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[1] Pixel-based effective soil hydraulic parameters are crucial inputs for large-scale
hydroclimatic modeling. In this paper, we extend/apply a genetic algorithm (GA) approach
for estimating these parameters at the scale of an airborne remote sensing (RS) footprint.
To estimate these parameters, we used a time series of near-surface RS soil moisture data
to invert a physically based soil-water-atmosphere-plant (SWAP) model with a
(multipopulated) modified-microGA. Uncertainties in the solutions were examined in two
ways: (1) by solving the inverse problem under various combinations of modeling
conditions in a respective way; and (2) the same as the first method but the inverse
solutions were determined in a collective way aimed at finding the robust solutions for all
the modeling conditions (ensembles). A cross validation of the derived soil hydraulic
parameters was done to check their effectiveness for all the modeling conditions used. For
our case studies, we considered three electronically scanned thinned array radiometer
(ESTAR) footprints in Oklahoma and four polarimetric scanning radiometer (PSR)
footprints in Iowa during the Southern Great Plains 1997 (SGP97) Hydrology Experiment
and Soil Moisture Experiment 2002 (SMEX02) campaigns, respectively. The results
clearly showed the promising potentials of near-surface RS soil moisture data combined
with inverse modeling for determining average soil hydrologic properties at the
footprint scale. Our cross validation showed that parameters derived by method 1 under
water table (bottom boundary) conditions are applicable also for free-draining conditions.
However, parameters derived under free-draining conditions generally produced too
wet near-surface soil moisture when applied under water table conditions. Method 2, on
the other hand, produced robust parameter sets applicable for all modeling conditions
used. These results were validated using distributed in situ soil moisture and soil hydraulic
properties measurements, and texture-based data from the UNSODA database. In this
study, we conclude that inverse modeling of RS soil moisture data is a promising approach
for parameter estimation at large measurement support scale. Nevertheless, the
derived effective soil hydraulic parameters are subject to the uncertainties of remotely
sensed soil moisture data and from the assumptions used in the soil-water-atmosphere-
plant modeling. Method 2 provides a flexible framework for accounting these sources of
uncertainties in the inverse estimation of large-scale soil hydraulic properties. We have
illustrated this flexibility by combining multiple data sources and various modeling
conditions in our large-scale inverse modeling.
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1. Introduction

[2] In recent years, remote sensing (RS) has proved to be
a promising method for measuring soil moisture at the
regional or larger scale. Compared with carefully designed,

large-scale in situ measurements, RS is by far the fastest and
most effective way of conducting soil moisture measure-
ments at such a spatial scale [Jackson, 1993; Njoku and
Entekhabi, 1996; Schmugge, 1998; Schmugge et al., 2002].
There are, however, some inherent limitations of remotely
sensed soil moisture, including the relatively shallow ob-
servation depths (�0–5 cm) [Jackson et al., 1995] and
coarse spatial resolutions of satellite-based remote sensing
[Njoku et al., 2003; Crow et al., 2005; Das and Mohanty,
2006]. Notwithstanding these limitations, a variety of meth-
ods of integrating RS soil moisture data with dynamic soil-
vegetation-atmosphere-transfer (SVAT) models have been
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proposed to advance the use of RS soil moisture in various
hydroclimatic applications [e.g., Jackson, 1993; Kostov and
Jackson, 1993; Entekhabi et al., 1994]. Most of the previous
studies were aimed at using near-surface RS soil moisture
data to retrieve root zone soil moisture required for initial-
izing SVAT applications [e.g.,Walker et al., 2001; Crow and
Wood, 2003; Dunne and Entekhabi, 2005].
[3] In recent literature, direct data assimilation and Kal-

man filtering of observed near-surface RS soil moisture data
have been used to condition/update (off-line) the simulated
soil moisture profiles in vadose zone modeling [e.g., Walker
et al., 2001; Reichle et al., 2001; Margulis et al., 2002;
Crow and Wood, 2003; Heathman et al., 2003; Das and
Mohanty, 2006]. The results of these soil moisture data
assimilation studies have been generally promising, but
when a significant disparity between the assimilated and
validation soil moisture data is apparent, the bias is often
attributed to uncertainties of the hydrological/constitutive
models, and the input data/parameters used, e.g., the soil
hydraulic parameters [Das and Mohanty, 2006]. Assuming
that the physically based models used are appropriate, then
the major issue boils down to the problem of scale-depen-
dent model parameters that are effective at that particular
spatial scale. The question is, What should be the appropri-
ate values of the soil hydraulic parameters on a particular
spatial scale, and how can they be determined [Mohanty and
Zhu, 2007]? In an RS pixel, we generally expect a mixture
of features, e.g., soil types, vegetation attributes, topographic
features, land management practices, etc., and the soil
moisture dynamics in this control volume is governed by
the interrelationships among these features and their
responses to different environmental and climatic forcings
[Mohanty et al., 2000; Mohanty and Skaggs, 2001]. In
large-scale hydrologic modeling, the concept of ‘‘effective
parameters’’ has been proposed to account for the hetero-
geneities in the pixel/grid scale [Feddes et al., 1993a,
1993b; Wood, 1994]. The effective soil hydraulic parame-
ters can be viewed as a representative set of parameters that
characterizes an equivalent homogenous land unit in lieu of
the real-world domain. Thus, when used in model applica-
tion it can approximate the mean of the ensemble flux at that
particular pixel derived from fully distributed/stochastic
simulations, or the mean flux from RS data in actual
measurements. Two methods are commonly used in defin-
ing these effective parameters: a bottom-up approach where
the point-scale soil hydraulic parameters are aggregated/
averaged into the scale of application, and a top-down
approach where the measurements of a state variable, e.g.,
near-surface soil moisture or evapotranspiration (ET) from
RS observations, at that particular scale are used as condi-
tioning criteria to define these parameters using inverse
modeling (IM). The bottom-up approach evolved from the
similar media scaling of Miller and Miller [1956]. Recent
studies of Zhu and Mohanty [2002, 2003, 2004], Zhu et al.
[2004], and Mohanty and Zhu [2007] (see also B. P.
Mohanty, unpublished data, 2006, http://vadosezone.
tamu.edu) attempted to establish guidelines for defining
these effective soil hydraulic parameters at various hydro-
logical conditions. The difficulty of the bottom-up approach
is the need for a large number of point scale soil hydraulic
parameters across a spatial domain, which are not always

available and very expensive and time-consuming to estab-
lish in real-world conditions. Furthermore, bottom-up
approaches need appropriate aggregation techniques for
averaging soil hydraulic parameters based on prevailing
hydroclimatic conditions as shown in the previous studies.
In contrast, the top-down approach is simpler and is a
promising alternative for estimating large-scale soil hydro-
logic properties, as the state variable is measured from a
remote sensing platform, and hence it can encompass large
areas (measurement support) for analysis. It is noteworthy
that a priori knowledge of soil classes in the RS pixel is not
a prerequisite for the top-down approach, as a wide range of
soils can be prescribed as a global search space for the
inverse analyses [Feddes et al., 1993a, 1993b]. However, if
limited footprint soil moisture (temporal) data are available
for inverse modeling, a priori information of the ranges of
footprint soil hydraulic parameters may be advisable.
[4] In this paper, following the work Ines and Mohanty

[2008a] on inverse modeling of near-surface soil moisture
with a genetic algorithm (GA) at the local scale, we present
our study on large-scale inverse modeling of near-surface
(airborne) remote sensing soil moisture data during the
Southern Great Plains 1997 (SGP97) [Jackson et al.,
1999] and Soil Moisture Experiment 2002 (SMEX02)
[Cosh et al., 2004] hydrology campaigns in Oklahoma
and Iowa, respectively. We also present a flexible frame-
work for addressing sources of uncertainties (data/modeling
errors) in the inverse modeling of large-scale near-surface
soil moisture from a GA perspective.

