
 

No. CCLS-07-01 
 

Title: The report series template  
   

Authors: Wei Chu and Ansaf Salleb-Aouissi 

 
Copyright Center for Computational Learning Systems - CCLS 

Columbia University 
 

TE
C

H
N

IC
A

L 
R

EP
O

R
T 

No. CCLS-11-03 
 

Title: Conic SMO 
   

Authors: Ilia Vovsha 

 
Copyright Center for Computational Learning Systems - CCLS 

Columbia University 
http://www.ccls.columbia.edu 

TE
C

H
N

IC
A

L 
R

EP
O

R
T 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161438512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Conic SMO

Abstract
We derive an SMO-like algorithm for the optimization problem arising from the Second

Order Cone Programming formulation of support vector machines (SVMs) for classifica-
tion. Due to the square root term in the objective of the form, we cannot easily compute
the location of the extrema using Newton’s formula. Instead we modify the analytic solu-
tion proposed for SMO (Platt, 1999), to account for the particular objective function and
partial derivatives. We then establish some theoretical properties of the algorithm based
on the results of (Bordes et al., 2005), and develop practical working set selection similar
to (Fan et al., 2005). In addition, we propose an efficient implementation, and compare
the convergence rate of Conic-SMO and SMO on synthetic data.
Keywords: support vector machines, second order cone program, SMO, working set
selection

1. Introduction

Suppose we have a set of ! observations (x1, . . . , x!) with corresponding labels (y1, . . . , y!)
where, xi ∈ "n, yi ∈ {−1, 1}. Then to find the ∆-margin hyperplane for the linearly non-
separable case, we could solve the following Second Order Cone Program (SOCP) (Vapnik,
1998, chapter 10.2):

(P∆) min
w,b,ξ

!∑

i=1

ξi

∀i, yi((w · xi) + b) ≥ 1− ξi, ξi ≥ 0

(w ·w) ≤ 1
∆2

(1.1)

The standard approach for solving P∆ is to construct the Lagrangian, and find the saddle
point:

(D∆) max
α

D∆(α) =
!∑

i=1

αi −
1
∆

√√√√
!∑

i,j=1

αiαjyiyj(xi · xj)

!∑

i=1

yiαi = 0

∀i, 0 ≤ αi ≤ 1 (1.2)

If we denote A = 1
∆ (A > 0), generalize to the nonlinear case, and assume that summands

are over the indices {1, . . . , !}, unless specified otherwise, then we obtain the optimization
problem:

(DA) max
α

DA(α) =
∑

i

αi −A

√∑

i,j

αiαjyiyjK(xi,xj)

∑

i

yiαi = 0, 0 ≤ αi ≤ 1 (1.3)

where vectors are boldface, K is a positive semi-definite (p.s.d) kernel matrix, and variable
bounds hold ∀i. The solution vector α0 of DA defines the generalized optimal hyperplane
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(1.4), and the threshold b is chosen to satisfy the Karush-Kuhn-Tucker (KKT) conditions
(1.5).

fA(x) =
A√∑

i,j α0
i α

0
jyiyjK(xi,xj)

∑

i

α0
i yiK(x,xi) + b (1.4)

∀t, α0
t (

A√∑
i,j α0

i α
0
jyiyjK(xi,xj)

∑

i

α0
i yiK(xt,xi) + b) = 0 (1.5)

Having obtained α0 (assuming α0 '= 0) for some A, we could define the parameter,

C =
A√∑

i,j α0
i α

0
jyiyjK(xi,xj)

(1.6)

and transform DA to the normalized quadratic form DC . In this case, the solutions of both
problems DA, DC , coincide (Vapnik, 1998, chapter 10.2).

(DC) max
α

DC(α) =
∑

i

αi − C ·
∑

i,j

αiαjyiyjK(xi,xj)

∑

i

yiαi = 0, 0 ≤ αi ≤ 1 (1.7)

fC(x) = C ·
!∑

i=1

α0
i yiK(x,xi) + b (1.8)

The normalized form (1.7), and the corresponding decision function (1.8), can be ob-
tained directly from the standard dual (1.9) (Cortes and Vapnik, 1995), by factoring the
parameter C out of the constraints and into the objective, and absorbing the constant (1/2)
into the parameter.

max
α

DC(α) =
∑

i

αi −
1
2

∑

i,j

αiαjyiyjK(xi,xj)

∑

i

yiαi = 0, 0 ≤ αi ≤ C (1.9)

1.1 Motivation

Considerable effort has been devoted to the implementation of efficient optimization meth-
ods for the Quadratic Programming (QP) dual (1.9) (Bottou and Lin, 2007). However, we
were not able to identify a discussion in the literature of decomposition methods for either
the specific SOCP DA, or more general SOCP problems (Lobo et al., 1998; Alizadeh and
Goldfarb, 2003). Nevertheless, decomposition is a compelling approach for large scale op-
timization problems with a square-root term in the objective, since the techinques for QPs
are well developed and can be adapted. Furthermore, for the SVM form, the parameter
A has a concrete meaning (unlike the parameter C which lacks this intuition). The VC
dimension (h) is bounded by a quantity that depends on the dimensionality (n) of the data,
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Conic SMO

the radius of the data sphere (R), and the margin (∆) of the separating hyperplane, which
is inversly related to A (Vapnik, 1998, theorem 10.3):

h ≤ min
([

R2

∆2

]
, n

)
+ 1 (1.10)

Since the radius can be computed (Schlkopf et al., 1995; Tax and Duin, 1999), solving DA

(rather than DC) should be preferable at least theoretically. Whether the bound on A is
too loose in practice, remains an open question.

