice: 18 week-old C57BL/6J male mice were obtained from 

Jackson Laboratory (Bar
 
Harbor, ME): 20 diet-induced obese (HFD mice – fed a high fat diet 

starting at 6 weeks of age; Research Diets, Inc. D12492i, 60%  kcal as fat), and 12 low fat diet-

fed (LFD mice – fed a low fat diet also starting at 6 weeks of age; Research Diets, Inc. 

D12450Bi, 10% kcal as  fat) were used for these studies (Figure 5.1). Upon receipt, animals 

were housed
 
in a pathogen-free barrier facility maintained at 22 ºC with

 
a 12-h dark-light cycle 

(lights on at 0700 h). Mice were individually housed in plastic pens with wood-based bedding, 

given ad libitum access to diet identical to that provided at Jackson Laboratory, and water, 

throughout a 60 day acclimatization period. During this period, body weight was measured every 

2-3 days. One HFD mouse and two LFD mice died during this period of unknown causes. 

Experiment 2 – Lep
ob

: Sixteen 5 week-old B6.V Lep
ob

 /J- male mice were obtained from 

Jackson Laboratory (Bar
 
Harbor, ME). Upon receipt, animals were housed 2 per cage in plastic 

pens with wood-based bedding in a pathogen-free barrier facility maintained at 22 ºC with
 
a 12-h 

dark-light cycle (lights on at 0700 h). The mice were acclimatized for 1 week on standard 

breeder chow (Purina PicoLab 5058) and then switched to a high fat diet (identical to that used in 
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Experiment 1) starting at 6 weeks of age (Research Diets, Inc. D12492i, 60% kcal as fat). Mice 

were given ad-libitum access to food and water. Two mice died during this period of unknown 

causes.  

All protocols were approved by the Columbia University
 
Institutional Animal Care and Use 

Committee. 

Study Design:  

Experiment 1: After the 60-day acclimatization period, 27 week old mice in each group (HFD 

or LFD) were placed individually for 72 hours in indirect calorimetry chambers to measure 

baseline energy expenditure (TSE Systems, Bad Homburg, Germany – see Energy Expenditure 

by Indirect Calorimetry section below). Mice in the HFD group were rank-ordered by body 

weight, and grouped in triads. The heaviest mouse of each triad was assigned to the ad-libitum 

fed group (HFD-AL, final n = 7); the next two animals were assigned to the weight-reduced 

group (HFD-WR, final n = 12) until all mice were assigned to a treatment group. All mice 

receiving ad-libitum LFD were maintained on this feeding regimen until switched to HFD (day 

89, Figure 5.1A). Mice in the weight-reduced (WR) group received 50% of their mean ad-

libitum daily food intake until their body weights reached 80% of initial value (in mean period of  

17 days) (day 27: Figure 5.1A),  at which time the mice were fed 80% of their initial daily 

caloric intake. Mice were weighed daily and subsequent adjustments in calories provided were 

made for the remainder of the experimental period in order to maintain each mouse between 79-

81% of initial body weight (Figure 5.1A). All mice had free access to water. HFD-WR mice 

were given 1/3 of their individually calculated food ration (± 0.1 g) in the morning (0745-0815h) 

and 2/3 of their food ration in the evening (1830-1900h). All ad-libitum-fed mice (HFD-AL and 
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LFD-AL) had free access to food continuously throughout the study. Food intake was recorded 

daily for the WR mice. The ambient room temperature was raised from 22°C to 30°C for 34 days 

following the start of the weight reduction period (days 10 – 44: Figure 5.1A), and then brought 

back down to 22°C for the remainder of the experiment. The number of calories required to 

maintain body weight in the HFD-WR mice was approximately twice as high at 22°C as at 30°C. 

Mice were maintained on their respective diet regimens for 78 days (see black arrow at day 89: 

Figure 5.1A), at which time the HFD-WR and LFD-AL were given ad-libitum access to the 

HFD for the remainder of the experiment. Energy expenditure was determined by indirect 

calorimetry at 4 different time-points throughout the experiment: 1) at 22°C before weight 

reduction; 2) at 30°C 7 days post cessation of weight reduction; 3) at 22°C 46 days post cessation 

of weight reduction; 4) after HFD-WR and LFD-AL mice had been given ad-libitum access to 

the high fat diet for 38 days (Figure 5.1A). 4-hour fasting blood was obtained by retro-orbital 

bleeding on the days on which mice were removed from the calorimeter (mice removed at 0800h 

and bled at 1200h),  and at time of sacrifice (see Serum Hormone and Metabolite Profiles for 

details on blood handling).   

Experiment 2: At 17 weeks of age, mice were individually housed in cages equipped with 

feeding baskets designed to minimize food spillage (Figure 5.1B). At 19 weeks of age, baseline 

energy expenditure of all 16 mice was measured by indirect calorimetry (TSE Systems, Bad 

Homburg, Germany). Baseline food intake was recorded over 7 days. Mouse triads were rank-

ordered by body weight on the day before the start of the weight reduction protocol and the 

heaviest mouse assigned to the ad-libitum fed group (OB-AL, n = 5) while the next two lower in 

weight were assigned to the weight-reduced group (OB-WR, n = 9) until all mice were assigned 

to a treatment group. Mice in the weight-reduced (WR) groups received 50% of their average ad-
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libitum daily food intake until their body weight reached 80% of initial value (mean period = 22 

days) (Figure 5.1B) at which time the mice were fed 80% of their initial daily food intake. 

Subsequent adjustments in calories provided were made daily in order to maintain each mouse 

between 79-81% of initial body weight for the following 65 days (Figure 5.1B). Following 65 

days of maintenance at the reduced body weight, the ambient room temperature was increased to 

30°C (thermoneutrality) and the mice housed in the indirect calorimetry chambers for the 

ensuing 14 days. Food intake for the OB-WR mice during these two weeks was “clamped” to 

their intake at 22°C, on which regimen at 30 °C ambient, as anticipated,  they gained weight (see 

OB-WR, Figure 5.1B). Total calories provided to OB-WR were decreased at the end of this two 

week period to match total energy expenditure by calorimetry, halting their weight gain at 

90±0.8% of initial pre-weight loss body weight. Mice were again placed in the calorimeters at 

30°C to assess total energy expenditure at thermoneutrality while ~10% below initial pre-weight 

loss weight (day 35, Figure 5.1B).  

Body weight, body composition and food intake: Body weight was measured (± 0.1 g) before 

the morning feeding using an Ohaus Scout Pro 200g scale (Nänikon, Switzerland, between 0800-

0830h).  Body composition (fat mass: FM, fat-free mass: FFM, & extracellular fluid) was 

estimated  by time-domain-NMR (Minispec Analyst AD; Bruker Optics, Silberstreifen,
 

Germany) 
142

 before the morning feeding:  every 2-3 weeks for both Experiments 1 and 2; 

before and after calorimetry measurements; before start of the weight reduction protocol; and on 

the day prior to sacrifice. Food intake (±0.1g) was recorded daily for WR animals (HFD-WR and 

OB-WR).  



117 

  

 

 

1
1
7
 

Energy expenditure by indirect calorimetry: Energy expenditure was measured with a 

LabMaster-CaloSys-Calorimetry System (TSE Systems, Bad Homburg, Germany).  O2 and CO2 

measurements were taken every 26 minutes during a 72 hour period while mice were maintained 

on their respective weight-maintenance feeding schedules. Because of possible stress related to 

transfer to the chambers, only the last 48 hours of measurements were used to calculate total 24-

hour energy expenditure (TEE; expressed in kcal/day) and respiratory quotient (RQ = VCO2 / 

VO2). Resting energy expenditure (REE in kcal/day) was defined as the lowest one hour period 

of energy expenditure;  this coincided with the lowest 1 hour of total ambulatory activity 

(generally 1300-1400),  during the 48-hour period;  this value was extrapolated to 24 hours. Non-

resting energy expenditure (NREE) was calculated as the difference between TEE and REE 

(NREE = TEE – REE). Physical activity was measured by an infrared beams integrated with the 

LabMaster system. Total activity (beam breaks) in X, Y, and Z axes was stored every 26 

minutes. The system is designed to differentiate between fine motor movement (defined as a 

single X or Y axis beam break), ambulatory movement (defined as the simultaneous breaking of 

two adjacent X or Y beams), and rearing, defined as the breaking of the Z axis infrared beam. 

Core body temperature: Rectal core body temperature (±0.1°C) of mice was measured every 3 

hours for 24 hours using a Thermalert Monitoring Thermometer (TH5 model: Raytek Santa 

Cruz, California USA). Measurements were started at 0800 and completed the following day at 

0800 in both experiments. Temperature measurements (at 22°C and 30°C ambient) were 

obtained at time points at least 5 days away from any indirect calorimetry measurements or 

bleeds. 
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Calculations: Energy expenditure is proportional to body mass and composition [fat-free (FFM) 

and fat mass (FM) 
163,203

. For Experiment 1 (WT mice), total energy expenditure (TEE; 

kcal/day) of HFD-AL and LFD-AL mice were related to both FFM and FM by multiple 

regression analysis for all four calorimetry periods 
17,228

. There was no significant effect of diet 

composition on TEE in any of the four calorimetry periods. We therefore pooled the data from 

ad-libitum fed mice to create separate baseline regression equations relating TEE (kcal/24h) to 

FFM and FM (grams) using the calorimetry data timepoints 2 (Figure 5.1A: 30°C ambient 

temperature) and 3 (Figure 5.1A: 22°C ambient temperature) :  at 30°C,   TEE = 4.3 + 0.13 * 

FFM + 0.09 * FM; R
2
 = 0.79, p < 0.0001;  at 22°C,  TEE = 1.2 + 0.45 * FFM + 0.15 * FM; R

2
 = 

0.87, p < 0.0001. These equations were used to predict TEE for all mice following experimental 

weight perturbation (at the respective ambient temperatures), as we have done in similar studies 

of human subjects 
17,127

 and mice 
203

. The residuals (i.e. the difference between predicted and 

measured values) were calculated for each animal and were tested against the null hypothesis 

that they were equal to zero. Baseline regression equations relating resting energy expenditure to 

FFM and FM, predicted REE values and residuals were also calculated from data obtained by 

indirect calorimetry as described above (Figure 5.2A and B).  REE = lowest one hour period of 

energy expenditure extrapolated to 24h; at 30°C,  REE =  3.6 - 0.01 * FFM  + 0.11 * FM; R
2
 = 

0.78, p < 0.0001;  at 22°C,  REE = 1.02 + 0.28 * FFM + 0.21 * FM; R
2
 = 0.93, p < 0.0001).  

Non-resting energy expenditure (at 30°C, NREE = TEE - REE) (NREE = 0.60 + 0.13 * FFM - 

0.02 * FM; R
2
 = 0.08, p = 0.55, and at 22°C, NREE = 0.17 + 0.18 * FFM – 0.06 * FM; R

2
 = 

0.21, p = 0.19. Since FFM and FM did not significantly predict NREE (p = 0.19), residuals were 

not calculated using the equations above but rather determined arithmetically at each calorimetry 

timepoint by subtracting REE from TEE (NREE = TEE – REE). 
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Serum Hormone and Metabolite Profiles: For Experiment 1, blood glucose (by tail 

bleed) and circulating serum insulin and bioactive thyroid hormone concentrations (by retro-

orbital bleed) were determined after a 4-hour fast following each of the calorimetry experiments, 

and at time of sacrifice (see circles on Figure 5.1A). Blood for hormone and metabolite assays 

was allowed to clot for 2 hours at room temperature, spun at 4°C for 20 minutes at 1000g, and 

serum collected and frozen at -80°C until time of assay. Insulin was assayed using the Mercodia 

Mouse Insulin ELISA (Mercodia AB, Uppsala, Sweden); T3 using RIA at Hormone Assay & 

Analytical Services Core at Vanderbilt University (Vanderbilt University, Nashville, TN). All 

assays were conducted according to manufacturer’s protocols.  HOMA2 (calculator developed 

by University of Oxford - based on 
143

) was used to estimate insulin resistance (HOMA IR) and 

insulin sensitivity (HOMA% S).   
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RESULTS 

 

Effects of Weight Perturbation and Ambient Room Temperature on Body 

Weight/Composition 

 

Experiment 1: Mice were made obese by ad-libitum exposure to the high fat diet for 27 weeks.  

These HFD mice weighed 45±3% more than ad-libitum LFD-fed mice, and had significantly 

higher fractional body fat (HFD, 36±1%; LFD, 17±1% fat) at the time of initiation of caloric 

restriction (HFD-WR, Figure 5.1A). On the first day of calorie restriction, ambient room 

temperature was elevated to 30°C and maintained at 30°C for the next 34 days. During this 

dynamic weight loss phase, HFD-WR mice were fed 50% of their ad libitum caloric intake until 

reaching 80±1% initial body weight (weight loss period = 17±2 days, HFD-WR mice lost 

9.8±0.3g (72% of decrease accounted for by FM). HFD-AL mice gained 4.9±0.3g (100% 

accounted for by increased FM); LFD-AL showed no significant changes in body weight or 

composition during this time period (Days 10-27, Figure 5.1A). When the ambient room 

temperature was lowered back to 22ºC (day 44, Figure 5.1A),  calories required to stabilize body 

weight of the  HFD-WR mice were initially ~2x those required at 30° ambient; at 2 weeks, 

calories required were approximately 66% higher at 22ºC than at 30ºC.  

