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ABSTRACT

High dimensional Information Processing

Kamiar Rahnama Rad

Part I: Consider the n-dimensional vector y = Xβ + ǫ where β ∈ R
p has only

k nonzero entries and ǫ ∈ R
n is a Gaussian noise. This can be viewed as a linear

system with sparsity constraints corrupted by noise, where the objective is to esti-

mate the sparsity pattern of β given the observation vector y and the measurement

matrix X. First, we derive a non-asymptotic upper bound on the probability that a

specific wrong sparsity pattern is identified by the maximum-likelihood estimator.

We find that this probability depends (inversely) exponentially on the difference of

‖Xβ‖2 and the ℓ2-norm of Xβ projected onto the range of columns of X indexed

by the wrong sparsity pattern. Second, when X is randomly drawn from a Gaus-

sian ensemble, we calculate a non-asymptotic upper bound on the probability of

the maximum-likelihood decoder not declaring (partially) the true sparsity pattern.

Consequently, we obtain sufficient conditions on the sample size n that guarantee

almost surely the recovery of the true sparsity pattern. We find that the required

growth rate of sample size n matches the growth rate of previously established

necessary conditions.

Part II: Estimating two-dimensional firing rate maps is a common problem, aris-

ing in a number of contexts: the estimation of place fields in hippocampus, the

analysis of temporally nonstationary tuning curves in sensory and motor areas, the



estimation of firing rates following spike-triggered covariance analyses, etc. Here we

introduce methods based on Gaussian process nonparametric Bayesian techniques

for estimating these two-dimensional rate maps. These techniques offer a num-

ber of advantages: the estimates may be computed efficiently, come equipped with

natural errorbars, adapt their smoothness automatically to the local density and

informativeness of the observed data, and permit direct fitting of the model hy-

perparameters (e.g., the prior smoothness of the rate map) via maximum marginal

likelihood. We illustrate the flexibility and performance of the new techniques on

a variety of simulated and real data.

Part III: Many fundamental questions in theoretical neuroscience involve opti-

mal decoding and the computation of Shannon information rates in populations of

spiking neurons. In this paper, we apply methods from the asymptotic theory of

statistical inference to obtain a clearer analytical understanding of these quantities.

We find that for large neural populations carrying a finite total amount of infor-

mation, the full spiking population response is asymptotically as informative as a

single observation from a Gaussian process whose mean and covariance can be char-

acterized explicitly in terms of network and single neuron properties. The Gaussian

form of this asymptotic sufficient statistic allows us in certain cases to perform opti-

mal Bayesian decoding by simple linear transformations, and to obtain closed-form

expressions of the Shannon information carried by the network. One technical ad-

vantage of the theory is that it may be applied easily even to non-Poisson point

process network models; for example, we find that under some conditions, neural

populations with strong history-dependent (non-Poisson) effects carry exactly the

same information as do simpler equivalent populations of non-interacting Poisson

neurons with matched firing rates. We argue that our findings help to clarify some

results from the recent literature on neural decoding and neuroprosthetic design.

Part IV: A model of distributed parameter estimation in networks is introduced,



where agents have access to partially informative measurements over time. Each

agent faces a local identification problem, in the sense that it cannot consistently

estimate the parameter in isolation. We prove that, despite local identification

problems, if agents update their estimates recursively as a function of their neigh-

bors’ beliefs, they can consistently estimate the true parameter provided that the

communication network is strongly connected; that is, there exists an information

path between any two agents in the network. We also show that the estimates of all

agents are asymptotically normally distributed. Finally, we compute the asymp-

totic variance of the agents’ estimates in terms of their observation models and the

network topology, and provide conditions under which the distributed estimators

are as efficient as any centralized estimator.
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Chapter 1

Introduction

“Nothing seems to me less likely than that a scientist or mathematician who reads

me should be seriously influenced in the way he works.’

Ludwig Josef Johann Wittgenstein

The different chapters of this thesis regard problems in various field as essentially

the same. Many of these problems share similar challenges: There is a tremendous

amount of information in the presence of excessive irrelevant signals. How can a

neuron in the brain or an agent in a social network efficiently process the constant

flow of information when each bit of information in isolation is relatively void

of information? There are two fundamental questions: What are limits of any

method to decipher the relevant information? What are the practical methods

whose performance reaches those limits?

In the second chapter, we discuss the fundamental limits imposed on any sparsity

patter recovery problem. Finding solutions to underdetermined systems of equa-

tions arises in a wide array problems in science and technology; examples include

array signal processing (Zibulevsky and Pearlmutter, 2001), neural (Vinje and Gal-
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lant, 2000) and genomic data analysis (di Bernardo et al., 2005), to name a few.

In many of these applications, it is natural to seek for sparse solutions of such

systems, i.e., solutions with few nonzero elements. A common setting is when we

believe or we know a priori that only a small subset of the candidate sources, neu-

rons, or genes influence the observations, but their location is unknown. How well

can any method recover the location of the influential factors, assuming that in

fact only a few factors are responsible for the output? The answer is complicated.

Thus, we look at it in it’s simplest form: observations are available from a linear

model with additive noise where the vector of interest is sparse. We characterize the

phase-diagram of the error probability in terms of a minimal number of parameters.

In the third chapter, we discuss a more practical point of view on high dimensional

information processing. Imagine by looking at the activity of a single neuron we

want to estimate the location of a rat. At any moment we observe at most a

single bit of information whereas the location is a point in a two dimensional space.

How can a sequence of single bits help us follow the temporally varying location

of the rat? The simplest idea is to accumulate information, that is, don’t look

at the single bits in isolation because they are almost void of information; rather,

look at the temporal pattern. Further, rats can not change locations instantly;

if the rat is now ”here”, it is also very likely that the rat will be around ”here”

during the next time step. Therefore, observing a single bit at this moment is

also partially informative about the rat’s location a few moment before and after.

How to practically implement it, so that it can perform optimally given the current

computational constraints is the subject of this chapter.

In the fourth chapter, we discuss again the fundamental limits imposed on any

biological system that aims to decipher the sensory input from the activity of a

coupled neural network. The fundamental limits are achieved by an ideal Bayesian

observer. Additionally, the question of how to practically achieve that limit is also
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discussed; we show that the ideal observer can also be realistic and biologically

plausible.

Finally, in the last chapter information aggregation is regarded as a fundamental

problem in multi-agent systems. In many scenarios, observations are distributed

throughout the network in such a way that no agent has access to enough data

to learn a relevant parameter in isolation, and therefore, agents face the task of

recovering the truth by engaging in communication with one another. How should

they communicate so that the wisdom of the crowd is transmitted across every

individual; that is, can agents share information such that eventually they reach a

consensus about the state of the world which is as close as possible to the truth?

The final chapter answers this questions and provides details on a communication

scheme that guarantees that the fundamental ideal global observer’s performance

is achieved by every individual.
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Chapter 2

Nearly Sharp Sufficient

Conditions on Sparsity Pattern

Recovery

This chapter is based on the paper “Nearly Sufficient Conditions on Exact Sparsity

Pattern Recovery ” (Rahnama Rad, 2011).

2.1 Introduction

Finding solutions to underdetermined systems of equations arises in a wide ar-

ray problems in science and technology; examples include array signal process-

ing (Zibulevsky and Pearlmutter, 2001), neural (Vinje and Gallant, 2000) and ge-

nomic data analysis (di Bernardo et al., 2005), to name a few. In many of these

applications, it is natural to seek for sparse solutions of such systems, i.e., solutions

with few nonzero elements. A common setting is when we believe or we know a

priori that only a small subset of the candidate sources, neurons, or genes influence
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the observations, but their location is unknown.

More concretely, the problem we consider is that of estimating the support of β ∈ R
p

given the a priori knowledge that only k of its entries are nonzero based on the

observational model

y = Xβ + ǫ (2.1)

where X ∈ R
n×p is a collection of input measurement vectors, y ∈ R

n is the

output measurement and ǫ ∈ R
n is the additive measurement noise, assumed to

be zero mean and with known covariance equal to In×n
1. Each row of X and

the corresponding entry of y are viewed as an input and output measurement,

respectively.

The output of the optimal (sparsity) decoder is defined as the support set of the

sparse solution β̂ with support size k that minimizes the residual sum of squares

where

β̂ = arg min
|support(θ)|=k

‖y −Xθ‖2
2 (2.2)

is the optimal estimate of β given the a priori information of sparseness. The

support set of β̂ is optimal in the sense of minimizing the probability of identifying

a wrong sparsity pattern.

First, we are concerned with the likelihood of the sparsity pattern of β̂ as a function

of X and β. We obtain an upper bound on the probability that β̂ has any specific

sparsity pattern and find that this bound depends (inversely) exponentially on the

difference of ‖Xβ‖2 and the ℓ2-norm of Xβ projected onto the range of columns of

X indexed by the wrong sparsity pattern.

Second, when the entries of X are independent and identically distributed (i.i.d.)

random variables we are concerned with establishing sufficient conditions that guar-

antee the reliability of sparsity pattern recovery. Ideally, we would like to charac-

1This entails no loss of generality, by standard rescaling of β.
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terize such conditions based on a minimal number of parameters including the

sparsity level k, the signal dimension p, the number of measurements n and the

signal-to-noise ratio(SNR) which is equal to

SNR =
E [‖Xβ‖2

2]

E [‖ǫ‖2
2]

. (2.3)

Assume that the absolute value of the non zero entries of β are lower bounded by

βmin
2. Further, suppose that the variance of the entries of X is equal to one 1.

Hence,

SNR ≥ kβ2
min

and therefore it is natural to ask, how does the ability to reliably estimate the

sparsity pattern depend on (n, p, k, β2
min).

We find that a non-asymptotic upper bound on the probability of the maximum-

likelihood decoder not declaring the true sparsity pattern can be found when the en-

tries of the measurement matrix are independent and identically distributed (i.i.d.)

normal random variables. This allows us to obtain sufficient conditions on the

number of measurements n as a function of (p, k, β2
min) for reliable sparsity recov-

ery. We show that our results strengthen earlier sufficient conditions (Wainwright,

2007; Akcakaya and Tarokh, 2008; Fletcher et al., 2008; Karbasi et al., 2009), and

we show that the sufficient conditions on n match the growth rate of the necessary

conditions in both the linear, i.e., k = Θ(p), and the sub-linear, i.e., k = o(p),

regimes, as long as β2
min is Ω( 1

k
) and O(1).

2.1.1 Previous Work

A large body of recent work, including (Wainwright, 2007; Akcakaya and Tarokh,

2008; Fletcher et al., 2008; Karbasi et al., 2009; Wang et al., 2008; Reeves and Gast-

2To the best of our knowledge, Wainwright (Wainwright, 2007) was the first to formulate
the information theoretic limitations of sparsity pattern recovery using βmin as one of the key
parameters.
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par, 2008; Wainwright, 2009), analyzed reliable sparsity pattern recovery exploiting

optimal and sub-optimal decoders for large random Gaussian measurement matri-

ces. The average error probability, necessary and sufficient conditions for sparsity

pattern recovery for Gaussian measurement matrices were analyzed in (Wain-

wright, 2007) in terms of (n, p, k, β2
min). As a generalization of the previous work,

using the Fano inequality, necessary conditions for general random and sparse mea-

surement matrices were presented in (Wang et al., 2008). The sufficient conditions

in (Fletcher et al., 2008) were obtained based on a simple maximum correlation

algorithm and a closely related thresholding estimator discussed in (Rauhut et al.,

2008). In addition to the well known formulation of the necessary and sufficient

conditions based on (n, p, k, β2
min), Fletcher et al. (Fletcher et al., 2008) included

the maximum-to-average ratio3 of β in their analysis. Necessary and sufficient

conditions for fractional sparsity pattern recovery were analyzed in (Akcakaya and

Tarokh, 2008; Reeves and Gastpar, 2008).

We will discuss the relationship to this work below in more depth, after describing

our analysis and results in more detail.

2.1.2 Notation.

The following conventions will remain in effect throughout this paper. Calligraphic

letters are used to indicate sparsity patterns defined as a set of integers between 1

and p, with cardinality k. We say β ∈ R
p has sparsity pattern T if the entries with

indices i ∈ T are nonzero. T − F stands for the set of entries that are in T but

not in F and |T | for the cardinality of T . We denote by XT ∈ R
n×|T |, the matrix

obtained from X by extracting |T | columns with indices obeying i ∈ T . Let S(β)

stand for the sparsity pattern or support set of β. The matrix norm ‖.‖a,b of a

3The maximum-to-average ratio of β was defined as kβ2
min

/‖β‖2
2.
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matrix A defined as

‖A‖a,b := max
x 6=0

‖Ax‖a
‖x‖b

.

Note that if A is a positive semi-definite matrix then ‖A‖2,2 is equal to the top

eigenvalue of A. Except for the matrix norm ‖.‖2,2 all vector norms are ℓ2, ‖ · ‖ =

‖ · ‖2. Finally, let the orthonormal operator projecting into the subspace spanned

by the columns of XF be defined as ΠF = XF(XT
FXF)−1XT

F .

2.2 Results

For the observational model in equation (2.1), assume that the true sparsity model

is T ; as a result,

y = XT βT + ǫ. (2.4)

We first state a result on the probability of the event S(β̂) = F , i.e. Pr[S(β̂) =

F|X, β, T ], for any F 6= T and any measurement matrix X.

Theorem 1. For the observational model of equation (2.4) and estimate β̂ in equa-

tion (2.2), the following bound holds:

Pr
[

S(β̂) = F|X, β, T
]

≤ exp

{

−C
2

∥

∥

∥
(I − ΠF)XT −FβT −F

∥

∥

∥

2

+
|T − F|

2

}

,

where C = 3 − 2
√

2.

The proof of Theorem 1, given in Section 2.3, employs the Chernoff technique and

the properties of the eigenvalues of the difference of projection matrices, to bound

the probability of declaring a wrong sparsity pattern F instead of the true one T
as function of the measurement matrix X and the true parameter β. The error

rate decreases exponentially in the norm of the projection of XT −FβT −F on the

orthogonal subspace spanned by the columns of XF . This is in agreement with
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the intuition that the closer different subspaces corresponding to different sets of

columns of X are the harder it is to differentiate them, and hence the higher the

error probability will be.

The theorem below gives a non-asymptotic bound on the probability of the event

that the declared sparsity pattern S(β̂) differs from the true sparsity pattern T in

no more than d indices, when the entries of the measurement matrix X are drawn

i.i.d. from a standard normal distribution. It is clear that by letting d = 1 we

obtain an upper bound on the error probability of exact sparsity pattern recovery.

Theorem 2. Suppose that for the observational model of equation (2.4) and the

estimate β̂ in equation (2.2) the entries of X are i.i.d. N (0, 1) and p > 2k. If

n− k > max
{

B f0(d, p, k, βmin), B f0(k, p, k, βmin), f1(k, βmin), f2(p, k, βmin)
}

where

f0(d, p, k, βmin) :=
d log(k(p−k)

d2
) + d

log(1 + Cdβ2
min)

f1(k, βmin) := 4k

(

1 +
1

Ckβ2
min

)2

f2(p, k, βmin) :=

(

1 +
1

Cβ2
min

)

[

1 + 2 log(k(p− k))
]

then

Pr
[

∣

∣S(β̂) − T
∣

∣ ≥ d
]

< kmax

{

[

ek(p− k)

d2

]−B⋆d

,

[

e(p− k)

k

]−B⋆k
}

where B⋆ = B−5
2

and C = 3 − 2
√

2.

The key elements in the proof include Theorem 1, application of union bounds (a

fairly standard technique which has been used before for this problem (Wainwright,

2007; Akcakaya and Tarokh, 2008; Karbasi et al., 2009)), asymptotic behavior of

binomial coefficients and properties of convex functions.
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Note that in the linear regime, i.e. k = Θ(p), with n = Θ(p) and kβ2
min = Θ(1) the

probability of misidentifying more than any fraction (less than one) goes to zero

exponentially fast as p → ∞. In words, if the SNR is fixed while the dimension of

the signal increases unboundedly, it is still possible to recover reliably some fraction

of the support. This is in agreement with previous results on partial sparsity pattern

recovery (Akcakaya and Tarokh, 2008; Reeves and Gastpar, 2008).

If we let n(p), k(p) and βmin(p) scale as a function of p, then the upper bound

of Pr[S(β̂) 6= T ] scales like k(p − k)−B
⋆

. For B⋆ > 2 or equivalently B > 9, the

probability of error as p→ ∞ is bounded above by p−D for some D > 1. Therefore

∞
∑

p=1

Pr[S(β̂p×1) 6= Tp] (2.5)

is finite and as a consequence of the Borel-Cantelli Lemma, for large enough p,

the decoder declares the true sparsity pattern almost surely. In other words, the

estimate β̂ based on (2.2) achieves the same loss as an oracle which is supplied

with perfect information about which coefficients of β are nonzero. The following

corollary summarizes the aforementioned statements.

Corollary 3. For the observational model of equation (2.4) and the estimate β̂

in equation (2.2), let n, k and β2
min scale as a function of p. Then there exists a

constant C⋆ such that if β2
min is Ω( 1

k
) and O(1), and

n > C⋆ max

{

log(p− k)

log (1 + β2
min)

,
k log( p

k
)

log(1 + kβ2
min)

, k

}

then a.s. for large enough p, β̂ achieves the same performance loss as an oracle

which is supplied with perfect information about which coefficients of β are nonzero

and S(β̂) = T .

Remarks:
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• β2
min = O(1) is required to ensure that for a sufficiently large C⋆ we have

C⋆f0(1, p, k, βmin) > f2(p, k, βmin) where f0 and f2 are defined in Theorem 1.

• β2
min = Ω( 1

k
) is required to ensure that for a sufficiently large C⋆ we have

C⋆k > f1(k, βmin) where f1 is defined in Theorem 1.

The sufficient conditions in Corollary 3 can be compared against similar conditions

for exact sparsity pattern recovery in (Wainwright, 2007; Fletcher et al., 2008;

Akcakaya and Tarokh, 2008; Karbasi et al., 2009); for example, in the sub-linear

regime k = o(p), when β2
min = Θ(1), (Wainwright, 2007; Karbasi et al., 2009) proved

that n = Θ(k log( p
k
)) is sufficient, and (Akcakaya and Tarokh, 2008; Fletcher et al.,

2008) proved that n = Θ(k log(p − k)) is sufficient. In that vein, according to

Corollary 3

n = max

{

Θ

(

k log( p
k
)

log k

)

,Θ(k)

}

suffices to ensure exact sparsity pattern recovery; therefore, it strengthens these

earlier results.

What remains is to see whether the sufficient conditions in Corollary 3 match the

necessary conditions proved in (Wang et al., 2008) :

Theorem 4. (Wang et al., 2008): Suppose that the entries of the measurement

matrix X ∈ R
n×p are drawn i.i.d. from any distribution with zero-mean and variance

one. Then a necessary condition for asymptotically reliable recovery is that:

n > max{f1(k, p, β
2
min), f2(k, p, β

2
min), k − 1},

where

f1(k, p, β
2
min) =

log
(

p
k

)

− 1
1
2
log(1 + kβ2

min(1 − k
p
))

f2(k, p, β
2
min) =

log(p− k + 1) − 1
1
2
log(1 + β2

min(1 − 1
p−k+1

))
.
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Scaling Sufficient condition Necessary condition
Corollary 3 Theorem 4 (Wang et al., 2008)

k = Θ(p)
β2

min = Θ( 1
k
) n = Θ(p log p) n = Θ(p log p)

k = Θ(p)

β2
min = Θ( log k

k
) n = Θ(p) n = Θ(p)

k = Θ(p)
β2

min = Θ(1) n = Θ(p) n = Θ(p)

k = o(p)
β2

min = Θ( 1
k
) n = Θ(k log(p− k)) n = Θ(k log(p− k))

k = o(p)

β2
min = Θ( log k

k
) n = max

{

Θ(k log(p−k)
log k

),Θ
(

k log( p
k
)

log log k

)}

n = max
{

Θ(k log(p−k)
log k

),Θ
(

k log( p
k
)

log log k

)}

k = o(p)

β2
min = Θ(1) n = max

{

Θ
(

k log( p
k
)

log k

)

,Θ(k)
}

n = max
{

Θ
(

k log( p
k
)

log k

)

,Θ(k)
}

Table 2.1: Necessary and sufficient conditions on the number of measurements n required for
reliable support recovery in the linear and the sublinear regime. The sufficient conditions presented
in the first four rows are a consequence of past work (Wainwright, 2007), also recovered by
Corollary 3. The new stronger result in this paper provides the sufficient conditions in row 5
and 6, which did not appear in previous studies (Wainwright, 2007; Akcakaya and Tarokh, 2008;
Fletcher et al., 2008; Karbasi et al., 2009), and match the necessary conditions presented in (Wang
et al., 2008).

