
Static Elaboration of Recursion for Concurrent Software

Stephen A. Edwards∗ Jia Zeng
Columbia University, New York
{sedwards,jia}@cs.columbia.edu

Abstract
Unlike sequential software, concurrent software needs a structur-
ing mechanism capable of specifying constructs such as pipelines,
scatter-gather, and other networks. Concurrent software languages
usually provide mechanisms for dynamically creating such struc-
tures, but this makes them difficult to analyze statically. In partic-
ular, it would be very convenient to be able to put bounds on the
resources (memory, processes) required by a particular system.

We present a static elaboration technique that can remove
bounded recursion from concurrent programs, useful for tools that
cannot handle recursion such as those for formal verification and
hardware synthesis. We work withSHIM, a concurrent language
that provides concurrent, recursive function calls that can be used
to elegantly construct concurrent structures such as pipelines and
theFFT.

Our technique first slices the program from every recursive call
to determine which variables control the recursion, then perform
a simulation of the program with respect to those variables, per-
forming constant propagation to produce simplified code without
recursion. Experimental results suggest our slicing procedure is ef-
fective at selecting just those variables that participate in the recur-
sion and that our simulation technique for generating non-recursive
code can quickly produce small non-recursive programs, making
this technique practical.

Categories and Subject Descriptors D.3.4 [Software]: Program-
ming Languages—Processors

General Terms Languages, Algorithms

Keywords Recursion, Static Elaboration, Partial Evaluation, Con-
currency,SHIM

1. Introduction
Any big system is assembled from pieces, but the assembly prob-
lem can be much richer for parallel systems. Digital transistor cir-
cuits are an extreme example: they only contain two kinds of pieces
(n- and p-channel transistors); all their functionality arises from
how collections of these pieces are connected. Sequential software
programs also assemble things from pieces (e.g., expressions from

∗ Edwards and Zeng are supported by the NSF, Intel, Altera, theSRC, and
NYSTAR.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM’08, January 7–8, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-977-7/08/0001. . . $5.00

void fifo3(chan int i,
chan int &o) {

fifo(i, o, 3);

}

void fifo(chan int i,
chan int &o,
int n) {

if (n > 1) {

chan int c;
buf(i, c);

par
fifo(c, o, n-1);

} else
buf(i, o);

}

void buf(chan int i,
chan in &o) {

for (;;)

next o = next i;
}

(a)

void fifo3(chan int i,
chan int &o) {

chan int c1, c2, c3;
buf(i, c1);

par
buf(c1, c2);

par
buf(c2, o);

}

void buf(chan int i,
chan in &o) {

for (;;)

next o = next i;
}

(b)

Figure 1. Removing recursion from (a) a parametric, recursive
FIFO in SHIM gives (b).

identifier and operators, functions from sequences of statements),
but the pieces tend to be more powerful and the connection schemes
more simple. Parallel software needs both: the ability to specify tra-
ditional program-like sequential behavior and the ability to specify
complicated parallel structures.

In this paper, we present a technique that can remove the re-
cursion from a parallel program that expresses its structure with
bounded recursion. This is useful when working with tools that
cannot accept recursion, such as certain formal verifiers and hard-
ware compilers. Figure 1 shows a simple parametricFIFO trans-
formed into recursion-free code. A form of partial evaluation, our
procedure first slices the program at recursive function calls to un-
derstand what variables control the recursion, then statically sim-
ulates the program on those variables, constructing a simpler pro-
gram along the way. It allows a programmer to use the power of
recursion to describe parallel structures yet have a “static” program
at the end, i.e., with no cycles in its call graph.

Our goal is to remove recursion while increasing the size of the
program as little as possible. Although our static simulation pro-
gram is analagous to the subset construction algorithm for convert-
ing nondeterministic finite automata to deterministic ones, it is even
more likely to produce an exponential blow up in code size because
it considers integer-valued variables. As a result, we are very care-
ful to restrict the scope of our simulation procedure to only a few
variables. Since our goal is to remove recursion, we first use a slic-

[10] CHAN BYTE reg:
PAR process= 0 FOR 7

WHILE TRUE
BYTE data:
SEQ

reg[process] ? data
reg[process+ 1] ! data

(a)

G1: for i in 0 to 6 generate
process (clk)
begin

if clk’eventand clk = ’1’ then
values(i+1) <= values(i);

end if;
end process;

end generate;
(b)

void fifo(chan int i, chan int &o, int n) {

if (n) {

chan int c;
for (;;) next c = next i;

par
fifo(c, o, n-1);

} else for (;;) next o = next i;
}

(d)

class shiftreg: public sc module{
public:

sc in<bool> clock;
sc in<int> in; sc out<int> out;

shiftreg(sc modulename name, unsigned len)
: sc module(name) {

char buf[10];
sc signal<int> * prev = 0;

for (unsigned int i = 0 ; i < len ; i++) {

sprintf(buf, "r%d", i);
reg * regp = new reg(buf);
regp->clock(clock);
if (i==0) regp->in(in); else regp->in(*prev);
if (i < len - 1)

regp->out(*(prev = new sc signal<int>));
else regp->out(out);

} } };

(c)

Figure 2. A concurrent FIFO in (a) occam, (b) VHDL, (c) SystemC, and (d)SHIM. Each are fragments.

ing procedure to determine which variables control recursive calls,
then we only simulate relevant variables.

Our procedure simplifies program analysis because it produces
programs with a static call structure. Hardware implementations
demand such programs since true recursion has no real analogue
in hardware, where every transistor and wire must be known when
the circuit is assembled. Software is less restrictive, but recursive
programs are harder to analyze and optimize. For example, because
the language we target does not provide a heap, it is possible to
statically bound the memory required by a program with a static
call graph. Furthermore, knowing the static call structure allows
connection information to be computed at compile-time to reduce
run-time overhead. Finally, a static call structure, especially when
the program is finite-state, greatly simplifies formal verification
based on model checking.