Experiment 2: By design, caloric restriction (from days 34 to 98) resulted in a 20% decrease in 

body weight in OB-WR mice (time to achieve 20% weight reduction = 19±2 days). When 

ambient room temperature was raised to 30°C (day 99) and food intake of OB-WR was 

“clamped” to their intake at 22°C, these animals gained weight at a rate of 0.7g per day for the 

following 14 days. By 14 days, the mice weighed 90% of their initial body weight, meaning that 

they had regained 10% of the original weight lost. Total calories provided to OB-WR were then 
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decreased to match total energy expenditure (calculated from indirect calorimetry), and body 

weight was maintained at 90±0.6% of initial until time of sacrifice (day 126).  

 

Effects of Weight Perturbation and Ambient Room Temperature on Energy Expenditure: 

Experiment 1: TEE (40-45% lower) and REE (55% lower) was significantly decreased in all 

mice housed at 30°C (Calo 2) compared to 22°C (Calo 3: Figure 5.1A & Table 5.2). Residuals 

for 24-hour TEE and REE of HFD-WR mice were significantly and comparably below predicted 

at both 22°C (-1.4 kcal/24h, p<0.01 and -1.0 kcal/24h, p<0.01, respectively; Figure 5.2A) and at 

30°C  (-1.6 kcal/24h, p<0.01 and -0.8 kcal/24h, p<0.01, respectively; Figure 5.2B),  indicating 

that – irrespective of ambient temperature -  these components of EE were reduced beyond what 

could be attributed to changes in body mass and composition. The residual calculations were 

made from predicted values obtained from the multiple regression analysis using HFD-AL and 

LFD-AL together and adjusting for FM and FFM. Non-adjusted (for body mass and 

composition)  TEE was significantly lower in HFD-WR and LFD-AL compared to HFD-AL at 

both 22°C (Figure 5.2C) and 30°C (Figure 5.2D) ambient for most measurement periods. 

Adjusted TEE and REE (using ANCOVA with FM and FFM as covariates) showed that while 

HFD-WR mice had significantly lower TEE compared to HFD-AL mice, this difference was no 

longer significant when mice were placed at 22°C (Table 5.2). Adjusted TEE of HFD-WR was 

significantly lower at both ambient temperatures when compared to LFD-AL (Table 5.2). HFD-

WR mice weighed on average 14% more than LFD-AL and had 1 gram (5%) higher FFM (Table 

5.1), yet had significantly lower non-adjusted (for FFM and FM) TEE and similar REE at 30°C, 

differences that are abolished when measured at 22°C. After HFD-WR and LFD-AL mice had 

extended (38 days) ad-libitum access to HFD (Calo 4 - 22°C), both groups had significantly 
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increased body weights (Table 5.1 & Figure 5.4) reflecting increases in both  FFM and FM. 

FFM, the major contributor to metabolic rate, was no longer significantly different between 

groups at the Calo 4 timepoint which was reflected in significant increases in absolute TEE and 

REE compared to the pre-weight gain measurements;  these measures of EE were no longer 

significantly lower than those obtained in HFD-AL (Table 5.2) indicating a normalization of 

energy expenditure parameters. 

Experiment 2: OB-WR mice had significantly lower absolute TEE at both 22°C (Figure 5.2E) 

and 30°C (Figure 5.2F) ambient temperatures compared to OB-AL mice. OB-WR TEE was 

decreased to approximately 30% of maximal TEE during the late hours (0400-0600) of the lights 

off period at 22°C (Figure 5.2E),  coinciding with a decline  in core body temperature from 

approximately 34°C to 26°C (Figure 5.3B). Absolute TEE was also significantly lower in OB-

WR mice at 30°C, except during some feeding periods (black arrows: Figure 5.2F).  

 

Effects of Weight Perturbation and Ambient Room Temperature on 24h Core Body 

Temperature:  

Experiment 1: Core body temperature was significantly lower in HFD-WR mice compared to 

AL fed groups at the 1400h and 0500h measurement times at both  22°C and 30°C ambient 

temperatures (Figure 5.3A). No effect of ambient temperature per se on core body temperature 

of HFD-WR was noted.  

Experiment 2:  When housed at 30°C, OB-WR mice had significantly lower core body 

temperatures than OB-AL at all time points except at 2000h (Figure 5.3B). Interestingly, OB-

WR mice maintained at 22°C ambient temperature showed decreased body temperature only at 

0200h and 0500h compared to OB-AL mice housed at the same ambient temperature.  However, 
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the differences (≈10°C) in body temperature  between OB-AL and OB-WR at these two time 

points were much greater than those observed when mice were maintained at 30°C (≈ 3°C). 

Calorically restricted OB-WR mice maintained at 22°C become torpid during the latter part of 

the dark cycle as indicated by the striking 10 degree drop in body temperature observed at 0200h 

and 0500h. However, body temperatures of the OB-AL and OB-WR were identical near feeding 

times (0800h and 2000h).  

 

Effects of Refeeding and Diet Switch (High Fat Diet) on Body Weight Gain in HFD-WR 

and LFD-AL mice: 

Experiment 1: 

HFD-WR and LFD-AL mice were switched to HFD on day 89 (Figure 5.1A) to evaluate effects 

of ad-libitum access to a high fat diet on food intake, weight gain, and metabolic efficiency (as 

reflected by the ratio of weight gain to kcal of food eaten). Food intake was measured daily for 

22 days following the switch to high fat diet. Following 90 days of ad-libitum access to HFD, 

both HFD-WR and LFD-AL mice gained similar amounts of weight (19.0±1.0 and 20.9±0.3 

grams,  respectively) with FM accounting for 64±2% and 66±2% of the weight increments 

(Figure 5.4A). Body weights and body composition at time of sacrifice were not significantly 

different between groups (i.e. HFD-AL, HFD-WR, and LFD-AL). For the first five days 

following the diet switch, 24 hour food intake was significantly increased in HFD-WR and LFD-

AL mice compared to HFD-AL mice (Figure 5.4B). During the first 24h, HFD-WR ingested 

25% more calories than LFD-AL. After day 5, there was no significant difference in 24 hour 

food intake among the three groups. Since HFD-WR and LFD-AL mice gained similar absolute 

amounts of body weight, and 64% and 66% of that weight gain was fat, respectively, we 
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estimated feed efficiency by dividing the weight gain (g) by the cumulative food intake (g) for 

each 24 hour period. Feed efficiency was significantly greater in HFD-WR and LFD-AL mice 

than the HFD_AL during the first seven days post diet switch (Figure 5.4C). HFD-WR mice 

showed more than a two-fold higher feed efficiency during the first 24 hours compared to LFD-

AL.  

 

Effects of Weight Perturbation and Ambient Room Temperature on Blood Hormone and 

Metabolites: 

Experiment 1:  

At both 30°C and 22°C ambient temperatures, serum insulin (Table 5.3) and leptin (Figure 5.5) 

concentrations were  highest in the most obese mice (HFD-AL) and lowest in the leanest mice 

(LFD-AL). Leptin correlations were highly correlated with total FM (by NMR) with near 

identical regression equations at both 22°C (r
2
 = 0.96; leptin concentration = 4.6 * FM – 14.9) 

and 30°C (r
2
 = 0.92; leptin concentration = 4.6 * FM – 14.5). Insulin sensitivity, measured by 

HOMA%S, was lowest in HFD-AL mice and highest in LFD-AL mice, and weight reduction 

significantly improved insulin sensitivity in the HFD-WR group at Calo2 and Calo3 time points 

(Table 5.3). At 30°C ambient (Calo2), circulating T3 concentrations were significantly lower in 

the LFD-AL group compared to HFD-AL (2.8±0.1 ng/ml vs. 3.3±0.1 ng/ml, respectively). At 

22°C ambient, T3 concentrations in all three groups were higher than at 30ºC, with the greatest 

relative increase observed in HFD-AL:  HFD-AL +57%; HFD-WR +26%, LFD-AL +18%.  

HFD-WR and LFD-AL were subsequently given ad-libitum access to HFD (day 89, Figure 

5.1A). Following 40 days of HFD feeding, insulin concentrations doubled in the HFD-WR mice 

and quadrupled in the LFD-AL mice while glucose concentrations rose significantly in both 
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groups to concentrations comparable to those of HFD-AL mice (Calo 4; Table 5.3). These 

changes in insulin and glucose concentrations seen in HFD-fed animals who were previously 

HFD-WR and LFD-AL are reflected in 2 fold and 4 fold increases in insulin resistance, 

respectively, as reflected by HOMA IR (Table 5.3).  
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DISCUSSION 

 

We recently reported that maintenance of  a 20% reduction in body weight  in diet 

induced obese (DIO) and never-obese C57BL/6J mice resulted in decreased energy expenditure 

per unit of metabolic mass 
203

. That study was conducted at 22°C ambient and 24 hour core body 

temperatures were not ascertained.  Laboratory mice can become torpid when food-deprived; 

low (relative to thermoneutrality) ambient temperatures and reduced circulating leptin 

concentrations facilitate the initiation of torpor 
110,115

. Lep
ob

 mice, both fed and fasted, can 

spontaneously become torpid 
115-117

. Leptin administration to fasted WT mice and ob/ob mice 

blunts torpor 
105,115

. Under circumstances of caloric deprivation and weight loss, humans 

conserve energy by changes in resting energy expenditure and skeletal muscle physiology, but do 

not become torpid 
17,42

. The studies reported here were  designed to assess whether torpor plays a 

role in the observed metabolic adaptation seen in mice maintained at 20% below initial body 

weight in a standard (22°C) ambient 
203

. By including ad-libitum fed (AL) and weight-reduced 

WT and ob/ob mice at both thermoneutrality (30°C) and sub-thermoneutral temperatures (22°C), 

we were able to investigate the interactions of weight status, leptin axis, and ambient temperature 

on body temperature and energy expenditure.  

Torpor and the leptin axis 

We find that torpor is not invoked - at either 22°C (sub-thermoneutral) or 30°C 

(thermoneutral) ambient temperatures - in metabolic adaptations of calorically restricted WT 

mice (HFD-WR) that have a functionally intact leptin axis. When WT mice were calorically 

restricted and maintained at 80% of their initial body weight, they reduced their metabolic rates 

(adjusted for FM and FFM) by similar absolute amounts at both ambient temperatures (-1.4 
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kcal/day  at 22°C and 1.6 kcal/day at 30°C below predicted) but did not become torpid (Figure 

5.2 C&D and Figure 3.A). Mice housed at 30°C require 40-45% fewer calories to maintain a 

stable 5.body weight than when housed at 22°C (Table 5.2). The 1.6 kcal/day reduction in 

energy expenditure in HFD-WR mice housed at 30°C constitutes a 19% decrease of 24 hour TEE 

and the 1.4kcal/day reduction in energy expenditure at 22°C constitutes a 9.6% decrease of 24 

hour TEE in the HFD-WR mice vs. the HFD-AL.  The similarity of absolute decreases in the 

energy expenditure of HFD-WR mice maintained at 22° and 30° ambients suggests that the 

adaptation to weight reduction is dictated by the change in body mass and composition per se 

and is not related to differences in thermogenic demand and/or torpid behavior. A secondary 

analysis of the TEE and REE data was conducted using an ANCOVA with covariates FM and 

FFM (Table 5.2). This analysis revealed that the HFD-WR mice had significantly lower adjusted 

TEE at 30°C (≈30% lower) but not at 22°C. The discrepancy between results obtained by either 

using multiple regression analysis or ANCOVA may lie in how the two analytical approaches 

modify the data. In the multiple regression analysis, only the ad-libitum mice are used to create 

the baseline relationship of TEE to FM and FFM. The weight-perturbed mice are then compared 

to this regression that defines a eumetabolic relationship between TEE and metabolic mass. On 

the contrary, the ANCOVA uses a mean obtained from all of the mice in order to calculate the 

adjusted (for FM and FFM) values. This mathematical approach has a tendency to pull values 

closer together possibly obscuring real differences in metabolism. A second possible explanation 

is that the thermogenic stress that mice are subjected to at 22°C may obscure real metabolic 

changes that can only be observed once mice are at thermoneutrality.    

When mice with congenital  leptin deficiency are weight reduced (OB-WR) at 30° C 

ambient , they display a 3°C decrease in core body temperature between 0000h to 0500h (lights 
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off from 1900h to 0700h). These animals become torpid during those hours (core body 

temperature < 30°C) when housed at 22°C ambient. Circulating leptin concentrations in both 

humans and rodents are highest from 0000h to 0600h, the period when the OB-WR mice enter 

torpor at 22°C ambient 
229,230

. If REE is defined as the lowest one hour of TEE in an awake post-

digestive state when a mouse is not in torpor (similar to definition of REE in humans), OB-WR 

mice have an REE of ≈10kcal/24h/mouse at 22°C ambient ( Figure 5.2E) and ≈5 kcal/24h at 

30°C (Figure 5.2F) between 1100h and 1600h. The two-fold higher REE observed in OB-WR 

mice housed at 22°C vs. at 30°C reflects the increased thermogenic demand for maintainenance 

of  normal body temperature at the lower ambient. Interestingly, TEE in OB-WR mice housed at 

22°C is similar to that in animals housed at 30°C (≈5 kcal/24h) between 0200h and 0800h. 