There exists another SVM form, named ν-SVM (Schölkopf et al., 2000; Chang and Lin,
2001a), which has a parameter (ν) with a clear interpretation. However, while ν is a bound
on the fraction of margin errors and number of support vectors, unlike A, it is only indirectly
related to the VC dimension.

1.2 Outline

In this report we derive an SMO-like algorithm for the particular, and equivalent to (1.3),
SOCP formulation:

max
α

DA(α) =
∑

i αiyi −A
√∑

i,j αiαjK(xi,xj)
∑

i αi = 0, Li ≤ αi ≤ Hi

Li = min(0, yi), Hi = max(0, yi) (1.11)

Due to the square root term in the objective, we cannot easily compute the location of the
extrema using Newton’s formula. Therefore, it is necessary to modify the analytic solution
proposed for SMO (Platt, 1999), and the derivation is not as straightforward as it is for the
QP-SVM form (Bottou and Lin, 2007). We give the gory details in Section 2. In Section 3,
we establish some theoretical properties of the algorithm based on the results of Bordes
et al. (2005). We then develop practical working set selection methods similarly to Fan
et al. (2005) in Section 4, and give essential implementation details in Section 5. Since the
SOCP and QP formulations of SVM are equivalent for a proper choice of parameters, it is
possible to compare the convergence rate of Conic-SMO and SMO empirically. We provide
a numerical comparison in Section 6. Finally, we summarize our work in Section 7.

2. Conic SMO

We solve (1.11) analytically for two Lagrange multipliers. As in the original SMO derivation
(Platt, 1999), using the linear constraint

∑
i αi = 0, we first express the objective function

as a function of a single Lagrange multiplier, and a constant term which does not depend
on the chosen multipliers (Section 2.1). By defining suitable constants, we transform the
derived objective function (and its partial derivatives) into a simpler form, which is easier
to analyze (Section 2.2). We then consider the possible cases and show how the objective
is maximized for each (Section 2.3). Due to their exhaustive nature, most of the algebraic
manipulations are detailed in the Appendix.
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2.1 Function of a Single Lagrange Multiplier

Without loss of generality (w.l.o.g), let the two Lagrange multipliers be {α1,α2}. Then
DA(α), can be expressed as (see derivation in Appendix A.1):

DA(α1,α2,αconst) = α1y1 + α2y2 + αT
constyconst −A

√
D∗(α1,α2) + D∗

const (2.1)

D∗(α1,α2) = K11α
2
1 + K22α

2
2 + 2K12α1α2 + 2v1α1 + 2v2α2 (2.2)

vi =
n∑

j=3

ajKij (2.3)

where Kij = K(i, j), and D∗
const, αT

const, yconst, are terms that do not depend on {α1,α2}.
Each Conic-SMO iteration will find the maximum of DA(α) along the line defined by

the constraint
∑

i αi = 0. Let,

∆α = α1 + α2 = αold
1 + αold

2 (2.4)

where the superscript ‘old’ indicates values at the end of the previous iteration, and due
to the constraint, ∆α is constant for a given iteration. The objective function can now be
expressed in terms of {α1} alone (see Appendix A.2):

DA(α1,α
old) = (y1 − y2)(α1 − αold

1 ) + (αold)Ty −A
√

D∗(α1) + D∗
const (2.5)

D∗(α1) = K11α
2
1 + K22(∆α− α1)2 + 2K12α1(∆α− α1) + 2v1α1 + 2v2(∆α− α1)

= ηα2
1 − 2α1(αold

1 η + (U2 − U1)) + ∆α(∆αK22 + 2v2) (2.6)

Ui =
∑

j

αold
j Kij (2.7)

η = K11 + K22 − 2K12 (2.8)

2.2 Objective in Simpler Form

Since we need to compute the first and second partial derivatives of DA(α), it is desirable
to express the objective function (2.5)–(2.8) in a simpler form first. To keep the derivation
as clear as possible, we shall assume that the matrix K is positive definite (p.d) i.e., η >
0. Substitute D(α1) for DA(α1,αold), and let {C1, C2, C3, δy, η∗} be constants defined as
follows:

C1 = aold
1 +

(U2 − U1)
η

(2.9)

C2 =
∆α(∆αK22 + 2v2) + D∗

const

η
(2.10)

C3 = C2 − C2
1 (2.11)

δy = y1 − y2 (2.12)

η∗ = η − (
δy

A
)2 (2.13)
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Conic SMO

Then the objective function (2.5), and the partial derivatives of D(α1) with respect to α1,
which might not be defined for α1 = 0, can be expressed in the form (2.14)–(2.17) (see
Appendix A.3):

D∗(α1) + D∗
const = η((α1 − C1)2 + C3) (2.14)

