
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008 1775

Transforming Cyclic Circuits Into
Acyclic Equivalents

Osama Neiroukh, Stephen A. Edwards, Senior Member, IEEE, and Xiaoyu Song, Senior Member, IEEE

Abstract—Designers and high-level synthesis tools can intro-
duce unwanted cycles in digital circuits, and for certain com-
binational functions, cyclic circuits that are stable and do not
hold state are the smallest or most natural representations. Cyclic
combinational circuits have well-defined functional behavior yet
wreak havoc with most logic synthesis and timing tools, which
require combinational logic to be acyclic. As such, some sort
of cycle-removal step is necessary to handle these circuits with
existing tools. We present a two-stage algorithm for transforming
a combinational cyclic circuit into an equivalent acyclic circuit.
The first part quickly and exactly characterizes all combinational
behavior of a cyclic circuit. It starts by applying input patterns
to each input and examining the boundary between gates whose
outputs are and are not defined to find additional input patterns
that make the circuit behave combinationally. It produces sets of
assignments to inputs that together cover all combinational behav-
ior. This can be used to report errors, as an optimization aid, or to
restructure the circuit into an acyclic equivalent. The second stage
of our algorithm does this restructuring by creating an acyclic
circuit fragment from each of these assignments and assembles
these fragments into an acyclic circuit that reproduces all the
combinational behavior of the original cyclic circuit. Experiments
show that our algorithm runs in seconds on real-life cyclic circuits,
making it useful in practice.

Index Terms—Acyclic circuits, combinational logic, construc-
tiveness, cyclic circuits, resynthesis.

I. INTRODUCTION

A CYCLIC circuit composed of logic gates is usually used
to hold state or oscillate, but, like an acyclic circuit, it

can also behave combinationally. Such cyclic combinational
circuits compute a function that only depends on their current
inputs [1], at least for certain input patterns. These circuits can
arise in high-level synthesis [2], [3] and are the most compact
representation for certain functions such as arbiters [4], [5].

Even though a cyclic combinational circuit computes a well-
defined function of its inputs much like an acyclic combina-
tional circuit, most circuit analysis tools forbid cycles. The
central challenge of a cyclic circuit is how the evaluation order

Manuscript received July 30, 2007; revised December 17, 2007 and April 18,
2008. Current version published September 19, 2008. The work of O. Neiroukh
and X. Song and his group was supported by Intel Corporation. The work
of S. A. Edwards and his group was supported in part by the NSF and in
part by an award from the SRC. This paper was recommended by Associate
Editor A. Kuehlman.

O. Neiroukh is with Intel Corporation, Hillsboro, OR 97124 USA (e-mail:
osama.neiroukh@intel.com).

S. A. Edwards is with the Department of Computer Science, Columbia
University, New York, NY 10027 USA.

X. Song is with the Department of Electrical and Computer Engineering,
Portland State University, Portland, OR 97207 USA.

Digital Object Identifier 10.1109/TCAD.2008.2003305

of its gates depends on its inputs; unlike an acyclic circuit,
no one order works for all legal input patterns. This is what
enables cyclic combinational circuits to be more compact, but
it causes difficulties for tools such as static timing analyzers that
rely on a static evaluation order. Furthermore, simulating cyclic
circuits is more expensive and complicated than simulating
acyclic ones.

We present an algorithm that can transform a cyclic combi-
national circuit, whether created deliberately or inadvertently,
into an equivalent acyclic one suitable for a circuit analysis
tool that insists on acyclic circuits. By running this early in
a synthesis flow with tools that insist on acyclic circuits, this
would allow a designer or a high-level synthesis procedure to
create false loops as desired. Alternatively, in a synthesis flow
that encourages cyclic circuits [6], it could be used to export an
acyclic version of the circuit to a tool that demands one.

Our algorithm produces a useful side effect: an exact char-
acterization of the inputs for which the cyclic circuit behaves
combinationally. We use this internally to make sure the circuit
we generate “covers” all combinational behavior, but it could
also be passed to a simulator or formal verification tool to
check that the environment of a cyclic circuit always induces
the circuit to behave combinationally.

Consider the cyclic circuit in Fig. 1(a). From its truth table,
Fig. 1(b), we see that the circuit is well behaved unless a = 0,
b = 1, c = 0, and d = 1. For all other patterns, at least one of
the gates has a controlling input that breaks the cycle.

This circuit is therefore combinational if a = 1, b = 0, c = 1,
or d = 0. Fig. 1(c) considers each case. We call each case a
partial assignment (PA), where we set one or more inputs to
known values. These particular PAs each induce combinational
behavior; each assignment makes the cyclic circuit behave like
each of the acyclic circuit fragments in the middle column of
Fig. 1(c).

Because each of these circuit fragments are acyclic, the gates
they contain can be evaluated following the schedules listed in
the right column of Fig. 1(c). A schedule is a gate evaluation
order for the circuit. By themselves, each only covers part of
the complete combinational behavior of the original circuit, but
we can merge them into the schedule wxyzwxy, which we chose
because it includes each of the schedules in Fig. 1(c). This
comprehensive schedule can be evaluated by the acyclic circuit
in Fig. 1(d), which has the same combinational behavior as the
original circuit. The other input to the leftmost w gate is a don’t
care, and by choosing it to be 1, we obtain the simplified result
in Fig. 1(e).

Our algorithm takes an acyclic circuit and synthesizes an
acyclic one that computes the same function for inputs that

0278-0070/$25.00 © 2008 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161438586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1776 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

Fig. 1. (a) Simple cyclic circuit after Rivest’s [5]. (b) Its truth table. It is
combinational for every input pattern except 0101. (c) Four PAs that together
cover all combinational behavior and the gate evaluation schedules they induce.
(d) Circuit generated from the merged schedule wxyzwxy. (e) Final simplified
acyclic equivalent to (a).

produce combinational behavior. We treat inputs that produce
noncombinational behavior as don’t cares: We assume that
these inputs were never meant to be applied.

We solve this problem by addressing two main challenges:
identifying a small set of behaviors that together “cover” all
possible combinational behaviors of the original cyclic circuit
and merging these behaviors into a final acyclic circuit. Because
it must consider all behaviors, the former problem is more
difficult than the latter. There are simple ways to solve these
problems, but they produce circuits that are too big (quadrati-
cally larger) to be practical.

We organized this paper as follows. Section II reviews related
research. We give an example of our method in Section III.
We present our circuit model and theoretical foundations in
Section IV and give the theory and an algorithm for computing
schedules and transforming them to circuits in Sections V and
VI, respectively. We describe the key to our algorithm—an
algorithm for identifying all combinational behavior of a
cyclic circuit—in Section VII. A mechanism for combining the
acyclic fragments that this algorithm generates is described in
Section VIII, and we present experimental results in Section IX.

II. PRIOR WORK

The challenges of dealing with cyclic switching circuits dates
back to at least the 1950s [7]. The basic problem is that cycles
are necessary for building state-holding elements yet, due to
inevitable uncontrollable delays, bring with them a host of
challenges such as races and hazards [8], [9]. Analyzing and
synthesizing such circuits is now well understood [10].

Our work rests on techniques for identifying when a cir-
cuit may have (generally unwanted) delay-dependent behavior.
Eichelberger [11] was among the first to propose the now-
standard three-valued simulation technique that answered this
question (although Yoeli and Rinon [12] had also considered
it), which was quickly put into commercial use [13].

Eichelberger’s algorithm is simple: To simulate a transition,
set all changing inputs to X , propagate the effects of this
throughout the circuit, then set all changing inputs to their
final values and again propagate their effects. He showed that
each gate output that becomes 0 or 1 after such simulation will
stabilize to that value for any assignment of (finite) delays, i.e.,
the absence of X’s means the circuit is race free. Brzozowski
and Yoeli [14] later generalized this to allow the circuit to start
in a transient (unstable) state. Bryant [15] applies this algorithm
to MOS transistor circuits instead of logic gates.

Today, most circuits are built by connecting carefully de-
signed state-holding elements such as D flip-flops with acyclic
combinational logic, but there are reasons for considering cyclic
combinational logic. Kautz [4] was the first to show that the
minimal form of certain circuits contained combinational loops.
Later, Rivest [5] came to a similar conclusion, suggesting that
combinational loops are more than just a nuisance.

