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ABSTRACT

Network Structures Arising from Spike-Timing

Dependent Plasticity

Baktash Babadi

Spike-timing dependent plasticity (STDP), a widespread synaptic modification

mechanism, is sensitive to correlations between presynaptic spike trains, and or-

ganizes neural circuits in functionally useful ways. In this dissertation, I study

the structures arising from STDP in a population of synapses with an emphasis

on the interplay between synaptic stability and Hebbian competition, explained in

Chapter 1. Starting from the simplest description of STDP which relates synaptic

modification to the intervals between pairs of pre- and postsynaptic spikes, I show

in Chapter 2 that stability and Hebbian competition are incompatible in this class

of “pair-based” STDP models, either when hard bounds or soft bounds are im-

posed to the synapses. In chapter 3, I propose an alternative biophysically inspired

method for imposing bounds to synapses, i.e. introducing a small temporal shift in

the STDP window. Shifted STDP overcomes the incompatibility of synaptic sta-

bility and competition and can implement both Hebbian and anti-Hebbian forms

of competitive plasticity.

In light of experiments the explored a variety of spike patterns, STDP models

have been augmented to account for interactions between multiple pre- and postsy-



naptic action potentials. In chapter 4, I study the stability/competition interplay

in three different proposed multi-spike models of STDP. I show that the “triplet

model” leads to a partially steady-state distribution of synaptic weights and induces

Hebbian competition. The “suppression model” develops a stable distribution of

weights when the average weight is high and shows predominantly anti-Hebbian

competition. The NMDAR-based model can lead to either stable or partially stable

synaptic weight distribution and exhibits both Hebbian and anti-Hebbian competi-

tion, depending on the parameters. I conclude that multi-spike STDP models can

produce radically different effects at the population level depending on how they

implement multi-spike interactions.

Finally in chapter 5, I focus on the types of global structures that arise from

STDP in a recurrent network. By analyzing pairwise interactions of neurons through

STDP and also numerical simulations of a large network, I show that conventional

pair-based STDP functions as a loop-eliminating mechanism in a network of spiking

neurons and organizes neurons into in- and out-hubs. Loop-elimination increases

when depression dominates and decreases when potentiation dominates. STDP

with dominant depression implements a buffering mechanism for network firing

rates, and shifted STDP can generate recurrent connections in a network, and also

functions as a homeostatic mechanism that maintains a roughly constant average

value of the synaptic strengths. In conclusion, studying pairwise interactions of

neurons through STDP provides a number of important insights about the struc-

tures that arise from this plasticity rule in large networks. This approach can

be extended to networks with more complex STDP models and more structured

external input.
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Chapter 1

Introduction

Neither body is concealed from mind, nor mind is concealed from body,
however nobody is summoned to see the mind.

Mowlana Jalal ad-Din Rumi

1.1 Historical background

Questions about mind and its relation to body have bewildered humankind since

the very dawn of ancient civilization. At least since the time of Hippocrates (400

BCE), who declared the brain to be the ‘seat of intelligence’ (Finger, 2001), ac-

cumulating evidence implied that mental phenomena are tightly correlated to the

brain. However, as paradoxical as it may sound, it was not until the proposal of

the notorious Cartesian dualism that systematic observations of the brain became

widespread. By ascribing all mental processes to an intangible distant substance

and advocating a mechanistic approach to studying the body, Descartes removed

the halo of holiness that was spun around the body during the middle-ages, thereby

catalyzed scientific observations of the body in general and the brain in particular

(Chomsky, 1983), reportedly pioneered by Descartes himself.
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Systematic observations of the brain culminated in the monumental work of

Santiago Ramón y Cajal who established the ‘neuron doctrine’, the fundamental

concept that the nervous system is made up of discrete individual cells (Finger,

2001). Ever since Cajal, an ultimate goal of brain sciences - possibly the most

important one - is to relate the biological substrate of mental processes to their

phenomenological aspects. In pursuit of this goal, studies of the brain have focused

on three different levels of abstraction: the cellular-molecular level, the network-

systems level, and the cognitive level. With the advent of molecular biology and

modern genetics in recent decades, the study of cellular and sub-cellular mecha-

nisms of the nervous system has gained unprecedented momentum. On the other

hand, the phenomenological study of cognitive processes has a long history of its

own, highly overlapping with the well-establish field of psychology, and spurred

recently by functional neural imaging techniques. Nevertheless, the long-desired

bridging between these two levels can only be accomplished by studying the mass

actions emerging from functionally organized networks of neurons that give rise to

cognitive phenomena.

1.2 The significance of theoretical neuroscience

The mid-level between cellular/molecular and psychological approaches is where

theoretical and computational neuroscience can play its most significant role, bor-

rowing techniques from statistical physics, nonlinear dynamics, theory of computa-

tion and related disciplines. Neural network studies are focussed on three different

aspects: connectivity, activity and plasticity. Interestingly, these three aspects
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make an indivisible triad within the realm of neural networks: connectivity deter-

mines the interaction of neurons in a population, neural activity arises from the

pattern of connectivity, and plasticity in turn regulates connectivity according to

activity. This triad and the interactions between its three components have pro-

vided my guideline in thinking about neural networks throughout my research.

1.3 Hebbian theory: Activity dependent plastic-

ity

During my PhD research, I mainly concentrated on plasticity out of the above-

mentioned triad. The conceptual basis for the role of plasticity in mediating network

connectivity and activity is provided by the so-called ‘Hebbian Theory’. Donald

Hebb postulated that, through some biophysical mechanisms, neurons are organized

into engrams, hypothetical neural network structures that can store memory traces.

Hebbian postulate is best explained in the words of Hebb himself (Hebb, 1949):

Let us assume that the persistence or repetition of a reverberatory ac-

tivity (or ‘trace’) tends to induce lasting cellular changes that add to

its stability. When anaxonof cell A is near enough to excite a cell B and

repeatedly or persistently takes part in firing it, some growth process or

metabolic change takes place in one or both cells such thatA’s efficiency,

as one of the cells firing B, is increased.

This postulate gained strong experimental support with the discovery of long-term

potentiation (LTP) and depression (LTD) of synaptic transmission, first observed

in the hippocampus (Bliss and Gardner-Medwin, 1973; Bliss and Lomo, 1973) and
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subsequently reported in numerous other neural structures, including neocortex

(A Artola, 1987; Iriki et al., 1989; Hirsch et al., 1992), the amygdala (Chapman

et al., 1990; Clugnet and LeDoux, 1990), and midbrain reward circuits (Liu et al.,

2005; Pu et al., 2006).

1.4 Spike-timing dependent plasticity

Spike-timing dependent plasticity (STDP) is a specific instantiation of Hebb’s pos-

tulate that relates the amount of synaptic modification to the temporal order of

action potentials (spikes) arriving at a synapse. STDP was initially suggested by

experimental observations Levy and Steward (1983) that led to theoretical studies

(Abbott and Blum, 1996; Gerstner et al., 1996). It was revealed in its full form

by Markram et al. (1997) in cortical networks and at the same time by Bell et al.

(1997) in a cerebellum-like structure of electric fish.

STDP has now been observed at excitaory synapses in a wide variety of neural

circuits including visual cortex (Sjöström et al., 2001; Froemke and Dan, 2002),

barrel cortex (Egger et al., 1999; Feldman, 2000), hippocampus (Bi and Poo, 1998;

Li et al., 2004), dorsal cochlear nucleus (Tzounopoulos et al., 2004), the magnocel-

lular nucleus of songbirds (Boettiger and Doupe, 2001) and the olfactory system

of locusts (Cassenaer and Laurent, 2007). Studies of STDP on the one hand re-

late this mechanism to the synaptic molecular machinery such as the kinetics of

N-methyl-D-aspartate (NMDA) receptors (Malenka and Bear, 2004) and the dy-

namics of intracellular calcium (Shouval et al., 2002), and on the other hand extend

it toward behavioral time scales (Drew and Abbott, 2006) and perceptual phenom-
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ena (Fu et al., 2002), spanning the three aforementioned levels of abstraction (see

Caporale and Dan (2008) for a review).

The most salient feature of STDP is that synaptic modification depends on

the temporal order of pairs of pre- and postsynaptic spikes. With the exception of

the cerebellum-like structure in electric fish (Bell et al., 1997), all the experimental

results mentioned above show that when a presynaptic spike precedes a postsynap-

tic one, the synapse is potentiated, and when the temporal order is reversed, the

synapse is depressed. Therefore, STDP augments causal relations among neurons.

