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[1] The estimation of effective soil hydraulic parameters and their uncertainties is a
critical step in all large-scale hydrologic and climatic model applications. Here a
scale-dependent (top-down) parameter estimation (inverse modeling) scheme called the
noisy Monte Carlo genetic algorithm (NMCGA) was developed and tested for estimating
these effective soil hydraulic parameters and their uncertainties. We tested our method
using three case studies involving a synthetic pixel (pure and mixed) where all modeling
conditions are known, and with actual airborne remote sensing (RS) footprints and a
satellite RS footprint. In the synthetic case studies under pure (one soil texture) and
mixed-pixel (multiple soil textures) conditions, NMCGA performed well in estimating
the effective soil hydraulic parameters even with pixel complexities contributed by
various soil types and land management practices (rain-fed/irrigated). With the airborne
and satellite remote sensing cases, NMCGA also performed well for estimating
effective soil hydraulic properties so that when applied in forward stochastic simulation
modeling it can mimic large-scale soil moisture dynamics. The results also suggest a
possible scaling down of the effective soil water retention curve q(h) at the larger satellite
remote sensing pixel compared with the airborne remote sensing pixel. However, it
did not generally imply that all effective soil hydraulic parameters should scale down like
the soil water retention curve. The reduction of the soil hydraulic parameters was
most profound in the saturated soil moisture content (qsat) as we relaxed progressively the
soil hydraulic parameter search spaces in our satellite remote sensing studies. Overall,
the NMCGA framework was found to be very promising in the inverse modeling of
remotely sensed near-surface soil moisture for estimating the effective soil
hydraulic parameters and their uncertainties at the remote sensing footprint/climate
model grid.

Citation: Ines, A. V. M., and B. P. Mohanty (2008), Parameter conditioning with a noisy Monte Carlo genetic algorithm for

estimating effective soil hydraulic properties from space, Water Resour. Res., 44, W08441, doi:10.1029/2007WR006125.

1. Introduction

[2] Many hydrologic and hydroclimatic models used the
soil water retention q(h) and hydraulic conductivity K(h)
functions for land-atmosphere interactions at the critical
zone of the Earth surface [Kabat et al., 1997; Brantley et
al., 2006]. The soil hydraulic functions, however, are based
on pore/point-scale concepts generally described by a set of
soil hydraulic parameters that are used to define the scale
and shape of the soil hydraulic functions [Brooks and Corey,
1966; Campbell, 1974; Mualem, 1976; Van Genuchten,
1980; Leij et al., 1999]. Thus when the soil hydraulic
functions are used to describe the average (soil) hydraulic
behavior of a climate model grid or a remote sensing (RS)

footprint, the estimation of the effective forms of the soil
hydraulic parameters is extremely important [Feddes et al.,
1993a; Wood, 1994; Vrugt et al., 2005]. The challenge is
apparent, i.e., how to account for the effects of scale and
heterogeneity of the study domain (e.g., at RS footprint/
climate model grid) into the derived effective soil hydraulic
parameters [Feddes et al., 1993b; Mohanty and Skaggs,
2001; Zhu and Mohanty, 2002, 2003, 2004].
[3] In the past several decades, the similar media scaling

of Miller and Miller [1956] had been widely used to
account for the effect of scale when the point-scale soil
hydraulic functions are used to describe the soil hydraulics
of larger hydrologic domains [e.g., Hopmans and Stricker,
1989; Clausnitzer et al., 1992; Bertuzzi and Brucker, 1996;
Rockhold et al., 1996; Jury et al., 1987; Van Dam et al.,
1997; Droogers and Bastiaanssen, 2002]. In similar media
scaling, a set of scaling factors is determined by relating the
characteristic lengths of the smaller-scale porous media
(from several point locations) with the characteristic length
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of the reference, geometrically equivalent, larger-scale po-
rous medium [Miller and Miller, 1956; Clausnitzer et al.,
1992]. The scaling factors are then used to upscale the
point-scale soil water pressure heads and hydraulic conduc-
tivities to the reference soil hydraulic functions, i.e., the
average soil hydraulic behavior of the reference porous
medium. Also, an alternative method called the power law
scaling had been proposed to upscale the point-scale soil
hydraulic properties [Korvin, 1982; Gomez-Hernandez and
Gorelick, 1989; Green et al., 1996]. With the power law
scaling, the point-scale soil hydraulic parameters are aggre-
gated into their average values using the most appropriate
averaging technique (i.e., arithmetic, harmonic, or geomet-
ric based on prevailing soil hydrologic conditions) to arrive
at the effective values of the soil hydraulic parameters [Zhu
and Mohanty, 2002, 2004, 2006]. For these scaling methods
to perform effectively, an extensive amount of site-specific
point-scale soil hydraulic data are required (as inputs),
therefore limiting their applications in hydroclimatic mod-
eling where such kinds of point-scale data are generally
scarce.
[4] Recent studies suggest that the inversion of the

average soil hydrologic variables, e.g., observed soil mois-
ture and surface fluxes from remote sensing (RS), could be
used to estimate the effective soil hydraulic parameters of
large-scale hydrologic domains [e.g., Ines and Mohanty,
2008a; Feddes et al., 1993a, 1993b; Burke et al., 1998;
Droogers and Bastiaanssen, 2002; see also A. V. M. Ines
and B. P. Mohanty, Near-surface soil moisture assimilation
for quantifying effective soil hydraulic properties using the
genetic algorithm: 2. With air-borne remote sensing during
SGP97 and SMEX02, submitted to Water Resources
Research, 2008]. In connection to this, several studies also
suggest that the average/aggregated soil hydrologic fluxes
in a coarse-resolution RS pixel could reflect the effects of
scale [Drusch et al., 1999; Zhu and Mohanty, 2002; Crow et
al., 2005] and heterogeneity of the spatial features contained
within the pixel [Shimabukuro and Smith, 1991; Feddes et
al., 1993a; Ines and Honda, 2005;Haertel and Shimabukuro,
2005; Chemin and Honda, 2006]. If this hypothesis is
true, then the derived effective soil hydraulic parameters
from the RS data inversion could somehow account for the
effects of both the scale and heterogeneity of the pixel/
footprint under study.
[5] In line with this, many efforts have been made to

study and understand the uncertainties of the effective soil
hydraulic parameters within the effective modeling domain.
Abbaspour et al. [1997] developed a sequential-uncertainty-
domain-parameter-fitting (SUFI) scheme that fits the soil
hydraulic parameters while sequentially threshing the un-
certainty domains (prior to posterior) of each parameter
considered. Subsequently, Abbaspour et al. [1999] intro-
duced the concept of parameter conditioning (as opposed to
parameter fitting) as a way of soil parameter estimation,
which they define as the identification of a parameter
domain so that when propagated in stochastic simulations,
all or most of the measured points (i.e., the soil hydrologic
variable) are within the 95% confidence interval (95PCI) of
the Bayesian distribution of that parameter. A. V. M. Ines
and B. P. Mohanty (submitted manuscript, 2008) also
applied an inverse modeling (IM)-based near-surface soil
moisture assimilation scheme to estimate the effective soil

hydraulic parameters (and their uncertainties) of selected
airborne remote sensing footprints/fields at Walnut Creek
watershed, Iowa (SMEX02) and Little Washita watershed,
Oklahoma (SGP97) [Bindlish, 2004; Jackson et al., 1999].
They developed a multipopulation ensemble genetic algo-
rithm (GA) for the RS near-surface soil moisture assimila-
tion and data inversion [Ines and Mohanty, 2008a, 2008b,
submitted manuscript, 2008]. Zhu and Mohanty [2002,
2003, 2004] also examined the variability statistics (i.e.,
first, second, and third moments) of the effective soil
hydraulic parameters (and scaling factors) at different hy-
drologic conditions based on the bottom-up approach (i.e.,
parameter aggregation from point to larger scale) for deter-
mining the effective soil hydraulic parameters. Among
others, these above mentioned studies recognized the im-
portance of parameter uncertainty analysis to reinforce
further the concept of effective soil hydraulic parameters
in defining large-scale hydrologic processes.
[6] Significant progress has been made in the develop-