Stok [2] observes how false loops can arise from resource
sharing in high-level synthesis and notes that “most logic
synthesis systems and delay calculators (timing analyzers) are
not able to handle them.” Stok proposes a specialized algorithm
that avoids loops in this setting and showed that doing so did not
negatively affect circuit quality. Because it has a better picture
of the computation being performed, Stok’s algorithm almost
certainly produces better circuits than ours. However, it only
applies to loops caused by resource sharing; ours can remove
any kind of loop.

Malik [1] considers the problem of analyzing when cyclic
circuits behave combinationally. He shows an equivalence be-
tween combinational cyclic circuits and the least fixed points
in three-valued simulation. Shiple et al. [16] apply this to the
Esterel language [17], [18], whose hardware translation [3] of-
ten produces combinational cycles. They use a symbolic state-
space traversal followed by an O(n2) replication procedure to
remove cycles. By contrast, our technique heeds the structure
of the original circuit when constructing an acyclic equivalent.

The binary decision diagram (BDD)-based algorithm of
Halbwachs and Maraninchi [19] takes a brute-force approach,
ignoring the structure of the circuit. Namjoshi and Kurshan [20]
take a very different approach, showing that any fixed point is
interesting, not just the least. Their analysis answers whether
a circuit is combinational, but they do not attempt to use their
results to construct an equivalent acyclic circuit.

Riedel and Bruck [6] apply Rivest’s observations to synthe-
size very compact combinational circuits that contain cycles.
As part of their synthesis step, they check whether the circuit
they generated is combinational using a BDD construction; our
algorithm could be used in that setting. The cyclic combina-
tional circuits they generate have topologies complex enough
to stymie the decyclification algorithm of Edwards [21]—the
starting point for our work. Our improved algorithm now easily
handles these circuits.

NEIROUKH et al.: TRANSFORMING CYCLIC CIRCUITS INTO ACYCLIC EQUIVALENTS 1777

Riedel and Bruck [6] also present a symbolic approach to
deriving conditions under which a circuit is combinational.
They use BDDs [22] and apply their technique to synthe-
sizing a cyclic circuit from an acyclic starting point. Their
network model is composed of node functions, which de-
scribe the logical function of each node in terms of primary
inputs as well as other nodes. Like ours, their algorithm
also computes the conditions under which a cyclic circuit
behaves combinationally. However, their algorithm relies on
target functions, which describe the logical function of each of
the internal nodes based on the input variables only, i.e., the
target function for a node is the acyclic equivalent of its node
function.

Riedel and Bruck’s algorithm requires both node and target
functions. These are usually easy to compute and maintain
starting from an acyclic specification (for a large circuit, such
primary-input-only BDDs may be too large to construct), but
they are much more difficult to compute in our setting, where
we start from a cyclic circuit. In some sense, most of our
algorithm is devoted to computing the equivalent of their target
functions; therefore, to apply their algorithm on a cyclic circuit,
it might be necessary to run our algorithm anyway. In any case,
it is difficult to compare the efficiency of their technique with
ours because they do not report runtimes.

Like us, Gupta and Selvidge [23] transform cyclic circuits
into equivalent acyclic ones but take a very different approach.
They decompose feedback paths into multiplexers, combine
them, and transform the select inputs into enable pins on
latches. Adding latches to the circuit actually results in a se-
quential circuit, not just an (combinational) acyclic one, which
can be undesirable when the cycles never function as state-
holding elements. Furthermore, their approach rejects cyclic
circuits that appear to be able to oscillate, but their analysis
is conservative and may reject circuits that are actually well
behaved in practice. Finally, their technique enumerates all the
loops in a circuit. While the number of loops in the commercial
benchmarks they tried was modest, we suspect their technique
would not work well on the highly connected circuits produced
by Riedel and Bruck.

Much of the literature on cyclic circuits has been concerned
with efficiency [4]–[6] or their production as a side effect
of high-level synthesis [3]. In both settings, combinational
circuits are not intended to be storage elements. We treat input
conditions for which cyclic circuits behave noncombinationally
as don’t-care conditions.

Our work builds on the work of Neiroukh et al. [24], which
is, in turn, built upon Edwards’ [21]. The earlier paper laid
out the two stages of our algorithm: an exhaustive enumeration
of acyclic circuit fragments that together cover all the combi-
national behavior of the cyclic circuit followed by a heuristic
merge of these fragments to produce the final result. The acyclic
fragment search procedure in the earlier paper often wasted
a lot of time establishing that it had found all the necessary
fragments, a problem considered and greatly improved upon in
the later paper. Our current work further improves the efficiency
of the algorithm by introducing the use of zero-suppressed
decision trees (ZBDDs) to merge PAs, a subject we discuss at
length in Section VII.

Fig. 2. Illustration of our algorithm. From the cyclic circuit in (a), our
algorithm applies controlling values as listed in (b) to produce the two acyclic
fragments in (c) and (d). These two fragments may be merged to produce either
(e) or (f). Circuit (e) is smaller and may be further simplified to produce the
circuit in (g), which behaves like (a) when gate outputs are not X . (h) is the
truth table for (a).

Our approach has a number of unique strengths. It combines
explicit enumeration to minimize the number of assignments
to consider by following the structure of the circuit with an
implicit ZBDD-based technique to greatly reduce the danger
of a combinatorial explosion. A strength of this approach is the
ease with which it handles cycles that are mostly or completely
topological. For instance, it quickly discovers cyclic circuits
that are combinational under all input patterns.

Malik [1] shows the determination of whether a cyclic circuit
that is combinational is co-NP-complete; therefore, it is not
surprising that our algorithm can exhibit exponential behavior
on a cyclic circuit that is combinational under only one PA
that assigns all strongly connected component (SCC) inputs.
However, our algorithm is able to prune the search space on
most circuits and run faster.

III. EXAMPLE

The example in Fig. 1 illustrates how our algorithm works
at a high level: A set of acyclic circuit fragments that cover
all combinational behavior is derived. The fragments are then
merged into a single acyclic circuit and simplified by applying
controlling values to don’t-care inputs.

In this section, we present a more complicated example—
Fig. 2—that illustrates more of the details in our algorithm. It
is still too simple to show all the challenges that occur when
resynthesizing big circuits; later sections cover these in detail.

As before, our first goal is to find a small set of PAs of values
to inputs that, together, cover all the combinational behavior of
the circuit. That is, we want an input vector to be combinational
if and only if it is contained in one of our PAs.

1778 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

Our algorithm begins by applying a controlling value to each
input separately. Such a controlling value—a 0 input on an AND

gate and a 1 applied to an OR gate—by definition forces the
output of the gate to a given value regardless of the other inputs.
Such inputs are required to “cut” the SCC and make it behave
combinationally. We formalize this later in Theorem 3.

The top of Fig. 2(b) summarizes the results of these initial
assignments. First, when the x input is 0, the circuit is always
combinational because 0 is a controlling value on gate a,
which breaks the e-to-a feedback loop. Fig. 2(c) shows the
circuit fragment induced by this assignment. We include the
assignment {x = 0} as part of our minimal cover and will not
consider any further assignments that contain {x = 0}.

However, unlike the example in Fig. 1, not all of these
input assignments induce combinational behavior by them-
selves. Consider what happens when y = 0. Although this is
a controlling value for gate c (its output becomes 1 regardless
of b), by itself, this is not enough to force the whole circuit to
behave combinationally because a 1 on c is a noncontrolling
value on the AND gate e. We refer to all such gates as the
frontier induced by a PA (see Definition 4) because they define
the boundary between combinational and possibly noncombi-
national behavior. Such gates can be thought of as being the
cause of a logjam.

The key step in this phase attempts to break logjams by
looking for promising combinations of PAs that affect the same
frontier gates. This is a covering problem that requires us to
enumerate all satisfying assignments, a fairly difficult problem
that is important to solve quickly; we discuss this at length in
Section VII-C. Here, only one gate e appears in any frontier;
we will attempt to set the output of these gates by judiciously
combining sets of PAs that might completely define values at
the inputs of these gates.

To break the logjam at e, we consider PAs that affected e’s
inputs: {y = 0} and {z = 0}. Each of these sets at least one
of the inputs to e to a noncontrolling value (1, because e is an
AND gate). We can break the logjam by looking for PAs that
combine to set all of e’s inputs to noncontrolling values, i.e., by
setting c = 1 and d = 1, and do not have any conflicts. Thus,
we decide to consider the PAs {y = 0, z = 0} in the next step.