(Figure 5.2E and Figure 5.3B). The similarity in TEE values in the OB-WR mice at 22°C and 

30°C ambient temperatures at 0200-0800h suggests that in the absence of a functional leptin 

axis, sub-thermoneutral temperatures and the maintenance at a reduced body weight results in 

metabolic rate decreases a drop in core body temperature when housed at 22°C. In WT HFD-WR 

mice, TEE at 0200h to 0800h is approximately 50% lower at 22°C (5.5kcal/24h) than at 30°C 

(11kcal/24h). The OB-WR mice are shutting down adaptive thermogenesis at an ambient 

temperature that constitutes a constant thermogenic stress (i.e. 22°C). The WT HFD-WR mice 

with intact leptin axis (Figure 5.5) are capable of maintaining near normal body temperatures at 

both 30° and 22°C ambient temperatures, which is reflected in the 2-fold higher TEE at the latter 

ambient temperature (i.e. 22°C). On the contrary, exposure to 22°C ambient in the weight-

reduced Lep
ob

 animals (OB-WR) that lack an intact leptin axis results in a decrease in both 

metabolic rate and core body temperature (i.e. torpor).   
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Effects of high fat diet feeding on never-obese and calorically restricted formerly obese 

mice 

When non-obese control-diet fed mice (LFD-AL) and formerly-obese weight-reduced 

mice (HFD-WR) were given ad-libitum access to the HFD, both groups ingested  significantly 

more calories - despite lower body weights -  than the obese HFD-AL for the first 7 consecutive 

days (Figure 5.4B: see arrow Figure 5.1A). This increased caloric intake per unit body mass 

resulted in rapid gains of body weight in both groups and probably reflects hedonic drive to eat 

the highly palatable 5.food 
231

. The higher feed efficiency observed in HFD-WR mice on the first 

day most likely reflects combined effects of: 1) increased metabolic efficiency (i.e. increased 

ratio of weight gained per calorie consumed); 2) lower initial day 0 body weight of the HFD-WR 

mice since they would have been without food in the gut as opposed to the LFD-AL which 

already had ad-libitum food access and would therefore have had some residual weight from 

non-digested food in the digestive tract.  

These data suggest that torpor is not involved in the metabolic adaptation seen in weight-

reduced WT animals at either 22°C or 30°C. Torpor was observed only in weight reduced mice 

housed at sub-thermoneutral temperatures (i.e. 22°C) that lacked circulating leptin (OB-WR),  

suggesting that a functional leptin axis in weight-reduced conditions is sufficient to maintain 

core body temperature and inhibit the onset of torpor even at 22°C ambient temperature (Table 

5.4). Under fasting conditions, the sympathetic nervous system tone is upregulated to white 

adipose tissue, resulting in increased lipolysis and decreased leptin production. Dopamine β 

hydroxylase -/- mice that are incapable of sympathetically activating WAT due to the lack of 

epinephrine and norepinephrine production do not suppress leptin production and do not enter 

torpor during a fast 
232

. The normal relationship of circulating leptin concentration to FM 
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observed at both ambient temperatures (Figure 5.5) suggests that mice are; 1) not in negative 

energy balance; and 2) have an intact leptin axis that should preclude these mice from entering 

torpor. In the absence of photic clues, twice daily feeding  alters the  circadian rhythm of mice 

233
.  In 6-month calorically restricted humans (fed 25% fewer calories than their baseline 

requirement), mean 24 hour leptin concentrations were decreased (in proportion to the decrease 

in fat mass) but showed normal 24 hour cycling with a slight increase in  amplitude 
234

. In the 

mice of this study, circadian entrainment resulting from the feeding schedule may have kept the 

24 hour leptin rhythm intact. In C57BL/6J female mice, a 24 hour fast caused only 10% of the 

mice to enter torpor 
235

. The mice in this study were without food at most 14 hours between the 

night (1830-1900h) and the morning feeding (0745 – 815h). In male C57BL/6J, an acute 14 hour 

fast results in a maximum drop of 20-25% in circulating leptin concentrations 
236

. Since our mice 

have been entrained for more than 2 months to receive food at specific times each day, this drop 

– related to an acute fasting period – may be abrogated. A leptin time course on twice daily fed 

mice could answer this question.  

As noted in the Introduction, we are interested in the physiology of the weight-reduced 

state.  The weight-reduced mouse shows reductions in energy expenditure (corrected for 

metabolic mass) that are comparable to those in humans 
203

. Because the studies were conducted 

at the conventional ambient of 22°C, we wanted to assess the possibility that some of this decline 

might be an artifact of the induction of torpor in these animals.  We found no evidence of torpor 

in WT wt-reduced animals.  However, the increased metabolic demand imposed by the weight 

reduced state at 22°C minimizes the degree of hypometabolism when compared to animals at 

30deg C ambient.  In studies such as these, and others in which intercurrent metabolic stress 
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could be a confound, an ambient of 30°C will provide bioenergetic data most comparable to 

those in human subjects. 
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FIGURE 5.1 BODY WEIGHT AND TIMELINE 

Mean (±S.E.) body weights of wild type (experiment 1 - A) or Lep
ob

 mice (experiment 2 - B). 

Mice housed at 22°C at all times except where marked by thick black line during which ambient 

room temperature was maintained at 30°C. Indirect calorimetry sessions are indicated by thin 

black lines and 4 hour fasting bleeds at 1200 are indicated by circles (experiment 1-A only).  

In experiment 1-A, mice were housed at 30°C and allowed ad-libitum access to: 1. high fat diet 

(60% kcal from fat: HFD-AL); 2. low fat   diet (10% kcal from fat: LFD-AL); or 3. given a 

restricted amount (50% of normal food intake) of  the high fat diet twice a day until they had lost 

20% of their initial body weight (HFD-WR).  HFD-WR  were maintained at 80±1% initial body 

weight for 60 days on the high fat diet, during which period all mice were had indirect 

calorimetry performed  at 30°C (Calo 2) and  22°C (Calo 3). After 80 days of food restriction, all 

mice were given ad-libitum high fat diet while housed at 22°C ambient (arrow).   

In experiment 2-B, leptin deficient mice were given ad-libitum access to HFD from 6 until 22 

weeks of age.  A subset of these mice was calorie restricted by twice daily feeding (50% ad-

libitum food intake) of the high fat diet until they had lost 20% of their initial body weight. After 

being maintained weight stable 5.for 30 days at 80±1% initial body weight by intercurrent 

adjustment of calories provided, the room temperature was increased from 22°C to 30°C. 

Following the switch in ambient temperature, HFD-WR mice were fed the same number of 

calories of HFD that they had received at 22°C for 16 days while being housed in the calorimeter 

(see calo 3 timepoint). On this regimen the animals gained weight.  Upon reaching 90±0.8% 

initial body weight, caloric intake was reduced to match energy expenditure in order to maintain 

animals at 90±1% body weight. Mice subsequently underwent another round of indirect 

calorimetry (see calo 4 timepoint) while being maintained at this weight.  
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FIGURE 5.2 ENERGY EXPENDITURE PHENOTYPES IN LEP
OB

 AND WT MICE 

Predicted values were obtained from  multivariate regressions relating energy expenditure to  

FFM and FM of ad lib fed mice (HFD-AL + LFD-AL) at 30°C  (TEE = 4.3 + 0.13 * FFM + 0.09 

* FM; R
2
 = 0.79, p < 0.0001,  and REE =  3.6 - 0.01 * FFM  + 0.11 * FM; R

2
 = 0.78, p < 

0.0001);  and at 22°C (TEE = 1.2 + 0.45 * FFM + 0.15 * FM; R
2
 = 0.87, p < 0.0001 and REE = 

1.02 + 0.28 * FFM + 0.21 * FM at 22; R
2
 = 0.93, p < 0.0001). Predictions of TEE and REE 
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based on measured FM and FFM were then made for each mouse at both ambient temperatures. 

The mean (±s.e.m.) observed-minus-predicted  for each group 24-hour total (black bars) and 24-

hour resting (grey bars) energy expenditure (kcal/24hr) for mice at 22°C (A) and 30°C (B) 

ambient room temperatures for experiment 1. (C – F) Non-adjusted (for FM and FFM) group 

mean (±s.e.m.) 24-hour total energy expenditure measured every 26 minutes over 48 hour period 

for WT mice (experiment 1) at 22°C (C) and 30°C (D) and Lep
ob

 mice (experiment 2) at 22°C 

(E) and at 30°C (F). Black arrows represent feeding times for the HFD-WR mice in C & D OB-

WR in E & F.  
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FIGURE 5.3: CORE BODY TEMPERATURE AT DIFFERENT AMBIENT TEMPERATURES   

24 hour temperature profile.  Mean core body temperatures (°C ±S.E.) were obtained in singly- 

housed mice (experiment 1 – A) or housed in pairs (experiment 2 – B) every 3 hours over two 

24 hour periods. Solid lines represent core body temperatures when ambient temperature was 

22°C; dashed lines represent core body temperatures when ambient temperature was 30°C.  (A) 

C57BL/6J wild type mice (experiment 1): 1.  ad-libitum access to high fat diet (HFD-AL); 2.  

weight-reduced by hypocaloric feeding of the high fat diet (HFD-WR); 3. given ad-libitum 

access to a low fat diet (LFD-AL). * and # denote significantly lower body temperatures in HFD-

WR vs. both HFD-AL and LFD-AL groups at 30°C and 22°C,  respectively. (B) C57BL/6J 
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leptin deficient mice (Lep
ob

 -/-, experiment 2) :  1. ad-libitum access to a high fat diet (OB-AL);  

2.  weight-reduced by hypocaloric feeding of the high fat diet (OB-WR). * and # denote 

significantly lower body temperatures in OB-WR vs. OB-AL groups at 30°C and 22°C,  

respectively. 

  



140 

  

 

 

1
4
0
 

 

 

0

5

10

15

20

0 20 40 60 80

W
ei

gh
t 

ga
in

 (g
)

Days following Switch to ad-libHigh Fat Diet

Weight gain after switch to HFD AL

HFD AL -> HFD AL n = 7

HFD WR -> HFD AL - n = 12

LFD AL -> HFD AL - n = 10

A

2

3

4

5

6

0 5 10 15 20 25

D
ai

ly
 F

o
o

d
 In

ta
ke

 (g
)

Days following Switch to ad-libHigh Fat Diet

Food Intake after switch to HFD AL

HFD AL -> HFD AL n = 7

HFD WR -> HFD AL - n = 12

LFD AL -> HFD AL - n = 10

B



141 

  

 

 

1
4
1
 

 
 

FIGURE 5.4: WEIGHT REGAIN FOLLOWING AD-LIBITUM ACCESS TO HIGH FAT DIET 

After mice from experiment 1 were maintained on their respective feeding regimens for 79 days, 

both LFD-AL and HFD-WR WT mice were given ad-libitum access to HFD.  Mouse weight (A) 

and food intake (B) were measured daily for all mice.  Feed efficiency (C) is approximated by 

the ratio of weight gain (gram) to food ingested (calories) over a 24 hour period. HFD-WR and 

LFD-AL groups gained similar amounts of body weight (19.0±1.0 and 20.9±0.3 grams, 

respectively) with FM accounting for similar proportions of this increased mass (64±2% and 66-

±2% respectively). Data presented as mean±s.e.m. 
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FIGURE 5.5: SERUM LEPTIN CONCENTRATION VERSUS FAT MASS AT DIFFERENT AMBIENT 

TEMPERATURES 

Leptin (ng/ml) to fat mass (g). Linear regression for all mice; 22°C (solid line) and 30°C (dashed 

line). Squares represent HFD-AL, diamonds HFD-WR, and triangles LFD-AL at either 30°C 

(filled in shapes) or 22°C (open shapes).  
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TABLE 5.1: BODY WEIGHT AND COMPOSITION AT DIFFERENT AMBIENT TEMPERATURES 

Body weight and body composition (FM and FFM) of the three mouse groups at 30ºC (Calo2) 

and 22ºC (Calo3) ambient: 1. during the weight perturbation period (i.e. HFD-WR maintained at 

80% initial body weight);  and 2. at 22ºC following weight regain of HFD-WR and LFD-AL 

subsequent to ad-libitum access to HFD (Calo 4). Phenotypes not connected by same letter 

within Calo measurement period are significantly different (p<0.05). € - Significantly different 

between Calo3 and Calo2 (ambient temperature comparison; p<0.05). $ - significantly different 

(p<0.05).between Calo4 and Calo3. HFD feeding for all group comparisons. 