The necessary condition in Theorem 4 asymptotically resembles the sufficient con-

dition in Corollary 3; recall that log
(

p
k

)

< k log( ep
k
). The sufficient conditions of

Corollary 3 can be compared against the necessary conditions in (Wang et al., 2008)

for exact sparsity pattern recovery, as shown in Table 2.1. The first paper to es-

tablish the sufficient conditions in row 1 and row 4 of Table 2.1 is (Wainwright,

2009). The sufficient conditions presented in the first four rows of Table 2.1 are a

consequence of past work (Wainwright, 2007), also recovered by Corollary 3. The

new stronger result in this paper provides the sufficient conditions in row 5 and 6,

which did not appear in previous studies (Wainwright, 2007; Akcakaya and Tarokh,

2008; Fletcher et al., 2008; Karbasi et al., 2009), and match the previous neces-

sary conditions presented in (Wang et al., 2008). (It is worth reminding that these

results are restricted to β2
min = O(1) and β2

min = Ω( 1
k
).)
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2.3 Proof of Theorem 1

We first state three basic lemmas.

Lemma 5. If any 2k columns of the n × p matrix X are linearly independent

then for any sparsity pattern T and F such that |T | = |F| = k the difference of

projection matrices ΠF −ΠT has d = |T −F| pairs of nonzero positive and negative

eigenvalues, bounded above by one and bounded below by negative one, respectively,

and equal in magnitude.

Lemma 6. For y ∼ N (µ, I) and ‖2tΨ‖2,2 < 1 we have:

E[ety
T Ψy] =

etµ
T Ψµ+2t2µT Ψ(I−2tΨ)−1Ψµ

det(I − 2tΨ)
1
2

.

Lemma 7. For Ψ = ΠF − ΠT and d = |T − F| we have:

log det(I − 2tΨ) ≥ d log(1 − 4t2),

‖(I − 2tΨ)−1/2‖2
2,2 ≤ (1 − 2t)−1.

We defer the proofs of the lemmas 5 and 7 to after the proof of Theorem 1. Lemma

6 follows standard Gaussian integrals (Severini, 2005).

2.3.1 Proof of Theorem 1

For a given sparsity pattern F , the minimum residual sum of squares is achieved

by

min
θF∈Rk

‖y −XFθF‖2 = ‖y − ΠFy‖2

where ΠF denotes the orthogonal projection operator into the column space of XF ;

that is, among all sparsity patterns with size k, the optimum decoder declares

T̂ (y,X) = arg min
|F|=k

‖y − ΠFy‖2
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as the optimum estimate of the true sparsity pattern in terms of minimum error

probability. Recall the definition of β̂ in equation (2.2) and note that S(β̂) =

T̂ (y,X). If the decoder incorrectly declares F instead of the true sparsity pattern

(namely T ), then

‖y − ΠFy‖2 < ‖y − ΠT y‖2

or equivalently

ZF := yT (ΠF − ΠT )y > 0.

The probability that the optimal decoder declares wrongly the sparsity pattern F
instead of the true sparsity pattern T is less than the probability that ZF > 0.

With the aid of the Chernoff technique an upper bound on the probability that

ZF > 0 is obtained:

Pr[ZF > 0|X, T , β] ≤ inf
|t|<1/2

E[eZF t|X, T , β].

Note that ZF is a random variable that has a quadratic form in Gaussian random

vectors. This allows us to use standard Gaussian integrals to calculate E[eZF t|X, T , β].

In order to bound the expectation, |t| is required to be bounded which is a necessary

condition in Lemma 6. From Lemma 6 we learned that

log E[eZF t] = 2t2µTΨ(I − 2tΨ)−1Ψµ+ tµTΨµ− 1

2
log det(I − 2tΨ) (2.6)

where we made the following abbreviations:

µ = XT βT

Ψ = ΠF − ΠT .

For Lemma 6 we need ‖2tΨ‖2,2 < 1 and we prove in Lemma 5 that the eigenvalues

of Ψ are bounded in absolute value by one; consequently, equation (2.6) holds for

|2t| < 1.



Chapter 2. Nearly Sharp Sufficient Conditions on Sparsity Pattern Recovery 15

With the aid of the definition of the ℓ2 norm of matrices and applying it to ‖(I −
2tΨ)−1/2Ψµ‖2 the first term in the r.h.s. of equation (2.6) can be bounded as

follows:

2t2µTΨ(I − 2tΨ)−1Ψµ ≤ 2t2‖(I − 2tΨ)−1/2‖2
2,2µ

TΨ2µ. (2.7)

Since µ lies in the subspace spanned by the columns of XT we have

ΠT µ = µ and

(ΠT − ΠF)µ = (ΠT − ΠF)XT −FβT −F = (I − ΠF )XT −FβT −F

which yields the following:

µTΨµ = −‖(I − ΠF)XT βT ‖2

= −‖(I − ΠF)XT −FβT −F‖2,

and similarly,

µTΨ2µ = ‖(I − ΠF)XT −FβT −F‖2.

The aforementioned equations and the inequality (2.7) yields the following upper

bound:

log E[eZF t] ≤ 2t2‖(I − 2tΨ)−1/2‖2
2,2µ

TΨ2µ+ tµTΨµ− 1

2
log det(I − 2tΨ)

=
{

2t2‖(I − 2tΨ)−1/2‖2
2,2 − t

}

‖(I − ΠF )XT −FβT −F‖2 − 1

2
log det(I − 2tΨ)(2.8)

Lemma 7 introduces an upper bound for ‖(I − 2tΨ)−1/2‖2
2,2 and a lower bound for

log det(I−2tΨ) that can be used to further simplify the upper bound of log E[eZF t].

The main ingredient in the proof of Lemma 7 is the eigenvalue properties of ΠF−ΠT

that were established in Lemma 5. Substituting the bounds obtained in Lemma 7

in equation (2.8) we have:

log E[eZF t] ≤
[

2t2

1 − 2t
− t

]

‖(I − ΠF)XT −FβT −F‖2 − d

2
log(1 − 4t2), (2.9)
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Finally, to prove Theorem 1, we take the infimum of 2t2

1−2t
− t over |t| < 1/2 which

is equal to
√

2 − 3/2 at t⋆ = 1/2(1 −
√

2/2) and obtain the desired bound:

inf
|t|<1/2

log E[eZF t] ≤ −3 − 2
√

2

2
‖(I − ΠF )XT −FβT −F‖2 − d

2
log(

√
2 − 1/2)

≤ −3 − 2
√

2

2
‖(I − ΠF )XT −FβT −F‖2 +

d

2
.

�

Now we prove the remaining lemmas.

Proof of Lemma 5: Before we prove the result let us introduce some notations:

• For any F ∈ {1, 2, · · · , p}, VF is defined as the linear subspace spanned

by the columns of XF ,

• V ⊥
F stands for the subspace orthogonal to VF ,

• ṼF and ṼT stand for VF ∩ (VF ∩ VT )⊥ and VT ∩ (VT ∩ VF)⊥, respectively,

• and finally for any subspace V , ΠV designates the orthogonal projection

onto V . (With a slight abuse of notation, for any sparsity pattern F , we

use ΠF instead of ΠVF ).

It is worthwhile noting that ṼF ∩ ṼT is empty. From Lemma 4.1 in (Bjorstad

and Mandel, 1991), for any VT and VF in R
n, it holds that,

VT = ṼT ⊕ (VT ∩ VF),

VF ∪ VT = ṼT ⊕ ṼF ⊕ (VT ∩ VF), (2.10)

VT ∩ VF ⊥ ṼF ⊕ ṼT , (2.11)

which yields

ΠF = ΠṼF
+ ΠVF∩VT ,

ΠT = ΠṼT
+ ΠVF∩VT ,
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Consequently,

ΠF − ΠT = ΠṼF
− ΠṼT

. (2.12)

Since any set of columns of X with size less or equal to 2k are independent,

for any T and F such that |T | = |F| = k and |F − T | = d, we have:

VF ∩ VT = VF∩T ,

VF ∪ VT = VF∪T ,

and

dim(VF∩T ) = |F ∩ T | = k − d, (2.13)

dim(VF∪T ) = |F ∪ T | = k + d, (2.14)

therefore,

dim(ṼF) = dim(VF) − dim(VF ∩ VT )

= dim(VF) − dim(VF∩T ) = k − (k − d) = d = dim(ṼT ).

The dimension of (ṼF ∪ ṼT )⊥ which is the null space of ΠF −ΠT is equal to:

dim
(

(ṼF ∪ ṼT )⊥
)

= n− dim(ṼF) − dim(ṼT ) = n− 2d.

We just proved that ΠF − ΠT has n − 2d eigenvalues with eigenvalue zero.

The range of ΠF − ΠT is the 2d dimensional space ṼF ∪ ṼT . Therefore,

ΠF −ΠT has 2d nonzero eigenvalues with absolute value less or equal to one

(The eigenvalues of ΠF − ΠT are equal to one only if ṼF ⊥ ṼT .)

If v(λ) is an eigenvector of ΠF − ΠT with eigenvalue λ then we have

(ΠF − ΠT )v(λ) = λv(λ).

Next, we prove that the vector

v(−λ) = v(λ) − (ΠF + ΠT )v(λ),
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is an eigenvector of ΠF −ΠT with eigenvalue −λ. The proof presented in the

following exploits the definition of the eigenvector v(λ):

(ΠF − ΠT )v(−λ) = (ΠF − ΠT )
(

v(λ) − (ΠF + ΠT )v(λ)

)

= (ΠF − ΠT )v(λ) − (ΠF − ΠT )(ΠF + ΠT )v(λ)

= λv(λ) − (ΠF + ΠFΠT − ΠT ΠF − ΠT ) v(λ)

= −ΠFΠT v(λ) + ΠT ΠFv(λ)

= −ΠF (ΠF − λ)v(λ) + ΠT (ΠT + λ)v(λ)

= −ΠF (1 − λ)v(λ) + ΠT (1 + λ)v(λ)

= −(ΠF − ΠT )v(λ) + λ(ΠF + ΠT )v(λ)

= −λv(λ) + λ(ΠF + ΠT )v(λ)

= −λv(−λ).

This means that for every eigenvector v(λ) with eigenvalue λ there exist an-

other eigenvector v(−λ) with eigenvalue −λ.

Proof of Lemma 7: From Lemma 5, we know that ΠF−ΠT has d pairs of nonzero

positive and negative eigenvalues, whose magnitudes are equal. Let the posi-

tive eigenvalues be denoted by λ1, · · · , λd, then,

log det(I − 2tΨ) =
d
∑

i=1

{log(1 − 2tλi) + log(1 + 2tλi)}

=
d
∑

i=1

log(1 − 4t2λ2
i )

Since, the eigenvalues are bounded by one, again by Lemma 5, log(1− 4t2λ2
i )

is lower bounded by log(1 − 4t2); consequently,

log det(I − 2tΨ) ≤ d log(1 − 4t2).

To prove ‖(I − 2tΨ)−1/2‖2
2,2 ≤ (1 − 2t)−1, note that (I − 2tΨ)−1/2 has
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• d eigenvalues equal to (1 − 2tλ1)
−1/2, · · · , (1 − 2tλd)

−1/2,

• d eigenvalues equal to (1 + 2tλ1)
−1/2, · · · , (1 + 2tλd)

−1/2,

• and n− 2d eigenvalues equal to one.

It is not hard to see that because 2t < 1 and λi < 1 the top eigenvalue of

(I − 2tΨ)−1/2 is bounded above by (I − 2t)−1/2 and hence,

‖(I − 2tΨ)−1/2‖2
2,2 ≤ (1 − 2t)−1.

2.4 Proof of Theorem 2

We state two simple lemmas used to prove Theorem 2.

Lemma 8. For Gaussian measurement matrices, with Xij ∼ N (0, 1) the average

error probability that the optimum decoder declares F is bounded by

Pr[T̂ (y,X) = F|β, T ] ≤ exp

{

−n− k

2
log
(

1 + C‖βT −F‖2
)

+
|T − F|

2

}

where C = 3 − 2
√

2.

Lemma 9. For the function

g(r) := r

[

5

2
+ log

(

k(p− k)

r2

)]

− n− k

2
log(1 + rγ)

defined on positive integers if

n− k > max

{

4k

(

1 +
1

kγ

)2

,

(

1 +
1

γ

)

[1 + 2 log(k(p− k))]

}

, (2.15)

then

max
r=d,··· ,k

g(r) ≤ max {g(d), g(k)} .

Before we prove the two lemmas, let us see how they imply Theorem 2.
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2.4.1 Proof of Theorem 2

In order to find conditions under which Pr[|S(β̂) − T | ≥ d] asymptotically goes to

zero, we exploit the union bound in conjunction with counting arguments and the

previously stated two lemmas.

First, note that the event |S(β̂)−T | ≥ d can be written as the union of the events

S(β̂) = F for all sparsity patterns F such that |F − T | ≥ d. The union bound

allows us to bound the probability of the event ∪|F−T |≥d{S(β̂) = F} by the sum of

probabilities of events like S(β̂) = F . In mathematical terms,

Pr[|S(β̂) − T | ≥ d] = Pr
[

∪|F−T |≥d{S(β̂) = F}
]

≤
k
∑

r=d

∑

|F−T |=r
Pr
[

S(β̂) = F
]

.

Lemma 8 which is based on generating functions of chi-square distributions intro-

duces an upper bound for the event S(β̂) = F ; namely,

Pr[T̂ (y,X) = F|β, T ] ≤ e−
n−k

2
log(1+C‖βT −F‖2)+ |T −F|

2

with C = 3 − 2
√

2. If we replace C‖βT −F‖2 with the lower bound C|T − F|β2
min

which follows the definition of βmin we obtain an upper bound for the event S(β̂) =

F that does not depend on F as long as |F − T | is fixed. The number of sparsity

patterns F that are different from T in exactly r elements is
(

k
r

)(

p−k
r

)

. There-

fore, we can bound
∑

|F−T |=r Pr
[

S(β̂) = F
]

by
(

k
r

)(

p−k
r

)

e−
n−k

2
log(1+Crβ2

min)+ r
2 . To

summarize, exploiting inequality log
(

a
b

)

< b log(ae
b
) we have:

Pr[|S(β̂) − T | ≥ d] ≤
k
∑

r=d

er[
5
2
+log( k(p−k)

r2 )]−n−k
2

log(1+Crβ2
min). (2.16)

Let g(r) stand for the exponent in the previous equation

g(r) := r

[

5

2
+ log

(

k(p− k)

r2

)]

− n− k

2
log(1 + rγ)
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where we defined

γ := Cβ2
min.

From Lemma 9 we know that if

n− k > max

{

4k

(

1 +
1

kγ

)2

,

(

1 +
1

γ

)

[1 + 2 log(k(p− k))]

}

(2.17)

then maxr=d,··· ,k g(r) ≤ max {g(d), g(k)} and therefore

Pr[|S(β̂) − T | ≥ d] ≤
k
∑

r=d

eg(r)

≤ kemax{g(d),g(k)}. (2.18)

For Pr[|S(β̂) − T | ≥ d] → 0 it suffices that g(d) and g(k) go to −∞ fast enough.

In the statement of Theorem 2 we have the following condition

n− k > B
d log(k(p−k)

d2
) + d

log(1 + dγ)

that results in the following upper bound

g(d) = d

[

5

2
+ log

(

k(p− k)

d2

)]

− n− k

2
log(1 + dγ) (2.19)

≤ d

[

5

2
+ log

(

k(p− k)

d2

)]

− B

2

[

d log

(

k(p− k)

d2

)

+ d

]

≤ −B − 5

2

[

d log

(

k(p− k)

d2

)

+ d

]

. (2.20)

Hence, if

n− k > Bmax

{

d log(k(p−k)
d2

) + d

log(1 + dγ)
,
k log(k(p−k)

k2 ) + k

log(1 + kγ)

}

(2.21)

then

max {g(d), g(k)} ≥ B − 5

2
max

{

[

d log

(

k(p− k)

d2

)

+ d

]

,

[

k log

(

k(p− k)

k2

)

+ k

]

}

.

Therefore, inequalities (2.17) and (2.21) which are the main conditions in Theorem

1, imply that

Pr[|S(β̂) − T | ≥ d] < kmax

{

[

ek(p− k)

d2

]−dB⋆

,

[

e(p− k)

k

]−kB⋆
}
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where B⋆ = B−5
2

.

�

Now we prove the remaining lemmas.

Proof of Lemma 8: The columns of XF and XT −F are, by definition, disjoint

and therefore independent Gaussian random matrices with column spaces

spanning random independent |F|- and |T − F|-dimensional subspaces, re-

spectively. The Gaussian random vector XT −FβT −F has i.i.d. Gaussian en-

tries with variance ‖βT −F‖2. Therefore, we conclude that, since the random

Gaussian vector XT −FβT −F is projected onto the subspace orthogonal to the

random column space of XF , the quantity ‖(I − ΠF)XT −FβT −F‖2/‖βT −F‖2

is a chi-square random variable with n− k degrees of freedom. Thus,

Pr[T̂ (y,X) = F|β, T ] = EX

{

Pr[T̂ (y,X) = F|X, β, T ]
}

1

≤ EX

{

e−
C
2
‖(I−ΠF )XT −FβT −F‖2+ d

2

}

= EW∼χ2
n−k

e−
C
2
W‖βT −F‖2+ d

2

2
= e−

n−k
2

log(1+C‖βT −F‖2)+ d
2 .

The first inequality follows from Theorem 1 and the second equality comes

from the well-known formula (see for example (Severini, 2005)) for the moment-

generating function of a chi-square random variable; that is, EW∼χ2
n−k

etW =

(1 − 2t)−
n−k

2 for 2t < 1.

Proof of Lemma 9: Let us first explain the idea behind this Lemma. We aim to

prove that under certain conditions, for some r0 ∈ [1, k], g(r) is a decreasing

function for r ∈ [1, r0] and an increasing function for r ∈ [r0, k]. This yields

the desired upper bound,

max
r∈[d,k]

g(r) ≤ max {g(d), g(k)} . (2.22)
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We begin by taking derivatives of g(r) to prove the aforementioned claim:

g′(r) =
1

2
+ log

(

k(p− k)

r2

)

− γ(n− k)

2(1 + rγ)

g′′(r) =
−4(1 + rγ)2 + rγ2(n− k)

2r(1 + rγ)2
.

Note that in the following steps we use inequality (2.15), i.e.

n− k > max

{

4k

(

1 +
1

kγ

)2

,

(

1 +
1

γ

)

[1 + 2 log(k(p− k))]

}

,

to prove inequality (2.22):

1. g′′(r) = 0 has two solutions r⋆1 and r⋆2 such that r⋆1 < r⋆2. Due to the

positivity of the denominator and the quadratic and concave nature of

the numerator of g′′(r), we have:

(a) g′′(r) < 0 for r < r⋆1,

(b) g′′(r) > 0 for r⋆1 < r < r⋆2,

(c) g′′(r) < 0 for r⋆2 < r.

2. From inequality (2.15) we have n−k > 4k
(

1 + 1
kγ

)2

which ensures that

g′′(k) > 0. Therefore, we have r⋆1 < k < r⋆2. This implies the convexity

of g(r) for r ∈ [r⋆1, k] and the negativity of g′′(r) for r < r⋆1. We have

two situations depending on whether 1 < r⋆1 or not:

(a) 1 < r⋆1: From inequality (2.15) we have n−k > 1+γ
γ

[1 + 2 log(k(p− k))]

which implies that g′(1) < 0. This, in conjunction with g′′(r) < 0

for r < r⋆1, implies that g(r) is decreasing for r ∈ [1, r⋆1].

(b) r⋆1 ≤ 1: g(r) is convex for r ∈ [1, k].

3. Either case, i.e. g(r) is convex for r ∈ [1, k] or decreasing for all r ∈ [1, r⋆1]

and convex for r ∈ [r⋆1, k], proves the desired inequality (2.22).
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2.5 Conclusion

In this paper, we examined the probability that the optimal decoder declares an in-

correct sparsity pattern. We obtained an upper bound for any generic measurement

matrix, and this allowed us to calculate the error probability in the case of random

measurement matrices. In the special case when the entries of the measurement

matrix are i.i.d. normal random variables, we computed an upper bound on the

expected error probability. Sufficient conditions on exact sparsity pattern recovery

were obtained, and they were shown to improve the previous results (Wainwright,

2007; Akcakaya and Tarokh, 2008; Fletcher et al., 2008; Karbasi et al., 2009).

Moreover, these results asymptotically match (in terms of growth rate) the corre-

sponding necessary condition presented in (Wang et al., 2008). An interesting open

problem is to extend the sufficient conditions derived in this work to non-Gaussian

and sparse measurement matrices.
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Chapter 3

Efficient estimation of

two-dimensional firing rate

surfaces via Gaussian process

methods

This chapter is based on the paper “Efficient estimation of two-dimensional firing

rate surfaces via Gaussian process methods” (Rahnama Rad and Paninski, 2010).

3.1 Introduction

A common problem in statistical neural data analysis is to estimate the firing rate

of a neuron given some two-dimensional variable. Spatial examples include the

estimation of “place fields” in the hippocampus (Brown et al., 1998), “grid fields”

in entorhinal cortex (Hafting et al., 2005), and position- or velocity-fields in motor

cortex (Gao et al., 2002; Paninski et al., 2004a). Spatiotemporal examples include
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the estimation of tuning curves that change as a function of time (Frank et al., 2002;

Rokni et al., 2007); purely temporal examples include models of spike-history effects

(Kass and Ventura, 2001) or the tracking of firing rates that change as a function

of both intra- and inter-trial times during a behavioral task (Czanner et al., 2008).