These observations motivated pair-based models for STDP that relate synaptic

modification to the intervals between pairs of pre- and postsynaptic spikes. This

class of models has been shown to organize neural circuits functionally and explain

many neuro-computational phenomena such as formation of receptive fields (Meliza

and Dan, 2006), development of orientation tuning (Yao et al., 2004) and direction

selectivity (Senn and Buchs, 2003) in visual cortex, formation of place cells in hip-

pocampus (Mehta et al., 2002), and learning of temporal sequences (Masquelier

et al. (2008); D’Souza et al. (2010), see Dan and Poo (2006) for a review).

More recent experimental evidence (Froemke and Dan, 2002; Froemke et al.,

2006; Wang et al., 2005) indicates that the dependence of synaptic plasticity on

the timing of spikes is more complex than a simple pair-based interaction. These

observations motivated the development of multi-spike models of STDP, which aug-

ment the pair-based model to include interactions of multiple pre- and postsynaptic

spikes (see Morrison et al. (2008) for a review). In this dissertation both classes of

STDP models (pair-based and multi-spike) will be studied systematically, particu-
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larly with respect to the important challenge described bellow.

1.5 The stability/competition dilemma

Every form of Hebbian plasticity faces the challenge of maintaining the balance

between forming new memories through modification of synaptic strengths, and

preserving old synaptic configurations to maintain old memories (Abraham and

Robins, 2005). A more specific aspect of this challenge is the dilemma between

synaptic competition and stability. Hebbian plasticity in general and STDP in par-

ticular induces a competition among synapses in a network (Miller, 1996). This is

a powerful mechanism for shaping and modifying neural activity, but it can also

be problematic for the normal functioning of a neural network. Unless changes in

synaptic strength are coordinated appropriately, the level of activity in a neural

circuit can grow or shrink in an uncontrolled way (Abbott and Nelson, 2000). One

simple way to resolve this problem is to impose bounds on the allowed range of

synaptic strengths. The details of implementing these bounds have significantly

different consequences on the structures that arise from STDP at the synaptic pop-

ulation level (Song et al., 2000; van Rossum et al., 2000; Rubin et al., 2001; Gütig

et al., 2003; Babadi and Abbott, 2010).

In the chapters that follow, I examine different STDP models through the lens

of the stability/competition dilemma. For each model, I explore cases where sta-

bility and competition coexist, and cases where they are not compatible. I propose

mechanisms to resolve this incompatibility. I also explore structures that arise from

STDP in large recurrent neural networks, which are in turn consequences of intro-
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ducing physiological bounds into synaptic strengths.

1.6 Outline of the dissertation

In chapter 2, I review the stability/competition interplay in a simple pair-based

STDP model and establish the methodological basis for the rest of the dissertation.

In chapter 3, I propose a modification of the pair-based STDP model that can

reconcile stability with competition. In chapter 4, I focus on stability and competi-

tion in more complex multi-spike STDP models and systematically study them in

different parameter regimes. Finally, in chapter 5, I study the structures that arise

from STDP in a large recurrent network of spiking neurons.

To avoid interrupting the text with details of mathematical derivations as much

as possible, I explain the intuitions behind the calculations and use formulas and

equations only for describing the models and core concepts in the main text. All

the detailed mathematical calculations are provided in the appendices at the end.

During my PhD research, I also took part in projects that were not systemat-

ically related to the main theme of this dissertation. Reports of those projects are

included as appendices at the end of the thesis.
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Chapter 2

Stability and Competition in
Pair-based STDP models

Plasticity, then, in the wide sense of the word, means the possession of
a structure weak enough to yield to an influence, but strong enough not
to yield all at once. Each relatively stable phase of equilibrium in such

a structure is marked by what we may call a new set of habits.
William James

2.1 Introduction

The simplest description of STDP relates synaptic modification to the temporal

order of pairs of pre- and postsynaptic spikes: a synapse is potentiated when a

presynaptic action potential precedes a postsynaptic spike, and depressed other-

wise (Markram et al., 1997). This ‘pair-based’ model of STDP has been shown to

induce a competitive form of Hebbian plasticity by forcing synapses to compete for

control of the timing of postsynaptic action potentials while being strengthened or

weakened (Song et al., 2000). Here, we analyze this model to determine how it

affects populations of synapses converging onto a postsynaptic neuron. We focus

on two basic features: stability and competition.
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Stability is a property of the distribution of synaptic weights arising from an

STDP model, and we will distinguish three cases: unstable, partially stable, and

stable. In the unstable case, synaptic weights perpetually increase under STDP,

unless some upper limit is imposed. As we will see, this happens in pair-based

STDP when its potentiation component is larger than the depression component.

When hard limits are imposed on an unstable STDP model, the synaptic weights

cluster tightly against the upper bound. Another more interesting case is partial

stability, in which individual synaptic weights increase or decrease indefinitely, but

the average of the weights across a synaptic population stays fixed. We will show

that in pair-based STDP this happens when the depression component is larger

than the potentiation component. When hard bounds are imposed on a partially

stable STDP model to limit the increases and decreases of individual synapses, the

synaptic weights tend to cluster at either end of their allowed range, forming a

U-shaped distribution (Song et al., 2000). Finally, when an STDP model is stable,

synaptic weights form a unimodel distribution. In pair-based STDP this happens

when soft bounds are introduced (van Rossum et al., 2000; Rubin et al., 2001).

The competition induced by STDP to the weights of synapses onto a postsy-

naptic neuron depends on correlations between their presynaptic spike patterns.

This can be studied by dividing the inputs to a neuron into two groups, one with

correlated presynaptic activity and the other with uncorrelated presynaptic spiking.

In cases that we call “Hebbian”, the synapses with correlated input become stronger

than those with uncorrelated input. In other “anti-Hebbian” cases (which will be

encountered in following chapters), the reverse occurs and the correlated synapses
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become weaker than the uncorrelated. Here we are interested in the effect of in-

troducing bounds to pair-based STDP, on Hebbian competition through this model.

In this chapter we review stability and competition in pair-based STDP models

in more details to establish our approach and introduce ways of characterizing the

effects of plasticity, to be used for analyzing more complex STDP models in the

following chapters. We will show that it is not possible to maintain both stability

and Hebbian competition in pair-based STDP by imposing either hard bounds or

soft bounds to this model.

2.2 Methods

2.2.1 Neuronal and synaptic models

We used a leaky integrate-and-fire (LIF) model neuron in our numerical simulations.

The membrane potential of the LIF neuron obeys

τm
dV

dt
= (Vr − V ) + Iex − Iin , (2.1)

where τm is the membrane time constant, Vr is the resting potential, Iex is the

excitatory input and Iin the inhibitory input. Although these inputs appear as cur-

rents, they are actually measured in units of the membrane potential (mV) because

a factor of the membrane resistance has been absorbed into their definition. When

the membrane potential V reaches the firing threshold Vth , the neuron fires an

action potential and the membrane potential resets to the resting value Vr. The

numerical values of all parameters are given Table 2.1.
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Parameter Symbol Default value

Membrane time constant τm 20 ms
Spiking threshold Vth −40 mv
Resting membrane potential Vr −60 mv
Synaptic time constant τs 5 ms
Number of excitatory synapses Nex 1000
Number of inhibitory synapses Nin 250
Inhibitory synaptic strength win 1 mv
Excitatory input rate rpre 10 Hz
Inhibitory input rate rin 10 Hz
Correlation coefficient * c 0.2

Table 2.1: Neuronal, synaptic, and plasticity parameters. * Correlation is only
introduced for simulations in which synaptic competition is examined.

Each presynaptic action potential arriving at an excitatory or inhibitory synapse

induces an instantaneous jump in the corresponding synaptic input (Iex or Iin),

which decays exponentially between the input action potentials. The time course

of the synaptic inputs can thus be expressed as

Iex =
Nex�

i=1

wi

�

tki ≤t

exp

�
t
k
i − t

τs

�
and Iin = win

Nin�

i=1

�

tki ≤t

exp

�
t
k
i − t

τs

�
, (2.2)

where wi is the weight for excitatory synapse i with i = 1, 2, . . . , N , win is the com-

mon fixed weight for all Nin inhibitory synapses, and t
k
i is the time of the kth action

potential at synapse i. The sums over presynaptic spike times are limited to spikes

that arrive prior to the time t. The synaptic time constant τs = 5ms is taken to be

the same for excitatory and inhibitory synapses. The excitatory synaptic strengths,

labeled collectively as w, are modified by STDP.

