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Abstract

We study the problem of optimal timing to buy/sell derivatives by a risk-averse agent in
incomplete markets. Adopting the exponential utility indifference valuation, we investigate this
timing flexibility and the associated delayed purchase premium. This leads to a stochastic control
and optimal stopping problem that combines the observed market price dynamics and the agent’s
risk preferences. Our results extend recent work on indifference valuation of American options,
as well as the authors’ first paper (Leung and Ludkovski, SIAM J. Fin. Math., 2011). In the case
of Markovian models of contracts on non-traded assets, we provide analytical characterizations
and numerical studies of the optimal purchase strategies, with applications to both equity and
credit derivatives.

Keywords: sequential purchase timing, indifference pricing, exponential utility, stochastic control with

optimal stopping

JEL Classifications: G12, G13, C68

1 Introduction

The problems of derivatives pricing and trading in incomplete markets are among the central themes
in mathematical finance. Since in incomplete markets not all risks can be hedged away, it is impor-
tant to model investors’ attitudes towards risks. One major approach is the framework of indifference
valuation, originally proposed by Hodges and Neuberger (1989). This is an extension of the static
certainty equivalence concept that incorporates risk aversion via a utility function and imperfect
dynamic hedging into derivative pricing. The investor’s subjective price for a derivative, called the
indifference price, is derived by comparing the investor’s utility maximization problems with and
without the claim.

In existing literature, the indifference price is typically used “statically” as a reservation price
for risk averse derivative buyers or sellers (see, for example, Carmona (2008) and references therein).
From the perspective of a potential buyer, a derivative that costs today more than its indifference
price is deemed too expensive, and therefore should not be purchased. In contrast, if the prevailing
market ask price is lower than the prospective buyer’s indifference price, it is not clear whether the
buyer should buy the claim immediately or wait for a potentially better deal in the future. The
answer depends on the precise motives of the buyer, but it raises the idea of the timing option
inherent in this investment decision.
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Motivated by this observation, we study the problem of optimal timing to buy a given derivative
from the perspective of a risk-averse investor. To analyze this question, we apply the exponen-
tial indifference pricing methodology, which leads to a utility maximization problem with optimal
stopping. Intuitively, the purchase timing decision is related to the stochastic spread between the
investor’s indifference price ht and the market price Pt. While the indifference price is formulated
under the historical measure, the market price is likely to be computed from a risk-neutral pricing
measure, exogenous to the investor. As a result, the purchase timing will also necessarily depend on
the interaction between the investor’s and the market’s pricing rules. This phenomenon also arises
in our prior work (Leung and Ludkovski, 2011) which investigated the case of a risk-neutral investor
(but whose pricing measure was different from the market’s).

To measure the benefit of the timing option, we study the associated delayed purchase premium
that was introduced in Leung and Ludkovski (2011). In particular, using the duality properties
of exponential hedging (see, e.g., Delbaen et al. (2002); Becherer (2003); Rouge and El Karoui
(2000)), we derive a probabilistic representation for the delayed purchase premium in a general
semimartingale framework. The resulting Theorem 2 (see also Proposition 4) establishes connections
with classical indifference pricing and gives insights to the optimal purchase strategy, as well as the
extreme cases with large or zero risk aversion.

To illustrate our analysis, in Section 3 we consider the optimal timing problem under a parametric
market model with a non-traded underlying asset. This incomplete market setting, sometimes called
the basis risk model, has been adopted for utility-based valuation for a number of applications, such
as weather derivatives (Davis, 2001), commodities (Davis, 2006), credit derivatives (Leung et al.,
2008; Sircar and Zariphopoulou, 2010; Jaimungal and Sigloch, 2010), real options (Henderson, 2007),
and employee stock options (Henderson, 2005; Leung and Sircar, 2009a). With basis risk, the delayed
purchase premium for a generic contingent claim under exponential utility involves the stochastic
bracket between the market price and a density process, plus a quadratic penalization around a
benchmark risk premium (see Theorem 7). This allows us to conveniently identify the scenarios
where immediate (or never-at-all) purchase is optimal. By numerically solving the corresponding
variational inequality, we present the optimal purchase boundaries for digital options, as well as
defaultable bonds.

Contrary to risk-neutral pricing, the indifference pricing rule is not linear in quantity. Con-
sequently, if a risk-averse investor wishes to buy multiple contracts of the same option, she will
tend to spread her purchases over time (while a risk-neutral investor will buy all at once). To
highlight this disparity, we study in Section 5 the problem of sequential option purchase under ex-
ponential utility. We introduce the concept of marginal delayed purchase premium, which measures
the value of optimally waiting to make each incremental purchase. In the non-traded asset model,
the investor’s optimal policy is described a series of purchase boundaries along which the marginal
delayed purchase premium is zero.

Complementary to our problem of when to buy, the more classical question of “how much?” can
be analyzed by considering the investor’s optimal static position. In particular, since the buyer’s in-
difference price is increasing concave in quantity, the answer is determined by equating the marginal
indifference price with the market price; see İlhan et al. (2005). In another related work, Kramkov
and Bank (2010) study dynamic trading among risk-averse market makers and provide a mathe-
matical characterization of Pareto optimal allocations.

The remainder of this paper is organized as follows. Section 2 describes the precise mathematical
setup we use to model the timing flexibility in a general semimartingale framework. Section 3 then
specializes to the case of Markovian models for non-traded assets where we are able to obtain explicit
results by building on existing rich literature on indifference pricing. In particular, we show that
under exponential utility the timing flexibility value function admits the same dual characterization

2



as the risk-neutral case plus a quadratic entropic penalty. Section 4 then presents two illustrative
examples with detailed numerical results and figures. Finally, Sections 5 and 6 discuss extensions
based on our model and conclude the paper.

2 Model

Throughout, we consider a risk-averse investor whose risk preferences are described by the exponen-
tial utility function U : R 7→ R− defined by

U(x) = −e−γx, x ∈ R,

where γ > 0 is the coefficient of absolute risk aversion. Precisely, U(x) is the investor’s utility for
having discounted wealth x at the end of the investment horizon T .

In the background, we assume a probability space (Ω,F ,P) with a filtration F = (Ft)0≤t≤T ,
which satisfies the usual conditions of right continuity and completeness. We shall use the notation
Et{·} ≡ E{·|Ft} for the conditional expectation given Ft under P.

The basic trading assets consist of a riskless bond that pays interest at constant rate r ≥ 0, and
a risky asset whose discounted price process is a non-negative F-locally bounded semimartingale
(St)0≤t≤T . We denote by (Xθ

t )0≤t≤T the discounted trading wealth process with a self-financing
dynamic trading strategy (θt)0≤t≤T which represents the number of shares held at time t. With
initial capital Xt at time t ∈ [0, T ], the discounted wealth at a later date u ∈ [t, T ] is given by

Xθ
u = Xt +Gt,u(θ) , with Gt,u(θ) :=

∫ u

t
θsdSs. (2.1)

The stochastic integral Gt,u(θ) is the discounted capital gains or losses from trading with strategy
θ from time t to u.

