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1.  INTRODUCTION

Forecasts of climate fluctuations with a seasonal
(i.e. several months) lead-time are possible because
the atmosphere responds to the more slowly varying
ocean and land surfaces, an example being climate
fluctuations associated with the El Niño-Southern
Oscillation (ENSO) in the tropical Pacific. Several
climate prediction centers routinely issue prob-
abilistic seasonal forecasts based on dynamic general

circulation models (GCMs) that model the physical
processes and dynamic interactions of the global cli-
mate system in response to sea and land surface
boundary forcing. Probabilistic forecasts are obtained
from ensembles of GCM integrations initialized with
different atmospheric conditions. Periodic regional
climate outlook forums in Africa and Latin America
have issued seasonal climate forecasts targeting
agriculture and other climate-sensitive sectors since
1997.
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ABSTRACT: Seasonal climate prediction offers the potential to anticipate variations in crop production
early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from
dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop
simulation models has been hampered by the difference in spatial and temporal scale of GCMs and
crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop
response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial
resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop
models have used daily GCM output with some success by either calibrating simulated yields or
correcting the daily rainfall output of the GCM to approximate the statistical properties of historic
observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by
adjusting input parameters in a manner that captures the predictable components of climate, or by
constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated
with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need
for daily weather data conditioned on the forecast, but must often address poor statistical properties of
the crop–climate relationship. Most of the work on using crop simulation with seasonal climate fore-
casts has employed historic analogs based on categorical ENSO indices. Other methods based on clas-
sification of predictors or weather types can provide daily weather inputs to crop models conditioned
on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include
more robust evaluation of the methods reviewed here, dynamically embedding crop models within cli-
mate models to account for crop influence on regional climate, enhanced use of remote sensing, and
research in the emerging area of ‘weather within climate.’
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By providing advance information early enough to
adjust critical agricultural decisions, seasonal climate
prediction appears to offer significant potential to con-
tribute to the efficiency of agricultural management,
and to food and livelihood security. However, there is a
gap between the information that comes routinely
from climate prediction centers and regional climate
outlook forums, and the needs of farmers and other
agricultural decision makers. Applications of climate
forecasts within agriculture are concerned with im-
pacts on production and environmental and economic
outcomes, and not with climate fluctuations per se. If
farmers are to benefit from seasonal climate forecasts,
the information must be presented in terms of produc-
tion outcomes at a scale relevant to their decisions,
with uncertainties expressed in transparent, proba-
bilistic terms. Market and food security early warning
applications also need to translate climate information
into production outcomes, but generally at a different
spatial scale and lead time.

Stimulated in part by the socioeconomic conse-
quences and widespread public awareness associated
with the very strong 1997–1998 El Niño event, interest
in agricultural application of seasonal climate predic-
tion gained momentum in the late 1990s. Research
efforts have used dynamic, process-oriented crop
simulation models as a means of translating climate
forecasts into crop yield prediction and as a basis for
evaluating potential management responses. This work
has depended heavily on analog methods based on
categorical indicators of the ENSO (e.g. Jones et al.
2000, Meinke & Hochman 2000, Podestá et al. 2002,
Everingham et al. 2003, Meinke & Stone 2005). Tropical
Pacific sea surface temperatures (SSTs) or the Southern
Oscillation Index (SOI) are classified into a small num-
ber of categories or ‘phases.’ Weather data from past
years, with the same predictor category as the forecast
period, are used as input to crop models. The set of
simulated outcomes provides a probabilistic forecast.
Through the 1990s, this work seldom attempted to in-
corporate operational dynamic climate forecasts, and
borrowed little from the concurrent development of
methodology for translating climate change scenarios
(often based on the same GCMs used for seasonal fore-
casting) into estimates of agricultural impacts. Despite
strong interest in using GCM-based seasonal forecasts
for agricultural applications, progress has—until re-
cently—been slow, due in part to limited accessibility of
GCM results, methodological challenges related to
the spatio-temporal scale mismatch between GCMs
and crop model requirements, and concerns about
characterizing and interpreting forecast probabilities.

The 1997–1998 El Niño also stimulated debate about
the value of climate prediction to a range of societal
problems. One concern was that limited predictability

of crop yield response at the farm scale, early enough
to allow farmers to modify critical pre-planting deci-
sions, might be a fundamental constraint to the use of
forecasts by risk-averse farmers (Barrett 1998, Blench
2003). The argument was based on 2 assumptions.
(1) Variability of rainfall over small spatial scales
implies that seasonal rainfall predictability is limited to
regional spatial scales. (2) Because crop yield is not a
simple function of seasonal total rainfall, the accumula-
tion of errors going from seasonal climatic predictors
(e.g. SSTs), to local seasonal means, to crop response,
implies that predictions of effects such as crop re-
sponse will be less accurate than predictions of climatic
means. Recent research challenges these assumptions
(Hansen 2005). Limited evidence suggests that much
of the skill of regional seasonal forecasts holds up at a
local scale (Gong et al. 2003), and that predictability of
crop yield response can be as great or greater than
predictability of seasonal climatic means (Cane et al.
1994, Hansen et al. 2004).

Our objective here is to survey progress in translat-
ing seasonal climate prediction into forecasts of agri-
cultural production that are relevant to agricultural
decision-making, through the integration of climate
models with process-oriented agricultural simulation
models. While most applications address crop or forage
yields, relevant applications also include environmen-
tal quality impacts (Mavromatis et al. 2002, Zhang
2003). We highlight advances over the last decade, as
well as key challenges and emerging opportunities fac-
ing us in the coming decade. Advances in the use of
seasonal climate forecasts with agricultural simulation
models contribute to (1) translating climate forecasts
into more relevant information about impacts within
the system being managed; (2) ex-ante assessment of
benefit to motivate support and insights to target inter-
ventions; and (3) guiding management responses
through the use of model-based systems that support
discussion and decision-making (Hansen 2005).