D(α1) = δy(α1 − αold
1 ) + (αold)Ty −A

√
η
√

(α1 − C1)2 + C3 (2.15)
∂D(α1)

∂α1
= δy −A

√
η

(α1 − C1)√
(α1 − C1)2 + C3

(2.16)

∂2D(α1)
∂α2

1

=
−A
√

η
√

(α1 − C1)2 + C3

(1− (α1 − C1)2

(α1 − C1)2 + C3
) (2.17)

If ∃α′ : ∂D(α′)
∂α1

= 0, then from (2.13),(2.16), and (2.17),

∂2D(α′)
∂α2

1

=
−A
√

η
√

(α′ − C1)2 + C3

· η∗

η
(2.18)

Since we have assumed that K is p.d, the quadratic quantity under the square root must be
nonnegative. Therefore, ∂D(α1)

∂α1
may be undefined at a single point only (α = 0). In other

words, if C3 = 0, then ∂D(α1)
∂α1

is undefined at α1 = C1 = 0. This case can occur if exactly
two alphas are nonzero, or if we are at zero. Otherwise C3 > 0, and ∂D(α1)

∂α1
is defined ∀α1

(see A.4).

2.3 Analytic Solution

We consider how the objective is maximized for each case in Appendix B, and summarize
the results in Table 1. The solution in the table is valid for all points except zero, which
we discuss below. As in SMO, the unconstrained maximum should be clipped to the ends
of the line segment.

Table 1: Conic-SMO analytic solution

Case Summary η∗ C3 > 0 C3 = 0

y1 = y2 η∗ = η αnew
1 = C1 N/A

y1 '= y2
η∗ > 0 αnew

1 = C1 + y1
2
A

√
C3
η∗ αnew

1 = 0

η∗ ≤ 0 αnew
1 = y1 αnew

1 = y1

Suppose α = 0 {∀i : αold
i = 0} for some iteration while solving DA. By definition

C1 = C3 = 0, and to make progress at zero, y1 '= y2. If w.l.o.g we let y1 = 1, then the
objective function (2.15) can be simplified to:

DA(α) = (y1 − y2)α1 −A
√

η |α1|
= (2−A

√
η)α1 (2.19)
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Suppose η∗ > 0. It follows that (2−A
√

η) < 0, and from (2.19) or Table 1, it is clear that
DA(α) is maximized at αnew

1 = 0.

η∗ > 0 =⇒ (2−A
√

η) < 0 =⇒ max DA(α) = DA(0) = 0 (2.20)

In other words, if A is sufficiently large, and we ascend to zero at some iteration (or choose
zero as our initial point), it is possible that no pair of indices {i, j} would allow us to increase
the objective function value, since with respect to any maximally sparse direction, DA(α)
is already maximized. For example, consider a radial basis function (RBF) kernel: then
typically (∀i) Kii = 1, (∀j '= i) 0 < Kij < 1, and therefore 1 < η < 2 for all pairs {i, j}. It
follows that an A > 2 is sufficiently large.

The obvious approach to bypass this problem, is to modify the constraints of DA to
exclude zero from the feasible set. From a practical standpoint, we prefer to define an ad-
hoc gradient and take an ‘artificial’ step, if the initial point is zero. We can ensure that we
do not return to zero at any subsequent iteration with an appropriate working set selection
(WSS) method. We discuss the details in Sections 4, 5.

3. Theoretical Properties

Let Fsocp−svm denote the convex polytope defined by the constraints of DA, where the zero
point is excluded, and assume that the kernel matrix K is p.d. Then DA(α) is a concave,
twice differentiable with continuous derivatives function, defined on Fsocp−svm where,

α ∈ Fsocp−svm ⇐⇒

∑
i αi = 0

Li ≤ αi ≤ Hi

α '= 0
(3.1)

Therefore, the theoretical results presented in the Appendix of Bordes et al. (2005) are ap-
plicable, and we can establish various convergence properties of the Conic-SMO algorithm.
In particular, we can specify a finite witness family (Bordes et al., 2005, definition 5) for
Fsocp−svm, and derive the optimality conditions. If we define the gradient of DA, and the
sets of indices {Iup(α), Ilow(α)}, then assertion (iii) in Theorem 2 yields the necessary and
sufficient “violating pair” optimality criterion (Keerthi et al., 2001; Fan et al., 2005) for the
SOCP-SVM problem.

g = ∇DA(α) = y −A
Kα√
αT Kα

(3.2)

gk = ∇DA(α)k (3.3)
Iup(α) = { t : αt < Ht}, Ilow(α) = { t : αt > Lt} (3.4)

Proposition 1 Let (e1, . . . , en) be the canonical basis of "n. Set Us = {ei − ej , i '= j} is a
(finite) witness family for the convex set Fsocp−svm defined by (3.1). This set is used in the
Conic-SMO algorithm.

Proof See Definition 5 and Proposition 7 in (Bordes et al., 2005).
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Conic SMO

Theorem 2 For {Us, Fsocp−svm}, the following assertions are equivalent:
i) α is a solution of DA.
ii) ∀u ∈ Us, max{DA(α + λu),α + λu ∈ Fsocp−svm} ≤ DA(α).
iii) ∀u ∈ Us at α, uT∇DA(α) ≤ 0.