We first consider the portfolio optimization problem where a static derivative position in in-
corporated. Specifically, the risk-averse investor dynamically trades in the riskless and risky assets
throughout the horizon [0, T ]. In addition, the investor also holds α ≥ 0 units of a derivative till
expiration, where the terminal payoff is D ∈ FT . For an investor with initial wealth Xt at time
t ∈ [0, T ], her maximal expected utility from terminal wealth is

Vt(Xt;α) := ess sup
θ∈Θt,T

Et
{
U(Xθ

T + αD)
}
, (2.2)

where the precise definition of admissible trading strategies is given below in (2.11).
When there is no derivative (α = 0), the optimization (2.2) reduces to the Merton portfolio

optimization problem. We denote the Merton value function by

Mt(Xt) := Vt(Xt; 0). (2.3)

The investor’s indifference price ht ≡ ht(α) for holding α units of option D is found from comparing
the maximal expected utility with and without the derivative. It satisfies the indifference equation:

Mt(Xt + ht) := Vt(Xt;α). (2.4)

The indifference price is the investor’s subjective valuation, which may differ from the actual
cost of buying the derivative from the market. In this paper, we assume that the investor has no
influence over market prices of options and their underlying assets. As is standard in no-arbitrage
pricing, the market price of an option is given by the expectation under some equivalent martingale
measure (EMM) Q∗ ∼ P. Therefore, the market (ask) price for claim D is given by

Pt = EQ
∗{e−r(T−t)D| Ft}, 0 ≤ t ≤ T. (2.5)
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2.1 Timing Problem

An investor who intends to buy/sell derivatives in the market has the option to time her trade. For
clarity of exposition, we henceforth focus on the purchase timing problem; the case of optimally
timing derivative sales can be studied similarly. In Section 6, we also discuss an extension to the
sequential buying and selling problem.

Denote by T the set of all stopping times with respect to F taking values in [0, T ]. This will be
the collection of all admissible purchase times for investor. For any stopping times s, u ∈ T with
s ≤ u, we set Ts,u := {τ ∈ T : s ≤ τ ≤ u}. After the purchase, the investor continues to dynamically
trade till the expiration date T . At time t ≤ T , the investor faces the combined stochastic control
and optimal stopping problem:

Jt(Xt;α) = ess sup
τ∈Tt,T

ess sup
θ∈Θt,τ

Et
{
Vτ (X

θ
τ − αPτ ;α)

}
(2.6)

= ess sup
τ∈Tt,T

ess sup
θ∈Θt,τ

Et{Mτ (X
θ
τ + hτ − αPτ )}, (2.7)

where the second equality follows from (2.4). For any choice of purchase date τ ≤ T , the investor’s
trading strategy over the period [τ, T ] (after purchase) is implicitly optimized in the value function
Vτ in (2.6).

Alternatively, we can interpret problem (2.7) as if the investor is optimally timing to exercise an
American claim with payoff h − αP . At expiration hT − αPT = 0, so the choice of τ = T reduces
Jt to the Merton function Mt, and we have Jt(Xt;α) ≥Mt(Xt). Henceforth, we interpret τ = T as
the investor never purchases the derivative.

In order to quantify the value of optimally timing to buy the derivatives rather than buying them
immediately, we compare the value functions Jt with Vt. Precisely, we define the delayed purchase
premium Lt ≡ Lt(α) via the equation:

Vt(Xt + Lt − αPt;α) := Jt(Xt;α). (2.8)

Since Vt is increasing in wealth and from (2.6) Jt(Xt;α) ≥ Vt(Xt − αPt;α), we infer that Lt ≥ 0. If
Lt > 0 for some t < T , then it is not optimal to buy at t because there is a strictly positive benefit
of delaying the purchase.

On the other hand, we can apply the indifference equation (2.4) to (2.8) and write

Jt(Xt;α) =Mt(Xt + ht − αPt + Lt). (2.9)

In view of (2.9), we define

ft := ht − αPt + Lt ≥ 0, (2.10)

which can be interpreted as the indifference value for the opportunity to optimally time to buy and
hold α units of option D till maturity. In fact, (2.10) reflects the decomposition of the indifference
value ft into three parts: the indifference price ht for holding the options, plus the delayed purchase
premium Lt, minus the cost of the options αPt. Also, whenever ht < αPt for some t < T , then
Lt > 0 since ft ≥ 0. This confirms the intuition that the investor should wait if the market price
strictly dominates her own indifference price. Note that ft, Lt, and ht all depend on risk aversion γ
and are typically not linear in quantity α.
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2.2 Duality Representation

To better understand the structure of the indifference value ft, in this section we establish a duality
representation for ft in terms of entropic penalties. Related studies on exponential hedging in general
semimartingale incomplete markets can be found in, among others, Becherer (2001), Delbaen et al.
(2002), and Leung and Sircar (2009b).

For any measure Q, the relative entropy of Q with respect to P is given by

H(Q|P) :=

{
EQ
{
log dQ

dP

}
, Q≪ P ,

+∞ , otherwise .

Let Pf be the set of equivalent local martingale measures with finite relative entropy with respect
to P. We assume that Pf ̸= ∅ is non-empty, and that the market pricing measure satisfies Q∗ ∈ Pf
(see (2.5)). Our set of admissible self-financing strategies is

Θ ≡ Θ0,T := {θ ∈ L(S) | G0,T (θ) is a (Q,F)−martingale for all Q ∈ Pf} , (2.11)

where L(S) is the set of F-predictable S-integrable R-valued processes.
Theorems 2.1 and 2.2 of Fritelli (2000) guarantee that there is a unique minimizer QE ∈ Pf ,

QE := argmin
Q∈Pf

H(Q|P) . (2.12)

This measure is called the minimal entropy martingale measure (MEMM).

Definition 1. For Q ∈ Pf , let ZQ,Pt := Et
{
dQ
dP

}
denote the density process of Q with respect to P.

The conditional relative entropy of Q with respect to P over the time interval [t, u] is defined via

Hu
t (Q|P) := EQt

{
log

ZQ,Pu

ZQ,Pt

}
, 0 ≤ t ≤ u ≤ T. (2.13)

For any t ∈ [0, T ] and Q ∈ Pf , the random variable logZQ,Pt is Q-integrable (see Lemma 3.3 of
Delbaen et al. (2002)), so the conditional relative entropy is well-defined. Also, Jensen’s Inequality
yields that HT

t (Q|P) ≥ 0. By Proposition 4.1 of Kabanov and Stricker (2002), the MEMM QE

also minimizes the conditional relative entropy HT
τ (Q|P) at any τ ∈ T . Alternatively, treating

QE as a prior measure, one can similarly compute the relative entropy Hτ
t (Q|QE) and define the

corresponding set Pf (QE); as a mild technical condition, we assume that Pf (QE) = Pf .
The next Theorem gives the dual representations of Jt, ft and Lt.

Theorem 2. The value function Jt(Xt;α) can be expressed as

Jt(Xt;α) = U(Xt) · exp

(
− ess sup

τ∈Tt,T
ess inf
Q∈Pf

(
γEQt {hτ − αPτ}+Hτ

t (Q|P) + EQt {HT
τ (Q

E |P)}
))

.

(2.14)
Moreover, the indifference value ft is given by

ft = ess sup
τ∈Tt,T

ess inf
Q∈Pf

(
EQt {hτ − αPτ}+

1

γ
Hτ
t (Q|QE)

)
, (2.15)

and the delayed purchase premium is

Lt = ess sup
τ∈Tt,T

ess inf
Q∈Pf

(
EQt {hτ − αPτ}+

1

γ
Hτ
t (Q|QE)

)
− (ht − αPt). (2.16)
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Finally, the optimal purchase time τ∗ is given by

τ∗t = inf{t ≤ u ≤ T : fu = hu − αPu} = inf{t ≤ u ≤ T : Lu = 0}. (2.17)

Proof. For exponential utility, the Merton function admits the representation (see e.g. Theorem 1
of Delbaen et al. (2002))

Mt(Xt) = −e−γXte−HT
t (QE |P). (2.18)

Applying (2.18) to (2.9) we get

Jt(Xt;α) = −e−γ(Xt+ft)e−HT
t (QE |P). (2.19)

Combining (2.19) with Propositions 2.4 and 2.8 of Leung and Sircar (2009b), where the early
exercisable claim’s payoff is now hτ − αPτ at exercise time τ , we immediately obtain (2.14) and
(2.15). Substituting (2.15) into (2.10), the delayed purchase premium can be expressed as Lt =
ft − (ht − αPt), which leads to (2.16).