2.  THE CLIMATE–CROP MODEL CONNECTION
PROBLEM 

Operational seasonal climate forecasts are generally
issued as averages in time (≥ 3 mo) and space. Because
of the effect of spatial and temporal averaging on the
random noise resulting from the chaotic nature of the
atmosphere, the proportion of variability that is pre-
dictable at a seasonal lead-time due to boundary forc-
ing tends to increase with increasing spatial and tem-
poral scale up to a point. Furthermore, computational
capacity limits the spatial resolution of GCMs used for
seasonal prediction to a fairly coarse grid scale, cur-
rently on the order of 10 000 km2.
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Crop production is a function of dynamic, nonlinear
interactions between weather, soil water and nutrient
dynamics, management, and the physiology of the
crop. Relating predicted climatic variations, averaged
in space and time, to crop response is not straightfor-
ward. Crop response tends to be nonlinear and some-
times non-monotonic over a realistic range of environ-
mental variability. Furthermore, crops do not respond
to conditions averaged through the growing season,
but to dynamic interactions between weather, soil
water and nutrient dynamics, and the stage of crop
development. In rainfed production systems, the
interaction between rainfall and the soil water balance
is particularly important. Crop characteristics, soil
hydraulic and fertility properties, stresses, and man-
agement mediate sensitivity to weather conditions
within the growing season. Finally, a range of interact-
ing weather variables mediates many aspects of crop
growth and development. To capture the dynamic,
nonlinear interactions between weather, soil water and
nutrient dynamics, and physiology and phenology of
the crop, process-oriented crop simulation models
typically operate on a daily time step and a spatial
scale of a homogeneous plot (although sampling the
heterogeneity of soil, weather and management inputs
allows simulated results to be interpreted at a range
of scales).

Global and regional dynamic climate models operate
on sub-daily time steps, but the spatial averaging that
occurs within grid cells distorts the temporal variability
of daily weather sequences (Osborn & Hulme 1997).
Any distortion of daily weather variability can seri-
ously bias crop model simulations (Semenov & Porter
1995, Mearns et al. 1996, Riha et al. 1996, Mavromatis
& Jones 1998a, Hansen & Jones 2000, Baron et al.
2005). One of the most serious effects is a tendency to
over-predict frequency of wet days and under-predict
their mean intensity (Mearns et al. 1990, 1995, Mavro-
matis & Jones 1998a, Goddard et al. 2001). The direc-
tion of resulting crop model error cannot be easily
anticipated. On the one hand, when canopy cover is
incomplete and evaporative demand is high, frequent
low-intensity showers do not recharge soil water
reserves in deeper layers, but favor increased evapora-
tion from the soil surface, thereby increasing water
stress (de Wit & van Keulen 1987). On the other hand,
increasing the frequency of rainfall events tends to
reduce the duration of dry periods between rain
events, thereby reducing water stress (Carbone 1993,
Mearns et al. 1996, Riha et al. 1996, Hansen & Jones
2000). Baron et al. (2005) suggested that millet in
Sahelian West Africa can use only intermediate (10 to
30 mm d–1) rainfall events efficiently, as smaller rainfall
events are largely lost to soil evaporation while more
intense rainfall is lost to runoff and drainage. Aggre-

gating daily rainfall from 17 stations to a scale typical
of GCMs resulted in the over-prediction of mean simu-
lated yields by 28%, due to overestimation of rainfall
efficiency associated with an increased proportion of
intermediate rainfall events in the aggregated series.

3.  ADVANCES IN METHODS FOR LINKING
CLIMATE AND CROP MODELS

A range of methods for linking crop simulation mod-
els to seasonal climate forecast models have been
advanced. We survey recent advances in methodology
under 4 categories (Hansen & Indeje 2004): (1) crop
simulation with daily climate model output, (2) use of
synthetic daily weather conditioned on climate fore-
casts, (3) statistical prediction of crop response simu-
lated with historic weather, and (4) classification and
analog methods. The discussion includes some meth-
ods that have been developed for simulating agricul-
tural impacts of GCM-based climate change scenarios,
but that appear to have potential for yield prediction
based on seasonal forecasts.

The applications include both field scales with a
focus on farmer decisions, and regional scales that are
relevant to food security early warning and market
applications. Simulating crop response to weather at
aggregate scales has progressed in 2 parallel direc-
tions. Process-oriented crop models that have been
developed for field-scale applications can be scaled up
by (1) representing heterogeneity of environment and
management with spatial data sets, (2) probabilistic
sampling of environmental variables, (3) calibration of
model input parameters or (4) model outputs against
reported crop data at the scale of interest (Hansen &
Jones 2000). The alternative is to simulate aggregate
crop response with models that are simplified to oper-
ate on a large spatial scale while maintaining enough
complexity to capture the major components of yield
responses to climate variability. Examples range
from water-satisfaction indices based on simplified
soil water balance (Frere & Popov 1979), to process-
oriented models such as the General Large-Area Model
(GLAM) designed to simulate annual crop yields at a
GCM grid scale (Challinor et al. 2004, 2005).