The bottom row of Fig. 2(b) lists this new PA. This leads to
an empty frontier and, therefore, an acyclic circuit. The first
part of our algorithm terminates and returns the two acyclic
PAs shown in Fig. 2(b). Together, these two PAs represent all
combinational behavior in the original cyclic circuit.

The scheduling algorithm fuses circuit segments constructed
from PAs into schedules. When fusing circuits, a gate with
identical inputs in each fragment can be shared, and don’t-care
gate inputs can be assigned as desired to produce behavior from
either fragment.

The simple merging procedure used by the algorithm pro-
duces two circuits: Fig. 2(e) and (f). Fig. 2(e) comes from
appending Fig. 2(c) to the end of Fig. 2(d), and Fig. 2(f) is
Fig. 2(d) appended to Fig. 2(c). Fig. 2(e) is smaller (seven gates
versus eight); so we choose to discard Fig. 2(f).

The unlabeled input on the left of Fig. 2(e) is a don’t care
because we know that the other input on that gate will be set
to a controlling value when combinational input patterns are

Fig. 3. Three-valued simulation algorithm, which takes a circuit 〈G, I, W 〉,
an input function x, and an infinite schedule of gates s. It evaluates gates until
it reaches a fixed point using EVAL, which updates a single (NAND) gate.

applied; therefore, we may set it as we like. Setting to 0 is the
judicious choice, giving the circuit in Fig. 2(g). Note that, as
desired, this circuit follows the truth table in Fig. 2(h) when no
gate’s output is X .

IV. OUR CIRCUIT MODEL

While we feel the approach in our algorithm—applying
input patterns that induce combinational behavior then merg-
ing the resulting acyclic circuits—is intuitively correct, in the
succeeding paragraphs, we justify it formally by defining ex-
actly what we mean by circuits and combinational behavior.
Specifically, we describe our model of cyclic gate circuits and
define their semantics with the usual three-valued simulation
algorithm (Fig. 3). We show that this simulation algorithm pro-
duces the same result for every possible gate evaluation order
(Theorem 1), making it a reasonable definition for the semantics
of these circuits, and that there is always some finite gate eval-
uation sequence (schedule) that works for every possible input
for a particular circuit (Corollary 1). In Section V, we will show
how such a schedule can be used to produce an acyclic circuit.
Finding such schedules—the main challenge—is the subject of
Sections VI–VIII.

We use a simple gate-level circuit model: A circuit C is a
tuple C = 〈G, I,W 〉, where G is a finite set of gates, I is a
finite set of primary inputs, and W ⊆ (G ∪ I) × G is the set
of wires. Each gate computes the logical NAND of its inputs;
we assume that more complex gates have been dismantled into
NANDs. Note that primary inputs have no incoming edges. We
consider every gate to be an output.

We treat gates as taking one of three values: 0, 1, and ⊥. The
first two values are self-explanatory; we write ⊥ instead of the
X usually used in three-valued logic simulation to emphasize
the connection with lattices and partial orders.

The three wire values are partially ordered with a relation �
that satisfies ⊥� 0 and ⊥� 1 and is transitive (x � y and y � z
implies x � z), reflexive (x � x), and antisymmetric (x � y
and y � x implies x = y).

The relation � can be thought of as an information ordering:
⊥ is less defined than 0 or 1, but neither 0 � 1 nor 1 � 0
since both represent the same amount of information, i.e.,

NEIROUKH et al.: TRANSFORMING CYCLIC CIRCUITS INTO ACYCLIC EQUIVALENTS 1779

a defined value. The pointwise extension of this relation to
vectors reinforces this intuition: (x1, . . . , xn) � (y1, . . . , yn)
iff x1 � y1, . . ., and xn � yn. More informally, if X � Y , then
each element of Y is either the same as its counterpart in X or
a ⊥ in X is a 0 or 1 in Y .

Definition 1: A controlling value for a gate G is the non-
⊥ value that, when applied to any input of G, uniquely sets
G’s output to a non-⊥ value independent of assignment to other
inputs.

It follows from this definition that, for a gate’s output to be set
to non-⊥, either all inputs must be set to noncontrolling values
or at least one input must be set to a controlling value. For a
NAND gate, 0 is a controlling value and 1 is noncontrolling.

Definition 2: An SCC of a circuit C is a maximal subset of
gates V ⊆ G such that there is a (wire) path from any gate in
V to any other gate in V . Inputs of an SCC are inputs of gates
that are part of the SCC, which are either primary inputs or are
driven by gates inside the SCC.

A. Three-Valued Simulation

Following Malik [1] and Eichelberger [11], we define the
semantics of our circuits as being the results of three-valued
simulation. Fig. 3 shows the algorithm. The three arguments
to SIMULATE are a circuit, a function x : I → {⊥, 0, 1} that
defines the state of the inputs, and an infinite sequence of gates
s = (s1, s2, . . .) where sk ∈ G that defines a fair evaluation
schedule. Specifically, for any g ∈ G and any j > 0, there is
some k > j for which sk = g.

Shiple [25] shows that a three-valued simulation is a tight
approximation of Brzozowski and Seger’s [26] up-bounded
inertial delay model, which assumes that the delay of a gate
or wire in a circuit may range from infinitesimal to some upper
bound. Specifically, if the result of three-valued simulation with
non-⊥ inputs does not contain any ⊥s, the up-bounded model
will produce this result for any assignment of actual delays.
Conversely, if three-valued simulation produces a node with
value ⊥, then there is a delay assignment that will make the
value of that node behave unpredictably.

SIMULATE is a chaotic iteration procedure that first initializes
v0, the state of the nodes in the circuit, then enters a loop in
which it evaluates each gate according to the schedule s. All the
gates are set to ⊥ in the initial state. The EVAL function updates
the state of gate g by examining the state of the gates and inputs
that drive it. The loop ends when the process converges, i.e.,
when updating all gates has no effect.

By starting all the gates in the ⊥ state, we make this algo-
rithm equivalent to Eichelberger’s [11] when all inputs tran-
sition simultaneously. We make this conservative assumption
because we are concerned with circuits that completely ignore
their previous state, i.e., are combinational.

Lemma 1: v0 � v1 � · · · � vk � · · ·.
Proof: By induction. First, EVAL only changes v′(g), and

g ∈ G from SIMULATE; therefore, vk(i) = x(i) for all k ≥ 0
and i ∈ I .

Base case: v0(g) =⊥ for all g ∈ G; therefore, it must be that
v1 � v0 since ⊥� x for any x ∈ {⊥, 0, 1}.

Induction: Assume that v0 � v1 � · · · � vi−1. vi is vi−1

with vi−1(si) replaced by o computed by EVAL.
If vi−1(si) =⊥, then the induction hypothesis
holds trivially.

If vi−1(si) = 0, then there was some j < i for which vj(d) =
1 for all d ∈ {d : (d, si) ∈ W}. From the induction hypothe-
sis, it follows that vj(d) � vj+1(d) � · · · � vi−1(d). However,
since vj(d) = 1, this means that vi−1(d) = 1, and therefore,
EVAL sets vi(si) = 0 and the induction hypothesis holds for i.

Similarly, if vi−1(si) = 1, there was some j < i for which
vj(d) = 0 for some d ∈ {d : (d, si) ∈ W}. Similar reasoning
finds vi(si) = 1, and again, the induction hypothesis holds. �

Lemma 2: The SIMULATE function terminates.
Proof: In each iteration of the while loop, a single gate

is evaluated. Lemma 1 implies that each gate can only change
its value once and only from ⊥ to 0 or 1. Since there are a
finite number of gates and the si’s are distributed fairly, the
termination condition for the while loop will eventually be
reached and the function will terminate. �

Lemma 3: If v � w, eval(W, v, g)(g) � eval(W,w, g)(g).
Proof: If v � w, v(d) � w(d) for any d. From the de-

finition of o in EVAL, eval(C, v, g)(g) = 0 implies v(d) = 1
for all d ∈ D. Since v(d) � w(d), it follows that w(d) =
1 for all d ∈ D; therefore, eval(C,w, g)(g) = 0. Similarly,
if eval(C, v, g)(g) = 1, then v(d) = 0 for some d ∈ D.
Similarly, it follows that w(d) = 0 for that d; therefore,
eval(C,w, g)(g) = 1. Finally, if eval(C, v, g)(g) =⊥, ⊥� o for
any o = eval(C,w, g)(g). �

Theorem 1: The result of the SIMULATE function for a
particular circuit and input is the same for all fair sched-
ules s.