Equation (2.17) means that the investor should buy the option as soon as the delayed purchase
premium L vanishes. We will further explore the structure of L under a parametric model in Section
3 (see Proposition 4).

2.3 Asymptotic Limits

Theorem 2 allows to obtain the asymptotic values of Lt for extreme values of risk aversion γ. Denote
by Lt(γ, α) the delayed purchase premium in (2.10) for buying α options when the investor’s risk
aversion is γ > 0. Similarly, we use the notations ft(γ, α) and ht(γ, α) to highlight the dependence
on γ and α.

By standard arguments (see e.g. Becherer (2001)), the indifference value ft(γ, α) and indiffer-
ence price ht(γ, α) are decreasing in γ. However, the same may not hold for their difference that
constitutes Lt(γ, α). In the next proposition, we show that the zero risk aversion limit is in fact less
than the large risk aversion limit.

Proposition 3. The delayed purchase premium in (2.10) admits the following limits:

lim
γ→0

Lt(γ, α) = lim
α→0

Lt(γ, α)

α
= α ·

(
Pt − PE∗

t

)
=: α · LEt , (2.20)

lim
γ→∞

Lt(γ, α) = lim
α→∞

Lt(γ, α)

α
= α · (Pt − ht) =: α · L̄t, (2.21)

where

PE∗
t := ess inf

τ∈Tt,T
EQ

E

t {Pτ} , and ht := ess inf
Q∈Pf

EQt {D}. (2.22)

Proof. As γ ↘ 0, it follows from Proposition 1.3.4 of Becherer (2001) that ht(γ, α) ↗ αEQ
E

t {D} =:
αhEt , which is the risk-neutral price of D under the MEMM QE . By this and Proposition 2.18 of
Leung and Sircar (2009b) with the early exercisable claim payoff being hτ (γ, α) − αPτ , we obtain
the limit

lim
γ→0

ft(γ, α) = ess sup
τ∈Tt,T

EQ
E

t {αhEτ − αPτ} = α
(
hEt − ess inf

τ∈Tt,T
EQ

E

t {Pτ}
)
,
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where the last equality holds by iterated expectation under QE . Applying these limits to (2.10)
gives the limit in (2.20).

By Proposition 11 of Delbaen et al. (2002), as γ ↗ ∞, ht(γ, α) ↘ αht. Also, by Proposition
2.17 of Leung and Sircar (2009b) with payoff hτ (γ, α)− αPτ , one can show that

lim
γ→∞

ft(γ, α) = α ess sup
τ∈Tt,T

ess inf
Q∈Pf

EQt {hτ − αPτ} = 0. (2.23)

For the last equality, note that hτ ≤ αPτ for all τ,Q and hT = αPT = αD, so the choice of τ = T
(under any Q ∈ Pf ) yields the maximum value zero. Applying this to (2.10) yields (2.21).

It is also well known that the indifference price ht(γ, α) has the scaling property: ht(γ, α)/α =
ht(αγ, 1); see Becherer (2001). Applying this to (2.16), we deduce the same property for the delayed
purchase premium, namely, Lt(γ, α)/α = Lt(αγ, 1). With this, the risk-aversion limits (2.20) and
(2.21) can be interpreted as the stated large-volume and small-volume limits for the average delayed
purchase premium Lt(γ, α)/α.

In both risk aversion limits, the investor’s indifference prices and delayed purchase premia become

linear in quantity. In the zero risk aversion case, the investor’s indifference price limit hEt = EQ
E

t {D}
is also referred to as the Davis price (see Davis (1997)). The investor’s optimal purchase timing is
found from PE∗, which is independent of quantity. In the large risk aversion case, the investor will
never buy the option since τ = T is optimal (see (2.23)).

To better understand (2.20), we use the following equality:

PE∗
t = ess inf

τ∈Tt,T
EQ

E

t {Pτ} = ess inf
{Qτ}τ∈T

EQ
τ

t {D}, (2.24)

where each Qτ ∈ Pf is a probability measure whose density process with respect to P is defined by

ZQ
τ ,P

t := ZQ
E ,P

t 1[0,τ)(t) + ZQ
∗,P

t

ZQ
E ,P

τ

ZQ
∗,P

τ

1[τ,T ](t), 0 ≤ t ≤ T. (2.25)

Intuitively, the probability measure Qτ is identical to the MEMM QE up to the F-stopping time τ
and then coincides with the market measure Q∗ over (τ, T ]. The equality (2.24) reveals that mini-
mization over stopping times under a single measure can be cast as minimization over the collection
of pricing measures {Qτ}τ∈T parametrized by stopping time τ . This interpretation is referred to
as the τ -optimal concatenation of pricing measures (see Proposition 2.2 of Leung and Ludkovski
(2011)), while concatenation of the density processes is also used in other financial applications
(see, for example, Delbaen (2006) and Riedel (2009)). Given the optimal stopping time τ∗, the
right-hand side of (2.24) corresponds to pricing D under the special EMM Qτ

∗ ∈ Pf . Moreover,
since {Qτ}τ∈T ⊆ Pf , we deduce that ht ≤ PE∗

t , and therefore, LEt ≤ L̄t. Our numerical experiments
suggest that L is monotone in γ (resp. in α), and a more risk averse agent postpones derivative pur-
chases, i.e. τ∗ is increasing in γ (resp. in α). We are not able to establish this property in generality,
because γ affects both ht and the optimal stopping problem for L.

Furthermore, the zero risk-aversion limit can be viewed as a special case of the delayed purchase
premium in Section 2.3 of Leung and Ludkovski (2011) where the investor’s pricing measure is the
MEMM QE . Proposition 3 provides an intuitive mechanism why the investor and market measures
might differ: the market reflects a risk-neutral Q∗ while the investor applies utility-based framework
under the physical P to end up with QE in the small-γ limit. As in Leung and Ludkovski (2011),
PE∗ can be regarded as the minimized expected cost of acquiring the option D given the prevailing
price process P .
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In view of our general analysis above, it is clear that tractable results are possible as soon as
the investor price h and the market price P are available in closed-form. Consequently, we are able
to study any number of models that have obtained explicit expressions for indifference prices. In
Sections 4.1-4.2 we consider two such parametric models arising in trading of illiquid assets and
defaultable bonds, respectively.

3 Buying Options on a Non-Traded Asset

We first illustrate our previous analysis in the classical setting of a Markovian market with a liquidly
traded asset S and a non-traded asset Y . The respective prices are modeled by the stochastic
differential equations (SDEs):

dSt = µSt dt+ σSt dWt , (traded) (3.1)

dYt = b(t, Yt) dt+ c(t, Yt) (ρ dWt + ρ̂ dŴt) , (non-traded) (3.2)

where W and Ŵ are two independent Brownian motions under the measure P, σ ≥ 0, and ρ̂ :=√
1− ρ2. The filtration F is generated by (W, Ŵ ). The drift and diffusion coefficients b and c ≥ 0 are

chosen so that a unique strong solution exists for SDEs (3.1)-(3.2). The derivative claim in question
is a European option with discounted bounded payoff D(YT ) at expiration date T . Very similar
setups have appeared in the indifference pricing literature, including Musiela and Zariphopoulou
(2004), Henderson (2005), and Davis (2006). For notational simplicity, we set the interest rate to
be zero.