Finally, more abstract examples arise in the context of spike-triggered covariance

analyses (Rust et al., 2005; Aguera y Arcas and Fairhall, 2003). More generally, the

estimation of the intensity function of two-dimensional point processes is a central

problem in a variety of other scientific fields, including forestry and astronomy

(Moeller and Waagepetersen, 2004).

A number of methods have appeared in the literature to address this problem. It is

worth briefly reviewing some of these approaches here, in order to illustrate some

of the computational and statistical aspects of this two-dimensional point-process

smoothing problem. Perhaps the most direct (and common) approach is to write

p(spike|~x), the conditional probability of observing a spike in a small time bin given

the two-dimensional signal ~x, as

p(spike|~x) =
p(spike, ~x)

p(~x)
,

and then to estimate the probability densities in the numerator and denominator

via standard nonparametric methods, either via histogram or kernel smoothing

methods (Devroye and Lugosi, 2001); thus our estimate of the conditional firing

rate is obtained as a ratio of estimated densities p̂(spike, ~x)/p̂(~x). The advantages

of this method include its conceptual simplicity and its computational speed; in

particular, linear smoothing methods for obtaining p̂(spike, ~x) and p̂(~x) essentially

involve a standard spatial convolution operation, which may be computed efficiently

via the fast Fourier transform. Also, uncertainty in the estimated firing rates can be

quantified via standard bootstrap methods (though this may be computationally

expensive). However, the disadvantages of this approach are quite well-known (Kass

et al., 2003; Kass et al., 2005): if the kernel width (or histogram bin) in the
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density estimate is chosen to be too large, then the estimated firing rate surface is

oversmoothed; on the other hand, if the kernel width is too small, then the division

by the small, noisy estimated density p̂(~x) can lead to large, noisy fluctuations

which can mask the underlying structure in the estimated firing rate.

Another important but somewhat more subtle disadvantage of this direct ratio

approach has to do with the “adaptivity” of the estimator. Speaking roughly,

we would like our estimator to smooth out the data more in areas where fewer

observations are available (and where the estimate is bound to be noisier), while

letting the data “speak for itself” and applying minimal smoothing in regions where

many ~x observations are available (where reliable estimates can be made without

too much spatial averaging). The ratio estimator as described above does not have

this important adaptive property. It is of course possible to make this smoother

adaptive: one method is to let the kernel width scale roughly inversely with the

number of samples ~x observed in a local region. However, this method is somewhat

ad hoc; more importantly, since this adaptive smoothing can not be computed

via a simple convolution, the fast Fourier methods no longer apply, making the

method much slower and therefore obviating one of the main advantages of this

ratio approach. Finally, it is well-known that the firing rate typically depends not

just on a single location variable ~x, but also on additional covariates, e.g., the

time since the last spike (Berry and Meister, 1998; Kass and Ventura, 2001; Frank

et al., 2002; Paninski, 2004), or the local activity of other cells in the network

(Harris et al., 2003; Paninski et al., 2004b; Truccolo et al., 2005; Paninski et al.,

2007; Pillow et al., 2008); it is difficult to systematically incorporate these covariate

effects in the simple nonparametric ratio approach.

Parametric statistical models lie at the other end of the spectrum. We may model

the firing rate p(spike|~x) ≈ p(spike|~x, θ), where θ is a finite-dimensional param-

eter, and then fit θ directly to the observed data via standard likelihood-based
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methods (Brown et al., 1998; Kass et al., 2005). Confidence intervals on the es-

timated firing rates may again be obtained by bootstrapping, or by the standard

likelihood asymptotic methods based on the observed Fisher information (though

this approach is only effective when many data observations are available and,

more importantly, when the model is known to provide a good explanation of the

data); in addition, it is easy to incorporate covariates (e.g., the effect of the local

spike history). Parametric methods can be very powerful when a good model is

available, but the results are highly dependent on the model family chosen. For

example, two-dimensional unimodal Gaussian surface models for place fields can

be effective for some hippocampal cells, but fail badly when modeling grid cells,

which display many bumps in their firing rate surfaces. Computation in parametric

models involves optimization over the parameter θ, and therefore typically scales

like O(dim(θ)3); this adverse scaling encourages researchers to reduce the dimen-

sionality of θ, at the expense of model flexibility1. Finally, local maxima in the

model’s objective function surface can be a significant concern in some cases.

State-space methods for estimating time-varying tuning curves represent something

of a compromise between these two approaches (Brown et al., 2001; Frank et al.,

2002; Czanner et al., 2008; Paninski et al., 2010). These methods are quite effective

in the spatiotemporal cases cited above, but do not apply directly to the purely

spatial setting. The idea is to fit a parametric model to the tuning curve, but

then to track the changes in this tuning curve as a function of time using what

amounts to a temporal smoothing method. These methods can be cast in a fully

Bayesian setting that permits the calculation of various measures of uncertainty of

the estimated firing rates and the incorporation of our prior knowledge about the

smoothness of the firing rate in time and space. Computation in these methods

1The typical O(dim(θ)3) complexity is due to the matrix-solve step involved in Newton-
Raphson optimization over the parameter θ. Solving a linear equation involving a N ×N matrix
leads to the O(N3) computational complexity.
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scales roughly as O(dim(θ)3T ) (Paninski et al., 2010), where θ again represents

the model parameter and T represents the number of time points at which we are

estimating the firing rate.

In this paper we discuss a Bayesian nonparametric approach to the two-dimensional

point-process smoothing problem which is applicable in both the spatial and spa-

tiotemporal settings. Our methods are in a sense a generalization of the temporal

state-space methods for point process smoothing; we will see that very similar lo-

cal computational properties can be exploited in the spatial case. The resulting

estimator is adaptive in the sense described above, comes equipped with confidence

intervals, and can be computed efficiently. Our methods may also be considered a

generalization of the techniques described by (Gao et al., 2002), and as a computa-

tionally efficient relative of the techniques considered in (Cunningham et al., 2007;

Cunningham et al., 2008). We will discuss the relationship to this work below in

more depth, after describing our methods in more detail.

3.2 Methods

3.2.1 The doubly stochastic point process model

We model neural activity as a point process with rate λ, with λ depending smoothly

on some two-dimensional variable ~x. For technical reasons which we will discuss

further below, we will model the firing rate in terms of a smooth nonnegative

function f(.) applied to a two-dimensional surface z(~x); this surface z(~x), in turn,

is assumed to be a smooth function which we will estimate from the observed point

process data. Thus, the firing rate map λ(~x) = f(z(~x)) will itself be a smooth

nonnegative function of ~x. We will study several somewhat distinct experimental

settings and show that they all can be conveniently cast in these basic terms. The



Chapter 3. Efficient estimation of two-dimensional firing rate surfaces via
Gaussian process methods 30

experimental settings we have in mind are:

1. We observe a spatial point process whose rate is given by λ(~x) = f [z(~x)].

2. We observe a temporal point process whose rate is given by λt = f [z(~xt)],

where ~xt is some known time-varying path through space (e.g., the time-

varying position of a rat in a maze (Brown et al., 1998) or the hand position

in a motor experiment (Paninski et al., 2004b)).

3. We make repeated observations of a temporal point process whose mean rate

function may change somewhat from trial to trial2; in this case we may model

the rate as λ
(i)
t , where t denotes the time within a trial and i denotes the trial

number (Frank et al., 2002; Czanner et al., 2008).

4. We observe a temporal process whose rate is given by λ(t) = f [z(x(t), t)],

where x(t) is some known time-varying path through a one-dimensional space

(e.g., the time-varying position of a rat in a linear maze), and the one-

dimensional tuning curve f [z(x, t)] changes as a function of time (Frank et al.,

2002; Rokni et al., 2007).

5. We observe a temporal process whose rate is given by λ(t) = f [z(t, τ)], where

z(t, τ) depends on absolute time t and the time since the last spike τ . Models

of this general form are discussed in (Kass and Ventura, 2001), who termed

these “inhomogeneous Markov interval” models.

We provide detailed formulations for each of the mentioned applications in appendix

A. Each of these formulations may be elaborated by the inclusion of additional

terms, as we discuss in section 3.2.6 below. In all cases, the nonnegative function

f(.) is assumed to be convex and log-concave (Paninski, 2004). We further model

2Thanks to C. Shalizi for pointing out this example.
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z as a sample from a Gaussian process with covariance function C(~x, ~x′) (Cressie,

1993; Rasmussen and Williams, 2006); as we discuss below, this allows us to encode

our a priori assumptions about the smoothness of z in a convenient, flexible fashion3.

In this setting, the resulting point process is doubly-stochastic and is known as a

Cox process (Snyder and Miller, 1991; Moeller and Waagepetersen, 2004); in the

special case that f(.) = exp(.), the process is called a log-Gaussian Cox process

(Moeller et al., 1998). Related models have seen several applications in the fields

of neural information processing and neural data analysis (Smith and Brown, 2003;

Jackson, 2004; Brockwell et al., 2004; Sahani, 1999; Wu et al., 2004; Wu et al.,

2006; Yu et al., 2006); for example, the temporal point-process smoothing methods

developed by Brown and colleagues (Frank et al., 2002; Smith and Brown, 2003;

Czanner et al., 2008) may be interpreted in this framework. In particular, as

mentioned above, (Gao et al., 2002) and (Cunningham et al., 2007; Cunningham

et al., 2008) applied similar techniques to the problem of estimating spatial receptive

fields; we will discuss the relationship to this work in more depth in the discussion

section below.

3.2.2 Smoothing priors

To set the stage for our main development over the next two sections, it is helpful

to review some concepts in Bayesian smoothing and estimation. There is a very

large statistical literature on smoothing in one and more dimensions (Wahba, 1990;

Green and Silverman, 1994). For conceptual simplicity, let’s begin by reviewing the

one-dimensional smoothing problem from a Bayesian point of view. In this setting

we have a univariate sequential ordered series y1, y2, · · · , yn observed at locations

τ1, τ2, · · · , τn on a one-dimensional grid. The goal is to approximate this series by

3We will discuss the advantages of placing the prior on z, instead of directly on the firing rate
f(z), in the next sections.
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a smooth continuous function z(τ), i.e.

yi = z(τi) + ǫi, (3.1)

where ǫi is measurement error. Assuming that equation (3.1) is the true model and

the measurement error is Gaussian with zero mean and variance σ2, the probability

of the observed data D = {yi}i=1,··· ,n given the smooth continuous function z(τ) is

given by:

p(D|z) = (2πσ2)−n/2
n
∏

i=1

e−
(yi−z(τi))

2

2σ2 . (3.2)

The maximum likelihood estimate zML(τi) = yi is obtained by maximizing the

logarithm of equation (3.2) over z(τi) for i = 1, · · · , n. Unfortunately, the result-

ing estimate is not necessarily a smooth continuous function; in fact, in this case

the MLE is not even well-defined except at the observed points τ = τi, since the

likelihood does not depend on z(τ) for τ 6= τi.

The standard approach for remedying this problem is to introduce a functional of

z(.) to penalize non-smooth functions:

ẑγ = arg max
z

logP (D|z) − γF(z). (3.3)

The first term accounts for the fit of the data, while the second penalizes the

roughness of z(τ). The functional F(z) must be bigger for non-smooth functions

z(.) compared to smooth functions. One common choice for F(.) is
∫

[ ∂z
∂τ

]2dτ , the

total power of the first derivative (Wahba, 1990). Another common choice for

F(.) is the integrated length of the square of the second derivative which gives

greater smoothness than the first derivative constraint. The tuning parameter

γ > 0 exists to balance fitness (in terms of log-likelihood) versus smoothness (in

terms of integrated square of the first derivative). In the limit of small γ the estimate

ẑγ(.) better fits the data and is less smooth. As we increase the tuning parameter,

ẑγ(.) becomes smoother but fits the data less well. The tuning parameter may be
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chosen by hand (using our a priori knowledge of the smoothness of the function

z), or by any of several existing data-based methods, such as generalized cross

validation, expectation maximization, generalized maximum likelihood or empirical

Bayes (Wahba, 1990; Hastie et al., 2001). From a Bayesian point of view, the

penalizing term can be interpreted as a prior on z(.):

logP (z|γ) ∝ −γF(z).

Since P (z|D, γ) ∝ P (D|z)P (z|γ) as a function z(.), the maximum a posteriori

(MAP) estimate of z(.) is given by

ẑγ = arg max
z
P (z|D, γ)

= arg max
z

logP (D|z) + logP (z|γ),

which is equivalent to (3.3) when logP (z|γ) ∝ −γF(z).

Likewise, priors based on smoothing constraints can be used to estimate two-

dimensional surfaces given point process observations. The motivation is as in

the one-dimensional Gaussian case: without any prior on smoothness, estimating

the rate map (by maximizing the log-likelihood) results in a jagged, discontinuous

rate surface with singularities on the observed spikes. One simple and convenient

prior penalizes large differences in the two-dimensional surface z, exactly as we

discussed above in the one-dimensional case:

logP (z(.)|γ) ∝ −γF(z) = −γ
∫ [

(
∂

∂x
z)2 + (

∂

∂y
z)2

]

dxdy, (3.4)

where ~x = (x, y) and z = z(~x). If F(z) is close to zero, then z will be smooth

(Wahba, 1990).

Three brief technical points are worth noting here. First, this prior is not a proper

probability distribution because it can not be normalized to one (i.e.,
∫

exp[−γF(z)]dz =

∞.). However, in most cases the posterior distribution P (z(.)|D, γ) will still be in-

tegrable even if we use such an improper prior (Gelman et al., 2003). Note that to
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Figure 3.1: Example of the inverse prior covariance matrix C−1, with γ = 1 and ǫ = 0. The
penalty functional F(z) is implemented via a quadratic form zT C−1z; choosing the inverse prior
covariance C−1 to be sparse banded allows us to efficiently compute the posterior expected firing
rate λ̂. Left: The banded structure of C−1, in an example setting where z is represented as a
10×20 grid. Middle: The first 30×30 entries of C−1. Right: The five-point “stencil” implemented
in C−1; note that only nearest spatial neighbors are involved in the computation of the penalty.

take into account the a priori boundedness of z(~x) we may augment the roughness

penalty in a simple way:

F̃(z) =

∫
[

(
∂

∂x
z)2 + (

∂

∂y
z)2

]

dxdy + ǫ

∫

z2dxdy; (3.5)

this small extra term makes P (z|γ) ∝ exp[−γF̃(z)] a proper prior. The scalar

ǫ here sets the inverse scale of z: smaller values of ǫ correspond to larger prior

variance in the Gaussian prior specified by logP (z|γ). Second, it is possible to

tune the smoothness along the horizontal and vertical directions independently.

This is useful when the two dimensions are measured in different units (e.g., time

and location). This is easily done by introducing two roughness tuning parameters

as follows:

F(z) =

∫ [

γx(
∂

∂x
z)2 + γy(

∂

∂y
z)2

]

dxdy. (3.6)

Third, it is possible to consider penalties based on higher derivatives, as in the one

dimensional case (Wahba, 1990). For example, the penalty of equation (3.6) based
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on the second derivative is as follows:

F2(z) =

∫
[

γx(
∂2z

∂x2
)2 + γy(

∂2z

∂y2
)2

]

dxdy.

As before, the MAP estimate of z is defined as:

ẑγ = arg max
z

{logP (D|z) + γF̃(z)}.

(We will introduce the likelihood P (D|z) for the point process case in the next

section.)

To implement this estimator numerically, we must discretize space and represent

the function z in vector form. We may simply discretize the spatial variable ~x and

then concatenate the resulting matrix z by appending its columns to construct a

vector4. In the discrete domain, any of the aforementioned penalties can be written

in terms of quadratic forms in the vector z, i.e. as zTC−1z for an appropriate

sparse positive semi-definite matrix C−1. See Figure 3.1 for an example of C−1

such that zTC−1z implements F(z) for a surface z which is represented in the

discrete domain on a 10× 20 grid. Note that the exact form of C in the case where

the prior logP (z|γ) ∝ −zTC−1z is improper may not exist. This is due to the fact

that some of the eigenvalues of C−1 may be zero in which case C does not exist.

It is important to remember that the Gaussian prior corresponding to the exponent

of the negative quadratic penalty zTC−1z only acts as a regularizer, and does not

imply that we are modeling the random surface z(~x) as a two-dimensional unimodal

Gaussian surface as a function of the two-dimensional spatial variable ~x; instead,

p(z) is a Gaussian function of the much higher-dimensional vector z, and therefore

in general samples z from this prior may have quite arbitrary multimodal shapes

as a function of ~x, as illustrated in Fig. 3.2.

4With a slight abuse of notation we interchangeably use z for both the vector representation
and the grid representation. The difference should be clear from the context.
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Figure 3.2: Three independent samples z drawn from the Gaussian prior with covariance matrix
C and mean zero, with γ = 20 and ǫ = 10−6. Note that samples can take a fairly arbitrary shape,
though slowly-varying (correlated) structure is visible in each case.

3.2.3 Computing the posterior

Now our main goal is to efficiently perform computations with the posterior dis-

tribution p(z|D) of the random surface z given the observed spike train data D5.

For example, given p(z|D) we can estimate the firing rate by taking the conditional

expectation

λ̂(~x) = E
(

f [z(~x)]|D
)

=

∫

f(u)p(z(~x) = u|D)du.

It is well-known that for convex and log-concave f(.) the log-posterior

log p(z|D) = log p(D|z) + log p(z) + const.

is concave as a function of z (Paninski, 2004; Paninski, 2005; Cunningham et al.,

2007), since both the prior p(z) and the point-process likelihood p(D|z) are log-

concave in z6, and log-concavity is preserved under multiplication. As a result

5Note that the posterior depends on the prior which itself is function of the hyper-parameter
γ discussed in the previous section. All the posterior probabilities for the rest of the paper are for
a fixed γ unless otherwise mentioned and to simplify notation we discard the dependence on γ.

6The point-process log-likelihood is given generically as (Snyder and Miller, 1991)

log p(D|z) =
∑

i

log λ(ti) −
∫ T

0

λ(t)dt,

where ti are the observed spike times and [0, T ] is the time interval over which the spike train is
observed; for details on how to compute the likelihood in each of the settings mentioned in section
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log p(z|D) has no non-global local maxima in z, and therefore standard gradient

ascent algorithms are guaranteed to converge to a global maximum if one exists.

Furthermore, this log-concavity allows the development of efficient approximation

and sampling algorithms for the posterior p(z|D) using the Laplace approximation

(Ahmadian et al., 2009; Kass and Raftery, 1995), as we discuss below.

As mentioned earlier, we assume a Gaussian prior on z:

log p(z) = −zTC−1z + const. (3.7)

The inverse covariance matrix C−1 encodes both the smoothness and boundedness

of z, as discussed in the previous section. Now our basic approximation is a standard

Laplace approximation (Fahrmeir and Kaufmann, 1991; Kass and Raftery, 1995;

Paninski et al., 2007) for the posterior:

p(z|D) ≈ 1

(2π)d/2|CD|1/2
exp

(

−1

2
(z − ẑD)TC−1

D (z − ẑD)

)

, (3.8)

where d = dim(z),

ẑD = arg max
z
p(z|D)

and

C−1
D = C−1 +HD, (3.9)

with

HD = −∇∇z log p(D|z)z=ẑD
.

In words, this is just a second-order approximation of the concave function log p(z|D)

about its peak ẑD. We have found that this approximation is acceptably accurate

when the log-prior and log-likelihood are smooth and concave, as is the case here;

see e.g. (Paninski et al., 2010; Pillow et al., 2011; Ahmadian et al., 2009) for further

discussion.

3.2.1, see Appendix A.
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Two items are worth noting. First, ẑD may be found via ascending the objec-

tive function log p(z|D) by the Newton-Raphson algorithm. Since this function is

concave and is therefore unimodal, as emphasized above, we don’t need to worry

about local maxima. In principle finding the maximum of a concave function is

straightforward (Boyd and Vandenberghe, 2004). The difficulty arises when the

dimensionality of z is large which in our applications might be as large as ∼ 105.

Second, C−1
D is quite easy to compute once we have ẑD, since HD is a diagonal ma-

trix (as can be demonstrated by explicit computation; see equation (3.11) below).

The key to computing the posterior distribution in equation (3.8) is to develop

efficient methods for computing ẑD. The standard Newton-Raphson ascent method

requires that we solve the linear equation

(

C−1 −∇∇z log p(D|z)z=ẑ(i)
)

w = ∇z log p(z|D)z=ẑ(i) (3.10)

for the search direction w, where ẑ(i) denotes our estimate of z after i iterations of

Newton-Raphson. For example, in the simplest setting (case 1 described in section

3.2.1), we have the standard point-process log-likelihood (Snyder and Miller, 1991)

log p(D|z) =
∑

j

log f [z(~xj)] −
∫

f [z(~x)]d~x+ const.

where j indexes the location ~xj where the j-th spike was observed, and so

∂ log p(D|z)
∂z(~x)

= −f ′[z(~x)]d~x+
∑

j

f ′

f
[z(~x)]δ(~x− ~xj)

and

∂2 log p(D|z)
∂z(~x)∂z(~x′)

=







−f ′′[z(~x)]d~x+
∑

j
f ′′f−(f ′)2

f2 [z(~x)]δ(~x− ~xj) if ~x = ~x′

0 otherwise,

(3.11)

where f ′(.) and f ′′(.) denote the first and second (scalar) derivatives of the function

f(.). Note that if f(.) = exp(.), the second term of the first line in equation (3.11)

is zero.
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So the feasibility of this smoothing method rests primarily on the tractability of

the Newton step (3.10), which in turn rests on our ability to solve equations of the

form
(

C−1 +H
)

w = b

as a function of the unknown vector w, for diagonal matrices H . For general d× d

matrices C−1, this will require O(d3) time7, which is intractable for reasonably-sized

z. (Cunningham et al., 2007; Cunningham et al., 2008) introduced techniques for

speeding up the computations in this general case to find an approximate MAP

estimate of the rate map which behaved reasonably well in numerical examples; we

take a different approach here and restrict our attention to a special subclass of

covariance functions C which is flexible enough for our needs but at the same time

allows us to perform the necessary computations much more efficiently than in the

general O(d3) case.