Proof: We will show that SIMULATE always computes the
(unique) least fixed point of a monotonic function on a complete
partial order. Let

f (〈G, I,W 〉, x, v) (n) =
{

EVAL(W, v, n), if n ∈ G
x(n), if n ∈ I .

Computing f amounts to evaluating every gate, and
the termination condition on the while loop is equivalent
to f(〈G, I,W 〉, x, v) = v. From Lemma 2, it follows that
SIMULATE always returns some fixed point of f .

From Lemma 3, eval(W, v, g) is monotonic on the g com-
ponent; therefore, it follows from the definition of f that f is
monotonic in v, i.e., if v � w, then f(C, x, v) � (C, x,w).

Since f is a monotonic function on the complete partial order
whose elements are v : G ∪ I → {⊥, 0, 1}, it follows from
the folk theorem variously attributed to Knaster, Tarski, and
Kleene [27] that f has a unique least fixed point. Call that least
fixed point f ∗(C, x).

From that same theorem, we know

v0 � f(C, x, v0) � f (C, x, f(C, x, v0)) � · · · � f ∗(C, x).

By definition, v1 = eval(W, v0, si). From the definitions of
f and EVAL, it follows that v1 � f(C, x, v0).

Now,assumethatvi−1 � f i−1(C, x, v0)wheref i(C, x, v0) =
f(C, x, f(C, x, f(· · · , f(C, x, v0) · · ·))) (f applied i times).

1780 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

From Lemma 3, this implies that

eval(W, vi−1, si) � eval
(
W, f i−1(C, x, v0), si

)
vi � eval

(
W, f i−1(C, x, v0), si

)
� f i(C, x, v0).

By induction, it follows that vi � f i(C, x, v0) for all i, and
thus, vi � f ∗(C, x). However, since we know that SIMULATE

always terminates at the first fixed point it finds and f ∗(C, x) is
the least such fixed point, SIMULATE must always terminate at
f ∗(C, x), the unique least fixed point of f . �

Because of Theorem 1, we can define the (unique) behavior
of a circuit as follows:

f(C, x) = SIMULATE(C, x, s) for all fair s. (1)

Note that f is a function that takes a circuit and a function
defining its inputs and returns a function defining its inputs and
gates. Formally

f : 〈G, I,W 〉 × (I → {⊥, 0, 1}) → (G ∪ I → {⊥, 0, 1}) .

Corollary 1: For a particular input x, there is a finite-length
schedule s that leads to convergence in which each gate appears
exactly once.

Proof: Lemma 2 tells us that a finite s suffices. Lemma 1
suggests that each gate can change its value at most once during
the evaluation procedure; therefore, we can simply remove from
any schedule s all gates that do not cause a change in v.
Theorem 1 tells us that this does not affect the final result. �

B. Combinational Circuits

Like Malik [1], we say that a circuit C = 〈G, I,W 〉 is com-
binational for an input x if f(C, x)(g)
=⊥ for all g ∈ G (i.e.,
three-valued simulation does not lead to any ⊥-valued gates).
Again, because of Shiple [25], this is equivalent to insisting
that the circuit always stabilizes and never holds state for any
delay assignment. Literature on cyclic circuits also refers to this
behavior as “well behaved” and “constructive” [16].

Since we consider all gate outputs to be primary outputs,
our definition of combinational insists that every part of the
circuit stabilizes. This is actually a conservative definition of
combinational behavior: If the environment does not observe
the output of, for example, an oscillator, should its presence
really matter? Arguments can be made on both sides, but we
suspect that a designer who wants a combinational circuit does
not want any state-holding or oscillatory behavior; therefore,
we disallow it.

Our goal is to produce an acyclic circuit whose behavior
matches that of a cyclic circuit for inputs that are combina-
tional. We assume that noncombinational behavior, if any, was
unintended and treat inputs that induce it as don’t-care patterns.

Fig. 4 shows a circuit consisting of a single SCC whose
inputs are a, b, and c. When analyzing a circuit, we first
decompose it into SCCs using a standard algorithm [28]. If the
input circuit contains more than one SCC, we consider each
SCC separately in a topological order.

Fig. 4. (a) Cyclic circuit. (b) PAs and their induced frontiers—the boundary
between defined and X-valued gates after applying inputs.

Fig. 5. Variation of the simulation algorithm that starts the value of each gate
at an initial state i.

V. IMPLEMENTING SCHEDULES AS ACYCLIC CIRCUITS

Corollary 1 tells us that each circuit has some finite-length
gate evaluation order that evaluates the circuit for every possible
input. In this section, we show how to use such a schedule to
build an acyclic circuit that computes the same function as the
original cyclic circuit. Finding good schedules is challenging;
we address this problem in Sections VI–VIII.

The SIMULATE function exhibits a simple sequential behav-
ior: It evaluates gates in scheduled order, taking the inputs of
each gate from the most recently computed state of all the gates
in the circuit.

Consider Fig. 5—a variant of the three-valued simulation
algorithm from Fig. 3 that begins with each gate in an initial
state given by the function i : G → {0, 1}.

Theorem 2: If x(i)
=⊥ for all i ∈ I and f(C, x)(g)
=⊥ for
all g ∈ G, then simulate-initial(C, x, i, s) = f(C, x) for all i :
G → {0, 1}.

Proof: First, note that v0 � v′
0 because v0(n) = v′

0(n) for
n ∈ I by construction and v0(n) =⊥� v′

0(n) for n ∈ G. From
Lemma 3, it follows that eval(W, v0, s1) � eval(W, v′

0, s1);
therefore, v1 � v′

1, and by induction, vj � v′
j for all j. How-

ever, by assumption, f(C, x)(g)
=⊥, there is some vj that
does not contain any ⊥ elements (i.e., when the procedure
has converged). However, vj � v′

j from the aforementioned
inductive argument, and since vj(n) ∈ {0, 1}, it follows that
v′

j = vj since only 0 � 0 and 1 � 1. �
Theorem 2, suggested by Gérard Berry, makes it possible to

simulate circuits that are known to be combinational without re-
sorting to three-valued evaluation. Since the v′

j’s never contain
any ⊥s, SIMULATE-INITIAL reduces to two-valued simulation.

At the heart of our technique is a straightforward trick: It is
easy to construct an acyclic gate-level circuit that behaves like
SIMULATE-INITIAL by following the schedule.

The procedure is simple: For each gate in the schedule in
scheduled order, add a copy of that gate to the circuit by
connecting its inputs to the output of the “most recent copy”
of that gate (or primary input) and call that gate the new most

NEIROUKH et al.: TRANSFORMING CYCLIC CIRCUITS INTO ACYCLIC EQUIVALENTS 1781

Fig. 6. Acyclic circuit generated from the schedule QRSTUVWXYZQRSTUV for the cyclic circuit in Fig. 11(a).

recent copy. To begin with, the most recent copy of each gate
is a wire initialized to either 0 or 1. Theorem 2 tells us that any
choice of these initial values will produce the same result. Thus,
these are exactly don’t-care inputs and can be used to simplify
the logic later.

Fig. 6 shows the circuit constructed from the sched-
ule QRSTUVWXYZQRSTUV applied to the cyclic circuit in
Fig. 11(a). Note that all wires go from left to right, that the gates
appear in scheduled order from left to right, and that the
function and inputs of each gate exactly follow those in the
cyclic circuit. We note that the bottom input on the leftmost
Q gate has been left unconnected—this represents a don’t-care
input, and to simplify the circuit, we may set it to 0.

VI. COMPUTING SCHEDULES

Previously, we described machinery for synthesizing an
acyclic circuit whose behavior matches that of a cyclic circuit: a
mechanical procedure for constructing an acyclic circuit from a
schedule—a gate evaluation order for the SIMULATE procedure
that computes the function of the circuit.

We have two objectives in choosing these schedules: They
must be correct (i.e., correctly compute the function of the
circuit), and we would like them to be short since the longer
the schedule, the larger and slower the generated circuit. We
consider the correctness issue in this section and present an ef-
ficient algorithm for computing short schedules in Sections VII
and VIII.