Proof Theorem 1 is a special case of Theorem 6 in (Bordes et al., 2005).

Definition 3 (Violating Pair) If i ∈ Iup(α), j ∈ Ilow(α), and gi − gj > 0, then {i, j} is
a “violating pair”.

Proposition 4 A feasible α ∈ Fsocp−svm is optimal for DA, if and only if,

∀i, j ∈ {1...n}2, αi < Hi and αj > Lj =⇒ ∇DA(α)i −∇DA(α)j ≤ 0

Stated differently, α ∈ Fsocp−svm is optimal, if and only if, there does not exist a “violating
pair” at α.

In practice, we define {Mup(α), mlow(α)}, pre-specify a small tolerance τ > 0, and as in
SMO, check whether the optimality condition is satisfied approximately:

Mup(α) = max
i∈Iup(α)

gi, mlow(α) = min
j∈Ilow(α)

gj (3.5)

Mup(α)−mlow(α) ≤ τ (3.6)

Therefore, Conic-SMO fits the framework of the Approximate Stochastic Witness Direction
Search algorithm (Bordes et al., 2005), and the following convergence results are valid:

Definition 5 A vector u ∈ "n is called a κτ -violating direction at point α, if max{λ ≥
0,α + λu ∈ Fsocp−svm} > κ, and uT∇DA(α) > τ .

Proposition 6 Since Us is a finite witness family for Fsocp−svm, any sequence of points
{αk} generated by the Conic-SMO algorithm (with any rule used to select the working set
at each iteration), converges (“κτ -approximately”) to some point α′ (not necessarily the
optimal α∗) after a finite number of steps.

Proof Proposition 3 is a special case of Proposition 16 in (Bordes et al., 2005).

Theorem 7 (Asymptotic convergence) Assume that at every iteration k, Conic-SMO
selects a working set {i, j} which defines a κτ -violating direction at αk−1, if such direction
exists. Then the sequence {αk} generated by Conic-SMO converges (“κτ -approximately”)
to the optimal α∗ for {DA, Fsocp−svm} after a finite number of steps.

Proof Theorem 2 is a special case of Theorem 17 in (Bordes et al., 2005).
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4. Working Set Selection

A practical implementation of the Conic-SMO algorithm requires an effective strategy for
choosing the working set at each iteration. Under the same assumptions as in Section 3,
we adopt the notation of Fan et al. (2005), and propose two selection methods. The first
method is identical to WSS 1 (first proposed by Keerthi et al., 2001) in (Fan et al., 2005)
It can be derived through the KKT conditions, where the gradient and {Mup(α), mlow(α)}
are defined in (3.2)–(3.5).

WSS 1 (Maximal violating pair)
1. Select

i ∈ arg Mup(α), j ∈ arg mlow(α)
2. Return B = {i, j}.

A more effective selection method can be obtained if we consider using second order
information. The goal is to solve (4.1) where e is a vector of ones, and the hessian matrix
∇2DA(α) is defined in (4.2).

(WS2) max
dB

F (B) =
1
2
dT

B∇2DA(α)BBdB +∇DA(α)T
BdB

subject to:

eTdB = 0
αt = Lt, t ∈ B =⇒ dt ≥ 0
αt = Ht, t ∈ B =⇒ dt ≤ 0 (4.1)

∇2DA(α) = − A√
αT Kα

(K − (Kα)(Kα)T

αT Kα
) (4.2)

Similar to Theorem 3 in (Fan et al., 2005), Theorem 8 below shows that one could efficiently
solve WS2. Based on this theorem, we can derive the selection method WSS 2.

Theorem 8 If B = {i, j} is a violating pair, and K is p.d, then the optimal objective value
of WS2, which depends on aij, is:

(1) aij > 0 =⇒ 1
2

√
αT Kα

A
·
b2
ij

aij

(2) aij = 0 =⇒∞

where aij , bij are defined in (4.6)–(4.7).

Proof Since |B| = 2,
dB = [di, dj ]T = [di,−di]T (4.3)

from (2.7),(2.8),(3.3), (4.2) and (4.3)

dT
B∇2DA(α)BBdB = − A√

αT Kα
(ηij −

(Uj − Ui)2

αT Kα
)d2

i (4.4)

∇DA(α)T
BdB = (gi − gj)di (4.5)

8



Conic SMO

and if we define aij , bij , then F (B) can be expressed as (4.8):

aij = ηij −
(Uj − Ui)2

αT Kα
(4.6)

bij = (gi − gj) (4.7)

F (B) = −1
2

A√
αT Kα

(ηij −
(Uj − Ui)2

αT Kα
)d2

i + (gi − gj)di

= −1
2

A√
αT Kα

aijd
2
i + bijdi (4.8)

By definition bij > 0, and we can show (A.5) that

C3 > 0 =⇒ aij > 0
C3 = 0 =⇒ aij = 0

where C3 is a constant defined in (2.9)–(2.11) which depens on the chosen pair {i, j}. Hence
w.l.o.g di ≥ 0, and the optimal objective value of (WS2) follows from the maximum of (4.8):

aij > 0 =⇒ di =
√

αT Kα

A

bij

aij

=⇒ max
dB

F (B) =
1
2

√
αT Kα

A

b2
ij

aij
(4.9)

aij = 0 =⇒ di =∞
=⇒ max

dB

F (B) =∞ (4.10)