Body Weight Fat-Free Mass Fat Mass % Fat Mass

Calo 2: 30°C - WR

HFD-AL 53.4±2.1
A

24.9±0.3
A

21.2±1.5
A

39±1
A

HFD-WR 38.9±2.1
B

23.2±0.5
B

11.6±0.5
B

30±1
B

LFD-AL 34.2±1.1
C

22.4±0.4
B

6.4±0.8
C

18±2
C

Calo 3: 22°C - WR

HFD-AL 54.4±2.4
A

26.5±0.5
A€

21.2±1.7
A

38±2
A

HFD-WR 38.9±1.1
B

23.4±0.5
B

11.0±0.6
B

28±1
B

LFD-AL 33.9±1.0
C

23.0±0.4
B

6.3±0.7
C

18±2
C

Calo 4: 22°C - Post WR

HFD-AL 56.3±2.6
A

26.8±0.6 22.2±1.7
A

39±1

HFD-WR 51.8±1.2A
B$

25.6±0.4
$

19.5±0.6
AB$

38±1
$

LFD-AL 49.6±1.4
B$

25.4±0.3
$

18.0±0.8
B$

36±1
$

Body Weight & Composition
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TABLE 5.2: ENERGY EXPENDITURE AND MOVEMENT AT DIFFERENT AMBIENT TEMPERATURES 

Total energy expenditure (TEE: by indirect calorimetry), resting energy expenditure (REE: lowest one hour TEE period), non-resting 

energy expenditure (NREE: calculated as TEE – REE) and ambulatory movement (1000x) for all three mouse groups at 30ºC (Calo2) 

and at 22ºC (Calo3) during the weight perturbation period: 1.  HFD-WR maintained at 80% initial body weight; and 2. at 22ºC 

following weight regain of HFD-WR and LFD-AL subsequent to ad-libitum access to HFD for all three groups (Calo 4). “TEE 

adjusted” and “REE adjusted” were calculated using ANCOVA with group as factor and FM & FFM as covariates. Values are group 

mean±s.e.m. Levels not connected by same letter within Calo measurement period are significantly different (p<0.05). € - 

Significantly different between Calo3 and Calo2 (ambient temperature comparison; p<0.05). $ - significantly different between Calo4 

and Calo3 (p<0.05). HFD feeding for all group comparison.   

TEE 

(kcal/24h)

TEE adjusted 

(kcal/24h)

REE 

(kcal/24h)

REEadjusted 

(kcal/24h)

NREE 

(kcal/24h)

Movement 

(1000x) 

Calo 2: 30°C - WR

HFD-AL 9.3±0.3
A

8.6±0.4
A

5.6±0.3
A

4.7±0.3
A,B

3.7±0.1
A

158.8±28.6
A

HFD-WR 6.7±0.2
C

6.7±0.2
B

4.0±0.1
B

4.0±0.1
B

2.7±0.1
B

162.8±21.9
A

LFD-AL 7.7±0.1
B

8.1±0.3
A

4.1±0.1
B

4.6±0.2
A

3.6±0.1
A

251.7±24.0
B

Calo 3: 22°C - WR

HFD-AL 16.3±0.7
A,€

13.2±0.5
A,B,€

12.4±0.5
A,€

9.8±0.4
A,B,€

3.9±0.1
€

106.7±16.4
A

HFD-WR 12.1±0.2
B,€

12.5±0.2
B,€

8.6±0.2
B,€

8.8±0.2
B,€

3.5±0.1
€

175.0±12.5
B

LFD-AL 12.8±0.4
B,€

14.5±0.4
A,€

8.7±0.3
B,€

10.2±0.3
A,€

4.1±0.1
€

210.1±13.7
B

Calo 4: 22°C - Post WR

HFD-AL 15.8±0.7 14.7±0.4
A 11.7±0.7 10.7±0.3

A
4.1±0.2

$ 88.5±15.9

HFD-WR 15.8±0.4
$

15.9±0.3
B,$

11.9±0.4
$

12.0±0.2
B,$ 3.9±0.3 131.0±12.7

LFD-AL 15.8±0.5
$

16.5±0.3
B,$

12.0±0.2
$

12.6±0.2
B,$ 3.8±0.3 139.6±14.0

Energy Expenditure



 

  

 

 

1
4
5
 

 
 

TABLE 5.3: SERUM HORMONES AND METABOLITES AT DIFFERENT AMBIENT TEMPERATURES 

Serum hormones and metabolites for the three mouse groups at 30ºC (Calo2) and at 22ºC (Calo3) during:  1. weight perturbation 

period (i.e. HFD-WR maintained at 80% initial body weight); and 2.  at 22ºC following weight gain of HFD-WR and LFD-AL 

subsequent to ad-libitum access to HFD for all three groups (Calo 4). Levels not connected by same letter within Calo measurement 

period are significantly different (p<0.05) by ANOVA with Tukey post-hoc analysis. € - Significantly different between Calo3 and 

Calo2 (ambient temperature comparison; p<0.05). $ - significantly different between Calo4 and Calo3 (HFD feeding for all groups 

comparison; p<0.05). 

T3 (ng/dl) Glucose (mg/dl Insulin (ug/l) HOMA%S HOMA IR

Calo 2: 30°C - WR

HFD-AL 3.3±0.1
A

135±4.1
A

0.26±0.05
A

136.3±20.3
A

0.92±0.17
A

HFD-WR 3.1±0.1
AB

118±4.5
AB

0.16±0.01
B

182.8±9.5
B

0.56±0.03
B

LFD-AL 2.8±0.1
B

126±6.4
B

0.14±0.01
B

209.4±7.1
B

0.48±0.02
B

Calo 3: 22°C - WR

HFD-AL 5.2±0.4
A€

138.9±4.6
A

0.30±0.03
A

106.2±15.2
A

1.07±0.12
A

HFD-WR 3.9±0.1
B€

118.2±4.1
B

0.20±0.01
B

154.8±10.5
B

0.68±0.05
B

LFD-AL 3.3±0.1
C€

124.1±3.8
B

0.14±0.01
C

205.1±6.9
C

0.49±0.02
B

Calo 4: 22°C - Post WR

HFD-AL 4.5±0.3 145.3±10.4 0.29±0.03
A

104.7±12.3
A

1.05±0.11
A

HFD-WR 4.0±0.1 151.7±3.7
$

0.40±0.08
AB$

85.9±10.6
AB$

1.46±0.27
AB$

LFD-AL 4.0±0.3
$

155.7±6.5
$

0.56±0.08
B$

61.5±13.0
B$

2.04±0.30
B$

Blood Hormone and Metabolites
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CHAPTER 6: EFFECTS OF CHRONIC LEPTIN INFUSION ON 

SUBSEQUENT BODY WEIGHT AND COMPOSITION IN MICE: CAN BODY 

WEIGHT SET POINT BE RESET? 

 

INTRODUCTION  

In weight-stable individuals, circulating leptin concentration is directly proportional to fat 

mass 
160

. Loss of fat mass and calorie restriction cause decreases in circulating leptin 

concentrations 
22,169,237

, thus circulating leptin levels provide signals regarding the acute and 

long-term status of body fat stores.  Following weight-loss, a decrease in circulating leptin 

provides one of the signals that induce a CNS-mediated decrease in energy expenditure and 

increase in hunger 
161,169

. Restoration of leptin concentrations to pre-weight loss levels abrogates 

these metabolic and behavioral responses 
22

. Diet-induced obese (DIO) mice that are weight-

reduced by caloric restriction also respond by reducing energy expenditure. Compared to never-

obese mice with similar body mass and composition, these ‘post-obese’ mice are hypometabolic 

237
. Leptin administration to calorically restricted 

105
 or fasted mice 

43
 restores energy expenditure 

to levels similar to pre-weight loss and/or fast. In addition, 48-h fasted male mice show 

starvation-induced changes in gonadal, adrenal, and thyroid axes that are all leptin reversible 
43

. 

Taken together, these findings indicate that circulating leptin concentration is a major afferent 

signal of overall energy availability, and that the hypometabolic phenotype of weight-reduced 

individuals is the result of a state of relative leptin insufficiency. 

In contrast to the potent effect of leptin administration to humans or rodents with leptin 

insufficiency (weight-reduced, fasted, or congenitally leptin deficient), administration of a 

physiological dose of leptin to rodents or humans at usual or increased body weight has little to 
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no effect on total energy expenditure 
101

 or food intake. In fact, in the overweight and obese 

states, almost 10-fold elevations of plasma leptin concentrations are required before effects on 

energy expenditure and food intake 
22,50,102

 are observed. Such data suggest that leptin-sensing 

circuitry in the CNS is “designed” to be inherently more responsive to declines in ambient leptin 

than to increases.  Evolutionary arguments for such “asymmetric” regulatory responses to 

changes in body fat have been proposed 
13

.  Determination of the “threshold” (minimum signal 

regarding fat mass)  below which these responses are invoked is determined by genetic and  

developmental factors 
13

.   An important question is whether this threshold can be reset by 

environment.  That is,  whether sustained maintenance of a body weight higher (or lower) than 

that “encoded”  by genetic and early developmental factors,  could permanently alter the level of 

body fat “defended” by an individual.   Such malleability would have major implications for 

efforts to prevent and treat obesity.  

Elevations in the hypothalamus of fatty acids 
238

,  cytokines (e.g. IL6) 
239

 and 

impairments of molecular stress responses in the endoplasmic reticulum 
240

 can impair  acute and 

chronic leptin signaling,  accounting for the persistence of high levels of body fat despite 

proportionate elevations of circulating leptin concentrations.  Whether these various 

desensitization processes occur by a shared mechanism is unknown 
241

, and whether such 

desensitization is mechanistically related to the apparent “defense” of a higher body weight in 

mice chronically maintained at higher body weight by feeding of a HFD, is not clear.  The 

achievement of an elevated body fat content is accompanied by many metabolic and endocrine 

changes that could contribute to this effect and are difficult to disarticulate experimentally.  In 

the present study we sought to isolate the possible effects of high ambient leptin per se on this 

process.   We examined the effects of 18 weeks of continuous exogenous leptin infusion on the 
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metabolic response of such animals.  By infusing recombinant murine leptin at levels that 

mimicked those of age-matched diet-induced obese (DIO) mice, to lean mice consuming low-fat 

diet, we sought to create a mouse model of elevated circulating leptin concentrations without the 

metabolic “confounds” of diet-induced obesity (e.g. elevated triglycerides and glucose, insulin 

insensitivity, fatty liver, etc.). Our hypothesis was that a chronic elevation in leptin 

concentrations would result in a permanent elevation in the minimum level of defended body fat.   
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MATERIALS AND METHODS 

Animals 

48 C57BL/6J male 6 week-old mice were obtained from Jackson Laboratory (Bar
 
Harbor, 

ME). Upon receipt, animals were housed 4 per cage in plastic pens with wood chip bedding in a 

pathogen-free barrier facility maintained at 22-24 ºC with
 
a 12-h dark-light cycle (lights on at 

0700 h). Ad libitum access to a low fat diet (LFD: Research Diets, Inc. D12450Bi, 10% kcal 

from fat) and water were provided during the entire experiment unless otherwise specified. Body 

weight and body composition were recorded every 14 days unless otherwise specified.  

The protocol was approved by the Columbia University
 
Institutional Animal Care and Use 

Committee. 

Study Design Overview:  

There were 3 phases to this study: 1. leptin infusion (Figures 6.1 & 2); 2. weight regain 

(Figure 6.3); and 3. food preference (Figure 6.4). All animals participated in all phases.  After a 

3 week period of  acclimatization, cages were stratified based upon the total weight of the 4 mice 

occupying each cage. Cages were arranged in triplicates in ascending order of total body weight 

with cages 1 and 2 being assigned leptin (n = 36) and cage 3 of triad assigned PBS (n = 12). 

Mean body weights for the animals assigned to pbs (n=12) and lep (n=36) were 24±0.6g and 

24±0.3g respectively. Mini-pumps were implanted in all mice. The LEP mice received 

recombinant murine leptin dissolved in PBS (7.9pH: Dr. A.F. Parlow; National hormone & 

peptide program); the PBS mice received vehicle and pumps were surgically replaced every two 

weeks to provide an 18 week infusion period (leptin infusion phase). Mice were placed in 

metabolic chambers 6 days after the implantation of the final mini-pump (25ug/day: Days 144-

151: Figure 6.1A and Figures 6.2A-C). Mini-pumps were subsequently removed (day 155, 
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Figure 6.1A) and food intake and body weight were monitored for the following 25 days 

(weight regain phase: Figures 6.3A-D). Following 48 days of ad-libitum access to the LFD, a 

diet preference test was conducted (diet preference phase). Mice were individually housed and 

given simultaneous access to both a LFD (10% kcal from fat) and a medium fat diet (MFD: 30% 

kcal from fat:  Research Diets, Inc. D09082404i) placed on the floor of the cage. Each food 

source was weighed daily for 10 days. Following 10 days of access to both LFD and MFD with 

no significant differences in diet preference between the LEP and PBS mice (Figure 6.4), mice 

were given ad-libitum access only to the MFD for the remainder of the experiment (a total of 60 

days).  

Leptin infusion phase: 

Mini-pumps 

Nine mini-pump implantations (at 2 week intervals) were performed in each animal over 

the 18 week infusion period. The first 6 mini-pumps used were Alzet model 1002 and the last 3 

were model 2002 (Alzet; Cupertino, CA). The second model holds twice the volume (200 μl) of 

a model 1002, and was required to permit use of a lower the concentration of leptin in the pumps. 

