
DoubleCheck: Multi-path Verification Against
Man-in-the-Middle Attacks

Mansoor Alicherry Angelos D. Keromytis
Department of Computer Science, Columbia University in theCity of New York

Abstract— Self-signed certificates for SSL and self-generated
hosts keys for SSH are popular zero-cost, simple alternatives to
public key infrastructure (PKI). They provide security against
man-in-the-middle attacks, as long as the the client connecting
to those services knows the certificates or host keysa priori.
A simple solution used in practice is to trust the certificateor
the host key when the client connects to a server for the first
time. This approach is susceptible to man-in-the-middle attacks,
a fact exploited by adversaries in a variety of attacks against
unsuspecting users. We develop a simple and scalable solution
namedDoubleCheckto protect against such attacks. Our solution
is achieved by retrieving the certificate from a remote host
using multiple alternate paths. Our scheme does not require
any new infrastructure; we make use of the Tor anonymity
system to reach the destination using multiple independentpaths.
Hence our solution is easy to deploy in practice. Our solution
does not introduce any privacy concerns. We have implemented
DoubleCheck as SSH and Firefox extensions, demonstrating its
practicality. Our experimental evaluation shows that the impact
of DoubleCheck on performance is minimal, since the Tor
network is used only for retrieving the certificate for the first time,
while the data transfer and subsequent connection establishment
follow normal routing rules. Our scheme is an effective way
of mitigating the impact of man-in-the-middle attacks without
requiring new infrastructure and at low overhead.

Keywords: Man-in-the-middle attack, Certificates, Trust,
Tor

I. I NTRODUCTION

SSL and SSH provide secure alternatives to HTTP and
telnet/rlogin by associating certificates or host keys to network
servers. The protocols verify the identity of the remote servers
using those certificates or host keys. The security of these
protocols depends on the robustness of the verification of this
identity.

SSL typically uses public key infrastructure (PKI) to verify
the identity of the remote server. This requires network servers
to obtain certificates from a well-trusted certificate authority
(CA), such as VeriSign. These CAs issue a certificate to an
organization only after conducting background checks on its
identity. Though this PKI infrastructure provides high level
of confidence on the identity of the servers carrying those
certificates, obtaining a certificate is very expensive and time-
consuming for an organization. For example, a SSL certificate
with one year validity costs $399 and $995 with40-bit and
128-bit minimum encryption respectively [8]. The proof of
identity required by the CA includes documentation filed with
a government agency or a competent authority, or verification
with a third party identity proofing service [7].

A simple and zero-cost alternative to PKI certificates is the
use of self-signed certificates. In that scheme, a server issues
a certificate for itself. Though this resolves the problem of
possessing a certificate for the server, a client connectingto
that server is faced with the problem of having to accept a
certificate that it does not trust. Whenever a client application
(e.g., web browser) connects to such a server, the user is
prompted whether he/she accepts its certificate. If the user
accepts the certificate, it is added to the list of trusted certifi-
cates. Any future connection to that server is verified using
this list. A similar approach applies to SSH, which is a secure
alternative to telnet and rlogin. Instead of certificates, each host
generates a host key that acts as the identity of that host. There
is no well-known trusted third party to certify that identity. A
user is prompted for accepting the host key, whenever the SSH
client connects to a new server. If the user accepts the key, it
is cached in the list of trusted keys.

Even though self-signed certificates and host keys provide
a scalable and inexpensive solution, security depends on
the user being able to “judge” if the certificates are valid.
Since there is no automated, easy-to-use way to know if the
certificate belongs to the right host, he/she typically accepts the
certificate whenever prompted. Studies have shown that users
were willing to transact online based on visual appearance
and professionalism of the web site, and ignore the security
warnings of the web browser [18], [16]. As this happens
whenever the user connects to a server for the first time, this
paradigm is calledtrust on first use (tofu).