WSS 2 (Second order information)
1. Select

i ∈ arg Mup(α)
2. Consider (4.9), where ait, bit are defined in (4.6)–(4.7), and select

j ∈ arg max
t

{ b2
it

ait
| t ∈ Ilow(α), gi > gt, ait '= 0}

3. Return B = {i, j}.

At the end of Section 2.2 we mentioned that the case C3 = 0 (aij = 0) can occur if we
are at zero, or if exactly two alphas {i, j} are non-zero, and make up the working set i.e.,
B = {i, j}. If the initial point is zero, we take the ‘artificial’ step described in Section 5. By
requiring ait '= 0 in step 2 of WSS 2, we guarantee that a violating pair is not considered
unless there is at least one more non-zero alpha. Thus we do not return to zero at any
iteration. WSS 2 is efficient since aij can be computed from the gradient (see Section 5),
and as in WSS 2 for SMO (Fan et al., 2005), we need to check only O(l) possible pairs to
select {i, j}.

9
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Since DA(α) is not a quadratic function, it is interesting to consider higher order in-
formation. We could use more than two terms of the Taylor series to approximate DA(α).
However, this would require computing the tensor product of the n-dimensional cube of
derivatives ∇nDA(α) with the search direction dB. For example, to obtain the third term
of the Taylor series, we need to compute the 3D cube ∇3DA(α). Moreover, Theorem 8
holds only for a specific F (B). When F (B) is no longer a quadratic (cubic for the third
order case), it is necessary to find the maximum of a more complicated function.

5. Implementation Details

We describe the pseudo-code of the Conic-SMO algorithm (Algorithm 1). Several aspects
of the implementation demand particular attention:

• To take the initial step, we define an ‘artificial’ gradient at zero (g = ∇DA(α) = y).

• We use WSS 2 for SMO (Fan et al., 2005) to select the pair of indices at the first
iteration (step 2 of the algorithm). For all violating pairs at zero, gi − gj = 2. Index
i (where i ∈ Iup(α)) can be selected randomly, while to select index j, we can check
for the minimum denominator in gi−gj

Kii+Kjj−2Kij
, since the numerator is constant.

• In step 3, we update the alphas according to the default case η∗ ≤ 0. If η∗ > 0, the
update is ‘artificial’ since the objective value would decrease. Note that it cannot
decrease on any of the subsequent iterations.

• In order to update the gradient (3.2) efficiently, we maintain an additional vector U
(defined in (2.7), U = Kα), and a constant aka = αT Kα.

• A single iteration of Conic-SMO (steps 4-5) is more expensive than that of SMO.
However, the additional cost is not significant, since we can compute the terms in
steps 5a,5c efficiently (A.6).

• WSS 2 in step 4 is also efficient since aij depends on the terms {Ui, Uj , aka} which are
available. It can also be computed from the gradient since (Uj−Ui)2

αT Kα
= (gi−gj−yi+yj)2.

6. Empirical Comparison

Since the SOCP and QP formulations of SVM, (1.3) and (1.7) respectively, are equivalent
for a proper choice of parameters, we can compare the convergence rate of Conic-SMO
and SMO numerically. Solving the QP problem DC using an interior point method is
considerably faster than solving the corresponding SOCP problem DA, assuming the same
accuracy is required. Although the interior point methods converge to the solution in a
similar number of iterations, each iteration for DA is computationally more expensive (see
Appendix C). However, an efficient implementation of Conic-SMO, should mitigate this
discrepancy.

In Table 2, we compare the Conic-SMO and SMO algorithms for various sample sizes,
and C (A) parameter values. Both methods are implemented without shrinking, and using
WSS 2 with the tolerance fixed to τ = 10−3. We use an RBF kernel (with a different sigma

10
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Algorithm 1 Conic-SMO

1) Set α←− 0 and initialize the (‘artificial’) gradient.
∀k ∈ {1, . . . , !}, αk ←− 0, Uk ←− 0, gk ←− yk

2) Choose a τ -violating pair (i, j) according to WSS 2 for SMO.
i←− arg Mup(α)
j ←− arg minj{Kii + Kjj − 2Kij}

3) Take an artificial step.
αi ←− 1, αj ←− −1 (update alphas)
∀k, Uk ←− Uk + Kik −Kjk

∀k, gk ←− gk −A · Uk√
Kii+Kjj−2Kij

(update gradient)

4) Choose a τ -violating pair (i, j) according to WSS 2 above. Stop if no such pair exists.
5) Take a step in the direction defined by (i, j).

5a) Compute anew
i from Table 2.

5b) λ←− min{anew
i − ai, Hi − ai, aj − Lj}

5c) Update term {aka}.
5d) αi ←− αi + λ, αj ←− αj − λ (update alphas)
5e) ∀k, Uk ←− Uk + λKik − λKjk

∀k, gk ←− yk −A · Uk√
aka

(update gradient)
6) Return to step (4).

11
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parameter for each sample size), on synthetic data generated according to a chess-board
pattern. This is a two class problem, where points generated inside dark squares belong to
one class, and the rest belong to the second class.