3.1.  Crop simulation with daily climate model output

Despite the tendency of GCMs to seriously distort daily
variability, daily GCM output has been used as input to
crop models with some success through either the
calibration of yields simulated with raw GCM output,
simple rescaling to correct GCM mean bias, or the
application of a more sophisticated simultaneous cor-
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rection of GCM rainfall frequency and intensity.
Mavromatis & Jones (1998b) used uncorrected daily
output from runs of the HadCM2 GCM as input to the
CERES-Wheat model for studying potential impacts of
climate change on regional winter wheat production in
France. Yields simulated with GCM weather data
approximated mean yields simulated with observed
weather during the past century, and captured a yield
trend associated with the recent trend in observed
temperature, but under-represented year-to-year vari-
ability. Challinor et al. (2005) used daily meteorologi-
cal variables from 9 seasonal hindcast runs from each
of 7 GCMs as input to the GLAM crop model to predict
groundnut yields over western India. Historic district
groundnut yields aggregated to the GCM grid scale
showed lowest overall prediction error when simulated
yields were calibrated to observed district yields,
regardless of whether mean bias in the GCM output
was first corrected.
Studies (Mavromatis & Jones 1998a, Hansen & Jones
2000, Baron et al. 2005) have demonstrated the impact
on day-to-day variability and crop simulation results,
of aggregating daily weather data to a spatial scale
typical of GCM grid cells and operational seasonal
forecasts. Several approaches have been proposed to
disaggregate GCM output and other area-averaged
daily data sources (e.g. satellite rainfall estimates) to
the scale of individual stations in a manner that cor-
rects the biases. The simplest option for calibrating
daily GCM output to match observed mean local
climate is to apply a simple shift (e.g. Ines & Hansen
2006). An additive shift is appropriate for temperature
and solar radiation. A multiplicative adjustment, e.g.

x ’i =  xi,GCM xobs �xGCM (1)

is more appropriate for precipitation, as it preserves the
sequence of zero values associated with dry days,
where xi,GCM and x’i refer to raw and calibrated GCM
rainfall on day i, respectively, and xobs and xGCM are
long-term mean observed and simulated rainfall, re-
spectively, for a given time of year. However, because
the multiplicative shift corrects total rainfall by adjust-
ing intensity and not frequency, it cannot correct the
observed tendency of GCMs to over-predict frequency
and under-predict mean intensity (see Section 2). 

Schmidli et al. (2006) and Ines & Hansen (2006) pro-
posed calibrating both the frequency and intensity dis-
tribution of GCM rainfall. The tendency for GCM rain-
fall to be more frequent than observations can be
corrected simply by calibrating a daily GCM rainfall
threshold, such that the relative frequency of simu-
lated rainfall above the threshold matches the long-
term observed frequency for e.g. a given calendar
month (Fig. 1a). Schmidli et al. (2006) used a simple
multiplicative shift to correct the intensity distribution

of daily GCM rainfall after calibrating frequency. To
derive daily rainfall data for a maize simulation model
at a semiarid location in Kenya, Ines & Hansen (2006)
mapped the cumulative distribution of GCM rainfall
FGCM,m(x), truncated below the calibrated threshold for
month m, onto the distribution of observed daily rain-
fall Fobs,m(x), using the transformation,

x ’i =  F–1
obs,m[FGCM,m(xi)] (2)

for each i th day of GCM rainfall (Fig. 1b). The calibra-
tion, using a fitted gamma distribution for observed
rainfall intensity, and either a gamma or empirical
distribution of GCM rainfall intensity, substantially
reduced biases of both mean and variance of monthly
totals, frequency and mean intensity of GCM rainfall.
Baron et al. (2005) demonstrated that disaggregating
the spatial averages of daily rainfall from 17 stations
(approximating the scale of a GCM grid cell) in Sene-
gal to a network of 81 ‘virtual stations’ corrected much
of the bias in rainfall frequency and simulated millet
yield that resulted from spatial aggregation. They used
a spatial disaggregation algorithm based on a transfor-
mation of a multivariate Gaussian process to a shifted
gamma rainfall distribution, designed to generate syn-
thetic sets of rainfall that match a specified aerial aver-
age for a given day, but that have statistical properties
(i.e. frequency, intensity distribution, spatial structure)
that are consistent with observations at a set of stations
within the area (Onibon et al. 2004).

Ines & Hansen (2006) found that using daily GCM
rainfall calibrated to station data at a semiarid location
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Fig. 1. Schematic representation of daily GCM bias cor-
rection: (a) frequency, (b) intensity (Ines & Hansen 2006).
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in Kenya resulted in systematic under-prediction of
simulated maize yields, even though the calibration
largely corrected mean and variance of GCM monthly
rainfall totals, frequency and intensity. They attributed
the simulated yield bias to a tendency for the GCM
rainfall to be more strongly autocorrelated than ob-
served rainfall, resulting in excessive clustering of
rainfall events and unrealistically long dry spells dur-
ing the growing season. The potential utility of daily
climate forecast model output for predicting crop
response may therefore be limited more by the ability
of GCMs to simulate rainfall with a realistic time struc-
ture than by biased simulation of rainfall frequency
and intensity. However, there is some evidence from
Northeast Brazil that a high-resolution climate model
nested within GCM output fields can simulate daily
rainfall with more realistic spell lengths than the
underlying GCM (Sun et al. in press).

3.2.  Synthetic weather conditioned on climate forecasts

Seasonal or sub-seasonal (e.g. monthly) climate fore-
casts can be disaggregated using a stochastic weather
model to produce synthetic daily time series that cap-
ture the predictable, low-frequency components of
seasonal or sub-seasonal variability, while reproducing
important statistical properties of the high-frequency
variability in the historic daily record. Two approaches
have been advanced. The first, more common ap-
proach is to adjust the parameters of a stochastic
generator in a manner that is consistent with the fore-
cast. The second is to constrain the generated daily
sequences to exactly match target monthly or seasonal
means. 