Though trust on first use system has seen widespread use,
it has two major security shortcomings:

1) Man in the middle attacks: tofu cannot protect against
man-in-the-middle (MitM) attacks when a client is con-
necting to a server for the first time, since the client
accepts the attacker’s identity. Any future connection
to the correct server will be declared as a man-in-the
middle attack.

2) Changing the server certificates:Whenever a server
changes its certificate, existing clients must determine
whether a MitM attack is underway or whether the server
legitimately changed its certificate/host key. Since the
latter happens more frequently than the former, users
are likely to opt for the benign explanation even when
an actual attack is underway.

The recently proposedPerspectives[20] system addresses
the problem of needing to accept the unknown certificate or

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161438619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

host key by introducing a set of servers on the Internet called
notary servers. Notary servers maintain a database of the
hash of the identities of the Internet servers over a period of
time. A client program connecting to a remote server whose
certificate is not trusted gets the history of the certificate
from multiple notary servers and makes a decision about
accepting or rejecting the certificate. Though Perspectives is
very robust for verifying the identity of the remote servers, its
effectiveness depends on the universal availability of multiple
notary servers. The notary servers need to be powerful in
terms of processing power, memory and bandwidth as they
need to probe for and keep track of the keys/certificates of all
the Internet servers. They also need to update the certificate
information of all those servers periodically to address the
problem of changing the server certificate mentioned above.

In this paper, we address the two problems of “trust on
first use” by retrieving the certificates or host keys using
alternate paths. We call our solutionDoubleCheckas we
accept a connection with a remote server only if the certificate
retrieved on various paths match. The certificate retrievalon
the alternate paths is done on-demand using the existing and
widely available infrastructure of Tor network [5]. Hence we
get most of the benefits of Perspectives without the need of
new infrastructure. Since the alternate path certificate retrieval
is done via anonymity network, our solution does not introduce
any privacy concerns.

The primary contributions of the paper are the following:

• We presentDoubleCheck, a practical scheme for validat-
ing the certificates and host keys by making use of the
existing Tor infrastructure.

• We offer the implementation of DoubleCheck for both
SSL and SSH protocols that can be easily deployed on
end user systems.

• We provide a performance analysis of DoubleCheck us-
ing implementation, which encounters an overhead only
when a server with a key that is not trusted is accessed
for the first time.

II. T HREAT MODEL

Our solution is designed for an adversarial Internet envi-
ronment, where clients connect to servers whose identity is
not known to the client in advance using SSH or HTTP/SSL1.
An adversary may masquerade as the server that the client is
trying to connect to, without directly compromising the server.
Our goal is to protect the clients from connecting to such
adversaries. We do not protect against clients connecting to
legitimate but compromised servers. We also do not protect
against attacks where client connects with a fake server
controlled by an attacker, like phishing attacks.

An adversary can launch a man-in-the-middle (MitM) attack
by redirecting all the traffic from a client destined to a server
to it. This can be done through DNS spoofing, by route
manipulation, or by direct access to a link on the path between

1Our scheme is compatible with other public key cryptography-based
protocols, including IPsec.

the client and the server [6], [13]. The attack can be launched
from various points:

1) The attacker launches the attack closer to the clients:
This can be done if the attacker is present in the same
subnet as the client. This is easy to launch, especially
if the attacker is providing a “free service” to the
client, like unsecured WiFi access, or is using the same
unsecure network (e.g., public or unencrypted WiFi).
Only the clients in that subnet are affected by this attack.

2) The attacker launches the attack closer to the server:
Here the attacker is part of the server subnet or has
compromised the first-hop router of the server or the
DNS server. This kind of attack is typically harder
to launch unless the attacker has access to the server
subnet. All the clients connecting to that server are
affected by this kind of attack.

3) The attacker launches the attack from the middle:
This is done by compromising a router in the path
between the client and the server. This is also generally
harder (but not impossible) to launch. Only the clients
whose path to the server uses the compromised router
are affected by this attack. Another way to launch this
attack is by compromising one or more DNS servers.