We make three contributions: a collection of examples illus-
trating how to build parallel structures with recursion, a partial-
evaluation algorithm that can remove the recursion, and experimen-
tal results that show the algorithm is practical.

2. Related Work
Most parallel languages have some facility for elaborating parallel
structures. Figure 2 shows code from a variety of languages that
each describe more-or-less the same thing: a sequence of one-place
buffers connected back-to-back.

Many parallel languages provide a parallelfor loop that con-
structs arrays of parallel tasks at run time. Occam’s [11] replicated
parallel construct (Figure 2a) is typical: it instantiates a set of paral-
lel tasks, passing a unique index to each. Occam insists the base and
count expressions (on each side of theFORkeyword) be constant
and the tasks are only allowed to read the index variable.

Hardware must have its structure defined at compile time, so
any algorithmic generation of structure is done then. VHDL [12]
provides thegeneratestatement, which works as a compile-time
for loop. The fragment in Figure 2b instantiates seven concurrent
processes that each behave like edge-triggered flip-flops. The Ver-
ilog 2001 language has a similar feature.

Bjesse et al.’s Lava [4] is a language embedded in Haskell de-
signed for the algorithmic specification of digital circuits. Since
Lava is embedded in Haskell, a circuit designer is free to use arbi-
trary Haskell code to build the structure of the circuit. Furthermore,
the generated circuit may be simulated or used to generateVHDL

depending on how the library interprets the data structures so gen-
erated.

Although Haskell can be used to specify structure in Lava, it
cannot be used to specify function, so Lava is purely an elabora-
tion language. Simple Boolean logic gates are the only source of
function. By contrast, our work allowsSHIM programs to consist
of both structure and function.

Li and Leeser’sHML [15] is also a functional hardware descrip-
tion language. They included support in the language for generating
structure through recursion, much like we do, but their compiler did
not support it [14].

Hoe and Arvind’s Bluespec [10] is another hardware descrip-
tion language with a powerful elaboration phase. Also based on a
Haskell infrastructure, it provides powerful mechanisms for gen-
erating structures algorithmically. Unfortunately, few details about
its approach have been published.

The SystemC library for hardware simulation [8] introduces a
separate elaboration phase between compilation and system exe-
cution. SystemC is actually a C++ library; running a simulation
consists of compiling and running a SystemC program. When the
program starts, it first elaborates the design, building in-memory
data structures that represent the structure of the hardware system,
then runs an event-based simulation kernel.

Elaboration in SystemC is performed by arbitrary C++ code
(usually in constructors), and so is very flexible. Figure 2c shows
a shiftregclass (a SystemC module) that takes an elaboration-time
parameter that controls the number of registers to string together.

For simulation, SystemC’s runtime elaboration is convenient,
if verbose, but it creates problems for analysis. Moy et al.’s [16]
Pinapa tool is one of the few that takes this problem seriously: it
extracts the structure of SystemC models by statically analyzing the
source code, running the elaboration phase, and later correlating the
two. While technically difficult because SystemC was not designed
to facilitate this, this is semantically straightforward: all SystemC
programs explicitly start the simulation. Pinapa treats all code that
runs before this point as elaboration and only looks at its output.

While loop unrolling and procedure inlining are well-known,
comparatively little literature addresses unrolling recursion. Most
focuses on efficiency. Appel [2] notes that it can reduce stack
space requirements and provide a speed-up. Rugina and Rinard [18]
focus on improving the speed of divide-and-conquer algorithms by
partially inlining recursive calls and fusing conditionals. This leads

to more efficient code that spends more time conquering instead
of dividing. However, their techniques do not attempt to remove
recursion entirely, and so they address a problem different than
ours.

Two-level functional languages [17] provide compile- and run-
time computation and distinguish them syntactically. While their
consideration of combine-time computation resembles ours, we
support concurreny and do not require explicit programmer anno-
tations. We suspect our technique is more convenient, but have not
performed experiments verifying this.

3. The SHIM Language
The SHIM language [19] provides a cohesive model for both hard-
ware and software systems. Its key strength lies in providing deter-
ministic concurrency: aSHIM program always reacts the same way
to the same inputs regardless of scheduling choices; it has no data
races.

SHIM has a C-like syntax: a program is composed of functions
built from statements and expressions. Neither global variables nor
pointers are allowed. Instead,SHIM includes a mechanism for con-
current function calls through thepar construct and rendezvous-
style inter-process communications through the blockingnextcom-
munication operator. Figure 2d shows aSHIM implementation of a
parametricFIFO that combines parallelism with recursive function
calls. Forn > 0, it runs a one-place buffer containing an infinitefor
loop (“for (;;) next c= next i”) in parallel with aFIFO of sizen−1,
otherwise, it is a single one-place buffer.

The par construct starts concurrent tasks.p par q starts state-
mentsp and q in parallel, waits for both to complete, then runs
the next statement in sequence. These statements may be arbitrary
blocks, which may themselves includepar statements.

To prevent data races,SHIM forbids a variable to be passed by
reference to two concurrent tasks. For example,

void f(int &x) {}

void g(int x) {}

void main() {

int x, y;
f(x); par g(x); par f(y); // OK
f(x); par f(x); // rejected: x passed by-ref twice

}

SHIM adopts an asynchronous concurrency model,à la Kahn
networks [13] (SHIM tasks can only block on a single channel),
that usesCSP-like rendezvous [9]. Only communication affects the
relative execution rates of concurrent tasks. The language does not
support shared memory.

A channel resembles a local variable. Passing a channel by value
copies its value, which can be modified independently. A channel
must be passed by reference to senders.

Communication is blocking: a task that attempts to communi-
cate must wait for all other connected tasks to engage in the com-
munication. If the synchronization completes, the sender’s value is
broadcast to the receivers.