If the rate of the excitatory and inhibitory inputs is rpre and rin respectively,
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the average firing rate of the LIF neuron can be approximated as (Brunel and Sergi,

1998)

r̄post =

�
τm

√
π

� Vth−µ
σ +α

Vr−µ
σ +α

dx exp(x2)
�
1 + erf(x)

�
�−1

, (2.3)

where

µ = (Nex rpre �w� −Nin rin win) τs and σ2 =
(Nex rpre �w�2 +Nin rin w

2
in) τ

2
s

τm
,

with �w� denoting the average value of the excitatory synaptic weights. The param-

eter α = |ζ(1/2)|
�

τs/2τm, where ζ is the Riemann zeta function, is a correction to

account for the nonzero synaptic decay constant. The arrival of a presynaptic spike

increases the firing rate of the postsynaptic neuron transiently. For an LIF neuron

in the case where the average excitatory input dominates over the inhibitory input,

the firing rate after the arrival of a presynaptic spike at time t0 can be approximated

as (Herrmann and Gerstner (2001); see Appendix A.1)

rpost(t) ≈ r̄post +
w exp

�
− (t− t0)/τs

�

(Vth − Vr)τm
Θ(t− t0) (2.4)

where w is the strength of the synapse through which the presynaptic spike arrived,

and Θ is the Heaviside step function.

2.2.2 Correlated spike trains

To study synaptic competition, we introduce correlations into half of the excitatory

input spike trains. To generate Poisson spike trains with homogeneous pairwise

(zero-lag) correlations, a “generating” spike train with rate r/c was first produced.

The correlated spike trains were then obtained by trimming the generating spike
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train, that is, by randomly deleting spikes with probability 1 − c. The resulting

spike trains all have rate r, and each pair is correlated with correlation coefficient

c (Kuhn et al., 2003)

.

A

 

1

3

A B

FIG. 2.1: Pair-based STDP. A. The parameters of pair-based STDP window. B.
Top: a triplet of spikes composed of two pre-post pairs with intervals ∆t1 and
∆t2. Bottom: the amount of synaptic modification in response to triplets, which is
symmetric in the pair-based model.

2.2.3 Pair-based STDP model

In pair-based STDP, a change of synaptic strength, ∆w, is induced by a pair of

pre- and postsynaptic action potentials with time difference (pairing interval) ∆t =

tpost − tpre. The functional relation between the synaptic modification and the
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pairing interval is

∆w = F (∆t) =






A+ exp(−∆t/τ+) if ∆t ≥ 0

−A− exp(∆t/τ−) if ∆t < 0 .

(2.5)

The positive parameters A+ and A− specify the maximum potentiation and de-

pression, respectively. We express the synaptic strengths in units of the membrane

potential (mV), so A+ and A− have mV units. The time constants τ+ and τ−

determine the temporal spread of the STDP window for potentiation and depres-

sion (figure 2.1A). The synaptic strengths are maintained in their allowed range

(0 < w < wmax) either by imposing hard bounds or soft bounds. Hard bounds are

imposed by truncating any modification that would take a synaptic weight outside

the allowed range. Soft bounds are imposed by making the maximum depression

and potentiation weight-dependent so that when a synaptic strength approaches

the bounds, its rate of change gradually decreases. This will be done by multi-

plying A+ and A− by 1 − (w/wmax) and w/wmax respectively. In our analysis,

we assume that the spike pairings are all-to-all, meaning that all possible pre-post

pairs, not only the nearest neighbor pairs, contribute to plasticity. However, the

following results apply qualitatively to a pair-based model with a nearest-neighbor

restriction as well.

2.3 Results

In this chapter and also the next two chapters, to study the effects of different

STDP models on synaptic weights, we simulated a single spiking neuron receiving
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Nex excitatory and Nin inhibitory presynaptic spike trains with Poisson statistics at

rates rpre and rin, respectively. The strengths of the excitatory synapses, denoted

by w, change according to STDP, while the strengths of inhibitory synapses re-

main constant. To examine the different forms of stability of each STDP model, we

check whether the steady-state distribution of synaptic strengths is bounded with-

out imposing external limits, or whether the increase or decrease of the weights

is stopped only when they hit a boundary. We distinguish between the partially

stable and unstable cases by computing the evolution of the average of the synaptic

weights, which reaches a fixed point only in the partially stable case. Fully stable

STDP is characterized by a fixed point for the average rate and bounded deviations

for the strengths of individual synapses about this mean. As a probe of synaptic

competition, we induce correlations in half of the excitatory inputs (Methods) and

check whether STDP causes the synapses corresponding to correlated and uncor-

related subsets to compete for control of the postsynaptic firing. This also allows

us to determine whether the effect of correlations is Hebbian or anti-Hebbian. The

neuronal and input parameters used in our simulations are given in Table 2.1.

2.3.1 Stability and competition in pair-based STDP with

hard bounds

To explain our method for analyzing synaptic stability and competition and also to

provide a benchmark of comparison for the following chapters, we first examine a

pair-based STDP model. In this model, synapses are modified only on the basis of

the intervals between pairs of pre- and postsynaptic spikes in the pair-based model.

When a synapse receives a larger ensembles of spikes, such as triplets or quadruplets,
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FIG. 2.2: Stability and competition in pair-based STDP with hard bounds. A.
The average drift induced by the pair-based model on a population of excitatory
synapses converging onto a single postsynaptic neuron, when A+ < A− . The black
curve is a numerical evaluation of equation (2.7) and the gray area is the simulation
results. The half-width of the gray area is the standard error. The filled circle is
the stable fixed point. The inset shows the w-dependent drift (equation 2.8). B.
The steady state distribution of synaptic weights obtained by simulation when
A+ < A− . C. The steady state distribution of weights when half of the synapses
receive correlated input (magenta) and the other half receive uncorrelated input
(cyan). When A+ < A− correlated synapses are strengthened. D-F. the same as
A-C, but for A+ > A− . Note that there is no stable fixed point in D, and that
all the synapses are pushed to the upper bound in E and F. For these simulations,
the constants of the STDP model were τ+ = τ− = 20 ms, and A+ = 0.005 mV and
A− = 1.01A+ in A-C and A− = 0.005 mV and A+ = 1.01A− in D-F
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plasticity is induced by the pre-post pairs within the ensemble independent of the

higher-order structure of the ensemble. For instance, similarly spaced “pre-post-

pre” and “post-pre-post” triplets induce the same amount of synaptic modification

in this model (figure 2.1B). As we will see in Chapter 4, the response of multi-spike

STDP models to large ensemble of spikes is quite different.

To quantify the average modification of a synapse under STDP, we first calcu-

late the probability of a pairing interval ∆t for spikes arriving at the synapse and

then average equation (2.5) under that probability. We assume that the pre- and

postsynaptic spike trains are both Poisson. The rate of the presynaptic spike train

takes the constant value rpre. The baseline rate of postsynaptic firing is denoted by

r̄post (equation 2.3). When a postsynaptic action potential is generated, presynaptic

spikes are equally likely to arrive at any later time because the postsynaptic spike

has no effect on presynaptic activity. However, when a presynaptic spike arrives

at a particular synapse, it transiently increases the postsynaptic firing rate by an

amount proportional to the strength of that synapse (equation 2.4). As a result, a

postsynaptic action potential is more likely to be induced shortly after the arrival

of a presynaptic spike. Including both the baseline rate and this brief enhancement,

the average synaptic modification or the “drift” for a synaptic strength w is (see

Methods)

dw

dt
= (A+τ+ − A−τ−) rpre r̄post +

A+τ+τs rprew

(τs + τ+)(Vth − Vr)τm
. (2.6)

The first term in this equation relates the change in synaptic strength of a particular

synapse, w, to the average strength of all the excitatory synapses, �w�, through the
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dependence of the baseline firing rate r̄post on this average. This term is the same

for all synapses, so we call it the “baseline drift”. The second term depends on the

synaptic strength of the particular synapse being considered, and it arises from the

transient increase of postsynaptic firing rate following a presynaptic spike at this

synapse. We call it the “w-dependent drift”. The rate of change of the average of

all the excitatory synaptic weights is given by the sum of the baseline drift and the

average of the w-dependent drift,

d�w�
dt

= (A+τ+ − A−τ−) rpre r̄post +
A+τ+τs rpre �w�

(τs + τ+)(Vth − Vr)τm
. (2.7)

The average synaptic strength in the steady-state is the values of �w� that sets

the right side of equation (2.7) to zero (i.e. a fixed point). One such a fixed point

occurs when all the synapses are zero (�w� = 0). This makes the postsynaptic

neuron silent (r̄post = 0) and sets both the baseline and average w-dependent drifts

to zero. This state is uninteresting and simply reflects the fact that no plasticity

occurs when the postsynaptic neuron is silent. If the synaptic strengths are not

zero, the average w-dependent drift is always positive because presynaptic spikes

always enhance postsynaptic firing. As a result, a nontrivial fixed point for the av-

erage synaptic weight can occur only if the baseline drift is negative (A−τ− > A+τ+)

so that it can cancel the w-dependent drift (figure 2.2A, closed circle). This fixed

point is stable, because the positive w-dependent drift dominates if the average

weight is smaller that the fixed-point value, and the negative baseline drift domi-

nates if it is larger. Mathematically, stability requires the slope of the average drift

to be negative at the fixed point (figure 2.2A), which always holds for the nontrivial

fixed point of the pair-based model. In summary, the steady-state average synaptic
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strength in pair-based STDP has a stable nontrivial mean only if the depression

window is larger than the potentiation window (A−τ− > A+τ+). This fixed point is

unique, so the mean of the steady-state distribution of synaptic weights converges

to this value regardless its initial value.

