
Using Program Specialization to Speed
SystemC Fixed-Point Simulation

Stephen A. Edwards ∗

Columbia University, New York
sedwards@cs.columbia.edu

Abstract
Generic simulation components, such as fixed-precision arithmetic
routines, make it easier to quickly assemble system simulations,
but generic components tend to simulate more slowly than their
manually-written specialized counterparts. So a system modeler is
normally forced to choose between building a simulation quickly
or running it quickly.

This paper explores the use of program specialization as a way
to address this conundrum. Through hints provided by the author of
a generic library and aggressive compiler optimizations, program
specialization can automatically rewrite a generic component into
a specialized one with performance comparable to a careful manual
implementation. As a result, the user of such a specializable library
can quickly assemble a simulation from generic components whose
performance can equal that of a more tedious implementation.

Experimental results show that program specialization provides
a three- to seven-times speed-up on an important class of simula-
tions: signal processing kernels in SystemC that manipulate fixed-
precision numbers.
Categories and Subject Descriptors D.3.4 [Software]: Program-
ming Languages—Processors; I.6.3 [Simulation and Modeling]:
Applications
General Terms Languages, Simulation
Keywords Program Specialization, Fixed-point Simulation, Sys-
temC, Tempo, Prespec

1. Introduction
While great progress has been made in devising alternate ways to
validate digital systems, simulation remains king because of its
simplicity, scalability, and ability to provide a variety of insights
into the behavior of a system. Its only problem? Designers always
want it to be faster.

This paper presents a case study in using program specialization
to speed a particular class of simulations: signal processing algo-
rithms using fixed-point arithmetic coded in the popular SystemC

∗ Edwards and his group are supported by an NSF CAREER award, a gift
from Intel corporation, and grants from the SRC and New York State’s
NYSTAR program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM ’06 January 9–10, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-196-1/06/0001. . . $5.00.

libraries [6]. Such arithmetic, which uses nonstandard word sizes
and binary points in the middle of words, is easily implemented
in hardware, but often time-consuming to simulate in software be-
cause most processors are best suited performing arithmetic on a
handful of word sizes. Compounding the problem, especially in the
case of the SystemC libraries, is the need to make the code general
enough to work with many different bitwidths.

This paper makes two contributions: an experimental study that
demonstrates the feasibility and effectiveness of using program
specialization to accelerate simulation and a set of guidelines for
writing libraries that can be effectively specialized. While the ex-
periments conducted here were performed on signal-processing al-
gorithms that use the SystemC fixed-point arithmetic libraries, the
results should generalize to other simulation applications.

I experimented on signal-processing algorithms with fixed-point
arithmetic because they are good candidates for specialization. Sig-
nal processing algorithms are usually written first using floating-
point arithmetic to establish their viability, then refined to use fixed-
precision arithmetic as a prelude to hardware implementation. Al-
though some techniques for choosing word lengths are able to avoid
simulation by working symbolically (e.g., Fang et al. [5]), most rely
on bit-accurate simulation in the inner loop of an optimization al-
gorithm, making fast simulation critical. Even when practical an-
alytical techniques can be employed, efficient simulation code for
a signal processing algorithm is still valuable because it may be
needed in simulating the larger system that it is inevitably a part of.

Figure 1 shows a fixed-point multiplication routine. Its repre-
sentation for a fixed-precision number—struct fp—consists of a
machine word to hold the actual bits (the val field) along with con-
figuration parameters such as wl, the word width, iwl, the integer
portion of the word, etc. Figure 3 shows this representation graph-
ically. For particular concrete values of these parameters, the spe-
cialized mult function in Figure 2 is equivalent, and naturally must
faster, but a library needs to contain the more general code in Fig-
ure 1 because it must support arbitrary word sizes. The result, not
surprisingly, is that typical signal-processing algorithms that use
the library code can run ten to one hundred times slower than neces-
sary. In this paper, I present experimental results that show program
specialization is able to recover much of this, provided the code was
written with specialization in mind. Specialization-ignorant library
code only recovers a factor of two or three.

The specialized multiplication code in Figure 2 was produced
automatically by the Tempo [3, 4] program specializer from the
generic code in Figure 1 (I modified it only for clarity). Informa-
tion about word length, etc. was provided by the Prespec [14] spec-
ification in Figure 4 and its effects are taken into account by the
specializer. In particular, decisions derived from the word length,
rounding, and quantization modes have been made at compile time
and therefore do not consume time while the simulation is running.

typedef struct fp {
int val; /* 32-bit value value of the number */
int wl; /* Word length, in bits */
int iwl; /* Integer word length, in bits */
int lbp; /* Location of binary point, in bits */
int overflow;
int rounding;

} fixed;

#define WL(f) ((f)->wl) /* Word length */
#define IWL(f) ((f)->iwl) /* Integer word length */
#define FWL(f) \

((f)->wl - (f)->iwl) /* Fractional word length /*
#define LBP(f) ((f)->lbp) /* Location of binary point */
#define VAL(f) ((f)->val) /* Integer value */

#define POW2(n) (1 << (n)) /* 2^n for integers */

void mult(fixed *r, fixed *a, fixed *b) {
int av, bv, shift;
av = VAL(a) >> (LBP(a) - FWL(a));
bv = VAL(b) >> (LBP(b) - FWL(b));
shift = FWL(a) + FWL(b) - LBP(r);
VAL(r) = av * bv;
if (shift > 0) VAL(r) >>= shift;
else if (shift < 0) VAL(r) <<= -shift;
fix_quantize(r);
fix_overflow(r);