The input parameters of simple stochastic weather
generators can be manipulated to reproduce predicted
statistical properties of interest, such as means, vari-
ances, and the relative influence of the number of
storms (i.e. frequency) and the type of storm (i.e. the
intensity distribution) on total rainfall. Several studies
of the behavior of stochastic weather models, moti-
vated largely by climate change impact assessment,
provide a solid foundation for using weather genera-
tors to produce synthetic daily sequences that are con-
ditioned on seasonal forecasts (Wilks 1992, Katz 1996,
Mearns et al. 1997). Methods for conditioning weather
generator parameters on seasonal predictions or pre-
dictors include: estimating parameters from years with
a particular categorical predictor value (Katz & Par-
lange 1993, Grondona et al. 2000, Katz et al. 2003),
regressing parameters against a seasonal predictor
(Woolhiser et al. 1993), predicting from GCM output
fields using multivariate statistical downscaling (Can-
telaube & Terres 2005, Feddersen & Andersen 2005,

Marletto et al. 2005), and by sampling past years in
proportion to forecast shifts from climatological tercile
probabilities to estimate parameters (Wilks 2002). Con-
ditioning precipitation parameters on seasonal fore-
casts requires either some assumption about the rela-
tive contribution of occurrence and intensity to target
rainfall, or empirical estimation relating hindcasts to
the historic rainfall frequency and intensity record.
Because weather generators are stochastic, many rep-
licates may be required to approximate target means
or other statistics of interest with acceptable accuracy. 

An alternative approach is to constrain the gener-
ated daily sequences to match target monthly values.
A simple additive shift may be sufficient to constrain a
generated series of temperatures to match a target
monthly mean. For rainfall, this is accomplished by
sampling and testing generated sequences until the
total is sufficiently close to a target value, then correct-
ing the generated sequence to exactly match the target
(Hansen & Indeje 2004, Kittel et al. 2004, Hansen &
Ines 2005). This approach requires no a priori assump-
tion about the relative contribution of occurrence and
intensity to target rainfall, but samples synthetic rain-
fall sequences that are consistent with the occurrence
and intensity components of the weather generator,
parameterized with historic data. It can, however,
accommodate adjustments to parameters of the fre-
quency and intensity processes. Hansen & Ines
(2005) applied this approach to disaggregate observed
monthly precipitation at sites in the Southeast USA,
and both observed and hindcast precipitation at a site
in Kenya, as input to the CERES-Maize model. Con-
straining generated monthly rainfall to match observa-
tions largely reproduced the cross-correlation between
observed amount, frequency and mean intensity of
rainfall more accurately than conditioning weather
generator parameters on monthly rainfall, and re-
quired roughly an order of magnitude fewer realiza-
tions to approach the asymptotic maximum correlation
with yields simulated with observed daily rainfall.

3.3.  Statistical prediction of simulated crop response

The approaches discussed in Sections 3.1 & 3.2
involve conditioning crop model weather input data on
the climate forecast. An alternative approach is to treat
yields simulated with historic daily weather data as a
statistical predictand, and condition the crop model
output on the forecast. By bypassing the need to derive
weather data inputs conditioned on the seasonal fore-
cast, the use of a statistical model trained on crop
model outputs eliminates one source of error. On the
other hand, this approach is constrained to treating the
seasonal forecast and its relationship to crop response
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as essentially static within a growing season. While
our review focuses on forecasting using dynamic crop
models, statistical prediction from GCM output fields
has also been applied to remotely-sensed forage vege-
tation indices (Indeje et al. 2006) and de-trended crop
production statistics (G. Baigorria, pers. comm.).

Crops tend to show non-linear, non-monotonic rela-
tionships with their environment over some range of
variability, complicating direct statistical prediction.
Other potential problems that violate assumptions of
ordinary least-squares regression include residuals that
are non-normally distributed, and residual variance
that varies systematically with predictor. Approaches
to dealing with these challenges include nonlinear
regression, linear regression following normalizing
transformation, generalized linear models, and non-
parametric models. 

As an example of nonlinear regression, Hansen &
Indeje (2004) predicted simulated maize yields at a
site in southern Kenya as a cross-validated function of
the first principal component of GCM rainfall over
the region. They chose a Mitscherlich function,

ŷ =  a + b (1 – e–cx) (3)

based on its widespread use for modeling plant re-
sponse to water and other growth factors. Diagnostics
showed some evidence that residual variance varied
systematically with the predictor—a mild violation of
the assumptions of least-squares regression.

Where the relationship between predicted climate
variations and simulated crop response is only weakly
nonlinear, transforming the predictand and potentially
the predictor may correct nonlinearity, non-normality
of regression residuals and heterogeneity of residual
variance sufficiently to permit ordinary linear regres-
sion. Hansen et al. (2004) used an optimal power series
(Box & Cox 1964) transformation to normalize mildly-
skewed simulated yield distributions before predicting
district and state wheat yields, simulated with ob-
served antecedent rainfall and historic within-season
rainfall, as a linear function of a regional GCM rainfall
predictor in northeastern Australia. Such data transfor-
mations may not handle non-monotonic crop–climate
relationships or extreme departures from linearity
and normality sufficiently to permit ordinary least-
squares linear regression. Because aggregating in
space smoothes year-to-year variability of crop yields
and, by the Central Limit Theorem, reduces depar-
tures from normality, we hypothesize that linear
regression, possibly with a normalizing transforma-
tion, may be more suited for yield forecasts at an
aggregate scale than at a field scale. Generalized
linear models (McCullagh & Nelder 1989), designed to
extend the benefits of linear regression where data are
not normally distributed, are a promising alternative

that to our knowledge has not yet been applied to
predicting crop yields in response to forecast seasonal
climate variations.

3.4.  Classification and analog methods

Several practical benefits account for the continued
dominance of the historical analog approach for crop
yield prediction described in Section 1 (Meinke &
Stone 2005). The approach is easily adapted to any
spatial or temporal scale for which historic data are
available. If the predictors used provide any predictive
information about higher-order variations beyond sea-
sonal climatic means that influence crop response,
analog years will incorporate that predictability into
crop simulations. Distributions derived from analogs
will account for any differences in dispersion, in addi-
tion to mean shifts associated with different states
of ENSO. Finally and perhaps most important, dis-
tributions of outcomes simulated for the analog years
associated with a given category provide an intuitive
means of estimating and communicating forecast
uncertainty in probabilistic terms.