The stability of the mean is not a sufficient condition for the steady-state

distribution of synaptic strengths to be fully stable, each synapse must also have

a stable deviation from the mean. The strength of a particular synapse can be

expressed as w = �w� + δw, where δw is the deviation of the synapse from the

mean. If the deviation tends to grow over time, the synapses will drift away from

the mean and the distribution will be partially stable and U-shaped (bimodal). If

the deviation tends to decrease, the synapses will cluster around the mean and

the distribution will be stable and unimodal. Assuming that the mean synaptic

strength is at steady-state and that the deviation of an individual synapse (out of

a few thousand) does not alter the mean significantly, the change of the deviation

over time is governed solely by the w-dependent drift and can be derived from

equation (2.6) as
dδw

dt
=

A+τ+τs rpre δw

(τs + τ+)(Vth − Vr)τm
. (2.8)

Because the coefficient of δw in this equation is positive (figure 2.2A, inset), the

deviations tends to grow, and the final distribution of synaptic strengths for pair-

based STDP is partially stable and U-shaped even though the mean is stable (figure

2.2B, Song et al. (2000)).

To check the accuracy of equations (2.7) and (2.8), we computed the synaptic
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drift by averaging the amount of induced synaptic modification in simulations last-

ing 106 ms of simulated time, without implementing synaptic modification (figure

2.2A, gray shade). The discrepancy between the analytic and simulation results at

low average synaptic strengths is due to the fact that our approximation for the

transient postsynaptic firing rate (equation 2.4) is only accurate when the mean

excitatory input is significantly larger than the mean inhibitory input. In the pa-

rameter regime where the potentiation window is larger than the depression window

(figure 2.2D-F), the mean synaptic weight only has the trivial zero fixed point (fig-

ure 2.2D), so the plasticity is unstable and all of the synaptic strengths grow until

they hit the upper bound, regardless of their initial values (figure 2.2E).

When the mean synaptic strength is stable and the w-dependent drift is posi-

tive, it is possible for STDP to discriminate between two groups of synapses based

on the degree of correlation in their presynaptic spike trains. If the spike trains

arriving at one group of synapses are correlated and those of the other synapses

are not, the correlated group induces a larger transient increase in the postsynaptic

firing rate and hence a larger w-dependent drift. Therefore the correlated group is

more likely to become stronger than the mean, and the uncorrelated group tends

to become weaker to maintain the balance around the mean (figure 2.2C). This

results in a Hebbian competition among the synapses (Song et al., 2000). On the

other hand, when there is no stable mean, all the synapses tend to grow regard-

less of their correlation and no competition takes place, although the correlated

synapses still end up stronger than the uncorrelated group (figure 2.2F). Therefore,

the condition for Hebbian competition through pair-based STDP is the existence

of a stable mean, i.e. A−τ− > A+τ+ , which is equivalent to partial stability.
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FIG. 2.3: Stability and competition in pair-based STDP with soft bounds. A.
The average drift induced by the pair-based model on a population of excitatory
synapses converging onto a single postsynaptic neuron, when soft bounds are im-
posed. The black curve is a numerical evaluation of equation (2.9) and the gray
area is the simulation results. The half-width of the gray area is the standard error.
The filled circle is the stable fixed point. The inset shows the growth rate of devia-
tions from the mean (equation 2.10). B. The steady state distribution of synaptic
weights obtained by simulation, which is stable. C. The steady state distribution
of weights when half of the synapses receive correlated input (magenta) and the
other half receive uncorrelated input (cyan). Competition is very weak. In these
simulations, A+ = A− = 0.005.
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2.3.2 Stability and competition in pair-based STDP with

soft bounds

When soft bounds are imposed, A+ and A− will be multiplied by 1− (w/wmax) and

w/wmax respectively. This changes the baseline drift (equation (2.7)) to

d�w�
dt

= A+τ+ rpre r̄post

−
�
(A+τ+ + A−τ−) rpre r̄post −

A+τ+τs rprewmax

(τs + τ+)(Vth − Vr)τm

�
�w�
wmax

−
A+τ+τs rpre

(τs + τ+)(Vth − Vr)τm

�w�2

wmax
(2.9)

and the change of the deviation (equation (2.8)) to

dδw

dt
=

�
(A+τ+ + A−τ−) rpre r̄post −

A+τ+τs rpre
�
2�w� − wmax

�

(τs + τ+)(Vth − Vr)τm

�
δw

wmax
. (2.10)

Equation (2.7) has always a single nontrivial stable fixed point, regardless of

the values of STDP parameters (figure 2.3A). Calculating the fixed point from

equation (2.7) and substituting in (2.10) shows that the coefficient of δw is always

negative. Therefore, deviations tend to shrink and all synaptic weights tend to

cluster around the mean and form a unimodal stable distribution (figure 2.3B).

The tendency of synaptic weights to cluster around the mean weakens synaptic

competition considerably (figure 2.3C). Correlated synapses cannot become signif-

icantly stronger than uncorrelated ones because any modification toward higher
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values of weights will be counteracted by a decrease of potentiation and an increase

of depression. Likewise, any modification toward lower values will be counteracted

by a decrease of depression and an increase of potentiation. Therefore, imposing

soft bounds on STDP stabilizes the distribution of weights, but with the expense

of losing synaptic competition.

2.4 Discussion

We reaffirmed the results of other studies which showed that if the depression win-

dow is larger than the potentiation window, pair-based STDP with hard bounds is

partially stable and can induce Hebbian competition between correlated and un-

correlated synapses (Song et al., 2000; Song and Abbott, 2001; Cateau and Fukai,

2003). If the potentiation window is larger than the depression window, pair-based

STDP with hard bounds is unstable and no competition takes place. Pair-based

STDP with soft bounds is always stable regardless of the balance between poten-

tiation and depression, but with the functionally important cost of losing synaptic

competition, as shown by Rubin et al. (2001) and van Rossum et al. (2000) before.

Soft bounds render STDP to a homeostatic plasticity mechanisms with negligible

sensitivity to the correlation structure of the input.

As a conclusion, synaptic stability and competition cannot be simultaneously

maintained in pair-based STDP model with either hard or soft bounds. Gütig

et al. (2003) proposed interpolating between hard and soft bounds as a mechanism

to obtain both synaptic competition and stability, but this approach is successful
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only over a limited parameter range. In the next chapter, we propose our own

alternative biophysically inspired way to introduce bounds, which can successfully

maintain stability and competition over a wide range of parameters, in addition of

having a number of other favorable computational properties.
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Chapter 3

STDP with a Shifted Temporal
Window

Research under a paradigm must be a particularly effective way of
inducing paradigm shift.

Thomas S. Kuhn

3.1 Introductions

Synaptic competition and synaptic stability are desirable but often conflicting fea-

tures of Hebbian synaptic plasticity. As we have seen in previous chapter, the in-

stability of pair-based STDP can be eliminated by introducing strength-dependent

modification (soft bounds; van Rossum et al. 2000; Rubin et al. 2001), but at the

expense of eliminating synaptic competition. By interpolating between stable and

unstable models of STDP, it is possible to obtain both synaptic competition and

stability, but over a limited parameter range (Gütig et al., 2003). Here we propose

an alternative solution inspired by the slow kinetics of NMDA receptors. We show

that STDP can be stabilized if the boundary separating potentiation and depres-

sion does not occur for simultaneous pre- and postsynaptic spikes, but rather for
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spikes separated by a small time interval. Through simulation as well as by solving

the Fokker-Planck equation governing the distribution of synaptic strengths, we

show that any positive shift of the STDP window can stabilize the distribution of

synaptic strengths while preserving synaptic competition. Moreover, our simula-

tions show that even a random symmetric jitter of a few milliseconds in the STDP

window can also stabilize synaptic strengths while retaining these features. The

results of this chapter have been published in Babadi and Abbott (2010).