Like most formalisms with blocking communication,SHIM pro-
grams may deadlock. But deadlocks are easier to fix inSHIM be-
cause they are deterministic: on the same input, aSHIM program
will either always or never deadlock.

Shim’s exceptions [20] enable a task to gracefully interrupt
its concurrently running siblings. A sibling is “poisoned” by an
exception when it attempts to communicate with a task that raised
an exception or with a poisoned task. An exception handler runs
after all the tasks in its scope have terminated or been poisoned.

While SHIM’s communication and exception constructs are
novel, they are largely outside the scope of this paper. Our algo-
rithm does not attempt at compile time to track data communicated
among tasks, even when it would be possible.

4. Recursive Parallel Structures
We argue concurrency plus recursion provides a powerful mecha-
nism for constructing structures algorithmically and that our elab-
oration technique makes it possible to use this mechanism in a set-
ting that prohibits recursion. Below, we give examples that use re-
cursion to build such structures.

4.1 Pipelines

Figure 2d shows ann-place buffer using our technique. This can
be generalized ton parallel computations. For example, Figure 3
builds a finite pipeline for testing the Collatz conjecture: the “3n+
1” problem.

The pipeline stage number can select the function of each stage.
Figure 4 shows a prime-number sieve that filters according to a list
of primes.

Figure 5 is a smarter sieve that uses a pair of processes at each
stage to filter the primes from an increasing sequence of numbers.
Each filter process (“F”) considers the first number it receives as
prime since the number made it through all the previous stages,
then passes each number that is not divisible by this prime. Each
multiplexer process (“M”) first passes the newly-identified prime
to the output, then passes all those from later stages. The last stage
(n = 0) returns its (prime) number and throws an exception to
terminate the sieve.

4.2 A Sequential/Parallel/Sequential Pipeline

Figure 6 depicts the schedule for a common pattern in concurrent
systems: a variant of map-reduce found, for example, in aJPEGde-
coder. A source process (Huffman decoding inJPEG) divides an in-
put stream into pieces. These pieces are distributed to parallel pro-
cessor tasks (these perform theIDCT in JPEG) and then reassembled
in sequence by a sink process.

Figure 7 shows theSHIM code for a parametric implementation
of such a pipeline. The bodies ofsrcandsnk(not shown—they may
be arbitrary functions) each update a state variable that is passed
by reference. Thesrc function throws an exception when it reaches
the end of input to terminate the pipeline. Thesrc taskandsnk task
functions are just concurrent wrappers for running sequences ofthe
src andsnk functions.Src task repeatedly takes a state, runssrc,
passes the output to a processor, and passes out its state.Snktask
reads the input from the processor, then the state, runssnk, and
passes the state out.

Thestagefunction creates most of the structure. For each stage,
it runs processorin parallel with asrc task and snk task, which
generate and consume the input and output for theprocessor. Like
earlier examples, it uses a tail-recursive call to build the next stage.

Finally, the main entry point—thepipeline function—calls
stagein parallel with two processes that seed and then feed back the
states from thesrc andsnkprocesses. Finally, when thesrc func-
tion throwsDoneto indicate it has processed all the input,pipeline
returns the final state.

4.3 A Fast Fourier Transform

The fast Fourier transform is a commonly needed computation that
involves complex but highly patterned data flow. Even more so
than the largely examples we presented above, theFFT’s structure
is hierarchical and well-suited to recursion.

We started with a sequential, recursive implementation from
Grama et al. [7] (Figure 8) and noted that it first divides the even-

int collatz(int i) {

return i&1 ? 3*i+1 : i/2;
}

void pipeline(chan int i, chan int &o, int n) {

if (n) {

chan int c;
for (;;) next c = collatz(next i);

par
pipeline(c, o, n-1);

} else
for (;;) next o = next i;

}

Figure 3. A pipeline testing the Collatz conjecture

void sieve(chan int i, chan int &o, int n,
int primes[10]) {

if (n) {

chan int c;
for (;;)

if (next i % primes[n] || i == primes[n])
next c = i;

par
sieve(c, o, n-1, primes);

} else
for (;;)

if (next i % primes[0] || i == primes[0])

next o = i;
}

Figure 4. A prime-number sieve that takes primes from an array

2, 3, 4, . . .

primes out

F F F F

M M M M

L

void sieve(chan int numin, chan int &prime out,
int n) throws Done{

if (n) {

chan int prime, numout, prime in;
{ // Filter process (F)

next prime = next numin;
for (;;)

if (next numin % prime)
next numout = num in;

} par { // Multiplexer process (M)
next prime out = next prime;
for (;;) next prime out = next prime in;

} par
sieve(numout, prime in, n-1);

} else { // Last process (L)
next prime out = next numin;
throw Done;

}

}

Figure 5. Another prime-number sieve

Time

Src Src Src Src Src Src Src Src Src

Processor Processor

Processor Processor

Processor Processor Processor

Snk Snk Snk Snk Snk

Figure 6. Schedule for a three-processor pipeline

int src(src st &state) throws Done{ ... }

int processor(int in) { ... }

void snk(int in, snkst &state) { ... }

void src task(chan src st st in, chan src st &st out,
chan int &out) throws Done{

for (;;) {

next out = src(next st in);
next st out = st in;

}

}

void snk task(chan snkst st in, chan snkst &st out,
chan int in) {

for (;;) {

snk(next in, next st in);
next st out = st in;

}

}

void stage(chan src st src in, chan src st &src out,
chan snkst snkin, chan snkst &snkout,
uint n) throws Done{

chan int proc in, proc out;
for (;;) next proc out = processor(next proc in);

par
if (n) {

chan src st src in1; chan snkst snkin1;
src task(src in, src in1, proc in);

par snk task(snk in, snk in1, proc out);
par stage(src in1,src out,snk in1,snkout,n-1);