Suppose an investor is holding α contracts of D, and dynamically trades S as a partial hedge.
Her trading wealth follows the SDE

dXθ
t = σθt (λ dt+ dWt), (3.3)

where
λ := µ/σ

is the Sharpe ratio of S, and (θt)0≤t≤T is the cash amount invested in S satisfying E{
∫ T
0 θ2t dt} <∞.

The maximal expected utility from terminal wealth is given by

V (t, x, y) = sup
(θu)t≤u≤T

E
{
U(Xθ

T + αD(YT )) |Xt = x, Yt = y
}
. (3.4)

The function V solves a nonlinear PDE of HJB type. As studied in, for example, Musiela and
Zariphopoulou (2004), the holder’s indifference price h(t, y) is independent of wealth x and satisfies

V (t, x, y) = −e−γ(x+h(t,y))−
λ2

2
(T−t).

It can be determined as the (unique viscosity) solution of the semilinear PDE:

ht + L0h− γ

2
(1− ρ2)c2(t, y)h2y = 0, (3.5)

on (t, y)∈ [0, T )× R+, with terminal condition h(T, y) = D(y). Here, the differential operator is

L0 :=
c2(t, y)

2

∂2

∂y
+
[
b(t, y)− ρλc(t, y)

] ∂
∂y
. (3.6)
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Next, we summarize some results on the dual representation of the indifference price h(t, y). The
set of EMMs with respect to P on FT is characterized by the stochastic exponential

dQϕ

dP

∣∣∣
Ft

= exp

(
−1

2

∫ t

0

(
λ2 + ϕ2s

)
ds−

∫ t

0
λ dWs −

∫ t

0
ϕs dŴs

)
, (3.7)

where (ϕt)0≤t≤T is a progressively measurable process satisfying E{
∫ T
0 ϕ2s ds} <∞ and E{ZϕT } = 1.

Under measure Qϕ, W ϕ
t = Wt + λt and Ŵ ϕ

t = Ŵt +
∫ t
0 ϕs ds are independent Brownian motions.

The process ϕ is premium for the idiosyncratic risk represented by the second Brownian motion Ŵ .
Throughout this section, we shall consider Markovian risk premia of the form ϕt = ϕ(t, Yt) for some
deterministic function ϕ(t, y). Under a given EMM Qϕ, the associated infinitesimal generator of Y
is given by

Lϕ =
c2(t, y)

2

∂2

∂y
+
[
b(t, y)− λρc(t, y)− ϕ(t, y)ρ̂c(t, y)

] ∂
∂y

. (3.8)

In particular, L0 in (3.6) corresponds to the risk premium ϕ(t, y) = 0 and the associated measure
Q0 is called the minimal martingale measure (MMM) (see Föllmer and Schweizer (1990)).

Consequently, the conditional relative entropy of any Qϕ with respect to P is simply a quadratic
penalty term, namely

Hτ
t (Q

ϕ|P) = Eϕt,y
{∫ τ

t

λ2 + ϕ2s
2

ds

}
, (3.9)

where we use the shorthand Eϕt,y{·} ≡ Eϕ{·|Yt = y}. Under this model, the minimal entropy

martingale measure QE with respect to P on FT is simply the MMM Q0.
Applying the well-known duality results for exponential indifference prices (see, e.g., Delbaen

et al. (2002)), the dual representation for h(t, y) is given by

h(t, y) = inf
ϕ

Eϕt,y
{
D(YT ) +

1

γ

∫ T

t

ϕ2s
2
ds

}
, (3.10)

and the associated minimizer ϕ∗ is given in feedback form:

ϕ∗(t, y) = γρ̂c(t, y)hy(t, y). (3.11)

Now suppose the market prices options with the EMM Qψ, with idiosyncratic risk premium
ψ(t, y) for the second Brownian motion Ŵ . Then, the discounted option price is the Qψ-martingale

P (t, y) = Eψt,y {D(YT )}, solving the linear PDE

Pt + LψP = 0, (3.12)

on (t, y)∈ [0, T )× R+, with P (T, y) = D(y).

3.1 Analytic Representation

Given h(t, y) and P (t, y), we can express the indifference value f(t, y) according to (2.15), namely,

f(t, y) = sup
t≤τ≤T

inf
ϕ

Eϕt,y
{
h(τ, Yτ )− αP (τ, Yτ ) +

1

γ

∫ τ

t

ϕ2s
2
ds

}
, (3.13)

where the last term is the relative entropy with respect to QE , Hτ
t (Q

ϕ|QE) = Eϕt,y
{∫ τ

t
ϕ2s
2 ds

}
. In

turn, we derive a new expression for the delayed purchase premium.
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Proposition 4. The delayed purchase premium admits the representation:

L(t, y) = sup
t≤τ≤T

inf
ϕ

Eϕt,y
{∫ τ

t

1

2γ
(ϕs − ϕ∗(s, Ys))

2 + αρ̂c(s, Ys)Py(s, Ys)(ϕs − ψ(s, Ys)) ds

}
, (3.14)

where ϕ∗(t, y) is given in (3.11).

Proof. Recall from (2.10) that L(t, y) = f(t, y) − h(t, y) + αP (t, y). By Girsanov’s Theorem the
indifference price and market price follow the SDEs

dh(t, Yt) =
(γ
2
(1− ρ2)c2(t, Yt)h

2
y(t, Yt)− ϕtρ̂c(t, Yt)hy(t, Yt)

)
dt+ c(t, Yt)hy(t, Yt) (ρ dW

ϕ
t + ρ̂ dŴ ϕ

t ),

(3.15)

dP (t, Yt) = −(ϕt − ψ(t, Yt))c(t, Yt)ρ̂Py(t, Yt) dt+ c(t, Yt)Py(t, Yt) (ρ dW
ϕ
t + ρ̂ dŴ ϕ

t ). (3.16)

Substituting (3.15), (3.16) and (3.13) into (2.10) yields that

L(t, y) = sup
t≤τ≤T

inf
ϕ

Eϕ
{
h(τ, Yτ )− αP (τ, Yτ ) +

1

γ

∫ τ

t

ϕ2s
2
ds |Yt = y

}
− h(t, y) + αP (t, y) (3.17)

= sup
t≤τ≤T

inf
ϕ

Eϕt,y
{∫ τ

t

ϕ2s
2γ

+ ϕsρ̂c(s, Ys)(αPy(s, Ys)− hy(s, Ys))

− ψ(s, Ys)ρ̂αc(s, Ys)Py(s, Ys) +
γ

2
ρ̂2c2(s, Ys)h

2
y(s, Ys) ds

}
.

Then by completing the square in terms of ϕ and using ϕ∗(t, y) from (3.11), we obtain (3.14).

Proposition 4 reveals a convenient structure of the delayed purchase premium in terms of the
corresponding premia: the optimized generic ϕ, the entropic ϕ∗, and the market ψ. In particular,
the first integrand in (3.14) involves the quadratic penalization (ϕ − ϕ∗)2, while the second term
depends on the difference (ϕ − ψ). If the overall integrand in (3.14) is positive for all choices of ϕ
for all (t, y), then is it clear that it is optimal to delay the purchase till T .

Moreover, looking at expression (3.14) more carefully, the second term in fact involves

dP (s, Ys)dZs = −Zsρ̂c(s, Ys)Py(s, Ys)(ϕs − ψs) ds,

where Zt ≡ Zϕ,ψt := Eψt {
dQϕ

dQψ
} is the density process of Qϕ with respect to Qψ. Therefore, the delayed

purchase premium can be expressed in terms of the quadratic covariation between the market price
and the density process, along with a quadratic penalty scaled by risk aversion. Precisely, we have

L(t, y) = sup
t≤τ≤T

inf
ϕ

Eϕt,y
{∫ τ

t

1

2γ
(ϕs − ϕ∗(s, Ys))

2 ds− α

∫ τ

t
Z−1
s dP (s, Ys) dZs

}
. (3.18)

Under the risk-neutral framework in Leung and Ludkovski (2011), the quadratic covariation also
appears in the delayed purchase premium. In contrast, the current risk averse case involves an
additional quadratic penalty term, and is nonlinear in quantity α. Finally, we remark that the
stochastic control problems (3.13) for f and (3.14) and (3.18) for L all admit the same optimal
control (τ∗, ϕ̃∗).