3.2 Methods

The neural and synaptic models used in this chapter are similar to those introduced

in the previous chapter. Most of the parameters also remain unchanged. The

numerical values of the parameters are given in Table 3.1.

Parameter Symbol Default value
Membrane time constant τm 20ms

Spiking threshold Vth −40mV

Resting membrane potential Vr −60mV

Maximum potentiation amplitude A+ 0.006mV

Maximum depression amplitude A− 0.005mV

Potentiation time constant τ+ 20ms

Depression time constant τ− 20ms

Window shift d 2ms

Synaptic time constant τs 5ms

Number of excitatory synapses Nex 1000
Number of inhibitory synapses Nin 250
Inhibitory synaptic strength win 4mV

Excitatory input rate rex 10Hz

Inhibitory input rate rin 10Hz

Table 3.1: Neuronal, synaptic, and plasticity parameters
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3.2.1 Shifted STDP model

In the shifted pair-based model the change in synaptic strength, ∆w, induced by a

pair of pre- and postsynaptic action potentials with time difference ∆t = tpost− tpre

is determined by

∆w = F (∆t) =






−A− e
(∆t−d)/τ− if ∆t ≤ d

A+ e
−(∆t−d)/τ+ if ∆t > d .

(3.1)

As before, the parameters A+ and A− , both positive, determine the maximum

amount of synaptic potentiation and depression, respectively. The time constants

τ+ and τ− determine the temporal extent of the STDP window for potentiation

and depression. The parameter d, also positive, introduces a shift in the STDP

window such that even in cases where a presynaptic action potential precedes the

postsynaptic spike by a short interval (0 < ∆t < d), the corresponding synapse

gets depressed. Note that we recover conventional pair-based STDP by setting

d = 0. Numerical values of the STDP parameters are given in Table 3.1. An

important feature of the pair-based model we use in this chapter is that STDP

arises solely from pairs of pre- and postsynaptic spikes that are nearest neighbors

in time, in agreement with experimental results (Sjöström et al., 2001). Specifically,

each postsynaptic action potential can only potentiate a synapses on the basis of

the interval to the presynaptic spike immediately preceding it, and each presynaptic

action potential can only depress a synapses on the basis of the timing interval to

the immediately preceding postsynaptic spike. This assumption is important for

the results we obtain using the pair-based STDP model, as discussed below.
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FIG. 3.1: Comparison of unshifted and shifted STDP. A. The U-shaped steady-
state distribution of synaptic strengths for conventional unshifted STDP. B.
The unimodal steady-state distribution of synaptic strengths for shifted STDP
(d=2ms). C. The probability density of pairing intervals for presynaptic and post-
synaptic spike trains. The blue area is the symmetric acausal contribution, and the
pink area is the additional causal bump arising from postsynaptic spikes induced by
the presynaptic input. D. Same as C, but for a stronger synapse. The causal bump
is larger and closer to ∆t = 0. E. The causal bump superimposed on the unshifted
STDP window. The potentiation part of the STDP curve is red and the depression
part is blue. The causal bump falls entirely within the potentiation domain (red
shading). F. Same as E, but for a stronger synapse. The causal bump still falls
within the potentiation region. G. Same as E, but for shifted STDP. Part of the
causal bump falls into the depression region (blue shading). H. Same as G, but for
a stronger synapse. More of the causal bump falls into the depression region.
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3.3 Results

3.3.1 Stability of synaptic strengths

With conventional, unshifted STDP (d=0), synaptic strengths grow or shrink in-

definitely unless limits are imposed. These limits produce a U-shaped distribution

of synaptic strengths (figure 3.1A, Song et al. (2000)). However, if we introduce

a d= 2ms shift into the STDP window, the steady-state distribution of synaptic

strengths is unimodal and stable even when no limits are imposed (figure 3.1B).

Why does this occur?

The total effect of a sequence of pre- and postsynaptic action potentials on the

strength of a synapse can be computed by multiplying the STDP window function

by the probability of a spike pair appearing with time difference ∆t and then

integrating over all values of ∆t. If we assume Poisson spike trains and ignore

the effects of the synapse, the probability distribution of nearest-neighbor pre-post

pairs is an exponentially decaying function of the magnitude of the interval between

them (figure 3.1C). The decay rate of this exponential is equal to the sum of the pre-

and postsynaptic firing rates (Appendix A.2). The presence of a synapse induces

an additional contribution to this distribution for small positive ∆t arising from

postsynaptic spikes induced by the synaptic input (figure 3.1C). The size of this

“causal bump” is proportional to the probability of a presynaptic action potential

evoking a postsynaptic response, and hence to the strength of the synapse. The

stronger the synapse, the larger the bump. In addition, because the postsynaptic

spike latency is shorter for stronger synapses, the bump moves closer to ∆t=0 as

the synaptic strength increases (figure 3.1D). These features of the pre-post interval
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distribution are crucial for our analyses.

FIG. 3.2: Shifted STDP stabilizes the distribution of synaptic strengths. The
horizontal axis is the value of the shift, the vertical axis is the synaptic strength
and the gray level is the probability density of strengths, obtained by simulation.
Solid line is the analytically calculated mean and dashed lines show the analytically
calculated standard deviation around the mean. Insets show the distribution of
synaptic strengths for different values of the shift. Solid curves are analytically
calculated distributions. The arrows at the bottom of the horizontal axis of the
main plot show the shift values corresponding to the insets.

When there is no shift in the STDP window, the causal bump falls entirely

within the potentiation domain (figure 3.1E), which is why synaptic strengths grow

until something else stops them (figure 3.1F). When the STDP window is shifted,

part of the causal bump falls into the region where depression occurs (figure 3.1G).

Furthermore as the synapse gets stronger, a larger portion of the causal bump falls

into the depression domain, both because the causal bump gets bigger and because

it moves closer to ∆t=0 (figure 3.1H). This prevents further growth of the synaptic
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strength and explains why a shift stabilizes synaptic growth through STDP. Stabi-

lization of synaptic weights occurs for any positive value of the delay (d), but larger

delays result in lower mean values and sharper distributions for the weights (figure

3.2).

For a more quantitative evaluation of shifted STDP, we computed the steady-

state solution of the Fokker-Planck equation governing the distribution of synaptic

strengths (Risken (1996); Kempter et al. (2001); Cateau and Fukai (2003), Ap-

pendix A.2). With a few reasonable approximations and ignoring any limits or

bounds, the steady-state distribution of synaptic strengths has the form of a gamma

distribution,

ρ(w) = N0(w + µ)k−1 exp

�
−w + µ

θ

�
, (3.2)

where N0 is a normalization constant and µ, θ and k are computed parameters. If

either k or θ is negative, this distribution cannot be normalized, implying unstable

synaptic strengths. The calculations indicate that θ is positive for any positive

shift (d > 0, Appendix A.2). Positivity of k requires that A+τ+ > A−τ− . Note

that this is opposite to the condition required for partial stability of conventional,

unshifted STDP (Chapter 2, Song et al. (2000)). Because it is easier to do the

analytic calculations without imposing strict boundary conditions on the synaptic

strengths, the analytic formula sometimes includes a small probability for negative

strength synapses, which is not allowed in the simulations. Other than this small

discrepancy, the agreement between the analytic distribution and the simulation

results is good (figures 3.2 & 3.3). In what follows, d = 2ms, A+ = 0.006mV ,

A− =0.005mV , and τ+ =τ− =20ms, unless stated otherwise.
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3.3.2 Steady-state firing rate

STDP has an interesting regulatory effect on the steady-state firing rate of a neuron

(Song et al., 2000; Kempter et al., 2001). With unshifted STDP, this is a buffering

effect making the steady-state postsynaptic firing rate relatively insensitive to the

firing rates of excitatory and inhibitory inputs. Shifted STDP also buffers the post-

synaptic firing rate, but the residual dependence on the presynaptic rates displays

an interesting effect. Although the steady-state firing rate decreases when the in-

hibitory input rates are increased, it has a surprising non-monotonic dependence

on the rates of excitatory inputs (figure 3.3).

The stabilization of synaptic strengths discussed in the previous section arises

from the change of size and shape of the causal bump seen in figures 3.1C & D.