ment of robust parameter estimation techniques in the forms
of evolutionary (e.g., genetic algorithm (GA) [Wang, 1991;
Ines and Droogers, 2002; Ines and Mohanty, 2008a, sub-
mitted manuscript, 2008] and Shuffled Complex Evolution-
University of Arizona (SCE-UA) [Duan et al., 1992],
among others) and Monte Carlo simulation techniques
(e.g., Markov chain Monte Carlo (MCMC) [Kuczera and
Parent, 1998; Bates and Campbell, 2001], Generalized
Likelihood Uncertainty Estimation (GLUE) [Beven and
Binley, 1992; Beven and Freer, 2001], and Shuffled Complex
Evolution Metropolis-University of Arizona/Amsterdam
(SCEM-UA) [Vrugt et al., 2003, 2005], among others).
A relatively new breed of genetic algorithms called the
noisy GAs (because they operate in noisy environment/
fitness function) had been also proposed for solving search
and optimization problems under uncertainty [Miller and
Goldberg, 1996; Miller, 1997]. The noisy GAs are generally
used in the search of optimal remediation designs (consid-
ering risks and uncertainties) for impaired aquifers/ground-
water systems [Smalley et al., 2000; Gopalakrishnan et al.,
2003; Wu et al., 2006]. Because of its built-in capacity to
estimate simultaneously the effective soil hydraulic param-
eters and their uncertainties, the noisy GA framework
appears to be more robust and useful for the IM-based
near-surface soil moisture assimilation problem [Ines and
Mohanty, 2008a, submitted manuscript, 2008].
[7] In this study, we developed a method based on noisy

GA for estimating the effective soil hydraulic parameters
(and their uncertainties) at the satellite RS footprint scale
and tested its performance using data from the Advanced
Microwave Scanning Radiometer (AMSR-E) sensor (on the
AQUA satellite) at a selected footprint in Iowa during the
Soil Moisture Experiment 2005 (SMEX05) field campaign.
The main assumption used in our scale-dependent parame-
ter estimation concept is based on the idea that the effective
forms of the soil hydraulic functions (at the RS footprint)
can be inferred by the effective soil hydraulic parameters
derived from large-scale RS soil moisture data inversion. In
this study, along with the noisy GA framework, we also
applied the concept of parameter conditioning [Abbaspour
et al., 1999], which assumes that the simulated soil mois-
tures should approximate and honor the observed RS
footprint soil moisture data if the derived effective soil
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hydraulic parameters and their uncertainties are propagated
in stochastic/Monte Carlo simulations. We also tested the
method using synthetic RS soil moisture data and actual
airborne RS soil moisture data.

2. Methods

2.1. Scaling the Soil Hydraulic Functions

[8] The basis of our soil hydraulic function scaling
hypothesis (i.e., the scale-dependent parameter estimation
concept) is depicted in Figure 1, which shows a conceptual
representation of the shape/form of the soil hydraulic
function q(h) at various spatial scales e.g., from scale 1 to
scale 2, from scale 2 to scale 3, and vice versa. Scale 1
represents a parcel of land (composed of point-scale infor-
mation), while scale 2 represents a larger parcel of land/
an airborne remote sensing (RS) footprint, e.g., polarimetric
scanned radiometer (PSR) [Bindlish, 2004], and scale 3
represents the satellite RS footprint, e.g., AMSR-E [Njoku
et al., 2003]. Scaling the soil hydraulic function from
scale 1 to scale 3 is commonly known as the bottom-up
approach [e.g., Zhu and Mohanty, 2002, 2003, 2004], while
scaling it down from scale 3 to scale 1 is the so-called top-
down approach [e.g., Ines and Mohanty, 2008a, submitted
manuscript, 2008]. If this hypothesis is valid, we can readily
develop some scaling relationships among the effective soil
hydraulic functions (here q(h)s), and hence the effective soil
hydraulic parameters, a scales (i.e., upscaling/down-

scaling). These (possible) scaling functions/factors across
scales could be determined if we can construct the effective
soil hydraulic functions at those particular scales (Figure 1)
using RS soil moisture data inversion by inverse modeling
(i.e., by determining the scale/domain-dependent effective
soil hydraulic parameters). This study will address the first
step of the process by developing the method to derive the
effective soil hydraulic parameters and their uncertainties at
the airborne and satellite RS footprints.

2.2. Noisy Monte Carlo Genetic Algorithm and
RS Data Inversion

[9] The main assumption used in the inverse modeling of
RS near-surface soil moisture data is that the RS data
contain (enough) information that can possibly describe
the effective (soil) hydrologic conditions of a pixel, such
that when inverted, it (i.e., the RS data) will provide a set of
soil hydraulic parameters representative of that pixel. In this
study, we developed a more general approach of a scale-
dependent parameter estimation concept (Figure 1) such that
both the effective soil hydraulic parameters and their
uncertainties could be determined simultaneously at a
remote sensing footprint/climate model grid.
[10] The soil-water-atmosphere-plant (SWAP) model

[Van Dam et al., 1997] as used in this study to model the
soil moisture dynamics in a pixel uses the local-scale
Mualem–van Genuchten constitutive models for defining
the soil hydraulic functions q(h) and K(h). Equations (1) and

Figure 1. Hypothetical behavior of the effective soil hydraulic properties at different scales; h, pressure
head (cm); q, soil moisture (cm3 cm�3).

W08441 INES AND MOHANTY: SCALING OF SOIL HYDRAULIC PROPERTIES

3 of 21

W08441



(2) describe the capability of a (particular) soil to retain,
store, and transmit water under prevailing environmental
conditions (i.e., inferred by pressure head h (�cm)),

Se ¼
q hð Þ � qres
qsat � qres

¼ 1

1þ jahjn
� �m

ð1Þ

K hð Þ ¼ KsatS
l
e 1� 1� S

1=m
e

� �mh i2
; ð2Þ

where Se( ) is the relative saturation, a (cm�1) is a shape
parameter equivalent to the inverse of the bubbling pressure,
n( ) is a shape parameter that accounts for the pore size
distribution, qres (cm

3 cm�3) and qsat (cm
3 cm�3) are scale

parameters that stand for the residual and saturated soil
moisture contents, Ksat (cm d�1) is another scale parameter
that represents the saturated hydraulic conductivity, and l( )
is a shape parameter that accounts for pore tortuosity in the
soil. On the average, l has a value of 0.5 [Mualem, 1976].
Van Genuchten [1980] proposed m to be equal to 1–1/n.
Hence the total set of soil hydraulic parameters in the
Mualem–van Genuchten equations that can be subjected for
parameter estimation by inversion of the one-dimensional
(1-D) vertical flow equation (i.e., Richards’ equation) in
the soil profile is given as k = {a, n, qres, qsat, Ksat, l}. Since
the shape parameter l can be fixed (i.e., l = 0.5) in the
implementation, A. V. M. Ines and B. P. Mohanty
(submitted manuscript, 2008) determined the set of effective
parameters p = {a, n, qres, qsat, Ksat} (hence k = {p, l}) for
each study pixel (airborne remote sensing footprint) in their
inverse analyses. In this study, the parameter set p was
transformed into parameter set p* = {a*, n*, qres*, qsat*,
Ksat*} (hence k = {p*, l}) to accommodate the uncertainty
terms (e.g., analogous to horizontal heterogeneity in a pixel)
of each parameter. The components of p* are defined
mathematically as