}

void quantize(fixed *r) {
int shift, delta, mask;
switch (r->rounding) {
case ROUND:

delta = POW2(LBP(r) - FWL(r) - 1);
shift = LBP(r) - FWL(r);
VAL(r) =
((VAL(r) + delta) >> shift) << shift;
break;

case TRUNCATE:
mask = POW2(LBP(r) - FWL(r)) - 1;
VAL(r) &= ~mask;
break;

}
}

void overflow(fixed *r) {
int min, max, shift, tmp;
switch (r->overflow) {
case SATURATE:

max = POW2(IWL(r) + LBP(r) - 1) -
POW2(LBP(r) - FWL(r));

min = -POW2(IWL(r) + LBP(r) - 1) -
POW2(LBP(r) - FWL(r)) - 1;

if (VAL(r) > max) VAL(r) = max;
else if (VAL(r) < min) VAL(r) = min;
break;

case WRAP:
shift = sizeof(int) - IWL(r) - LBP(r);
VAL(r) = (VAL(r) << shift) >> shift;
break;

}
}

Figure 1. Generic fixed-precision multiplication routines.

The usual approach to speeding the simulation of such fixed-
point-arithmetic code is to employ an automatic code generator that
synthesizes the specialized code from a higher-level description.
The FRIDGE system from Keding et al. [10, 11] is representative
and successful, but somewhat limited because each arithmetic algo-
rithm and optimization must be hand-coded. The quality of the code
is good—I found a program specializer can be coaxed into produc-
ing code with comparable performance—so the main advantage of
program specialization is flexibility: new fixed-point arithmetic al-
gorithms do not require source-level changes to the code generator.

void mult(fixed *r, fixed *a, fixed *b) {
int av, bv;
av = a->val >> 4;
bv = b->val >> 4;
r->val = av * bv;
r->val >>= 8;
r->val &= 0xfffffff0;
if (r->val > 0x7fff0)

r->val = 0x7fff0;
else if (r->val < -0x80011)

r->val = -0x80011;
}

Figure 2. The mult function of Figure 1 after specializing
with wl=16, iwl=4, lbp=16, quantization=TRUNCATE, and over-
flow=SATURATE. Most computations have been done at compile
time and functions have been inlined. This code runs about 2.5
times faster than the generic version in Figure 1.

In the remainder of this paper, I describe fixed-precision arith-
metic, program specialization, and present experiments that show it
can accelerate simulation as much as seven times. I conclude with
a section on lessons for library writers who want to apply program
specialization to their code.

2. Fixed-Precision Arithmetic
Arbitrary-precision arithmetic performed using limited-precision
operations is a classical problem (see, for example, Knuth [12,
section 4.3]). Algorithms for basic arithmetic operations are simple
loops with a lot of bookkeeping that is usually specific only to the
word length and not the values being manipulated. It is exactly this
character that makes fixed-precision arithmetic a good candidate
for program specialization.

The fixed-point libraries of SystemC [6] are the subject of the
specialization experiments presented here. These libraries are writ-
ten in C++.

Unfortunately, the fixed-point routines are not especially effi-
cient. The experimental results in Table 1 show that they can be
as much as three orders of magnitude slower than using native
floating-point arithmetic. Carefully recoding certain routines with-
out changing data representations can recover nearly a factor of
seven (second row in Table 1), and program specialization can re-
cover another factor of two.

Others have attempted to speed the simulation of signal pro-
cessing algorithms that employ fixed-point arithmetic. The FRIDGE
system from Keding et al. [10, 11] is representative and successful.

Flexibility is the main advantage of program specialization over
FRIDGE. The fixed-precision arithmetic algorithms in FRIDGE are
integrated in a code generator, making it difficult to modify or
add algorithms. By contrast, a library developer using the program
specialization technique used here does not need to write a code
generation algorithm, just generic code for components written in
a style that produces good results when program specialization is
applied. In fact, the program specializer does not “understand” that
the routines in Figure 1 perform multiplication; it does not need to.

2.1 Implementing Fixed-Precision Arithmetic
Figure 1 shows an implementation of a fixed-precision multiply
algorithm that uses a contiguous sequence of bits in a machine
word to represent a fractional number, shown in Figure 3. The wl
parameter indicates the total number of bits used in the number
representation, iwl is the number of bits to the left of the binary
point (the integer word length), and lbp is location of the binary
point in the machine word.

S S S I I I F F F F F

wl

iwl lbp
Figure 3. The representation of fixed-precision numbers used in
the FRIDGE system [10], characterized by the parameters wl, iwl,
and lbp.

Manipulating fixed-precision numbers involve shifting, mask-
ing, and arithmetic operations. Efficient implementations of such
algorithms minimize computation of things like the masks and the
number of bits to shift, which is pure overhead. In general, the re-
sults of such calculations change little during a simulation; the ba-
sic idea of program specialization is to perform such calculations
at compile-time and hardwire them into the generated code. Espe-
cially for arithmetic algorithms, this can be very beneficial since
the part of the algorithm that does actual work can be much smaller
than the overhead computations.

3. Program Specialization
Program specialization, a class of partial evaluation [2, 7], starts
with specialization predicates: aspects of the system that are known
in advance, such as the number of bits in a fixed-precision number.
A partial evaluator takes these specialization predicates and a pro-
gram and performs a binding time analysis, which decides which
parts of the program can be evaluated statically versus which must
be evaluated while the system is running. Finally, the static portion
of the program is evaluated and re-inserted in the generic program,
producing a specialized program that observes only the dynamic
inputs to the system.