} else {

src task(src in, src out, proc in);
par

snk task(snk in, snkout, proc out);
}

}

snkst pipeline(src st initial src, snkst initial snk,
uint n) {

chan src st src in, src out;
chan snkst snkin, snkout;
try {

next src in = initial src;
for (;;) next src in = next src out;

} par {

next snk in = initial snk;
for (;;) next snk in = next snkout;

} par {

stage(src in, src out, snk in, snkout, n);
} catch (Done) {}

return snkout;
}

Figure 7. Code for ann-processor pipeline

procedure FFT(〈x0, . . . ,xn−1〉,〈y0, . . . ,yn−1〉,n,ω)
if n = 1 then

y0 = x0
else

FFT(〈x0,x2, . . . ,xn−2〉,〈q0, . . . ,qn/2〉,n/2,ω2)

FFT(〈x1,x3, . . . ,xn−1〉,〈t0, . . . , tn/2〉,n/2,ω2)
for i = 0 ton−1 do

yi = q(i mod(n/2)) +ω i · t(i mod(n/2))

Figure 8. The sequentialFFT from Grama et al. [7] that we paral-
lelized.ω = e2π i/n initially.

and odd-numbered inputs among two sub-procedures, then makes
two sequential steps through the results of the sub-procedures be-
cause of the “i/mod(n/2)” subscripts onq andt.

Figure 9 shows the structure and code we created for theFFT.
Eachn-point stage instantiates twon/2-point FFTs and feeds the
result to a “butterfly” processor. Each sample is a complex number,
which we represent as two fixed-point numbers (integers) since
SHIM does not support floating-point. Each stage expectsn samples
on its in port and producesn samples onout.

The demultiplexer task divides the incoming samples into even
and odd streams and passes them to twon/2-point FFTs. The two
output streams are fed to both the butterfly task and a pair ofn/2-
sample buffers. The butterfly task uses these buffers to step through
then/2 pairs of samples from the sub-FFTs twice, combining each
pair with a with different “twiddle” factor (different complex roots
of unity).

This may not be the most efficientFFT algorithm, but it does
illustrate that recursion and concurrency are powerful. We used
recursion to perform a divide-and-conquer-style decomposition of
theFFT, used tail recursion to build the buffers, and took advantage
of SHIM’s multiway rendezvous facility to make two copies of the
results of the sub-procedures.

5. Binding-Time Analysis
Our goal is to eliminate recursion while increasing the size of the
program as little as possible. Some expansion is usually inevitable
since the recursion we target usually amounts to one or more loops,
which we unroll.

To limit the amount of expansion we perform during our sym-
bolic simulation process (described in the next section), we per-
form a binding-time analysis with a slicing procedure [21] to tell
us which variables directly or indirectly control recursive calls. By
tracking only these variables, we effectively avoid unrolling loops
that are irrelevant to recursive calls—the main source of unneeded
expansion.

We slice using what is in effect a program dependence graph [6].
Our goal is to determine, for each function, a set of variables that
we should track to understand recursion. We compute control de-
pendence by computing dominators using the Lengauer-Tarjan al-
gorithm (we followed the description in Appel [3]) then compute
dominance frontiers and control dependence following Cytron et
al. [5]. For data dependence, we use the standard dataflow algo-
rithm for reaching definitions taken from Aho et al. [1], although
we compute reaching definitions for each statement, not just every
basic block.

To identify relevant variables, we first decompose the static call
graph of the program into strongly connected components (SCCs)
using Tarjan’s algorithm. In eachSCC, we consider recursive any
call site that calls a function within the sameSCC. This definition
covers both self-recursion and mutually recursive functions.

in Demux

FFT(n/2)

FFT(n/2)

Buffer(n/2)

Buffer(n/2)

Butterfly + Mux out

odd

even

(a)

struct cplx{ // Fixed−point complex number
int32 r;
int32 i;

};

void cplx buffer(chan cplx in, chan cplx &out, uint n) {

if (n>1) {

chan cplx local;
for (;;) next local = next in;

par
cplx buffer(local, out, n-1);

} else for (;;) next out = next in;
}

cplx butterfly(cplx x, cplx y, int32 theta) {

cplx result, w;
w.r = cosfixed(theta);
w.i = sin fixed(theta);
result.r = x.r + MUL(w.r, y.r) - MUL(w.i, y.i);
result.i = x.i + MUL(w.r, y.i) + MUL(w.i, y.r);
return result;

}

void fft(chan cplx in, chan cplx &out,
uint n, int32 theta) {

if (n == 1) {

for (;;) next out = next in; // The trivial FFT
} else {

chan cplx even, odd, q, t, q1, t1;
for (;;) { // Demux

next even= next in;
next odd = next in;

}

par fft(even, q, n/2, theta* 2); // Even samples
par fft(odd, t, n/2, theta* 2); // Odd samples
par cplx buffer(q, q1, n/2); // Buffer for even
par cplx buffer(t, t1, n/2); // Buffer for odd
par for (;;) {

for (int i = 0 ; i < n/2 ; i++) // Butterfly + Mux
next out = butterfly(next q, next t, theta* i / 2);

for (int i = n/2 ; i < n ; i++)
next out = butterfly(next q1, next t1, theta* i / 2);

}

}

}

(b)

Figure 9. (a) A parallel, recursive restructuring of theFFT from
Figure 8, and (b) the correspondingSHIM code.

fft(in, out, n, theta)
Entry

tmp0 = n == 1
if tmp0 goto L2

L1:
tmp1 = n/2
tmp2 = theta*2
tmp3 = n/2
tmp4 = theta*2
tmp5 = n/2
tmp6 = n/2
fft 1(in, even, odd) par
fft(even, q, tmp1, tmp2) par
fft(odd, t, tmp3, tmp4) par
cplx buffer(q, q1, tmp5) par
cplx buffer(t, t1, tmp6) par
fft 2(n, q, q1, t, t1, theta, out)

exit

L2:
recv in

out = in
send out

goto L2

1

2

3

4

5

6

7

89

10

11

12
13

Figure 10. Slicing fft in Figure 9b. Solid arrows denote control
flow, dotted lines denote control dependence, numbered lines indi-
cate steps in the slicing procedure.