The analog method also has important limitations.
Confidence, artificial forecast skill and biased estima-
tion of uncertainty are concerns in those cases when
the number of categories and limited record length
lead to small sample sizes within each category (Sec-
tion 4.3). More important, analogs based on ENSO or
other empirical indices do not necessarily capture the
best that climate science or operational forecast sys-
tems have to offer. While statistical climate prediction
models have generally approached their predictive
limits, dynamic climate forecast models, which inte-
grate global sea and land surface forcing, sometimes
outperform the best statistical models, and are expected
to improve with improvements in models, data assimi-
lation, computer capacity and post-processing meth-
ods. Stone et al. (2000) proposed using the analog
approach with GCM output fields classified into dis-
crete categories by cluster analysis.

The analog method described above treats each past
year falling within the given predictor category as
equally probable. It is a special case of a more general
set of methods based on classification of predictors or
weather types. If there is a basis for predicting that the
coming season is more likely to resemble some past
years than others, we can use the predicted probabili-
ties to derive a probability-weighted forecast distribu-
tion, or calculate weighted mean or other distribution
statistics. The common method of issuing operational
seasonal climate forecasts as shifted probabilities of
each of the climatological terciles, can be used directly
to assign weights to analog years or to resample past
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years in proportion to the forecast probabilities. For
example, Everingham et al. (2002) and Bezuidenhout
& Singles (2006) sampled analog years in proportion
to tercile forecasts from the South African Weather
Service to forecast sugarcane production.

The k-nearest neighbor (KNN) method selects and
assigns probability weights to a subset of k past years
based on their similarity, in predictor state space, to a
given predictor state (Lall & Sharma 1996). Weights wj

of the k nearest neighbors, ordered on the basis of their
similarity to the value of the current predictor vector,
are calculated as:

wj =  ( j Σ k
i =1

i –1)–1 (4)

where j and i are indices of the given historic year and
the other k nearest neighbor years, sorted by distance
(i.e. closest = 1) from the current predictor vector. For
all j > k, wi is set to 0. Using the KNN method to sam-
ple past seasons showed comparable results to other
methods that Hansen & Indeje (2004) tested for GCM-
based maize prediction in Kenya. It has also been used
successfully for predicting reservoir inflow from sea-
sonal rainfall predictors in Northeast Brazil (DeSouza
& Lall 2003). The KNN analog approach can also be
applied on shorter time steps to probabilistically sam-
ple subsets of past weather observations based on the
degree of similarity of current and historical values of a
given feature vector that may include atmospheric
indicators from SST-forced GCM outputs (Clark et al.
2004, Gangopadhyay et al. 2005). Appropriate selec-
tion criteria can preserve moments of the historical dis-
tribution, as well as observed spatial and temporal cor-
relations and correlations among variables. 

Weather classification works in the same way, except
that historic data are clustered into discrete circulation
patterns or ‘weather types’ identified e.g. by cluster
analysis, that explain a substantial portion of the vari-
ability and spatial patterns of rainfall. The ability of a
GCM, driven by SSTs, to produce daily regional circu-
lation patterns with realistic frequency and seasonality
provides a basis for re-sampling historic local rainfall
observations based on similarity of circulation patterns
simulated by a GCM and from reanalysis data used
as a proxy for observed wind fields (V. Moron, pers.
comm.). Moron proposed a 2-stage sampling proce-
dure. To capture interannual variability, past seasons
are sampled in proportion to their similarity to the cur-
rent year based on the distance between principal
components of GCM and reanalysis wind fields. Daily
rainfall is then sampled randomly from the pool of days
within the sampled past seasons with the same
weather type that the GCM simulates. The process is
repeated for the sequence of daily weather types that
the GCM simulates through the season. The approach
predicted a substantial portion of the year-to-year vari-

ability of rainfall characteristics (i.e. frequency, distrib-
ution of dry and wet spells, seasonal total) with encour-
aging skill and realism (V. Moron, pers. comm.). It
appears to be a promising approach to conditioning
daily weather data inputs on aspects of sub-seasonal
variability that are predictable at a seasonal lead time,
but it has not yet been tested for crop simulation.

Non-homogeneous hidden Markov models (NHMM)
integrate weather classification with stochastic weather
models (Section 3.2) (Hughes & Guttorp 1994, Charles et
al. 1999, Hughes et al. 1999). Observed rainfall patterns
are classified into discrete types. Transition between
states in a NHMM is a Markov process, with transition
probabilities conditioned on a given set of predictors.
The NHMM is parameterized using daily sequences of
spatial weather patterns, and is capable of representing
the historic spatial structure in the weather patterns that
it simulates. The NHMM has been applied to disaggre-
gating seasonal rainfall predictions (Robertson et al.
2004, 2006), and to disaggregate rainfall data in space
and time as input to a maize simulation model over the
Southeast USA (Robertson et al. in press).

4.  UNCERTAINTY IN CLIMATE-BASED CROP
FORECASTING

Transparent presentation of uncertainty in proba-
bilistic terms is crucial to appropriate application of
advance information, particularly when risk aversion
influences decisions. Underestimating the uncertainty
of a forecast can lead to excessive responses that are
inconsistent with a decision makers’ risk tolerance,
and can damage the credibility of the forecast pro-
vider, while overestimating uncertainty leads to under-
confidence and lost opportunity to prepare for adverse
conditions and take advantage of favorable conditions. 