Before we discuss these computational issues, though, it is worth mentioning a few

important statistical properties of the estimator λ̂ for the firing rate. First, the

Bayesian approach allows to systematically calculate various measures of the un-

certainty of the estimator λ̂ (as we will discuss at more length below), and it is

straightforward to incorporate our prior knowledge about the smoothness of z in

the definition of the covariance function C. In addition, the Bayesian estimator, by

construction, functions as an adaptive smoother: because the Bayesian estimator

represents a balance between the data and our prior beliefs about z, the estimator

will smooth less in regions where the data are highly informative, and vice versa.

Quantitatively, this balance of data versus prior is determined by the size of the

“observed Fisher information matrix” HD compared to the inverse prior covariance

C−1, and therefore depends both on the observed data and the nonlinear func-

7Note that computing HD requires just O(T ) time, where T is the length of the experiment,
and therefore this step is not rate-limiting.
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tion f(.); for f(.) = exp(.), for example, HD increases with the firing rate, since

λ(u) = f ′′(u) is monotonically increasing in u, and therefore the effective smoothing

width decreases in regions of high firing rate, as desired. More concretely, when the

observed information matrix HD is large compared to the prior covariance C, the

posterior uncertainty (measured by the posterior covariance CD, equation (3.9))

is approximately H−1
D , whereas the posterior uncertainty reverts to the prior un-

certainty (i.e., C) when the observed data D are less informative. This adaptive

behavior can also be understood by examining the matrix equation (3.10) in the

Fourier domain: since the inverse covariance C−1 is typically chosen to penalize

high-frequency fluctuations (Theunissen et al., 2001), larger values of the diago-

nal term HD correspond to a local spatial filter (C−1 +HD)−1 which passes higher

spatial frequencies, and which is therefore more spatially localized (Paninski, 2005).

3.2.4 Priors based on nearest-neighbor penalties lead to

fast computation

In this section we will describe how to choose the inverse prior covariance C−1 so

that we can solve the Newton step in a computationally efficient manner while re-

taining the statistical efficiency and biological plausibility8 of our estimator. The

basic insight here is that if [C−1]~x,~y = 0 whenever ~x and ~y are not neighbors on the

discrete two-dimensional grid9, then C−1 may be written in block-tridiagonal form

with tridiagonal blocks, and our equation resembles a discrete Poisson equation, for

which highly efficient multigrid solvers are available which require just O(d) time

(Press et al., 1992). Even standard methods for solving the equation (as imple-

8Biological plausibility refers here to the exclusion of sharp discontinuities and singularities in
the rate map.

9In examples considered in this paper we will focus mainly on the nearest-neighbor case, but
the methods may be applied more generally when [C−1]~x,~y = 0 if ~x and ~y are separated by a
distance of more than n pixels, where n is small (n = 1 in the nearest-neighbor case).



Chapter 3. Efficient estimation of two-dimensional firing rate surfaces via
Gaussian process methods 41

mented, e.g., in Matlab’s A\b call) are quite efficient here, requiring just O(d3/2)

time10. We have found that a very simple Newton-Raphson algorithm exploiting

these efficient linear algebra techniques (and a simple backtracking method to en-

sure that the objective increases with each Newton step) converges in just a few

iterations, therefore providing a rapid and stable algorithm for computing ẑD; the

optimization takes just a few seconds on a laptop computer for d ∼ 104. In contrast,

if we represent z in some finite-dimensional basis set B in which fast matrix solving

methods are not available, then each Newton step generically requires O(dim(B)3)

time. Thus we see that the fast sparse matrix techniques allow us to investigate

spatial receptive fields of much higher resolution, since d may be made much larger

than dim(B) at the same computational cost.

Once ẑD is obtained using these efficient methods, we estimate the firing rate map

by:

E[f(z(~x))|D] =

∫

f(u)p(z(~x) = u|D)du ≈
∫

GẑD(~x),Var[z(~x)|D](u)f(u)du,

where we have applied the Laplace approximation in the second step and abbrevi-

ated the Gaussian density in u with mean µ and variance σ2 as Gµ,σ2(u). In the case

that f(.) = exp(.), f [z(~x)] has a lognormal distribution and we may read off the

conditional mean E[f(z(~x))|D] and variance Var[f(z(~x))|D] using standard results

about this distribution; for example,

E[exp(z(~x))|D] = exp

(

ẑD(~x) +
1

2
Var[z(~x)|D]

)

. (3.12)

In any case, we need to compute the conditional variances Var[z(~x)|D], which under

the Laplace approximation are given by the diagonal elements of CD. These terms

10This O(d3/2) scaling requires that a good ordering is found to minimize fill-in during the
forward sweep of the Gaussian elimination algorithm; code to find such a good ordering (via
“approximate minimum degree” algorithms (Davis, 2006)) is built into the Matlab call A\b when
A is represented as a sparse banded matrix. See also (Sanches et al., 2008) for an approach based
on a related Sylvester equation; this approach is quite different but turns out to have the same
computational complexity.
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may be computed without ever computing the full matrix CD (which would require

O(d2) storage) by making use of the banded structure of C−1
D , via standard algo-

rithms such as the forward-backward Kalman smoother or the method described

in (Asif and Moura, 2005). This step requires O(d2) time. However, in many cases

(as we will see below), Var[z(~x)|D] is somewhat smoother than E[z(~x)|D], and may

therefore be computed on a coarser scale (making d smaller) and then interpolated

to a finer scale; thus this O(d2) time scaling is not a major limitation.

Another important application of the Laplace approximation is to compute the

marginal likelihood p(D|θ) =
∫

p(z,D|θ)dz, where θ denotes parameters we might

want to optimize over in the context of model selection (e.g., the hyperparameters

setting the spatial scale and variance of the prior covariance C; see Results section

below), or in constructing hierarchical models of the observed rate maps over multi-

ple neurons (Behseta et al., 2005; Geffen et al., 2009). The Laplace approximation

for this marginal likelihood is

log p(D|θ) = log

∫

p(D, z|θ)dz ≈ log p(ẑD|θ)+ log p(D|ẑD, θ)−
1

2
log |C−1

D |+ const.,

(3.13)

where “const.” is constant in θ and the dependence of ẑD (and therefore HD) on θ

has been left implicit to avoid cluttering the notation. The first two terms here are

easy to compute once ẑD has been obtained: the first (Gaussian) term is a sparse

banded quadratic form, and the second is the usual point-process loglikelihood. The

third term requires the determinant of a sparse banded matrix, which again may be

computed efficiently and stably via a Cholesky decomposition; the “chol” function

in Matlab again automatically takes advantage of the sparse banded nature of C−1
D

here, and requires just O(d3/2) time.

It is also worth noting that the generalization to non-Gaussian priors of the form

p(z) ∝ exp

(

∑

ij

hij [z(~xi) − z(~xj)]

)

,
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for some collection of smooth, symmetric, concave functions hij(.), is straightfor-

ward, since the log-posterior remains smooth and concave. For example, by using

sub-quadratic penalty functions hij(.) we can capture sharper edge effects than in

the Gaussian prior (Gao et al., 2002); conversely, if we use penalty functions of the

form

hij(u) =











0 |u| < K

−∞ otherwise

,

then we may directly impose Lipschitz constraints on z (Coleman and Sarma, 2007)

(the resulting concave objective function is non-smooth, but may be optimized

stably via interior-point methods (Boyd and Vandenberghe, 2004; Cunningham

et al., 2007; Cunningham et al., 2008; Vogelstein et al., 2008; Koyama and Paninski,

2009; Paninski et al., 2010)). Once again, to maintain the sparse banded structure

of the Hessian C−1 +H we choose hij(.) to be uniformly zero for non-neighboring

(~xi, ~xj). We recover the Gaussian case if we choose hij(.) to be quadratic with

negative curvature; in this case, the nonzero elements of the inverse prior covariance

matrix (C−1)ij correspond to the pairs (i, j) for which the functions hij(.) are not

uniformly zero.

3.2.5 MCMC methods

While we have found the Laplace approximation to be quite effective in the appli-

cations we have studied (Ahmadian et al., 2009), in many cases it may be useful to

draw samples from the posterior distribution p(z|D) directly, either for Monte Carlo

computation of the firing rate estimator λ̂ or for visualization and model check-

ing purposes. The prewhitened Metropolis-adjusted Langevin or hybrid Monte

Carlo algorithms (Robert and Casella, 2005; Ahmadian et al., 2009) are standard

MCMC algorithms that are well-suited for sampling from the near-Gaussian pos-



Chapter 3. Efficient estimation of two-dimensional firing rate surfaces via
Gaussian process methods 44

terior p(z|D). To implement this algorithm here, we only need an efficient method

for solving the prewhitening equation

Rw = η

for w, where η is a standard normal sample vector and R is the Cholesky decompo-

sition of C−1
D . As noted above, R may be computed in O(d3/2) time here, and each

call to the solver for Rw = η again requires just O(d3/2) time, although due to the

high dimensionality of z here the chain may require many steps to mix properly

(Robert and Casella, 2005; Ahmadian et al., 2009). We have not explored this

approach extensively.

3.2.6 Using the Schur complement to handle non-banded

cases

There are two important settings where our sparse banded matrix methods need

to be modified slightly. First, in some cases we would like to impose periodic

boundary conditions on our estimate λ̂. For example, (Rokni et al., 2007) analyzed

the dynamics of tuning curves as a function of arm direction; since direction is

a periodic variable, our estimate λ̂ should also be periodic in the direction, for

all values of time (i.e., we have to impose “cylindrical” — periodic in direction

but not in time — boundary conditions on λ̂). We can ensure periodicity in our

estimate λ̂ simply by choosing our inverse prior covariance matrix C−1 to have the

desired cylindrical boundary conditions. However, this means that C−1
D no longer

has a banded form; the upper-right and lower-left corner blocks of this matrix are

nonzero.

Our second example involves the inclusion of covariate information. Each of the

experimental settings introduced in section 3.2.1 may be elaborated by including



Chapter 3. Efficient estimation of two-dimensional firing rate surfaces via
Gaussian process methods 45

additional covariate information (e.g., spike history effects (Paninski, 2004; Truccolo

et al., 2005)). For example, instead of modeling the rate of our observed temporal

point process as λ(t) = f [z(~x)], we could use the model λ(t) = f [z(~x) + Wtθ]

instead, where W denotes a matrix of known (fixed) covariates and θ is a set

of weights we would like to fit simultaneously with z. We can proceed by directly

optimizing log p(z, θ|D) (assuming θ has a log-concave prior which is independent of

z); this joint optimization in (θ, z) is tractable, again, due to the special structure

of the Hessian matrix of the objective function log p(z, θ|D) here. If we order

the parameter vector as {z, θ}, the Hessian may be written in block form H =




Hzz HT
θz

Hθz Hθθ



, where Hzz has the special sparse banded form discussed above.

Thus, in both of these examples we have to solve a linear equation involving a block

matrix H =





H11 H12

HT
12 H22



, where the size of the block H11 is much larger than

that of the block H22, and the large block H11 is sparse banded. These systems

may be solved easily in O(d3/2) time via Schur complement methods; for details see

appendix B and for an illustration see Figure 3.9 below.

3.3 Results

In this section we will describe several applications of the methods described above,

to both simulated and real spike train data. In all examples we find the posterior

expectation of the firing rate map by equation (3.12). We assume that f(.) = exp(.)

and use log p(z) ∝ −γF(z), as defined in equation (3.4). Recall that any convex

and log-concave f(.), e.g. log(1+ex), could be used instead of the exponential non-

linearity. All hyper-parameters γ are estimated by the empirical Bayes method

described in appendix D.
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Figure 3.3: Estimating the two-dimensional firing rate given a spike train observed si-
multaneously with a time-varying path ~x(t). The simulation was done with 10ms time
bins and a total of ∼ 2800 spikes over 600 seconds. Top left: The true firing rate surface
λ(~x). Top middle: The trace of the path ~x(t) through the two dimensional space for the
first 10 seconds with red dots indicating the spikes. Top right: The posterior expectation
of the firing rate surface, i.e. E [f(z)|D]. Bottom left: The posterior standard deviation
of the firing rate surface. Bottom middle and right: The kernel estimator with isotropic
bandwidth σ = 0.1 and σ = 0.05, respectively. For small bandwidth the kernel estimator
is very noisy, especially at the corners, where no samples are available.

3.3.1 Synthetic data

3.3.1.1 A two-dimensional spatial place field

We begin with the second example introduced in section 3.2.1: we observe a tempo-

ral point process whose rate is given by λ(t) = exp[z(~x(t))], where ~x(t) is a (known)

time-varying path through space. ~x(t) was sampled from two dimensional random
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Figure 3.4: The spatial fields z(x, y) corresponding to the estimated firing rates λ(x, y)
shown in Fig. 3.3; units are dimensionless and correspond to variations in the log-firing
rate. Note that in this figure the posterior standard deviation and the MAP estimate
of the latent surface z is presented as opposed to figure 3.3 which presents the posterior
expectations of firing rate surface, i.e. E [f(z)|D]. Left: The posterior standard deviation
of z(x, y), i.e. std [z|D], which is smaller around the center because more samples are
available from that region (c.f. the top middle panel of Figure (3.3)). Middle: The MAP
estimate of z(x, y). Right: The true z(x, y).

walk. The unknown underlying random two-dimensional surface z(~x) is assumed

to be constant in time. The experiment we are trying to simulate is the estimation

of the firing rate surface of a single grid cell from the recorded spike train of the

corresponding cell. Figure 3.4 illustrates an estimated place field: we see that the

method provides a very accurate estimate of the true z(x, y) for centrally-located

points ~x, where the space has been sampled densely (see the top middle panel of

Figure 3.3). For more peripheral points ~x, on the other hand, less data are avail-

able. Here the estimated firing rate relies more heavily on the prior, and reverts to

a flat surface (since a gradient-penalizing prior, as discussed in section 3.2.2, was

used here). As emphasized above, these estimates are computationally efficient,

requiring just a few seconds on a laptop computer to recover surfaces ẑ described

by ∼ 104 parameters. The middle bottom and right bottom panel of Figure 3.3
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shows the results of the popular Gaussian kernel estimator (see appendix C for de-

tails). As we increase the bandwidth of the Gaussian kernel the estimate becomes

smoother. The kernel estimator performs poorly in this example mainly because

it is not able to adapt its bandwidth according to the local informativeness of the

observations and only a sparse sample is available. The performance of the kernel

estimator is much better in the case that observations of all points in the domain

of interest are available, as we will see in section 3.3.1.3.

3.3.1.2 A temporally-varying one-dimensional spatial field

Next we examine setting 4 from section 3.2.1. Here we have a one dimensional

tuning curve which changes with time. In this example z is placed on a 100 × 200

grid. The experiment we are trying to simulate is the estimation of temporally

varying tuning curve from a single cell recording. This can correspond to the

estimation of the one dimensional spatial receptive field of cell which changes over

time while the rat is running back and forth on a one dimensional track. We

observe a sample path, xt (which was sampled from a one dimensional random

walk), along with a point process of rate λ(t) = f [z(xt, t)]; the resulting estimate of

the underlying spatiotemporal firing rate is shown in Figure 3.5. Similar results as

in Figure 3.3 are obtained: as long as the path samples the space enough, we obtain

a reasonable estimate of the changing tuning curve but where insufficient data are

available the estimator reverts to the prior. As before, we assume that f(.) = exp(.)

and use log p(z) ∝ −γx
∫ (

∂z
∂x

)2
dxdt − γt

∫ (

∂z
∂t

)2
dxdt. The hyper-parameters γx

and γt were estimated using the empirical Bayes method explained in appendix D.

Figure 3.6 shows the result of the linear Gaussian kernel smoothing with different

combinations of temporal and spatial bandwidths. The kernel estimator is more

problematic in this application; the output of this estimator depends heavily on

the sample path xt. Of course the Bayesian estimate also depends on the path, but
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this estimator is better able to balance the information gained from the data with

our prior information about the smoothness of the rate map.
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Figure 3.5: Estimating a one-dimensional time varying spatial tuning curve. Top left: The
actual color map of the rate surface as a function of location and time (color) and the observed
one-dimensional path of the animal as a function of time (black trace). Top right: The posterior
expectation of the rate for a 20s period with a total of ∼ 1300 spikes. The rate map as a function
of location and time is observed very sparsely and for areas like the top right or the bottom middle
of the rate map no observations are available as is clear from the path of the animal. The posterior
expectation of the rate map at unobserved parts is effectively smoothed based on observations from
other parts. Note in particular that in the upper right, where no data are available, the estimate
reverts to the prior, which forces the inferred rate to be a flat extrapolation of the observed data
from the right middle of the rate map. Bottom left: Observed spike count. Bottom right: The
posterior standard deviation of the firing rate surface. The standard deviation increases with the
firing rate (c.f. Eq. 3.12) and is higher at the lower half and top right part where limited data are
available; c.f. the black path shown in the top left panel.
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Figure 3.6: Kernel estimator of the one-dimensional time varying spatial tuning curve of Figure
3.5. Each panel corresponds to a different combination of spatial and temporal bandwidth. For
small bandwidths (e.g., top left panel), the estimate is quite noisy. The dark blue blocks seen in
the top and bottom left figures are due to the fact that we don’t have enough samples from those
regions and that the bandwidth is small (i.e., the estimate is undefined at these locations). As we
increase the bandwidth this problem seems to disappear but still the map is heavily influenced
by the path of the animal; c.f. the black path shown in in the top left panel of Figure 3.5.

3.3.1.3 Trial-by-trial firing rate modulations

Finally, we analyze the simulated example data involving the between-trial and

within-trial neural spiking dynamics (as in setting 3 in section 3.2.1) from (Czanner

et al., 2008); this data set was simulated to emulate recorded data from a monkey

performing a location-scene association task. See the top left panel of Figure 3.7

for the simulated spike train over 50 trials: this model neuron displays strong non-

stationarity both within and between trials.
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For N trials each having duration Tδ, we use the following model:

P (D|z) =
N
∏

i=1

T
∏

t=1

e−f(zi,t+Hi,t)δ(f(zi,t +Hi,t)δ)
ni,t

ni,t!
,

where ni,t stands for the number of spikes within the the interval (tδ, (t+1)δ] in the

ith trial, δ for bin size, and T the number of bins in one trial. The history effect is

defined by:

Hi,t =

τ
∑

t′=1

ht′ni,t−t′ ,

where ht stands for the spike history term and τ for its duration; τ = 30 ms here,

following (Czanner et al., 2008). Note that z(i, t) lies on a N × T grid which is a

104 dimensional space because of N = 50 and T = 200. The estimate of (z, h) is

found by the joint optimization

(ẑ, ĥ) = arg max
z,h

{

logP (D|z, h) +
∑

t

N−1
∑

n=1

[

γn
[

z(i+ 1, t) − z(i, t)
]2

+
γt
δ

[

z(i, t+ δ) − z(i, t)
]2
]

}

,

(3.14)

where the hyper-parameters γn and γt determine how strongly the estimate is

smoothed across trials and within trials, respectively. The hyper-parameters are

estimated using the empirical Bayes method described in appendix D. The joint op-

timization is performed using the methods discussed in section 3.2.6; once ẑ is found

it is straightforward to calculate the posterior expectation and standard deviation

of the rate map as described in section 3.2.4.

See Figure 3.7 for data, results and comparisons. The latent surface z and the

history term ht were estimated simultaneously. However, for the estimated firing

rate maps shown in the middle panel of figure 3.7 the effect of the spiking history,

which varies much more sharply as a function of time t than does the latent surface

z, is excluded from this plot, to emphasize what was specifically referred to as the

“stimulus component” (in our terminology, the z-dependent component) of the fir-

ing rate surface in (Czanner et al., 2008). The posterior expected rate map (middle
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left panel of Figure 3.7) and the simple kernel estimator (bottom right panel of

Figure 3.7) provide qualitatively similar results, since in this case we have an ob-

servation for every point on the rate grid (unlike the case analyzed in Figs. 3.5-3.6).

The smooth posterior expectation here illustrates the power of sharing statistical

information both within and between trials. The state-space method implemented

in (Czanner et al., 2008) (middle right panel of Figure 3.7), on the other hand, only

smooths across trials, not across neighboring time bins, and therefore leads to a

much noisier estimate11.