Our solution can protect the clients against the identity
attacks when the attacker is not in the subnet of the server
(Case 2, above). An attacker can launch an attack only if the
server’s identity is not known to the client in advance.

III. SYSTEM ARCHITECTURE

The basic idea of DoubleCheck is to fetch the certificate
or host key from a remote server using at least two different
paths. If the certificates received are the same, then with high
confidence the identity of the remote server can be trusted.
DoubleCheck cannot protect against attacks where the attacker
is part of every path to the remote server. For example,
DoubleCheck cannot detect an attack that is taking place at
the default gateway of the subnet where the remote server is
located.

A. Overview of Tor

Tor2 is a network of virtual tunnels that allows users to
improve their privacy and security on the Internet [5]. Instead
of taking a direct route from source to destination, data packets
on the Tor network take a random pathway through several
relays such that no observer at any single point can tell where
the data came from or where it’s going. To create a private
network pathway with Tor, the client software incrementally
builds a circuit of encrypted connections through relays on
the network. The circuit is extended one hop at a time, and
each relay along the way knows only which relay gave it data
and which relay it is giving data to. No individual relay ever
knows the complete path that a data packet has taken. The
client negotiates a separate set of encryption keys for each

2An acronym that stands for “The Onion Router”.

2

hop along the circuit to ensure that each hop can’t trace these
connections as they pass through.

Our primary motivation for using Tor is not for its
anonymity, but for its ability to to create multiple alternate
paths to a remote server. Users of the Tor network run a local
Tor proxy, which connects to the Tor network. This proxy also
exposes a SOCKS [14] interface for that host’s applicationsto
connect. Traffic inside the Tor network goes through multiple
relay nodes encrypted; ultimately reaching anexit nodethat
forwards the traffic to its real destination. The destination node
sees the connection as coming from the exit node. We can
create multiple paths to a destination by connecting through
the Tor network and configuring it to use different exit nodes.

The advantage of using Tor is that it is a well established,
widely used and stable. There are more than 1000 Tor relay
nodes as of January 2009 [4]. So we do not have build it
from scratch, which makes our scheme very easy to deploy in
practice.

Fig. 1. DoubleCheck system overview

B. DoubleCheck

The details of DoubleCheck are depicted in Figure 1.
When a user wants to connect to a remote server, the client
application fetches the remote host certificate on the normal
(direct) path. If the certificate is already trusted by the client,
the connection is accepted and communication takes place as
normal. If the certificate is not already trusted by the client,
because of either connecting to a new server or due to a
change in the certificate at the server, another connection to the
server is attempted using the Tor network. This connection is
established by the client application by connecting to the local
Tor proxy. The Tor proxy in turn connects to the destination
using the Tor network as described above. This will result in
the client application establishing a connection to the remote
server via an alternate path. The remote server’s certificate is
fetched from the remote server by the client application using
this new connection. The client application then compares the
certificate it received on the normal path with that received
over Tor. If they are different, the connection is aborted as
there is a possibility of a MitM attack. If the certificates are
the same, then the client could either accept the connection,
or try a second alternate path through the Tor network by

changing the exit node. This second alternate path increases
the confidence in the validity of the certificate, at the expense
of higher overhead. Once the client application is satisfied
about the identity of the remote server, the connection goeson
the normal path and the certificate is added to the list of trusted
certificates, for the future use depending on the policy. A client
may initiate multiple simultaneous alternate paths to achieve
higher confidence while minimizing connection latency.

C. Security analysis

We are focusing on man-in-the-middle attacks on the servers
that do not use a well trusted PKI mechanism. These include
self signed SSL certificates and self generated SSH keys.
A well trusted PKI for SSL or out of band verification of
SSH keys provide highest security against man-in-the middle
attacks.