Table 2: SMO vs. Conic-SMO (convergence rate)

# C A SMO Conic-SMO
∥∥∆α0

∥∥
2

∆D(α0)

1000 1e03 75.10 2760 3920 0.03 0
1000 1e04 648.7 1.12e05 1.38e05 0.08 0
2000 1e04 798.3 4.16e05 3.83e05 0.09 0
3000 1e04 970.7 3.11e05 3.18e05 0.04 1e-04
4000 1e04 1105 6.59e05 6.91e05 0.09 1e-04

The results in the table are obtained as follows: for each sample size and C parameter
value, we execute the SMO algorithm as specified above. Having obtained the solution
vector α0 of DC we compute the parameter A = C ·

√∑
i,j α0

i α
0
jyiyjK(xi,xj). We then solve

the corresponding problem DA using Conic-SMO, and record the number of iterations the
algorithms needed to converge in columns 4 and 5. To compare the solutions, we compute
the norm of the difference between the solution vectors ∆α0 = α0

C −α0
A, and the difference

(rounded off to four decimal places) in the objective value ∆D(α0) = DC(α0)−DA(α0) in
columns 6 and 7 respectively. Suppose SMO needs x iterations to converge for some run.
If conic SMO requires more iterations (which is often the case), we compute the difference
in columns 6-7 using the vector obtained after x iterations rather than the solution vector.
The numbers in columns 4-7 are averaged over 5 runs, each with a different random sample
(but identical parameters and sample size). To give some intuition about the parameter A
(which is different for each run), we record the value for one run in column 3.

The SMO method suffers from slow convergence since a large portion of iterations are
spent for achieving the final digit of the required accuracy (Chang and Lin, 2001b). We
observe that this issue is exacerbated for the Conic-SMO algorithm. However, the results
in columns 6-7 suggest that Conic-SMO is competitive with SMO if we reduce the required
accuracy. In addition, the running time per iteration (not shown) is only marginally greater,
indicating that the implementation detailed in section 5 is efficient.

7. Conclusion

We have derived an SMO-like algorithm for the SOCP formulation of SVM. Due to the
structure of the objective function and the gradient, we had to obtain the solution analyt-
ically, and treat the zero point as a special case. However, relying on existing results for
SMO, it was straightforward to establish asymptotic convergence and derive an effective
working set selection for Conic-SMO. As mentioned at the end of Section 4, it would be
interesting to try a WSS for Conic-SMO with higher order information.

We have also provided an implementation of the algorithm in Section 5. Empirical
evidence suggests that this implementation is efficient, and significantly reduces the dis-
crepancy in the running time observed when the interior point methods are compared.

12
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Furthermore, Table 2 demonstrates that Conic-SMO is competitive with SMO, if we do
not insist on the final digit of the required accuracy (or set a lower stopping tolerance).
Nevertheless, we emphasize that the motivation for solving the SOCP form is the theo-
retical relation between the parameter A and the VC dimension. From a computational
perspective, the QP form is perhaps preferable. Finally, SOCP problems arise in a variety
of applications, and hence a decomposition method for the specific SVM problem may be
useful as a blueprint for more general forms.
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Appendix A. Algebraic Derivations

Let “(def)” denote definition of constant/variable.

A.1 Section 2.1, equations 2.1-2.3

(def) c = 3 : n, αc = [α3 . . .αn]T

αT Kα = αT
c Kccαc + 2α1

n∑

j=3

αjK1,j + 2α2

n∑

j=3

αjK2,j + α2
1K11 + 2α1α2K12 + α2

2K22

(def) D∗
const = αT

c Kccαc =
n∑

i=3

αi

n∑

j=3

αjKi,j

(def) vi =
n∑

j=3

αjKi,j

αT Kα = D∗
const + K11α

2
1 + K22α

2
2 + 2K12α1α2 + 2v1α1 + 2v2α2

(def) D∗(α1,α2) = K11α
2
1 + K22α

2
2 + 2K12α1α2 + 2v1α1 + 2v2α2 (A.1)

A.2 Section 2.1, eq. 2.5-2.8

(def) ∆α = α1 + α2

α2 = ∆α− α1

(def) D∗(α1) = K11α
2
1 + K22(∆α− α1)2 + 2K12α1(∆α− α1) + 2v1α1 + 2v2(∆α− α1)

= (K11 + K22 − 2K12)α2
1 + 2∆αα1(K12 −K22) + 2(v1 − v2)α1

+ ∆α∆αK22 + 2∆αv2

(def) η = K11 + K22 − 2K12

13
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D∗(α1) = ηα2
1 + 2∆αα1(K12 −K22) + 2(v1 − v2)α1 + ∆α∆αK22 + 2∆αv2

= ηα2
1 + 2α1[∆α(K12 −K22) + (v1 − v2)] + ∆α∆αK22 + 2∆αv2

= ηα2
1 − 2α1[(v2 − v1) + ∆α(K22 −K12)] + ∆α[∆αK22 + 2v2]

(def) Ui =
∑

j

αold
j Ki,j

vi = Ui − αold
1 Ki,1 − αold

2 Ki,2

v2 − v1 = U2 − U1 − αold
1 K12 − αold

2 K22 + αold
1 K11 + αold

2 K12

= U2 − U1 + αold
1 (K11 + K22 − 2K12)