I used static specialization—performed completely at compile-
time—for these experiments. While there are also dynamic spe-
cialization techniques that generate code while the program is run-
ning, they are not as useful for simulating fixed-precision arithmetic
since things such as word length do not tend to change.

Using program specialization, therefore, consists of identifying
appropriate specialization predicates—a straightforward operation
for fixed-precision arithmetic, coaxing the program specializer to
generate code of the desired “shape,” and integrating it back in the
application.

Instructing a program specializer how to proceed can be tricky.
To control Consel et al.’s [3, 4] Tempo program specializer, I
used Prespec [14], a semi-graphical front-end tool developed for
this purpose. Figure 4 shows a pair configuration files I gave to
Prespec. Such files are typically written by the library designer
to guide the program specializer. They indicate which variables
should be treated as static (specializable) and the boundaries of
the specialization process (function boundaries in Tempo). This
example indicates the multiply function and the two functions it
calls, quantize and overflow, should all be specialized. If multiply,
say, called an error reporting function that we did not want to
specialize because it is not performance-critical, we could indicate
this by marking the error function as extern instead of intern.

The Prespec tool runs in two phases. Feeding the configuration
file to the tool produces a specialization system. To this system, a
user then provides details about the specialization scenario (e.g.,
specific wordlengths), runs the second half of Prespec, and this
generates a C source file containing the specialized code. As a
result, the user only needs to fill in a form describing how he or
she would like to use the library components; the library designer
has managed the details.

Consel et al. have applied program specialization to system
software [15] such as TCP/IP stacks [1], which, like fixed-precision

Module fixed { /* file fixed.mdl */
Defines {

From fixed.h {
Fixed::struct fp {
D(int) val;
S(int) wl;
S(int) iwl;
S(int) lbp;
S(int) overflow;
S(int) rounding;

};
}
From fixed.c {

Quantize::intern
quantize(Fixed(struct fp) S(*) r);

Overflow::intern
overflow(Fixed(struct fp) S(*) r);

}
}
Exports { Fixed; Quantize; Overflow; }

}

Module mult { /* file mult.mdl */
Imports {

From fixed.mdl {
Fixed;
Quantize;
Overflow;

}
}
Defines {

From fixed.c {
Multiply::intern

mult(Fixed(struct fp) S(*) r,
Fixed(struct fp) S(*) a,

Fixed(struct fp) S(*) b)
{ needs {

Quantize;
Overflow;

}
};

}
}
Exports { Multiply; }

}

Figure 4. The Prespec [14] specializer configuration for the fixed-
precision multiply routine in Figure 1. It defines all but the val
field of the fixed-precision data type as taking static (specializable)
values and says to assume the arguments to the multiply, quantize,
and overflow functions also follow this pattern.

simulation libraries, are both performance-critical and written to
handle many more cases than usually appear at run-time. They have
the additional challenge of doing specialization while the system
is running—dynamic specialization—since operating system code
much cope with applications that are not known at compile-time.
The experiments here do not use such a feature because the relevant
specialization context is known before the system runs, although
this could be used, say, for quickly comparing the behavior of the
algorithm on many different word lengths.

Lawall [13] applies partial evaluation to speed the fast Fourier
transform, one of the examples I describe below. Although her goal
of speeding an implementation that uses processor-native floating-
point differs substantially from mine (my focus is to speed arith-
metic; hers is to speed its control skeleton), the 7.8× speed-up she
obtained for the 16-point FFT is comparable to my result of 6.8×
when also specializing the whole routine.

#include "systemc.h"
#define N 25

double fix_fir(double _in[])
{

sc_fxtype_params param(32, 16, SC_RND, SC_SAT);
sc_fxtype_context con(param);

sc_fix in[N]; // Input samples
sc_fix c[N]; // Coefficients
sc_fix t[N]; // Temporary (intermediate) results
sc_fix y; // Accumulator

// Initialize the coefficient vector
int i;
double ct = 0.9987966;
for (i = 0 ; i<N ; i++) {

in[i] = _in[i];
c[i] = ct;
ct /= 2;

}

// Compute the dot product
for (i = 0 ; i < N ; i++) {

t[i] = c[i] * in[i];
y += t[i];

}

return y;
}

Figure 5. The original FIR routine, which uses the SystemC fixed-
point libraries. Courtesy of Claire Fang.

4. Experimental Results
The main contribution of this paper is the following series of
experiments. I applied program specialization to SystemC fixed-
precision arithmetic libraries, which were not written with program
specialization in mind, found that the results were about a magni-
tude worse than the FRIDGE results, then manually wrote a fixed-
precision library designed for specialization that produces code like
that from the FRIDGE system [10]. By design, this rewrite produced
much faster code; specialization of the original libraries was only
able to speed the SystemC code by a factor of two.

I experimented with three small but typical signal processing
algorithms: FIR, a 25-point finite impulse-response filter that per-
forms 25 multiply and add operations (Figure 5); IDCT, an 8-point
inverse discrete cosine transform, comprising 18 additions, 12 sub-
tractions, and 11 multiplies (Figure 7); and FFT, a 16-point fast
Fourier transform (Figure 8). While real-world algorithms can be
much larger than this, it is the size of the library, not the size of the
algorithm, that is the main load on the program specializer.