Buffering of the steady-state postsynaptic firing rate is affected primarily by the

shape of the symmetric, non-causal component of the spike-timing probability. As

mentioned previously, this component falls off exponentially, for either positive or

negative spike-timing differences, at a rate given by the sum of the presynaptic and

postsynaptic firing rates (Appendix A.2). If this sum grows, the acausal part of the

distribution gets more peaked near zero, bringing more spike pairs into the region

of the STDP window where the shift leads to synaptic depression. The resulting

reduction in synaptic strength then lowers the postsynaptic firing rate. This form of

buffering would not be present if all spike pairs, rather than only nearest-neighbor

pairs, were involved in STDP. If we allowed all spike pairs to induce synaptic

plasticity the relevant symmetric, non-causal distribution would be flat, rather than

exponentially decaying. In this case, there is no analogous stabilization and, in fact,

postsynaptic rates slowly rise, making the plasticity unstable, even with shifted
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STDP. This is why we require shifted STDP to be based only on nearest-neighbor

spike pairs.

FIG. 3.3: The steady-state postsynaptic firing rate. The steady state firing rate
is plotted as a function of the input rates for excitation and inhibition. The inset
shows the corresponding analytic result.

In general, we expect the firing rate of a neuron to increase when its excitatory

inputs fire more rapidly, and this is exactly what occurs for excitatory input rates

below about 10 Hz in figure 3.3. However, for excitatory input rates higher than

this, the steady-state (after STDP has equilibrated) postsynaptic firing rate de-
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creases. This occurs for the reason outlined in the previous paragraph. Increasing

the presynaptic rate causes the acausal distribution to sharpen and induces synaptic

depression. This slows the postsynaptic rate, broadening the acausal distribution

until the spike intervals in the delay region are sufficiently reduced in number. This

is what causes the steady-state postsynaptic firing rate to drop when the excitatory

presynaptic rates are raised to high levels.

Shifted STDP also has a buffering property on changes in the inhibitory input

rate. In presence of strong inhibitory input, the postsynaptic firing rate falls. This

broadens the acausal part of the spike-pair distribution, lowering the chance for

pairs to fall into the depression domain caused by the shift and, thus, resulting in

more potentiation. However, in this case, the effect is not strong enough to overcome

the expected tendency of the postsynaptic rate to be suppressed by inhibition (figure

3.3).

3.3.3 Synaptic competition

Hebbian plasticity in general and STDP in particular allows neurons to become se-

lective to correlated subsets of their inputs, but this requires synaptic competition

(Miller, 1996). As in the previous chapter, we call synaptic plasticity “competitive”

if correlating a subset of synaptic inputs causes both that set and the remaining

synapses to change their strengths in an opposing manner, so than either the cor-

related or the uncorrelated set of synapses gains control of the postsynaptic firing

(see for example Gütig et al. (2003)). In particular, if STDP is competitive, the

strengths of either the correlated or uncorrelated subgroup of synapses should clus-

ter near zero. To determine whether the necessary competition exists with shifted
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STDP, we imposed pairwise correlations with a coefficient of 0.2 on one half of the

incoming excitatory spike trains while leaving the other half uncorrelated. With

unshifted STDP, this arrangement induces a competition that correlated synapses

always win (Song et al., 2000). In other words, the synapses receiving correlated

input become stronger and those receiving uncorrelated input get weaker.

Interestingly, with shifted STDP the outcome of the competition depends on

the rate of inhibitory input to the neuron. When the rate of inhibitory input is

10 Hz for the parameters we use, the synapses receiving correlated spikes end up

weaker than the synapses receiving uncorrelated spikes (figure 3.4A). This behavior

is “anti-Hebbian” in that it is opposite to what is expected from normal Hebbian

modification. However, when the rate of the inhibitory inputs is increased to 20

Hz, we obtain the usual Hebbian result in which correlated synapses win the com-

petition and become stronger than uncorrelated synapses (figure 3.4B). Results

obtained over a range of inhibitory input rates show a transition from anti-Hebbian

to Hebbian modification (figure 3.4C). Choosing other values for the correlation

coefficient within a range from 0.1 to 0.9 yielded qualitatively similar results. Com-

petition also occurs between two correlated subgroups with different correlation

coefficients, with the more correlated synapses dominating over the less correlated

ones in the Hebbian (high inhibition) case and vice versa in the anti-Hebbian (low

inhibition) mode. If the correlation coefficients for the two groups are the same, no

competition takes place.

These results were obtained using spike trains with zero time-lag correlations,

meaning that for any two correlated spike trains, a subset of spikes is perfectly

synchronous. More realistic spike correlations can be generated by including a
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FIG. 3.4: Synaptic competition through shifted STDP. Cyan color indicates
synapses with uncorrelated inputs, and magenta indicates correlated inputs. The
rate of excitatory input is fixed at 10 Hz, and the correlation coefficient is 0.2 for
correlated input spike trains. A. Steady-state distribution of synaptic strengths for
an inhibitory rate of 10 Hz. Uncorrelated synapses become stronger than correlated.
B. Steady-state distribution of synaptic strengths for an inhibitory rate of 20 Hz.
Correlated synapses now become stronger than uncorrelated. C. Distributions of
strengths for synapses receiving uncorrelated (top) and correlated (bottom) inputs
as a function of the inhibitory input rate. The color level indicates the probabil-
ity density of strengths. A transition from anti-Hebbian to Hebbian competition
occurs at an inhibitory input rate of 14 Hz (dotted line). Arrows indicate the pa-
rameters for panels A and B. D. The transitional inhibitory rate as a function of
correlation time constant. The transition takes place at lower inhibitory rates as
the correlation time constant increases up to 2ms, then remains constant at 7Hz for
higher values. The insets show the full distribution of correlated and uncorrelated
synaptic strengths as in C, for correlation time constants of 1, 2 and 10ms.
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small random jitter in the timing of the synchronous spikes. The mean of this jit-

ter determines the correlation time constant. Breaking perfect synchrony does not

change the above results qualitatively. However, the rate of inhibitory input needed

to transition from anti-Hebbian to Hebbian competition is sensitive to the corre-

lation time constant (figure 3.4D). When the correlation time constant increases,

the inhibitory rate at the transition decreases, until the correlation time constant

becomes greater than the shift of the STDP window (2ms). Further increase in

the correlation time constant does not lead to any more lowering of the transitional

inhibitory rate (figure 3.4D).

The dependence of the outcome of synaptic competition on the level of in-

hibitory input can be explained by evaluating the effect of inhibition on the firing

regime of the postsynaptic neuron. When the inhibitory input to a neuron is low, it

operates in a “mean-driven” regime, meaning that the time-averaged “free-running”

membrane potential (that is, the membrane potential if the spike generation mech-

anism is turned off) is above the firing threshold (Gerstein and Mandelbrot, 2006).

In the mean-driven regime, integrate-and-fire neurons spike regularly, so the coef-

ficient of variation of the inter-spike-intervals (CVISI), which is a measure of the

irregularity of firing, is small (Shadlen and Newsome, 1998). On the other hand,

when the inhibitory input to the neuron is high, the mean membrane potential is

below the firing threshold. In this case, large deviations in the membrane poten-

tial from its mean are required to make the neuron fire, and the neuron is said

to be in the “fluctuation-driven” regime (Gerstein and Mandelbrot, 2006; Shadlen

and Newsome, 1998; Troyer and Miller, 1997). This makes firing times irregular,

resulting in a larger CVISI.
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FIG. 3.5: The effect of the inhibitory input on synaptic competition. A. Tran-
sition from mean-driven to fluctuation-driven firing regimes when the rate of the
inhibitory input is increased. The black curve is the coefficient of variation of
postsynaptic interspike intervals (CVISI), the blue curve is the mean free-running
membrane potential in units of the spiking threshold, and the red curve is the
standard deviation of the membrane potential in the same units. For inhibitory
input rates greater than 14 Hz, there is an abrupt switch from the mean-driven to
the fluctuation-driven regime, corresponding to the transition from anti-Hebbian
to Hebbian competition (figure 3.4). B. Postsynaptic causal bumps due to uncor-
related (cyan) and correlated (magenta) input spikes for different mean synaptic
strengths (shading) when the inhibitory input rate is 10 Hz. The blue area shows
the depression domain and the red area is the potentiation domain. Note that the
correlated causal bumps (magenta) fall almost entirely into the depression domain
(blue shading) in this case, so the correlated synapses lose the competition. C.
Same as panel B, but for an inhibitory input rate of 20 Hz. Note the heavy tail of
the correlated causal bumps (magenta), which extend into the potentiation domain
of the STDP window. These curves were obtained by numerical simulations, chang-
ing the mean of the steady-state distribution of correlated or uncorrelated synapses
to the desired value for each curve. Because the correlated synapses arrive in uni-
son, their causal bump is the aggregate effect of all of their spikes. To show the
contribution of individual correlated spikes, comparable to that of the uncorrelated
ones, we therefore normalized the magnitude of the causal bump of the correlated
synapses by their average cluster size (∼ cNex/2).
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The model neuron we study traverses these regimes as the firing rate of its

inhibitory inputs is varied (figure 3.5A). When the inhibitory input is small, the

neuron operates in the mean-driven regime, with its mean free-running membrane

potential above threshold and a small CVISI. When the inhibitory input rates in-

crease beyond 14 Hz, the neuron suddenly switches to a fluctuation-driven regime

in which the mean membrane potential is below threshold and CVISI is large. The

transition between the mean-driven and fluctuation-driven regimes occurs exactly

where synaptic competition switches from being anti-Hebbian to Hebbian (com-

pare figure 3.5C with 3.5A). Thus, the key feature determining whether plasticity

is anti-Hebbian or Hebbian is whether the postsynaptic neuron is in a mean-driven

or fluctuation-driven state.