We consider relevant all basic blocks on which these recursive
call sites are dependent. Such blocks usually end in conditional
control-transfer instructions (e.g.,if statements); we consider rele-
vant the variables they test.

From these blocks that control recursive calls, we perform the
usual fixed-point computation that considers every definition of a
relevant variable and any control-transfer instruction on which such
definitions are control-dependent.

We slice across procedure boundaries. When we find a depen-
dence on a formal parameter to a function, we mark as relevant the
corresponding actual argument passed at every call to that func-
tion and continue propagating backwards. Such analysis naturally
crossesSCCboundaries.

5.1 Slicing the FFT

To understand our slicing procedure, consider Figure 10, the
control-flow graph for thefft function from Figure 9.

First, we observe that the calls tofft in the L1 block of Figure 10
are recursive (each function is its ownSCC and calls itself). This
block (L1) is control-dependent on its predecessor—a block that
ends with anif conditional test (1) (numbers in parentheses refer
to the numbered arcs). This tests temporary variabletmp0, which is
defined in the statement immediately preceeding it (tmp0 = n == 1)
(2). On the right of this statement is the variablen, which is defined
as the third formal argument (3).

Since we reached a formal argument of a function, we propagate
dependence from the corresponding actual argument at each of the
function’s call sites. There are two such sites here, in block L1,
which pass temporariestmp1andtmp3(4), (5). These are defined
in statements in the same block (6), (7), which usen, defined as
the formal argument (8), (9). Since we have already considered this
formal variable, nothing further needs to be done. The definitions

for (;;) {

if (next a == 5) c = 1; else c = a;
c += 5;

send c;
}

(a)

L1: // nothing live
recv a
tmp = a == 5

ifnot tmp goto else
c = 1 // nothing live
goto endif

else: // a live
c = a

endif: // c live
c = c + 5

send c
goto L1

L1:
recv a
tmp = a == 5

ifnot tmp goto L2
c = 6

send c
goto L1

L2:
c = a
c = c + 5

send c
goto L1

(b) (c)

Figure 11. (a) A contrived filter process, (b) its representation
in our IR with live variables indicated at the start of each basic
block, and (c) the IR after applying the simulation procedure with
all variables considered relevant. This eliminated one addition and
duplicatedsend cbut did not duplicaterecv abecausec was not
live at L1.

for tmp1andtmp3are also control-dependent on theif block, but
we also do not need to consider this block again.

Similar reasoning finds a recursive call ofcplx buffer in Fig-
ure 9. It is also control-dependent on theif statement that tests for-
mal argumentn, so this formal argument is relevant to recursion.

Cplx buffer is called in L1 offft-dependence. Here, bothtmp5
and tmp6 are passed as actual arguments for (relevant) actual ar-
gumentn. These are defined above (10), (11), which in turn both
referencen (12), (13).

For functionfft, our procedure finds variablestmp0, tmp1, tmp3,
tmp5, tmp6, andn are relevant to removing recursion. The static
elaborator, described below, only considers these variables when
partially evaluating the program.

6. Our Static Elaborator
The binding-time analyzer described in the last section finds a set
of “relevant variables” for each function by slicing the program
from every recursive call site. Using this information, our static
elaborator simulates the basic blocks in each function, tracking
the exact value of each relevant variable and creating a constant-
propagated copy of each block along the way. Literals and variables
whose values are discovered during this procedure are treated as
constants used to simplify statements during the procedure; all
other values, including those communicated through channels, the
contents of structures and arrays, and the values of all irrelevant
variables, are treated as unknown. Code that manipulates unknown
values is copied into the generated code.

Once a particular basic block has been duplicated as many times
as its limit, no further copies are made (we currently use one global
user-specified number for all basic blocks, but we could use block-
specific limits). After that, if our algorithm discovers control being
passed to the block with different known variable values, instead
passes control to a copy of the block that assumes all live variables
take unknown values, which amounts to a copy of the original
block.

Our algorithm operates on our intermediate representation
(IR)—a fairly standard three-address code. As usual, each block

1: procedure simulate(func, block, value)
2: if block (func,block,value) does not existthen
3: Increasecopies(func,block,value)
4: let maxed-out= true if there are overlimit copies
5: let successors= set of successor blocks forblock

6: for each sequential statementstmtin blockdo
7: match statementstmtwith
8: d = s : Move
9: if value(s) 6= ⊥ andd is relevantthen

10: let value(d) = value(s) value known
11: else
12: let value(d) = ⊥
13: add “simp(d) = simp(s)” compute value
14: d = s1⊙s2 : Binary operator
15: if value(s1) 6=⊥, value(s2) 6=⊥, andd relevantthen
16: let value(d) = value(s1)⊙value(s2)
17: else
18: let value(d) = ⊥
19: add “simp(d) = simp(s1)⊙simp(s1)”
20: default : All other statements
21: add “stmt” just copy

22: if maxed-outthen
23: for each variablev s.t.,value(v) 6= ⊥ do
24: add “v = value(v)”

25: match control-transfer statement ofblockwith
26: Goto l : Goto
27: add “Gotol ”
28: if s goto l : Conditional
29: if value(s) = ⊥ then predicate unknown
30: add “if s goto l ”
31: else if value(s) 6= 0 then predicate known true
32: add “Gotol ” and letsuccessors= { block for l }
33: else predicate known false
34: let successors= { fall-through block}
35: Recvd : Receive
36: let value(d) = ⊥ and add “Recvd” value unknown
37: Sends : Send
38: if value(s) 6= ⊥ then value known
39: add “s= value(s)”
40: add “Sends”
41: f1(a1

1, . . . ,a
1
j) par· · · par fn(an

1, . . . ,a
n
k) : Call

42: for each pass-by-refa with value(a) 6= ⊥ do
43: add “a = value(a)” if an exception thrown
44: for each function call f (a1, . . . ,ak) do
45: for each variablev live in f ’s entry blockdo
46: let ai be the actual arg. for formal arg.v

47: let value′(v) =

{

⊥ if maxed-out,
value(ai) otherwise.