2. Materials and Methods

2.1. Near-Surface Soil Moisture Assimilation

[5] The main hypothesis used in this study is that near-
surface RS soil moisture data contain useful information
that can describe the effective hydrologic conditions of a
pixel such that when appropriately inverted would provide a
set of soil hydraulic parameters representative of that pixel.
To derive these footprint effective parameters, we explored
the top-down approach described by Ines and Mohanty
[2008a] for quantifying effective soil hydraulic parameters
in the soil profile, in which a multipopulated modified-
micro genetic algorithm (GA) [Ines and Droogers, 2002a;
Ines and Honda, 2005] (see also http://www.cuaerospace.-
com/carroll/ga.html) is coupled with a physically based soil-
water-atmosphere-plant (SWAP) model [Van Dam et al.,
1997] and used in the inverse estimation of soil hydraulic
parameters using mainly time series of near-surface soil
moisture as conditioning data. A multipopulated modified-
microGA uses multiple populations to explore the search
space of the inverse problem [Ines and Mohanty, 2008a;
Krishnakumar, 1989] (see also http://www.cuaerospace.-
com/carroll/ga.html). The main contribution of this paper
is the further improvements of the methodology [Ines and
Mohanty, 2008a] for large-scale parameter estimation appli-
cations using soil moisture data from airborne remote
sensing.
[6] SWAP is a 1-D variably saturated flow model that

solves the Richards equation to simulate the soil moisture
dynamics in a vertical soil column. The model uses the
Mualem–Van Genuchten equations [Van Genuchten, 1980;
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Mualem, 1976] to define the hydraulic properties of soil in
the control volume:

Se ¼
qðhÞ � qres
qsat � qres

¼ 1

1þ jahjn
� �m

ð1Þ

KðhÞ ¼ KsatS
l
e 1� 1� S1=me

� �mh i2
: ð2Þ

[7] To evaluate equation (1) and (2), parameters a, n, qres,
qsat, Ksat, and l, which are soil specific, must be determined
beforehand. At the scale of the airborne remote sensing
footprint, they are more perceived as effective (resultant)
parameters accounting for horizontal and vertical heteroge-
neity in the soil hydrologic unit. The pore-scale definitions
of these parameters are given as follows: a(cm�1) is a shape
parameter equivalent to the inverse of the bubbling pres-
sure; n( ) is a shape parameter that accounts for the pore size
distribution; qres(cm

3 cm�3) and qsat(cm
3 cm�3) are the

residual and saturated soil moisture content respectively;
Ksat (cm d�1) is the saturated hydraulic conductivity; and
l ( ) is a shape parameter that accounts for tortuosity in the
soil. On average, l is assumed to have a value of 0.5
[Mualem, 1976]; Van Genuchten [1980] proposed m to be
equal to 1 � 1/n; Se ( ) is the relative saturation and h is the
pressure head (�cm).
[8] SWAP considers the time-dependent top boundary

conditions in terms of either a flux or given head, controlled
dynamically based on a given set of nested criteria [Van
Dam et al., 1997] related to the atmospheric forcings and
hydrologic conditions at the soil surface. The bottom
boundary condition can posed in various forms, e.g.,

Dirichlet, Neumann, or Cauchy type. The model is an
integrated water management tool containing irrigation
and drainage modules as well as process-based crop growth
models for simulating the impacts of weather, soil type,
plant type, and water management practices on the growth
and development of the crops [Van Dam, 2000].
[9] The role of the genetic algorithm (GA) in inverse

modeling is to search for the effective parameters at the
footprint scale, while SWAP (parameterized at this scale) is
used to evaluate the proposed parameter sets to test their
suitability against a set criteria, e.g., reproducing the re-
gional fluxes/near-surface soil moisture in the pixel. GAs
are powerful techniques for solving complex problems in
hydrological and water resources systems [e.g., Wang,
1991; Cieniawski et al., 1995; Ritzel et al., 1994; Oliveira
and Loucks, 1997; Wardlaw and Sharif, 1999; Chan-Hilton
and Culver, 2000; Wu et al., 2006; Gwo, 2001; Vrugt et al.,
2001; Ines and Droogers, 2002a, 2002b; Ines et al., 2006].
A recent review of GA applications in hydrologic sciences
is given by Savic and Khu [2005]. For completeness, we
describe briefly the mechanics of GA in this section.
Genetic algorithms combine the survival of the fittest
mechanism with a structured but randomized information
exchange to search for solutions of complex search/
optimization problems [Holland, 1975; Goldberg, 1989].
The search spaces of the unknown parameters, e.g., the soil
hydraulic parameters, are discretized into finite lengths then
coded as sets of binary (zeros and ones) substrings (in
binary GA) laid out to form string structures called chro-
mosomes. The arrangement of bits within a chromosome is
a possible solution of the problem. First, a population of
chromosomes is randomly generated as a starting position

Figure 1. Schematic diagram of the inverse modeling-based near-surface soil moisture assimilation
using a multipopulated genetic algorithm [Ines and Mohanty, 2008a, 2008b].
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for the search. The chromosomes are individually evaluated
(here SWAP is invoked) to determine their suitability based
on a prescribed fitness function. Then they undergo the
process of selection, crossover, and mutation. On the basis
of their fitness, they compete to be selected, mate, and
reproduce for the next generation. During selection, the
fitter chromosomes survive and the weaker die. The win-
ning chromosomes randomly mate to exchange genetic
information by the process of crossover (to produce off-
spring). The new chromosomes (offspring) are subjected to
mutation to infuse fresh genetic materials for the new
generations and to restore certain genetic characteristics that
were lost due to degeneracy. The processes of selection,
crossover, and mutation are repeated for many generations
until the best possible solution (fittest chromosome) is
achieved. Detailed descriptions of GA are given byGoldberg
[1989] and Michalewicz [1996]. Figure 1 shows a sche-
matic of the inverse modeling-based near-surface soil
moisture assimilation using a multipopulated GA, in which
the final solutions are derived from those chromosomes (in
each population) whose fitness is above the grand average
fitness of the all the chromosomes [see Ines and Mohanty,
2008a].
[10] As one of our goals is incorporating sources of

uncertainties (e.g., data and modeling errors) in our regional
inverse modeling, we implemented two major approaches to
address this issue:
[11] 1. We used a modified-microGA in solving multiple

modeling conditions (i.e., combinations of initial and bot-
tom boundary conditions), respectively. If we define k as a

variable representing Mualem-Van Genucthen parameters
and p as elements of k, then k = {p} where p = {a, n, qres,
qsat, Ksat, l}. If l is fixed to a value of 0.5 [Mualem, 1976],
then we can define k = {pi=1,. . .,m�1, l} where i is the index
of parameter position in the GA chromosome and m is the
total number of soil hydraulic parameters (here m = 6). The
objective is to minimize the absolute difference Z(k)
between the observed RS near-surface soil moisture q̂(t)
and the simulated near-surface soil moisture q(k, t) across
time t (equation (3)), where j is the index of modeling
conditions, t is the running index for time, and N is the time
duration.

MinimizefZðkÞg ¼ 1

N

XN
t¼1

����qðk; tÞ � q̂ðtÞ
����
j

8j: ð3Þ

[12] We define the fitness of the chromosome p’ (short for
pi=1,. . .,m�1) in equation (4) which is used by GA to test the
suitability of p’:

fitnessðp0Þj ¼
1

1

N

XN
t¼1

����qðk; tÞ � q̂ðtÞ
����
j

8j: ð4Þ

[13] 2. We used a modified-microGA in solving multiple
modeling conditions collectively analogous to how a noisy
GA [Miller, 1997; Smalley et al., 2000; Wu et al., 2006]

Figure 2. Locations of the selected fields in (a) Southern Great Plains 1997 (SGP97) (Oklahoma) and
(b) Soil Moisture Experiment 2002 (SMEX02) (Iowa) sites.
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evolves a robust chromosome effective for many modeling
conditions. The objective is to minimize the overall absolute
difference Z(k) between the observed RS near-surface soil
moisture q̂(t) and the simulated near-surface soil moisture
q(k, t) across time t (equation (5)) for all the modeling

conditions j; M is the total number of modeling conditions
used.

MinimizefZðkÞg ¼ 1

M

XM
j¼1

1

N

XN
t¼1

����qðk; tÞ � q̂ðtÞ
����

" #
j

: ð5Þ

Figure 3. Airborne remote sensing (RS) soil moisture data: (a) Electronically Scanned Thin Array
Radiometer (ESTAR) (Little Washita (LW) fields) and (b) Polarimetric Scanning Radiometer (PSR)
(Walnut Creek (WC) fields).
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[14] We define the sampling fitness (Sfitness) of the
chromosome p’ in equation (6), which is used by GA to
measure the suitability of the chromosome in method 2:

Sfitnessðp0Þ ¼ 1

M

XM
j¼1

fitnessðp0Þj: ð6Þ

[15] The actual near-surface RS soil moisture data are
already corrupted with errors (e.g., sensor/calibration errors,
etc.), and hence the regional inverse modeling cannot
explicitly account for the data errors in the solution. To
demonstrate the capability of method 2 to account for data
errors more explicitly, we applied it using multiple sources
of data analogous to using various data sets from different
airborne sensors/replicates. In this part of the study, we used
airborne RS and regional in situ soil moisture data as our
sources of replicates. In reality, regional in situ soil moisture
data are not always available, but data from other airborne
RS sensors might be available for this purpose. We can also
perturb the available RS data based on its documented
accuracy. With multidata analysis, the chromosome suit-
ability is evaluated against the multiple data available in
addition to the ensemble of modeling conditions as de-
scribed above. In this paper, we call this approach method 2
with multidata analysis.
[16] The objective of method 2 with multidata analysis is

to minimize the overall absolute difference Z(k) between the
observed RS near-surface soil moisture q̂(t) and the
simulated near-surface soil moisture q(k, t) across time t
(equation (7)) for all modeling conditions j and for all data
sources r; R is the total number of data sources/replicates:

MinimizefZðkÞg ¼
XR
r¼1

1

M

XM
j¼1

1

N

XN
t¼1

����qðk; tÞ � q̂ðtÞ
����

" #
j

8<
:

9=
;

r

:

ð7Þ

[17] Here we define the sampling fitness (Sfitness) of the
chromosome p’ as in equation (8). Each data source r can be
weighted (deterministic/stochastic) with wr so that data with
lesser errors (higher quality) can be given more significance
in the inverse modeling, and vice versa (equation (8)). Here

we used a deterministic approach to weighting the data
sources in which both sources have equal weights or
contributions to the sampling fitness:

Sfitnessðp0Þ ¼
XR
r¼1

wr �
1

M

XM
j¼1

fitnessðp0Þj

( )
r

: ð8Þ

[18] The uncertainties of top boundary conditions (e.g.,
precipitation forcing) are equally important to be included in
the estimation of soil hydraulic properties at the footprint
scale [e.g., Peters-Lidard et al., 2008]. Methods 1 and 2 are
flexible to account for the uncertainties in rainfall measure-
ments (e.g., using multiple station rainfall data and/or from
radar measurements). In this study, we assumed that the
observed rainfall data used are representative of the airbone
RS footprints (see section 2.2.1). Furthermore, method 2
(see equation (7)) can be generalized to include other
sources of uncertainties in inputs, parameters (soil hydrau-
lics/root water uptake), and model structures (e.g., using
different soil constitutive and/or hydrological models).
Considering all these sources of uncertainties, however,
will compromise the efficiency (i.e., computational time) of
the evolutionary process. Under this setup, the analysis of
uncertainties should be done with care because they are not
of Bayesian type.
[19] A cross validation of the soil hydraulic parameters

derived from methods 1 and 2 was performed to check if the
parameters derived from one modeling condition (i.e.,
initial/bottom boundary ensembles) are applicable to the
other modeling conditions used.

2.2. Data and Experiments

2.2.1. Locations of the Study
[20] Figure 2 shows the locations of the selected fields in

the Southern Great Plains 1997 (SGP97) Hydrology Exper-
iment and the Soil Moisture Experiment 2002 (SMEX02)
regions used in this study. We selected these fields or
airborne RS footprints because of the availability of
ground-truth soil moisture and soil hydraulic properties data
sets collected using spatially distributed sampling schemes
during the field campaigns for in situ and laboratory
measurements [Mohanty and Skaggs, 2001; Jacobs et al.,
2004; Mohanty et al., 2002] (see also B. P. Mohanty,
unpublished data, 2006, http://vadosezone.tamu.edu). These
data sets can be used to validate the RS footprint-scale
results based on the IM-based near-surface soil moisture
assimilation experiments.

Table 1. Representations of the Mualem-Van Genuchten Para-

meters in the Genetic Algorithma

Parameter

Search Space

Number of Bits (L) 2L
Minimum
Values

Maximum
Values

a (cm�1) 0.0060 0.0330 5 32
n ( ) 1.200 1.610 6 64

qres (cm
3 cm�3) 0.061 0.163 7 128

qsat (cm
3 cm�3) 0.37 0.55 5 32

Ksat (cm d�1) 1.84 55.7 10 1024

aFrom Ines and Mohanty [2008a]. Global search space = 32� 64� 128�
32 � 1024 = 8,589,934,592. Example of k = {a, n, qres, qsat, Ksat} =

{00101 110010 0001111 00001 0101000101}. Probability of crossover =

0.5; probability of creep mutation = 0.5; probability of intermittent jump

mutation = 0.05; population = 10 chromosomes; number of multipopulation

= 3; maximum generation = 500.

Table 2a. Derived Effective Soil Hydraulic Parameters for SGP97

Fields LW03, LW13, and LW21 Using Method 1 Under Ground-

water Conditions

Statistics
a

(cm�1)
n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

LW03 Mean 0.022 1.601 0.101 0.373 46.0
SD 0.006 0.012 0.005 0.005 6.1

LW13 Mean 0.023 1.570 0.062 0.391 30.3
SD 0.006 0.043 0.001 0.020 15.3

LW21 Mean 0.026 1.577 0.118 0.379 30.7
SD 0.006 0.027 0.008 0.010 14.9
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[21] The selected fields/RS footprints from SGP97 sites
in Oklahoma are composed of LW03, LW13, and LW21 of
Little Washita (LW) watershed (Figure 2a). The LW03 field
is characterized by a mixture of sandy loam and loam with
grass cover, while the LW13 field is characterized by a
mixture of silt loam and loam with grass cover. The LW21
field, on the other hand, is characterized by a mixture of silt
loam and loam with grass/wheat vegetation cover. Daily
weather data for the period of January–December 1997
were collected from different U.S. Department of Agricul-
ture Agricultural Research Service (USDA-ARS) micronet
sites, nearest to the selected fields. Here we used micronet
sites ARS124, ARS136, and ARS151 for LW03, LW13, and
LW21, respectively (http://grl.ars.usda.gov/micronet/).
More detailed descriptions of the selected SGP97 study
sites and ground soil moisture sampling protocols are given
by Mohanty and Skaggs [2001].
[22] The selected SMEX02 fields in Iowa are WC11,

WC12, WC13, and WC14 of the Walnut Creek (WC)
watershed (Figure 2b). The WC11 field consists of a
mixture of clay loam and loam, and a cropped area with
primarily corn and a patch of soybean. The WC12 field is
also characterized by a mixture of clay loam and loam and
planted to corn. The WC13 and WC14 fields have a mixture

of clay loam, loam and silty clay loam, and planted to row-
cropped (WC13) and broadcasted (WC14) soybean. Daily
weather data from January–December 2002 were collected
from a nearby Soil-Climate-Analysis-Network (SCAN) sta-
tion at Ames, Iowa [Jackson, 2002] (see also http://
www.wcc.nrcs.usda.gov/scan/). We used only one set of
daily weather data for these four adjacent fields/RS
footprints WC11, WC12, WC13, and WC14 in the model
simulation and inverse analyses. Detailed descriptions of the
selected SMEX02 field sites and ground soil moisture
sampling protocols can also be found elsewhere [Jacobs et
al., 2004].
2.2.2. Airborne RS Near-Surface Soil Moisture Data
[23] In Oklahoma, airborne L-band passive microwave

remote sensor electronically scanned thinned array radiom-
eter (ESTAR) soil moisture data sets [Jackson et al., 1999]
from the SGP97 campaign database (http://disc.gsfc.nasa.
gov/fieldexp/SGP97/estar.html), ranging from DOY 169–
171, 176–178, 180–184, 192–195, and 197 (June–July
1997), were processed with ENVI image processing
software [Research Systems, Inc., 2003]. The 16 ESTAR
soil moisture data were georeferenced and stacked as a
series of map layers in an ascending order, based on the day
of year (DOY) for easy retrieval of the time series of soil
moisture data. The ESTAR footprints/pixels corresponding
to the locations of LW03, LW13, and LW21 (Figure 2a)
were determined and the time series of near-surface soil
moisture data were extracted (Figure 3a) for the inverse
analyses.
[24] In Iowa, airborne C-band passive microwave remote

sensor Polarimetric Scanning Radiometer (PSR) soil mois-
ture data [Bindlish, 2004] from the SMEX02 campaign
(http://nsidc.org/data/amsr_validation/soil_moisture/smex02/)
were used for the inverse analyses. The data contained
near-surface soil moisture measurements of DOY 176,
178, 180, 182, 185, 189, and 190–193 (June–July 2002).
The 10 PSR soil moisture images were georeferenced and