From Theorem 2 or expression (3.13), we see that f(t, y) is equivalent to indifference pricing of
an American claim with payoff h(τ, Yτ )−αP (τ, Yτ ). We can then employ the analysis of indifference
pricing for American options from Oberman and Zariphopoulou (2003) to derive the quasi-variational
inequalities for f(t, y) and L(t, y).
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Proposition 5. The indifference value f(t, y) is given by

f(t, y) =
−1

γ(1− ρ2)
logw(t, y),

where w(t, y) is the unique bounded viscosity solution of the linear variational inequality (VI)

min
(
wt + L0w , e−γ(1−ρ

2)(h−αP ) − w
)
= 0, (3.19)

with w(T, y) = 1. In turn, the delayed purchase premium L(t, y) solves the semilinear VI:

max

(
Lt + Lϕ∗L− γ

2
ρ̂2c2L2

y + ρ̂cPy(ϕ
∗ − ψ) , −L

)
= 0, (3.20)

with L(T, y) = 0.

Proof. The VI and associated existence-uniqueness for f(t, y) follow from Theorem 7 of Oberman
and Zariphopoulou (2003) with an American claim h − αP . Then, we derive the VI for L(t, y) =
f(t, y)− h(t, y) + αP (t, y) using the associated VI for f(t, y), as well as the PDEs (3.5) and (3.12)
for h(t, y) and P (t, y), respectively. Direct substitution yields VI (3.20).

The nonlinear payoff transformation e−γ(1−ρ
2)(h(t,y)−αP (t,y)), as well as the logarithmic transform

from f(t, y) to w(t, y) precisely correspond to the risk-aversion effects. As γ → 0, one obtains a
linear VI for f(t, y) itself (see Proposition 8 of Oberman and Zariphopoulou (2003)). Note that the
VIs (3.20) and (3.19) yield the same purchase boundary for the investor. To solve either VI, one
needs to first solve for the indifference price h(t, y) and the market price P (t, y). In some cases,
both h(t, y) and P (t, y) admit closed-form formulas that facilitate the numerical implementation.

Proposition 5 also offers the opportunity to carry out comparative statics on the optimal purchase
time and delayed purchase premium L. For instance, the market premium ψ only affects P (t, y) in
(3.19). If ψ 7→ P (t, y) is monotone, we obtain corresponding monotonicity in L(t, y) and τ∗. The
effect of other model parameters is more complicated. The risk-aversion γ, for example, affects both
exp(γρ̂2P (t, y)) and h(t, y). Note that in contrast to classical exponential utility cases (see, e.g.,
Theorem 3 of Musiela and Zariphopoulou (2004)), risk aversion γ and the correlation ρ are no longer

coupled together, since ρ also has a direct influence on the diffusion Y under Qϕ̃
∗
.

3.2 Analysis of Purchase Strategies

In this section, we present several properties of the optimal purchase strategy. In particular, we
explore the conditions under which immediate purchase or permanent delay is optimal.

To start, we notice that if the market price dominates the investor’s indifference price, then it is
never optimal to purchase the option from the market.

Lemma 6. If αP (t, y) > h(t, y) ∀(t, y) ∈ [0, T ) × R+, then it is never optimal to purchase the
option, τ∗ = T . Moreover, f(t, y) = 0 and L(t, y) = αP (t, y)− h(t, y) > 0.

Proof. By direct substitution, one can verify that w(t, y) = 1 solves VI (3.19), and L(t, y) =
αP (t, y) − h(t, y) > 0 solves VI (3.20). Then, according to (2.17) the delayed purchase premium
never reaches zero prior to expiration date T , so it is never optimal to purchase early.

For example, if the market price is always higher than the MEMM/MMM price corresponding
to risk premium ψ = 0, then it must also dominate the indifference price h(t, y) for any risk aversion
level. By Lemma 6, the buyer will then never purchase the option.

More generally, we can study the sign of the integrand of L(t, y) in (3.14) to deduce when the
optimal strategy is trivial.
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Theorem 7. Define the drift function

G(t, y) :=
1

2γ
(ϕ̃∗(t, y)− ϕ∗(t, y))2 + αρ̂c(t, y)Py(t, y)(ϕ̃

∗(t, y)− ψ(t, y)), (3.21)

where ϕ̃∗(t, y) = γρ̂c(t, y)fy(t, y) is the minimizer in (3.13).
If G(t, y) ≥ 0 ∀(t, y), then it is never optimal to purchase. In this case, f(t, y) = 0.
If G(t, y) ≤ 0 ∀(t, y), then it is optimal to purchase immediately. In this case, f(t, y) = h(t, y)−

αP (t, y).

Theorem 7 offers the counterpart of Theorems 3.1 and 4.2 in Leung and Ludkovski (2011) for
the drift function G of risk-averse investors. It summarizes the interaction between the market and
indifference prices and the optimal timing problem. As stated, (3.21) requires the knowledge of
ϕ̃∗(t, y), or equivalently fy(t, y), in addition to the partial derivatives hy(t, y) and Py(t, y). However,
there is a similar sufficient condition that does not involve fy(t, y). In (3.14), the integrand is
quadratic in ϕ. Let us minimize the integrand over ϕ while fixing the expectation under an arbitrary
measure Qϕ. If the resulting integrand is positive a.s. under some measure Qϕ, then it is also positive
under the optimal measure Qϕ̃

∗
, which means it is never optimal to purchase. This is the case if

g(t, y) := γρ̂2c2(t, y)Py(t, y)

(
hy(t, y)−

Py(t, y)

2

)
− ρ̂c(t, y)Py(t, y)ψ(t, y) ≥ 0. (3.22)

It is straightforward to show that G(t, y) = g(t, y)+ γ
2 ρ̂

2c2(t, y)L2
y(t, y) and, therefore, the condition

(3.22) implies that G(t, y) ≥ 0.
Since the first term of the G function in (3.21) is non-negative, we infer the following result:

Corollary 8. If (
ϕ̃∗(t, y)− ψ(t, y)

)
Py(t, y) ≥ 0, ∀(t, y) ∈ [0, T ]× R+ (3.23)

then it is never optimal to purchase the option.

For the most common options, such as Calls and Puts, the sign of Py is constant. Therefore,
checking the inequality (3.23) reduces to the direct comparison between the risk premia ϕ̃∗(t, y) and
ψ(t, y).

From (3.14) it is clear that if G(t, y) > 0 then the buyer should postpone purchase since an
additional infinitesimal premium can be obtained by taking τ = t + ϵ for ϵ sufficiently small in
(3.14). Hence, for every (t, y) in the purchase region B (including the purchase boundary), we must
have G(t, y) ≤ 0.

Furthermore, if two drift functions satisfy the dominance condition G1(t, y) ≥ G2(t, y) for all
(t, y), then the corresponding delayed purchase premia satisfy L1(t, y) ≥ L2(t, y). As a result, it is
always optimal to purchase the derivative associated with G2 before that associated with G1.