Figure 5 shows the original C++ code for the FIR. Its simplicity
is deceptive because all the usual arithmetic operators on the sc fix
type are overloaded and invoke costly routines. However, such sim-
ple top-level control-flow is typical of signal processing algorithms.
To make this code palatable to Tempo, I manually rewrote it as
shown in Figure 6. This consisted mostly of expanding out the func-
tion calls implicit in the overloaded operators, although I also split
off the coefficient initialization code so I could run the actual FIR
algorithm (the loop in the fir function that performs the multiply-
and-accumulate operation) in isolation. The times I report do not
include the time for initializing the coeff array, whose speed would
not be critical in practice.

The code for the IDCT (Figure 7) is longer, but even more
simple because it is basically a sequence of arithmetic operations.
I do not show how I rewrote it in C because it is lengthy yet trivial.

#define INIT(a) \
FIXED_INIT(a, 16, 4, 16, SATURATE, TRUNCATE)

#define N 25

void init_coeff(fixed *coeff)
{

int i;
fixed c, d2, tmp;

INIT(c);
FIXED_FROM_DOUBLE(c, 0.9987966);
INIT(d2);
FIXED_FROM_DOUBLE(d2, 0.5);
INIT(tmp);

for (i = 0 ; i < N ; ++i) {
INIT(coeff[i]);
FIXED_ASSIGN(coeff[i], c);
FIXED_MUL(tmp, c, d2);
FIXED_ASSIGN(c, tmp);

}
}

void mac(fixed *acc, fixed *coeff, fixed *in)
{

fixed sum, prod;
sum.wl = 16;
sum.iwl = 4;
sum.lbp = 16;
sum.overflow = SATURATE;
sum.rounding = TRUNCATE;
prod.wl = 16;
prod.iwl = 4;
prod.lbp = 16;
prod.overflow = SATURATE;
prod.rounding = TRUNCATE;
FIXED_MUL(prod, *in, *coeff);
FIXED_ADD(sum, *acc, prod);
FIXED_ASSIGN(*acc, sum);

}

void
fir(fixed *result, fixed *coeff, fixed *in)
{

int i;
INIT(*result);

for (i = 0 ; i < N ; ++i) {
mac(result, &coeff[i], &in[i]);

}
}

Figure 6. My manually-recoded FIR routine.

The FFT routine, whose recoded form I show in Figure 8,
is a bit more complicated, containing some nested loops but no
conditionals. Again, this is typical of signal-processing code. Here
I do not show the original SystemC source, which I took from the
SystemC 2.0.1 distribution—it was one of the examples, because it
was very long and messy; its core functionality and ultimate output
is the same as for the code in Figure 8.

Table 1 lists the running times for the three examples imple-
mented in eight different ways and the ratios of these times, i.e., the
speed-up due to each coding improvement. The first six implemen-
tations listed in Table 1 produce identical results; the last two use
the processor’s native (hardware-accelerated) floating-point arith-
metic instead of fixed-point and therefore produce slightly different
results.

#include "systemc.h"

double fix_idct(double _in[], double _out[]) {
sc_fxtype_params param(32, 16, SC_RND, SC_SAT);
sc_fxtype_context c(param);

sc_fix x0, x1, x2, x3, y0, y1, y2, y3, z0, z1, z2, z3;
sc_fix s0, s1, s2, s3, u0, u1, u2, u3, v0, v1, v2, v3;
sc_fix t0, t1, t2, t3;
sc_fix tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
sc_fix in[8], out[8];

for (int i = 0; i< 8; i++) in[i] = _in[i];

sc_fix CONST1 = 1.414213562;
sc_fix CONST2 = 1.306562965;
sc_fix CONST3 = 0.541196100;
sc_fix CONST4 = 0.125;
sc_fix CONST5 = 0.899976223;
sc_fix CONST6 = 2.562915448;
sc_fix CONST7 = 0.601344887;
sc_fix CONST8 = 0.509795579;

x0 = in[1]; x1 = in[1] + in[3];
x2 = in[3] + in[5]; x3 = in[5] + in[7];
x1 = in[1] + in[3];

y0 = x0 * CONST1; y1 = x1 * CONST1;
y2 = x2; y3 = x1 + x3;

z0 = y0 - y2; z2 = y0 + y2;
tmp0 = y1- y3; z1 = tmp0 * CONST2;
tmp1 = y1+ y3; z3 = tmp1 * CONST3;

tmp2 = z0 - z1; tmp3 = z0 + z1;
tmp4 = z2 - z3; tmp5 = z2 + z3;
s0 = tmp2 * CONST5; s1 = tmp3 * CONST7;
s2 = tmp4 * CONST6; s3 = tmp5 * CONST8;

u0 = in[0] - in[4]; u2 = in[0] + in[4];
u1 = in[2] * CONST1; u3 = in[2] + in[6];

v0 = u0; v2 = u2;
tmp6 = u1 - u3; tmp7 = u1 + u3;
v1 = tmp6 * CONST2; v3 = tmp7 * CONST3;

t0 = v0 - v1; t1 = v0 + v1;
t2 = v2 - v3; t3 = v2 + v3;

out[5] = (t0 - s0); out[2] = (t0 + s0);
out[6] = (t1 - s1); out[1] = (t1 + s1);
out[4] = (t2 - s2); out[3] = (t2 + s2);
out[7] = (t3 - s3); out[0] = (t3 + s3);

for (int i = 0; i< 8; i++)
_out[i] = out[i];

}

Figure 7. The original IDCT routine, which uses the SystemC
fixed-point libraries. Courtesy of Claire Fang.