Mini-pumps were placed in a dorsal subcutaneous pouch under inhaled isoflurane (1-1.5%) in 

oxygen anesthesia. Shaved skin was prepped with betadine and alcohol washes, and a 1.5-2 cm 

incision caudal to the interscapular region was made, avoiding the interscapular brown adipose 

tissue depot. The mini-pump was positioned with the orifice facing caudally. The metal flow 

moderator was replaced with PEEK medical microtubing (Durect Corporation, Cupertino, CA) 

to enable use of the time-domain-NMR for body composition analysis. To assess the effect of 

this retrofit on flow rate from the pump, we did not change out the metal flow modulator on 
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mini-pump change 7.  This step accounts for the absence of body composition  measures for that 

period (16ug/day; days 94 – 109: Figures 6.1B & C). Leptin dosing was based on pilot studies 

in which we correlated rates of infusion with intercurrent circulating serum concentrations of 

leptin. Using regression analyses of fat mass and serum leptin made earlier 
237

 our goal was to 

elevate circulating leptin concentrations in non-obese LFD-fed mice to those analogous of age-

matched diet-induced obese mouse. The lowest dose administered was 1ug/day/mouse 

(41.6ng/hour) and the highest dose was 25ug/day/mouse (1021.7ng/hour); 3ug/day increments 

were added at each mini-pump switch time point (i.e. 4ug/day, 7ug/day, etc.). 4 hour fasting 

blood was obtained by retro-orbital bleeding 1 week after each mini-pump implantation.  

Body weight and body composition 

Body weight (BW) was measured (± 0.1 g) weekly using an Ohaus Scout Pro 200g scale 

(Nänikon Switzerland, between 07:45-08:15h). Body composition (fat mass: FM, fat-free mass: 

FFM, & extracellular fluid) were measured by time-domain-NMR (Minispec Analyst AD; 

Bruker Optics, Silberstreifen, Germany) every 2 weeks (1 week after previous mini-pump 

implantation and one day before retro-orbital bleeding).  

Indirect calorimetry 

Energy expenditure was measured with a LabMaster-CaloSys-Calorimetry System (TSE 

Systems, Bad Homburg, Germany) during the 25ug/day/mouse phase of study (days 144-151: 

Figure 6.1A and Figures 6.2A-C).  O2 and CO2 measurements were taken every 26 minutes 

during a 72 hour period while mice were given ad-lib access to LFD and water.  Because of 

possible initial stress related to transfer to the chambers, only the last 48 hours of measurements 
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were used to calculate total 24-hour energy expenditure (TEE; expressed in kcal/day) and 

respiratory quotient (RQ = VCO2 / VO2). Resting energy expenditure (REE in kcal/day) was 

defined as the lowest one hour period of energy expenditure, which coincided with the lowest 1 

hour of total ambulatory activity during the 48-hour period and this value was extrapolated to 24 

hours. Non-resting energy expenditure (NREE) was calculated as the difference between total 

energy expenditure (TEE) and REE. Physical activity was measured by an infrared beam system 

integrated with the LabMaster system. Total activity (beam breaks) in X, Y, and Z axis was 

stored every 26 minutes. The system is designed to differentiate between fine motor movement 

(defined as a single X or Y axis beam break), ambulatory movement (defined as the 

simultaneous breaking of two adjacent X or Y beams), and rearing, defined as the breaking of the 

Z axis infrared beam. 

Weight regain phase 

Following the removal of the last mini-pump (day 155; Figure 6.1A), BW and food 

intake (FI) were measured daily for 10 days each morning (0745h – 0815h) and every 2-3 days 

thereafter for the following 15 days when mice had ad-lib access to the LFD (Figures 6.3A-D). 

Food intake was measured per cage and divided by the number of mice in the cage in order to get 

an estimate of individual energy intake. Body composition was obtained prior to removing last 

mini-pump and then 5 and 41 days post excision of the last pump.  

Diet preference phase   

Once body weights had stabilized following excision of last mini-pump (approximately 5 

weeks), mice were individually housed and allowed to acclimatize for 1 week.  Both LFD and 
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MFD were placed on the bottom of each cage; body weight and food weight were determined 

daily (1000h – 1100h). Feed efficiency was estimated by dividing 24 hour weight change by the 

number of calories consumed during that period (g/kcal). Following 10 days of diet preference 

testing, mice were given ad-lib access only to the MFD.  Body weight was measured every 1-2 

weeks during this 8 week period.  

Serum leptin and insulin 

Blood was obtained by retro-orbital bleed following after a 4-h fast 1 week following 

every mini-pump switch during the 18 week leptin infusion phase as well as 5, 41, and 118 days 

following last mini-pump removal. Blood was allowed to clot for 2 h at room temperature, spun 

at 4°C for 20 min at 1,000 g, and serum was collected and frozen at −80°C until time of assay. 

Leptin was assayed using Quantikine ELISA kit (R&D Systems, Minneapolis, MN) and insulin 

using the Mercodia Ultrasensitive Mouse Insulin ELISA (Mercodia, Uppsala, Sweden).  

Statistical Analyses 

Data are expressed as means ± SE. Statistical analyses were performed using JMP 

(version 7; SAS, North Carolina). Where applicable, ANCOVAs were conducted using diet 

group (LEP or PBS) as factor with FM and FFM as covariates. Statistical significance was 

prospectively defined as Pα < 0.05. 
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RESULTS 

Leptin infusion phase: 

Body weight, body composition, and circulating leptin concentration during leptin infusion 

Body weight and body composition upon implantation of the first mini-pump (day 24; Figure 

6.1A-C) were indistinguishable between LEP- and PBS-treated mice (body weight: 24.0±0.4 vs. 

24.0±0.6, fat-free mass: 17.8±0.4 vs. 17.7±0.4, and fat mass: 3.1±0.1 vs. 3.4±0.2 g, respectively). 

Body weight was significantly lower in the LEP group by the start of the 4ug/day dose of leptin 

(day 44; Figure 6.1A) with the majority of this difference accounted for by a decrease in FM (-

0.9±0.1 g, representing a 30% decrease) in the LEP mice following implantation of the first 

mini-pump (1ug/day; Figure 6.1B). The decrease in FM following implantation of the 1
st
 pump 

(1ug/day) then stabilized in the LEP group, and FM remained unchanged throughout the rest of 

the experiment. FM was not statistically different at the first dose (1ug/day; 2.2±0.1 g) compared 

to the final dose (25ug/day; 2.4±0.3 g) in LEP mice but rose significantly in PBS mice (2.9±0.2 

vs. 4.6±0.3 g respectively; p < 0.01). Fat-free mass was slightly lower in the LEP group 

compared to PBS group starting at the 4ug/day dose, but reached statistical significance only at 

the 22ug/day time point (Figure 6.1C). A repeated measures ANOVA revealed strong treatment 

(p < 0.001), time (p < 0.001) and time*treatment effects (p < 0.001).  Circulating leptin 

concentrations were significantly higher in the LEP compared to PBS group starting at 7ug/day 

(10.5±1.7 vs. 4.6±0.7 ng/ml respectively), and were > 7.5 fold times higher at the 25ug/day dose 

compared to the PBS group (47.3±6.0 vs. 6.3±3.0 ng/ml, respectively) (Figure 6.1D).  
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Energy expenditure, ambulatory activity, and respiratory quotient in LEP (25ug/day) and PBS 

mice 

Non-adjusted (for body composition) mean total 24h energy expenditure (TEE) at 144-

150 days was slightly but significantly lower in the LEP group compared to the PBS group 

(11.6±0.2 vs. 12.2±0.2 kcal/24h respectively; p = 0.04) (Table 6.1 & Figure 6.2A), a reflection 

of the lower resting energy expenditure (REE) in the LEP group (8.4±0.1 vs. 9.1±0.2 kcal/24h; p 

= 0.01) (Table 6.1). Whether adjusted for FM and FFM (Table 6.1), or FFM only (not data 

shown), TEE was no longer significantly different between the groups (p = 0.09 and p = 0.1 

respectively). The higher TEE observed in the LEP mice at the beginning of the first lights off 

phase (Figure 6.2A) correlates well with increased ambulatory activity (Figure 6.2B). When 

TEE and REE are adjusted for FM and FFM using multiple regression analysis 
237

, TEE were 

nearly identical between LEP and PBS mice (data not shown). Both TEE and ambulatory 

movement were shifted to the left in the LEP mice in the early lights off period (2000h – 0200h; 

Figure 6.2B & C). Mean 24 hour respiratory quotient (RQ) was similar in both groups (Table1) 

and only a few separations between the groups were seen over the entire 48 hours (Figure 6.2C).    

Weight regain phase: 

Body weight, food intake, and metabolic efficiency and circulating leptin concentrations;  

Following discontinuation of the mini-pumps (Day 55, Figure 6.1A), body weight and 

food intake were measured every 24h for the first 10 days, and then every 2-4 days for the 

subsequent 15 days.  Body weights of the LEP mice increased at ~0.2g/day until reaching a 

plateau on day 7.  Mean 7 day weight gain was 1.3±0.2 grams (Figure 6.3A), representing a 
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5.2±0.8% increase in body weight (Figure 6.3B). PBS mice lost weight until day 4; mean weight 

loss in that period was 1.1±0.2 grams (Figure 6.3A), representing a 3.5±0.7% decrease in body 

weight (Figure 6.3B). Body weights returned to levels prior to mini-pump removal in the PBS 

group at about day 10.   Despite their initial weight gain following removal of the leptin-

containing pumps, body weights of the  LEP mice remained slightly but significantly lower than 

those of  the PBS group until the end of the experiment (118 days following mini-pump removal: 

LEP – 34.6±0.8 and PBS – 37.6±1.3 on last day of experiment) (Figure 6.3A). Food intake was 

significantly higher than PBS  in LEP animals on days 2-6  post pump removal,  but was similar 

to PBS mice following day 7 (Figure 6.1C). Feed efficiency, estimated by dividing the change in 

body weight (g) by the food intake (kcal) for 24h, was significantly higher in LEP mice on days 

2-6. 4 hour fasting leptin serum concentrations were measured 5, 41, and 118 days following the 

cessation of leptin infusion (Table 6.2). LEP mice had significantly higher concentrations of 

leptin compared to PBS mice at both 5 (75% greater) and 41 (65% greater) days post cessation in 

spite of having lower fat mass (41% and 31% lower FM in LEP vs. PBS respectively; Table 6.2). 

When adjusted for fat mass, the differences were further accentuated.  LEP mice had 3-5 fold 

higher adjusted circulating leptin concentrations at 5 and 41 days post-cessation of leptin 

administration (p < 0.05). 42 days following leptin infusion cessation, a diet preference test (see 

results in next section) was started in which mice were given free access to both MFD and LFD 

for 10 days before being switched to MFD only. On day 118 post cessation of leptin infusions, 

no significant difference in non-adjusted serum leptin concentrations was observed between LEP 

and PBS mice yet leptin concentrations were still significantly elevated when adjusted for fat 

mass (LEP = 44.3±4.2 vs. 24.8±6.8; p < 0.05).  Leptin concentrations in either group had 
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significantly risen from the 41 day post-leptin infusion timepoint due to the increase in body fat 

resulting from ad libitum intake of the MFD.  

Diet preference phase 

Both LEP and PBS mice preferred the MFD, consuming more than 90% of their entire 

total daily caloric intake as MFD (Figure 6.4). The LEP mice ingested slightly fewer total 

calories as a result of relatively lower intake of the MFD during the first 5 days, a trend that was 

reversed on the last 2 days. When EI was normalized to estimates of FM and FFM, there was no 

longer a difference in energy intake data (data not shown). Following this 10 day period, all mice 

were given ad-libitum access to the MFD.   
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DISCUSSION 

Leptin’s role in signaling peripheral energy stores (i.e. adiposity) to the CNS has been 

well documented 
103

. Whether decreased CNS sensitivity to leptin  is a cause or a consequence of 

obesity is still highly debatable 
241

. These possibilities are, of course, not mutually exclusive.  

Circulating molecules, such as free fatty acids, have been proposed as capable of inducing leptin 

resistance on their own thereby facilitating weight gain 
238

. Lep
ob

 mice whose circulating leptin 

concentrations are “clamped”  to those of lean animals by low dose administration of leptin via 

mini-pump remain leptin sensitive even after becoming obese by feeding of a high fat diet during 

20 weeks 
242

. Body weight and body-composition matched WT mice also fed a high fat diet  had 

significantly higher leptin concentrations and were leptin resistant (i.e. decreased pSTAT3  

activation in the hypothalamus  following leptin administration) suggesting that leptin itself is 

required to induce leptin resistance 
242

. The goal of the present study was to determine whether 

18 weeks of hyperleptinemia (without the metabolic “confound” of obesity) was capable of 

resetting defended body in mice fed a low fat diet.  We found that chronic elevations of 

circulating leptin concentrations, per se, did not lead to metabolic or behavioral “defense” of a 

higher body weight.   