a* � N ma;s
2
a

� �
ð3Þ

n* � N mn;s
2
n

� �
ð4Þ

qres* � N mqres ;s
2
qres

� �
ð5Þ

qsat* � N mqsat ;s
2
qsat

� �
ð6Þ

Ksat* � N mKsat
;s2

Ksat

� �
; ð7Þ

where N ( ) represents the prior distribution assumed for
each soil hydraulic parameter; m( ) and s( ) are the first
moments (means) and second moments (standard devia-
tions) of the prior distributions proposed by genetic
algorithm (described below).
[11] Genetic algorithms are powerful search techniques

inspired by the mechanics of nature [Holland, 1975], and

they combine the survival of the fittest mechanism among
string structures (or chromosomes) with a structured yet
randomized information exchange to solve any search/
optimization problem [Goldberg, 1989; Michalewicz,
1996]. In a binary GA the search spaces of the unknown
parameters (e.g., the soil hydraulic parameters) are first
discretized into finite lengths and then coded as a set of
binary substrings to form a single string structure called a
chromosome [see Ines and Mohanty, 2008a]. The arrange-
ment of binary digits (i.e., 0s and 1s) in the chromosome
represents a possible combination of the unknown param-
eters, which could be a possible solution to the problem.
The search/optimization procedure starts by randomly gen-
erating a set of chromosomes (a population) to stage the
initial search of the search surface, and since several
chromosomes are included in a population, multiple starting
positions are explored at the start of the search process. The
chromosomes are then individually evaluated to determine
their suitability (fitness) based on a prescribed fitness
function (discussed later). Then they undergo the processes
of reproduction by which they compete for selection (based
on their fitness), crossover for genetic exchange resulting
new chromosomes (offspring), and mutation to recover
some genetic materials that were lost or diminished due to
genetic drift. The processes of selection, crossover, and
mutation are repeated for many generations until the best
possible solution is achieved, which is basically the fittest
chromosomes that have evolved after many generations.
More detailed descriptions of GAs are given by Goldberg
[1989].
[12] Noisy genetic algorithms (NGAs) are variants of

GA that operate on a noisy fitness, which means that the
chromosomes/decision variables are subjected to a stochas-
tic field for (fitness) evaluation [Miller, 1997; Miller and
Goldberg, 1996; Smalley et al., 2000; Gopalakrishnan et
al., 2003; Wu et al., 2006]. In NGA the predefined
parameter-field realizations are used as evaluation domains
for a chromosome (i.e., proposed solution). The apparent
fitness (per parameter field) of the chromosome are evaluated
and then aggregated to arrive at the so-called chromosome
‘‘sampling fitness,’’ which is used as a measure of the
suitability of that chromosome against the given sets of
parameter field. In this study, we extend the NGA frame-
work to be able to evaluate the stochastic soil hydraulic
parameters domains online using Monte Carlo simulations.
[13] Here we integrated a resampling algorithm [Efron,

1982] with GA for the Monte Carlo (MC) simulations of
parameter fields. This was used to sample the chromo-
some p* using the prior distributions of the effective soil
hydraulic parameters (assumed to be normal a priori). In
the newly integrated framework, a chromosome is eval-
uated as follows: First, GA proposes combinations of
parameter statistics, and then based on these statistics MC
dispenses realizations of parameter combinations. The
generated combinations of effective soil hydraulic param-
eters for all the realizations made in one resampling event
are used to evaluate the noisy fitness of the chromosomes
along the generations. In this study, a number of ensem-
bles or group of realizations (Figure 2b) was used to
simulate the so-called ‘‘sampling fitness’’ (discussed be-
low) of the stochastic chromosome p*. When the optimal/
near-optimal solution criterion is achieved, the statistics
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(first and second moments including posterior distributions)
of the effective soil hydraulic parameters derived from the
MC resampling are considered to be the final solutions of
the IM-based RS near-surface soil moisture assimilation
problem. In this study, we used the maximum number of

generations as our stopping criterion for all our noisy Monte
Carlo genetic algorithm (NMCGA) applications.
[14] The chromosomal representation of p* as used in this

study is given by {m(a),s(a),m(n), s(n),m(qres), s(qres),m(qsat),
m(qsat), s(qsat), m(Ksat), s(Ksat)}, whose binary representations

Figure 2. (a) Conceptual representation of simulated soil moisture using effective soil hydraulic
parameters estimated from parameter conditioning (e.g., noisy Monte Carlo genetic algorithm
(NMCGA)) showing the mean and spread of the simulated soil moistures approximately, and honoring
the observed soil moisture data. (b) Ensembles of simulated soil moistures (SM) as a function of time
(o, mean target values; traces, realizations of Sim(kr)).
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are given in Table 1. The objective function was
conceptually formulated as

Obj kð Þi¼ Min
1

T

XT
t¼1






 1

Nresample

XNresample

r¼1

Sim krð Þti

 !
� Obst







 !

8 i

ð8Þ

for the ith ensemble (Figure 2b). Note that kr means a set of
k combinations with r realizations, i.e., the combinations of
effective soil hydraulic parameters generated from MC
resampling; Nresample is the number of samples (realizations)
drawn from the each resampling; Sim(kr) stands for the
simulated soil moisture given k = {p*, l} at realization r;
Obs stands for the observed RS soil moisture data; and t is
the running index for time T. The optimization problem is
subject to

Constr kð Þti¼ Obst < PCIþ Sim krð Þð Þti
� �

AND

Obst > PCI� Sim krð Þð Þti
� �

8t where t 	 Tð Þ; 8i ð9Þ

where

PCIþ=� Sim krð Þð Þti¼
1

Nresample

XNresample

r¼1

Sim krð Þti þ =� PCIfactorð Þx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNresample

r¼1

Sim krð Þti�
1

Nresample

XNresample

r¼1

Sim krð Þti

 ! !2

Nresample � 1
� �

vuuuuut
8t where t 	 Tð Þ; 8i ð10Þ

where Constr(k) stands for the logical constraint and
PCIfactor indicates the confidence interval (i.e.,
PCIfactor = 1.96 at PCI+/� = 95%).
[15] Equation (9) suggests that the simulated soil moisture

MC spectrum (from the re ing of k) should honor the

observed soil moisture (from airborne/satellite RS) at pre-
scribed percent confidence interval (PCI) while the central
tendency of the former approximates the latter (equation (8))
as depicted in Figure 2a.
[16] The fitness function, which is used to measure the

suitability of p*, was defined using the modified-penalty
approach of Chan-Hilton and Culver [2000] and was
formulated as follows:

Z kð Þi¼ Obj kð Þi
� �

x 1þ Penalty kð Þi
� �

8i ð11Þ

fitness p*ð Þi¼
1

Z kð Þi
8i: ð12Þ

[17] Since kr is highly stochastic, the apparent (at that
instance) fitness (equation (12)) of a chromosome p*
(recall, k = {p*, l}) for each ensemble i is not guaranteed
to be similar for each (online) MC resampling event. By
virtue of the central limit theorem, we minimize this high
noise of the apparent fitness by calculating the so-called
sampling fitness (Sfitness(p*)), by averaging the apparent
fitness (equation (12)) of each ensemble i from the MC
resampling,

Sfitness p*ð Þ ¼ 1

R

XR
i¼1

fitness p*ð Þi; ð13Þ

where R is the total number of ensemble i used in the
chromosome evaluation (i.e., the number of MC resampling
events). Penalty(k) (equation (11)) was determined by
evaluating the right-hand side (RHS) of equation (9) if it is
true or false. If equation (9) is false, then