#define INIT(a) \
FIXED_INIT(a, 16, 4, 16, SATURATE, TRUNCATE)

/* N is points in FFT 2**M = N */
#define M 4
#define N (1 << M)
#define LEN ((N)/2)

void fft(fixed supplied_sample_real[N],
fixed supplied_sample_imag[N],
fixed sample_real[N], fixed sample_imag[N],
fixed W_real[LEN - 1], fixed W_imag[LEN - 1])

{
int len, incr, windex, stage, i, j;
fixed tmp1_real, tmp1_imag, tmp2_real, tmp2_imag;
fixed prod1, prod2;

INIT(tmp1_real); INIT(tmp1_imag);
INIT(tmp2_real); INIT(tmp2_imag);
INIT(prod1); INIT(prod2);

for (i = 0 ; i < N ; ++i) {
FIXED_ASSIGN(sample_real[i],

supplied_sample_real[i]);
FIXED_ASSIGN(sample_imag[i],

supplied_sample_imag[i]);
}

for (len = N, incr = 1, stage = 0 ; stage < M ;
incr *= 2, ++stage) {

len /= 2;

// First iteration: no multiplication
for (i = 0 ; i < N ; i += len*2) {

FIXED_ADD(tmp1_real, sample_real[i],
sample_real[i+len]);

FIXED_ADD(tmp1_imag, sample_imag[i],
sample_imag[i+len]);

FIXED_SUB(sample_real[i+len], sample_real[i],
sample_real[i+len]);

FIXED_SUB(sample_imag[i+len], sample_imag[i],
sample_imag[i+len]);

FIXED_ASSIGN(sample_real[i], tmp1_real);
FIXED_ASSIGN(sample_imag[i], tmp1_imag);

}

// Remaining iterations: multiply by twiddle factors
for (windex = incr - 1, j = 1 ; j < len ;

windex += incr, ++j) {
for (i = j ; i < N ; i += len * 2) {
FIXED_ADD(tmp1_real, sample_real[i],

sample_real[i+len]);
FIXED_ADD(tmp1_imag, sample_imag[i],

sample_imag[i+len]);
FIXED_SUB(tmp2_real, sample_real[i],

sample_real[i+len]);
FIXED_SUB(tmp2_imag, sample_imag[i],

sample_imag[i+len]);
FIXED_MUL(prod1, tmp2_real, W_real[windex]);
FIXED_MUL(prod2, tmp2_imag, W_imag[windex]);
FIXED_SUB(sample_real[i+len], prod1, prod2);
FIXED_MUL(prod1, tmp2_real, W_imag[windex]);
FIXED_MUL(prod2, tmp2_imag, W_real[windex]);
FIXED_ADD(sample_imag[i+len], prod1, prod2);
FIXED_ASSIGN(sample_real[i], tmp1_real);
FIXED_ASSIGN(sample_imag[i], tmp1_imag);

}
}

}
}

Figure 8. My recoded FFT routine, adapted from the SystemC
2.0.1 distribution.

Comparing the speed of fixed-point code with floating-point
is somehow unfair, since the latter employs special-purpose hard-
ware, but it does suggest a lower bound for execution time. Beating
the speed of the floating-point implementation seems unlikely, but
it is possible to come close. Compared with the best specialized
code I was able to produce, the speedup for floating-point was only
2.8, 6.4, and 3.4 times for the three examples (eighth row in Ta-
ble 1).

4.1 Specializing the SystemC Libraries
The fixed-precision arithmetic libraries in SystemC are vast, flex-
ible, and fairly inefficient. Apparently designed to work on very
large numbers (1000s of bits), they use a representation that avoids
bit-level shifting at the expense of using more memory.

The main difficulty in specializing the SystemC libraries was
the language in which they are written: C++. Tempo only accepts
ANSI C, and I know of no C++ program specializer. I first tried
to use a tool—Sun’s gcc2c—to do this conversion automatically,
but gcc2c’s output violated too many good C coding practices
and confused Tempo. For example, gcc2c represents every local
variable as an integer and type-casts it when it is used.

Giving up on doing the C++-to-C translation automatically, I
resorted to manually recoding the relevant routines. While I at-
tempted to mimic the C++ implementation as closely as possible,
this was not always possible. For example, a good optimizing C++
compiler can heed const declarations on methods to avoid call-
ing functions multiple times (this is useful, for example, with the
is zero() method on fixed-precision numbers, which should return
the same result provided the number is not modified). Similarly, the
C++ libraries are written using many little methods that are inlined
for efficiency; I manually inlined such code where possible.

The biggest change involved memory management. In an ex-
pression such as “a = b + c,” two C++ operator functions are in-
voked: one that adds b and c to produce a new object, and one
that copies that object to a. The SystemC libraries utilize an elab-
orate memory-management system that reuses objects. Rather than
implement this, I instead wrote the “add” routine to take three ar-
guments: two addends and a place to put the result. This proba-
bly accounts for most of the execution time difference between the
SystemC libraries and the C reimplementation, which ranged from
a factor of 3.4 to 6.6 (second row in Table 1).

While my re-coding was not automatic, I believe most of what I
did for this phase could be automated. The C++ code used only the
most basic object-oriented features (i.e., classes with no inheritance
or virtual functions). Such code could be translated simply into C
(such a program is mostly just a nice way of naming things plus
additional type constraints), but writing such a tool was definitely
beyond the scope of these experiments.

It turns out the main barrier in generating efficient specialized
code from the SystemC libraries is their choice of number represen-
tation. They place the binary point of a number just to the right of
a word (see Figure 9). As a result, the integer portion of a number
always falls in a different word than the fractional, meaning most
numbers are represented in two or more words. This is an interest-
ing trade-off: while it means that bit-level shifts are never necessary
to achieve alignment, it also means that operations on small num-
bers can require twice as many primitive operations. Specialization,
unfortunately, is only able to recover some of this cost: since by def-
inition it preserves the behavior of the original program, it cannot
change the representation of the numbers and hence the number of
primitive operations necessary.