 Leptin infusion resulted in lower fat mass accumulation starting at infusion rates of 

4ug/day (serum leptin = 3.4±0.5 ng/ml) compared to PBS-infused control mice (serum leptin = 

2.9±0.3). Harris et. al showed that Lep
ob

 mice administered peripheral doses of 2ug/day via 

osmotic minipump showed significant decreases in food intake and body weight,  while a dose of 

10ug/day was required  to produce  similar changes in wild type mice 
243

.  In a separate study, 

200ng/hour infusion rates (i.e. 4.8ug/day) significantly decreased body weight of wild type mice 

by approximately 5% over a 14-day infusion period; there was a positive correlation between 
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leptin infusion rates (200, 300, 400, and 500ng/hour) and maximal weight loss 
73

. The highest 

dose administered in the present study (25ug/day) is higher than a reported dose of 10ug/day that 

was reported to greatly reduce somatic fat in mice 
102

. 25ug/day in the present study did not 

decrease the RQ of LEP mice compared to PBS mice (0.88±0.01 vs. 0.89+0.01 respectively), 

suggesting that a gradual increase in circulating leptin results in a decreased sensitivity to leptin’s 

effects on fat catabolism. When the leptin infusion was stopped, LEP-infused mice fed a low fat 

diet had a 5.2±0.8% weight increase during the first 10 days (vs. -1.0±0.8% in the PBS mice) and 

then stabilized at a body weight slightly (≈5%) but significantly lower than the PBS-infused mice 

suggesting that the “set point” for body fat had not been reset upwards, and may even have been 

moved lower.  Weight regain following a period of exogenous leptin administration has been 

well documented and may result from a perceived leptin deficiency in the CNS following the 

discontinuation of leptin infusion yet since fat mass is reduced, other adipose tissue-mediated 

signals cannot be ruled out 
73,243

.  Acute leptin reduction should result in suppressed metabolic 

rate following removal of the pump and although not directly measured by indirect calorimetry 

in the present study, the high feed efficiency may be a combination of increased food intake and 

lower metabolic rate, not only increased food intake.  A low metabolic rate coupled with 

increased food intake would operate in concert to quickly increase fat mass as observed in the 

present study (Figure 6.2C & Figure 6.2D). At the end of the leptin infusion phase, LEP mice 

had nearly 8-fold greater circulating leptin concentrations than PBS mice (47.3±6.1 vs. 6.2±1.1 

ng/ml respectively) and lower absolute (2.4±0.3 vs. 4.6±0.3 g, respectively) and percent (7.7±1.0% 

vs. 12.7±1.4%, respectively) fat mass. The leptin concentrations observed in the LEP mice would 

be commensurate to those found in high fat diet fed mice at 16 weeks of age (10 weeks of high 

fat diet feeding). Once mini-pumps were removed, leptin concentrations in the LEP mice fell 
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by >50% after 5 days, dropping from 47.3±6.1 ng/ml during the 25ug/day infusion period to 

20.5±3.4 ng/ml. Yet this leptin concentration remained significantly higher than in the PBS 

treated mice, this in spite of LEP mice having significantly lower fat mass (≈40% lower; LEP = 

2.4±0.3 vs. PBS = 4.4±0.4 g). LEP mice display increased circulating leptin concentrations 

adjusted for FM even 141 days following mini-pump removal. These apparently elevated leptin 

concentrations may arise for multiple reasons: 1) leptin is truly elevated but has diminished 

influence on metabolic parameters as hypothesized by the leptin threshold model; 2) problem in 

clearance or catabolism of leptin; 3) increase in the soluble leptin receptor (LepRe) that may 

decrease the bioavailability of leptin binding to LepRb; 4) the leptin infused mice may have been 

producing antibodies against leptin that could either decrease bioavailability and/or directly 

interfere with the ELISA kit used resulting in apparently elevated concentrations of leptin. 71% 

of human subjects that received 24 weeks of leptin injections developed antibodies
50

. Leptin has 

been shown to decrease food reward responses through actions mediated by the midbrain 

dopamine and opioidergic pathways
244,245

. 2 months following discontinuation of the leptin 

infusion, a diet preference test revealed no differences between LEP and PBS mice when offered 

both a 10% and 30% fat diets ad-libitum (Figure 6.4).  

These results suggest that chronic elevations of circulating leptin concentrations per se do 

not result in major changes in defended body weight or diet preference. Peripheral leptin 

injection/infusion studies in mice have focused on the effects of leptin on body weight and 

composition, glucose homeostasis, and leptin resistance in the central nervous system. Infusion 

periods have ranged from single injections, to 28 day studies at infusion rates from 1ug/day to 

40ug/day 
73,102,243,246

. Our study was designed to examine directly the effects of incremental 

increases in circulating leptin concentrations over a period of 18 weeks on body weight 
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regulation. The design explicitly isolated the effects of elevated leptin per se, from the effects of 

increased somatic and dietary fat.  We have previously suggested 
237

  that the hypometabolic 

phenotype observed in DIO mice that are weight-reduced to 20% below their “normal” body 

weight may result from perceived relative “hypoleptinemia”. Chronic hyperleptinemia could 

affect both molecular and structural substrates for response to leptin in the central nervous 

system and elsewhere 
237

. The fact that LEP mice in this study did not “defend” an elevated body 

weight following the discontinuation of the leptin infusion suggests that 1.) the period of leptin 

infusion what not sufficiently long; 2. diet/adiposity-mediated changes in the CNS are the 

responsible factors; 3. Elevated leptin concentrations and factors in #2 act synergistically to 

produce an elevation in the set point or threshold of defended body fat.  When administered to 

either by CNS or peripheral infusion, leptin increases energy expenditure 
247

. The 5% lower 

unadjusted (for body weight/composition) energy expenditure observed in the LEP mice 

receiving 25 ug/day leptin (p = 0.04), suggests that slow increases in ambient leptin by infusion 

may provoke desensitization to some of the metabolic and behavioral effects of acute leptin 

administration. These differences were no longer significant once TEE was corrected for FM and 

FFM.  
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FIGURE 6.1: BODY WEIGHT, BODY COMPOSITION, AND CIRCULATING LEPTIN 

CONCENTRATION DURING LEPTIN INFUSION  

(A – C) Mean (±sem) body weight (A) fat mass (B) and fat-free mass (C) of +Leptin and +PBS 

infused mice. Black circles represent surgery days where mini-pumps were exchanged with 

successively increasing doses of leptin (doses given below each dot in ug/day). Black line on 

bottom right represents 72 hour indirect calorimetry measures for all mice. (D): Mean (±sem) 

circulating serum leptin concentrations (ng/ml) at different infusion rates (ug/day) of +Leptin and 

+PBS groups. 4 hour fasting blood was obtained 7 days following every implantation of new 

mini-pump. 
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FIGURE 6.2: ENERGY EXPENDITURE, AMBULATORY ACTIVITY, AND RESPIRATORY 

QUOTIENT IN LEP (25UG/DAY) AND PBS MICE 

Mean (±sem) non-adjusted (for body weight and composition) total energy expenditure (A), 

cumulative movement (B), and respiratory quotient (C) of +Leptin and +PBS infused mice. Grey 

shading represents lights off period. A total of the last 48 hours that mice were in the chambers 

are shown for all three figures.  
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FIGURE 6.3: BODY WEIGHT, FOOD INTAKE, AND METABOLIC EFFICIENCY FOLLOWING 

LEPTIN INFUSION CESSATION  

Mean (±sem) body weight (A), percent body weight change (B), 24 hour  food intake of low fat 

(10% kcal from fat) control diet (C) and 24 hour feeding efficiency (D) of +Leptin and +PBS 

infused mice the 30 days following removal of the terminal mini-pump. Feeding efficiency was 

calculated by dividing 24 hour weight change (g) by 24 hour food intake (kcal).  
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FIGURE 6.4: FOOD INTAKE DURING DIET PREFERENCE TEST 

Mean (±sem) kcal/24h consumed of either LFD (10% kcal from fat: dashed lines) or MFD (30% 

kcal from fat: solid lines) for mice that had either received leptin (LEP mice; black diamond) or 

PBS infusion (PBS mice; open diamonds).  
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TABLE 6.1: ENERGY EXPENDITURE PARAMETERS IN LEPTIN INFUSED MICE 

Non-adjusted and adjusted (for FM & FFM) total energy expenditure (TEE), resting energy 

expenditure (REE), and non-resting energy expenditure of LEP and PBS mice during last mini-

pump infusion (25ug/day of leptin). *  significantly different by t-test (P < 0.05). # significantly 

different by ANOVA adjusted for FM.  

  

TEE (kcal/24h) REE (kcal/24h) NREE (kcal/24h) RQ (24h)

Non-Adjusted

PBS (n = 12) 12.2±0.2 9.1±0.2 3.2±0.1 0.89±0.01

LEP (n = 32) 11.6±0.2* 8.4±0.1* 3.2±0.1 0.88±0.01

Adjusted (FM & FFM)

PBS (n = 12) 12.2±0.2 9.1±0.3 3.2±0.1 0.89±0.01

LEP (n = 32) 11.6±0.3 8.4±0.1# 3.2±0.1 0.88±0.01

Energy Expenditure
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TABLE 6.2: SERUM LEPTIN CONCENTRATIONS FOLLOWING PUMP REMOVAL 

Non-adjusted and adjusted (for FM) leptin concentration (ng/ml) at 3 time points (5, 41, and 118 

days) following cessation of leptin infusions. * significantly different by t-test (p<0.05). # 

significantly different by ANCOVA using FM and FFM as covariates.   

 

Leptin (5 days) Leptin (41 days) Leptin (118 days)

Non-adjusted

PBS (n = 12) 11.7±2.7 10.5±2.3 34.6±5.1

LEP (n = 32) 20.5±3.4* 17.3±3.7* 40.3±6.3

Adjusted mean (FM)

PBS (n = 12) 4.7±5.1 5.7±5.4 24.8±6.8

LEP (n = 32) 23.1±4.7# 19.1±3.2# 44.3±4.2#

Serum Leptin Concentration (ng/ml)
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CHAPTER 7: DISCUSSION AND FUTURE DIRECTIONS 

 

Genetic, epidemiological and physiological studies suggest that body weight is regulated 

103
. The large increase in the number of obese individuals in many western and developing 

nations indicates that genes that favor energy accumulation and conservation may now have 

become detrimental in a new environment that includes easy access to energy dense foods and an 

increasingly sedentary lifestyle. Alleles of the relevant genes may have been selected for by 

cycling periods of feast and famine. This “thrifty” genotype would confer survival advantages to 

both a pregnant mother and her fetus. In the current “obesogenic” environment with abundant 

access to calorically dense food coupled with low energy requirements to obtain the food, these 

evolutionarily advantageous alleles may now promote excess body adiposity and its associated 

comorbidities. The “metabolic syndrome” 
248

, characterized by hypertension, dyslipidemia, high 

blood pressure, high fasting blood sugar concentrations and an elevated waist circumference, 

seems to reflect an interaction of the genetic predisposition to store fat with the current 

‘obesogenic’ environment.  

Clearly, there are differences in an individual’s genetic propensity to obesity since 

overfeeding studies shows large differences in the amount of weight gained (reviewed in 
249

). 

This was shown to be related to an individual’s capacity to raise energy expenditure in response 

to overfeeding. In contrast, in response to the maintenance of 10% or 20% lower body weights, 

energy expenditure decreases more than expected compared to the decrease in metabolic mass
103

. 

The observation of the respective increases and decreases in energy expenditure observed in 

individuals with increased or decreased weight suggests a physiological feedback system which 

indicates the status of peripheral energy stores to the CNS ultimately affecting energy intake 
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and/or energy expenditure. Whether this feedback system for defense of body weight is “fixed” 

at a certain level for a given individual or whether it is “malleable” when faced with 

environmental challenges – such as dieting resulting in lower body weight or ingestion of high 

fat diet resulting in increased body weight – is not fully understood.  

The aim of the work contained in this dissertation was to create mouse models in which 

to investigate multiple aspects of body weight regulation by exploring the effects of diets, 

ambient temperature, and leptin on physiological and molecular parameters involved in weight 

regulation.  

METABOLIC ADAPTATION: DEFENSE OF ALTERED BODY WEIGHTS 

 

The average US adult gains only 500-1000g per year in spite of consuming ≈ 900,000 –

1,000,000 kcal per year 
42

. This small yearly weight gain ultimately translates to increases of 5 to 

10 kilos over a decade if a persistent positive energy balance is maintained. The secular trend of 

increasing rates of obesity suggests that these small yet substantive yearly increases in body mass 

ultimately lead to an increase in the defended body weight; a rise in the “threshold”. Clinical  

studies presented in the Introduction  of this dissertation(chapter 1) gave evidence that both 

obese and non-obese humans who are maintained below “normal” body weight show evidence of  

metabolic adaptations (i.e. decreased EE and increased hunger) that are quantitatively and 

qualitatively similar 
25,42,100,103

. This similarity in phenotypes suggests that the obese individuals 

are actively defending an elevated body weight.  
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The first weight perturbation study we conducted in mice was designed to determine 

whether environmental factors (differences in diet composition and food availability) could reset 

defended body weight in either an upward or downward direction.  

 

CAN THE THRESHOLD FOR MINIMUM BODY FAT CONTENT BE RAISED? 