Penal kð Þji¼
XT
t¼1

ltj Obst � PCIj Sim krð Þð Þti
� �2 8i;

for j ¼ 1 PCIþð Þ; 2 PCI�ð Þ ð14Þ

Table 1. Representations of the Mualem–Van Genuchten Parameters in the Noisy Monte Carlo Genetic Algorithm (NMCGA)a

Parameter

Cases 1 and 2 Case 3a Case 3b Case 3c

Number of
Bits (L) 2L

Minimum
Values

Maximum
Values

Minimum
Values

Maximum
Values

Minimum
Values

Maximum
Values

Minimum
Values

Maximum
Values

GA Variables
m(a) (cm

�1) 0.006 0.033 0.006 0.033 0.006 0.033 0.006 0.1 5 32
s(a) (cm

�1) 0 0.033 0 0.033 0 0.033 0 0.1 5 32
m(n)( ) 1.2 1.61 1 1.61 1 1.8 1 1.8 6 64
s(n)( ) 0 0.8 0 1 0 1 0 1 6 64
m(qres) (cm

3 cm�3) 0.061 0.163 0.061 0.163 0.061 0.163 0.002 0.2 7 128
s(qres) (cm

3 cm�3) 0 0.02 0 0.3 0 0.3 0 0.3 7 128
m(qsat) (cm

3 cm�3) 0.37 0.55 0.37 0.55 0.37 0.55 0.28 0.55 5 32
s(qsat) (cm

3 cm�3) 0 0.2 0 0.3 0 0.3 0 0.3 5 32
m(Ksat) (cm d�1) 1.84 55.7 1.84 55.7 2 60 1 60 10 1024
s(Ksat) (cm d�1) 0 10 0 20 0 20 0 20 10 1024

MC Variables
a (cm�1) 0.006 0.033 0.0001 1 0.0001 1 0.0001 1
n( ) 1.2 1.61 1 1.95 1 1.95 1 1.95

qres (cm
3 cm�3) 0.061 0.163 0.001 0.25 0.001 0.25 0.001 0.25

qsat (cm
3 cm�3) 0.37 0.55 0.28 0.6 0.28 0.6 0.28 0.6

Ksat (cm d�1) 1.84 55.7 1 80 1 80 1 80

aGlobal search space = 32 
 32 
 64 
 64 
 128 
 128 
 32 
 32 
 1024 
 1024 = 7.3787E + 19. Example of p* = {ma, sa, mn, sn, mqres, sqres, mqsat,
sqsat, mKsat, sKsat}; say, p* = {00101,00101,110010,110010,0001111,0001111,00001,00001,0101000101,0101000101}.

6 of 21

W08441 INES AND MOHANTY: SCALING OF SOIL HYDRAULIC PROPERTIES W08441



where the penalty coefficient

ltj ¼
10; if the RHS of 9ð Þ is false
0; otherwise

�
8j; 8t ð15Þ

[18] Then

Penalty kð Þi¼
X2
j¼1

Penal kð Þji 8 i ð16Þ

Figure 3. Synthetic rain-fed soil moistures generated for (b) wet, (d) relatively wet, and (f) dry year
conditions used in the numerical experiments; (a) wet year seasonal rainfall, (c) relatively wet year
seasonal rainfall, and (e) dry year seasonal rainfall in Lubbock, Texas. Pure pixels: SL, sandy loam; SiL,
silt loam; CL, clay loam. Mixed pixel condition: SL,SiL,CL (0.33SL + 0.33SiL + 0.33CL).
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[19] We implemented the above concepts for the IM-based
near-surface soil moisture assimilation problem and extended
the modified-microGA framework [Ines and Droogers,
2002; Ines and Honda, 2005; Ines and Mohanty, 2008a]
(see also http://www.cuaerospace.com/carroll/ga.html). The
new framework is called the noisy Monte Carlo genetic
algorithm (NMCGA).

2.3. Case Studies

[20] In this study, three major case studies were conducted
to test the newly developed NMCGA including case 1, a
numerical evaluation that involved solving the effective soil
hydraulic parameters (and uncertainties) in a synthetic
remote sensing (RS) pixel with one (pure) or more (mixed)
soil textures (Figure 3); case 2, involving the use of an
airborne RS soil moisture data as conditioning criteria; and
case 3, involving the use of satellite RS soil moisture data in
the inverse analysis.
2.3.1. Numerical Evaluations
[21] Using forward (SWAP) simulations, we generated

hypothetical near-surface (�0–1 cm) soil moisture data for
three pure pixels containing sandy loam (SL), silt loam
(SiL), and clay loam (CL) soils for wet, relatively wet,
and dry years under rain-fed and irrigated conditions
(Figures 3a–3c, Figure 4d). The mean soil hydraulic
parameters for each soil type were taken from the UNSODA
database [Leij et al., 1999]. From the generated soil moisture
signatures we also derived mixed soil moisture signatures
for mixed pixel conditions depending on the area fractions
of soil types contained within a pixel (Figures 3a–3c,
Figure 4d). In each pixel considered, the soil depth was
assumed to be 200 cm with wheat (Triticum aestivum) as
land cover. Under irrigated conditions, irrigation was made
automatically by SWAP according to an irrigation schedul-

ing criterion based on the water stress level allowed to the
crops (Figures 4a–4c). If this water stress level (1�Tact/Tpot)
exceeds the given threshold (here we used Tact/Tpot � 0.70),
SWAP applies 100 mm of water via a surface irrigation,
where Tpot and Tact stand for potential and actual
transpiration. On conditions where oxygen (O2) stress
occurs due to soil over saturation, the model does not
apply irrigation (Figure 4c) (note, however, that the unusual
irrigation scheduling observed in the clay loam soil is due to
the consequence or weakness of the automatic irrigation
approach in SWAP). All the SWAP simulations were made
across the crop growing season in Lubbock, Texas, from
1 March to 31 July (days of year (DOY) 60–212). The soil
units were assumed to have free-draining bottom boundaries
with wet initial conditions (h(z,t = 0) = �100 cm).
[22] In the NMCGA testing, the first scenario (case 1a)

involved a pure pixel case (here we analyzed only the wet-
year condition) where the effective soil hydraulic parameters
and their uncertainties were estimated for each of the con-
sidered soil types using the simulated soil moisture signatures
as conditioning data, under rain-fed and irrigated conditions
(Figure 3a, Figure 4d). The second scenario (case 1b) is a
mixed-pixel case where the mixed soil moisture signatures
(Figures 3a–3c, Figure 4d) for each mixed pixel considered
were used as conditioning data to estimate the effective soil
hydraulic parameters (and their uncertainties), also under
rain-fed and irrigated conditions. These numerical experi-
ments were performed to test the effectiveness of the
NMCGA under idealized conditions.
2.3.2. Using Remote Sensing Soil Moisture
[23] For the airborne remote sensing test (case 2), 10

(temporal) polarimetric scanned radiometer (PSR) soil mois-
ture data sets [Bindlish, 2004] from the SMEX02 region
(Figure 5) were used for our analysis (http://nsidc.org/). The

Figure 3. (continued)
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PSR-based soil moisture data have 800 m 
 800 m
footprint/pixel resolution. The simulation soil units were
assumed to be 2 m deep with corn as the dominant crop for
fields WC11 and WC12, and soybean for fields WC13 and
WC14 (Figure 5a). At this resolution, variable water table
depths of 200, 150, and 100 cm were used as bottom
boundary conditions. The soil units were initialized in
equilibrium with the three water table depth scenarios. At
the end of the NMCGA runs, the solutions from all three
water table depth scenarios were collected to form the final
solutions of the airborne-RS IM problem (A. V. M. Ines and
B. P. Mohanty, submitte uscript, 2008).