Another inefficient aspect of the SystemC fixed-precision im-
plementation is its use of an explicit sign bit. Maintaining this bit,
which is stored as an integer with values ±1, is done explicitly and
can cost as much as the multiplication of small mantissas. The cost

array[1] array[0]

I I I F F F F F

wl

iwl

size = 2
msw = 1
lsw = 0

typedef unsigned long word;
typedef struct fixed {

word *array; /* mantissa array */
int size; /* words in the array */
int q_mode; /* Quantization mode */
int o_mode; /* Overflow mode */
int state; /* Current state of number */
int wp; /* units word index */
int sign; /* 1 or -1 */
int msw; /* most significant word */
int lsw; /* least significant word */
int wl; /* word length */
int iwl; /* integer word length */

} fixed_fix;

Figure 9. The representation of a fixed-precision number used
in my C implementation of the SystemC libraries. Compared to
Figure 3, bit-level shifting is never necessary in this representation
because the binary point is always between words, but more words
must be manipulated.

is higher for addition routines, which test sign bits and treat ad-
dends with different signs differently.

The biggest difficulty in efficient specialization of the SystemC
libraries came from their use of “mostly static” variables. Specifi-
cally, the lsw and msw words, which index the least and most sig-
nificant mantissa words, are constant for most numbers, but differ
when representing zero, pure integers, and numbers less than one.
When I recoded the algorithm, I made these values a function only
of the word length, not the particular number being represented, so
they could be specialized.

The SystemC libraries hit fundamental challenges in imple-
menting multi-word fixed-precision arithmetic in C or C++. One
problem is the absence of an integer multiplication operator that
produces a double-word result. In C and C++, the product of two
ints is itself an int; the extra bits that may be produced are simply
discarded. As a result, the SystemC library resorts to multiplying
half-words, quadrupling the number of multiplication operations
that would otherwise be necessary. Surprisingly, the SystemC code
does not take this into account and always performs multiplica-
tions as if the numbers consisted purely of whole words, a substan-
tial waste of time for small fixed-precision numbers. I changed this
when I rewrote the libraries in C, producing about a 20% speed-up
for the (small) word size I was using.

The way the SystemC libraries used unions posed another chal-
lenge in adapting them for specialization with Tempo. The C++
code uses a union to pick apart a word into two half words. This is
technically illegal in C definitely not supported by Tempo. I rewrote
it to use explicit shifts.

The top three rows of Table 1 show the running times for the
experiments using the original SystemC libraries, my recoding
of them in (unspecialized) C, and the result of specializing these
libraries with Tempo. All were compiled with gcc -O and run on a
2.53GHz Pentium 4 with a 512K cache and 512MB main memory
running Linux.

The speed difference between the C++ SystemC libraries and
my rewrite is substantial (the second row in Table 1: FIR: 4.2,
IDCT: 6.6, FFT: 3.4). The very first C implementation, which omit-
ted the memory-management system described above, provided a
speed-up of about two. Unnecessary tests were removed in later
versions, largely to improve the quality of the specialized code, but
this also sped up the baseline.

Table 1. Execution times (in ns) and the corresponding speedups for the three examples.

Times Speedup vs. recoded vs. vs. for vs. library vs. program vs. double
FIR IDCT FFT vs. SystemC in C Specialized specialization specialized specialized floats

SystemC 26000 41000 110000 1 1 1
Recoded in C 6300 6100 34000 4.2 6.6 3.4 1 1 1
Specialized 3700 3400 18000 7.1 12 6.1 1.7 1.8 1.8 1 1 1
Written for specialization 2300 1500 8900 11 26 13 2.7 4 3.8 1.6 2.2 2.1 1 1 1
Library specialized 1000 570 3400 25 72 33 6 11 9.8 3.6 5.9 5.4 2.2 2.7 2.6 1 1 1
Program specialized 720 250 1300 36 160 86 8.7 24 26 5.2 13 14 3.2 6.1 6.8 1.4 2.2 2.6 1 1 1
Double precision floats 290 40 420 92 1000 270 22 150 80 13 85 44 8 39 21 3.6 14 8.2 2.5 6.4 3.1 1 1 1
Single precision floats 260 40 380 100 1000 300 25 150 88 15 84 48 9 39 23 4.1 14 9 2.8 6.4 3.4 1.1 1 1.1
Only the “Times” numbers were measured; all other columns just report ratios of these numbers.

The speed-up gained by running single-precision floating-point
compared to the specialized code varies more dramatically (the
bottom row in Table 1: FIR: 15, IDCT: 84, FFT: 48). I attribute this
to the number of non-fixed-precision operations in the examples
and the general inefficiency of the arithmetic algorithms, which the
specializer is not able to completely overcome. The IDCT example
is straight-line arithmetic (no integer arithmetic or loops). FIR
contains a loop around a small multiply-accumulate operation, and
FFT has two nested loops.

The speed-up from specialization varies very little across exam-
ples (third row of Table 1: FIR: 1.7, IDCT: 1.8, FFT: 1.8) and comes
from two factors: the improved speed of the arithmetic code and the
overall mix of instructions. Since all three examples call the same
specialized arithmetic routines, and the overhead in each example
is small compared to the cost of the fixed-precision arithmetic, the
speed-up is uniform across the examples.