Table 2b. Derived Effective Soil Hydraulic Parameters for SGP97

Fields LW03, LW13, and LW21 Using Method 1 Under Free-

Drainage Conditions

Statistics
a

(cm�1)
n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

LW03 Mean 0.006 1.479 0.068 0.41 53.9
SD 0.001 0.053 0.014 0.02 1.4

LW13 Mean 0.007 1.595 0.063 0.538 36.221
SD 0.001 0.015 0.003 0.013 10.544

LW21 Mean 0.009 1.417 0.126 0.388 41.4
SD 0.008 0.098 0.010 0.023 12.7

Figure 4. Comparison of derived q(h) (Dassim) from method 1 under groundwater conditions,
UNSODA and observed (field average and spread) soil water retention curves for the selected fields at
SGP97 site: (a) LW03 (N = 20), (b) LW13 (N = 17), and (c) LW21 (N = 5). N indicates the number of
samples; L is l L is sandy loam, and SiL is silt loam.
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stacked in the same manner as that of the ESTAR data.
Furthermore, we located the PSR footprints/pixels colo-
cated with the geographic locations of the WC11, WC12,
WC13, and WC14 fields (Figure 2b), and then we
extracted the time series of soil moisture data for the
inverse analyses (Figure 3b). Both PSR (SMEX02) and
ESTAR (SGP97) based remotely sensed soil moisture data
have 800 m � 800 m footprint/pixel resolutions. Both
PSR and ESTAR have soil moisture observation depths of
5 cm. Uncertainties associated with the data could mainly
come from the data processing and retrieval algorithm of
soil moisture from passive microwave based brightness
temperature, and associated within-pixel variability of soil
texture, topography, vegetation, and systemic errors from
the airborne sensors/aircraft operations.
2.2.3. Soil Hydraulic Properties Measurement
[25] For the SGP97 region, we collected soil cores from

different depths at representative (soil, topography, and
vegetation) sites based on a priori information from digital
maps (http://www.essc.psu.edu/nasa_lsh/) and site inspec-
tion. Although in the database we provided more detailed
and unbounded site classifications for future researchers,
various combinations of soil texture (12 USDA classes),
relative position (valley, hillslope, hilltop), and vegetation
type (grass, shrub, crop) were used as the primary groups
for our site selection protocol. A total of 157 surface soil
cores were collected from 46 quarter sections within the
Little Washita (LW), El Reno (ER), and Central Facility
(CF) intensive study areas. In addition to the surface cores,
four or five subsurface soil cores were collected at depths of
up to 1 m at selected sites (based on soil morphologic
characteristics) within the LW, ER, and CF areas. Soil cores
were analyzed in the laboratory for soil hydraulic properties
[Mohanty et al., 2002]. Similar soil core sampling protocols
were followed for the SMEX02 region. A total of 50 sets of
soil water retention and hydraulic conductivity observations
were made within the Walnut Creek watershed in Iowa

(B. P. Mohanty, unpublished data, 2006, http://vadosezone.
tamu.edu).
2.2.4. Numerical Experiments
[26] Considering a typical dynamic vadose zone of 2 m

depth (from the soil surface), we conducted the numerical
experiments for parameter estimation with the notion that
our soil hydrologic modeling domains are effective in
nature (i.e., reflecting the resultant behavior of hydrologic
processes in the spatially heterogeneous porous medium).
Hence we used pixel-representative (i.e., 800 m � 800 m)
hydroclimatic forcings and validation data in the simula-
tions, such as representative crop/vegetation, precipitation,
and other meteorological variables and remotely sensed/
regional in situ soil moisture data [Mohanty et al., 2002,
2000; Mohanty and Skaggs, 2001; Jacobs et al., 2004]. The
effective soil hydraulic properties that characterize the
modeling domain were determined by the GA-based inverse
modeling using the available time series of RS near-surface
soil moisture data as conditioning criteria. A wide range of
soils (from clay loam to sandy loam in terms of soil
hydraulic parameter values) were used as search spaces
during the inverse analyses matching the concept of
effective parameters rather than any dominant soil texture
within the study pixel (see Table 1).
[27] For methods 1 and 2 (section 2.1) we considered two

major bottom/lower boundary conditions. First, a lower
boundary condition prescribed by a groundwater table
and, second, a lower boundary prescribed under a free-
drainage condition (i.e., @h/@z = 0). Under the groundwater
condition, we used three modeling conditions (ensembles),
namely, 100-, 150-, and 200-cm water table depths. For the
free-drainage condition, three modeling conditions (ensem-
bles) were considered as well, uniform soil profile initial
conditions of �100-, �500-, and �1000-cm pressure heads,
respectively. Under water table conditions the initial profile
soil water pressures are in equilibrium with the groundwater
table. In summary, the number of modeling conditions used

Figure 5. Comparison of derived q(h) (Dassim) from method 1 under free drainage conditions,
UNSODA and observed (field average and spread) soil water retention curves for the selected fields at
SGP97 site: (a) LW03 (N = 20), (b) LW13 (N = 17), and (c) LW21 (N = 5). N indicates the number of
samples; L is loam, SL is sandy loam, and SiL is silt loam.
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for method 1 are three for groundwater, and three for free-
drainage conditions, respectively (equation (3)), and in
method 2 there are six different modeling conditions used
(all groundwater and free-drainage conditions simulta-
neously; equations (5) and (7)).
[28] In SGP97 pixels, the simulation periods for fields

LW03 and LW13 included 1 January to 31 December 1997,
where SWAP models grass cover as an annual crop with a
365-d cycle. Nevertheless, we only considered the simulated
near-surface soil moisture data q(z = 0–5 cm, t)
corresponding to the DOYs when RS soil moisture data
were available for evaluating the fitness of a generated
combination of parameters p’. We used wheat crop as the
dominant vegetation cover for the LW21 field. Note,
however, that during the SGP97 campaign the wheat
crops were already harvested. To include the wheat
cropping season in the simulations and allow enough time
for model spinning/initialization prior to the growing season,
the SWAP model was run during 1 September 1996 to
31 August 1997.
[29] For SMEX02 pixels, we considered corn as the

dominant vegetation cover for the WC11 and WC12
fields, and the simulations covered the period from 1 May
to 31 October 2002. Similarly, the simulation periods for
fields WC13 and WC14 with predominantly soybean cover
also included from 1 May to 31 October 2002. All these
gently rolling fields/footprints in the SMEX02 and SGP97
regions were considered flat from the runoff and run-on
generation perspective, and thus the resultant water flow
was only in vertical direction at the model domain/airborne
RS footprint scale (800 m � 800 m). SWAP uses the root-
water uptake model of Feddes et al. [1978] to model the
root-soil moisture dynamics in the vadose zone. Here we
used measured rooting depths as inputs to the root-water
uptake model. A trapezoidal root density was assumed for
all the simulations in SMEX02 and SGP97 sites.
[30] For the multidata analysis (equation (7)), we used

airborne RS and regional u soil moisture data [Mohanty

and Skaggs, 2001; Jacobs et al., 2004] as our sources of
replicates. All inverse modeling runs performed in this
study were applied within the multipopulated GA frame-
work outlined by Ines and Mohanty [2008a].

2.3. Cross Validation of Derived Effective q(h), K(h),
and q(z,t)
[31] From the inverse modeling based on methods 1 and

2 described earlier, we compared the derived q(h) and K(h)
with the (arithmetic) average soil hydraulic functions (1)

Figure 6. Comparison of derived q(h) (Dassim) from method 2 (i.e., under all groundwater and free
drainage conditions, collectively), UNSODA and observed (field average and spread) soil water retention
curves for the selected fields at SGP97 site: (a) LW03 (N = 20), (b) LW13 (N = 17), and (c) LW21 (N = 5).
N indicates the number of samples; L is loam, SL is sandy loam, and SiL is silt loam.

Figure 7. Comparison of derived q(h) (Dassim) from
method 2 under multidata analysis, UNSODA and observed
(field average and spread) soil water retention curves for the
LW13 (N = 17) field at SGP97 site. N indicates the number
of samples; L is loam, SL is sandy loam, and SiL is silt
loam.
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measured using the soil cores collected from the fields
[Mohanty et al., 2002] and (2) for the dominant soil textures
at the particular fields/RS footprints from the UNSODA
database [Leij et al., 1999

[32] We cross validated the estimated q(h) and K(h) by
comparing the simulated near-surface soil moisture and the
areal-average near-surface soil moisture measured by
ground-based theta probes across the LW03, LW13, and

Figure 8. Simulated and cross-validated near-surface soil moisture (z = 0–5 cm) using method 1 under
groundwater conditions versus ESTAR and observed areal-average (with spread) soil moisture during
SGP97: (a) LW03 (N = 49), (b) LW13 (N = 49), and (c) LW21 (N = 49). N indicates the number of
samples. Top panels are applied to all groundwater conditions; bottom panels are applied to all free
drainage conditions.
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LW21 (SGP97) fields [Mohanty and Skaggs, 2001] and the
WC11, WC12, WC13, and WC14 (SMEX02) fields [Jacobs
et al., 2004]. The cross validation was performed by
applying the derived soil hydraulic functions across the
ensemble of modeling conditions (i.e., q(h) and K(h)
derived from groundwater boundary conditions were
applied to both groundwater and free-drainage conditions,
and vice versa). Mean, standard deviation, correlation
coefficient (R), mean bias error (MBE), and root mean
square error (RMSE) of modeled and measured values were
used to evaluate the performance of the GA-based inverse
modeling and near-surface soil moisture assimilation in
deriving the effective soil hydraulic properties at the
footprint of the airborne sensors.
[33] The average areal soil water retention and hydraulic

conductivity functions are derived using equations (9) and
(10), and the areal near-surface soil moisture was deter-
mined using equation (11), where �q(h) is the average soil
water retention at pressure head h; qi(h) is the soil water

retention for soil sample i at pressure head h; �K(h) is the
average unsatured/saturated hydraulic conductivity at pres-
sure head h; Ki(h) is the unsaturated/saturated hydraulic
conductivity of soil core sample i at pressure head h; N is
the number of soil core samples for hydraulic property
measurements or soil moisture sampling points; and �q(z,t) is
the areal-average near-surface (z = 0–5 cm) soil moisture on
day t.