+ αold
1 K12 − αold

1 K22 − αold
2 K22 + αold

2 K12

= U2 − U1 + αold
1 η + (K12 −K22)(αold

1 + αold
2 )

= U2 − U1 + αold
1 η + ∆α(K12 −K22)

(def) r1 = (v2 − v1) + ∆α(K22 −K12)

= U2 − U1 + αold
1 η + ∆α(K22 −K12) + ∆α(K12 −K22)

= U2 − U1 + αold
1 η

D∗(α1) = ηα2
1 − 2α1(U2 − U1 + αold

1 η) + ∆α[∆αK22 + 2v2]

= ηα2
1 − 2α1[αold

1 η + (U2 − U1)] + ∆α[∆αK22 + 2v2] (A.2)

A.3 Section 2.2, eq. 2.9-2.18

Assume : η > 0

D∗(α1) + D∗
const = ηα2

1 − 2α1[αold
1 η + (U2 − U1)] + ∆α[∆αK22 + 2v2] + D∗

const

= η[α2
1 − 2α1(αold

1 +
(U2 − U1)

η
) +

∆α[∆αK22 + 2v2] + D∗
const

η
]

(def) C1 = αold
1 +

(U2 − U1)
η

(def) C2 =
∆α[∆αK22 + 2v2] + D∗

const

η

(def) C3 = C2 − C2
1

D∗(α1) + D∗
const = η(α2

1 − 2α1C1 + C2)

= η((α1 − C1)2 + C3)
∑

i

αiyi = α1y1 + α2y2 + αT
constyconst

= α1y1 + (∆α− α1)y2 + αT
constyconst

= α1y1 + (αold
1 + αold

2 − α1)y2 + αT
constyconst

= α1y1 − α1y2 + (y2 − y1)αold
1 + (αold)Ty

= (y1 − y2)(α1 − αold
1 ) + (αold)Ty

14
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(def) δy = y1 − y2

D(α1,α
old) = δy(α1 − αold

1 ) + (αold)Ty −A
√

D∗(α1) + D∗
const

= δy(α1 − αold
1 ) + (αold)Ty −A

√
η
√

(α1 − C1)2 + C3

∂D(α1)
∂α1

= δy −
1
2
A
√

η
2(α1 − C1)√

(α1 − C1)2 + C3

= δy −A
√

η
(α1 − C1)√

(α1 − C1)2 + C3

∂2D(α1)
∂α2

1

= −A
√

η[
1√

(α1 − C1)2 + C3

− 1
2

2(α1 − C1)2

[(α1 − C1)2 + C3]3/2

= −A
√

η
1√

(α1 − C1)2 + C3

[1− (α1 − C1)2

(α1 − C1)2 + C3
]

∂D(α′)
∂α1

= 0 =⇒

δy −A
√

η
(α1 − C1)√

(α1 − C1)2 + C3

= 0

A
√

η
(α1 − C1)√

(α1 − C1)2 + C3

= δy

(α1 − C1)√
(α1 − C1)2 + C3

=
δy

A
√

η

∂2D(α′)
∂α2

1

= −A
√

η
1√

(α1 − C1)2 + C3

[1− (
δy

A
√

η
)2]

= −A
√

η
1√

(α1 − C1)2 + C3

[1− 1
η
(
δy

A
)2]

= −A
√

η
1√

(α1 − C1)2 + C3

[η − ( δy

A )2]
η

(def) η∗ = η − (
δt

A
)2

∂2D(α′)
∂α2

1

= −A
√

η
1√

(α1 − C1)2 + C3

η∗

η
(A.3)
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A.4 Section 2.2, last paragraph

αT Kα = η((α1 − C1)2 + C3)
αT Kα

η
= (α1 − C1)2 + C3

∀α, αT Kα ≥ 0 =⇒ ∀α1, [(α1 − C1)2 + C3] ≥ 0
=⇒ One (double) root or none

(def) F (a1) = (α1 − C1)2 + C3

F (a1) = 0⇐⇒ α1 = C1 ±
√
−C3

C3 > 0 =⇒ no roots
C3 = 0 =⇒ one root =⇒ C1 = 0 (A.4)

A.5 Section 4, Theorem 3

Assume : α '= 0, η > 0

(1) αT Kα = η((αold
i − C1)2 + C3)

(2) C1 = αold
i +

(Uj − Ui)
η

(3) aij = η − (Uj − Ui)2

αT Kα

From (1)-(3), C3 =
αT Kα

η
− (αold

i − C1)2

=
αT Kα

η
− (αold

i − αold
i − (Uj − Ui)

η
)2

=
αT Kα

η
− (Uj − Ui)2

η2

=
αT Kα

η2
[η − (Uj − Ui)2

αT Kα
]

=
αT Kα

η2
aij

C3 > 0 =⇒ aij > 0
C3 = 0 =⇒ aij = 0 (A.5)