Applying the zero risk aversion limit in Proposition 3, LE(t, y) = P (t, y)−inft≤τ≤T EQ
E

t {P (τ, Yτ )}.
Recall that QE = Q0 is the MEMM corresponding to zero risk premium. Considering the SDE of
P (t, Yt) under the measure QE , which amounts to setting ϕ = 0 in (3.16), we obtain the probabilistic
representation for LE(t, y):

LE(t, y) = sup
t≤τ≤T

EQ
E

t

{∫ τ

t
ψ(s, Ys)c(s, Ys)ρ̂Py(s, Ys) ds

}
. (3.24)

This can be viewed as a special case of the (risk-neutral) delayed purchase premium studied in
Leung and Ludkovski (2011) where the investor’s and the market pricing measures are QE and Qψ,
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respectively. Clearly, the delayed purchase premium is zero, LE = 0, if QE = Qψ or equivalently
ψ = 0. In general, price discrepancy arises when the investor and market disagree on the risk-neutral
pricing measure. The zero risk aversion limit serves as an example of how an investor may pick a
pricing measure different from the market, QE ̸= Qψ.

4 Examples

In this section we present two detailed examples illustrating the framework developed in Section 3.

4.1 Digital Options

The risk-averse investor’s purchase timing requires the computation of the indifference price. In
the current Markovian model, the indifference price can always be obtained by numerically solving
the underlying PDE (3.5). In special cases, explicit computations are also possible. For instance,
consider the purchase of a digital Call with Y a geometric Brownian motion, namely,

dYt = bYt dt+ cYt (ρ dWt + ρ̂ dŴt). (4.1)

As is well known (see, e.g., Theorem 3 of Musiela and Zariphopoulou (2004)), the indifference price
is h(t, y) = − 1

γ(1−ρ2) logE
0
t,y{e−γ(1−ρ

2)D(YT )}. For a digital Call with payoff D(YT ) = 1{YT≥K}, the

indifference price is explicitly given by the Black-Scholes type formula

h(t, y) = − 1

γ(1− ρ2)
logEQ

0{e−γ(1−ρ
2)1{YT≥K} |Yt = y}

= − 1

γ(1− ρ2)
log
(
e−γρ̂

2
Q0{YT ≥ K |Yt = y}+Q0{YT < K |Yt = y}

)
= − 1

γ(1− ρ2)
log
(
1− Φ(d0)(1− e−γρ̂

2
)
)
, (4.2)

where Φ(·) is the standard normal cumulative distribution function and

d0 ≡ d0(t, y) :=
log(y/K) + (b− λρc− c2/2)(T − t)

c
√
T − t

.

Since h(t, y) < Q0(YT ≥ K) = Φ(d0), to have a non-trivial purchase problem, the market must be
assigning a larger risk premium compared to the MMM Q0. Namely, if the market price of risk for
Ŵ is a constant ψ ≥ 0 then

P (t, y) = Φ(dψ) with dψ := d0 − ψρ̂
√
T − t.

Given the above explicit expressions for h(t, y) and P (t, y), we can use the linearized VI (3.19) to
compute the delayed exercise premium and the resulting purchase boundaries; recall that w(t, y) ≤
e−γ(1−ρ

2)(h(t,y)−P (t,y)) ∧ 1 in (3.19).
The price spread h(t, y) − P (t, y) changes signs twice, being negative at-the-money y = K

and positive when | log(y/K)| is large, see Figure 2. In the limit log(y/K) → ±∞, the spread is
asymptotically zero. This complex shape ensures that the purchase region B is non-trivial and in
fact exhibits two purchase boundaries Y∗(t) ≤ K ≤ Y ∗(t), namely one should postpone purchase
if the option is currently close to at-the-money. As time to maturity increases, the smaller market
price of risk under Q0 begins to dominate the impact of risk aversion, so that t 7→ h(t, y)− P (t, y)
is decreasing. Therefore, for maturity long enough, h > P everywhere and there is no reason to
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Figure 1: Optimal purchase boundaries for a digital Call. We take K = 5, T = 1 and b = 0.1, c = 0.2, ψ =
0.125, λ = 0.4 with ρ = 0.9. The plot shows the optimal purchase boundaries (Y∗(t), Y

∗(t)) as a function of t
for γ = 1 (solid) and γ = 0.75 (dashed). The continuation region is in the middle. Note that the continuation
region is empty for γ = 0.75 and t < 0.33.

postpone purchases, i.e. Y∗(t) = Y ∗(t) = K. Conversely, as t → T , both h and P converge to the
payoff 1{y≥K} and their difference shrinks to zero. The trade-off between these two effects makes
the purchase boundaries non-monotone in t, see Figure 1.

We note that in this example the effect of correlation parameter ρ is distinct from that of the risk-
aversion γ, since ρ affects the risk premia spreads ψρ̂c and λρc separately from γ. Larger risk-aversion
lowers the buyer’s indifference price h(t, y) and therefore reduces the spread h(t, y)− P (t, y). As a
result, the continuation region widens and f(t, y) decreases, with purchases made closer to T . On
the other hand, the impact of increasing ρ is not monotone on h(t, y)−P (t, y) (as ρ increases, w(t, y)
increases at-the-money but decreases deep in-the-money/out-of-the-money), though we observe that
ρ 7→ L(t, y) is still monotone and so is the effect on purchase boundaries.

The right panel in Figure 2 shows the behavior of purchase boundaries as we vary γ. As explained
above, for any γ > 0 there exists T ∗(γ) such that the continuation region is empty for option time-
to-maturity larger than T ∗. As γ → 0, the discount due to risk-aversion disappears, and in the limit
h(t, y) > P (t, y) for all t, y, so that T ∗ → 0. Alternatively, for any fixed t, we find that γ 7→ Y∗(t) is
decreasing (resp. γ 7→ Y ∗(t) is increasing) and the continuation region widens in γ.

As γ → 0, the investor’s indifference price converges to

h(t, y)
γ→0−−−→ EQ

0{1{YT≥K} |Yt = y} = Φ(d0).

In other words, the investor prices the option with zero risk premium. The corresponding delayed
purchase premium is given by (3.24). With a constant market risk premium ψ, the resulting timing
problem must be trivial (either buy now or never). For instance, when ψ > 0, since Py(t, y) ≥ 0 it
follows from the positivity of the integrand in (3.24) that τ∗t = T , for digital Calls with any strike
or expiry. Hence, in this example, risk aversion adds a significant level of complexity to the timing
decision.
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Figure 2: Digital Call with K = 5 and T = 1. Parameters: b = 0.1, c = 0.2, ψ = 0.125, λ = 0.4 and default
values of γ = 1, ρ = 0.9. Left panel: price spread h(t, y) − P (t, y) (dashed lines) compared to the purchase
indifference value f(t, y) for t = 0, 0.5, 0.9. The crosses indicate the purchase boundaries Y∗(t) and Y ∗(t).
Right panel: the price spread h(0, y) − P (0, y) (dashed lines) compared to the purchase indifference values
f(0, y) for γ = 0.8, 1, 1.2 (note that the continuation region is empty for γ = 0.8 whereby it is optimal to buy
the digital Call immediately for any Y0 = y).

4.2 Defaultable Bonds in a Structural Model

As another example, let us consider optimally timing to buy a defaultable bond that pays $1 on
expiration date T unless the underlying firm defaults. For simplicity, we assume zero recovery. The
firm’s stock price and its non-traded asset value are modeled by (S, Y ) in (3.1) and (4.1). Similar
to Section 4.1, the firm’s stock is traded but its net asset value is not.