�qðhÞ ¼ 1

N

XN
i¼1

qiðhÞ 8h ð9Þ

�KðhÞ ¼ 1

N

XN
i¼1

KiðhÞ 8h ð10Þ

Figure 9. Sample results of simulated and cross-validated
near-surface soil moisture (z = 0–5 cm) using method 1
under free drainage conditions versus ESTAR and observed
areal-average (with spread) soil moisture at LW03 (N = 49)
during SGP97: (a) applied to all free drainage conditions
and (b) applied to all groundwater conditions. N indicates
the number of samples.

Table 2c. Derived Effective Soil Hydraulic Parameters for SGP97

Fields LW03, LW13, and LW21 Using Method 2 (Under All

Groundwater and Free-Drainage Conditions, Collectively)

Statistics
a

(cm�1)
n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

LW03 Mean 0.032 1.601 0.113 0.374 44.735
SD 0.001 0.010 0.002 0.004 4.616

LW13 Mean 0.021 1.370 0.065 0.373 27.157
SD 0.010 0.048 0.004 0.004 14.684

LW21 Mean 0.032 1.602 0.129 0.373 12.409
SD 0.001 0.005 0.002 0.004 1.097

Figure 10. Sample results of simulated and cross-
validated near-surface soil moisture (z = 0–5 cm) using
method 2 (i.e., under all groundwater and free drainage
conditions, collectively) versus ESTAR and observed areal-
average (with spread) soil moisture at LW03 (N = 49)
during SGP97: (a) applied to all groundwater conditions and
(b) applied to all free drainage conditions. N indicates the
number of samples.

Table 2d. Derived Effective Soil Hydraulic Parameters Using

Method 2 Under Multidata Analysis

Statistics
a

(cm�1)
n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

SGP97
LW13 Mean 0.022 1.351 0.096 0.409 13.312

SD 0.009 0.102 0.029 0.023 9.705

SMEX02
WC12 Mean 0.031 1.581 0.128 0.376 53.148

SD 0.005 0.038 0.023 0.008 4.970
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�qðz; tÞ ¼ 1

N

XN
i¼1

qiðz; tÞ 8t: ð11Þ

3. Results and Discussions

3.1. SGP97 Sites, Oklahoma

3.1.1. Effective Soil Hydraulic Properties and Soil
Moisture for Selected SGP97 Fields
[34] Tables 2a and 2b show the derived effective soil

hydraulic parameters for each selected SGP97 fields (LW03,

LW13, LW21) under groundwater and free-drainage con-
ditions using method 1 (see section 2.1). In method 1, the
soil hydraulic parameters are determined under different
modeling conditions independently (under the multipopula-
tion framework). Then the solutions from these individual
conditions are aggregated to form the final solution of the
inverse problem. In this part of the study, we made distinc-
tions between groundwater and free-drainage conditions as
lower boundary conditions to validate if those parameters
derived under one condition are applicable or not to other
modeling conditions. Apparently, the derived effective soil
hydraulic parameters from groundwater conditions are not
similar to those derived from free-drainage conditions
(Tables 2a and 2b). It appears that the soil hydraulic param-
eters derived from free-drainage conditions depict wetter soil
hydraulic functions, i.e., higher saturated soil moisture con-
tents and higher bubbling pressures (i.e., lesser a values)
(see Figures 4 and 5; see also Figures 6 and 7). Interesting
characteristics of these functions are more evident after we
applied them in forward modeling.
[35] In Figures 8a–8c, the responses of our SGP97

modeling domains (LW03, LW13, LW21) from forward
modeling are shown. These soil moisture dynamics were
simulated using soil hydraulic parameters derived from
method 1 under groundwater conditions (Table 2a). It is
evident that the parameters used are applicable for both
groundwater (Figures 8a–8c, top plots) and free drainage
conditions (Figures 8a–8c, bottom plots), suggesting the
robustness of the derived soil hydraulic parameters. The
apparent variability of the simulated soil moisture contents

Figure 11. Sample results of simulated and cross-vali-
dated near-surface soil moisture (z = 0–5 cm) using method
2 under multidata analysis versus ESTAR and observed
areal-average (with spread) soil moisture at LW13 (N = 49)
during SGP97: (a) applied to all groundwater conditions and
(b) applied to all free drainage conditions. N indicates the
number of samples.

Table 3a. Performance of Method 1 Under Groundwater Condi-

tions at SGP97 Sitesa

Fields

Simulated Versus RS Simulated Versus Ground

R MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
LW03 0.81 0.035 0.046 0.84 0.040 0.032
LW13 0.86 �0.016 0.027 0.81 �0.073 0.080
LW21 0.73 0.025 0.044 0.47 0.026 0.044

Applied to All Free Drainage Conditions
LW03 0.74 �0.005 0.036 0.76 0.000 0.026
LW13 0.78 �0.045 0.053 0.71 �0.102 0.110
LW21 0.61 �0.017 0.048 0.48 �0.012 0.042

aR is correlation coefficient ( ); MBE is mean bias error (cm3 cm�3);
RMSE is root mean square error 3 m�3).

Table 3b. Performance of Method 1 Under Free Drainage

Conditions at SGP97 Sites

Fields

Simulated Versus RS Simulated Versus Ground

R MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
LW03 0.65 0.193 0.195 0.58 0.203 0.195
LW13 0.79 0.241 0.244 0.76 0.192 0.187
LW21 0.66 0.005 0.040 0.51 0.008 0.040

Applied to All Free Drainage Conditions
LW03 0.81 0.003 0.030 0.85 0.006 0.019
LW13 0.86 �0.018 0.030 0.82 �0.075 0.082
LW21 0.65 0.109 0.118 0.51 0.110 0.112

Table 3c. Performance of Method 2 (Under All Groundwater and

Free Drainage Conditions, Collectively) at SGP97 Sites

Fields

Simulated Versus RS Simulated Versus Ground

R MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
LW03 0.78 0.011 0.038 0.81 0.015 0.019
LW13 0.90 �0.001 0.020 0.87 �0.059 0.065
LW21 0.72 0.006 0.037 0.49 0.007 0.041

Applied to All Free Drainage Conditions
LW03 0.75 0.006 0.037 0.77 0.011 0.022
LW13 0.81 �0.015 0.031 0.76 �0.071 0.081
LW21 0.65 0.001 0.041 0.52 0.005 0.039
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under groundwater conditions can be attributed to the vari-
able responses of the modeling domains using parameters
derived from one groundwater condition (see section 2.2.4)
and then applying them to the others in the forward
modeling, and vice versa. It also suggests that soil hydraulic
parameters derived from one groundwater condition are not
exactly the same from the parameters derived from the other
modeled groundwater conditions (see section 2.2.4). Further
analysis showed that parameters derived under a deeper
water table scenario have produced wetter near-surface soil
moisture contents when being applied at a shallower water
table condition (not shown).
[36] Figures 9a and 9b also shows a sample forward

modeling results (LW03 field) using soil hydraulic param-
eters derived by method 1 under free drainage conditions
(Table 2b). Apparently, the parameters performed well
under free drainage conditions (Figure 9a) with small var-
iability in the simulated near-surface soil moisture. However,
when applied under groundwater conditions (Figure 9b), it is
evident that the simulated soil moisture contents are too wet
compared with the observed RS and in situ soil moisture data.
This was expected because of the wetter soil hydraulic
functions derived bymethod 1 under free drainage conditions
(Table 2b; Figure 5). This behavior is consistent with the
other SGP97 fields.
[37] The preceding discussion suggests that the parame-

ters derived by method 1 are mostly applicable to the
modeling conditions they were subject from, with a small
exception for parameters derived under groundwater con-
ditions. The question remains then, How can we derive a set
of soil hydraulic parameters that are effective for all
modeling conditions? Method 2 was designed to address
this question in which the parameter search was evaluated
against all modeling conditions (groundwater and free
drainage) simultaneously (see section 2.1). Since we are
looking for sets of soil hydraulic parameters that are
effective for all modeling conditions, it is hypothesized that
these parameter sets are narrow in variability so that they
can satisfy all the modeling conditions used for replicating
the near-surface RS soil moisture. Table 2c shows the
effective soil hydraulic parameters derived for LW03,
LW13, and LW21 fields using method 2. At a glance, they
seem to correspond well with those parameters derived
under groundwater conditions in method 1, but Figure 6
shows that they are different. Aside from the narrower
variability of the derived soil hydraulic functions, some
significant improvements are observed especially for the
case of LW13 field (Figure 6b versus Figures 4b and 5b).
This result suggests that there could be variability in