Recall that the causal bump is the excess probability of postsynaptic firing

caused by an incoming input spike. As mentioned previously, the effect of shifted

STDP on the distribution of synaptic strengths can be explained by considering

the shape of the postsynaptic causal bump in relation to the STDP temporal win-

dow. When the postsynaptic neuron is in the mean-driven regime, the membrane

potential rises rapidly to the threshold. As a result, presynaptic action potentials

can only enhance postsynaptic firing if they occur during a relatively short time-

interval prior to the postsynaptic spike. This means that the causal bump decays

rapidly for longer intervals. The causal bump also has a higher amplitude and

decays more rapidly for stronger synapses (figure 3.5B). Furthermore, the causal

bump due to correlated inputs is even narrower and sharper (and more inside the

depression region) than the bump due to uncorrelated inputs (figure 3.5B, magenta

traces), because correlated spikes are more likely to induce a postsynaptic spike
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rapidly when they occur in unison. As a result, the uncorrelated synapses win the

synaptic competition when the level of inhibition is low.

When the postsynaptic neuron fires in the fluctuation-driven regime, the mem-

brane potential spends a considerable time near but below the firing threshold be-

fore spiking. As a result, presynaptic input can affect postsynaptic firing over a

longer time interval than in the mean-driven regime. This makes the causal bump

broader than in the mean-driven case (figure 3.5C). Furthermore, the causal bump

is even broader for correlated than for uncorrelated inputs because the simultane-

ous arrival of correlated spikes generates a stronger depolarization transient that

makes it possible for subsequent weaker inputs to push the postsynaptic neuron

above threshold over a longer time interval. This gives the causal bump for the

correlated inputs a long tail that extends well into the potentiation domain of the

STDP window (figure 3.5C, magenta traces), allowing them to win the competition

in this case.

The transition from the mean-driven to the fluctuation-driven regime and corre-

spondingly from anti-Hebbian to Hebbian competition is quite abrupt. This may be

due to the interplay between the correlated inputs and the firing mode of the neuron.

Correlated inputs increase membrane potential fluctuations and spiking irregularity

(Salinas and Sejnowski, 2000). Therefore, within the context of shifted STDP, there

is positive feedback between the fluctuation-driven regime and the dominance of cor-

related inputs. As the neuron transitions to the fluctuation-driven regime through

increased inhibition, the correlated synapses start to strengthen more than the un-

corrected ones which, in turn, increases the fluctuations of the membrane potential
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and pushes the neuron further into the fluctuation-driven regime. This positive

feedback continues until the correlated synapses dominate over the uncorrelated

ones and the neuron falls completely into the fluctuation-driven mode.

3.3.4 Jittered STDP window

It is not necessary to introduce an explicit shift into the STDP window to assure

stability. Any mechanism that causes depression to dominate over potentiation

for short positive pairing intervals will have the same qualitative effect. One such

mechanism is a symmetric random jitter introduced into an unshifted STDP window

that has A− >A+ . By jitter we mean that the time ∆t used to determine the effect

of STDP for any given pair of pre- and postsynaptic spikes, is not simply the

difference between the times of their occurrence, but instead a random term is

added. In other words, ∆t= tpost − tpre + η, where η is a random variable drawn

from a distribution with zero mean and a certain variance (we use a Gaussian

distribution). Although the STDP window has no explicit shift in this case (figure

3.3.6A, top), the effective window obtained by averaging over the symmetric random

jitter (figure 3.6A, bottom), exhibits the required feature that depression occurs for

small positive pairing intervals.

Simulations show that jittered STDP has all the qualitative properties of

shifted STDP, although the maximum depression must be set to be greater rather

than the maximum potentiation (we take A+ = 0.005mV and A− = 0.007mV , al-

though see Froemke et al. (2005)). To keep A+τ+ >A−τ− , as required for stability,

the time constant of potentiation must be larger than that of depression (we take

τ+ =20ms and τ− =10ms). If the standard deviation of the jitter is less than 2ms,

the steady-state distribution of synaptic weights is not inherently stable and we
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FIG. 3.6: Jittered STDP. A. A random symmetric jitter of the unshifted STDP
window (top) results in an effective window function (bottom) in which depression
is dominant for short positive pairing intervals (blue shading). B. Jittered STDP
stabilizes the distribution of synaptic weights. The horizontal axis is the standard
deviation of the jitter (σ), the vertical axis is synaptic strength and the gray level
indicates the probability density of strengths. For jitters smaller than 2 ms the
distribution is bimodal, but for larger jitters it is stable and unimodal. C. The
steady-state firing rate of the postsynaptic neuron as a function of the excitatory
and inhibitory input rates when the jitter is 3 ms. D. Jittered STDP (σ = 3ms)
implements both Hebbian and anti-Hebbian competition. As in figure 3.4, the top
panel shows the distribution of uncorrelated synapses (cyan) and the bottom panel
shows the distribution of correlated synapses (magenta), both as functions of the
inhibitory input rate. The transition from anti-Hebbian to Hebbian competition
occurs when the inhibitory input rate is about 50 Hz in this case.
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obtain a U-shaped distribution of synaptic strengths (figure 3.6B). However, for

larger standard deviations of the jitter, the steady-state distribution is stable and

unimodal as in the case of shifted STDP (figure 3.6B). Other features of shifted

STDP are also reproduced. The steady-state firing rate of the postsynaptic neuron

decreases when the rate of presynaptic input increases (figure 3.6C), and either

anti-Hebbian or Hebbian competition occurs depending on the rate of inhibitory

input to the neuron (figure 3.6D).

3.4 Discussion

We have shown that a slight shift in the effective STDP temporal window, such

that postsynaptic spikes occurring shortly after presynaptic action potentials cause

synaptic depression, can stabilize the distribution of synaptic strengths without

loss of competition, both in pair-based and triplet-based models. The shift can

be explicitly implemented in the STDP window or achieved by other means such

as a symmetric spike-by-spike random jitter. In fact, any mechanism that causes

synaptic depression for small but causal (positive by our convention) pre-post spike

intervals should lead to the stabilization and other effects we report. What bio-

physical mechanisms could cause this to occur?

The sharp transition between depression and potentiation in STDP appears

to be due to the abrupt onset of long-term potentiation (Sjöström et al., 2003;

Bender et al., 2006). It is believed that the Ca2+ influx through NMDA receptors

is responsible for this potentiation (Malenka and Bear, 2004) and that the abrupt
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onset arises because the NMDA channel be in an open but blocked configuration

before subsequent depolarization removes the Mg2+ block (Nowak et al., 1984). To

assure a large Ca2+ influx and subsequent potentiation, it seems reasonable to as-

sume that the depolarization that removes the Mg2+ block should occur near the

peak of the NMDA activation. The Mg2+ removal by postsynaptic depolarization is

extremely rapid (Jahr and Stevens, 1990) but the NMDA activation has a finite rise

time, so the peak of NMDA activation occurs a few milliseconds after the arrival

of the presynaptic spike (Destexhe et al., 1994). Therefore, it seems likely that the

maximum potentiation should occur when the presynaptic spike precedes the post-

synaptic action potential by several milliseconds, and that depression could result

from timing differences shorter than this. Thus, the biophysics of the NMDA recep-

tor appears to support the idea of a temporal shift in the STDP window. The shape

of the STDP window has been inferred from models of NMDA receptor kinetics and

back-propagating action potentials (Shouval et al., 2002; Karmarkar et al., 2002).

However, the millisecond timing of the transition from depression to potentiation

was not investigated systematically, because its significance was not evident at that

time. Nevertheless, in some parameterizations of such models a small depression do-

main for short positive pairing intervals has been reported (Karmarkar et al., 2002).