[24] In case 3, NMCGA was tested on 1-year time series
of Aqua satellite-borne AMSR-E soil moisture data (�25 km
resolution) encompassing the Walnut Creek watershed
during the SMEX05 campaign (Figure 5b, Figure 6b)
(http://nsidc.org/). At this resolution, satellite-based vege-
tation and precipitation data, e.g., Moderate Resolution
Imaging Spectroradiometer leaf area index (MODIS-LAI)
and Tropical Rainfall Measuring Mission (TRMM) precip-
itation data (Figures 6a and 6b) were used as SWAP model
inputs (http://disc.sci.gsfc.nasa.gov/). These data were
aggregated and resampled based on AMSR-E resolution.
The other meteorological data including daily maximum

Figure 4. Sample target mean irrigation scheduling and relative transpiration used in the numerical
experiments, for pure pixel (a) sandy loam (SL), (b) silt loam (SiL), and (c) clay loam (CL) soils under
wet year condition, and (d) the corresponding generated synthetic irrigated soil moisture data used in IM
including data for a mixed-pixel condition (SL, SiL, CL).
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and minimum temperatures, solar radiation, wind speed, and
air humidity were collected from the nearby SCAN weather
station at Ames, Iowa (http://www.wcc.nrcs.usda.gov/).
The SCAN site is situated within the AMSR-E pixel under
study and about 5 km northwest of WC11 field (we used

the same meteorological data in our modeling studies at
WC fields).
[25] Three scenarios were evaluated when using satellite-

borne AMSR-E soil moisture data for determining the
effective soil hydraulic parameters and their uncertainties.

Figure 5. (a) Locations of the selected Walnut Creek watershed (WC) fields, Iowa, used for the airborne
RS (PSR) analysis. (b) Inset of an AMSR-E pixel selected for the satellite RS analysis.

Figure 6. Time series (year 2005) of (a) MODIS-LAI and (b) TRMM-precipitation and AMSR-E near-
surface soil moist � 0–1 cm) used in the IM-based near-surface soil moisture assimilation.
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These scenarios involved restricted/local-scale (case 3a),
relatively relaxed (case 3b), and very relaxed (case 3c)
soil hydraulic parameter statistics search spaces for all
Mualem–van Genuchten parameters in p* (Table 1).
Cases 3b and 3c are attempts to define the appropriate
parameter value ranges of the so-called large-scale effective
soil hydraulic properties. All the simulations were conducted
in a 25 km 
 25 km grid with an assumed soil depth of
400 cm and an assumed regional average seasonal ground-
water table depth of 350 cm. The large-scale crop param-
eters were deduced from the resampled LAI data of MODIS
(Figure 6a).
[26] In summary, there were three major case studies

performed to evaluate the performance of the NMCGA:
case 1, using synthetic soil moisture under homogenous
soils (case 1a) and heterogeneous soils (case 1b); case 2,

using airborne remote sensing soil moisture; and case 3,
using satellite remote sensing soil moisture.

3. Results and Discussions

3.1. Case 1a: Homogeneous Soil (Pure Pixel)

[27] A pure pixel scenario (with unique soil and land
cover) was examined for the inverse modeling of near-
surface soil moisture (section 2.3.1). Although the analysis
was conducted under rain-fed and irrigated conditions, the
case study was straightforward for NMCGA as there were
no other complexities introduced into the synthetic RS
pixel. In this scenario, the time series of the ‘‘target’’ near-
surface (z = 0–1 cm) soil moisture data (Figures 3a–3c,
Figure 4d) generated by SWAP using the ‘‘true’’ values of
the effective soil hydraulic parameters (from the UNSODA

Table 2. Summary of Performance (R( ) and MBE (cm3 cm�3)) of the NMCGA in Replicating the Target Near-Surface (z = 0–1 cm)

Soil Moisture for the Hypothetical RS Pixelsa

Soils

Irrigated Condition Rain-Fed Condition

Target Versus NMCGA Target Versus Weighted Target Versus NMCGA Target Versus Weighted

R MBE R MBE R MBE R MBE

Case 1a (Pure Pixel, Wet Year)
SL 0.716 0.005 0.995 �0.001
SiL 0.876 0.007 0.999 0.003
CL 0.999 0.001 0.999 0.003

Case 1b (Mixed Pixel, Wet Year)
SL,SiL,CL 0.816 �0.003 0.640 �0.015 0.996 0.004 0.992 �0.010

Case 1b (Mixed Pixel, Relatively Wet Year)
SL,SiL,CL 0.873 0.009 0.601 �0.016 0.988 0.000 0.975 �0.003

Case 1b (Mixed Pixel, Dry Year)
SL,SiL,CL 0.813 0.013 0.468 �0.024 0.983 �0.004 0.969 �0.013

aSL, sandy loam; SiL, Silt loam; CL, clay loam; SL,SiL,CL, 0.33SL, 0.33SiL, 0.33CL; Target, base scenario; Weighted, simulations using weighted
average of a, n, qres, qsat, Ksat based on area fractions of soils in the mixed-pixel; NMCGA, simulations using NMCGA-derived soil hydraulic parameters;
MBE, mean bias error (cm3 cm�3); R, correlation coefficient ( ).

Table 3a. Solutions of the Noisy Monte Carlo Genetic Algorithm to Case 1a Under Wet Year Conditiona

Soils Parameters Targetb

Irrigated Condition Rain-Fed Condition

Mean SD Sample Fitness Mean SD Sample Fitness

SL a 0.021 0.029 0.002 0.027 0.002
n 1.61 1.600 0.008 1.603 0.000
qres 0.067 0.068 0.004 0.068 0.002
qsat 0.37 0.370 0.000 0.375 0.004
Ksat 41.60 28.926 2.917 116.84 43.191 7.027 330.61

SiL a 0.012 0.018 0.004 0.013 0.000
n 1.39 1.382 0.000 1.413 0.126
qres 0.061 0.072 0.001 0.061 0.000
qsat 0.43 0.445 0.000 0.451 0.047
Ksat 30.50 36.113 0.046 51.59 50.824 2.718 222.80

CL a 0.03 0.027 0.004 0.032 0.000
n 1.37 1.375 0.122 1.420 0.114
qres 0.129 0.121 0.002 0.133 0.001
qsat 0.47 0.475 0.000 0.497 0.034
Ksat 1.84 1.955 0.079 261.05 2.545 0.318 251.32

aHere maxgen (maximum number of generations) = 30; npop (number of chromosomes in a generation) = 10; nensemble (number of ensembles used) =
3; nresample (how many simulations/realizations are made for each one ensemble) = 30 per ensemble. In this example, there are three function calls
(nensemble) per chromosome evaluation. Target, target parameter values; SL, sandy loam; SiL, Silt loam; CL, clay loam; a (cm �1); n( ); qres (cm

3 cm�3);

qsat (cm
3 cm�3); Ksat (cm d�1). Sampling fitness is derived from equation (13).