For acyclic circuits, the scheduling problem is straightfor-
ward: Any topological sort of the gates in the circuit is a correct
schedule, and unless any outputs are ignored, this is also a min-
imal schedule. For cyclic circuits, there is no topological sort
of the gates in the circuit, and the scheduling problem is more
subtle. A key difference between cyclic and acyclic circuits
is that the evaluation order for a cyclic circuit depends on its
inputs; an acyclic circuit always has some input-independent
evaluation order.

Thus, the key objective in transforming a cyclic circuit into
an acyclic one that computes the same function is making
sure that every needed evaluation order of the acyclic cir-
cuit is somehow contained in the “unrolled” acyclic version.
Unfortunately, this requires duplicating gates, which is con-
sistent with the minimality result of Kautz [4]. The problem
then becomes finding an evaluation sequence that contains all
the possible evaluation sequences as (possibly noncontiguous)
subsequences. For example, if 123 and 132 were evaluation
sequences, the sequence 1232 would cover them.

A. Covering All Permutations

For a schedule to be correct—for it to generate an acyclic
circuit whose function matches that of a cyclic circuit—it must

TABLE I
SHORTEST SEQUENCES COVERING ALL PERMUTATIONS OF 1, . . . , n

contain at least one correct evaluation order (i.e., one that
brings the simulation procedure to a fixed point) for every
possible combinational input pattern. This does not mean the
schedule needs to contain every legal evaluation order. For
example, any topological sort is a possible evaluation order of
an acyclic circuit, but a valid schedule only needs to contain one
topological sort.

The scheduling problem can be divided into two problems:
finding all the evaluation orders the original circuit can exhibit
and constructing a small schedule that contains all of them. It is
critical that the final schedule contain a valid evaluation order
for every possible combinational input; if one were missing,
the generated circuit might compute a different value for an
input pattern that needed that evaluation order. Including more
evaluation orders than necessary does not affect correctness, but
we wish to eliminate as many of these as possible as they tend
to (needlessly) increase the size of the circuit.

For any input pattern applied to the cyclic circuit, it is always
possible to compute the circuit output by evaluating each gate
at most once. Thus, the only evaluation sequences we need to
consider are permutations of all the gates, i.e., for a particular
input pattern, we never need to consider sequences in which
some gates appear more than once.

A brute-force solution to the scheduling problem then
amounts to finding schedules that contain all possible permu-
tations of the original set of gates. One simple schedule always
works: n repetitions of all n gates in the circuit. It is easy to
see that this includes all permutations as subsequences: For
a particular permutation, the first gate appears somewhere in
the first repetition of all the gates, the second gate appears in
the second, and so forth. Unfortunately, this simple approach
produces a schedule of length n2, which is usually much longer
than necessary.

Finding a sequence that covers all permutations of 1, . . . , n
is a studied problem in discrete mathematics, but all solutions
are O(n2). Koutas and Hu [29] and, later, Mohanty [30], give
constructions that produce strings of length n2 − 2n + 4. These
constructions are complicated and produce seemingly chaotic
sequences; Table I gives examples of these strings for some
small n. Cai [31] lowers the bound slightly for n ≥ 8, but
does not give a construction. Erra et al. [32] reach similar
conclusions.

1782 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

Fig. 7. Result of various scheduling techniques applied to a simple cyclic
circuit. The quadratic solution is the most brute force; Mohanty’s is a more
clever way to cover all permutations; Bourdoncle’s technique considers the
structure of the circuit; ours also considers the function of the circuit.

B. SCC Decomposition

An obvious optimization is to decompose the circuit into
SCCs and deal with each separately. While evaluating each
SCC can be complicated, the graph of SCCs is a directed
acyclic graph; therefore, the SCCs can be evaluated in topo-
logical order, i.e., so that each SCC is evaluated exactly once.
The simplest case is when the circuit is acyclic: Each SCC is a
single gate, and a single gate only needs to be evaluated once.
Each SCC, however, needs to be scheduled more cleverly.

A few scheduling techniques that perform recursive SCC de-
composition have been developed. Bourdoncle’s technique [33]
selectively removes a single gate from an SCC, then recurses
on the (hopefully simpler) circuit that results. Edwards and Lee
[34] extend this technique by selecting two or more gates to be
removed, often producing better results.

Fig. 7 shows a five-gate circuit and some correct schedules.
The first two schedules attempt to cover all permutations, but
are overkill because the original circuit cannot exhibit many
of these permutations (e.g., wzxyv is covered by both of these
schedules but need not be). The third schedule takes the struc-
ture of the circuit into account; the fourth also considers its
function. Both approaches reduce the length of the schedule,
but considering function is superior.

VII. FINDING A SMALL COMBINATIONAL COVER

We now present an algorithm that efficiently finds a cover for
all combinational behavior of a cyclic circuit.

A. Theoretical Background

Definition 3: Let the set {x1, . . . , xn} represent the inputs of
an SCC. We define a PA as a set

PA = {xi = vk : xi ∈ (x1, . . . , xn) ∧ vk ∈ {0, 1}} .

In this work, we are only concerned with PAs to inputs of
SCCs. A PA is always associated with some SCC. For example,
a valid PA for the circuit in Fig. 4 is an assignment to one or
more of the inputs {a, b, c}, such as {a = 0}, {b = 0, c = 1},
and {b = 1, c = 1}.

Our algorithm relies on the following two theorems, which
are keys to its correctness and efficiency.

Theorem 3 (Edwards [21]): For a circuit with an SCC to
behave combinationally, at least one input to a gate in the SCC
must be driven to a controlling value.

For example, controlling assignments to SCC inputs for the
circuit in Fig. 4 are a = 0, b = 0, and c = 0. Theorem 3 tells us
that at least one of these is required for combinational behavior.

Theorem 4 (Edwards [21]): If a PA p is combinational, then
any further assignments that do not contradict any in p can also
be computed combinationally by the circuit fragment implied
by p.

Consider the PA {c = 0} applied to Fig. 4. This breaks the
connectivity of the SCC, making the circuit behave combi-
nationally. This theorem indicates that additional assignments
beyond {c = 0} cannot reverse the combinational behavior
already implied by this PA. This permits us to avoid further
consideration of acyclic PAs once we have identified them. This
supports one of our objectives for the algorithm: generation
of minimal PAs that capture all combinational behavior. We
explain the notion of minimal PAs in Section VII-C.

The main difficulty with SCCs is the lack of order in which
they can be analyzed; SCC gates cannot be sorted topologically.
To get around this, we introduce a concept that simplifies SCC
analysis.

Definition 4: The cyclic controllability frontier of a PA is the
set of SCC gates that have at least one non-⊥ input but whose
output is ⊥.

The frontier captures the notion of a boundary between gates
whose output is defined and those whose output is not. A
frontier is always associated with a PA. When calculating the
frontier for a PA, we use ternary simulation to propagate PAs
from SCC inputs as far as possible and then check for cyclic
behavior. Fig. 4(b) shows some frontiers induced by PAs for
the circuit in Fig. 4(a).

Theorem 5: A PA makes an SCC combinational if and only
if its frontier is empty.

Proof: If part: If the frontier is empty, then either no gates
have any inputs assigned or none has an output of ⊥. From
Theorem 3, we know that at least one gate must be driven by
a controlling value for combinational behavior. If none has an
output of ⊥, then the circuit under that PA is combinational by
definition.

Only if part: This follows directly from the definition of
combinational behavior. �

This theorem tells us that nonempty frontiers only exist in the
presence of SCCs. For example, the PA {c = 0} in Fig. 4 yields
an empty frontier. Stated differently, we broke the loop without
having to assign specific values to the inputs {a, b}.

B. Searching for Combinational Behavior

We use Theorem 3 to seed our search space with a pool
of PAs, each corresponding to a controlling assignment to an
SCC input. Any combinational behavior is guaranteed to be
present in supersets of one or more of these PAs. Our algorithm
proceeds by recording the frontier associated with each PA and
uses them to look for opportunities to merge PAs in an attempt
to find empty frontiers.

NEIROUKH et al.: TRANSFORMING CYCLIC CIRCUITS INTO ACYCLIC EQUIVALENTS 1783

Fig. 8. Our algorithm for finding a minimal set of PAs for a circuit (SCC) that
together cover all combinational behavior.