The effectiveness of DoubleCheck depends on finding a
path to the destination node that does not contain the attacker.
Doublecheck will fail to detect the attacker either if all paths to
the destination pass through the attacker or if all the pathstried
by it passed through the attacker. The former can be handled
only by a solution that keeps track of the certificate history.
The later can be avoided in DoubleCheck by trying multiple
alternate paths by intelligently choosing the exit nodes.

Here we analyze DoubleCheck against the threat model
discussed in Section II. If the server has a certificate that
is trusted by the client, then the client does not retrieve
the certificate in the alternate path. This can happen if the
certificate is stored in the local cache of the client or the
certificate is signed by a trusted CA. A client using a trusted
certificate might end up connecting to an attacker only if the
server is compromised. We are not protecting against clients
connecting to compromised servers.

An attacker can launch a man-in-the-middle attack by
making sure that all the packets destined to a server from a
client reach the attacker. This can be achieved either by making
clients believe that the IP address corresponding to the server’s
name is the IP address of the attacker (by spoofing the DNS)
or by taking over the server’s IP address (e.g.,by manipulating
the BGP routing table). As discussed in the threat model, it
is easier to launch an attack if the attacker is closer to the
client (e.g. attacker is in the client subnet). In those cases the
effectiveness of DoubleCheck is also high, since it is much
easier to find an alternate path to destination that does not
contain the attacker using the Tor network. In fact it is highly
likely that any Tor path will bypass such an attacker. It is
important that the domain name of the server be resolved by
the Tor network while fetching the certificate in the alternate
path, rather than resolving the name locally, to protect against
large-impact DNS poisoning attacks. But, if the authoritative
DNS name server for the domain is compromised, the even
Tor name resolution will also get redirected to the attacker’s
choice of IP address.

If the attack is not launched from the client subnet, it is
possible that the attacker is on the path to the server from both
the client and the Tor exit node. This is true if the attacker is

3

on the server subnet, and DoubleCheck cannot detect it. A Tor
exit node itself can be under attack. The attacker could have
control over the Tor exit node, which could send the attacker’s
certificate to the client. A client can reduce the probability
of such an occurrence by getting the server certificates using
multiple Tor circuits by changing the exit nodes or by using
multiple simultaneous Tor paths with different exit nodes.

IV. I MPLEMENTATION

We implemented DoubleCheck scheme for both SSH and
SSL. The design philosophy for both the protocols is the same.
Whenever the client (ssh/scp command or the browser)
connects to a server, it acquires the server’s host key on
the direct path. If the host key is suspicious or previously
unknown, we use the anonymous (Tor) network to retrieve the
host key from the same server. If the host keys are the same
then the connection is allowed on the direct path. The Tor
network is used only for retrieving the keys and not for the
actual data transfer. If there is a key mismatch, the connection
is aborted.

We make use of the Tor client, without any modification,
to retrieve the host keys on the alternate path. Tor client acts
as a SOCKS proxy that listens on port 9050 and forwards
connections to the Tor network.

A. SSH Implementation

Secure shell or SSH is a network protocol that allows data to
be exchanged between computers securely. SSH uses public
key cryptography for authentication. Thessh command in
Unix is used for executing commands on the remote computer
using the SSH protocol. To verify the identity of the remote
computer,ssh maintains a list of trusted computers and their
keys in a file (typically,∼/.ssh/known hosts). When a
user connects to a remote server that is not on the list of trusted
computers,ssh displays the fingerprint of the key received,
and prompts the user whether he wants to add that computer
and key to the trusted store. To verify the the fingerprint,
the user need to resort to an out of band mechanism like a
fax, a phone or an email. There is no automated, easy-to-
use way for the user to know if the host key of the remote
computer is correct, and hence it is accepted by the user on a
presumption of validity (Trust on First Use). Any connection
to that server from that point onwards is verified by thessh
client by comparing the server’s key with the one stored in the
trusted store. This authentication method closes securityholes
due to IP spoofing, DNS spoofing, and routing spoofing after
the first connection.