Following the structural default model introduced by Black and Cox (1976), the firm’s default is
signaled by Y hitting the default boundary βϵ(t) = βe−ϵ(T−t), where β, ϵ ≥ 0. Given that the firm
survives through time t ≥ 0, its default time ζt is given by

ζt := inf{u ≥ t : Yu ≤ βϵ(u) }. (4.3)

The investor dynamically trades the firm’s stock and the money market account over [0, T ].
Prior to default time ζ, the trading wealth X, with strategy θ, evolves according to (3.3). After
default, the firm’s stock is no longer tradable, so the investor liquidates holdings in the stock and
deposits in the money market account (with zero interest rate). Following Leung et al. (2008) and
Sircar and Zariphopoulou (2010), we assume a full pre-default market value on stock holdings upon
liquidation. Hence, on {ζt ≤ T}, the wealth is Xu = Xζt for u ∈ (ζt, T ].

When the investor takes a long position on α ≥ 0 defaultable bonds, she faces the utility
maximization problem:

V (t, x, y ;α) = sup
θ∈Θt,T

E
{
U(Xθ

T + α1{ζt>T}) |Xt = x, Yt = y
}
.
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As shown by Leung et al. (2008), the value function is given in closed-form. Let

d ≡ d(t, y) =
log(β/y)− ϵ(T − t)

c
and

a = (1− ρ2)
λ2

2
, k1 =

b− ϵ

c
− ρλ− c

2
, k2 =

√
k21 + 2a.

Theorem 9. The value function admits the separation of variables:

V (t, x, y ;α) = −e−γ(x+α)v(t, y ;α)
1

1−ρ2 (4.4)

on {(t, x, y) ∈ [0, T ]×R×R+ : y ≥ βϵ(t)} where

v(t, y ;α) = EQ
0
{
e−a(T−t)1{ζt>T} |Yt = y

}
+ eαγ(1−ρ

2)EQ
0
{
e−a(ζt−t)1{ζt≤T} |Yt = y

}
(4.5)

= A(t, y) + eαγ(1−ρ
2)B(t, y), (4.6)

where Q0 is the minimal martingale measure and

A(t, y) = e−a(T−t)
[
Φ

(
−d+ k1(T − t)√

T − t

)
− e2dk1Φ

(
d+ k1(T − t)√

T − t

)]
, (4.7)

B(t, y) = Φ

(
d− k2 (T − t)√

T − t

)
+ e2dk2Φ

(
d+ k2 (T − t)√

T − t

)
. (4.8)

Note that v(t, y ;α) depends on y only through the default-to-asset ratio β/y. With formula
(4.4), the investor’s indifference price h(t, y;α) for holding α ≥ 0 units of the defaultable bond is
given by

h(t, y;α) = α− 1

γ(1− ρ2)
log

v(t, y;α)

v(t, y; 0)
≤ α. (4.9)

On the other hand, the market price is given by a risk-neutral expectation under the market
pricing measure Q∗, namely,

P (t, y) = EQ
∗{
1{ζt>T}|Yt = y

}
= Q∗{ζt > T |Yt = y}.

In particular, if the market risk premium for Ŵ is a constant ψ, then the corresponding price can
be computed explicitly:

P (t, y) = Φ

(
−d+ k3(T − t)√

T − t

)
− e2dk3Φ

(
d+ k3(T − t)√

T − t

)
, (4.10)

where k3 =
b−ϵ
c − ρλ− ρ̂ψ − c

2 .
Using the payoff function h(t, y;α)−αP (t, y), which is explicitly given in (4.9) and (4.10), we find

that it is optimal to postpone bond purchase when close to the default level and buy immediately
if the default/asset ratio β/y is sufficiently small. Moreover, the spread h(t, y;α) − αP (t, y) grows
in time-to-maturity T − t. Figure 3 shows that the resulting purchase boundary t 7→ Ȳ (t) with
τ∗ = inf{t ≥ 0 : Yt ≤ Ȳ (t)} is monotone in t. Numerical experiments also indicate that larger risk-
aversion γ widens the continuation region, as does the volume α of bonds to purchase (cf. discussion
in Section 3.1).

In this situation, as γ → 0, the buyer’s purchase problem remains non-trivial. We have

h(t, Y ;α)
γ→0−−−→ αe−a(T−t)

A(t, y)

A(t, y) +B(t, y)
,

where A and B are defined in (4.7) and (4.8), respectively. The right-hand-side above may be
bigger or smaller than αP (t, y) depending on the value of y. Hence, even with γ = 0 there is a
purchase boundary and it is optimal to buy the defaultable bond only if the default-to-asset ratio
is sufficiently low.
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Figure 3: Defaultable bond with β = 5, ϵ = 0 and T = 1. Parameters: b = 0.08, c = 0.2, ψ = 0, λ = 0.3 and
default values of γ = 1, ρ = 0.8. Left panel: the price spread [h(t, y; 1) − P (t, y)] (dashed lines) versus the
purchase indifference value f(t, y) (solid lines) for t = 0, 0.5, 0.9 and α = 1. The crosses indicate the purchase
boundary Ȳ (t). Right panel: the purchase boundary Ȳ (t) for α = 1, 2, 3.

5 Optimal Sequential Option Purchase

If the investor is contemplating buying more than one option, she has the opportunity to spread
her trades over time. To illustrate, suppose that the investor needs to purchase several identical
option contracts from the market prior to some pre-specified date T1. At any moment, the investor
can buy one or more contracts by paying the current market price, or wait for a later time. In this
section we address the question of her optimal purchasing schedule.

To fix ideas, we again consider a derivative D expiring at time T ≥ T1, and its market price
P as defined in (2.5). The objective is to optimally accumulate a pre-specified n units of D at or

before T1 ≤ T . For any t ∈ [0, T1] and i ≤ n, we denote by τ
(i)∗
t the optimal purchase time of the

next contract when n − i units have already been bought at time t. At each purchase time τ
(i)∗
t ,

the investor withdraws P
τ
(i)
t

to buy another contract, leaving (i − 1) units to buy afterwards. It

is possible that multiple units get purchased simultaneously, whereby the corresponding purchase
times coincide. As required, at date T1 the investor will hold n units of option D.

If the investor has purchased all n contracts already and has wealthXt at time t, then her indirect

utility is J
(0)
t (Xt) = Vt(Xt;n). Subsequently, if there are i ∈ {1, . . . , n} units of D remaining to be

bought, then the investor’s indirect utility is given recursively by

J
(i)
t (Xt) = ess sup

τi∈Tt,T1
ess sup
θ∈Θt,τi

Et
{
J (i−1)
τi (Xθ

τi − Pτi)
}
. (5.1)

For any t ∈ [0, T1], the investor’s indifference value, f
(i)
t , for optimally timing to buy the re-

maining i ∈ {1, . . . , n} units of D is determined from the equation J
(i)
t (Xt) =: Mt(Xt + f

(i)
t ), with

f
(0)
t = ht(n). Substituting the definition of f (i) into (5.1), we obtain

J
(i)
t (Xt) = ess sup

τi∈Tt,T1
ess sup
θ∈Θt,τi

Et
{
Mτi

(
Xτi + f (i−1)

τi − Pτi

)}
. (5.2)
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Expression (5.2) reveals the similarity between J (i) and J in (2.6). Indeed, the investor with i
remaining options to buy can determine the next optimal purchase time by considering the problem

of optimally exercising a claim with payoff f
(i−1)
t − Pt. Accordingly, we can derive the dual for

J
(i)
t (Xt) and the indifference price f

(i)
t by just replacing hτ − αPτ by f

(i−1)
τ − Pτ in Theorem 2.