bUNSODA database [Leij et al., 1999].
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database [Leij et al., 1999]) were used to condition the
stochastic chromosome p* (section 2.2) during the
parameter estimation.
[28] Table 2 shows a summary of the performance of the

effective soil hydraulic parameters (Tables 3a and 3b) de-
rived by NMCGA for the pure pixel (case 1a) and mixed-
pixel experiments (case 1b). Apparently, for the pure pixel
case, clay loam soil was almost matched perfectly under both
the irrigated and rain-fed conditions with very little mean
bias errors (Table 2, Figures 7a and 7b). This result corrob-
orates the findings of Ines and Mohanty [2008a] suggesting
that clay loam soils can be easily identifiable by inverse
modeling using genetic algorithms (Figures 7c and 7d). In
contrast, the results for sandy loam and silt loam under
irrigated condition were found to be more inferior to that of
clay loam soil. Under the rain-fed condition, however, the
sandy loam and silt loam results were exceptionally better
than that of the irrigated condition (Table 2). The reductions
in correlations (R) under the irrigated condition in the case
of sandy loam and silt loam were largely attributed to the
variability of irrigation scheduling/timing made by SWAP
for various combinations of the effective soil hydraulic
parameters generated during Monte Carlo (MC) resampling.
On the basis of our observations, we further suggest that the
underestimation or overestimation of the effective Ksat

values for sandy loam/silt loam (i.e., including a and qres in
silt loam soil) in the irrigated condition (Table 3a) had the
most profound effect in correlation reductions and could
affect to the proper simulation of fluxes in the subsurface. In
the SWAP forward simulations, we used a dynamic
irrigation scheduling criterion based on the allowable crop
water stress which is very sensitive to the individual
combinations of {a, n, qres, qsat, Ksat, l} even if these
parameter combinations are within the bounds of a specific
soil textural class. Obviously, this compounding effect is not
evident in the rain-fed condition as there are no irrigation
activities conducted in thi (Figure 7b).

[29] Overall, the NMCGA effective parameter estimation
scheme worked exceptionally well for case 1a (Table 3a)
considering that the maximum number of generations was
only 30 as compared with a similar performance for 500
generations used by Ines and Mohanty [2008a] using the
modified-microGA. Most of the effective soil hydraulic
parameters were estimated well (Table 3a) including their
uncertainties stipulated by the simulated/estimated q(z,t),
q(h), and K(h) (Figure 7) signifying the robustness of the
NMCGA for the inverse modeling of near-surface soil
moisture under the pure pixel scenario both irrigated and
rain-fed conditions.

3.2. Case 1b: Heterogeneous Soil (Mixed Pixel)

[30] The case of a mixed-pixel (i.e., multiple soils with
unique land cover) under two different water management
practices (irrigated versus rain-fed) was examined to test
further the robustness of the newly developed NMCGA in
parameter conditioning. In this case, the ‘‘target’’ soil mois-
ture signatures were derived by aggregating the generated
soil moisture for different soils in case 1a (Figures 3a–3c,
Figure 4d) based on their area fractions contained within the
mixed pixel. We conducted several mixed-pixel experi-
ments comprising different soil textural combinations (in
terms of area fractions).
[31] We compare the performance of the NMCGA-

derived parameters and by simple weighted averaging to
represent the effective values in the pixel (Table 2). The
term ‘‘weighted’’ indicates a simulation wherein the effec-
tive soil hydraulic parameters were derived from the weight-
ed averages of the hydraulic parameters of soils (from
UNSODA) contained within the pixel. This comparison
was made to test the veracity of the common practice in
hydrologic/climatic modeling of averaging soil hydraulic
parameters to account for heterogeneity of soils encom-
passed in a RS pixel or climate model grid relative to
stochastic inverse parameter estimation. In this paper, we

Table 3b. Solutions of the Noisy Monte Carlo Genetic Algorithm to Case 1b Under Wet, Relatively Wet, and Dry Year Conditionsa

Soils Parameters Weightedb

Irrigated Condition Rain-Fed Condition

Mean SD Sample Fitness Mean SD Sample Fitness

Wet Year
SL,SiL,CL a 0.021 0.020 0.007 0.028 0.001

n 1.457 1.512 0.074 1.404 0.117
qres 0.086 0.082 0.004 0.082 0.009
qsat 0.423 0.452 0.049 0.459 0.050
Ksat 24.65 29.348 4.901 33.33 37.979 8.509 224.76

Relatively Wet Year
SL,SiL,CL a 0.021 0.019 0.007 0.031 0.001

n 1.457 1.402 0.122 1.427 0.123
qres 0.086 0.075 0.004 0.085 0.014
qsat 0.423 0.451 0.007 0.449 0.051
Ksat 24.65 30.734 3.625 38.75 37.554 7.471 144.87

Dry Year
SL,SiL,CL a 0.021 0.019 0.008 0.023 0.006

n 1.457 1.547 0.014 1.470 0.093
qres 0.086 0.103 0.015 0.084 0.009
qsat 0.423 0.532 0.007 0.460 0.043
Ksat 24.65 51.840 2.648 37.13 28.814 3.874 122.35

aHere maxgen = 30; npop = 10; nensemble = 3; nresample = 30 per ensemble. In this example, there are three function calls (nensemble) per
chromosome evaluation.

bWeighted, weighted average parameter values based on area fractions of soils in the mixed-pixel.
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present only the results of the simplest case wherein the
three soils considered, sandy loam (SL), silt loam (SiL), and
clay loam (CL), have equal area fractions in the pixel.
Results showed that un in-fed conditions the Monte

Carlo simulations performed only slightly better than sim-
ulations using weighted averaging of the soil hydraulic
parameters in replicating the ‘‘target’’ mixed soil moisture
signature (Table 2, Figure 8b). This result suggests that if

Figure 7. Sample NMCGA solutions (under wet year condition) for q(z,t) (top two panels) and effective
q(h) (bottom left panel) and K(h) (bottom right panel) from MC simulations (posterior) for a pure pixel (a
and c) irrigated sandy loam (SL) and (b and d) rain-fed SL. Target, target curve; NMCGA, estimated
curve by NMCGA.
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Figure 8. NMCGA solutions for q(z,t) (top two panels) and effective q(h) (bottom left panel) and K(h)
(bottom right panel) from MC simulations (posterior) for a mixed-pixel under wet year condition (a and
c) irrigated SL,SiL,CL and (b and d) rain-fed SL,SiL,CL. Target, target curve; NMCGA, estimated by
NMCGA; weighted, derived using the weighted average of the soil hydraulic parameters in the
mixed-pixel.
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the only source of heterogeneity in the pixel is the soil
textural distribution, defining the effective parameters by
weighted averaging is perhaps adequate; however, this is
seldom the case in reality in which variability of land
management practices within the pixel is prevalent. Never-
theless, there is an unprecedented advantage of using
ensemble simulations even at this very simple modeling
environment, aside from relatively higher R and lower mean
bias error (MBE) values of the simulated soil moistures,
their uncertainties are also estimated, which are not pro-
duced by using weighted averaging of parameters alone
(Figure 8b).
[32] Furthermore, the robustness of the NMCGA in

parameter conditioning is evident when the complexity
within the pixel increases due to variability of land man-
agement practices and soil type distribution (irrigated con-
ditions). With NMCGA, the R of simulated soil moistures
remained higher with lower MBE values compared with the
simulation results by simple parameter averaging (Table 2,
Figure 8a). Table 3b shows the summary of the derived
effective soil hydraulic parameters under mixed-pixel con-
ditions (Figures 8c and 8d).