Climate variability and crop model (including input)
error are the major sources of uncertainty in yield fore-
casting. One way to characterize the uncertainty asso-
ciated with climate variability is to simulate yields with
antecedent weather observations up to a given forecast
date within the season for a current or hindcast year,
and sample weather data for remainder of season from
all other years (Fig. 2). The resulting distribution ap-
proximates the climatic component of uncertainty. In-
formation about antecedent weather and its effect on
stored soil moisture provides a degree of predictability
of yields that increases as the forecast date advances
through the growing season, and an increasing propor-
tion of weather data is observed, rather than sampled.
Several proposed and operational crop-forecasting
systems integrate weather observations through the
current date with sampling from climatology for the re-
mainder of the growing season (Thornton et al. 1997,
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Samba 1998, Bannayan et al. 2003, Lawless &
Semenov 2005). Model error represents the
remaining discrepancy between observed
yields and yields simulated with observed
weather. 

A skillful seasonal climate forecast reduces
the climatic component of uncertainty. Since
the proportion of total uncertainty that is due
to climate decreases through the growing
season (Fig. 3a), the relative contribution of
seasonal forecasts to overall predictability
tends to be greatest early in the season, and
to decrease as the season progresses and an
increasing proportion of weather is observed,
rather than predicted or sampled (Fig. 3b).
On the other hand, reducing model error
through e.g. improved measurement or cali-
bration of model inputs, updating crop state
variables based on remote sensing (see Sec-
tion 5.2), or modeling additional yield-limit-
ing factors, is likely to have a greater relative
impact on overall uncertainty later in the
growing season (Fig. 3c).

4.1.  Deriving crop forecast distributions

Methods that have been developed for
deriving and evaluating probabilistic cli-
mate forecasts are generally relevant to fore-
casts of agricultural impacts.

4.1.1.  Forecast distributions from hindcast residuals

The first approach is to estimate a forecast distribu-
tion as the distribution of hindcast residuals, centered
on the expected value of the current forecast. To illus-
trate, Fig. 4a shows a hypothetical 1960–2000 yield
time series, derived from sampling a multivariate nor-
mal distribution, of observations (y) and hindcasts (ŷ )
calibrated to observations by linear regression. Sub-
tracting predictions from observations yields a time
series of hindcast residuals

εi =  yi – ŷi (5)

(Fig. 4b), which are then sorted to derive a residual dis-
tribution (Fig. 4c). The forecast distribution for the next
year (2001) is obtained by adding its expected value,
ŷ = 1.9 Mg ha–1, to each ε (Fig. 4d). The method
accounts for the overall prediction error of the forecast
system, and is generally applicable to statistical or
dynamic forecast models.

The analog method discussed earlier (Sections 1 & 3.4)
provides a simple, intuitively appealing way to derive
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probabilistic forecasts of climate variations and their agri-
cultural impacts. Yields simulated with weather sampled
from the set of past years falling within the category that
corresponds to current conditions are taken as a forecast
distribution. It is easy to show that distributions derived
from historical analogs are a special case of residual-
based distributions, which use the subset of residuals
about the mean from those years that fall within the given
predictor class. Hansen et al. (2004) compare cross-
validated probabilistic wheat yield forecasts based on
SOI phase analogs and regression from GCM predictors.

4.1.2.  Forecast distributions from dynamic climate
model ensembles

Initializing GCMs with different sampled atmos-
pheric conditions improves skill and gives an indica-
tion of the uncertainty associated with initial condi-
tions (Barnston et al. 2003, Palmer et al. 2004). The use
of several different GCMs captures uncertainty associ-
ated with model structure and assumptions (Palmer et
al. 2005). The spread of resulting predictions can be
interpreted as a measure of forecast uncertainty, but
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must be calibrated before forecasts can be expressed
as probability distributions at a local scale (Doblas-
Reyes et al. 2005, Palmer et al. 2005). However, there is
not yet a consensus about the most appropriate cali-
bration method.

Probabilistic forecasting based on GCM ensembles
can be extended to crop yield prediction. For example,
Challinor et al. (2005) used daily output from each mem-
ber of both single- and multiple-GCM ensembles to as-
sess probabilistic forecasts of observed district-level
groundnut yields and crop failure in western India. Can-
telaube & Terres (2005) used monthly climatic means
predicted from each ensemble member, statistically
downscaled and disaggregated to daily values, using
a stochastic weather generator (Feddersen & Andersen
2005) to produce probability density estimates of gridded
and national wheat yields across Europe.

Although crop yield is a continuous quantity, the
probability of yields falling below some threshold—a
discrete event—may be more relevant than the mag-
nitude of yields for applications related, for example, to
food crisis response or crop insurance. In their study of
groundnut yield forecasting in western India, Chal-
linor et al. (2005) used a probabilistic, categorical skill
metric (the relative operating characteristics [ROC]
curve) to demonstrate skillful GCM-based predictions
of crop failure. We extend their analysis to compare the
predictability of extreme crop failure to more moderate
failure. The inverted ROC (IROC) replaces the false
alarm rate (i.e. crop failures that were forecast but not
observed) used on the x-axis of the ROC curve with a
false alarm ratio (i.e. fraction of incorrect failure fore-
casts), allowing events occurring with different fre-
quencies to be compared (Lalaurette unpubl.). For any
crop failure threshold, the nearer the intersection of
the IROC curve and the no-bias line is to the point
[0,1], the more skillful the forecast. Based on IROC
curves (Fig. 5), simulation of crop yield failure is more
skillful based on a 500 kg ha–1 than a 200 kg ha–1

threshold for both the multi-GCM ensemble and a sin-
gle-GCM ensemble. Prediction skill at a 3 to 6 mo lead-
time is significant for the higher yield threshold, which
matches the yield below which the cost of groundnut
cultivation exceeds its value (Rao et al. 2000).