48: add(f ,0,value′) to call-successors
49: createf ′(b1, . . . ,bk), where

50: bk =

{

simp(ak) if ak is pass-by-value,
ak otherwise.

51: add “f ′1(b
1
1, . . . ,b

1
j) par· · · par f ′n(b

n
1, . . . ,b

n
k)”

52: let value(a) = ⊥ for each pass-by-ref arg.a

53: for each successor blockb do
54: let value′(v) = value(v) for each live var.v in b
55: add(func,b,value′) to to-visit
56: addcall-successorssignatures toto-visit & entries

Figure 12. The basic block simulation procedure

procedure remove-recursion(functions, limit)
divide functionsinto basic blocks
compute control dependence and reaching definitions
slice from every recursive call to find relevant variables
compute live variables for each basic block
for each live variablev in the entry block ofmaindo

let value(v) = ⊥
let to-visit = {(main,0,value)}
while to-visit is not emptydo

remove a signature(func,block,value) from to-visit
call simulate(func,block,value)

for each entry pointe in entriesdo
create a new function fore from the simulation results

Remove unreferenced labels
Inline functions that consist only of calls
return all the newly-created functions

Figure 13. The recursion removal procedure

starts with an optional label, its body consists of sequential state-
ments, and it may end with a control-transfer instruction: anif, a
switch, agoto, or a parallel function call.

To further reduce code expansion, we only track relevant vari-
ables that are live. In particular, if a relevant variable is no longer
live after a block, we forget its value, which generally allows us to
merge blocks that would otherwise have a different signature (i.e.,
the value of each relevant variable).

Figure 11 shows the effect of considering live variables. Assum-
ing all variables are relevant when we simulate the code fragment
in Figure 11a, we find control can reach theendif label with either
c = 1 or c unknown (sincea is received and therefore unknown).
We thus make two copies of this block, one for each case, and prop-
agate this information to discoverc= 6 orc is unknown just before
thesend. We still knowc’s value in one case when the simulation
passes control toL1, but becausec is not live there, we treat these
two cases equally and produce only one copy for the basic block at
L1.

Figure 12 depicts the basic block simulation procedure in all its
glory.1 This first checks whether the requested block has already
been computed. If not, it determines whether we have reached the
limit and should not create any more variant children (themaxed-
out flag).

Each sequential statement that assigns to a relevant variable is
simulated and the results stored if all operands are known, other-
wise the variable is marked as unknown.

If this block is to generate no more children, code is inserted
that “spills” the values of each known variable in the form of a
load-constant statement so the runtime can effectively take over the
computation.

Control-transfer instructions are more interesting. The rule for
if determines if the predicate is known at simulation time and
replaces it with agotoif possible. Being able to do this is critical for
stopping the unrolling process. The rule forrecvmarks its variable
as unknown; we do not attempt to simulate data passed through
communication channels.

The rule for parallel function calls is complicated because pass-
by-reference variables must be “spilled” before the function is
called because if the variable is relevant, the function could throw
an exception and lose the simulated value. Any known values of
pass-by-value parameters are passed. Finally, the values of every
pass-by-reference argument are marked as unknown—our simula-
tion does not track values returned by functions.

1 Almost: we omit similar rules for unary operators, multiway branches, and
ifnot statements.

fifo(chan int i, chan int &o, int n)
chan int c
local int tmp

ifnot n goto L1
tmp = n - 1

fifo a(i, c) par fifo(c, o, tmp)
goto L2

L1: recv i
o = i
send o
goto L1

L2:

fifo a(chan int i, chan int &c)
L1: recv i

c = i
send c
goto L1

fifo(chan int i, chan int &o, int n)
chan int c

fifo a(i, c) par fifo 2(c, o, 2)

fifo 2(chan int i, chan int &o, int n)
chan int c

fifo a(i, c) par fifo 1(c, o, 1)

fifo 1(chan int i, chan int &o, int n)
chan int c

fifo a(i, c) par fifo 0(c, o, 0)

fifo 0(chan int i, chan int &o, int n)
L1: recv i

o = i
send o
goto L1

fifo a(chan int i, chan int &c)
L1: recv i

c = i
send c
goto L1

fifo(chan int i, chan int &o, int n)
chan int c
chan int c1
chan int c2

fifo a(i, c) par fifo a(c, c1) par
fifo a(c1, c2) par fifo 0(c2, o, 0)

fifo 0(chan int i, chan int &o, int n)
L1: recv i

o = i
send o
goto L1

fifo a(chan int i, chan int &c)
L1: recv i

c = i
send c
goto L1

(a) (b) (c)

Figure 14. The IR at various stages in removing recursion from the FIFO example:Figure 2d. (a) Initial dismantling into a recursive
procedure produces two functions.fifo a is code for the first branch of thepar. (b) After symbolic simulation and expansion, the values ofn
andtmphave been established throughout, resulting in four versions of the original fifo procedure, one for each value ofn. (c) After function
inlining, three of thefifo functions have been collapsed into one.

Finally, the values of variables for each successor are taken from
the simulation. Only the values of live variables are preserved to
help reduce the size of the generated code.