3.3. Case 2: Using Airborne Remote Sensing
(Polarimetric Scanned Radiometer) Soil Moisture Data

[33] For the real-world scenario, airborne remote sensing
soil moisture data were used to evaluate further the perfor-
mance of the NMCGA in estimating the effective soil
hydraulic parameters and its uncertainties. Here we used
PSR soil moisture data (see section 2.3.2) measured during
the SMEX02 hydrology campaign as criteria for condition-
ing the effective soil hydraulic parameters p* of the selected
airborne RS footprints (WC11, WC12, WC13, and WC14)
at Walnut Creek watershed in Iowa (Figure 5a). Since the
inverse modeling was also aimed at comparing the perfor-
mance of the new NMCGA approach with our earlier
implementation of the Dassim approach (near-surface soil
moisture assimilation using the multipopulated, ensemble-
based modified-microGA) (A. V. M. Ines and B. P.
Mohanty, submitted manuscript, 2008), the same combina-
tions of the initial and boundary conditions were applied in
the current study. Table 4 presents the statistics of derived
effective soil hydraulic parameters using the NMCGA
scheme for the four airborne RS footprints.
[34] The NMCGA and Dassim schemes performed well

in estimating the effective soil hydraulic parameters of the
selected airborne RS footprints (Table 5). The NMCGA,
however, appears to explore the parameter search spaces
more efficiently because at only 30 generations it provided
estimates of the effective and K(h) (Figure 10, Table 4)

that honored and respected well the observed (airborne RS
and in situ) soil moisture data when propagated in stochastic
simulations (Figure 9). The in situ data were collected using
theta probe measurements across the transects within the
WC fields (see Figure 5a) during SMEX02. Relative to the
Dassim scheme, the NMCGA slightly improved the MBE
of the mean simulated soil moisture and the observed
airborne-RS soil moisture data (Table 5). However, no
apparent improvements in correlations (R) were observed.
Also, only slight improvements were observed in matching
the areal average in situ soil moisture data (Table 5).
[35] Furthermore, the NMCGA better captured the mea-

sured average soil hydrologic property of the selected
airborne-RS footprints (B. P. Mohanty, Soil hydraulic prop-
erties of SGP97 and SMEX02 experimental sites, unpub-
lished data, 2006) than by only averaging the hydraulic
parameters (from UNSODA) of soils dominant in the pixel
(Figure 10). This is interesting to note because it highlights
the importance of using actual field data for estimating the
effective soil hydraulic properties of larger hydrologic
domains. In addition, it further supports the utility of
regional inverse modeling for soil hydraulic parameter
estimation at the footprint scale.

3.4. Case 3: Using Satellite-Borne AMSR-E Soil
Moisture Data

[36] The noisy Monte Carlo genetic algorithm was eval-
uated using AQUA-AMSR-E soil moisture data as condi-

Table 4. NMCGA-Derived Effective Soil Hydraulic Parameters and Their Uncertainties in Selected Airborne-PSR Remote Sensing

Footprints at Walnut Creek (WC) Watershed, Iowa

WC Sites Statistics a (cm �1) n ( ) qres (cm
3 cm�3) qsat (cm

3 cm�3) Ksat (cm d�1)

WC11 mean 0.030 1.478 0.100 0.370 34.716
SD 0.004 0.116 0.016 0.000 5.505

WC12 mean 0.026 1.566 0.093 0.372 43.705
SD 0.005 0.027 0.030 0.003 9.916

WC13 mean 0.026 1.563 0.089 0.370 49.140
SD 0.005 0.040 0.032 0.000 4.788

WC14 mean 0.023 1.580 0.072 0.370 45.969
SD 0.007 0.026 0.008 0.000 8.742

Table 5. Performance (R( ) and MBE (cm3 cm�3)) of the NMCGA

(as Compared With Dassim) in Replicating the Target Near-Surface

(z = 0–5 cm) Soil Moisture of Selected Airborne-PSR Remote

Sensing Footprints at Walnut Creek Watershed, Iowaa

WC Sites

NMCGA Dassim

Simulated
Versus PSR

Simulated
Versus
Ground

Simulated
Versus PSR

Simulated
Versus
Ground

R MBE R MBE R MBE R MBE

WC11 0.79 0.003 0.98 �0.012 0.80 0.005 0.97 �0.008
WC12 0.76 0.007 0.93 0.081 0.77 0.012 0.92 0.093
WC13 0.76 0.021 0.93 0.002 0.76 0.019 0.93 0.001
WC14 0.75 0.013 0.90 0.021 0.75 0.019 0.89 0.029

aNMCGA, noisy Monte Carlo genetic algorithm; Dassim, multipopu-
lated, ensemble-based modified microGA [Ines and Mohanty, 2008a,
2008b]; Simulated, simulated mean soil moisture using NMCGA/Dassim-
derived parameters; PSR, observed soil moisture from polarimetric
scanning radiometer; Ground, regional in situ soil moisture data.
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tioning criteria for estimating the effective soil hydraulic
parameters p* at the satellite RS footprint over the Walnut
Creek watershed in Iowa (Figure 6b) during the SMEX05
hydrology campaign. As discussed before, the entire
SWAP model input data and meteorological forcings used
here were assumed to be regional in nature, e.g., MODIS-
LAI, TRMM-precipitation, AMSR-E soil moisture, etc.
(Figures 6a and 6b). Note that the TRMM precipitation
data were used as is (i.e., no filtering done) in the applica-
tion, and its correspondence with AMSR-E soil moisture
was not evaluated or cross checked beforehand to ultimately
test TRMM’s suitability as a source of rainfall data for
large-scale hydroclimatic modeling. Obviously, more cross
validation of TRMM and AMSR-E relationships should be
done before any other applications beyond experimental
purposes.
[37] Figure 11 summarizes the results of the NMCGA con-

sidering the scenarios 3a, 3b, and 3c (Table 1; section 2.3.2).
Case 3a assumes that the soil hydraulic parameters from
UNSODA are effective at the point or local scale. It is
evident from Figure 11a that the NMCGA attempted to scale
down the qsat to better match the AMSR-E soil moisture data
(Figure 12a). However, the restricted GA parameter spaces
(Table 1) did not allow the NMCGA to further improve
the matching of the SWAP simulated soil moisture with
AMSR-E data. For comparison, the texture-based q(h) and
K(h) of clay loam from UNSODA and actual point-scale
soil hydraulic properties derived from WC11 field [see Ines
and Mohanty, 2008b] were superimposed on the NMCGA-
estimated effective hydra nctions in Figure 11. It is

observed that except for UNSODA, the point-scale-derived
soil hydraulic parameters correspond well with the
NMCGA results constrained on known point-scale value
ranges of the soil hydraulic parameters (Figure 11a).
However, these effective soil hydraulic parameters did not
match well the soil moisture data between DOY 41 and 81
(Figure 12a). As an attempt to define the appropriate
parameter domain for large-scale soil hydraulic parameters,
we slightly relaxed the statistical properties of the
parameters n and Ksat (case 3b, Table 1) and found some
improvements in matching AMSR-E and simulated large-
scale soil moisture (Figure 12b). The spread of the effective
q(h) curve at the drier end became more prominent due to
the more flexible/variable n parameter values (Table 6).
Finally, by relaxing fully all of the effective soil hydraulic
parameter statistics (case 3c, Table 1), a slightly better fit of
the AMSR-E soil moisture data (Figure 12c, Table 7) was
observed than the results for cases 3a and 3b (compare
DOY 41–81; Figure 12). Figure 11c suggests that the scale
parameter qsat needed to be rescaled to its minimum possible
value in order to match better (on the average) the large-
scale AMSR-E soil moisture data (Figure 12c). Interesting
to note is that the effective soil hydraulic function scaling
hypothesis postulated in Figure 1 (mean values reduce with
increasing support) appears to manifest in the AMSR-E
results (compare Figures 11a, 11b, and 11c), although
further study is required to fully test its validity.
[38] Table 6 also shows the corresponding values of the

effective soil hydraulic parameters and their uncertainties by
NMCGA for the three cases (3a, 3b, and 3c). Although

Figure 9. NMCGA solutions for q(z,t) from MC simulations (posterior) for selected Walnut Creek
watershed fields (a) WC11, (b) WC12, (c) WC13, and (d) WC14.