 

Rothwell and Stock showed that short-term high fat-diet feeding in rats caused increased 

TEE that limited the amount of weight gained 
250

. Long term access by rodents to a high fat diet 

increases adiposity to a degree that is strain-dependent 
156,251,252

. Various  weight-perturbation 

studies used outbred rats (Wistar, Sprague-Dawley) or inbred mouse strains that were either 

classified as obesity-prone or obesity-resistant depending on whether they were susceptible or 

resistant to weight gain when fed diets high in fat content 
133-135,138,253-256

. The obesity-prone rats 

demonstrated numerous neuronal modifications, including decreased leptin sensitivity (decreased 

STAT3 phosphorylation and LepR quantity), abnormalities in serotonin and epinephrine 

turnover, decreased glucose sensing, and a decrease in ghrelin receptor in the ARC when 

maintained at a lower body weight by feeding of a low-fat diet 
257,258

 
259

. When presented with a 

high fat diet, the obesity-prone rats remained hyperphagic despite increases in leptin and insulin 

concentrations that should have curtailed further weight gain, whereas the obesity-resistant rats 

spontaneously reduce the number of grams eaten to compensate for the higher caloric density of 

the food 
259

. Most of the neuronal changes found in the obesity-prone rats were only normalized 

once they had reached a higher level of adiposity, an elevated body weight that they then actively 

defended against further weight perturbations 
133,134

. In the aggregate, these results suggest that a 

neuronal system capable of sensing changes in peripheral energy stores was being affected 
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directly by body weight (i.e. adiposity/leptin); the important question is whether these sensing 

mechanisms can be permanently altered resulting in defense of altered body weights. Many of 

these experiments were conducted in outbred rats that were specifically selected and then inbred 

to obtain the desired phenotype; that is to be obesity-resistant or obesity-prone. This genetic 

predisposition, carefully selected for by the investigators through an explicit breeding scheme, 

resulted in the creation of genetically distinct animals that are susceptible or resistant obesity 

upon high fat feeding. Whether the threshold for defended body weight could be altered through 

environmental means alone, not genetics, would need to be tested in genetically identical 

animals.  

In the first study conducted as part of my thesis work, we demonstrated (chapter 2) that 

genetically identical C57BL/6J mice fed a high fat diet and subsequently weight reduced to 80% 

of maximal body weight, decreased their energy expenditure significantly more than predicted 

from the loss in metabolically active tissue (TEE ≈ -1.0 kcal/day or 8% below predicted based 

upon energy expenditure related to body mass and composition at maximum body weight). A 

decline in TEE disproportionately larger than the associated loss in body mass indicates that less 

energy was required to maintain a gram of tissue in a weight-reduced mouse than in that mouse 

at its ad-libitum higher body weight. This hypometabolic phenotype was accompanied by 

reduced circulating T3 concentrations, a decreased number of excitatory synapses onto leptin-

sensitive POMC neuronal bodies, and increased hunger 
203

. These phenotypes are almost 

identical – both in magnitude and direction – to those seen in weight-reduced animals that had 

never been obese. It is important to note that the decreased ratio in excitatory to total synapses 

onto the POMC soma, seen in both DIO-WR and CON-WR mice, was similar in magnitude to 

those observed in the Lep
ob

 mice 
94

. This neuronal “signature” of the weight-reduced state – one 



177 

  

 

 

that is similar to that observed in mice deficient in leptin – further implicates relative 

hypoleptinemia, in the onset of physiological adaptations to maintenance of a reduced body 

weight. Characterizing neuronal “signatures” indicative of the weight-reduced and non-weight 

reduced states can be useful in drug testing paradigms. Compounds capable of reversing such 

neuronal abnormalities thereby abrogating metabolic adaptation would be useful in preventing 

weight reduced humans form regaining lost weight. No significant differences in the 

relationships in TEE or REE and body weight/composition were observed between CON-AL 

mice fed a chow diet and DIO-AL maintaining an elevated body weight. This finding indicates 

that DIO-AL mice had normal, not elevated, energy expenditure parameters relative  to body 

mass further supporting the notion that physiological parameters at this new higher body weight 

had been normalized compared to the increased EE observed in short-term weight-

gain/overfeeding studies 
16,260

.  

Together, these observations suggest that diet-induced obese mice are actively defending 

a new elevated body weight compared to genetically identical non-obese mice and that the 

threshold for defense of body weight can be raised by maintaining an elevated body weight for a 

sufficiently long period of high fat feeding. The biological basis for this apparent upward shift in 

the threshold, whether related to some aspect of the diet, the obese state (e.g. hyperleptinemia, 

hyperinsulinemia, increased FFA) per se,  or to an interaction of the two was  further explored in 

subsequent experiments (see Leptin’s Role in Defense of Body Weight).  
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CAN THE THRESHOLD FOR MINIMUM BODY FAT CONTENT BE LOWERED? 

 

Studies in human subjects demonstrated that successful maintenance of a lower body 

weight, even for more than six years, was still accompanied by disproportionately (relative to 

body mass and composition) decreased EE 
25,26

. Whether metabolic adaptation can be abolished 

(i.e. threshold lowered) following sufficiently long periods of maintenance at a lower body 

weight is unknown, although seemingly unlikely since even six years of weight reduction caused 

no attenuation of the hypometabolic phenotype
25

. The DIO-WR and CON-WR mice described in 

chapter 2 were maintained at 80% of maximal body weight for ≈ 3 months before undergoing 

indirect calorimetry and more than 5 months before being sacrificed. After 3 months of 

decreased body weight, the WR animals still had significantly suppressed TEE compared to their 

AL-fed counterparts. Given the average life span of mice (≈2 years) vs. humans (≈80 years), this 

time period is comparable to maintaining humans at a reduced body weight for 10 years. In a 

subsequent study (chapter 5), weight-reduced mice (HFD-WR) were maintained at a lower body 

weight for 78 days before being presented with ad-libitum access to the high fat diet. This 

sudden access to ad-libitum high fat diet resulted in rapid weight regain and within 90 days, body 

weights were no longer significantly different from those of HFD-AL mice. The rapid increase in 

body weight seen in the HFD-WR mice in the first week following switch to AL HFD feeding is 

due to the combined effects of lower TEE and increased hyperphagia. Taken together, these data 

suggest that even extended periods of weight-reduction do not result in abatement of the 

hypometabolic phenotype. In light of the evolutionary pressures on survival and reproduction 

discussed above, this result is not surprising. Previous studies in rats support this idea. Even 16 
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weeks of weight-reduction is followed by rapid weight regain once food is provided ad-libitum 

130,133,134,255,256
.  

It is interesting to note that the non-obese mice that had not been previously exposed to 

the HFD (LFD-AL mice) readily gained similar amounts of body weight as the HFD-WR mice 

once switched to the HFD. The issues related to the hedonics of the high fat diet and the possible 

neural effects that this diet may have on the CNS and/or leptin sensing are discussed below (see 

Leptin’s Role in Defense of Body Weight).   

The data presented in chapters 2 and 5 support the concept that the threshold can be 

increased but not lowered. These findings are plausible in light of the 75-85% recidivism to 

obesity in otherwise successfully weight-reduced humans, the increasing prevalence of obesity, 

and the evolutionary arguments related to defense of body weight presented in the Introduction. 

 

DOES TORPOR CONTRIBUTE TO THE HYPOMETABOLIC PHENOTYPE?  

 

Fasted mice at sub-thermoneutral ambient temperatures (<30°C) decrease metabolic rate 

resulting in a sharp decline in core body temperature, a response that is likely engaged to protect 

themselves from life-threatening starvation during periods of caloric insufficiency
113

. The mice 

described in chapter 2 were all studied at conventional sub-thermoneutral mouse-facility 

temperatures (22°C), which imposes a constant thermal stress in these rodents. We therefore 

undertook a second weight-perturbation study (reported in chapter 5) to explore the physiological 

and metabolic changes in weight-reduced mice when studied at both sub-thermoneutrality (22°C) 

and thermoneutrality (30°C). This study was designed: 1. to assess whether torpor played a role 

in the metabolic adaptation of weight-reduced animals; 2. to assess whether thermal stress at 
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22°C affected the ability to detect subtle differences in energy expenditure in weight-reduced 

animals. These studies address the relevance of qualitative and quantitative responses of WR 

mice at 22°C ambient to metabolic adaptation observed in weight reduced humans. The weight-

reduced formerly obese mice (HFD-WR) showed similar absolute declines in TEE adjusted for 

body composition at both 22°C (-1.4kcal/day) and 30°C (-1.6kcal/day) when analyzed using 

multiple regression analysis. This analysis is conducted by creating a regression equation using 

the “normal” eumetabolic mice only, in this case the ad-libitum fed mice (HFD-AL and LFD-

AL), relating TEE to metabolic mass (FM and FFM) against which all other mice are compared 

(chapter 2 contains more details on this mathematical approach). The second analytical approach 

used to investigate these data was ANOVA. The analysis of energy expenditure data using FM 

and FFM as covariates revealed significantly lower TEE in the HFD-WR mice at 30°C but not at 

22°C. These results reveal that the analyses of EE are sensitive to the mathematical approach 

used and that 22°C ambient may blunt or obscure the full effect of metabolic adaptation due to 

high thermogenic requirements at these sub-thermoneutral temperatures. 24-hour body 

temperature measurements revealed that none of the mice became torpid (defined as a core body 

temperature of <31°C) at either ambient, confirming that torpor does not play a role in the 

metabolic adaptation seen at 22°C. A small but significant difference in core body temperature 

(≈-1.5°C) was recorded in the HFD-WR mice at 0500h compared to the AL fed mice (both HFD-

AL and LFD-AL). Whether the small decrease in body temperature observed in the HFD-WR 

mice is primary or secondary to the lowering of metabolic rate is not known.  Some data favor 

the latter possibility; decreases in metabolic rate precede the drop in body temperature in animals 

in incipient torpor 
113

. Due to the high surface-to-volume ratio of many small rodents, a lowering 

of metabolic rate (i.e. hypometabolic phenotype) would lead to decreased core body 



181 

  

 

 

temperatures through rapid surface area heat loss. The findings that the absolute metabolic 

adaptation (at least when using the multiple regression analysis) is equivalent at both ambient 

temperatures and that the mice do not enter torpor, suggest that the increased energy efficiency 

observed in the weight reduced state is the result of other adaptive mechanisms not related to 

torpor.  

Weight-reduced leptin deficient animals (Lep
ob

) were also studied at both 22°C and 30°C 

ambient temperatures (results reported in chapter 5). The metabolic consequences of weight-

reduction in these leptin deficient animals are discussed in detail in the following section (see 

Leptin’s Role in Defense of Body Weight). The weight-reduced OB mice (OB-WR; chapter 5) 

became torpid between the hours 0200h and 0500h (average body temperature 26.5±0.3°C) but 

only when studied at 22°C. At 30°C, a significant decrease in body temperature was also 

observed between 0200h and 0500h in the OB-WR, with mean core body temperatures reaching 

32.9±0.1°C, yet none of the mice became torpid. Leptin replacement in calorically restricted 

mice 
105

 and Lep
ob

 
115

 mice blunts both the number and the severity of bouts of torpor. In our 

studies, torpor occurred only in weight-reduced congenitally leptin deficient mice (OB-WR) 

housed at 22°C.  

Regression analysis revealed comparable leptin to FM relationships in all WT mice 

including the HFD-WR mice, suggesting that: 1) these mice were weight stable and not 

calorically restricted relative to metabolic rate; and 2) the leptin axis had not been disrupted by 

weight reduction per se. Consistent with leptin’s capacity to increase energy expenditure, leptin 

administration to  Lep
ob

 mice quickly (within 2 hours) increases norepinephrine turnover in 

brown adipose tissue 
261

, and in WT rodents central infusions and large peripheral injections 



182 

  

 

 

increase energy expenditure and UCP1 content, the major thermogenic molecule found in 

BAT
262

 
263

. Other studies have found no upregulation of UCP1 content or EE in rats and mice 

that were infused peripherally with physiological doses of leptin
264,265

. These studies suggest that 

when rodents are “euleptinemic”, they are “eumetabolic” and only supraphysiological injections 

are capable of further elevating metabolic rate.  

When leptin levels decline (i.e. due to acute food deprivation), the concentrations are no 

longer sufficient to maintain a thermogenic drive resulting in the initiation of torpor. Ucp1-/- and 

Lep
ob

-/- double knock-out mice do not survive due to hypothermia below 12°C ambient unless 

leptin is administered highlighting leptin’s capacity to increase thermogenic responses 
226

. The 

frequency of torpor initiation in C57BL/6J seems to be weight/adiposity dependent since male 

mice that are over 25 grams (that have higher percent body fat and leptin concentrations) rarely 

enter torpor upon a 24 hour fast whereas torpor is much more prevalent in mice less than 25 

grams (personal communication Dr. Steve Swoap: Williams College). More specifically, it 

seems to be directly linked to absolute leptin concentrations and not some other adipose/weight-

dependent factor since Lep
ob

 mice, that have excessive body fat but no functional leptin, readily 

enter torpor even under fed conditions
113

. In light of this result and the fact that leptin inhibits 

torpor, we hypothesize that the absence of torpor in the WT HFD-WR mice is due to the 

presence of sufficient circulating leptin. 