A.6 Section 5, algorithm steps 5a, 5c

We describe the pseudo-code to compute anew
i efficiently according to Table 1. The relevant

terms are defined in equations (2.8)–(2.13). We actually compute λ∗ = anew
i − ai.
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Algorithm 2 Pseudocode
η = Kii + Kjj − 2Kij

dU = Uj − Ui

C3 = αT Kα
η − (Uj−Ui

η )2 = aka
η − (dU

η )2

C1 = ai + (Uj−Ui)
η = ai + dU

η
if yi = yj then

λ∗ = anew
i − ai = dU

η
else

η∗ = η − ( 2
A)2

if η∗ ≤ 0 then
λ∗ = yi − ai

else
λ∗ = dU

η + (yi · 2
A ·

√
C3
η∗ )

end if
end if

We can update the term ‘aka’ from {λ, η, dU, C3}, where λ is obtained in step 5b.

aka = (αnew)T Kαnew

= η · [(anew
i − C1)2 + C3]

= η · [(anew
i − ai −

dU

η
)2 + C3]

= η · [(λ− dU

η
)2 + C3] (A.6)

Appendix B. Analytic Solution Cases

We consider the cases δy = 0 and δy '= 0 separately:

Case 1 δy = 0
Since η∗ = η, the objective function and partial derivatives simplify to:

D(α1) = (αold)Ty −A
√

η
√

(α1 − C1)2 + C3

∂D(α1)
∂α1

= −A
√

η
(α1 − C1)√

(α1 − C1)2 + C3

∃α′ : ∂D(α′)
∂α1

= 0 =⇒ ∂2D(α′)
∂α2

1

=
−A
√

η
√

(α′ − C1)2 + C3

Case 1.1 C3 > 0
Since ∂D(α1)

∂α1
is defined for ∀α1, the extremum of the objective function is at

α1 = C1. It is a maximum since ∂2D(C1)
∂α2

1
< 0.
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Case 1.2 C3 = 0
This case cannot occur.

Case 2 δy '= 0
The objective function and partial derivatives cannot be simplified, and unlike case
#1, the derivatives now depend on {δy, η∗}.

Case 2.1 C3 = 0
C1 = 0 by definition, and the objective can be simplified to:

D(α1) = δy(α1 − αold
1 ) + (αold)Ty −A

√
η
√

(α1 − C1)2 + C3

= 2y1(α1 − αold
2 ) + (αold)Ty −A

√
η |α1 − C1|

= 2y1α1 −A
√

η |α1|
= |α1| (2−A

√
η)

η∗ = 0 =⇒ (2−A
√

η = 0) =⇒ max D(α1) : |α1| ≥ 0
η∗ > 0 =⇒ (2−A

√
η < 0) =⇒ max D(α1) : |α1| = 0

η∗ < 0 =⇒ (2−A
√

η > 0) =⇒ max D(α1) : |α1| = 1

η∗ = 0 is an interesting case which doesn’t occur in SMO. We choose to replace
the inequality with the bound i.e. |α1| ≥ 0 with |α1| = 1.

Case 2.2 C3 > 0
The extremum of the objective function depends on the sign of δy. We consider
several cases:

δy > 0, α1 ≤ C1 =⇒ ∂D(α1)
∂α1

> 0

δy < 0, α1 ≥ C1 =⇒ ∂D(α1)
∂α1

> 0

∂D(α1)
∂α1

= 0 =⇒

δy = A
√

η
(α1 − C1)√

(α1 − C1)2 + C3

(
δt

A
)2 = η

(α1 − C1)2

(α1 − C1)2 + C3

[η − (
δt

A
)2](α1 − C1)2 − (

δt

A
)2C3 = 0

η∗(α1 − C1)2 − (
δt

A
)2C3 = 0

Case 2.2.a η∗ ≤ 0

δy > 0, α1 > C1 =⇒ ∂D(α1)
∂α1

> 0

δy < 0, α1 < C1 =⇒ ∂D(α1)
∂α1

< 0
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Therefore,

δy > 0 =⇒ αnew
1 = H1 = y1 = 1

δy < 0 =⇒ αnew
1 = L1 = y1 = −1

Case 2.2.b η∗ ≥ 0

(α1 − C1)2 =
1
η∗

(
δy

A
)2C3

α1 − C1 =

√
1
η∗

(
δy

A
)2C3

α1 = C1 ±
δy

A

√
C3

η∗

Therefore,

δy > 0 =⇒ αnew
1 = C1 +

δy

A

√
C3

η∗

δy < 0 =⇒ αnew
1 = C1 −

δy

A

√
C3

η∗

We can replace ±δy = 2y1 and get the table entry.

Appendix C. SOCP vs. QP Comparison

We compare the SOCP and QP formulations of SVM using a state of the art numerical
package (MOSEK) implementing interior point methods. We use synthetic data with an
RBF kernel for all rows in the table. Columns 4 and 6 in the table give the number of
iterations for each interior point method, columns 5 and 7 are the running time in seconds.
The accuracy and test error are the same for both forms and hence not shown.

Table 3: SOCP vs. QP

QP SOCP

# C A # iter time # iter time

200 137 50 12 0.05 14 0.34
200 5542 250 15 0.06 16 0.38
400 349 100 17 0.34 15 2.76
400 9315 400 17 0.35 17 3.18
800 2316 300 22 2.53 22 32.5
1600 2306 500 26 19.7 21 245
2500 11656 1000 30 78.4 30 1307
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