The ssh command from openSSH [2] provides a rich set
of functionality, which enabled us to implement DoubleCheck
with a simple shell script. The following command can be
used to retrieve the key of a remote server ($SERVER) and
store it in a temporary file ($KEY-FILE-DIRECT) using the
direct path.
ssh $SERVER -o StrictHostKeyChecking=no

-o UserKnownHostsFile=$KEY-FILE-DIRECT

-n -N -o NumberOfPasswordPrompts=0 -o

PasswordAuthentication=yes

To retrieve the host key using Tor, we run the Tor client
(started as a daemon process) and make use of thenetcat
(nc) command. The Tor client runs SOCKS proxy on port
9050. Netcat provides a rich set of functionality to connect
using UDP or TCP. It can be used for connecting using an
HTTPS or SOCKS proxy, and can be used as a proxy option
of thessh command. Specifically, theProxyCommandoption
of ssh uses the command given as its argument to establish
the network communication. The following command can be
used to retrieve the key of a remote server ($SERVER) and
store it in a temporary file ($KEY-FILE-TOR) using the Tor
network.
ssh $SERVER -o StrictHostKeyChecking=no

-o UserKnownHostsFile=$KEY-FILE-TOR

-n -N -o NumberOfPasswordPrompts=0

-o PasswordAuthentication=yes -o

ProxyCommand=’/usr/bin/nc -X 5 -x

127.0.0.1:9050 %h %p’

Now we can compare the contents of the host keys retrieved
on the direct path and the Tor path. If they are different, then
there is a likely MitM attack for the remote server. If the
host keys are the same, the attack is unlikely as described
in Section III. If we want to trust the cached host keys that
are present in the.ssh/known hosts file, we execute the
following command before we retrieve the host keys on the
direct and Tor paths.
ssh $SERVER -o StrictHostKeyChecking=yes

This command succeeds only if the host signature is avail-
able on the cache and matches with the one retrieved on the
direct path.

Fig. 2. User alert on domain mismatch

B. SSL Implementation

SSL is a cryptographic protocol that provides secure com-
munication on the Internet for web browsing and other data
transfers. Its most common use is for secure browsing using

4

Fig. 3. Secure browsing using DoubleCheck

Fig. 4. Preference settings for DoubleCheck plugin

HTTPS (HTTP over SSL). During the connection establish-
ment of SSL, the server sends its certificate to the client. The
verification of the certification by the client typically involves
the following:

1) The server certificate is signed by one of the certificate
authorities (CA) that the client trusts.

2) The server certificate has a valid time period.
3) The named owner in the certificate is the same as the

server to which the client connected to.

Web browsers warn the user if the user attempts a con-
nection to a site that fails any one of the above checks.
The user is prompted for accepting the violating certificate
for the current session or permanently. Though the user has
more information about the certificate compared to the SSH
host keys case (such as the signer, whom the certificate is
issued to, expiration,etc.), he/she still would not know if the
certificate can be trusted because of the violations. Typically,
users grant permission to connect temporarily to the server.
The DoubleCheck mechanism can provide information to the

user that enables an informed decision to be made.
We implemented a DoubleCheck plugin for the Firefox

browser. The plugin blocks access to sites for which the
DoubleCheck reports possible attacks. The plugin is easy to
use and can be enabled or disabled by click of a button. When
enabled, it gives the status of the connection. Screenshotsof
the plugin in action are shown in Figures 2 and 3.

We implemented the Firefox plugin by first creating
an overlay extension to the status bar that is loaded at
the Firefox startup. We also created a DoubleCheck XP-
COM [9] component that is invoked when any of the cer-
tificate validation checks fail. The browser is made to in-
voke the new XPCOM component functions by replacing the
@mozilla.org/nsBadCertListener;1component with the new
one. When invoked, the new XPCOM component retrieves a
certificate on an alternate path over Tor and compares it with
the one received by Firefox on the direct path. To receive the
certificate on the alternate path, the XPCOM component uses
OpenSSL [3] to connect to the remote server. This OpenSSL
connection uses the Tor client as the SOCKS proxy, forcing
the connection to go through the Tor network.