hydrologic conditions (at LW13) that were accounted for
when we integrated together several modeling conditions in
the inverse solutions, which were not accounted for by the
earlier implementations of method 1 (Figures 4b and 5b). A
sample performance of the derived soil hydraulic parame-
ters in simulating the near-surface soil moisture when used
in forward simulations is shown in Figures 10a and 10b (for
LW03). It is evident that the derived parameters are ‘‘effec-
tive’’ for all the modeling conditions used (groundwater
(Figure 10a) and free drainage (Figure 10b)). Interesting to
note is the narrower variability of the simulated soil mois-
ture contents among the groundwater conditions in method 2
compared with method 1 (Figure 8a, top plot). This small
variability suggests that the derived parameters in method 2
produced almost similar near-soil moisture contents across
the spectrum of groundwater conditions used. This further
supports the ‘‘effective’’ nature of the derived soil hydraulic
parameters.
[38] However, remote sensing data are always corrupted

with certain (e.g., retrieval algorithm, sensor accuracy, geo-
projection) errors. To illustrate the potential of method 2 in
including data errors to the inverse analysis, we used the in
situ regional (average) soil moisture as a replicate for the
ESTAR data (see sections 2.1 and 2.2.4; equations (7) and
(8)). Usually, this is done by introducing a white noise
(based on RS accuracy) to the original RS data to produce
stochastic replicates. In equation (8), we gave equal weights
to both the ESTAR and regional in situ soil moisture data.
Table 2d shows the derived soil hydraulic parameters
(LW13) using method 2 under multidata analysis. LW13
was chosen for further analysis because as shown in Figure 8c

Table 3d. Performance of Method 2 Under Multidata Analysis

Fields

Simulated Versus RS Simulated Versus Ground

RemarksR MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
LW13 0.90 0.064 0.067 0.87 0.004 0.022 SGP97
WC12 0.76 0.022 0.049 0.92 0.102 0.106 SMEX02

Applied to All Free Drainage Conditions
LW13 0.86 0.042 0.049 0.81 �0.016 0.032 SGP97
WC12 0.79 0.010 0.046 0.90 0.088 0.093 SMEX02

Table 4a. Derived Effective Soil Hydraulic Parameters for

SMEX02 Fields WC11, WC12, WC13, and WC14 Using Method

1 Under Groundwater Conditions

Statistics

a
(cm�1)

n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

WC11 Mean 0.024 1.599 0.137 0.373 33.3
SD 0.005 0.010 0.005 0.004 14.7

WC12 Mean 0.028 1.603 0.112 0.373 53.4
SD 0.004 0.007 0.038 0.006 4.0

WC13 Mean 0.026 1.605 0.098 0.373 55.4
SD 0.006 0.005 0.034 0.004 0.2

WC14 Mean 0.027 1.604 0.110 0.373 55.1
SD 0.005 0.007 0.039 0.004 0.7

Table 4b. Derived Effective Soil Hydraulic Parameters for

SMEX02 Fields WC11, WC12, WC13, and WC14 Using Method

1 Under Free Drainage Conditions

Statistics

a
(cm�1)

n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

WC11 Mean 0.014 1.600 0.138 0.370 47.63
SD 0.003 0.008 0.003 0.000 9.52

WC12 Mean 0.011 1.593 0.109 0.373 55.112
SD 0.004 0.024 0.031 0.004 0.610

WC13 Mean 0.008 1.554 0.088 0.373 55.409
SD 0.002 0.053 0.026 0.003 0.396

WC14 Mean 0.009 1.574 0.105 0.373 54.871
SD. 0.002 0.038 0.035 0.003 0.795
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it appears that the RS soil moisture underestimates the
regional in situ soil moisture. Hence the soil hydraulic
parameters derived earlier from method 2 only represent
the information contained from remote sensing data. By
including the regional soil moisture as additional condition-
ing criteria, we may be able to find a more robust soil
hydraulic parameter set for LW13. The performance of this
parameter set (Table 2d; Figure 7) is illustrated in Figures 11a
and 11b. It appears that the multidata analysis improved the
replication of the regional in situ soil moisture. The spreads
of the simulated soil moistures (Figures 11a and 11b)
have also increased because both the information contents
of the data (ESTAR and regional in situ) are being used
in conditioning the soil hydraulic parameters (compare
Table 2c and 2d; LW13). It also shows in Figure 7 that in
order to simulate better the regional in situ soil moisture, the
soil hydraulic function has to be slightly wetter (see
Figure 6b). Note, however, that under the combined mod-
eling conditions used, the regional in situ data were more
favored by method 2 than the remote sensing data in the
multidata analysis (Figures 11a and 11b). In operational
mode, Figures 11a and 11b ombined usually to produce

consolidated simulation results that can account for both
modeling and data errors.
3.1.2. Validation
[39] Methods 1 and 2, and the multidata variant of

method 2, were validated using laboratory and field mea-
sured soil hydraulic data from the SGP97 fields and by
texture-based data from UNSODA database [Leij et al.,
1999]. Figures 4–7 show the comparisons of the derived
soil hydraulic functions with laboratory measurements and
UNSODA. Tables 3a–3d, on the other hand, show the
correlations (R), mean bias error (MBE), and root mean
square error (RMSE) of the simulated and observed soil
moisture contents (RS and regional in situ (defined as
ground)). The simulated versus RS columns serve as our
calibration (although in the forward modeling the parameter
sets from one modeling condition were applied to all
modeling conditions used, akin to cross validation); while
the simulated versus soil cores serve as full validation of the
derived soil hydraulic parameters.
3.1.2.1. Method 1 Under Groundwater Conditions
[40] Except for LW13, the observed average (regional)

soil water retention curves (see equation (9)) are well

Figure 12. Comparison of derived q(h) (Dassim) from method 1 under groundwater conditions,
UNSODA and observed (field average and spread) soil water retention curves for the selected fields at
SMEX02 site: (a) WC11 (N = 6), (b) WC12 (N = 4), (c) WC13 (N = 6), and (d) WC14 (N = 3). N
indicates the number of samples; L is loam, CL is clay loam, and SiCL is silty clay loam.
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represented by the inverse modeling estimates (Dassim).
Interesting to note is that the UNSODA data also repre-
sented well the observed values, suggesting that under the
current conditions (physical/hydroclimatic) of the SGP97
fields, texture-based soil hydraulic data could perhaps be
used to estimate the regional soil hydraulic properties of the
fields. The SGP97 fields are composed mostly of undis-
turbed soils since there were limited agricultural activities
(major land use is grassland) observed in the area. Ksat

values also correspond well within the UNSODA range (for
loam, silt loam, sandy loam) [Leij et al., 1999] and the
observed (regional) field data [Ines and Mohanty, 2008b]. In
Table 3a, the Rcalibration ranges from 0.73 to 0.86 while the
Rvalidation ranges from 0.47 to 0.84 when parameters derived
under groundwater conditions are applied under ground-
water conditions. The MBEvalidation (and RMSEvalidation) of
LW13 field showed an underestimation of the regional in
situ soil moisture contents. It is noteworthy that the
correlations decreased (both in calibration and validation
modes) when these (groundwater based) parameters were
applied under free drainage conditions. The bias is still
evident in the case of LW13 field.

3.1.2.2. Method 1 Under Free Drainage Conditions
[41] Evidently, based on our previous observations

(section 3.1.1) the correlations and errors (see Table 3b)
of the simulated and observed soil moisture contents (both
in calibration and validation modes) are better when the
parameters derived under free drainage conditions are
applied under free drainage lower boundary conditions in
the forward modeling with the exception of LW21, suggest-
ing that in this field, groundwater lower boundary condi-
tions might be better applied. Except for LW21, the
parameters derived under free drainage conditions produced
wetter soil moisture (see MBE in Table 3b) when they are
applied under groundwater conditions. The derived soil
hydraulic properties appear to have higher water holding
capacity than expected (see Figure 5).
3.1.2.3. Method 2 Under Both Groundwater and Free
Drainage Conditions
[42] Usually at the footprint scale, we do not know

exactly what the appropriate modeling conditions to be
used for our forward/inverse modeling. In method 2, this
uncertainty is accounted for by including many initial and
lower boundary conditions in the analysis simultaneously.