One possibility to further investigate leptin’s role in the onset of torpor would be to use 

antibodies or the soluble leptin receptor to decrease the amount of bioavailable leptin in 

circulation in a time-specific and dose-dependent manner. Dose-dependent responses of torpor 

onset could be explored while mice are housed at different ambient temperatures. One danger 
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with such an approach is the animal may start producing antibodies against such molecules. The 

human leptin trials conducted in the late 90s concluded that 71% of the participants that 

underwent 24 weeks of leptin treatment developed antibodies against the hormone 
50

. Using the 

Lep
ob

 heterzygote mice (Lep
ob

 /+), that produce ≈30% less leptin per unit fat mass
266

 than +/+ 

mice, could similarly be tested at different ambient temperatures and differing lengths of fast. 

Lep
ob

 /+ mice were shown to survive a prolonged fast significantly longer than normal 

homozygous mice (+/+) but significantly shorter than Lep
ob

-/-
47

 suggesting a gene dose effect 

that may influence frequency and depth of torpor in these mice.  

LEPTIN’S ROLE IN DEFENSE OF BODY WEIGHT 

 

Leptin’s capacity to reverse many of the physiological adaptations observed under 

fasting/weight-reduced conditions in both humans and rodents has been well documented 
13,42,103

. 

These models, in which physiological doses of leptin have metabolic effects, have sometimes 

been described as functionally “hypoleptinemic” because of the similarity of phenotype with 

leptin deficient humans and rodents. The capacity of leptin to reverse many of the physiological 

modifications in the weight-reduced state, suggests that leptin is being actively sensed by the 

organism (in CNS and possibly elsewhere) and reacting to decreased absolute concentrations of 

the hormone. In chapter 2, we reported that weight reduced DIO mice (DIO-WR) had similar 

physiological phenotypes (low EE, suppressed T3, increased food-seeking behavior) to weight-

reduced never obese mice (CON-WR),  suggesting that they were now defending an elevated 

body weight (i.e. raised body weight [fat] threshold). We hypothesize that leptin replacement in 

these DIO-WR mice would indeed reverse these phenotypes as occurs in weight-reduced human 

subjects 
22,42,161

 and fasting mice 
43

 that are given replacement doses of leptin. If leptin is capable 
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of reversing the phenotypes observed in the WR mice as has been shown in humans, this would 

be further support for the inference that the diet-induced obese mice (both DIO-AL and DIO-

WR) had adapted to and required elevated circulating leptin concentrations in order to be 

“eumetabolic”.   

If we posit that the leptin threshold model proposed in the introduction (Figure 1.3) and 

elsewhere 
13,42

 is involved in an organism’s capacity to resist weight  [fat] loss and that the DIO 

mice have an elevated threshold as a consequence of maintaining an elevated body weight, some 

aspect of the obese state and/or the high fat diet must be involved in alterations in CNS-based 

sensing of leptin. Attenuation in leptin signaling induced by obesity, sometimes referred to as 

“cellular leptin resistance”, could  increase the amount of weight gain induced by genetic and 

environmental factors 
241

. A decrease in sensitivity to circulating leptin concentrations would 

result in further increases in adipose tissue until enough leptin is produced to generate sufficient 

signal intensity in the hypothalamus. In such a “feed forward” model, in which obesity and/or 

components of the high fat diet decrease CNS leptin sensitivity resulting in further weight gain, it 

is hard to distinguish mechanisms that cause initial weight gain from those that result from it. 

Various causes of cellular leptin resistance have been proposed. Suppressor of cytokine signaling 

(SOCS)3 is upregulated by leptin receptor activation and functions as an inhibitor of leptin 

signaling by binding to Tyr985
62,267

. SOCS3 KO models are more leptin sensitive resulting in 

decreased food intake and protection from obesity when presented with a high-fat diet 
268,269

. 

Protein tyrosine phosphatase (PTP)1B dephosphorylates Jak2, reducing  leptin signaling both in 

cultured cells and in vivo 
270,271

. PTP1B neuronal KO models, similar to the SOCS3 KO models, 

have increased leptin signaling and decreased adiposity
272,273

. Endoplasmic reticulum stress and 

low level inflammation have also been implicated in decreased leptin sensitivity
240,274

. Decreased 
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CNS-mediated leptin signaling is therefore a plausible neural explanation for apparent defense of 

elevated body weight observed in the DIO-WR (chapter 2) and HFD-WR (chapter 6) mice.  

Whether hyperleptinemia per se in the obese animals was responsible for the apparent 

rise in the regulatory threshold was investigated in two separate but related studies. The first 

study used Lep
ob

 mice (chapter 5) to determine whether weight loss in leptin deficient animals 

was associated with metabolic adaptation. The second study characterized WT non-obese mice 

infused with leptin so that circulating concentrations of leptin were consonant with those of age-

matched diet-induced obese mice, in essence isolating hyperleptinemia without the confounds of 

obesity-related physiological changes (chapter 6).  

In the Lep
ob

 study we hypothesized that no metabolic adaptation would be seen following 

weight reduction since the CNS would not receive the afferent leptin signal indicating a decrease 

in body weight. However, we found that leptin deficient mice did become hypometabolic when 

weight reduced at both 22°C and 30°C ambients. The OB-WR mice became torpid and 

hypometabolic at 22°C ambient.  At 30°C, their body composition-adjusted TEE was 25% below 

that of the OB-AL controls. Hence, in this admittedly special case of congenitally leptin deficient 

animals, a change in circulating leptin concentration was not required to invoke a hypometabolic 

response to weight loss.  

The leptin infusion experiment (chapter 6) tested whether 18 weeks of hyperleptinemia – 

in the absence of obesity - could raise the threshold. Upon cessation of leptin infusion, we 

hypothesized that these mice would increase body weight (adiposity) and plateau at an elevated 

body weight compared to PBS infused mice, due to permanent modifications in leptin sensitive 

pathways of the CNS. These CNS based modifications would result in decreased sensitivity to 
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leptin, which upon leptin cessation would cause a perceived “hypoleptinemia” resulting in 

physiological adaptations associated with the weight-reduced state: decreased EE and increased 

EI. These changes would ultimately lead to increased adiposity. These changes would have been 

equivalent to the WR mice described in chapters 2 and 5. The sudden drop in leptin would have 

been perceived by the brain as a sharp decline in body adiposity, the physiological equivalent of 

rapid weight loss. Lep
ob

 mice whose circulating leptin concentrations are “clamped”  to those of 

lean animals by low dose administration of leptin via mini-pump remain leptin sensitive even 

after becoming obese by feeding of a high fat diet during 20 weeks 
242

. Body weight and body-

composition matched WT mice also fed a high fat diet  had significantly higher leptin 

concentrations and were leptin resistant (i.e. decreased pSTAT3  activation in the hypothalamus  

following leptin administration) suggesting that leptin itself is required to induce leptin resistance 

242
. Contrary to our hypothesis, we found that the highest infusion rate (25ug/day) was not 

associated with elevated EE. This finding suggested that these mice had accommodated to the 

elevated concentrations of leptin, reflecting an increase in the concentration of leptin at which an 

animal is “eumetabolic”. Upon cessation of the leptin infusion, the mice did not defend elevated 

body weights and even plateaued at slightly lower body weights compared to PBS-infused mice. 

This finding suggested that hyperleptinemia alone is not capable of raising the threshold for 

defense of body fat, implicating other factors related to the obese state and/or the diet in the 

changes in body weight set point. Elevations in the hypothalamus of free fatty acids 
238

,  

cytokines (e.g. IL6) 
239

 and modified endoplasmic reticulum stress biology 
240

 have all been 

shown to impair acute and chronic leptin signaling. This impairment may account for the 

persistence of high levels of body fat despite elevations of circulating leptin concentrations.  

Whether these various desensitization processes occur by  shared mechanisms is unknown
241

, 
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and whether such desensitization is mechanistically related to the apparent “defense” of a higher 

body weight in mice chronically maintained at higher body weight by feeding of a HFD, is not 

clear. 

A few possible major confounds to the inferences reached above should be mentioned. 

Human leptin trials showed that more than 70% of participants that received exogenous leptin 

injections for 24 weeks were positive for anti-leptin antibodies
50

. If such antibodies were 

produced in the current experiment, the increased circulating leptin concentrations may have 

been rendered biologically unavailable for CNS signaling. A second possible confound is that the 

antibodies themselves may have artificially increased the apparent leptin concentrations when 

measured by ELISA by direct interaction with the antibodies used in the assay itself. Gene 

expression levels of leptin in WAT could give us further insight into this possible confound and 

is currently being undertaken. Finally a third possible confound is that the endogenous short 

form leptin receptor (LepRe) could have been upregulated again causing a decrease in the 

amount of bioactive leptin that can reach the brain. We unfortunately do not have enough serum 

to test whether LepRe has been upregulated in these mice but this type of assay should be 

conducted in future experiments.  

LEPTIN & MICROBIOTA 

 

The microbiota sequencing project was conducted to test whether the metabolic 

adaptation observed in weight-reduced mice might be related to changes in bacterial populations 

that could confer metabolic advantages to the host. The correlations between circulating leptin 

concentrations and specific bacterial species were of particular interest. Chief cells in the 
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stomach can produce leptin 
275

 and leptin upregulates mucin production in the intestine
187,188

 

thereby altering local bacterial niches. Some of the bacteria interact directly with mucin; 

Akkermansia subsists on mucin 
185

and Mucispirillum colonizes the mucus layer
186

. Elevated 

leptin concentrations have been linked to the up-regulation of pro-inflammatory cytokine gene 

expression (e.g. Il6, CXCL1) in mouse colon and leptin signaling in the colon has been linked to 

colon cancer
276-279

. Observational studies have shown an inverse association between dietary 

fiber intake and body weight
280,281

. It has recently been suggested that this relationship is the 

result of the anaerobic breakdown of fiber by intestinal bacteria into short-chain fatty acids 

(SCFA).  There are SCFA specific receptors in the gut
282,283

 that, upon activation, increase the 

release of the “ileal break” gut hormone peptide YY (PYY) 
284

. Interestingly, in vitro and in vivo 

application of SCFAs to mouse adipocytes has been shown to regulate leptin expression while 

feeding of propionate (a SCFA) to mice led to elevated circulatory leptin concentrations
285

. To 

directly test whether leptin concentrations have a direct effect on bacterial abundance in the gut, 

we collected fecal samples from the leptin infused mice (chapter 6) at low, medium and high 

infusion rates as well as following the removal of the mini-pumps. These samples are currently 

being analyzed. Demonstration that circulating leptin concentrations directly modulate bacterial 

abundance of certain species in the gut would open a new line of investigation.  

FUTURE DIRECTIONS 

 

The apparent defense of elevated body weight in mice following high fat diet feeding 

suggests a change in the body weight set point (chapters 2 & 5). This resetting does not seem to 

be the result of hyperleptinemia alone since mice receiving 18 weeks of leptin infusion did not 

defend an elevated body weight upon cessation of the infusion (chapter 6). Free fatty acids, ER 
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stress, and low level inflammation have all been implicated in the CNS’s decreased sensitivity to 

circulating leptin concentrations possibly underlying defense of elevated body weight. The 

weight-reduced mice studied in this thesis (chapters 2 and 5) were generated by feeding 

hypocaloric amounts of the high fat diet (60% kcal from fat). Whether the dietary fat content is 

capable of diminishing leptin sensitivity in the CNS resulting in turn in the defense of a higher 

body weight 
238

 was tested by conducting a large scale diet switch experiment. Diet-induced 

obese mice (fed HFD for 26 weeks) then switched to a low-fat control diet (10% kcal from fat) 

lost all excess body weight plateauing at weights similar to those of never obese mice. Indirect 

calorimetry did reveal small but significant decreases in adjusted energy expenditure (-0.45±0.15 

kcal/day) suggesting a “defense” of a higher body weight. Whether the full magnitude of this 

adaptation is masked by the increased thermogenic demand at 22°C is unknown. A subset of the 

mice from this study were injected with bolus doses of leptin (3mg/kg) in order to determine 

leptin signaling in different areas of the brain. The analysis of these brain regions and the 

discovery of leptin sensitive areas should dictate the brain regions in which altered leptin 

signaling plays a direct role in body weight homeostasis. In light of the data presented in chapter 

5 on the role of ambient temperature on energy homeostasis phenotypes in mice, we are also 

currently collaborating with scientists at The Pennington Biomedical Research Center to conduct 

a dietary switch study at both 22°C and 30°C ambient to determine whether removal of the 

thermogenic stress induced at sub-thermoneutral temperatures (22°C) would “unmask” attempts 

by formerly obese mice to defend higher body weights when provided diets lower in fat content.  
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CONCLUSIONS 

 

The obesity epidemic in the U.S presents great medical and economic challenges. The 

high prevalence rates of obesity, T2D, and the metabolic syndrome dictate the need for wide-

ranging research into the causes and potential preventative treatment options for obesity. 

Understanding the defense of body weight and metabolic adaptation when faced with weight 

perturbation is one of the key components to understanding obesity as the interaction between 

genes and environment. The experiments presented in this thesis aimed to demonstrate how body 

weight regulation can be influenced through environmental changes such as high fat diet, 

availability to calories, and ambient room temperature. Further understanding of the 

communication between energy stores and the CNS will be crucial in developing effective 

prevention strategies and therapies for obesity.   
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