Proposition 10. The values (f
(0)
t , f

(1)
t , . . . , f

(n)
t ) can be expressed as f

(0)
t = ht(n), and

f
(i)
t = ess sup

τ (i)∈Tt,T1

ess inf
Q∈Pf

(
EQt
{
f
(i−1)

τ (i)
− Pτ (i)

}
+

1

γ
Hτ (i)

t (Q|QE)
)
, for i = 1, 2, . . . , n. (5.3)

Since τ = t is a candidate purchase time, we deduce from (5.2) that Mt(Xt + f
(i−1)
t − Pt) ≤

J
(i)
t (Xt) =Mt(Xt + f

(i)
t ), which in turn implies that

f
(i−1)
t − f

(i)
t ≤ Pt. (5.4)

The difference f
(i−1)
t − f

(i)
t can be interpreted as the marginal indifference value for timing to buy

the next option when i options remain to be purchased. From (5.4), we see that this marginal value
is always less than or equal to the market price.

In order to quantify the benefit of optimally waiting to buy, we define the delayed purchase

premium L
(i)
t by comparing two scenarios faced by the investor who wants to buy i options: a) buy

all i units of option D now by paying the prevailing market price iPt, and b) pay L
(i)
t now for the

right to optimally wait to buy i unit of D over time. This leads to the indifference equation:

J
(i)
t (Xt − L

(i)
t ) = Vt(Xt − iPt;n). (5.5)

Using (2.6) and (5.1), we infer that J
(i)
t (Xt) ≥ J

(i−1)
t (Xt−Pt) ≥ . . . ≥ Vt(Xt− iPt;n), which implies

that L
(i)
t ≥ 0. In particular, these inequalities become equalities at time T1, and therefore, LT1 = 0,

meaning the delayed purchase premium vanishes at T1.
Using the definition of f (i) and (5.5), we can again decompose the investor’s indifference price

f
(i)
t into three parts as in (2.10), namely,

f
(i)
t = ht(n)− iPt + L

(i)
t .

Hence, by subtraction, the marginal indifference price f
(i−1)
t − f

(i)
t is given by

f
(i−1)
t − f

(i)
t = Pt − (L

(i)
t − L

(i−1)
t ). (5.6)

Note that the difference L
(i)
t − L

(i−1)
t is non-negative by (5.4). It can be viewed as the marginal

delayed purchase premium for the next contract when there are i units left to buy. Also, the
investor’s optimal time to buy the next contracts, with i units of D left to buy, is given by

τ
(i)∗
t = inf

{
t ≤ u ≤ T1 : f (i−1)

u − f (i)u = Pu

}
= inf

{
t ≤ u ≤ T1 : L(i)

u − L(i−1)
u = 0

}
. (5.7)

As a result, the investor will purchase the next contract as soon as the marginal delayed purchase
premium decreases to zero, and then repeat the same strategy for subsequent units until time T1.

By the dual representations of f (i) in Proposition 10, we can formally derive the large and zero
risk aversion limits following the proof of Proposition 3. As risk aversion decreases to zero, we have

lim
γ→0

f
(i)
t = nhEt − i · ess inf

τ∈Tt,T
EQ

E

t

{
Pτ
}
, i = 0, 1, . . . , n. (5.8)
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In turn, the marginal delayed purchase premium reverts back to the familiar form (see (2.20)):

lim
γ→0

(L
(i)
t − L

(i−1)
t ) = Pt − ess inf

τ∈Tt,T
EQ

E

t

{
Pτ
}
, i = 1, 2, . . . , n. (5.9)

As is intuitive, when the investor is not risk averse, then the indifference value is linear in quantity
and all contracts get purchased simultaneously. Therefore, the incorporation of risk aversion leads
to significantly different timing decision in the purchase of multiple options.

5.1 Numerical Example

The optimal purchase timing schedule can be obtained by numerically solving a chain of variational
inequalities. To illustrate, let us consider the correlated geometric Brownian motion model (S, Y )
in (3.1) and (4.1). The purchase indifference value f (i)(t, y) is given by

f (i)(t, y) =
−1

γ(1− ρ2)
logw(i)(t, y),

where w(i)(t, y), (t, y) ∈ [0, T1) × R+, is the unique viscosity solution of the linear variational in-
equality

min
(
w

(i)
t + L0w(i) , w(i−1) · eγ(1−ρ2)P − w(i)

)
= 0, (5.10)

with w(i)(T1, y) = exp(−γρ̂2{h(T1, y;n)− (n− i)P (T1, y)}) and L0 defined in (3.6).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

3

4

5

6

7

8

9

10

A
ss

et
 P

ric
e 

y

Time t

i = 2

i = 3

i = 1

Figure 4: Optimal purchase times on a sample path. We consider purchasing n = 3 digital Calls with strike
K = 5 and maturity T = 1 until the deadline T1 = 0.75. The other parameters are b = 0.1, c = 0.2, ψ = 0.025,
γ = 1 and ρ =

√
0.75. We show a sample path of (Yt), starting from Y0 = 5 and the three corresponding

purchase dates τ (3)∗ ≃ 0.298, τ (2)∗ ≃ 0.687, τ (1)∗ ≃ 0.688, indicated with the diamonds.
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The optimal purchase dates are given by

τ (i)∗ = inf
{
0 ≤ t ≤ T1 : f (i−1)(t, Yt)− f (i)(t, Yt) = P (t, Yt)

}
, i = 1, 2, . . . , n.

Figure 4 illustrates the resulting solution in case of the digital Call of Section 4.1. We again observe
two-sided purchase boundaries, cf. Figure 1, and the nesting of the continuation regions which cause
the sequential purchases to be spread over time.

6 Extensions and Concluding Remarks

The presented framework for analyzing the timing flexibility in derivative trading is amenable to
multiple extensions. Among others, it is natural to consider the optimal single/sequential buy-and-
sell strategy. In the simplest case, the investor will optimally time to buy, say α units of option D,
and then sell it at the market price at or before expiration, with the goal of generating profit while
accounting for risk-aversion. She then faces the combined optimal control and stopping problem:

Ĵt(Xt;α) := ess sup
τ∈Tt,T

ess sup
θ∈Θt,τ

Et
{
V̂τ (X

θ
τ − αPτ ;α)

}
, (6.1)

where nested is the optimal liquidation problem after purchase

V̂t(Xt;α) := ess sup
ν∈Tt,T

ess sup
θ∈Θt,ν

Et
{
Mν(X

θ
ν + αPν)

}
. (6.2)

Following the indifference pricing arguments as above, it turns out that the investor’s indifference
price is the sum of the delayed purchase premium and the delayed liquidation premium; see also
(Leung and Ludkovski, 2011, Sec. 5.2) for the treatment of the risk-neutral case. For this extended
problem, tractable representations may be straightforwardly obtained using the above methods
under exponential utility.

We can also treat many other parametric models, including stochastic volatility models (Sircar
and Zariphopoulou, 2005) and credit risk models (Leung et al., 2008; Jaimungal and Sigloch, 2010)
where closed-form expressions and dual representations are available for exponential indifference
prices. It will certainly be interesting and challenging to consider derivative trading under other
risk preferences. We may also consider purchase of American derivatives, which will lead to a
compound timing option.

Finally, in our main model we assumed that the investor is risk averse while the market prices in a
risk-neutral way via risk premium specification. In principle and in practice, it is possible that both
buyers and sellers are risk averse, especially in the over-the-counter market, so indifference pricing
mechanisms may apply for both parties. However, at least in the case of exponential utility, trading
will be precluded if the buyers and sellers agree on the historical measure P, even though they may
have different risk aversion coefficients. Indeed, one can show that the buyer’s indifference price
ht and the seller’s indifference price hSt are respectively monotonically decreasing and increasing in
γ, with the same zero risk-aversion limit hEt (priced under the MEMM). This results in the price
domination ht ≤ hEt ≤ hSt for all t a.s., leading to no purchase of derivatives. Other non-trivial
trade/no-trade conditions may arise in markets with buyers and sellers with different families of
utilities, or with heterogeneity in market view, see Leung (2011).
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