4.2 Specializing a Custom Library
The initial goal of this work was to make the specialized techniques
in FRIDGE more flexible without losing performance. Directly us-
ing the SystemC code could not achieve this because the special-
izer could not overcome the choice of number representation made
by the SystemC library designers. So I wrote a library that uses
the more-efficient representation in FRIDGE (Keding et al. [10])
and was able to achieve a much better speed-up, comparable to
that of FRIDGE. Again, flexibility is the advantage of specialization
over FRIDGE: algorithms can easily be changed without having to
rewrite the code generator.

Keding et al. [10] represent fixed-precision numbers in a single
machine word by placing the binary point to the left of the right-
most bit, as shown in Figure 3. Choosing such a representation re-
duces the number of words to represent small wordlength numbers
and can reduce the number of primitive operations (e.g., +, *), but it
does mean that add and multiply operations almost always require
shifting before or after to ensure alignment (see the code in Fig-
ure 1). Fortunately, shifting is cheap on modern processors, so this
representation provides a good trade-off for small word lengths.

The fourth, fifth, and six rows in Table 1 shows the execution
times for these variants of the algorithms. I believe these are more
representative of the power of specialization than the second and
third because the code was written with specialization in mind.

The fifth and sixth rows in Table 1 show the effects of two types
of specialization: for “Library specialized,” the individual arith-
metic functions were specialized in isolation, much as they were
for the SystemC library. However, for “Program specialized,” the
entire algorithm, arithmetic functions included, was specialized.
Obviously, the latter approach should produce faster code, if for
no other reason than function inlining, at the expense of a larger
executable. Specializing the arithmetic functions alone gives a bet-
ter result (fifth row of Table 1: FIR: 2.2, IDCT: 2.7, FFT: 2.6) than

doing the same to the SystemC libraries since they were not written
with specialization in mind.

The speed-up factor for specializing the algorithms along with
the arithmetic functions (sixth row of Table 1: FIR: 3.2, IDCT: 6.1,
FFT: 6.8) is substantially higher and represents the true power
of program specialization. Unlike the case when only arithmetic
functions are specialized, this also removes loops and virtually all
integer arithmetic. The speedup is greatest for the FFT example,
which contains a nested loop and substantial bookkeeping.

The varying speed gaps between specialized code and the
single-precision floating-point implementation (row 8 in Table ??:
FIR: 2.8, IDCT: 6.4, FFT: 3.4) reflect the amount of non-fixed-
precision arithmetic in the algorithms. IDCT (Figure 7) is pure
arithmetic and thus closely represents the cost of floating-point vs.
fixed-point arithmetic. The loops in the FIR and FFT floating-point
implementation have not been specialized, so the difference is least
for the FIR example, which has the most overhead. For similar ex-
amples, Keding et al. [10] report comparable numbers (factors of
between 2.5 and 6.9).

5. Lessons for Library Writers
Writing a fast fixed-point library is not a simple task, but the
additional burden of writing it for specialization seems reasonable.
Such a library only needs to be written once for many applications
to benefit from it, so it should be worth the additional effort.

In this section, I list guidelines for library authors who want to
write code that can be effectively specialized for arithmetic-like al-
gorithms. Writing other code such as interpreters for specialization
demand more elaborate strategies [8, 9].

Understand the difference between static and dynamic code.
This is the main lesson: a program specializer attempts to under-
stand and specialize away every statement in a program, but it
rarely can do so for every statement because a statement’s behavior
is often dependent on values that are only known at run time (e.g.,
the value of the samples passed to a signal-processing algorithm)
or because the user has decided that it would be impractical to spe-
cialize a particular statement for every possible behavior it might
have.

Maximize the fraction of static code. By definition, the static
analyzer is able to account for the behavior of this code at compile-
time and only its effects are carried over to the final generated code.
Thus, the more the specializer can analyze, the less code there
is in the final executable. There are two rules for doing this: try
to increase the number of either truly constant variables, or the
number of variables whose values can be tracked exactly by the
specializer; and make sure the code itself is simple enough to be
analyzed.

Write the static code for clarity and simplicity, not effi-
ciency. Since static code is analyzed by the specializer and not exe-
cuted when the program eventually runs, this code should be made

as easy to analyze as possible. This means, for instance, that it not
rely on non-portable memory layout issues (e.g., using a union to
split apart a word), complex pointer arithmetic, or other constructs
that are risky and rely on complex emergent behavior. Instead, use
arithmetic, arrays, and structures as much as possible.

Optimize the dynamic code. Much like how frequently-
executed code in normal programs should be the focus of opti-
mization, code that cannot be analyzed at compile-time by the
specializer is performance-critical in the generated program be-
cause everything else is compiled away. Once you have established
the distinction between static and dynamic code, make sure the
dynamic code is as efficient as it can be. Clever algorithms and
implementations of dynamic code is no more dangerous or unwise
than in coding in a normal (non-specialized) environment.

Examine the code generated by the specializer. Unlike the
output of an optimizing compiler, the output of a program special-
izer is usually quite readable because it is written in the high-level
language. As a result, an iterative approach works well: write an ini-
tial algorithm, specialize it, examine the output, identify potential
bottlenecks, and consider whether the operations could be moved
into the specializer.

6. Conclusions
In this paper, I found program specialization could provide a 3–7×
speed-up of fixed-precision arithmetic libraries. The speed of the
generated code is comparable to that produced by the FRIDGE sys-
tem [10], but the approach employed here does not require a dedi-
cated fixed-precision arithmetic code generator. Instead, library de-
signers write algorithms for generic components in their favorite
language without having to write optimized code generation algo-
rithms, yet still gain the speed advantages.