The marginal loglikelihood logP (D|γn, γt) of the hyper-parameters (γn, γt) is shown

in the top right panel of Figure 3.7. In appendix D we describe how to efficiently

estimate this marginal likelihood. By plotting the marginal log likelihood of the

hyper-parameters over a grid it is possible to choose the best values of these smooth-

ing hyper-parameters, as is shown in the top right panel of Figure 3.7. The influence

of the hyper-parameters on ẑ is clear from Figure 3.8; as we increase γn (top rows

to bottom rows), smoothing across trials becomes stronger. Likewise the right

columns are smoother over time compared to the left ones.

11More concretely, the state-space method discussed in (Czanner et al., 2008) may be understood
as a version of the Gaussian process method discussed here (Paninski et al., 2010): the state-
space term encodes a Gaussian prior on a latent variable which modulates the firing rate in an
exponential manner, exactly as in our model if we take f(.) = exp(.). The major difference is that
(Czanner et al., 2008) choose their state-space model parameters such that the the corresponding
prior inverse covariance matrix C−1 lacks the second term in the r.h.s. of equation (3.14), which
enforces smoothness across neighboring time bins. (Specifically, in their implementation the state-
space covariance matrix Σ = cov(ǫk) is diagonal, so the firing rate is estimated independently in
each time bin; see (Czanner et al., 2008) for notation and details.) There are also more minor
differences in the computation of the posterior expectation of the firing rate; see (Paninski et al.,
2010) for further discussion.
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Figure 3.7: Estimating the firing rate in the context of significant trial-to-trial nonstationarity.
Top left: The observed spike trains for different trials; see (Czanner et al., 2008) for simulation
details. Top right: The log of the marginal likelihood of the hyper-parameters γt and γn; the
empirical Bayes method discussed in appendix D chooses the “best” smoothing parameters by
maximizing this function. Middle left: Posterior expectation of the firing rate, i.e. E [f(z)|D]
which in (Czanner et al., 2008) was specifically mentioned as the stimulus component of the firing
rate, computed using hyper-parameters (γt, γn) chosen via empirical Bayes (i.e., maximizing the
surface shown in the top right panel). This estimated model (including the estimated history
effects Hi,t, not shown here) passed the Kolmogorov-Smirnov goodness of fit test described in
(Brown et al., 2002) at the 99% level. Middle right: Smoothed estimate using the method
discussed in (Czanner et al., 2008). This estimate of the firing rate surface was referred to as
the “stimulus component” in (Czanner et al., 2008). Again, for clarity, the latent variable z and
the history term were estimated jointly but we only show the “stimulus component” (excluding
the discontinuous spike-history effect) here. Bottom left: The posterior standard deviation of the
estimated firing rate surface, using the same hyperparameters as in the middle left panel. Bottom
right: output of kernel smoother. The time bandwidth and trial bandwidth are 100ms and 3
trials, respectively. Note that the kernel and Bayesian methods seem to perform well here; the
state-space method of (Czanner et al., 2008) seems to undersmooth the data in the t direction.
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Figure 3.8: Estimating the latent surface z(t, n) in the context of significant trial-to-trial non-
stationarity, for different settings of the hyper-parameters (γt, γn), as in eq. (3.14). The top rows
correspond to smaller γn and bottom ones to bigger γn; the left columns correspond to smaller γt

and right columns to bigger γt. To be concrete, γt increases logarithmically from 1 to 1000 from
the left columns to the right columns. Similarly, γn increases logarithmically from 0.01 to 10 from
the top rows to the bottom rows. As we increase γn the smoothing across trials becomes stronger.
Similarly, by increasing γt the temporal smoothing becomes stronger. Figure 3.7, upper right,
displays the corresponding marginal log-likelihood for each of these hyperparameter settings.

3.3.2 Real data

3.3.2.1 Two dimensional spatial firing map

Now we apply our methods to data previously analyzed in (Paninski et al., 2004a;

Paninski et al., 2004b). In these experiments, a monkey was trained to manually

track a moving target on a two-dimensional plane, guided by visual feedback on a
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computer monitor. The hand position ~x(t) was recorded simultaneously with the

spike trains of several neurons in the primary motor cortex (MI).

As is well-known, MI neurons are tuned to a variety of kinematic variables, including

the hand position, velocity, and acceleration. To explore the nonlinear properties

of MI tuning to these variables, we fit a model of the form λ(t) = f [Wtθ+ z(~x(t))],

where the six-column covariate matrix

Wt =

[

~x(t)
∂~x(t)

∂t

∂2~x(t)

∂t2

]

contains the observed time-varying horizontal and vertical position, velocity, and

acceleration, and θ denotes a six-dimensional set of linear weights acting on Wt.

By including the linear terms Wtθ in the model and by using the gradient penalty

in the prior for z, we ensure that the estimated z(~x) contains only nonlinear effects

as a function of ~x, since any linear trend will be accounted for by the Wtθ term.

More precisely, any linear trend in z has non-zero gradient and will therefore be

penalized, whereas this linear dependence is parametrically included in Wtθ, which

is unpenalized here. Therefore, the estimate of z will not show any linear depen-

dence, allowing us to isolate any non-linear dependence in z. Note that z lies on a

100 × 100 grid. The results are shown in Figure 3.9; we see that, as reported in

(Paninski et al., 2004b), the tuning here is largely linear in Wt and the non-linear

dependence which is captured by z is less significant compared to the linear de-

pendence. (Similar results were observed in other cells and when z was allowed to

depend on velocity instead of position; data not shown.)

3.4 Discussion

We have introduced Gaussian process methods for estimating the conditional inten-

sity function of two-dimensional point processes, and demonstrated the application



Chapter 3. Efficient estimation of two-dimensional firing rate surfaces via
Gaussian process methods 56

of these methods in a variety of neural coding settings. Our basic approach was to

approximate the posterior distribution of the rate map using the Laplace approx-

imation constructed by finding the MAP estimate and the Hessian at that point.

The prior was chosen to enforce local smoothness while retaining the computational

efficiency of the Newton-Raphson ascent method used to find the MAP estimate.

Our work is closest to that of (Gao et al., 2002), (Czanner et al., 2008), and (Cun-

ningham et al., 2007; Cunningham et al., 2008). We presented an explicit com-

parison of our method with that of (Czanner et al., 2008) in section 3.3.1.3 above.

(Gao et al., 2002) discussed the estimation of two-dimensional firing rates in the

context of motor cortical data recorded in the same experiments as the data shown

in Figure 3.9; this previous work emphasized the importance of nearest-neighbor

smoothing penalties to obtain valid estimates of the firing rate, and also discussed

the relative benefits of quadratic vs. sub-quadratic penalty functions for recovering

sharper features in the estimated rate surfaces. We have extended this work here

by casting these methods in a Gaussian process setting, which allows us to provide

estimates of the posterior uncertainty and of the marginal likelihood of the observed

data. This framework allowed us to approach a number of additional applications,

going beyond the estimation of a single spatial rate map. Our work focused es-

pecially on the computational efficiency of these techniques: we emphasized the

log-concavity of the posterior and the use of efficient linear algebra methods for op-

timization. We also developed methods to include additional covariate information

in the estimates, and discussed the use of non-quadratic penalizers (as introduced

by (Gao et al., 2002)) within the same computationally-efficient paradigm.

The work of (Cunningham et al., 2007; Cunningham et al., 2008) is even closer in

spirit to ours12; the Bayesian viewpoint is emphasized throughout in that paper.

12We should also mention (Cressie and Johannesson, 2008; Macke et al., 2010) here, who dis-
cuss yet another major alternative method for speeding computation in spatial Gaussian process
models, in this case via imposing a low-rank structure on the prior covariance which may then be
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The major difference is that (Cunningham et al., 2007; Cunningham et al., 2008)

tackled the case of fairly general covariance functions, whereas we have limited

our attention to covariance functions whose inverses contain only local potentials;

this restriction allows us to exploit efficient computational linear algebra methods

and makes our estimator significantly faster. (The beneficial computational prop-

erties of the banded matrices that result from these local potentials are of course

well-known and exploited extensively in the spline literature (Wahba, 1990).) One

additional technical difference is that (Cunningham et al., 2007; Cunningham et al.,

2008) imposed nonnegativity constraints directly on the Gaussian process, instead

of mapping the Gaussian process through a rectifying function f(.) as we have

done here. This direct positivity-conditioning approach makes inference of the con-

ditional mean and variance of the firing rate somewhat more difficult, since the

marginal distribution of the multidimensional truncated Gaussian distribution is

difficult to approximate (whereas in the case treated in this paper we can compute

the mean and conditional variance of the estimated firing rate λ̂ analytically, under

the Laplace approximation). (Cunningham et al., 2007; Cunningham et al., 2008)

used the MAP estimate to approximate the conditional expectation of the firing

rate; this approximation is valid in the “high-information” limit, where the data

likelihood dominates the variability of the prior. In cases where less data are avail-

able, MCMC techniques such as the hit-and-run algorithm (Lovasz and Vempala,

2003) can be employed to sample efficiently from the log-concave posterior distri-

bution, though the “corners” due to the positivity prior enforced in (Cunningham

et al., 2007; Cunningham et al., 2008) cause the MCMC chain to mix more slowly

than in the case of the smooth posterior in the current work (Ahmadian et al.,

2009).

Recently, a fast nonparametric rate estimation method (Brown et al., 2009a; Brown

exploited computationally via the Woodbury matrix lemma. See (Cressie, 1993; Rasmussen and
Williams, 2006) for further background and discussion.
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et al., 2009b) based on variance stabilization transforms was introduced with desir-

able theoretical optimality properties. The variance stabilization transform turns

the relatively complicated problem into a standard homoscedastic Gaussian re-

gression problem and then any good nonparametric Gaussian regression procedure

(e.g., wavelet smoothing) can be applied. One interesting direction for future work

would be to combine the favorable properties enjoyed by this completely nonpara-

metric method with those enjoyed by our Bayesian method; for example, it is not

clear how to incorporate inhomogeneous observations (as described, for example,

in Figs. 3.5-3.6 here) or additional covariate effects into the variance-stabilization

method.

We should also note that a number of fully-Bayesian methods have been developed

to perform point-process smoothing in the one-dimensional case; the Bayesian adap-

tive regression splines (BARS) method described in (DiMatteo et al., 2001; Kass

et al., 2003) is perhaps the most popular in the neuroscience community. These

methods are based on MCMC integration over a suitable posterior and often pro-

vide state-of-the-art estimation accuracy, but at significantly greater computational

cost than the optimization approach pursued here. Extensions of the BARS method

to the two-dimensional case are feasible but have not yet been pursued, to our

knowledge; we would expect that the fast two-dimensional Laplace approximation

methods we have developed here would be useful in this extended BARS setting.

Finally, we should note that there are a number of well-known connections between

the point-process and density estimation problems. Gaussian process methods for

density estimation have been explored intensively in the statistics and physics lit-

erature (Good and Gaskins, 1971; Thorburn, 1986; Bialek et al., 1996; Holy, 1997;

Schmidt, 2000; Paninski, 2005). One interesting avenue for future work would be to

explore the application of the computational methods developed here to problems

in two-dimensional density and conditional density estimation.
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3.5 Appendix I: Detailed formulations of the dif-

ferent experimental setups

Here we discuss the experimental settings introduced in section 3.2.1 in somewhat

more detail.

1. We observe a spatial point process on a grid whose rate is given by λ(~x) =

f [z(~x)]. The likelihood of the observed spike train is given by:

P (D|z) =
∏

i

e−λ(~xi)δx(λ(~xi)δx)
ni

ni!
,

where the product is over all points of the grid and δx is the spatial binwidth

and ni is the number of spikes observed in the i-th bin.

2. We observe a temporal point process whose rate is given by λt = f [z(~xt)],

where ~xt is some known time-varying path through space (e.g., the time-

varying position of a rat in a maze (Brown et al., 1998) or the hand position

in a motor experiment (Paninski et al., 2004b)). Here the likelihood is given

by

P (D|z) =

T
∏

t=0

e−λtδt(λtδt)
nt

nt!
, (3.15)

where the path of the animal during [0, T δt] does not necessarily cover all

points of the grid. This setting is different from the first one in two ways.

First, the time-varying path through space might not cover the whole space,

and therefore we typically will not have observations for every point in space.

Second, given the observed temporal spiking activity we are able to include

the spiking history in the model (Paninski, 2004; Truccolo et al., 2005). In

this case we have:

λt = f [z(~xt) +Ht], (3.16)
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where Ht =
∑

i ht−ti ; here ti is time of the ith spike and ht designates the

spike-history waveform. Note that we can generalize this model by adding

other time-varying covariates, as discussed in section 3.2.6.

3. We make repeated observations of a temporal point process whose mean rate

function may change from trial to trial; in this case we may model the rate as

λ
(i)
t , where t denotes the time within a trial and i denotes the trial number.

For N trials each having duration δtTi, we have:

P (D|z) =

N
∏

i=1

Ti
∏

t=0

e−λ
(i)
t δt(λ

(i)
t δt)

n
(i)
t

n
(i)
t !

,

where n
(i)
t stands for the number of spikes within the (tδt, (t + 1)δt] timebin

of the ith trial.

4. We observe a temporal process whose rate is given by λ(t) = f [z(x(t), t)],

where x(t) is some known time-varying path through a one-dimensional space.

P (D|z) is given by equation (3.15). Here the two dimensions correspond to

time and the one dimensional position, i.e. λ(x, t) = f(x, t). However, since

the path x is changing over time we represented the firing rate as λ(t) =

f(xt, t).

5. We observe a temporal process whose rate is given by λ(t) = f [z(t, τ)], where

z(t, τ) depends on absolute time t and the time since the last spike τ (Kass

and Ventura, 2001). Imagine we observe the spike train {ti}i=1,··· ,l over a

period of [0 δtT ] seconds. The likelihood is given by

P (D|z) ∝ e−
R δtT

0
f [z(t,t−τ(t))]dt

(

l
∏

i=2

f [z(ti, ti − ti−1)]

)

f [z(t1,∞)] ,

where τ(t) is the time since last spike from time t and l the total number of

spikes over a period of [0 δtT ]. In the discrete domain, for small enough δt
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such that the number of spikes nt in (tδt, (t + 1)δt] is either zero or one, we

have:

logP (D|z) ≈
T
∑

l=0

nt log f [z(lδt, τ(lδt))]+(1−nt) log (1 − f [z(lδt, τ(lδt))δt])+const.

3.6 Appendix II: Schur complement to handle

non-banded matrices

As discussed in section 3.2.6, in some cases we have to solve the linear equation

Hx = b,

involving a block matrix H =





H11 H12

HT
12 H22



, where the size of the block H11 is

much larger than that of the block H22, and the large block H11 is sparse banded.

We have

H−1 =





H−1
11 +H−1

11 H12(H22 −HT
12H

−1
11 H12)

−1HT
12H

−1
11 −H−1

11 H12(H22 −HT
12H

−1
11 H12)

−1

−(H22 −HT
12H

−1
11 H12)

−1HT
12H

−1
11 (H22 −HT

12H
−1
11 H12)

−1



 .

Write x and b as (xT1 xT2 )T and (bT1 bT2 )T , respectively. We have

x1 = H−1
11 b1 +H−1

11 H12(H22 −HT
12H

−1
11 H12)

−1HT
12H

−1
11 b1 −H−1

11 H12(H22 −HT
12H

−1
11 H12)

−1b2,

x2 = −(H22 −HT
12H

−1
11 H12)

−1HT
12H

−1
11 b1 + (H22 −HT

12H
−1
11 H12)

−1b2.

Assume H11 is d× d and H12 is d× k, where d >> k or more specifically k = O(1).

Finding H−1
11 y for any y takes O(d3/2), therefore by writing

(H22 −HT
12H

−1
11 H12)

−1 = H−1
22 −H−1

22 H
T
12(H11 +H12H

−1
22 H

T
12)

−1H12H
−1
22 ,

one can find (H22 −HT
12H

−1
11 H12)

−1y for any y in O(d3/2) and therefore x1 and x2

can be found in O(d3/2). Note that we want to avoid calculating H−1
11 because of

the storage cost.
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3.7 Appendix III: Kernel Estimator

For every point ~x, let the empirical frequency of visits to that point and the relative

frequency of observed spikes be designated bym~x and r~x, respectively; thus the total

number of observed spikes at ~x is m~xr~x. Further, let M stand for
∑

~r′ m~r′ where

the summation is over all points in the domain. Write p(n~x = 1|~x), for n~x ∈ {0, 1}
as the indicator of a spike, as p(n~x = 1, ~x)/p(~x). One method to estimate p(~x)

and p(n~x = 1|~x) is to build a histogram of the relative frequency of appearance of

the empirical data. Instead the kernel estimator uses a smoothed estimate of the

histogram as follows:

p̂(~x) =
∑

~x′

m~x′

M
k(~x, ~x′)

p̂(n~x = 1|~x) =
∑

~x′

r~xm~x′

M
k(~x, ~x′),

where k(~x, ~x′) is called the kernel. For example the Gaussian kernel is defined as

k(~x, ~x′) =
1√

2πσ2
e−

‖~x−~x′‖2

2σ2 ,

and σ is the bandwidth parameter to control the smoothness of the estimate. The

kernel estimator of the conditional probability simplifies to:

p̂(n~x = 1|~x) =

∑

~x′ r~x′m~x′k(~x, ~x
′)

∑

~x′ m~x′k(~x, ~x′)
.

3.8 Appendix IV: Empirical Bayes method to es-

timate the hyper-parameters

Here we illustrate how to exploit the Laplace approximation to obtain an Empirical

Bayes (maximum marginal likelihood) estimate of the smoothing parameters. We
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work with the following generative model:

P [D, z|ψ] = P [D|z]P [z|ψ],

where ψ denotes a possible vector of hyper-parameters and logP [z|ψ] ∝ −1
2
zTC−1

ψ z.

Thus

P [D|ψ] =

∫

P [D|z]P [z|ψ]dz (3.17)

≈ P [D|ẑD(ψ)]P [ẑD(ψ)|ψ]

∫

e−
1
2
(z−ẑD(ψ))TC−1

D (ψ)(z−ẑD(ψ))dz (3.18)

= (2π)d/2|CD(ψ)|1/2P [D|ẑD(ψ)]P [ẑD(ψ)|ψ]. (3.19)

For any ψ, the MAP estimate ẑD(ψ) (and therefore logP [D|ψ] and the following

choice for ψ as the maximizer of logP [D|ψ]) is available in O(d3/2) time:

ψ̂ = arg max
ψ

{1

2
log |CD(ψ)| + logP [D|ẑD(ψ)] + logP [ẑD(ψ)|ψ]

}

= arg max
ψ

{

−1

2
log |C−1

ψ −∇∇z log p(D|z)z=ẑD(ψ)| + logP [D|ẑD(ψ)] + logP [ẑD(ψ)|ψ]
}

.

Specifically, to calculate (1/2) log |H| stably we use
∑

(log(diag(chol(H)))) in Mat-

lab, which runs in O(d3/2).
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Figure 3.9: Estimating the nonlinearity in the position-dependent firing rate of an MI
neuron. The data and predictions are confined to the indicated circles. Top left: Predicted
firing rate of a single neuron as a function of position at zero velocity and acceleration,
estimated via the Bayesian methods discussed here. Top right: The number of spikes in
50ms windows at different points in the position space. (The striped appearance here is
due to aliasing effects, and should be ignored.) Bottom left: The standard deviation of
the predicted firing rate. Note that the posterior uncertainty increases towards the more
sparsely-sampled perimeter. Bottom right: The nonlinear part (z(~x)) of the estimated
spatial receptive-field. Note the very small scale of the nonlinear effect compared to the
linear trend shown in the top left panel, consistent with the results of (Paninski et al.,
2004b).
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Chapter 4

Information Rates and Optimal

Decoding in Large Neural

Populations

This chapter is based on the paper “Information Rates and Optimal Decoding in

Large Neural Populations” (Rahnama Rad and Paninski, 2011).

4.1 Introduction

It has long been argued that many key questions in neuroscience can best be posed

in information-theoretic terms; the efficient coding hypothesis discussed in (At-

tneave, 1954; Barlow, 1961; Barlow et al., 1989; Atick, 1992), represents perhaps the

best-known example. Answering these questions quantitatively requires us to com-

pute the Shannon information rate of neural channels, whether numerically using

experimental data or analytically in mathematical models. In many cases it is use-

ful to exploit connections with “ideal observer” analysis, in which the performance
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of an optimal Bayesian decoder places fundamental bounds on the performance of

any biological system given access to the same neural information. However, the

non-linear, non-Gaussian, and correlated nature of neural responses has hampered

the development of this theory, particularly in the case of high-dimensional and/or

time-varying stimuli.