4.2.  Artificial skill and biased probabilities

The error of statistical forecast models tends to be
smaller for the period used to calibrate the model than for
predictions outside the calibration data. Artificial fore-
cast skill and systematic underestimation of the disper-
sion of probabilistic forecasts are therefore inherent risks
in statistical forecasting, including empirical calibration
of dynamic forecast models. They are of particular con-

cern for the analog method in those cases when the num-
ber of categories and limited record length lead to small
sample sizes within each category. Robinson & Butler
(2002) suggest that many studies that used analogs as a
basis for prediction may have overestimated prediction
skill (of climate or impacts) or the potential economic
value of forecasts for particular decisions.

A simple numeric example illustrates the problem. To
mimic an analog-based prediction system, we generated
a series of 48 pairs of correlated (r = 0.64) random normal
variates, arbitrarily selected one series as predictors and
the other as predictands, and grouped sorted predictors
into 3, 6, 12, and 16 equally-sized classes—a classifica-
tion scheme that is analogous to classifying years into
El Niño, Neutral and La Niña phases based on SST ob-
servations in the eastern tropical Pacific (Trenberth
1997). The proportion of variance in the predictand time
series that the analogs explained is

r2 =  1 – Σi (yi – ŷi)2�Σi (yi – Y––)2 (6)

where yi and ŷi are the ith predictand and prediction,
and Y–– is the mean of the predictand series. For each
period i, ŷi is taken as the mean of observations falling
within the period’s predictor class, either including
period i, or with cross-validated estimates that omit yi

from the calculated mean. Unbiased estimation of fore-
cast uncertainty requires that observations from the
period being predicted do not influence the prediction.
Cross-validation reduces this bias (Efron & Gong 1983,
Michaelsen 1987). As expected, the proportion of vari-
ance that the analogs explain increases as the number
of categories increases (Fig. 6). However, when the ith
observation is excluded from the ith forecast through
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cross-validation, increasing the number of categories
decreases the proportion of variance predicted and
hence the uncertainty that remains. The difference be-
tween cross-validated and non-cross-validated results
is an indication of artificial skill and of bias in the dis-
persion of probabilistic forecasts (Michaelsen 1987,
Meilke et al. 1997, Drosdowsky & Allen 2000), although
more efficient methods are available for correcting
prediction error bias (Kohavi 1995, Efron & Tibshirani
1997). Limiting bias when deriving and evaluating
probabilistic climate-based crop forecasts in practice
requires a combination of selection of credible predic-
tors with a mechanistic basis, and conservative statisti-
cal methods such as independent validation and statis-
tical hypothesis testing.

4.3.  Year to year consistency of forecast uncertainty 

Methods for deriving probabilistic forecasts—hind-
cast residuals, historical analogs and GCM ensemble
distributions—differ in their ability to handle any
changes in predictability from year to year. There is
some evidence that predictability and hence the dis-
persion of forecast distributions changes over decadal
time scales, and that GCM ensemble distributions can
capture part of those variations (Grimm et al. 2005,
Moron 2005). In other cases, analysis of GCM ensem-
ble simulations show that variability of SST patterns
influence climatic means but have little influence
on the spread of seasonal mean atmospheric states
(Kumar et al. 2000).

One source of apparent variation in predictability
between years is the skewness of the underlying distri-
butions. For strongly skewed variables, the magnitude
of forecast residuals, and therefore the spread of a
forecast distribution, tends to increase in the direction
of skewness. To illustrate, ENSO phases significantly

influence both the mean (by Kruskal-Wallis 1952 test)
and variance (Levene’s 1960 test) of December rainfall
in Junin, Argentina (Fig. 7a). After applying a normal-
izing power series transformation (Box & Cox 1964) to
reduce the positive skewness of the rainfall series, the
mean separation remains, but variances are constant
among ENSO phases (Fig. 7b). In this instance, the
substantial differences in dispersion were an artifact of
predicting a skewed distribution, and not an indication
of fundamental shifts in predictability in different
ENSO states. Although rainfall amounts tend to be
positively skewed, the existence and direction of skew-
ness of rainfed crop yields is difficult to anticipate, due
to the generally concave nonlinearity of crop yield
response to rainfall variability. 

Hindcast residuals can account for the effects of
skewness on forecast dispersion, for example by apply-
ing a normalizing transformation to the predictand and
potentially the predictor time series, deriving a fore-
cast distribution in transformed space, then applying
an inverse transformation to put the forecast distribu-
tions into the original yield units (Hansen et al. 2004).
GCM ensemble distributions seem to be the best way
to account for any decadal changes in forecast un-
certainty. Resolving the extent to which predictability
of climatic variations and crop response change from
year to year beyond the effect of skewness, and the
degree to which GCMs can predict these variations, is
beyond the scope of this review.

5.  EMERGING ISSUES, OPPORTUNITIES, AND
CHALLENGES

Methods for linking crop and climate models, and
field and aggregate scales (see Section 3), and for eval-
uating probabilistic forecasts (see Section 4) are likely
to see significant advances in the coming years. One of
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the greatest immediate challenges is the near-absence
of empirical comparison of the various methods. A
comparison of stochastic disaggregation, nonlinear
regression and weighted analog methods for simulat-
ing maize yields from GCM output at a single site in
Kenya (Hansen & Indeje 2004) was inconclusive.
Because of peculiarities of the various global and
regional climate models; differences in the nature, spa-
tial structure and predictability of climate variability
among locations and seasons; and differences in crop
sensitivity to within-season weather variability due to
soil properties, crop characteristics and management,
a great deal of empirical testing will be necessary
before we can make any robust conclusions about the
suitability of the various approaches. Areas that are
likely to result in substantial future improvements in
our ability to predict agricultural impacts of climate
variations at a seasonal lead-time include: (1) expanded
evaluation of alternative combined climate–crop fore-
casting methods, (2) embedding crop models within
climate models, (3) enhanced use of remote sensing
and spatial data, and (4) new avenues of climate pre-
diction research.