The C++ SystemC libraries did not specialize well, even after
I performed a fairly mechanical translation into C to accommo-
date Tempo, a C-only specializer. The main problems were a poor
choice of number representation that the specializer could not mod-
ify, and the use of “mostly static” variables, i.e., ones that very
rarely changed, but that the specializer could not compile away.

A careful re-coding of the libraries, however, did specialize
much better. The main change was the number representation,
which I based on the representation described by Keding et al. [10,
11] designed for automatic code generation.

My conclusion is that reasonable performance from specialized
code is only realistic when it was written with specialization in
mind. This may be onerous for general programs, but seems rea-
sonable for special-purpose code such as the fixed-point arithmetic
libraries used in this experiment. The strategy for writing library
code that specializes well is straightforward: the program should
be thought of as a combination of static and dynamic variables and
operators. Static variables and operators are “free” because they are
evaluated completely at compile-time, but the dynamic aspects of
the routine must be designed with efficiency in mind.

Debugging libraries written with specialization in mind is no
more difficult than debugging ordinary libraries since the special-
izer guarantees that the semantics of the specialized code matches
that of the original code. Optimizing the performance of such li-
braries is similarly easy: since the specializer produces fairly read-
able source code in the same language as the library, a library devel-
oper can iterate: generating specialized code, examining the gener-
ated code, and modifying the source as necessary to modifying the
character of the generated code.

Experimental results show this methodology can speed carefully-
written library code by a factor of between three and seven. While
using such specialization as part of the development process is
more work, most simulation users would find it a reasonable price
to pay for nearly an order of magnitude in simulation speed.

Acknowledgments
Claire Fang supplied the IDCT and FIR examples. Anne-Françoise
Le Meur supplied the Prespec/Tempo environment. Long ago, Joe
Buck suggested speeding up SystemC fixed-precision arithmetic.
Finally, my three anonymous reviewers provided the most detailed,
helpful comments I have ever received for a paper.

References
[1] Sapan Bhatia, Charles Consel, Anne-Françoise Le Meur, and Carleton

Pu. Automatic specialization of protocol stacks in OS kernels. In
Proceedings of the 29th Annual IEEE Conference on Local Computer
Networks, Tampa, Florida, November 2004.

[2] Charles Consel and Oliver Danvy. Tutorial notes on partial evaluation.
In ACM Symposium on Principles of Programming Languages
(POPL), pages 493–501, Charleston, South Carolina, January 1993.

[3] Charles Consel, L. Hornof, Julia L. Lawall, Renaud Marlet, G. Muller,
J. Noyé, Scott Thibault, and E.-N. Volanschi. Tempo: Specializing
systems applications and beyond. ACM Computing Surveys,
Symposium on Partial Evaluation (SOPE), 30(3es), September 1998.

[4] Charles Consel, Julia L. Lawall, and Anne-Françoise Le Meur. A
tour of Tempo: A program specializer for the C language. Science of
Computer Programming, 52(1–3):341–370, August 2004.

[5] Claire Fang Fang, Rob A. Rutenbar, Markus Püschel, and Tsuhan
Chen. Toward efficient static analysis of finite-precision effects in
DSP applications via affine arithmetic modeling. In Proceedings of
the 40th Design Automation Conference, pages 496–501, Anaheim,
California, June 2003.

[6] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. System
Design with SystemC. Kluwer, Boston, Massachusetts, 2002.

[7] Neil D. Jones. An introduction to partial evaluation. ACM Computing
Surveys, 28(3):480–504, September 1996.

[8] Neil D. Jones. What not to do when writing an interpreter for
specialisation. In Partial Evaluation, volume 1110 of Lecture Notes
in Computer Science, pages 216–237, February 1996.

[9] Niel D. Jones. Transformation by interpreter specialisation. Science
of Computer Programming, 52(1–3):307–339, August 2004.

[10] Holger Keding, Martin Coors, Olaf Lüthje, and Heinrich Meyr. Fast
bit-true simulation. In Proceedings of the 38th Design Automation
Conference, pages 708–713, Las Vegas, Nevada, June 2001.

[11] Holger Keding, Markus Willems, Martin Coors, and Heinrich Meyr.
FRIDGE: a fixed-point design and simulation environment. In
Proceedings of Design, Automation, and Test in Europe (DATE),
pages 429–435, Paris, France, March 1998.

[12] Donald E. Knuth. The Art of Computer Programming, volume
two: Seminumerical Algorithms. Addison-Wesley, Reading, Mas-
sachusetts, third edition, 1997.

[13] Julia L. Lawall. Faster fourier transforms via automatic program
specialization. In Partial Evaluation—Practice and Theory, DIKU
1998 International Summer School, volume 1706 of Lecture Notes
in Computer Science, pages 338–355, Copenhagen, Denmark, June
1998.

[14] Anne-Françoise Le Meur, Julia L. Lawall, and Charles Consel.
Specialization scenarios: A pragmatic approach to declaring program
specialization. Higher-Order and Symbolic Computation, 17(1):47–
92, March 2004.

[15] Dylan McNamee, Jonathan Walpole, Calton Pu, Crispin Cowan,
Charles Krasic, Ashvin Goel, Perry Wagle, Charles Consel, Gilles
Muller, and Renauld Marlet. Specialization tools and techniques for
systematic optimization of system software. ACM Transactions on
Computer Systems, 19(2):217–251, 2001.