Figure 13. Comparison of derived q(h) (Dassim) from method 1 under free drainage conditions,
UNSODA and observed (field average and spread) soil water retention curves for the selected fields at
SMEX02 site: (a) WC11 (N = 6), (b) WC12 (N = 4), (c) WC13 (N = 6), and (d) WC14 (N = 3). N indicates
the number of samples; L is loam, CL is clay loam, and SiCL is silty clay loam.
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Table 3c shows the robustness of the derived soil hydraulic
parameters applied under groundwater and free drainage
conditions, respectively. Note the comparable correlations
and errors (MBE and RMSE) of the simulated and observed
soil moisture contents under calibration and validation
mode. These results appear also to be more robust than
those shown in Tables 3a–3b (see also Figures 4 and 6),
although the negative bias (validation) of the simulated soil
moisture is still apparent in LW13 field, suggesting that the
simulated values underpredict the regional in situ data.
3.1.2.4. Method 2 With Multidata Analysis
[43] If we consider both the ESTAR and regional in situ

soil moisture data in the parameter estimation, we can see
that the errors (MBE and RMSE) between simulated and
ground values were reduced considerably, suggesting that
the regional in situ data are now well represented. However,
the errors between the simulated and ESTAR values have
increased relatively (see Table 3d, LW13 and SGP97). Note
that both data sets were given the same weights in the
inverse modeling. The correlations remained strong in both
groundwater and free drainage conditions.

3.2. SMEX02 Sites, Iowa

3.2.1. Effective Soil Hydraulic Properties and Soil
Moisture for Selected SMEX02 Fields
[44] Tables 4a and 4b also show the derived soil hydraulic

parameters for the selected SMEX02 fields WC11, WC12,
WC13, and WC14 using method 1 under groundwater
(Table 4a) and free drainage (Table 4b) conditions, respec-
tively. The general trend that the soil hydraulic properties
derived under free drainage conditions are wetter as com-
pared with those derived under groundwater conditions is
still evident (Tables 4a and 4b; Figures 12 and 13; see also
Figures 14 and 15). Note, however, that it is only now the
shape parameter a that contributed to this wetness. All the
other soil hydraulic parameters are consistently comparable
in both the free drainage and groundwater scenarios
(Tables 4a and 4b). Figures 16a–16d also show the
performance of the derived soil hydraulic parameters under
groundwater conditions (method 1) in simulating the near-
surface soil moisture dynamics of the selected SMEX02
fields. It is generally observed that the soil hydraulic
parameters derived under groundwater conditions are also
applicable under free drainage conditions, consistent with

Figure 14. Comparison of derived q(h) (Dassim) from method 2 (i.e., under all groundwater and free
drainage conditions), UNSODA and observed (field average and spread) soil water retention curves for
the selected fields at SMEX02 site: (a) WC11 (N = 6), (b) WC12 (N = 4), (c) WC13 (N = 6), and (d) WC14
(N = 3). N indicates the number of samples; L is loam, CL is clay loam, and SiCL is silty clay loam.
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the observations made in SGP97 results. Except for WC12
and WC14 (to some extent) the derived parameters
consistently represented well the observed regional in situ
soil moisture data. Interesting to note is the spread of the
soil moisture simulated under free drainage conditions using
groundwater condition-derived parameters (Figures 16a–16d,
bottom plots), in which only WC11 has now the narrowest
soil moisture variability. This response is attributed to the
smaller variability of the derived residual soil moisture
contents in WC11 compared with WC12, WC13, and
WC14 (Table 4a; Figure 12). As in SGP97, the derived soil
hydraulic parameters in SMEX02 for method 1 with free
drainage conditions are generally applicable only to free
drainage lower boundary conditions (Figure 17a). They
produced wetter soil moisture contents when applied under
groundwater conditions (i.e., 100–200 cm from the soil
surface) (Figure 17b).
[45] Following the argument of deriving ‘‘effective’’

parameters applicable for all modeling conditions consid-
ered, we applied method 2 (section 2.1) to the selected
SMEX02 fields. Evidently, the variability of the derived soil
hydraulic parameters also decreased (Table 4c; Figure 14)
since we need to satisfy all the modeling conditions used.
As a result, the soil hydraulic parameters are all applicable
to both groundwater and free drainage conditions (Figure 18).
It is evident from both the study regions that if we consider
an ensemble of modeling conditions collectively in our
inverse modeling, we can arrive at a set of soil hydraulic
parameters that are robust and effective at the footprint scale
(see Figure 10 and Figure 18).
[46] Furthermore, we also applied method 2 in its multi-

data variant to WC12 field (see Table 2d). The multidata

variant accounts for multiple sources of information for the
inverse modeling in addition to the common features of
method 2. In this case, we used both the PSR and regional in
situ soil moisture as conditioning data for the inverse
modeling in which we gave equal weights to the data sets
(see equations (7) and (8)). The derived parameters in Table
2d are comparable with Table 4c, with only the variability
being relatively increased because of the two sources of
information used in the inverse analysis (Figure 15 versus
Figure 14b). If we examine, though, how the derived
parameters faired in both the PSR and regional in situ soil
moisture data, we observe that under the combinations of
modeling conditions used we could not replicate the regional
in situ soil moisture data (Figure 19). Evidently, the inverse
modeling favored more the information content of the remote
sensing data with the given ensemble of modeling conditions.
There could be several possible reasons for this result: Either
the remote sensing data better captured the regional dynamics
of the pixel than the measured regional in situ data, or the
combinations of modeling conditions and other model
assumptions used in the inverse modeling are not adequate
to represent well the dynamics of WC12 field. Note, how-
ever, that even though we replicated well the regional soil
hydraulic properties (Figure 15) from the inversion of remote
sensing data, the soil moisture dynamics is always dependent
on the modeling conditions (initial/boundary conditions)
used in the simulations as discussed above.
3.2.2. Validation
[47] We also validated the results of method 1 and

method 2 (with its multidata variant) in SMEX02 region
using measured soil hydraulic properties, soil moisture
time series, and texture-based information from
UNSODA. Tables 5a–5c shows the calibration-validation
(see section 3.1.2) performances of the derived soil hydrau-
lic parameters for WC11, C12, WC13, and WC14.
3.2.2.1. Method 1 Under Groundwater Conditions
[48] Except for WC12, the correlations and errors

between the simulated and observed soil moisture contents
under calibration and validation modes are reasonably good
(Table 5a). The robustness of the derived parameters applied
in free drainage conditions is also evident. In the validation
mode, the simulated soil moisture in WC12 overestimates
considerably the regional in situ soil moisture data.
[49] Figure 12 shows the performance of the derived soil

hydraulic parameters as regards to matching the observed
regional soil hydraulic characteristics of the selected fields.
It is interesting to note that the texture-based UNSODA
curves are not even close to the measured regional soil
hydraulic properties, whereas derived parameters by inverse
modeling matched them reasonably well. Unlike in SGP97
fields wherein the soils are generally undisturbed, SMEX02
fields are agricultural areas and the soils were subject to
agricultural activities. These results mainly underscore the
importance of using actual field data to estimate the soil
hydraulic properties of a study area. Also, because SMEX02
region has a high level of agricultural activities, inducing
greater surface macroporosity due to tillage, root decay, and
earth worm activities, our estimates of Ksat (Table 4a) are
much lower than the laboratory measured Ksat values (B. P.
Mohanty, 2006, unpublished data, http://vadosezone.ta-
mu.edu).

Figure 15. Comparison of derived q(h) (Dassim) from
method 2 under multidata analysis, UNSODA and observed
(field average and spread) soil water retention curves for the
WC12 (N = 4) field at SMEX02 site. N indicates the
number of samples; L is loam, SL is sandy loam, and SiL is
silt loam.
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3.2.2.2. Method 1 Under Free Drainage Conditions
[50] Table 5b shows the calibration-validation perfor-

mance of the derived soil hydraulic parameters under free

drainage condition using method 1. The correlations and
errors between observed and simulated soil moisture are all
good when applied in free drainage lower boundary con-