If the certificate retrieved by the XPCOM component on
the alternate path is the same as the certificate retrieved bythe
Firefox browser on the direct path, the connection is allowed
to go through. Otherwise, the connection is blocked. In either
case, the result of the certificate retrieval is communicated to
the status bar extension, which is then displayed as a tool tip
on the status bar.

The Firefox plugin provides a preference window that
allows the user to enable or disable DoubleCheck. The pref-
erence window also allows to user to run the Tor proxy on
a non-standard port or on a remote machine (Figure 4). For
security purposes, it is recommended that the user runs the
Tor proxy on the local machine. The DoubleCheck Firefox ex-
tension is available athttp://www.cs.columbia.edu/
∼mansoor/doublecheck/

V. EXPERIMENTAL RESULTS

A. SSL performance

To determine the impact of DoubleCheck on regular brows-
ing sessions, we measured the time it takes to load pages
that have domain mismatch errors, as well as those with self-
signed, previously unknown certificates.

For testing domain mismatch certificates, we used sites
that redirect the other URLs whose domain does not
match the information in the certificate. For example,
https://mail.yahoo.com uses a certificate issued for
login.yahoo.com, and https://gmail.com uses a
certificated issued tomail.google.com. For self-signed
certificates, we have used our own web servers configured
appropriately.

The results of loading pages are shown in Table I. We use
the notationdc for an experiment with DoubleCheck enabled
andorg for an experiment with DoubleCheck disabled. Each
experiment was run 6 to 10 times and the average time was
taken.

5

Error type URL experiment time (s)
dc - bootup 13.847
dc - first request 7.203

Domain mail.yahoo.com org - first request 2.700
mismatch dc - page refresh 0.933

org - page refresh 0.889
dc - bootup 4.762
dc - first request 3.200

Domain gmail.com org - first request 2.700
mismatch dc - page refresh 0.388

org - page refresh 0.389
dc - bootup 9.406
dc - first request 6.059

Self private site 1 org - first request 4.859
signed (IP address access) dc - page refresh 0.185

org - page refresh 0.184
dc - bootup 17.733
dc - first request 14.664

Self private site 2 org - first request 11.636
signed (DNS access) dc - page refresh 0.512

org - page refresh 0.519
dc - first request 0.846

No error login.yahoo.com org - first request 0.830
dc - page refresh 0.546
org - page refresh 0.508

TABLE I

T IME IN SECONDS TAKEN TO LOADHTTPSPAGES

Server Location Direct Path Tor Path

Same subnet 0.140 5.243
Same campus 0.910 4.516
Same campus 0.942 10.287

Remote 0.189 5.117
Remote 0.871 14.839
Remote 3.287 9.105
Remote 0.423 13.887

TABLE II

T IME IN SECONDS TO RETRIEVE SSH HOST KEYS

When there is a domain mismatch or a self-signed cer-
tificate, DoubleCheck fetches the server certificate using the
Tor network. This incurs an additional overhead compared
to a system that does not use DoubleCheck. This additional
overhead is higher when a page is fetched for the first time
after a boot or after a period of system inactivity. This is
due to the fact that the Tor client needs to re-establish the
connection with Tor network. Hence the time to load a new
site is divided into two rows for the DoubleCheck scheme in
the table, marked as bootup and first request. The first time
page loading (bootup) takes about3.69 seconds longer.

We then measured the time taken to fetch a page, where the
browser is restarted for each experiment. When DoubleCheck
is disabled and there is a domain mismatch, the user is
notified of the domain mismatch and prompted to press OK.
If DoubleCheck is enabled, there is no prompt; DoubleCheck
fetches the certificate through the Tor network and compares
it with the one fetched through the direct path. The time taken
to fetch the page for the DoubleCheck scheme is about2.26

seconds longer compared to the original (insecure) scheme.
Once a page is loaded on to the browser, subsequent

refreshing of the page or visiting other pages on the same site
is faster than the initial loading. Navigating through the pages
from a site is the most common operation of a user. There
is no special processing needed for DoubleCheck to do this
frequent operation, and hence there is no additional overhead.