Fig. 8 shows our algorithm for identifying all combinational
behavior. It takes a circuit with any number of SCCs and
produces a set of PAs under which the circuit is combinational.
These PAs control SCC inputs.

The algorithm attacks one SCC at a time (line 4), finding a
minimal set of covering PAs for each. For each SCC, it begins
by considering PAs that place a single controlling value on
each SCC input (line 6), then enters into a loop (lines 7–21)
that alternates between testing whether any of the currently
considered PAs (set P) induce combinational behavior (lines
10–17) and attempting to merge PAs that are already observed
(set K) to generate a new set of PAs (lines 18–21). Its goal in
this second phase is to break logjams by combining PAs to set
the outputs of the latest set of frontier gates it has discovered.
The map F records PAs that affect frontier gates: If g is a
gate, then F (g) is the set of all PAs that put at least one
noncontrolling value at an input of g.

The algorithm in Fig. 8 will always find all combinational
behavior within the subject circuit. Starting from individual
controlling inputs into SCCs, our frontiers allow us to identify
all opportunities where PAs can merge to extend controllability
over more gates in an SCC. As we merge these PAs and
continue the searching, other acyclic PAs are explored. We
continue this cycle of search and merge, terminating when we
fail to generate new PAs.

C. Merging PAs

Here, we describe a key operation used in our main algorithm
(Fig. 8): the generation of new PAs to break the logjam at a
frontier gate. Given a set of PAs and a gate, the algorithm in
Fig. 10 generates a set of PAs that apply noncontrolling values
to every input of the gate, thus setting its output. This algo-
rithm is the key improvement over the technique we presented
earlier [24].

We store PAs in a simulated state that captures all assigned
nodes and their values. The main algorithm (Fig. 8) only tries

Fig. 9. (a) Merging PAs at (b) a gate. Our algorithm constructs (c) a product
of sums to capture the merging constraints, then transforms it into (d) an ISOP.
Each product represents a way to merge PAs (negated terms are ignored), giving
(e) a new set.

to merge PAs for a gate when at least two PAs set an input on
the gate. Merging attempts to produce new PAs by propagating
known values across these frontier gates to extend the set of
gates whose output is not ⊥.

Consider the example in Fig. 9. Fig. 9(b) shows a three-
input (frontier) gate g for PAs p0, . . . , p4. As always, these PAs
control inputs (here a, . . . , f) to the SCC that contains g and not
usually the gate’s inputs. Note that a gate can only be a frontier
for a PA if that PA puts a noncontrolling value on one or more of
the gate’s inputs. We wish to consider merging these PAs to ex-
tend the frontier beyond g. A desirable merge of PAs at a gate g
must be

1) A gate cover. Merged PAs must define every input of g.
2) Consistent. Merged PAs must not contain conflicting

assignments to inputs. In Fig. 9, PAs p1 and p4 cannot
be combined due to a conflicting assignment for b.

3) Complete. PAs must be merged such that all permissible
combinations are considered. The example in Fig. 9 illus-
trates that there are different ways to cover every input.
All must be considered, which ensures that our final PAs
encapsulate both necessary and sufficient conditions for
combinational behavior.

4) Minimal. Merged PAs must not contain any PA that can
be removed while satisfying the previous conditions. For
example, the merge candidate p0 ∪ p3 ∪ p4 is rejected
since p0 dominates p4 (i.e., p0 controls both first and third
gate inputs; p4 only controls the third). This condition
keeps the final output PAs as concise as possible by not
including redundant conditions. Such redundancy has two
drawbacks: It burdens subsequent stages of the algorithm
because it increases memory usage, and it makes testing
the merge conditions against other candidate PAs more
tedious.

The gate cover, consistency, and completeness conditions are
necessary for correctness (without the first two, the analysis
does not make sense; the third one guarantees that we do not
miss any necessary PAs), but minimality is merely desirable—it

1784 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

Fig. 10. Our PA merging algorithm: Return a set of PAs that apply noncon-
trolling values to every input of a gate.

improves both the running time of our algorithm and the
quality of the final result. Our algorithm satisfies the first three
conditions and approximates the minimality by computing an
irredundant sum of products (ISOP), as we describe in the
succeeding paragraphs.

We can merge PAs by merely verifying that there are no
conflicts to the assigned primary inputs of the SCC. In other
words, we do not need to check for conflicts of every internal
node. This greatly speeds our consistency checking procedure.

The argument for this is a proof by contradiction. Let two
PAs A and B have nonconflicting controlling assignments to
SCC inputs, and assume that some intermediate node I has
conflicting values under assignments A and B (i.e., one is 0,
the other 1; there is no conflict if either is ⊥). The gate that
produces I must either have one input set to a controlling value
or all inputs set to noncontrolling values. We can repeat the
analysis on those inputs until we find conflicting inputs at SCC
inputs, which contradicts the original assumption.

Merging PAs is a kind of binate covering problem because we
must cover all gate inputs while avoiding conflicts. However,
our need for a complete enumeration is atypical.

Fig. 10 shows our algorithm for merging PAs. We construct
a BDD expressing our covering problem at the gates and the
conflicts therein as a product of sums (POS). The covering
at each gate input is encoded as a sum term that includes
all PAs that can control that input. By definition, these are
all noncontrolling input assignments, since otherwise, the PA
would have continued past this gate. To set the gate’s output
to a deterministic value, we need to select PAs covering all
the gate’s inputs, hence, the sum of products. However, we
must account for the PAs containing conflicting and, therefore,
noncompatible assignments to the inputs into the SCC. We
thus augment our POS expression with clauses that capture the
conflicts as pairwise sums of the negation of PAs that conflict.

We then use the Minato–Morreale algorithm [35] to generate
an ISOP in ZDD [36] form and use these to continue propa-
gation. Note that the addition of conflicts causes the ISOP to
contain negated terms, which we discard.

Fig. 9 shows an example. The five PAs in Fig. 9(a) control the
inputs of the three-input AND gate in Fig. 9(b). Our merging al-
gorithm (Fig. 10) starts by expressing the constraint at the AND

gate with the POS in Fig. 9(c): Each input must be controlled

Fig. 11. (a) PA extraction on a small cyclic circuit. (b) PAs from applying
controlling values to each input in isolation. All frontiers are either gate V or
gate Z. (c) POS and final ISOP for frontier gate V . (d) POS and ISOP for Z.
(e) Minimal set of PAs that reproduce all combinational behavior.

by at least one PA (the first three terms) and conflicting PAs
(i.e., those that insist on contradictory assignments to inputs:
here, p1 sets b = 0 and p4 sets b = 1; therefore, both p1 and
p4 are illegal together) are prohibited. Next, these constraints
are transformed to the ISOP in Fig. 9(d). Finally, negations are
removed from each term in the ISOP, leading to the new set of
PAs in Fig. 9(e). By construction, each of these PAs controls all
three gate inputs and has no conflicting input assignments.

D. Another Example

We will use the cyclic circuit in Fig. 11 to illustrate how we
use frontiers to extract PAs, how negated literals arise, and how
we deal with them.

We start by applying a controlling value to each input sep-
arately. Fig. 11(b) shows the results. Note that when a is 0,
the circuit is combinational since the feedback path is broken;
therefore, we include the assignment {a = 0} as part of our
minimal cover and will not consider any further assignments
that contain {a = 0} (Theorem 4).

Consider setting b = 0. Although this is a controlling value
for gate R (its output becomes 0 regardless of Q), by itself,
this is not enough to force the whole circuit to behave combi-
nationally because a 0 on R is a noncontrolling value on the OR

gate V . Each of the assignments c = 0 and d = 0 also have a

NEIROUKH et al.: TRANSFORMING CYCLIC CIRCUITS INTO ACYCLIC EQUIVALENTS 1785

frontier of V . A similar analysis shows different assignments to
e, f , and g, all yielding Z as their frontier.

The SCC input g has both 0 and 1 present as controlling
assignments since it is connected to a NAND and an OR.
Constructing a PA that includes such conflicting assignments
is meaningless because the circuit could never reach such
a state. Our algorithm tracks and caches conflicting PAs to
guard against composing a PA from such assignments. As we
stated previously, positive and negated literals in our initial
POS indicate the presence or absence of PAs, respectively, not
inverted assignments.