The neural decoding literature is far too large to review systematically here; instead,

we will focus our attention on work which has attempted to develop an analytical

theory to simplify these complex decoding and information-rate problems. Two

limiting regimes have received significant analytical attention in the neuroscience

literature. In the “high-SNR” regime, n → ∞, where n is the number of neurons

encoding the signal of interest; if the information rate of each neuron is bounded

away from zero and neurons respond in a conditionally weakly-dependent manner

given the stimulus, then the total information provided by the neural population

becomes infinite, and the error rate of any reasonable neural decoder tends to

zero. For discrete stimuli, the Shannon information is effectively determined in this

asymptotic limit by a simpler quantity known as the Chernoff information (Cover

and Thomas, 1991; Kang and Sompolinsky, 2001); for continuous stimuli, maximum

likelihood estimation is asymptotically optimal, and the asymptotic Shannon infor-

mation is controlled by the Fisher information (Clarke and Barron, 1990; Brunel

and Nadal, 1998). On the other hand we can consider the “low-SNR” limit, where

only a few neurons are observed and each neuron is asymptotically weakly tuned

to the stimulus. In this limit, the Shannon information tends to zero, and under

certain conditions the optimal Bayesian estimator (which can be strongly nonlinear

in general) can be approximated by a simpler linear estimator; see (Bialek and Zee,

1990) and more recently (Pillow et al., 2011) for details.

In this paper, we study information transmission and optimal decoding in what we

would argue is a more biologically-relevant “intermediate” regime, where n is large
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but the total amount of information provided by the population remains finite, and

the problem of decoding the stimulus given the population neural activity remains

nontrivial.

4.2 Likelihood in the intermediate regime: the

inhomogeneous Poisson case

For clarity, we begin by analyzing the information in a simple population of neurons,

represented as inhomogenous Poisson processes that are conditionally independent

given the stimulus. We will extend our analysis to more general neural populations

in the next section. In response to the stimulus, at each time step t neuron i fires

with probability λi(t)dt, where the rate is given by

λi(t) = f [bi(t) + ǫℓi,t(θ)] , (4.1)

where f(.) is a smooth rectifying non-linearity and ǫ is a gain factor controlling

each neuron’s sensitivity. The baseline firing rate is determined by bi(t) and is

independent of the input signal. The true stimulus at time t is defined by θt, and

θ abbreviates the time varying stimulus θ0:T in the time interval [0, Tdt]. The term

ℓi,t(θ) summarizes the dependence of the neuron’s firing rate on θ; depending on

the setting, this term may represent e.g. a tuning curve or a spatiotemporal filter

applied to the stimulus (see examples below).

The likelihood includes all the information about the stimulus encoded in the popu-

lation’s spiking response. Neuron i’s response at time step t is designated by by the

binary variable ri(t). The log-likelihood at the parameter value ϑ (which may be

different from the true parameter θ) is given by the standard point-process formula
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(Snyder and Miller, 1991):

Lϑ(r) := log p(r|ϑ) =
n
∑

i=1

T
∑

t=0

ri(t) log λi(t) − λi(t)dt. (4.2)

This expression can be expanded around ǫ = 0:

Lϑ(r) = Lϑ(r)|ǫ=0 + ǫ
∂Lϑ(r)

∂ǫ
|ǫ=0 +

1

2
ǫ2
∂2Lϑ(r)

∂ǫ2
|ǫ=0 +O(nǫ3),

where

∂Lϑ(r)

∂ǫ
|ǫ=0 =

∑

i,t

ℓi,t(ϑ)
{

ri(t)
f ′

f

(

bi(t)
)

− f ′(bi(t))dt
}

∂2Lϑ(r)

∂ǫ2
|ǫ=0 =

∑

i,t

ℓ2i,t(ϑ)
{

ri(t)
(f ′

f

)′(
bi(t)

)

− f ′′(bi(t))dt
}

.

Let ri denote the vector representation of the ith neuron’s spike train and let1

gi(ri) :=
[

ri(1)
f ′

f
(bi(1)) − f ′(bi(1))dt · · · ri(T )

f ′

f
(bi(T )) − f ′(bi(T ))dt

]T

hi(ri) :=
[

ri(1)
(f ′

f

)′
(bi(1)) − f ′′(bi(1))dt · · · ri(T )

(f ′

f

)′
(bi(T )) − f ′′(bi(T ))dt

]T

ℓi(ϑ) :=
[

ℓi,1(ϑ) ℓi,2(ϑ) · · · ℓi,T (ϑ)
]T

;

then

Lϑ(r) = Lϑ(r)|ǫ=0 + ǫ

n
∑

i=1

ℓi(ϑ)Tgi(ri) +
1

2
ǫ2

n
∑

i=1

ℓi(ϑ)Tdiag[hi(ri)]ℓi(ϑ) +O(nǫ3).

This second-order loglikelihood expansion is standard in likelihood theory (van der

Vaart, 1998); as usual, the first term is constant in ϑ and can therefore be ignored,

while the third (quadratic) term controls the curvature of the loglikelihood at ǫ = 0,

and scales as ǫn2. In the high-SNR regime discussed above, where n → ∞ and

ǫ is fixed, the likelihood becomes sharply peaked at θ (and therefore the Fisher

information, which may be understood as the curvature of the log-likelihood at θ,

1With a slight abuse of notation, we use T for both the total number of time steps and the
transpose operation; the difference is clear from the context.
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controls the asymptotics of the estimation error in the case of continuous stimuli),

and estimation of θ becomes easy; in the low-SNR regime, we fix n and consider

the ǫ→ 0 limit.

Now, finally, we can more precisely define the “intermediate” SNR regime: we will

focus on the case of large populations (n → ∞), but in order to keep the total

information in a finite range we need to scale the sensitivity ǫ as ǫ ∼ n−1/2. In this

setting, the error term O(nǫ3) = O(n− 1
2 ) = o(1) and can therefore be neglected,

and the law of large numbers (LLN) implies that

ǫ2
∂2Lϑ(r)

∂ǫ2
|ǫ=0 = Er|θ

[

1

n

∑

i

ℓi(ϑ)Tdiag[hi(ri)]ℓi(ϑ)

]

;

consequently, the quadratic term ǫ2 ∂
2Lϑ(r)
∂ǫ2

|ǫ=0 will be independent of the observed

spike train and therefore void of information about θ. So the first derivative term

is the only part of the likelihood that depends both on the neural activity and ϑ,

and may therefore be considered a sufficient statistic in this asymptotic regime: all

the information about the stimulus is summarized in

ǫ
∂Lϑ(r)

∂ǫ
|ǫ=0 =

1√
n

∑

i

ℓi(ϑ)Tgi(ri). (4.3)

We may further apply the central limit theorem (CLT) to this sum of independent

random vectors to conclude that this term converges to a Gaussian process indexed

by ϑ (under mild technical conditions that we will ignore here, for clarity). Thus this

model enjoys the local asymptotic normality property observed in many parametric

statistical models (van der Vaart, 1998): all of the information in the data can be

summarized asymptotically by a sufficient statistic with a sampling distribution

that turns out to be Gaussian.
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4.2.1 Example: Linearly filtered stimuli and state-space

models

In many cases neurons are modeled in terms of simple rectified linear filters re-

sponding to the stimulus. We can handle this case easily using the language in-

troduced above, if we let Ki denote the matrix implementing the transformation

(Kiθ)t = ℓi,t(θ), the projection of the stimulus onto the i-th neuron’s stimulus filter.

Then,

ǫ
∂Lϑ(r)

∂ǫ
|ǫ=0 = ϑT

[

1√
n

n
∑

i=1

KT
i

(

diag

[

f ′
i

fi

]

ri − f ′
idt

)

]

:= ϑT∆(r),

where fi stands for the vector version of f [bi(t)]. Thus all the information in

the population spike train can be summarized in the random vector ∆(r), which

is a simple linear function of the observed spike train data. This vector has an

asymptotic Gaussian distribution, with mean and covariance

Er|θ (∆(r)) =
1√
n

n
∑

i=1

KT
i

(

diag

[

f ′
i

fi

](

fidt+ f ′
idt

Kiθ√
n

+O(
1

n
)

)

− f ′
idt

)

=

[

1

n

n
∑

i=1

KT
i diag

[f ′2
i

fi
dt
]

Ki

]

θ +O(
1√
n

)

J := covr|θ (∆(r)) =
1

n

n
∑

i=1

KT
i diag

[

f ′
i

fi

]

covr|θ

[

ri

]

diag

[

f ′
i

fi

]

Ki

=
1

n

n
∑

i=1

KT
i diag

[f ′2
i

fi
dt
]

Ki +O(
1√
n

).

Thus, the neural population’s non-linear and temporally dynamic response to the

stimulus is as informative in this intermediate regime as a single observation from

a standard Gaussian experiment, in which the parameter θ is filtered linearly by J

and corrupted by Gaussian noise. All of the filtering properties of the population

are summarized by the matrix J . (Note that if we consider each Ki as a random

sample from some distribution of filters, then J will converge by the law of large

numbers to a matrix we can compute explicitly.)
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Thus in many cases we can perform optimal Bayesian decoding of θ given the spike

trains quite easily. For example, if θ has a zero mean Gaussian prior distribution

with covariance Cθ, then the posterior mean and the maximum-a-posteriori (MAP)

estimate is well-known and coincides with the optimal linear estimate (OLE):

θ̂OLE(r) = E(θ|r) = (J + C−1
θ )−1∆(r). (4.4)

We may compute the Shannon information I(θ : r) between r and θ in a similarly

direct fashion. We know that, asymptotically, the sufficient statistic ∆(r) is as

informative as the full population response r

I(θ : r) = I(θ : ∆(r)).

In the case that the prior of θ is Gaussian, as above, then the information can

therefore be computed quite explicitly via standard formulas for the linear-Gaussian

channel (Cover and Thomas, 1991):

I(θ : ∆(r)) =
1

2
log det(I + JCθ). (4.5)

To summarize, when the encodings ℓi,t(θ) are linear in θ, and we are in the intermediate-

SNR regime, and the parameter θ has a Gaussian prior distribution, then the op-

timal Bayesian estimate is obtained by applying a linear transformation to the

sufficient statistic ∆(r) which itself is linear in the spike train, and the mutual

information between the stimulus and full population response has a particularly

simple form. These results help to extend previous theoretical studies (Bialek and

Zee, 1990; Salinas and Abbott, 1994; Snippe, 1996; Pillow et al., 2011) demonstrat-

ing that in some cases linear decoding can be optimal, and also shed some light on

recent experimental studies indicating that optimal linear and nonlinear Bayesian

estimators often have similar performance in practice (Macke et al., 2011; Lawhern

et al., 2011).
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To work through a concrete example, consider the case that the temporal sequence

of parameter values θt is generated by an autoregressive process:

θt+1 = Aθt + ηt ηt ∼ N (0, R),

for a stable dynamics matrix A and positive-semidefinite covariance matrix R. Fur-

ther assume that the observation matrices Ki act instantaneously, i.e., Ki is block-

diagonal with blocks Ki,t, and therefore the responses are modeled as

ri(t) ∼ Poiss[f(bi(t) + ǫKi,tθt)dt].

Thus θ and the responses r together represent a state-space model. This framework

has been shown to lead to state-of-the-art performance in a wide variety of neural

data analysis settings (Eden et al., 2004; Paninski et al., 2010; Koyama et al.,

2010). To understand optimal inference in this class of models in the intermediate

SNR regime, we may follow the recipe outlined above: we see that the asymptotic

sufficient statistic in this model can be represented as

∆t = Jtθt + ǫt ǫt ∼ N (0, Jt),

where the effective filter matrix J defined above is block-diagonal (due to the

block-diagonal structure of the filter matrices Ki), with blocks we have denoted

Jt. Thus ∆t represents observations from a linear-Gaussian state-space model,

i.e., a Kalman filter model (Roweis and Ghahramani, 1999). Optimal decoding

of θ given the observation sequence ∆1:T can therefore be accomplished via the

standard forward-backward Kalman filter-smoother (Durbin and Koopman, 2001;

Shumway and Stoffer, 2006); see Fig. 4.1 for an illustration. The information rate

limT→∞ I(θ0:T : r0:T ) = limT→∞ I(θ0:T : ∆(r)0:T ) may be computed via similar re-

cursions in the stationary case (i.e., when Jt is constant in time). The result may

be expressed most explicitly in terms of a matrix which is the solution of a Riccati

equation involving the effective Kalman model parameters; the details are provided

in the appendix.
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4.2.2 Nonlinear examples: orientation coding, place fields,

and small-time expansions

While the linear setting discussed above can handle many examples of interest, it

does not seem general enough to cover two well-studied decoding problems: in-

ferring the orientation of a visual stimulus from a population of cortical neurons

(Seung and Sompolinsky, 1993; Berens et al., 2011), or inferring position from a

population of hippocampal or entorhinal neurons (Brown et al., 1998). In the for-

mer case, the stimulus is a phase variable, and therefore does not fit gracefully

into the linear setting described above; in the latter case, place fields and grid

fields are not well-approximated as linear functions of position. If we apply our

general theory in these settings, the interpretation of the encoding function ℓi(θ)

does not change significantly: ℓi(θ) could represent the tuning curve of neuron i as

a function of the orientation of the visual stimulus, or of the animal’s location in

space. However, without further assumptions the limiting sufficient statistic, which

is a weighted sum of these encoding functions ℓi(θ) (recall eq. 4.3) may result in an

infinite-dimensional Gaussian process, which may be computationally inconvenient.

To simplify matters somewhat, we can introduce a mild assumption on the tuning

functions ℓi(θ). Let’s assume that these functions may be expressed in some low-

dimensional basis: ℓi(θ) = KiΦ(θ), for some vectors Ki, and Φ(θ) is defined to map

θ into an mT -dimensional space which is usually smaller than dim(θ) = dim(θt)T .

This finite-basis assumption is very natural: in the orientation example, tuning

curves are periodic in the angle θt and are therefore typically expressed as sums of

a few Fourier functions; similarly, two-dimensional finite Fourier or Zernike bases

are often used to represent grid or place fields (Brown et al., 1998). The key point

here is that we may now simply follow the derivation of the last section with Φ(θ)

in place of θ; we find that the sufficient statistic may be represented asymptotically



Chapter 4. Information Rates and Optimal Decoding in Large Neural
Populations 74

as an mT -dimensional Gaussian vector with mean J and covariance JΦ(θ), with J

defined as in the preceding section.

We should note that this nonlinear case does remain slightly more complicated than

the linear case in one respect: while the likelihood with respect to Φ(θ) reduces to

something very simple and tractable, the prior (which is typically defined as a func-

tion of θ) might be some complicated function of the remapped variable Φ(θ). So

in most interesting nonlinear cases we can no longer compute the optimal Bayesian

decoder or the Shannon information rate analytically. However, our approach does

lead to a major simplification in numerical investigations into theoretical coding

issues. For example, to examine the coding efficiency of a population of neurons

encoding an orientation variable in this intermediate SNR regime we do not need

to simulate the responses of the entire population (which would involve drawing

nT random variables, for some large population size n); instead, we only need to

draw a single equivalent mT -dimensional Gaussian vector ∆(r), and quantify the

decoding performance based on the approximate loglikelihood

Lϑ(r) = Lϑ(r)|ǫ=0 + Φ(ϑ)T∆(r) +
1

2
Φ(ϑ)TJΦ(ϑ) +O(

1√
n

),

which as emphasized above has a simple quadratic form as a function of Φ(ϑ). Since

m can typically be chosen to be much smaller than n, this approach can result in

significant computational savings.

We now switch gears slightly and examine another related intermediate regime in

which nonlinear encoding plays a key role: instead of letting the sensitivity ǫ of

each neuron become small (in order to keep the total information in the population

finite), we could instead keep the sensitivity constant and let the time period over

which we are observing the population scale inversely with the population size n.

This short-time limit is sensible in some physiological and psychophysical contexts

(Thorpe et al., 1996) and was examined analytically in (Panzeri et al., 1999) to
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study the impact of inter-neuron dependencies on information transmission. Our

methods can also be applied to this short-time limit. We begin by writing the

loglikelihood of the observed spike count vector r in a single time-bin of length dt:

Lϑ(r) := log p(r|θ) =
∑

i

ri log f [bi + ℓi(ϑ)] − f [bi + ℓi(ϑ)] dt.

The second term does not depend on r; therefore, all information in r about θ

resides in the sufficient statistic

∆ϑ(r) :=
∑

i

ri log f [bi + ℓi(ϑ)] .

Since the i-th neuron fires with probability f [bi + ℓi(θ)] dt, the mean of ∆ϑ(r) scales

with ndt, and it is clear that dt = 1/n is a natural scaling of the time bin. With

this scaling ∆ϑ(r) converges to a Gaussian stochastic process with mean

Er|θ[∆ϑ(r)] =
1

n

∑

i

f [bi + ℓi(θ)] log f [bi + ℓi(ϑ)]

and covariance

covr|θ[∆ϑ(r),∆ϑ′(r)] =
1

n

∑

i

f [bi + ℓi(θ)]
(

log f [bi + ℓi(ϑ)]
)(

log f [bi + ℓi(ϑ
′)]
)

,

where we have used the fact that the variance of a Poisson random variable coincides

with its mean.

In general, this limiting Gaussian process will be infinite-dimensional. However, if

we choose the exponential nonlinearity (f(.) = exp(.)) and the encoding functions

ℓi(θ) are of the finite-dimensional form considered above, ℓi(θ) = KT
i Φ(θ), then the

log f [bi+ℓi(ϑ)] term in the definition of ∆ϑ(r) simplifies: in this case, all information

about θ is captured by the sufficient statistic

∆(r) =
∑

i

riKi.
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If we again let dt = 1/n, then we find that ∆(r) converges to a finite-dimensional

Gaussian random vector with mean and covariance

Er|θ[∆(r)] =
1

n

∑

i

f
[

bi +KT
i Φ(θ)

]

Ki; covr|θ[∆(r)] =
1

n

∑

i

f
[

bi +KT
i Φ(θ)

]

KiK
T
i ;

again, if the filters Ki are modeled as independent draws from some fixed distribu-

tion, then the above normalized sums converge to their expectations, by the LLN.

Thus, as in the intermediate-SNR regime, we see that inference can be dramatically

simplified in this short-time setting.

4.3 Likelihood in the intermediate regime: non-

Poisson effects

We conclude by discussing the generalization to non-Poisson networks with in-

terneuronal dependencies and nontrivial correlation structure. We generalize the

rate equation (4.1) to

λi(t) = fi
[

bi(t) + ǫℓi,t(θ)
∣

∣Ht

]

,

where Ht stands for the spiking activity of all neurons prior to time t: Ht =

{ri(t′)}t′<t,1≤i≤n. Note that the influence of spiking history may be different for

each neuron: refractory periods, self-inhibition and coupling between neurons can

be formulated by appropriately defining the dependence of fi(.) on Ht.

We begin, as usual, by expanding the log-likelihood. The basic point-process like-

lihood (eq. 4.2) remains valid. Let gi(r) and hi(r) denote the vector versions of

ri(t)
f ′

f

[

bi(t)
∣

∣Ht

]

− f ′
i

[

bi(t)
∣

∣Ht

]

dt and ri(t)
(f ′

f

)′
[

bi(t)
∣

∣Ht

]

− f ′′
i

[

bi(t)
∣

∣Ht

]

dt,

respectively, analogously to the Poisson case. Then, the first and second terms in
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the expansion of the loglikelihood may be written as

ǫ
∂Lϑ(r)

∂ǫ
|ǫ=0 = ǫ

∑

i

ℓTi (ϑ)gi(r) and
1

2
ǫ2
∂2Lϑ(r)

∂ǫ2
|ǫ=0 =

1

2
ǫ2
∑

i

ℓTi (ϑ)diag[hi(r)]ℓi(ϑ),

as before. For independent neurons, the log-likelihood was composed of normalized

sums of independent random variables that converged to a Gaussian process, by the

CLT. In the history-dependent, coupled case, gi(r) and hi(r) depend not only on

the i-th neuron’s activity ri, but rather on the whole network history. Nonetheless,

under technical conditions on the network’s dependence structure (to ensure that

the firing rates and correlations in the network remain bounded), we may still

exploit versions of the LLN and CLT. Thus, under conditions ensuring the validity

of the LLN we may conclude that, as before, the second-order term ǫ2 ∂
2Lϑ(r)
∂ǫ2

|ǫ=0

converges to its expectation under the intermediate ǫ ∼ n− 1
2 scaling, and therefore

carries no information about θ. When we discard this second-order term, along with

higher-order terms that are negligible in the intermediate-SNR, large-n limit, we are

left once again with the gradient term ǫ∂Lϑ(r)
∂ǫ

|ǫ=0 = 1√
n

∑

i ℓi(ϑ)Tgi(r), which under

appropriate conditions (ensuring the validity of a CLT) will converge to a Gaussian

process limit whose mean and covariance we can often compute analytically.

Let’s turn to a specific example, in order to make these claims somewhat more con-

crete. Consider a network with weak couplings and possibly strong self-inhibition

and history dependence; more precisely, we assume that interneuronal conditional

cross-covariances are weak, given the stimulus:

cov[ri(t), rj(t+ τ)|θ] = O(n−1) for i 6= j.

See, e.g., (Ginzburg and Sompolinsky, 1994; Toyoizumi et al., 2009) for further

discussion of this condition, which is satisfied for many spiking networks in which

the synaptic weights scale uniformly as O(n−1). For simplicity, we will also restrict

our attention to linear encoding functions, though generalizations to the nonlinear
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case are straightforward. Thus, as before, let Ki denote the matrix implementing

the transformation (Kiθ)t = ℓi,t(θ), the projection of the stimulus onto the i-th

neuron’s stimulus filter. Then

ǫ
∂Lϑ(r)

∂ǫ
|ǫ=0 = ϑT

[

1√
n

n
∑

i=1

KT
i

(

diag

[

f ′
i

fi

]

ri − f ′
idt

)

]

,

where fi stands for the vector version of fi

[

bi(t)
∣

∣Ht

]

; in other words, the t-th

entry of fidt is the probability of observing a spike in the interval [t, t + dt], given

the network spiking history Ht in the absence of input. Our sufficient statistic is

therefore exactly as in the Poisson setting,

∆(r) :=
1√
n

n
∑

i=1

KT
i

(

diag

[

f ′
i

fi

]

ri − f ′
idt

)

, (4.6)

except for the history-dependence induced through the redefinition of fi.