6.1 Assembling the Pieces

Figure 13 shows our overall recursion removal procedure. It first
divides every function into basic blocks (send and receive oper-
ations are considered control-transfer instructions) then computes
relevant variables by building the program dependence graph and
slicing with respect to all recursive function calls (Section 5).

After computing live variables, the simulation procedure begins
by starting the program from the entry point with all live variables
set to⊥. The simulation procedure uses the usual worklist algo-
rithm (here,to-visit is the set of all function signatures remaining
to be processed) in which thesimulateprocedure (Figure 12) is
called until theto-visit set is empty.

Once the simulation procedure completes, each function is re-
constructed by assembling the blocks produced during the simu-
lation procedure according to their control dependencies. Finally,
unreferenced labels (arising from reassembling the control-flow
graph) are removed call-only functions are inlined.

Parallel recursive functions are usually dismantled into multiple
functions: one that just handles the recursive calls and the updates
of variables that control the recursion and others that perform the
actual work. Thefft function in Figure 9 is typical: With the ex-
ception of the copy in-to-out base case, the function just calls it-
self recursively. All the “heavy lifting” is done in the non-recursive
fft 1 and fft 2 functions, which perform the demultiplexing and
butterfly-multiplexing operations, respectively.

As a result, recursive functions are often transformed into just
calls to other functions. While it would not be incorrect to leave
them as-is, a function that only calls another can be beneficially in-
lined. The final step in our algorithm performs such inlining, which
noticably reduces the number of functions in the final program.

6.2 Derecursing the FIFO

Figure 14 shows our IR at various points in the recursion removal
procedure. Figure 14a is the IR immediately after being dismantled
from the code in Figure 2d. Our compiler dismantlespar blocks
into multiple functions so every function remains sequential. Here,
fifo a handles the “for (;;) next c = next i;” statement just before the
par Figure 2d.

Slicing identified variablesn andtmpas relevant and our static
elaborator tracks their values to produce the code in Figure 14b.
Here, the originalfifo function has been transformed into four dif-
ferent copies, one for each value ofn encountered during symbolic
simulation (n = 3,2,1,0). The first three copies boiled down to
nothing more than the parallel function call; the fourth is just the
code at label L1.

It is not uncommon for many functions to simply call other
functions, so we implemented a simple function inlining procedure
that merges calls to functions that do nothing but call other func-
tions in parallel. Figure 14c shows the result of this merging. Here,
the first three copies offifo have been merged into one that calls
four functions in parallel: three instances offifo a and one offifo 0,
the base case.

7. Experimental Results
To evaluate our procedure, we implemented it in ObjectiveCAML
and applied it our examples. Table 1 shows the results. We com-
pared the size of the IR before removing recursion (the “source”
columns), with the results of naı̈ve expansion with the limit set to
thirty-two (i.e., all variables considered relevant—the “expanded”
columns), the results of following relevant variables (the “sliced”
columns), and the results of applying function inlining to that (the
“inlined” columns).

The “fns.” columns list the number of functions after various
stages. These counts are large because they include functions for
the runtime system, the standard I/O procedures, and helper input

Example Fig. n Source Expanded (32) Sliced Inlined Runtime

Fns. Sts. Vars. Fns. Sts. Fns. Sts. Rel. Fns. Sts.

Pipeline 2d 3 14 87 30 17 401 17 86 2 11 84 40ms
Collatz 3 10 14 88 37 24 523 24 96 2 14 93 60
Sieve1 4 9 13 117 42 30 679 30 312 2 21 310 110
Sieve2 5 15 14 83 35 29 528 29 94 2 17 92 80
SeriesPar 7 3 20 104 65 26 400 26 106 3 14 110 60
FFT 9 16 20 255 148 113 1948 34 356 9 26 353 170

n = unrolling factor Fns. = number of functions Sts. = number of IR statements
Vars. = total number of arguments + local variables Rel. = number of relevant variables after slicing

Table 1. Experimental Results

and output functions. Furthermore, only parallel function calls in-
troduce parallelism in our compiler. Internally, we dismantle func-
tions withpar constructs into functions that call other functions in
parallel. All these extra functions are counted to make the numbers
realistic.

The “sts.” columns list the total number of IR statements across
all functions in the program—a rough measure of program and
executable size. IR statements are three-address, involving at most
a single arithmetic operation. Parallel call is the most complex
statement that is still counted as a single one. It may call an arbitrary
number of functions and pass an arbitrary number of arguments,
although each argument must be a (temporary) variable or constant.

The “vars.” column lists the total number of variables (formals,
locals, and temporaries) across all functions. The “rel.” column lists
the number of variables the slicing procedure reported as relevant
to recursive calls. For these examples, the slicer is able to select
relevant variables very judiciously, keeping the expansion of the
program under control.

The running time for our specialization algorithm seems neg-
ligible as part of a compilation flow. The “runtime” column lists
the time it took the compiler to parse and dismantle the source pro-
gram, run our procedure, and dump the resulting IR. These times
are for running the OCAML bytecode interpreter on a 2.5 GHz
Pentium 4 machine.

These results suggest only tracking relevant variables (i.e.,
heeding the results of slicing) greatly reduces the size of the gen-
erated code. Tracking relevant variables resulted in over an 80%
reduction in code size on the largest example (FFT); smaller exam-
ples were reduced more modestly.

The effect of inlining can substantially reduce the number of
functions, suggesting it is also worthwhile. Sieve1 had the largest
reduction: 9 of the 30 functions disappeared after inlining. By
design, this restricted form of inlining does not have much effect
on overall program size.

The “n” column lists the argument passed to the main recur-
sive procedure in each example. It is roughly the unrolling factor:
how many concurrent copies of the core operation are made. The
number of statements after inlining, surprisingly, does not correlate
much becausen only makes copies of part of the program and our
elaboration process removes code that controls the expansion.