5.1.  Embedding crop models within climate models

It is increasingly apparent that vegetation can affect
climate (Pitman et al. 1993, Lawrence & Slingo 2004,
Osborne et al. 2004). At an aggregate scale, agri-
cultural production influences the atmosphere by
altering surface roughness, albedo, temperature, and
moisture flux. Annual crops in particular have quite
different seasonal cycles from natural vegetation. The
methods described in Section 3 for translating climate
forecasts into agricultural response account for the
influence of climate on crops but do not allow any
feedback from the crops to the climate. Dynamically
integrating dynamic climate models with detailed
crop and soil simulation models that replace existing
land surface schemes would allow 2-way feedback
between crops and climate within a growing season
(Osborne 2004, Betts 2005). The challenge of match-
ing the scale of the climate model grid would have to
be addressed, either by scaling up a field-scale crop
model to account for the heterogeneity within a grid
cell (Hansen & Jones 2000), or by using a crop model
that is optimized for the relatively coarse scale
(Challinor et al. 2004). The primary benefit of such 
2-way coupling would be improved prediction of local
climate in the latter part of the season. Because of
the biases that dynamic climate models show, we
anticipate that yield predictions from fully coupled
climate–crop models would require substantial cali-
bration.

5.2.  Enhanced use of remote sensing and spatial data

We anticipate that enhanced use of a range of spatial
data sets from ground observations (e.g. soil surveys,
crop management) and remote sensing (e.g. rainfall,
vegetation indices) will contribute substantially both to
the skill and to the spatial specificity of climate-based
crop predictions in the coming years. Spatial databases
are available or under development in many parts of
the world for soil properties, land cover and stochastic
weather generator parameters. Satellite remote sens-
ing provides a great quantity of spatially explicit infor-
mation about the land surfaces and atmosphere, at
spatial resolutions that continue to improve with new
sensors.

Remote sensing has the potential to make several
contributions to climate-based crop forecasting. (1)
Satellite rainfall estimates provide near-real-time in-
formation in locations where rainfall is not directly
measured or rain gauge data are not accessible. Com-
bined with soil and management information, spa-
tially contiguous rainfall data offers the potential to
simulate crop yields anywhere across the landscape
(Thornton et al. 1997, Reed & Maidment 1999).
(2) Remote sensing offers some potential to monitor
cropped areas, planting dates and phenological stages
(Ines & Honda 2005). (3) Remote sensing vegetation
indices provide information about the state of the crop
canopy that can be used to update the state variables
of a crop simulation model during the growing
season, calibrate model input parameters, or statisti-
cally correct final yield simulations (Bouman 1992,
Delecolle et al. 1992, Moulin et al. 1998). The quality
of remote-sensing data is expected to improve in
the near future, given plans to launch improved
sensors for precipitation (Tropical Rainfall Measuring
Mission, TRMM; Advanced Microwave Scanning
Radiometer for Eos, AMSR-E), soil moisture (AMSR-E;
Soil Moisture and Ocean Salinity, SMOS) and vege-
tation (Moderate Resolution Imaging Spectroradio-
meter, MODIS).

Seasonal climate forecasts and remote sensing of
the state of the crop complement each other. Remote
sensing has the potential to reduce the crop model
component of uncertainty by providing refined esti-
mates of crop state variables up to the time of the
forecast, while skillful seasonal forecasts reduce
climatic uncertainty from the time of the forecast
through the remainder of the season (see Section 4).
Because this application of remote sensing applies
only to crop forecasts made during the growing sea-
son, integrating remote sensing into climate-based
crop forecasting may have greater value for food
security and market applications than for farm-level
applications.

38



Hansen et al: Translating climate forecasts into agricultural terms

5.3.  New avenues of climate research

Climate prediction research has tended to focus on
climatic means averaged in time over ≥ 3 mo periods,
and over substantial spatial areas. Although this con-
vention maximizes prediction skill by reducing non-
covariant random variability, for agricultural appli-
cations it does so at the expense of relevance. With
increased attention to forecast applications, particu-
larly in agriculture, and growing awareness of the
tradeoffs between skill and value, climate prediction
research is paying increasing attention to downscaling
in space and time.

Seasonal forecasts can, in principle, be calibrated
and evaluated at a local scale, although attempts
to quantify the effect on prediction skill have so far
been few (e.g. Gong et al. 2003). Incorporating under-
standing of fine-scale climatic influences—such as
orography, land–water interfaces, or land cover—
into either statistical downscaling models or high-
resolution, regional dynamic climate modeling is likely
to further enhance prediction skill at the local scale
that is relevant to farm impacts and decisions.

Although it is impossible to predict the timing of
daily weather events through a season, it is reasonable
to assume that the large-scale ocean–atmosphere
interactions that give rise to predicable shifts in sea-
sonal means may also influence higher-order statistics
of synoptic weather events that are important to agri-
culture, such as the frequency and persistence of rain-
fall events, the distribution of dry spell durations, the
timing of season onset and the probabilities of intense
rainfall events or temperature extremes. For now, the
predictability of these higher-order statistics at a sea-
sonal lead-time remains largely unquantified. We
anticipate that the emerging focus on what has been
coined ‘weather within climate’ will gain momentum;
lead to improvements in prediction of the higher-order
weather statistics that determine agricultural impacts,
and better characterization of predictability at finer
spatial and temporal scales; and perhaps challenge the
convention of presenting operational forecasts only as
seasonal climatic means at an aggregate spatial scale.
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