16 of 21

W08441 INES AND MOHANTY: SCALING OF SOIL HYDRAULIC PROPERTIES W08441



Figure 11 showed the progressive reduction tendency of the
effective soil water retention function q(h), it was not true
for all the constituent parameters. The shape parameter a
tends to increase its mean value with an increasing spread/
standard deviation. A similar pattern was also observed with
the other shape parameter n. The scale parameters qres, qsat,
and Ksat showed mixed results. The scaling down effect due
to process and scale aggregations within the AMSR E soil
moisture data is most profound in the scale parameter qsat
(Figures 11c and 12c). The reduction of Ksat from case 3a to
case 3c was also observed, although this reduction was not
as major as of the qsat, suggesting that scale parameter Ksat

may not be sensitive any further at this spatial scale (compare
Figure 11a with 11c). The parameter qres had mixed results;
its mean value did not show increasing or decreasing trend
across cases 3a–3c, whereas its spread appeared to increase
as the effective parameter statistical properties were relaxed
progressively in the solutions (Table 1). This result suggests
that the definition of the point-scale data range as used in
the scale parameter qres was enough to describe the driest
event in the time serie MSR-E soil moisture data

(Figure 6b, Figure 12). The correlations of the simulated
large-scale soil moisture and AMSR-E soil moisture,
however, remained small due to the significant mismatch
between TRMM rainfall pattern and the AMSR-E soil
moisture data. Because of this mismatch in rainfall and
AMSR-E soil moisture, SWAP was not able to simulate
properly the drydown from DOY 261–300, affecting the
correlation between the simulated and observed RS soil
moisture data. Table 7 suggests that by relaxing the GA
search spaces to the maximum possible soil hydraulic
parameter ranges (Table 1), it could further improve the
mean absolute errors (which may be associated in part to
scale) of the simulated and observed near-surface soil
moistures.

4. Concluding Remarks

[39] In this paper, we developed and tested a scale-
dependent parameter estimation scheme, noisy Monte Carlo
genetic algorithm (NMCGA), based on the concept of
parameter conditioning and the framework of noisy genetic

Figure 10. NMCGA solutions for effective q(h) from MC simulations (posterior) for selected Walnut
Creek watershed fields (a) WC11, (b) WC12, (c) WC13, and (d) WC14.
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algorithms. First, we tested the NMCGA with hypothetical
remote sensing (RS) pixels under pure or mixed soil and
land cover conditions. The NMCGA performed well in both
homogeneous and heterogeneous pixel conditions. Even
with the complexities introduced into the pixel due to
variability of simulated land management practices under
the mixed-pixel scenarios, the NMCGA gave better results
than that of the weight eraging of soil hydraulic

parameters for describing the effective (soil hydraulic)
parameters and their uncertainties. The NMCGAwas tested
further using airborne RS soil moisture data as conditioning
criteria for the inverse analysis and was compared with the
previous implementation of Dassim [Ines and Mohanty,
2008a, submitted manuscript, 2008] in the same study area
(Walnut Creek watershed, Iowa). The results showed that
the NMCGA explored the parameter search spaces more

Figure 11. NMCGA solutions for effective q(h) and effective K(h) from MC simulations (posterior) for
AMSR-E pixel at Walnut Creek watershed, Iowa: (a) case 3a, (b) case 3b, and (c) case 3c scenarios.
UNSODA indicates texture-based clay loam; NS, EW, and SCAN sites are derived point scale soil
hydraulic properties from the AMSR-E footprint (at WC11 field; see Ines and Mohanty [2008b]).
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efficiently (at a lower number of generations) but performed
comparably with Dassim in estimating the effective soil
hydraulic functions of the selected airborne RS footprints.
Last, we tested the NMCGA using soil moisture data from
the Aqua AMSR-E satellite. We found that fully relaxing
the search spaces of the effective parameter statistics
beyond the known point-scale value ranges resulted in a
better matching between the simulated soil moisture and

observed AMSR-E soil moisture data. As we relaxed the
search parameter statistics range progressively (Table 1), the
validity of the postulated effective soil hydraulic function
scaling hypothesis (concept depicted in Figure 1) was
observed (Figure 11). The scaling effect was most profound
for qsat among other Mualem–van Genuchten soil hydraulic
parameters.

Figure 12. NMCGA solutions for q(z,t) from MC simulations (posterior) for AMSR-E pixel at Walnut
Creek watershed, Iowa: (a) case 3a, (b) case 3b, and (c) case 3c scenarios.

Table 6. Derived Effective Soil Hydraulic Parameters and Their Uncertainties of the Selected AMSR-E Footprint at Walnut Creek

Watershed, Iowaa

AMSR-E
Case Studies Statistics a (cm �1) n ( ) qres (cm3 cm�3) qsat (cm3 cm�3) Ksat (cm d�1)

Case 3a mean 0.036 1.600 0.127 0.370 54.978
SD 0.019 0.000 0.017 0.019 7.440

Case 3b mean 0.041 1.747 0.117 0.370 49.623
SD 0.026 0.031 0.068 0.009 6.258

Case 3c mean 0.075 1.739 0.130 0.280 49.197
SD 0.034 0.064 0.068 0.000 2.265

aSee section 2.3.2 for descri f the specific cases.
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[40] However, soil hydraulic properties at the near-sur-
face may not be always representative of the subsurface
unless the soil profile is really homogenous. Ines and
Mohanty [2008a, 2008b] showed that effective soil
hydraulic parameters derived from the near-surface (0–
6 cm) are applicable to some degree in representing the soil
hydrologic processes in the subsurface, but under highly
heterogeneous soils they are less successful. It is recom-
mended that additional information (if available), e.g.,
deeper layer soil moisture data and evapotranspiration from
RS, should be used in addition to the near-surface soil
moisture to characterize better the effective soil hydraulic
properties of the deeper layers of the soil profile. Because
the presented inverse modeling method in this paper is
generic, including these additional conditioning data is not a
big problem. In this current study the reason why we used
near-surface soil moisture is to explore the utility of
remotely sensed soil moisture (which are shallow in depth)
for characterizing the effective soil hydraulic properties in a
footprint.
[41] There is room for improvements of the current

method, and there are fertile grounds for future research,
e.g., exploring the effects of model structure uncertainties
(both soil-hydrologic model and soil hydraulic constitutive
functions) to the derived effective soil hydraulic properties,
and the validation of these derived properties in predicting
other actual hydrologic processes (e.g., evapotranspiration,
runoff, percolation) aside from soil moisture. Further vali-
dation of the postulated scaling hypothesis is needed to
study the effects of other factors that could be contributing
to the scaling behavior of the soil hydraulic properties at
different support/extent.
[42] Nevertheless, we found the noisy Monte Carlo

genetic algorithm (NMCGA) framework to be promising
for the inverse modeling (IM)-based near-surface RS soil
moisture assimilation for estimating the effective soil hy-
draulic parameters and their uncertainties at a remote
sensing footprint or climate model grid scale. This opens
up avenues for estimating the effective soil hydraulic
parameters for the continental United States or more ambi-
tiously at the global scale using a combination of available
global RS data sets and observed/reanalysis climate forcings
aggregated/resampled at the particular scales of interests.

[43] Acknowledgments. The research was funded by NASA-GAPP
and NASA-THP grants. We would like to acknowledge the partial support
of LANL-SAHRA, and NSF (CMG/DMS grant) for this work. We also
acknowledge the assistance of Narendra Das of the Department of Biolog-
ical and Agricultural Engineering, Texas A&M University, in the collection
of the satellite remote sensing data used in this study. We sincerely thank

the editors and three anonymous reviewers for helping us improve the
quality of this paper.

References
Abbaspour, K. C., M. T. Van Genuchten, R. Schulin, and E. Schläppi
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