Figure 16. Simulated and cross-validated near-surface soil moisture (z = 0–5 cm) using method 1 under
groundwater conditions versus polarimetric scanning radiometer (PSR) and observed areal-average (with
spread) soil moisture during SMEX02: (a) WC11 (N = 91), (b) WC12 (N = 132), (c) WC13 (N = 140),
and (d) WC14 (N = 94). N indicates the number of samples. Top panels are applied to all groundwater
conditions; bottom panels are applied to all free drainage conditions.
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ditions. Although the correlations of the simulated and
observed soil moisture (in calibration and validation modes)
are also good (acceptable) when they are applied under
groundwater conditions, the errors (MBE and RMSE) are
considerable especially under the validation mode. As
shown in Figure 13, the derived soil hydraulic functions
are generally wetter than expected.
3.2.2.3. Method 2 Under Both Groundwater and Free
Drainage Conditions
[51] The calibration-validation performance of the de-

rived soil hydraulic parameters under this method is given
in Table 5c. It is clear that the derived parameters are robust
among the modeling conditions used in both calibration and
validation mode. The correlations and errors between ob-
served and simulated soil moisture values are generally
good except for WC12 field. Figure 14 also shows that

the variability of the derived soil hydraulic functions is
small and well comparable with the observed regional soil
hydraulic properties.
3.2.2.4. Method 2 With Multidata Analysis
[52] Under multidata analysis, we failed to replicate well

the regional in situ soil moisture data in the validation mode
for WC12. Table 3d shows that the correlations are good but
the biases (errors) between the simulated and the ground
data are considerable. Evidently, the simulated soil moisture
overestimated the regional in situ soil moisture data but it
follows well the dynamics of the PSR soil moisture data
(Figure 19). As shown in Figure 15, the derived soil hydraulic
parameters capture the observed regional hydrologic charac-
teristics of the field. If we assume that the remote sensing data
are adequate, then we hypothesized that the ensemble of
modeling conditions and other modeling assumptions used
in the inverse modeling may not be adequate to represent
well the regional dynamics of soil moisture in this field. We
should note, however, that all measured data, whether remote
sensing or ground-based, are subject to errors, and hence we
should not disregard the fact that there could be errors
incurred in the ground-based soil moisture data in this par-
ticular field.

4. Summary and Conclusions

[53] In this paper, we presented the results of the newly
developed inverse modeling-based near-surface soil mois-
ture assimilation scheme [see Ines and Mohanty, 2008a] to
quantify effective soil hydraulic parameters at the footprints
of two airborne RS passive microwave sensors, ESTAR and

Table 4c. Derived Effective Soil Hydraulic Parameters for

SMEX02 Fields WC11, WC12, WC13, and WC14 Using Method

2 (Under All Groundwater and Free Drainage Conditions,

Collectively)

Statistics

a
(cm�1)

n
( )

qres
(cm3 cm�3)

qsat
(cm3 cm�3)

Ksat

(cm d�1)

WC11 Mean 0.028 1.579 0.136 0.373 21.040
SD 0.003 0.031 0.003 0.003 8.548

WC12 Mean 0.032 1.605 0.145 0.370 51.902
SD 0.001 0.005 0.001 0.000 3.833

WC13 Mean 0.032 1.603 0.130 0.370 55.102
SD 0.001 0.006 0.005 0.001 0.789

WC14 Mean 0.032 1.604 0.144 0.371 55.423
SD 0.001 0.007 0.003 0.002 0.201

Figure 18. Sample results of simulated and cross-
validated near-surface soil moisture (z = 0–5 cm) using
method 2 (i.e., under all groundwater and free drainage
conditions, collectively) versus PSR and observed areal-
average (with spread) soil moisture at WC11 (N = 91)
during SMEX02: (a) applied to all groundwater conditions
and (b) applied to all free drainage conditions. N indicates
the number of samples.

Figure 17. Sample results of simulated and cross-
validated near-surface soil moisture (z = 0–5 cm) using
method 1 under free drainage conditions versus PSR and
observed areal-average (with spread) soil moisture at WC11
(N = 91) during SMEX02: (a) applied to all free drainage
conditions and (b) applied to all groundwater conditions. N
indicates the number of samples.
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PSR. We conducted the experiments at three fields/RS
footprints in Oklahoma and four in Iowa during the SGP97
and SMEX02 campaigns, respectively. The near-surface soil
moisture assimilation procedure includes the use of time
series of near-surface soil moisture data to invert a 1-D
physically based soil-water-atmosphere-plant model SWAP
with a modified-microGA for estimating the effective soil
hydraulic parameters of a footprint. Uncertainties in the
solutions were examined in two ways: (1) by solving the
inverse problem under various combinations of modeling
conditions in a respective way; and (2) inverse solutions
determined for modeling conditions in a collective way
aimed at finding the robust solutions for all the ensembles.

A multidata variant of method 2 was presented to account
for both data and modeling errors in the inverse analysis.
We validated the soil hydraulic properties results using
intensive in situ/laboratory measurements conducted at the
respective fields, and data sets available from the literature
with similar soil textures (UNSODA database). The
performance of the derived effective soil hydraulic
parameters and simulated near-surface soil moisture in each
study pixel were also evaluated against RS and ground
based soil moisture data.
[54] The results clearly showed the promising potentials

of near-surface RS soil moisture data combined with inverse
modeling for determining average soil hydrologic properties
at the footprint scale. Our cross validation showed that
parameters derived by method 1 under groundwater con-
ditions are applicable also for free-draining conditions.
Parameters derived under free-draining conditions, howev-
er, generally produced too wet near-surface soil moisture
when applied under groundwater conditions. Method 2, on
the other hand, produced robust parameter sets applicable for
all modeling conditions used. In this study, we conclude that
inverse modeling of RS soil moisture data is a promising
approach for large-scale parameter estimation. Nevertheless,
the derived effective soil hydraulic parameters are subject to
the uncertainties of remotely sensed soil moisture data and
from the assumptions used in the soil-water-atmosphere-plant
modeling. Method 2 provided a flexible framework for

Table 5a. Performance of Method 1 Under Groundwater Condi-

tions at SMEX02 Sites

Fields

Simulated Versus RS Simulated Versus Ground

R MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
WC11 0.78 0.015 0.056 0.97 0.005 0.026
WC12 0.76 0.022 0.045 0.92 0.102 0.095
WC13 0.76 0.023 0.048 0.93 0.006 0.028
WC14 0.74 0.036 0.053 0.88 0.050 0.066

Applied to All Free Drainage Conditions
WC11 0.80 0.001 0.052 0.97 �0.012 0.026
WC12 0.79 �0.005 0.047 0.90 0.071 0.078
WC13 0.79 �0.001 0.051 0.93 �0.022 0.036
WC14 0.77 0.013 0.047 0.87 0.021 0.044

Table 5c. Performance of Method 2 (Under All Groundwater and

Free Drainage Conditions, Collectively) at SMEX02 Sites

Fields

Simulated Versus RS Simulated Versus Ground

R MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
WC11 0.79 0.009 0.054 0.98 �0.007 0.019
WC12 0.76 0.021 0.048 0.91 0.102 0.106
WC13 0.76 0.025 0.051 0.93 0.008 0.029
WC14 0.74 0.029 0.052 0.89 0.042 0.056

Applied to All Free Drainage Conditions
WC11 0.80 0.006 0.054 0.97 �0.010 0.022
WC12 0.78 0.016 0.046 0.90 0.097 0.101
WC13 0.78 0.019 0.049 0.92 0.002 0.029
WC14 0.76 0.024 0.050 0.87 0.035 0.053

Table 5b. Performance of Method 1 Under Free Drainage

Conditions at SMEX02 Sites

Fields

Simulated Versus RS Simulated Versus Ground

R MBE RMSE R MBE RMSE

Applied to All Groundwater Conditions
WC11 0.69 0.053 0.086 0.92 0.059 0.079
WC12 0.61 0.088 0.101 0.82 0.190 0.191
WC13 0.49 0.118 0.125 0.83 0.120 0.136
WC14 0.56 0.095 0.104 0.72 0.126 0.143

Applied to All Free Drainage Conditions
WC11 0.81 �0.003 0.051 0.96 �0.014 0.031
WC12 0.80 0.004 0.038 0.91 0.083 0.085
WC13 0.79 0.012 0.038 0.94 �0.008 0.030
WC14 0.79 0.013 0.041 0.87 0.021 0.047

Figure 19. Sample results of simulated and cross-
validated near-surface soil moisture (z = 0–5 cm) using
method 2 under multidata analysis versus PSR and observed
areal-average (with spread) soil moisture at WC12 (N =
132) during SMEX02: (a) applied to all groundwater
conditions and (b) applied to all free drainage conditions.
N indicates the number of samples.
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accounting these sources of uncertainties in the inverse
estimation of large-scale soil hydraulic properties.
[55] There are some observed weaknesses of the near-

surface soil moisture assimilation method used. Since it
relies on the RS soil moisture products, any uncertainties in
RS data because of retrieval/calibration/geoprojection can
directly propagate to the derived soil hydraulic parameters
at the pixel-scale. There is also an issue of the sensitivity of
soil hydraulic parameters to the observed (temporal) RS
data, and the fitness function used in the inverse analyses.
The effectiveness of the derived soil hydraulic parameters
is also affected by the uncertainties in the soil-water-
atmosphere-plant model, and the inherent assumptions used
in these simulations. Nevertheless, as this method defines
the ‘‘effective’’ parameters, and as long as they reflect the
large-scale dynamics, we can use them for large-scale
hydrologic and climatic modeling efforts.
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