The last set of rows on the table show the results for HTTPS
sessions that do not have any issues with the certificates.
In this common case there is no additional overhead for
DoubleCheck.

B. SSH performance

Now we study the performance of the implementation of
DoubleCheck for SSH using the scripts outlined in Section IV-
A. We measure the time taken to retrieve the host keys on
the direct and Tor paths. The experiments were conducted
using the servers on same subnet as the client, same campus
but different subnet, and different remote locations. Table II
gives the time in seconds taken to retrieve the host keys. The
additional time taken to retrieve the host keys on Tor path
varied from 4 seconds to 14 seconds on average. There was
no correlation on the time it took to retrieve the host keys and
the location of the server. The time might depend on the actual
path taken, and the load and capacity on the server as well as
the Tor relay nodes. This additional time is needed only when
connecting to a server for the first time, or when there is a
key mismatch. Subsequent traffic and connections goes over
the direct path, and there is no overhead. We believe that this
additional time is not a high price to pay for the security.

VI. RELATED WORK

Perspectives [20] addresses the problem of verification of
a server’s identity through multiple path probing by creating
a new infrastructure comprised of “notary servers.” Notary
servers probe the keys of all Internet-connected servers period-
ically and store the hash of the keys/certificates in a database.
Clients request the history of keys from the notaries while
connecting to an Internet server.

There are various solutions proposed for authenticating
Internet hosts. X.509 certificates in PKI [12] and the SSH
model are the two most popular. Other solutions include
Kerberos [19] and web-of-trust approaches such as Pretty
Good Privacy (PGP) [10]. Self organized public key man-
agement systems were proposed for Mobile Ad-hoc Networks
(MANETs), where on-line access to trusted authorities are not
available, by users creating their own certificates and accepting
another certificate if there is a chain of trusted certificates [11].

RFC 4255 [17] proposes to use DNS to securely publish
SSH host key fingerprints. This requires the deployment of
secure DNS, as well as for DNS to act as a certificate authority
for the host key fingerprints for the machines in its domain.

There has been considerable work to secure the DNS
lookup process, which can prevent man-in-the-middle attacks
through DNS spoofing. ConfiDNS [15] improves the security
by multi-site lookup and lookup histories. The Domain Name
System Security Extensions (DNSSEC) [1] add data origin
authentication and data integrity to the Domain Name System.

6

DoubleCheck Perspectives

Spatial verification Yes Yes
Temporal verification No Yes

Multiple witnesses for keys Yes Yes
Number of witness Many 4 (on 01/2009)
New infrastructure Not needed Needed

Methodology On demand Offline retrieval
New server or key change Supported Not supported

Privacy concerns No Yes

TABLE III

COMPARISON OFDOUBLECHECK AND PERSPECTIVES

A. Comparison with Perspectives

In this section, we compare and contrast DoubleCheck
with Perspectives. DoubleCheck performs a subset of the
functions Perspectives supports, but without requiring any new
infrastructure. Table III summarizes the key differences.The
scheme that has a clear advantage over the other is marked in
bold.

The major advantage of Perspectives over DoubleCheck
is that the former can support temporal verification of the
certificates since the notary servers store the history of the
certificates. Unlike DoubleCheck, this can detect a compro-
mised server or an attack where the attacker is in the same
subnet as the server. The disadvantage of temporal verification
is that it can lead to false positives when the key of the server
changes for genuine reasons.