Next, we analyze the frontiers we have obtained from logic
simulation. Only two gates V and Z appear in any frontier; we
will attempt to set the outputs of these gates by judiciously
combining sets of PAs that might completely define values
at inputs of these gates. At every frontier gate, we compose
a covering problem in the form of a POS, where each sum
represents candidate PAs that define a given input of that gate.
To this POS, we add pairwise conflicts between PAs that cannot
be merged.

At gate V , the top input can only be defined by assignment
p1; therefore, this becomes the first sum term in our POS:
Fig. 11(c). The lower input can be defined by either of p2 or
p3; therefore, we add (p2 + p3) as our second sum term. We
note that none of these assignments conflict; therefore, there is
no need to add any additional assignments. As a matter of com-
putation runtime, however, we have found that adding conflicts
does not materially affect the subsequent AllSat computation.
The alternative, which is to compute and add only relevant
conflicts at every frontier gate input, was found empirically
to be more expensive. We store conflicting assignments in a
cache which we update as we create new assignments. These
are added to all POS expressions. This is not shown in Fig. 11
for brevity, where we only show relevant conflicts. A similar
analysis at gate Z yields the POS in Fig. 11(d).

Our algorithm now computes all satisfying assignments to
each of the POS expressions at frontier gates. We remove
negated literals as well as identical products from within each
sum. The output of this computation is shown next to each
POS in Fig. 11(c) and (d). This computation yields three new
PAs. Each leads to an empty frontier and (therefore) an acyclic
circuit. Finally, our algorithm terminates and returns the PAs
shown in Fig. 11(e).

VIII. FROM COMBINATIONAL COVERS TO SCHEDULES

Previously, we showed how to find a small set of PAs that
together cover all the combinational behavior of an acyclic
circuit. Each such PA implies an acyclic circuit fragment that
corresponds to a schedule, but it is only a partial schedule
for the original circuit. In this section, we describe a heuristic
algorithm for merging these partial schedules into one that can
be used to synthesize the final circuit using the procedure we
described in Section V.

Fig. 12 shows the algorithm for merging schedule s′ to
the “end” of schedule s. It strives to use existing gates in s
to implement the function of the added schedule s′ without
introducing a cycle. It tries to match each gate in s′ with the

Fig. 12. Schedule merging algorithm.

earliest identical one in s that would not create a cycle and adds
a new copy of the gate if no suitable one is found.

The mapping m (initialized in line 2, accessed in line 6, and
updated in lines 7–11) prevents cycles in the generated circuit.
It records the most recently used copy of each gate g; therefore,
the test in line 6 guarantees that every input wire to the gate
g′ comes from gates earlier in the schedule. By maintaining
this invariant, the resulting schedule always implies an acyclic
circuit since a gate’s inputs always come from earlier gates.

This algorithm is a heuristic in two ways. First, it can only
place new gates later in the schedule s, not earlier. This problem
is ameliorated by having the main algorithm try combining s
and s′ in both orders and picking the smallest, but this is not
a complete solution. More serious is the choice in line 10 to
always add the new gate at the end of schedule s. Other, earlier
choices are possible, but it is not clear which would lead to
a smaller overall circuit. The optimal merging problem seems
very difficult however, and given that our overall algorithm
is already potentially exponential, it is not clear whether it is
worth trying to solve exactly. Fortunately, a nonoptimal solution
is still correct, only larger.

IX. EXPERIMENTAL RESULTS

We implemented our algorithm in C++ and tested it on a
variety of circuits. We used the CU decision diagram (CUDD)
package [37] for BDD construction, ISOP calculation, and
ZDD computations. We present results in Table II. The first four
circuits come from Esterel programs [17] and contain simple
loops. The rest are more complex, coming from Riedel’s cyclify
[6]. We used a Pentium D machine running dual-core 3.0-GHz
Intel processors with an 800-MHz front side bus and 1-GB
RAM running Windows XP.

Table II characterizes our examples and how our algorithm
performed on them. The “Before” and “After” columns list
the total number of gates in the circuit before and after our
algorithm runs, providing a rough estimate of circuit complex-
ity and area. The “in SCC” column lists the number of gates
in the SCC of the input circuit (each circuit had exactly one
nontrivial SCC). These are the only really challenging gates in
each circuit. The “PAs” columns list the number of PAs our
algorithm considered while running (“Tested”) and the number
of acyclic PAs it found necessary to cover all combinational
behavior (“Acyclic”). The Tested number provides a rough
measure of how well our algorithm is able to prune the search
space; testing fewer PAs takes less time. The Acyclic number

1786 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 10, OCTOBER 2008

TABLE II
EXPERIMENTAL RESULTS

TABLE III
COMPARISON WITH EDWARDS’ [21]

is more of a function of the structure of the circuit and suggests
how well PAs characterize the combinational behavior of the
circuit. The last column reports the runtimes in seconds, which
includes both time to find the PAs and assemble the fragments
they induce into the final circuit.

Table III compares our approach with an earlier version of
the algorithm from Edwards [21]. Our algorithm consistently
runs over two orders of magnitude faster and is able to process
many more candidate PAs in less time, which we attribute to
removing the more expensive operations such as the superset
check against known combinational PAs.

We were not able to compare our results with those of
Gupta and Selvidge [23] because they did not test publicly
available circuits. However, unlike ours, their approach intro-
duces latches to break combinational loops. Also, our approach
analyzes the circuit for combinational behavior, producing con-
ditions under which the circuit behaves combinationally; their

algorithm does not. They do not list the number of gates in SCC
loops, and they report that the number of loops they can process
per second varies by over a factor of 50 (from 4 to 220). Also,
they count each feedback path as a loop where we count SCCs,
which may contain many loops.

X. CONCLUSION

We presented a new method for transforming a cyclic circuit
into an equivalent acyclic one that retains all the combinational
behavior of the cyclic version. This is useful when cyclic cir-
cuits arise from high-level synthesis [17], [18] or are generated
by algorithms designed to produce cyclic circuits [6], yet need
to be fed to synthesis and analysis tools that insist on acyclic
circuits.

As an intermediate result, we characterize sufficient and
necessary conditions for the original circuit to behave combina-
tionally. Our method only guarantees that the generated circuit
produces the same outputs for inputs that produce combina-
tional behavior; it implicitly assumes that the original cyclic
circuit is only used under such conditions. These combina-
tional conditions could be used to check, either formally or in
simulation, whether an environment would ever present illegal
input patterns to the original cyclic circuit and lead it to behave
noncombinationally.

Our algorithm produces an acyclic circuit by combining
fragments corresponding to the evaluation schedules of the
original circuit. This is advantageous because it composes the
acyclic circuit from the same gates from which the original
cyclic circuit was built. This is useful if the original circuit was
produced using specific library cells since our final circuit will
not require any different ones.

Our algorithm analyzes all possible inputs into SCCs without
considering whether such patterns can actually occur in the
actual circuit (i.e., whether they are controllability don’t cares).
This speeds the analysis by avoiding the need for an image
computation on the surrounding circuit, but it is possible that
considering the don’t-care set would reduce the number of PAs
we consider, further speeding the search and reducing the size
of the final acyclic circuit. We have not explored the tradeoff
between computing don’t cares and reducing the number of
PAs and potential reduction in the computation and size of the
resulting acyclic circuit since such a tradeoff depends on the
context of the cyclic circuit.

ACKNOWLEDGMENT

The authors would like to thank A. Shinnar for provid-
ing the initial inspiration for some of the algorithms in this
paper; it was his idea to cover schedules with circuits. The
authors would also like to thank S. Malik, M. Kishinevsky, and
L. Henry-Gérard for their contributions, G. Berry and T. Shiple
for the discussions, M. Riedel and J. Bruck for their seminal
research on the synthesis of cyclic circuits, which reignited
interest in these circuits and provided some of the benchmarks
used in this research, and A. Mishchenko for fixing a number
of things in the CUDD package, which we used, and for also
porting it to Windows.

NEIROUKH et al.: TRANSFORMING CYCLIC CIRCUITS INTO ACYCLIC EQUIVALENTS 1787

REFERENCES

[1] S. Malik, “Analysis of cyclic combinational circuits,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 13, no. 7, pp. 950–956,
Jul. 1994.

[2] L. Stok, “False loops through resource sharing,” in Proc. IEEE/ACM
ICCAD, San Jose, CA, Nov. 1992, pp. 345–348.