Computing the necessary means and covariances in this case requires more work

than in the Poisson case; see the appendix for details. It is helpful (though not

necessary) to make the stationarity assumption bi(t) ≡ bi, which implies in this

setting that E(
f ′i

2

fi
) can also be chosen to be time-invariant; in this case the limiting

covariance and mean of the sufficient statistic are given by

J := covr|θ [∆(r)] =
1

n

n
∑

i=1

Kidiag
[

Er|θ=0

(f ′
i
2

fi
dt
)

]

Ki; Er|θ [∆(r)] = Jθ,

where the expectations are over the spontaneous network activity in the absence of

any input. In short, once again, we have ∆(r) →D N (Jθ, J). Analytically, the only

challenge here is to compute the expectations in the definition of J . In many cases

this can be done analytically (e.g., in any population of uncoupled renewal-process

neurons), or by using mean-field theory (Toyoizumi et al., 2009), or numerically by

simply calculating the mean firing rate of the network in the undriven state θ = 0.

We examine this convergence quantitatively in Fig. 4.1. In this case the stimulus θt

was a sample path from a one-dimensional autoregressive (AR(1)) process. Spikes
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were generated according to

λi(t) = λo exp

(

θt√
n

+
n
∑

j=1

wjiIj(t)

)

1τi(t)>τref ,

where Ij(t) is the synaptic input from the j-th cell (generated by convolving the

spike train rj with an exponential of time constant 20 ms), wji is the synaptic weight

matrix coupling the output of neuron j to the input of neuron i, τi(t) is the time

since the last spike; therefore, 1τi(t)>τref enforces the absolute refractory period τref ,

which was set to be 2 ms here. Since the encoding filters Ki act instantaneously

in this model (Ki can be represented as a delta function, weighted by n−1/2), the

observed spike trains can be considered observations from a state-space model,

as described above. The weights wji were generated randomly from a uniform

distribution on the interval −[5/n, 5/n], with self-weights wii = 0, and
∑

j wji = 0

to enforce detailed balance in the network. Note that, while the interneuronal

coupling is weak in this example, the autocorrelation in these spike trains is quite

strong on short time scales, due to the absolute refractory effect.

We compared two estimators of θ: the full (nonlinear) MAP estimate θ̂MAP =

arg maxθ p(θ|r), which we computed using the fast direct optimization methods

described in (Koyama and Paninski, 2009; Paninski et al., 2010), and the limiting

optimal estimator θ̂∆ := (J + C−1
θ )−1∆(r). Note that J is diagonal; we computed

the expectations in the definition of J using the numerical approach described

above in this simulation, though in other simulations (with uncoupled renewal-

model populations) we checked that the fully-analytical approach gave the correct

solution. In addition, C−1
θ is tridiagonal in this state-space setting; thus the linear

matrix equation in eq. (4.4) can be solved efficiently in O(T ) time using standard

tridiagonal matrix solvers. We find that, as predicted, the full nonlinear Bayesian

estimator θ̂MAP approaches the limiting optimal estimator θ̂∆ as n becomes large;

n = 10 is basically sufficient in this case, although of course the convergence will



Chapter 4. Information Rates and Optimal Decoding in Large Neural
Populations 80

−5

0

5

stimuli

n 
=

 1

spike train(s) with 2ms refractory period, 
20ms synaptic time constant, and baseline rate 30Hz

−5

0

5

n 
=

 5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

−5

0

5

time(sec)

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

n 
=

 2
0

time(sec)

θ
MAP

θ∆

θ

Figure 4.1: The left panels show the true stimulus (green), MAP estimate (red) and the limiting

optimal estimator θ̂∆ := (J +C−1

θ )−1∆(r) (blue) for various population sizes n. The right panels
show the spike trains used to compute these estimates. Note that the same true stimulus was
used in all three simulations. As n increases, the linear decoder converges to the MAP estimate,
despite the nonlinear and correlated nature of the network model generating the spike trains (see
main text for details).

be slower for larger values of the gain factor ǫ (or, equivalently, larger filters Ki or

larger values of the variance of θt).

We conclude with a few comments about these results. First, note that the co-

variance matrix J we have computed here coincides almost exactly with what we

computed previously in the Poisson case. Indeed, we can make this connection

much more precise: we can always choose an equivalent Poisson network with rates

defined so that the Er|θ=0[(f
′
i)

2/fi] term in the non-Poisson network matches the

(f ′
i)

2/fi term in the Poisson network. Since J determines the information rate
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completely, we conclude that for any weakly-coupled network there is an equivalent

Poisson network which conveys exactly the same information in the intermediate

regime. However, note that the the sufficient statistic ∆(r) is different in the Pois-

son and non-Poisson settings, since the f ′/f term linearly reweights the observed

spikes, depending on how likely they were given the history; thus the optimal

Bayesian decoder incorporates non-Poisson effects explicitly.

A number of interesting questions remain open. For example, while we expect a

LLN and CLT to continue to hold in many cases of strong, structured interneuronal

coupling, computing the asymptotic mean and covariance of the sufficient statistic

∆(r) may be more challenging in such cases, and new phenomena may arise. We

also hope in the future to examine the effect of latent correlated variability (as

discussed, e.g., in the recent work of (Yu et al., 2009; Vidne et al., 2009)) on the

results presented here.
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4.4 Appendix: Information rates in the Kalman

model

For completeness, in this appendix we provide the details of the computation of

the information rate in the Kalman model. The information rate is the difference

between the prior entropy rate and the posterior entropy rate of the stimulus. The

former can be calculated using the Markov property (Cover and Thomas, 1991);

namely,

lim
T→∞

1

T
H(θ1:T ) = lim

T→∞

1

T

[

H(θ1) +

T
∑

t=2

H(θt|θt−1)

]

=
1

2
log detR + constant,

where R is the dynamics noise covariance defined in the state-space section of the

main text, and constant denotes a term that will cancel with the same term in the

posterior entropy rate and can therefore be ignored.

We provide three methods of increasingly explicit form for computing the posterior

entropy rate. The posterior distribution of the stimulus given data is a Gaus-

sian distribution; therefore, the posterior entropy depends on the determinant of

the posterior covariance matrix cov[θ1:T
∣

∣∆1:T ]. This matrix is of size Td × Td,

where d = dim(θt). The inverse of this matrix is block-tridiagonal (Paninski et al.,

2010), with blocks of size d× d, and we may therefore compute the determinant of

this matrix in O(T ) time using standard block-tridiagonal determinant recursions.

Examining these recursions leads to a Riccati-like equation that determines the

posterior entropy rate, limT→∞(1/T ) log det cov[θ1:T
∣

∣∆1:T ] + constant.

Alternatively, we can use a method described in (Huggins and Paninski, 2011),

based on the Gaussian integral identity

log p(∆) = log

∫

p(θ,∆)dθ = log p(θ̂) + log p(∆|θ̂) +
1

2
log det cov(θ|∆) + constant,

where θ̂ = E(θ1:T |∆1:T ) can be computed via the standard forward-backward Kalman
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recursions. Since this formula is valid for any value of ∆, e.g., ∆ = 0, we can com-

pute the marginal log-probability log p(∆) via the standard forward recursion for

the Kalman filter, and log p(θ̂) and log p(∆|θ̂) by plugging θ̂ into the log-prior

log p(θ) and the log-likkelihood log p(∆|θ), which are both computable explicitly

in this model. This leaves us with the 1
2
log det cov(θ|∆) term; taking limits of the

result divided by T provides the posterior entropy rate.

Finally, a third, explicit method to compute the posterior entropy rate may be

derived as follows:

lim
T→∞

1

T
H(θ1:T |∆1:T ) = lim

T→∞

1

T

[

E∆1:T
H(θ1|∆1:T ) +

T
∑

t=2

E∆1:T
H(θt|θt−1,∆1:T )

]

= lim
T→∞

1

T

T
∑

t=2

1

2
log det cov[θt|θt−1,∆1:T ].

The covariance cov[θt|θt−1,∆1:T ] can be expressed in terms of the forward covariance

matrix Cf
t = cov[θt|∆1:t] and the backward covariance matrix Cs

t = cov[θt|∆1:T ];

the joint covariance of θt and θt+1 given the full observation ∆ can be expressed as

(Durbin and Koopman, 2001; Shumway and Stoffer, 2006):

( Cs
t Cs

t+1K
T
t

KtC
s
t+1 Cs

t+1,

)

,

where

cov(θt|∆1:t−1) = ACf
t−1A

T +R

and

Kt = Cf
t J

T [cov(θt|∆1:t−1)]
−1.

Using the standard formula for computing the conditional covariance of a Gaussian

we have:

cov[θt|θt−1,∆1:T ] = Cs
t −Kt−1C

s
tK

T
t−1.
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Finally, we have:

lim
T→∞

1

T

T
∑

t=2

1

2
log det cov[θt|θt−1,∆1:T ] =

1

2
log |Cs −KCsKT |

where

Cs = lim
T→∞

Cs
T/2 and K = lim

T→∞
KT/2.

These matrices can be found using the Riccatti equations:

Cf =
[

(ACfAT +R)−1 + J
]−1

and Cs −KCsKT = Cf −Kt(AC
fAT +R)KT

t .

Appendix: Mean and Covariance of sufficient statis-

tic with History Dependence

The expectation and covariance of ∆(r) should be calculated over the distribution

of network activity r in response to input θ. The expectation of

∆(r) =
1√
n

n
∑

i=1

KT
i

(

diag

[

f ′
i

fi

]

ri − f ′
idt

)

depends on the expectation of
f ′i
fi

(t)ri(t)−f ′
i(t)dt. Note that by conditioning on the

history Ht

Er|θ

{

f ′
i

fi
(t)ri(t) − f ′

i(t)dt

}

= Er|θ

{

Er|θ

[f ′
i

fi
(t)ri(t) − f ′

i(t)dt
∣

∣

∣
Ht

]

}

= Er|θ

{

f ′
i

fi
(t)Er|θ

[

ri(t)
∣

∣

∣
Ht

]

− f ′
i(t)dt

}

= Er|θ

{

f ′
i

fi
(t)
[

fi(t)dt+ f ′
idt

(Kiθ)t√
n

+O(
1

n
)
]

− f ′
i(t)dt

}

= Er|θ

(f ′
i
2

fi
(t)dt

)(Kiθ)t√
n

+O(
1

n
) (4.7)
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therefore the expectation of ∆(r) is simplified to

Er|θ (∆(r)) =
1√
n

n
∑

i=1

KT
i

{

Er|θ

(

diag

[

f ′
i
2

fi
dt

]

)Kiθ√
n

+O(
1

n
)

}

=
1

n

n
∑

i=1

KT
i Er|θ

(

diag

[

f ′
i
2

fi
dt

]

)

Kiθ +O(
1√
n

)

=
1

n

n
∑

i=1

KT
i Er|θ=0

(

diag

[

f ′
i
2

fi
dt

]

)

Kiθ +O(
1√
n

)

The covariance can be written as

covr|θ (∆(r)) =
1

n

n
∑

i=1

KT
i covr|θ

[

diag

[

f ′
i

fi

]

ri − f ′
idt

]

Ki (4.8)

+
1

n

∑

i6=j
KT
i covr|θ

[

diag

[

f ′
i

fi

]

ri − f ′
idt , diag

[

f ′
j

fj

]

rj − f ′
jdt

]

Kj .(4.9)

First, we calculate the sum in equation (4.8); second, we show that for weak coupling

the sum in equation (4.9) is O( 1√
n
). For simplicity of presentation, let us define

Zi,t := ri(t)
f ′
i

fi
(t) − f ′

i(t)dt.

The terms in the sum of equation (4.8) are auto-covariances that can be written as

(τ ≥ 0)

covr|θ

[

diag

[

f ′
i

fi

]

ri − f ′
idt

]

t,t+τ

= covr|θ [Zi,t, Zi,t+τ ]

= E

[

cov
[

Zi,t, Zi,t+τ

∣

∣

∣
Ht+τ

]

]

+ cov

[

E[Zi,t|Ht+τ ],E[Zi,t+τ |Ht+τ ]

]

= δ(τ)varr|θ

[

Zi,t

]

+ covr|θ

[

Zi,t,
f ′
i
2

fi
(t+ τ)dt

]

(Kiθ)t+τ√
n

+O(
1

n
)

= δ(τ)

[

E
[

var(Zi,t|Ht)
]

+ var
[

E(Zi,t|Ht)
]

]

+O(
1√
n

)

= δ(τ)Er|θ
[f ′

i
2

fi
(t)dt

]

+O(
1√
n

)

= δ(τ)Er|θ=0

[f ′
i
2

fi
(t)dt

]

+O(
1√
n

)
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Next, we show that if the cross-correlation in the network activity is small

cov[ri(t), rj(t+ τ)] ∼ 1

n

then, the sum of cross-covariance terms in equation (4.9) is negligible because

covr|θ

[

diag

[

f ′
i

fi

]

ri − f ′
idt, diag

[

f ′
j

fj

]

rj − f ′
jdt

]

t,t+τ

= covr|θ [Zi,t, Zj,t+τ ]

= E

[

cov
[

Zi,t, Zj,t+τ

∣

∣

∣
Ht+τ

]

]

+ cov

[

E[Zi,t|Ht+τ ],E[Zj,t+τ |Ht+τ ]

]

= cov

[

Zi,t,E[Zj,t+τ |Ht+τ ]

]

= cov

[

ri(t)
f ′
i

fi
(t) − f ′

i(t)dt,
f ′
j
2

fj
(t+ τ)

]{

(Kjθ)t+τ√
n

+O(
1

n
)

}

= O(
1

n3/2
)

; thus,

1

n

∑

i6=j
KT
i covr|θ[ri ·

f ′
i

fi
− f ′

idt, rj ·
f ′
j

fj
− f ′

jdt]Kj = O

(

1√
n

)

.
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Chapter 5

Distributed Parameter Estimation

in Networks

This chapter is based on the paper “Distributed Parameter Estimation in Networks”

(Rahnama Rad and Tahbaz-Salehi, 2010)

5.1 Introduction

Information aggregation is a fundamental problem in multi-agent systems. In many

scenarios, observations are distributed throughout the network in such a way that

no agent has access to enough data to learn a relevant parameter in isolation, and

therefore, agents face the task of recovering the truth by engaging in communica-

tion with one another. Such problems are ubiquitous in social and economic net-

works, as well as networks engineered for specific applications. For example, Kotler

(Kotler, 1986) and Ioannides and Loury (Ioannides and Loury, 2004) document

how people base their decisions on their neighbors’ information when purchasing

consumer products or adopting new technologies, respectively. Similarly, the main
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goal of distributed sensor and robotic networks is to aggregate relevant decentral-

ized information, so that a pre-specified task can be performed properly (see e.g.,

Jadbabaie, Lin, and Morse (Jadbabaie et al., 2003) and Bullo, Cortés, and Mart́ınez

(Bullo et al., 2009)).

The goal of this paper is to develop a recursive model for aggregation of dispersed

information over networks, where the measurements of each agent are only partially

informative about the unknown parameter. In order to resolve the local identifica-

tion problems they face,1 agents in our model update their estimates as a function of

their neighbors’ beliefs. More specifically, we assume that at discrete time intervals,

each agent sets its belief as the geometric mean of the likelihood of its observation

and its neighbors’ beliefs, and uses the mode of the updated belief function as the

estimate for the unknown parameter.

We show that despite the absence of local identifiability across the network, agents’

estimates are weakly consistent (i.e., converge to the truth in probability), provided

that there exists a directed information path connecting any two agents in the net-

work. In other words, we prove that as long as the underlying network is strongly

connected, information is properly aggregated over the network and the local iden-

tification problems are resolved. We also show that as observations accumulate, the

distribution of agents’ estimates converge to a normal distribution. The consistency

and asymptotic normality of agents’ estimates hold regardless of the distribution of

their measurements and the structure of the network (beyond of course, the strong

connectivity requirement). Furthermore, we characterize the asymptotic covariance

matrix of the distributed estimates in terms of agents’ signal structures, as well as

the network topology. Using this characterization, we show that in bidirectional

1Throughout the paper, by local (global) identifiability, we mean the possibility of consistently
estimating the parameter through an agent’s private data (the data observed by all agents). The
terminology should not be mistaken by the concepts of local and global indistinguishably in a
neighborhood of the true parameter in the parameter space.
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networks, distributed estimators are as efficient as any centralized estimator with

access to the collection of signals observed across the network. This efficiency is

achieved even if the communication network is highly sparse.

Our work is related to the collection of works on learning in networks in economics,

as well as distributed estimation and consensus algorithms in the control literature.

The consensus literature (such as DeGroot (DeGroot, 1974), Jadbabaie, Lin, and

Morse (Jadbabaie et al., 2003), and Golub and Jackson (Golub and Jackson, 2010))

studies models in which a collection of agents asymptotically agree on the same

value. Golub and Jackson provide conditions under which the asymptotic consensus

value coincides with the true underlying parameter in large networks. In the same

spirit is Xiao, Boyd, and Lall (Xia et al., 2005), which uses the consensus update

to compute the maximum-likelihood estimate of the underlying parameter in a

distributed fashion. These papers, however, do not address the problem of local

identifiability, as they assume that all agents’ observations are equally informative.

As a main point of departure from previous studies, we consider agents who face

local identification problems due to their different signal structures. Moreover, we

show that as time progresses, not only the agents agree on their estimates, but also

their consensus estimate converges to the true underlying parameter.

More relevant to our paper is (Jadbabaie et al., 2010), which studies distributed

non-Bayesian learning in social networks. However, unlike (Jadbabaie et al., 2010),

we study the problem of estimating a parameter in a continuum and in presence

of continuous observations. Furthermore, we characterize the rate of convergence

and the efficiency of the estimates. Finally, our work is also relevant to (Kar et al.,

2008), who focus on a non-stationary update with time-decaying weight sequences

associated with consensus and innovation updates. In contrast to (Kar et al.,

2008), in this paper, we address general non-linear observation models and present

a stationary update for the beliefs.
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The rest of the paper is organized as follows. In the next section, we describe the

model and present the dynamics according to which agents update their estimates

of the true parameter. In Section III, we prove that all agents’ estimates are con-

sistent. Asymptotic normality is proved in Section IV, where we also compute the

asymptotic variance of agents’ estimates. In Section V, we investigate the efficiency

of the distributed estimators and compare our results with centralized maximum

likelihood estimation. Section VI concludes.

5.2 The Model

5.2.1 Agents and Observations

Let N = {1, 2 . . . , n} denote a group of agents, located on a network, who are

assigned the task of estimating an unknown parameter θ∗ ∈ Θ, where Θ ⊆ R
d is a

convex parameter space. At discrete time steps t ∈ N, each agent observes noisy and

partially informative signals that can be used in estimating the parameter. More

specifically, at any given time period t, agent i observes a random signal sit ∈ R
p,

drawn from a distribution with conditional probability density ℓi(·|θ). We assume

that agents’ signals are i.i.d. over time and independent from the observations of

all other agents.

The signals observed by a single agent, although potentially informative, do not

reveal the parameter completely; i.e., each agent faces an identification problem.

Two parameters are said to be observationally equivalent from the point of view of

an agent if the conditional distributions of the signals coincide. We denote the set

of parameters that are observationally equivalent to θ∗ from the point of view of

agent i by Θ̄i , {θ ∈ Θ : P[ℓi(s
i|θ) = ℓi(s

i|θ∗)] = 1}.2
2Throughout the paper, P refers to the probability distribution induced by the true parameter
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Despite the local identification problems faced by the agents, we assume that the

true parameter is identifiable if one has access to the signals observed by all agents.

Assumption (GI): The true parameter is globally identifiable; that is,
⋂n
i=1 Θ̄i =

{θ∗}.

Clearly, in the absence of the above assumption, even an agent with access to all

the data collected across the network over time would not be able to consistently

estimate θ∗.

In addition to Assumption (GI), we impose the following regularity conditions on

the observation models of the agents:

(A1) ℓi(·|θ) is twice continuously differentiable in θ for all realizations of data.

(A2) log ℓi(·|θ) is concave in θ for all observations.

(A3) ℓi(s
i|θ) is a measurable function of si for all θ ∈ Θ.

(A4) E[log2 ℓi(s
i
1|θ)] <∞ for all i.

(A5) E [supθ∈B ‖∇θθ log ℓi(s
i
1|θ)‖] < ∞, for some neighborhood B of θ∗, where ∇θθ

denotes the Hessian with respect to the parameter vector θ.

The above assumptions are quite mild and many of the usual distribution families,

such as normals and exponentials, satisfy them. We have made these assumptions

for simplicity, and our results hold under much weaker restrictions as well.