Overall, these results suggest our procedure is practical. While
the increase in code size can be non-negligible (nearly a factor of
three for Sieve1), it remains surprisingly modest, even for fairly
large expansion factors. Consider Sieve2: it expands into a chain
of fifteen process pairs, yet the program size remains modest (83
vs. 92) because much of the program is simulated away and many
functions remain called from many places.

8. Conclusions
We presented an algorithm for removing recursion from concurrent
programs written in theSHIM programming language. Our goal was
to enable analysis tools such as formal verifiers, resource analyzers,
and hardware synthesizers that demand non-recursive programsto
also handle a certain class of recursive programs.

We presented a number of examples (templates, really) that il-
lustrate how recursion is a powerful way of generating parallel
structures algorithmically. While such structures could be gener-
ated by macro-style instantiation, we believe using existing lan-
guage mechanisms is more elegant and easier for the program-
mer since it does not demand learning a new, often crippled, sub-
language.

Our algorithm works in two phases: first, we use a slicing
procedure to determine which variables participate in the control
of the recursive procedure and whose values should be bound at
compile time. Second, we partially evaluate the program using
symbolic simulation to track the relevant variables determined in
the first phase and generate an aggressively constant-propagated
version of the program from the simulation results.

Experimental results on small examples suggest our procedure
is practical. The increase in code size from unrolling the recursion
stays modest, even for fairly large expansion factors (e.g., ten), and
the runtimes for these small examples are negligible. As a result, it
should be practical to employ this procedure as part of the normal
compilation process.

Next steps include more carefully tracking the contents of arrays
and structures and better understanding communication patterns.
While the tail recursive style of writing these expanding programs
is powerful, some programmers may find it awkward. We plan to
explore alternate syntax for describing structures such as pipelines.

References
[1] Alfred V. Aho, Monica Lam, Ravi Sethi, and Jeffrey D. Ullman.

Compilers, Principles, Techniques, and Tools. Addison-Wesley,
Reading, Massachusetts, second edition, 2006.

[2] Andrew Appel. Unrolling recursions saves space. Technical Report
CS-TR-363-92, Princeton University, mar 1992.

[3] Andrew W. Appel. Modern Compiler Implementation in ML.
Cambridge University Press, 1998.

[4] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava:
Hardware design in Haskell. InProceedings of the Third ACM
SIGPLAN International Conference on Functional Programming
(ICFP), pages 174–184, Baltimore, Maryland, 1998.

[5] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment
form and the control dependence graph.ACM Transactions on
Programming Languages and Systems, 13(4):451–490, October 1991.

[6] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization.ACM Transactions on
Programming Languages and Systems, 9(3):319–349, July 1987.

[7] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar.
Introduction to Parallel Computing. Addison-Wesley, second edition,
2003.

[8] Thorsten Gr̈otker, Stan Liao, Grant Martin, and Stuart Swan.System
Design with SystemC. Kluwer, Boston, Massachusetts, 2002.

[9] C. A. R. Hoare. Communicating sequential processes.Communica-
tions of the ACM, 21(8):666–677, August 1978.

[10] James C. Hoe and Arvind. Hardware synthesis from term rewriting
systems. InVLSI ’99: Proceedings of the IFIP TC10/WG10.5 Tenth
International Conference on Very Large Scale Integration, pages
595–619, Deventer, The Netherlands, 2000. Kluwer, B.V.

[11] INMOS Limited. occam 2 Reference Manual. Prentice Hall, 1988.
[12] The Institute of Electrical and Electronics Engineers(IEEE), 345 East

47th Street, New York, New York.IEEE Standard VHDL Reference
Manual (1076–1987), 1988.

[13] Gilles Kahn. The semantics of a simple language for parallel
programming. InInformation Processing 74: Proceedings of IFIP
Congress 74, pages 471–475, Stockholm, Sweden, August 1974.
North-Holland.

[14] Yanbing Li. HML: An innovative hardware design language and its
translation to VHDL. Master’s thesis, Cornell University,August
1995.

[15] Yanbing Li and Miriam Lesser. HML: An innovative hardware
design language and its translation to VHDL. InProceedings of
the International Conference on Computer Hardware Description
Languages and their Applications (CHDL), Chiba, Japan, August
1995.

[16] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz.
Pinapa: An extraction tool for SystemC descriptions of systems-
on-a-chip. InProceedings of the International Conference on
Embedded Software (Emsoft), pages 317–324, Jersey City, New
Jersey, September 2005.

[17] Flemming Nielson and Hanne Riis Rielson.Two-Level Functional
Languages. Cambridge University Press, 1992.

[18] Radu Rugina and Martin Rinard. Recursion unrolling fordivide and
conquer programs. InProceedings of the Workshop on Languages
and Compilers for Parallel Computing (LCPC), volume 2017 of
Lecture Notes in Computer Science, pages 34–48, Yorktown Heights,
New York, August 2000.

[19] Olivier Tardieu and Stephen A. Edwards. R-SHIM: Deterministic
concurrency with recursion and shared variables. InProceedings of
the 4th International Conference on Formal Methods and Models for
Codesign (MEMOCODE), page 202, Napa, California, July 2006.

[20] Olivier Tardieu and Stephen A. Edwards. Scheduling-independent
threads and exceptions in SHIM. InProceedings of the International
Conference on Embedded Software (Emsoft), pages 142–151, Seoul,
Korea, October 2006.

[21] Mark Weiser. Program slicing.IEEE Transactions on Software
Engineering, SE-10(4):352–357, July 1984.

	Introduction
	Related Work
	The SHIM Language
	Recursive Parallel Structures
	Pipelines
	A Sequential/Parallel/Sequential Pipeline
	A Fast Fourier Transform

	Binding-Time Analysis
	Slicing the FFT

	Our Static Elaborator
	Assembling the Pieces
	Derecursing the FIFO

	Experimental Results
	Conclusions