The major advantage of DoubleCheck over Perspectives is
that DoubleCheck runs over the existing infrastructure. Unlike
Perspectives, no new powerful servers connected to the Inter-
net via high bandwidth links are needed. Tor is well established
and runs on large number of servers (1072 routers as of
January 2009 [4]). Hence DoubleCheck is easier to deploy
in practice. There can be privacy concerns in Perspectives as
the clients need to reveal to the notary servers the address of
the servers they want to connect to. Unless the notary servers
do an on-demand retrieval of the certificates, a client using
Perspectives will not be able to validate the keys for new
servers unknown to the notaries.

VII. C ONCLUSIONS

We presented DoubleCheck, a solution for verifying the
certificates and host keys for “trust on first use” applications.
Unlike previous proposals, our scheme is practical, easy to
deploy, without any privacy concerns and does not require
any new infrastructure. We showed that the solution is sim-
ple to implement and can be achieved by a straightforward
script-based extension to SSH and an easy-to-use plugin for
Firefox. We showed that performance overhead is minimal,
with DoubleCheck incurring no overhead in the most common
usage scenarios. Our scheme can mitigate the impact of man-
in-the-middle attacks at low overhead without requiring any
additional infrastructure.

ACKNOWLEDGEMENTS

This work was supported by NSF Grant CNS-07-14277
and ONR MURI Grant N00014-07-1-0907, with additional
support from Google. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF,
ONR, or the U.S. Government.

Mansoor Alicherry is supported by Alcatel-Lucent, Murray
Hill, NJ.

REFERENCES

[1] DNSSEC: DNS Security Extensions Securing the Domain Name Sys-
tem. http://www.dnssec.net/.

[2] OpenSSH.http://www.openssh.org/.
[3] OpenSSL.http://www.openssl.org/.
[4] Tor Network Status.http://torstatus.blutmagie.de.
[5] Tor project. http://www.torproject.org.
[6] US-CERT Vulnerability Note. Multiple DNS implementations vulnera-

ble to cache poisoning.http://www.kb.cert.org/vuls/id/800113.
[7] VeriSign Certification Practice Statement.

http://www.verisign.com/repository/CPS/.
[8] VeriSign SSL Certificates.http://www.verisign.com/ssl/index.html.
[9] XPCOM. http://www.mozilla.org/projects/xpcom/.

[10] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP
Message Format.RFC 4880, Nov 2007.

[11] S. Capkun, L. Buttyn, and J. pierre Hubaux. Self-organized public-key
management for mobile ad hoc networks.IEEE Transactions on Mobile
Computing, 2:52–64, 2003.

[12] S. Chokhani and W. Ford. Internet X.509 Public Key Infrastructure
Certificate Policy and Certification Practices Framework.RFC 2527,
March 1999.

[13] D. Kaminsky. Black Ops 2008 – Its The End Of The Cache As WeKnow
It. Blackhat 2008 briefings. http://www.doxpara.com/DMKBO2K8.ppt.

[14] D. Koblas and M. R. Koblas. SOCKS.USENIX Security Symposium,
1992.

[15] L. Poole and V. S. Pai. ConfiDNS: leveraging scale and history to
improve DNS security.USENIX Workshop on Real, Large Distributed
Systems, 2006.

[16] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. Emperors
new security indicators: An evaluation of website authentication and the
effect of role playing on usability studies. 2007.

[17] J. Schlyter and W. Griffin. Using DNS to Securely PublishSecure Shell
(SSH) Key Fingerprints.RFC 4255, Jan 2006.

[18] J. Sobey, R. Biddle, P. van Oorschot, and A. Patrick. Exploring user
reactions to browser cues for extended validation certificates. European
Symposium on Research in Computer Security, October 2008.

[19] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An Au-
thentication Service for Open Network Systems.Winter 1988 Usenix
Conference, February 1988.

[20] D. Wendlandt, D. Andersen, and A. Perrig. Perspectives: Improv-
ing SSH-style Host Authentication with Multi-path NetworkProbing.
USENIX Annual Technical Conference, 2008.

7