[3] G. Berry, “Esterel on hardware,” Philos. Trans. Roy. Soc. London A,
Math. Phys. Sci., vol. 339, no. 1652, pp. 87–103, Apr. 1992. Mechanized
Reasoning and Hardware Design.

[4] W. H. Kautz, “The necessity of closed circuit loops in minimal combi-
national circuits,” IEEE Trans. Comput., vol. C-19, no. 2, pp. 162–164,
Feb. 1970.

[5] R. L. Rivest, “The necessity of feedback in minimal monotone combi-
national circuits,” IEEE Trans. Comput., vol. C-26, no. 6, pp. 606–607,
Jun. 1977.

[6] M. D. Riedel and J. Bruck, “The synthesis of cyclic combinational
circuits,” in Proc. 40th Des. Autom. Conf., Anaheim, CA, Jun. 2003,
pp. 163–168.

[7] D. A. Huffman, “The synthesis of sequential switching circuits,” J.
Franklin Inst., vol. 257, no. 3/4, pp. 161–190, Mar./Apr. 1954. 275-303,
also MIT RLE-TR-274 (Jan. 10, 1954).

[8] D. A. Huffman, “The design and use of hazard-free switching networks,”
J. Assoc. Comput. Mach., vol. 4, no. 1, pp. 47–62, Jan. 1957.

[9] S. H. Unger, “Hazards and delays in asynchronous sequential switch-
ing circuits,” IRE Trans. Circuit Theory, vol. 6, no. 1, pp. 12–25,
Mar. 1959.

[10] C. J. Myers, Asynchronous Circuit Design. New York: Wiley, 2001.
[11] E. B. Eichelberger, “Hazard detection in combinational and sequential

switching circuits,” IBM J. Res. Develop., vol. 9, no. 2, pp. 90–99,
Mar. 1965.

[12] M. Yoeli and S. Rinon, “Application of ternary algebra to the study
of static hazards,” J. Assoc. Comput. Mach., vol. 11, no. 1, pp. 84–97,
Jan. 1964.

[13] J. S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg, “A three-value
computer design verification system,” IBM Syst. J., vol. 8, no. 3, pp. 178–
188, 1969.

[14] J. A. Brzozowski and M. Yoeli, “On a ternary model of gate networks,”
IEEE Trans. Comput., vol. C-28, no. 3, pp. 178–184, Mar. 1979.

[15] R. E. Bryant, “Race detection in MOS circuits by ternary simulation,”
in Proc. Int. Conf. VLSI Des. (VLSI), Trondheim, Norway, Aug. 1983,
pp. 85–95.

[16] T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of
cyclic circuits,” in Proc. Eur. Des. Test Conf., Paris, France, Mar. 1996,
pp. 328–333.

[17] G. Berry, The Constructive Semantics of Pure Esterel, 1999. draft book.
[Online]. Available: http://www.esterel-technologies.com/files/book.zip

[18] G. Berry, “The foundations of Esterel,” in Proof, Language, and Interac-
tion: Essays in Honour of Robin Milner. Cambridge, MA: MIT Press,
2000.

[19] N. Halbwachs and F. Maraninchi, “On the symbolic analysis of com-
binational loops in circuits and synchronous programs,” in Proc. 21st
Euromicro Conf., Como, Italy, Sep. 1995.

[20] K. S. Namjoshi and R. P. Kurshan, “Efficient analysis of cyclic de-
finitions,” in Computer Aided Verification, vol. 1633. Trento, Italy:
Springer-Verlag, Jul. 1999, pp. 394–405.

[21] S. A. Edwards, “Making cyclic circuits acyclic,” in Proc. 40th
Des. Autom. Conf., Anaheim, CA, Jun. 2003, pp. 159–162. [Online].
Available: http://doi.acm.org/10.1145/775832.775874

[22] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[23] A. Gupta and C. Selvidge, “Acyclic modeling of combinational loops,” in
Proc. IEEE/ACM ICCAD, San Jose, CA, Nov. 2005, pp. 343–347.

[24] O. Neiroukh, S. A. Edwards, and X. Song, “An efficient algo-
rithm for the analysis of cyclic circuits,” in Proc. Symposium
VLSI (ISVLSI), Karlsruhe, Germany, Mar. 2006, pp. 303–308. [Online].
Available: http://dx.doi.org/10.1109/ISVLSI.2006.18

[25] T. R. Shiple, “Formal analysis of synchronous circuits,” Ph.D. disserta-
tion, Univ. California, Berkeley, CA, Oct. 1996. memorandum UCB/ERL
M96/76.

[26] J. A. Brzozowski and C.-J. H. Seger, Asynchronous Circuits. New York:
Springer-Verlag, 1995.

[27] J.-L. Lassez, V. L. Nguyen, and E. A. Sonnenberg, “Fixed point theorems
and semantics: A folk tale,” Inf. Process. Lett., vol. 14, no. 3, pp. 112–116,
May 1982.

[28] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 1990.

[29] P. J. Koutas and T. C. Hu, “Shortest string containing all permutations,”
Discrete Math., vol. 11, no. 2, pp. 125–132, 1975.

[30] S. P. Mohanty, “Shortest string containing all permutations,” Discrete
Math., vol. 31, no. 1, pp. 91–95, 1980.

[31] M. Cai, “A new bound on the length of the shortest string containing all
r-permutations,” Discrete Math., vol. 39, no. 3, pp. 329–330, May 1982.

[32] R. Erra, N. Lygeros, and N. Stewart, “On minimal strings containing
the elements of Sn by decimation,” in Discrete Math. and Theoretical
Comput. Sci., Paris, France, Jul. 2001, vol. AA, pp. 165–176.

[33] F. Bourdoncle, “Efficient chaotic iteration strategies with widenings,”
in Formal Methods in Programming and Their Applications: Interna-
tional Conference Proceedings, vol. 735. Novosibirsk, Russia: Springer-
Verlag, Jun. 1993. [Online]. Available: http://www.ensmp.fr/ bourdonc/
fmpa93.ps.Z

[34] S. A. Edwards and E. A. Lee, “The semantics and execution of a
synchronous block-diagram language,” Sci. Comput. Program., vol. 48,
no. 1, pp. 21–42, Jul. 2003. [Online]. Available: http://dx.doi.org/10.1016/
S0167-6423(02)00096-5

[35] S. Minato, “Fast generation of irredundant sum-of-products forms from
binary decision diagrams,” in Proc. SASIMI, Kobe, Japan, Apr. 1992,
pp. 64–73.

[36] S. Minato, “Zero-suppressed BDDs for set manipulation in combinato-
rial problems,” in Proc. 30th Des. Autom. Conf., Dallas, TX, 1993,
pp. 272–277.

[37] F. Somenzi, CUDD: CU Decision Diagram Package Release, 1998.
Available: http://vlsi.colorado.edu/˜fabio/CUDD/

Osama Neiroukh received the B.Eng. degree in
computer systems engineering from Bristol Univer-
sity, Bristol, U.K., in 1991, the M.S. degree from
the University of Tennessee, Knoxville, in 1995,
and the Ph.D. degree from Portland State University,
Portland, OR, in 2008.

He has been with Intel Corporation, Hillsboro,
OR, since 1996, where he is a Staff Engineer work-
ing on CPU design.

Stephen A. Edwards (S’93–M’97–SM’06) received
the B.S. degree in electrical engineering from the
California Institute of Technology, Pasadena, in
1992, and the M.S. and Ph.D. degrees in electri-
cal engineering from the University of California,
Berkeley, in 1994 and 1997, respectively.

He has been with the Department of Computer
Science, Columbia University, New York, NY, since
2001 after a three-year stint with Synopsys, Inc.,
Mountain View, CA. His research interests in-
clude embedded system design, domain-specific lan-

guages, and compilers.

Xiaoyu Song (M’92–SM’01) received the Ph.D. de-
gree from the University of Pisa, Pisa, Italy, in 1991.

From 1992 to 1999, he was with the faculty of the
University of Montreal, Montreal, QC, Canada. In
1998, he was a Senior Technical Staff with Cadence,
San Jose. Since 1999, he has been with the faculty
of the Department of Electrical and Computer En-
gineering, Portland State University, Portland, OR.
His research interests include synthesis, verification
of digital system designs, and formal methods.

He served as an Associate Editor of IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS and IEEE TRANSACTIONS ON

VLSI SYSTEMS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