Finally, we define the Fisher information matrix corresponding to agent i’s obser-

vation model as the covariance of its score function; that is,

Ii(θ) = E
[

∇θ ψiθ(si1)∇θ ψiθ(si1)′
]

(5.1)

θ∗, and E denotes expectation with respect to P.
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where ψiθ(s
i
t) , log ℓi(s

i
t|θ) and ∇θ denotes the gradient with respect to the pa-

rameter vector θ. As the definition suggests Ii is a d × d symmetric and positive

semi-definite matrix.

5.2.2 Network Structure

In addition to signals {sit}∞t=1 observed privately over time, each agent can com-

municate with a subset of other agents known as its neighbors. We capture this

neighborhood relation with a directed graph G = (V,E), where each vertex in V

corresponds to an agent i ∈ N , and there exists a directed edge (j, i) ∈ E from

vertex j to vertex i if agent i has access to the belief function of agent j. We denote

the set of neighbors of agent i with Ni, and impose the following restriction on the

network:

Assumption (C): The communication graph G is strongly connected; that is, there

exists a directed path from any vertex to any other vertex in G.

Intuitively, Assumption (C) guarantees the possibility of information flow between

any two agents (either directly or indirectly) in the network. The next sections

will highlight the role played by this assumption in guaranteeing consistency and

asymptotic normality of agents’ estimates.

5.2.3 Belief Dynamics and Estimates

In order to aggregate the information provided to them over time – either through

observations or communication with neighbors – agents hold and update beliefs

over the parameter space Θ. More specifically, we denote the belief of agent i at

time t with µi,t : Θ −→ R
+, a probability measure over Θ. As for the dynamics,

we assume that each agent updates its belief function as a geometric mean of its



Chapter 5. Distributed Parameter Estimation in Networks 93

neighbors’ beliefs and its own observation likelihood function; or equivalently, the

log-posterior beliefs of each agent is a linear combination of its neighbors’ log-beliefs

and its log-likelihood function:

νi,t+1(θ) = λi log ℓi(s
i
t+1|θ) +

∑

j∈Ni∪{i}
wijνj,t(θ) + ci,t (5.2)

where νi,t(θ) , log µi,t(θ) is the logarithm of the belief function, λi > 0 is the weight

that agent i assigns to its private observations, wij > 0 is the weight assigned to

the beliefs of agent j in its neighborhood, and ci,t is a normalization constant

which ensures that µi,t+1(θ) is a well-defined probability density over Θ. Note that

constants ci,t do not depend on the parameter θ. Throughout the paper, we assume

that λi = λ, and
∑

j∈Ni∪{i}wij = 1, for all i ∈ N .

Given its beliefs at any given time period, agent i’s estimate of the true parameter

is defined as a maximizer of its belief function; that is,3

θ̂i,t ∈ arg max
θ∈Θ

νi,t(θ). (5.3)

Note that θ̂i,t is a random variable that depends on the data observed by agents up

to time t. In the next section we show that this point estimator always exists and

is a measurable function of the data. Moreover, note that due to the identification

problem faced by each agent, the maximizer is not necessarily unique at all times.

In that case, θ̂i,t can correspond to any solution of (5.3).

In order to simplify notation, we write update (5.2) in matrix form as

νt+1(θ) = Wνt(θ) + λψθ(st+1) + ct ∀θ ∈ Θ

where W = [wij] is a stochastic matrix with wij = 0 if j 6∈ Ni ∪ {i}, and ct is a

vector of constants independent of θ. Thus, at any time t, we have

νt(θ) = W tν0(θ) + λ

t
∑

τ=1

W t−τψθ(sτ ) + c′t,

3Given the fact that log is a monotone function, defining the estimate as the mode of the
log-belief function is equivalent to defining it as the maximizer of the belief function itself.
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where c′t is a vector that depends on past observations of all agents, but not θ.

Finally, we define

Φi,t(θ) ,
1

t

t
∑

τ=1

n
∑

j=1

[W t−τ ]ijψ
j
θ(s

j
τ )

which is a function of agents’ observations as well as the parameter. Therefore,

νi,t(θ) = λtΦi,t(θ) +

n
∑

j=1

W t
ijνj,0(θ) + c′i,t (5.4)

where the second term only depends on the priors and the last term is a constant

not depending on θ. This immediately implies that for large enough t, the point

estimator θ̂i,t coincides with the maximizer of Φi,t(θ) over Θ.

5.3 Consistency

In this section, we prove that under relatively mild assumptions, all agents’ esti-

mates of the true parameter are asymptotically consistent in probability; that is,

θ̂i,t
p−→ θ∗ for all i as t→ ∞. Before presenting our results on consistency, we state

a few lemmas. The proofs can be found in the Appendix.

Our first lemma establishes that the point estimator of each agent is well-defined.

Lemma 10. Suppose that θ∗ ∈ int Θ. Then, there exists a measurable function of

the data θ̂i,t that solves (5.3).

The next lemma shows that the beliefs of all agents converge asymptotically to a

limit independent of their priors.

Lemma 11. Suppose that Assumption (C) holds. Then,

Φi,t(θ)
p−→ Φ∞(θ) ,

n
∑

j=1

zjE[log ℓj(s
j
1|θ)] (5.5)
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for all θ ∈ Θ, where z = [zi] is the stationary distribution of a Markov chain with

W as its probability transition matrix.

Note that under Assumption (C), matrix W corresponds to an aperiodic and irre-

ducible Markov chain, and therefore, has a unique stationary distribution z, with

all elements strictly positive. Moreover, the limiting normalized log-posterior belief

function Φ∞(θ) is independent of i for all values of θ, and as a result, for large

enough t, the beliefs of all agents get arbitrarily close. This implies that, as obser-

vations accumulate, the agents’ estimates get closer to one another.

The next lemma establishes that the limiting log-posterior belief function Φ∞(θ) is

uniquely maximized at the true parameter θ∗, if the truth is globally identifiable

and the network of agents is strongly connected.

Lemma 12. Suppose that Assumptions (C) and (GI) hold. Then,

arg max
θ∈Θ

Φ∞(θ) = {θ∗},

where Φ∞(θ) is defined in (5.5).

Both Assumptions (C) and (GI) are required for the above lemma to hold. Clearly,

in the presence of a global identification problem in the network, there exists a

θ 6= θ∗ for which Φ∞(θ) = Φ∞(θ∗) on almost all sample paths, and therefore, the

limiting log-posterior belief function is not uniquely maximized. On the other hand,

a network which is not strongly connected corresponds to a random walk with some

transient states which implies that vector z will have at least one element, say zk,

equal to zero. As a result, the identification problem of agent k persists and leads

to a non-unique solution to the maximization problem.

We now present the main result of this section.
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Theorem 13. Suppose that θ∗ ∈ int Θ and that Assumptions (C) and (GI) hold.

Then, the point estimators of all agents are weakly consistent; that is

θ̂i,t
p−→ θ∗ ∀i.

Proof. First, note that for large enough t, the estimate θ̂i,t coincides with the max-

imizer of Φi,t(θ) over Θ. On the other hand, by Lemma 11, the convex function

Φi,t(θ) converges to Φ∞(θ) in probability for all θ. As established by Lemma 12,

Φ∞(θ) is uniquely maximized at θ∗, and therefore, by Theorem 2.7 of Newey and

McFadden (Newey and McFadden, 1994), the maximizer of Φi,t(θ) converges in

probability to θ∗ for all i ∈ N . Thus, the estimator of ever agent is weakly consis-

tent.

Theorem 13 establishes that as the number of observations grows, the estimate of

each agent converges to the parameter corresponding to the true data generating

process. The importance of this result lies in the fact that asymptotic consistency

is achieved despite the fact that all agents face some identification problem – in

the sense that no agent can consistently estimate the true parameter in isolation.

However, if agents have access to the information held by their neighbors and the

communication graph is strongly connected, then information is properly aggre-

gated over the network, and the estimate of every agent converges to the true

parameter.

The other notable fact about Theorem 13 is that consistency is achieved regardless

of the network’s structure. More specifically, as long as the network is strongly con-

nected, its topology and the weights wij assigned by the agents to their neighbors do

not affect convergence of the estimates to the truth. However, in the next sections,

we show that the network structure determines the efficiency of the distributed

estimators.
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5.4 Asymptotic Normality

In this section, we prove that the agents’ estimates are asymptotically normally

distributed and characterize their asymptotic covariance matrices.

We start by stating two auxiliary lemmas, which are proved in the Appendix.

Lemma 14 is simply a weak law of large numbers for the Hessian of the log-likelihood

of the observations, whereas Lemma 15 is a central limit theorem for the gradients.

Lemma 14. Suppose that {θ̄i,t}i∈N are consistent estimators of θ∗, and suppose

Assumption (C) holds. Then,

−∇θθΦi,t(θ̄i,t)
p−→

n
∑

j=1

zjIj(θ∗) ∀i.

Lemma 15. Suppose that Assumption (C) holds. Then, for all i ∈ N

√
t∇θ Φi,t(θ

∗)
d−→ N

(

0,

n
∑

j=1

z2
jIj(θ∗)

)

.

We are now ready to state and prove the main result of this section.

Theorem 16. Suppose that Assumptions (C) and (GI) hold. Then,

√
t(θ̂i,t − θ∗)

d−→ N (0,Avar) (5.6)

where the asymptotic covariance matrix is given by

Avar =

[

n
∑

j=1

zjIj(θ∗)
]−1 n
∑

j=1

z2
jIj(θ∗)

[

n
∑

j=1

zjIj(θ∗)
]−1

. (5.7)

Proof. By definition, θ̂i,t is a maximizer of Φi,t(θ), and therefore, it must be the

case that ∇θ Φi,t(θ̂i,t) = 0. On the other hand, by the mean value theorem, we have

∇θ Φi,t(θ̂i,t) = ∇θ Φi,t(θ
∗) + ∇θθ Φi,t(θ̄i,t)(θ̂i,t − θ∗),
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where θ̄i,t is a mean value between θ∗ and θ̂i,t. Thus, we can solve for (θ̂i,t− θ∗) and

get
√
t(θ̂i,t − θ∗) = −

√
t
[

∇θθ Φi,t(θ̄i,t)
]−1 ∇θ Φi,t(θ

∗).

Since θ̄i,t lies between θ∗ and θ̂i,t, it is a consistent estimator for θ∗,4 and therefore,

Lemma 14 implies that ∇θθ Φi,t(θ̄i,t)
p−→ −∑n

j=1 z
2
jIj(θ∗). Note that the global

identifiability assumption guarantees that
∑

j z
2
jIj(θ∗) is non-singular. On the other

hand, Lemma 15 guarantees that
√
t∇θ Φi,t(θ

∗)
d−→ N (0,

∑n
j=1 zjIj(θ∗)). At this

point, the theorem trivially follows by Slutsky’s theorem.5

Theorem 16 states that the agents’ estimates are normally distributed as the sample

size grows. As the proof suggests, the key idea behind asymptotic normality is

that in large samples, estimators are approximately equal to linear combinations of

sample averages (a consequence of applying the mean value theorem), so that the

central limit theorem can be applied (Newey and McFadden, 1994). The theorem

also states that distributed estimators, like the centralized maximum likelihood

estimator, are
√
t-consistent. Finally, expression (5.7) provides the asymptotic

covariance matrix of the estimates in terms of the network structure and information

matrices corresponding to agents’ observation models.

5.5 Estimator Efficiency and Network Topology

In the previous section, we derived asymptotic variance of the distributed estima-

tors. In this section, we investigate their efficiency in terms of the network structure,

as well as the observation model of each agent. Our next theorem compares the

4Note that in Theorem 13 we established that θ̂i,t is consistent.
5Slutsky’s theorem states that if xt

d−→ x and yt
p−→ c where c is a constant, then, xtyt

d−→ cY .
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distributed estimator with a centralized estimator, and provides a bound for its

performance.

Theorem 17. Suppose that Assumptions (GI) and (C) hold. Then, asymptotic

variance of the distributed estimator satisfies

Avar � [Ic(θ∗)]−1 (5.8)

where Ic(θ) denotes the Fisher information matrix of a centralized estimator with

access to the observations of all agents. Moreover, the above bound is tight if W is

doubly stochastic.

Before presenting the proof, a few remarks are in order. First note that [Ic(θ∗)]−1 is

equal to asymptotic variance of the maximum-likelihood estimator of a centralized

entity with access to the measurements of all agents. In other words, equation

(5.8) simply means that the distributed estimators are never more efficient (in the

Cramér-Rao sense) than a centralized maximum likelihood estimator. This is not

surprising, as one expects that decentralization can never lead to a more efficient

estimation.

The second part of the theorem, however, is more striking. It basically states if

the weight matrix W is doubly stochastic, then the distributed estimator is as

efficient as any centralized estimator. For example, if all communication links are

bidirectional and the weights that each pair of agents assign to one another are

equal (i.e., wij = wji), then decentralization does not sacrifice efficiency, regardless

of how sparse the network is.

Proof of Theorem 17. We first compute Ic(θ) in terms of the Fisher information

matrices corresponding to agents’ observation models. By independence of obser-

vations across agents, we have

ℓ(st|θ) = ℓ1(s
1
t |θ)ℓ2(s2

t |θ) · · · ℓn(snt |θ),
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which implies

Ic(θ∗) = E

[

n
∑

j=1

∇θψjθ∗(sj1)
n
∑

i=1

∇′
θψ

i
θ∗(s

i
1)

]

=
n
∑

j=1

E
[

∇θψjθ∗(sj1)∇θψjθ∗(sj1)′
]

=

n
∑

j=1

Ij(θ∗),

where we have used the fact that E [∇θ log ℓi(s
i
1|θ∗)] = 0 (see proof of Lemma 15).

Therefore, in order to prove (5.8), we need to show that

Q =

n
∑

j=1

Ij(θ∗) −
n
∑

j=1

zjIj(θ∗)
[

n
∑

j=1

z2
jIj(θ∗)

]−1 n
∑

j=1

Ij(θ∗)

is positive semi-definite. Note that Q is the Schur complement of

X =











∑

j z
2
jIj(θ∗)

∑

j zjIj(θ∗)

∑

j zjIj(θ∗)
∑

j Ij(θ∗)











which can be easily verified to be positive semi-definite.6 Thus, Q is also positive

semi-definite, which proves the first part of the theorem.7

To prove the second part, we use the fact that if W is doubly stochastic, then its

corresponding Markov chain has a uniform stationary distribution, that is, zi = 1
n
.

Therefore, expression (5.7) reduces to

Avar =

[

n
∑

j=1

Ij(θ∗)
]−1

= [Ic(θ∗)]−1

which is the asymptotic covariance matrix of the centralized maximum likelihood

estimator. This proves that the bound is tight.

6Note that u′Xu =
∑

j(zju
′

1 + u′

2)Ij(θ
∗)(zju1 + u2) ≥ 0 for all u′ = [u′

1 u′

2].
7For more on Schur complement and its properties, see for example, Boyd and Vandenberghe

(Boyd and Vandenberghe, 2004), page 650.
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As a final remark, we emphasize that although sufficient, double stochasticity of

W is not necessary for efficiency of the distributed estimator. For example, it is

possible to achieve efficiency by assigning a zero weight on an agent whose signals

are non-informative, and have the rest of the weights equally shared among the rest

of the agents. A complete characterization of efficiency conditions is part of our

ongoing research.

5.6 Conclusions

In this paper, we studied a model of distributed estimation over a network, where

each agent faces a local identification problem – in the sense that it cannot con-

sistently estimate a parameter of interest in isolation. The agents engage in com-

munication with their neighbors in order to resolve their identification problems.

We showed that as long as the true parameter is globally identifiable (i.e., there

is enough information across the network for it to be uniquely identified) and the

communication network is strongly connected (i.e., there exists a direct or indirect

information path connecting any two agents), then all agents can consistently es-

timate the true parameter as observations accumulate. Moreover, we proved that

under some regularity assumptions on the observation models, the agents’ estimates

are asymptotically normally distributed. Finally, we computed the asymptotic vari-

ance of the distributed estimators, and showed that in bidirectional networks, the

agents’ estimators are as efficient as any centralized estimator, regardless of the

sparsity of the network.
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Appendix: Omitted Proofs

Proof of Lemma 10. The proof is along the lines of the proof of Lemma 7.1 in

Hayashi (Hayashi, ), and therefore, is omitted.

Proof of Lemma 11. We first show that variance of Φi,t(θ) converges to zero, for all

i and θ:

var[Φi,t(θ)] =
1

t2

t
∑

τ=1

n
∑

j=1

[W t−τ
ij ]2var[ψjθ(s

j
1)]

≤ 1

t

n
∑

j=1

var[ψjθ(s
j
1)] −→ 0,

and therefore, Φi,t(θ) − E[Φi,t(θ)]
p−→ 0. On the other hand, we have

E[Φi,t(θ)] =
n
∑

j=1

[

1

t

t
∑

τ=1

W t−τ

]

ij

E[ψjθ(s
j
1)]

−→
n
∑

j=1

[1z′]ijE[ψjθ(s
j
1)]

=

n
∑

j=1

zjE[ψjθ(s
j
1)],

where we used the fact that W corresponds to an aperiodic and irreducible Markov

chain with the unique stationary distribution z (guaranteed by Assumption (C)),

and that Cesàro means preserve convergent sequences and their limits. Thus, we

have

Φi,t(θ)
p−→

n
∑

j=1

zjE[ψjθ(s
j
1)]

for all i ∈ N and all θ ∈ Θ, which completes the proof.
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Proof of Lemma 12. By Jensen’s inequality,

E

[

log
ℓj(s

j
1|θ)

ℓj(s
j
1|θ∗)

]

≤ log E

[

ℓj(s
j
1|θ)

ℓj(s
j
1|θ∗)

]

= 0,

implying

E[log ℓj(s
j
1|θ)] ≤ E[log ℓj(s

j
1|θ∗)]

with equality holding if and only if θ ∈ Θ̄j. Therefore, the set of maximizers of

E[log ℓj(s
j
1|θ)] coincides with the set of parameters that are observationally equiva-

lent to θ∗. Thus, by Assumption (GI), θ∗ is the unique maximizer of their weighted

sum. Notice that once again we are using the fact that all elements of vector z are

strictly positive.

Proof of Lemma 14. First, notice that by a simple weak law of large numbers ar-

gument, ∇θθΦi,t(θ) − E∇θθΦi,t(θ) converges to zero in probability, pointwise for all

θ ∈ Θ. Moreover, we have

E∇θθΦi,t(θ) −→
n
∑

j=1

zjE[∇θθψjθ(sj1)]

for all θ, where once again we have used Assumption (C) and the convergence of

Cesàro means. Therefore,

∇θθΦi,t(θ)
p−→

n
∑

j=1

zjE[∇θθψjθ(sj1)] ∀θ ∈ Θ.

Now Corollary 2.2 of Newey (Newey, 1991) implies that under Assumptions (A1)–

(A5), ∇θθΦi,t(θ) converges uniformly in probability to
∑n

j=1 zjE[∇θθψjθ(sj1)], and

therefore, by Theorem 4.1.5 of Amemiya (Amemiya, 1985), for any consistent esti-

mator θ̄i,t
p−→ θ∗, we have

∇θθΦi,t(θ̄i,t)
p−→

n
∑

j=1

zjE[∇θθψjθ∗(sj1)].
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Finally, the information matrix equality implies that

E[∇θθψjθ∗(sj1)] = −E
[

∇θ ψjθ∗(sj1)∇θ ψjθ∗(sj1)′
]

which is equal to −Ij(θ∗), by definition. This completes the proof.

Proof of Lemma 15. The proof of this lemma relies on the multivariate extension

of the Lindeberg-Feller central limit theorem, which can be found in van der Vaart

(van der Vaart, 1998), Proposition 2.27. But first, notice that by Lemma 3.6 of

Newey and McFadden (Newey and McFadden, 1994), we have

E
[

∇θ log ℓi(s
i
1|θ∗)

]

= 0,

implying that E∇θ Φi,t(θ
∗) = 0.

In order to apply the Lindeberg-Feller CLT, we need to show that the Lindeberg

condition is satisfied; that is

1

t

t
∑

τ=1

n
∑

j=1

(W t−τ )2
ijE

[

‖∇θ ψjθ∗‖2
I{W t−τ

ij ‖∇θ ψ
j

θ∗
‖>ǫ

√
t}
]

→ 0

for all ǫ > 0, as t → ∞, where I denotes the indicator function, and for notational

simplicity, we have dropped the dependence of ∇θ ψjθ∗ on the observations sj. Veri-

fying that the Lindeberg condition is straightforward: the left hand-side is bounded

above by expression

max
1≤j≤n

E

[

‖∇θ ψjθ∗‖2
I{‖∇θ ψ

j

θ∗
‖>ǫ

√
t}
]

which converges to zero for all ǫ > 0 as t → ∞. Thus, by the Lindeberg-Feller

CLT,
√
tΦi,t(θ

∗)
d−→ N (0, S), where S is given by

S = lim
t→∞

1

t

t
∑

τ=1

n
∑

j=1

(W t−τ )2
ijE
[

∇θ ψjθ∗(sj1)∇θ ψjθ∗(sj1)′
]

=

n
∑

j=1

z2
j Ij(θ∗)
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where we have used the fact that W t −→ 1z′, and the definition of the Fisher

information matrix in (5.1).
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