Typically in electrophysiological recordings, action potentials are measured at

the soma, but what matters for STDP is the timing of the events at the synapse.

More precisely, the timing of the postsynaptic EPSP and that of the backpropa-

gating action potential to the synapse control plasticity. Transmission delays may

have their own interesting computational properties. For example, it has been

shown that STDP in the presence of axonal transmission delays can have a desyn-
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chronizing effect on population bursts and a synchronizing effect on random spiking

in a recurrent network (Lubenov and Siapas, 2008). The transmission delay of the

EPSP to the soma and that of the backpropagating action potential subtract from

the delay we need for shifted STDP. For distal synapses where these delays are

longer, there may be a higher probability that the causal bump falls out of the

depression domain caused by the shift. This might be a mechanism for counter-

balancing the attenuation of the EPSPs arising from distal dendrites (Magee and

Cook, 2000; Andrasfalvy and Magee, 2001) along with other proposed mechanisms

(Rumsey and Abbott, 2004; Gidon and Segev, 2009). It may explain the enhance-

ment of LTD reported in studies of STDP at distal sites (Froemke et al., 2005;

Sjöström and Häusser, 2006; Letzkus et al., 2006). If the delay becomes longer

than the shift for very distal synapses, other mechanisms such as limits on synaptic

strength must serve to stabilize STDP. Finally, if the speed of backpropagating

action potential can be increased through modification of voltage-dependent con-

ductances, the model predicts that synapses should be more readily depressed.

The most direct test of the shifted STDP hypothesis would be to observe the

effect of almost synchronous pre- and postsynaptic spikes on synaptic strength.

However, the results of such experiments could be difficult to interpret because of

confounding factors such as the physiological delays mentioned above. For exam-

ple, if the pre- and postsynaptic spikes are induced exactly at the same time, the

timing of their arrival at the synapse is not necessarily synchronous. If a shift in

the STDP window function acts as a stabilizing mechanism, synapses should get

depressed when postsynaptic spikes are generated by presynaptic spikes with short

latency. Therefore, as an alternative experiment we suggest inducing spikes only in



3.4. Discussion 46

the presynaptic neuron and allowing the postsynaptic firing to be affected by this

presynaptic activity. One possible way to perform such an experiment is to hold the

voltage of the postsynaptic neuron close to its firing threshold, so that individual

EPSPs can induce a postsynaptic spike. In this case, if there is a stabilizing shift in

the STDP window, strong synapses that induce short-latency postsynaptic action

potentials abruptly should get depressed.

Shifted STDP results in a unimodal distribution of synaptic strengths. This

finding is in agreement with the measurements of quantal synaptic currents (Tur-

rigiano et al., 1998; O’Brien et al., 1998) and from paired recordings (Song et al.,

2005). However, the observed distribution of peak EPSP amplitudes has a heavier

tail than the gamma distribution obtained from shifted STDP (see also Andrasfalvy

and Magee (2001); Katz et al. (2009)). STDP is unlikely to be the only mechanisms

involved in shaping the distribution of synaptic strengths. Nevertheless, figure 3.4

shows that in presence of correlated input, this distribution can be quite broad.

Thus, in the context of shifted STDP, a heavy-tailed distribution may be a sign of

multiple correlated subgroups of input spike trains.

The synapses in the model we considered were current-based, meaning that

each excitatory or inhibitory input injects a current waveform to the neuron re-

gardless of the value of its membrane potential. We have also studied an analogous

model with conductance-based synapses, and this does not qualitatively change the

reported results. These results show that the outcome of competition between cor-

related and uncorrelated spike trains with shifted STDP depends on the firing state

of the postsynaptic neuron, which can be controlled by the rate of its inhibitory in-
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puts. This allows for a dynamic switching between anti-Hebbian and Hebbian forms

of plasticity, and it might be related to the role of local inhibitory interneurons in

switching the activity-dependent development of visual cortical circuits during the

critical period (Hensch, 2005).

In conclusion, a slightly shifted STDP window stabilizes synaptic strength,

buffers firing rates, and can implement different modes of synaptic competition.

The required shift may arise from properties of the NMDA receptor, or from random

jitter. In light of their importance in determined the outcome of synaptic plasticity,

we argue that the properties of STDP for short pairing intervals, which have not

yet been clearly resolved, warrant a more detailed investigation.
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Chapter 4

Stability and Competition in
Multi-Spike STDP Models

Only the multitude through its practical experimentation will offer the
models and determine when and how the possible becomes real.

Antonio Negri

4.1 Introduction

In the models of STDP that we studied in the previous chapters, pairs of pre- and

postsynaptic action potentials potentiate a synapse when the presynaptic spike

precedes the postsynaptic spike, and depress it for the reverse order (Markram

et al., 1997). However, when multiple pre- and postsynaptic spikes occur across

a synapses over a short interval of time, the resulting plasticity depends on their

timing in a more complex manner. For example, pair-based STDP models predict

that “pre-post-pre” and “post-pre-post” triplets of spikes with the same pairwise

intervals should induce the same plasticity, but experiments indicate that these two

triplet patterns have different effects (Froemke and Dan, 2002; Wang et al., 2005).

This and similar contradictions motivated the development of multi-spike models
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of STDP, which go beyond pairwise interactions of pre- and postsynaptic spikes

(see Morrison et al. (2008) for a review). Here, we analyze three such models to

determine how they affect populations of synapses converging onto a postsynaptic

neuron. As in previous chapters, we focus here on two basic features: stability and

competition.

The three multi-spike STDP models that we consider were proposed on the

basis of different experimental results. In the “suppression model”, inspired by

experimental results in cortical slices, the plasticity-inducing effect of each pre-

or postsynaptic spike is suppressed by preceding spikes (Froemke and Dan, 2002;

Froemke et al., 2005). The “triplet model”, inspired by experiments in hippocam-

pal cultures (Wang et al., 2005), includes the effect of neighboring pre-post pairings

as well as depression exerted by preceding presynaptic spikes and potentiation by

preceding postsynaptic spikes (Pfister and Gerstner, 2006). Another model that

incorporates multi-spike interactions, the “NMDAR-based model”, is based on the

kinetics of the NMDA receptor. It was proposed by Senn et al. (2001) before ex-

perimental results on multi-spike effects in STDP were available.

We apply the approach developed in Chapter 2 for characterizing the effects of

plasticity through the multi-spike STDP models. For each case, we first consider

the parameters originally proposed for the model, and then systematically explore

a range of parameter values.
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4.2 Methods

The neural and synaptic models are the same as in Chapter 2 (Table 2.1).

4.2.1 The triplet model

In the triplet model, synapses are modified on the basis of pre-post pairing events

in a manner similar to the pair-based model (equation 2.5) but, in addition, when a

synapse is potentiated by a pre-post pairing (∆t > 0), the postsynaptic potentiation

variable Mpost is added to the amount of the pair-based potentiation A+ . Similarly,

when a synapse is depressed by a paring event (∆t < 0), the presynaptic depression

variable Mpre is added to the pair-based depression A− . Thus,

∆w = Ftrip(∆t) =






�
A+ +Mpost(t− �)

�
exp(−∆t/τ+) if ∆t ≥ 0

−
�
A− +Mpre(t− �)

�
exp(∆t/τ−) if ∆t < 0

. (4.1)

The small parameter � ensures that the values of Mpre and Mpost just before their

update by the pre- or postsynaptic spikes are used. The postsynaptic potentiation

and presynaptic depression variables are governed by the equations

dMpre

dt
= −Mpre

τpre
+ Apre

�

i

δ(t− t
(i)
pre)

dMpost

dt
= −Mpost

τpost
+ Apost

�

i

δ(t− t
(i)
post) , (4.2)

where δ(t) is the Dirac delta function, and t
(i)
pre and t

(i)
post are the times of arrival of

pre- and postsynaptic spikes respectively. This introduces 4 parameters into the

model beyond those of the pair-based model: the time constants τpre and τpost and



4.2. Methods 51

the increments Apre and Apost.

4.2.2 The suppression model

In the suppression model with time constants τpre and τpost, the change in a synaptic

weight is determined by

∆w = Fsupp(∆t) =
�
1− exp(−∆tpre/τpre)

��
1− exp(−∆tpost/τpost)

�

×






A+ exp(−∆t/τ+) if ∆t ≥ 0

A− exp(∆t/τ−) if ∆t < 0 ,

(4.3)

where ∆tpre is the interval between the presynaptic spike in the pair and its preced-

ing presynaptic spike, and ∆tpost is the interval between the postsynaptic spike and

its preceding spike. The suppression model introduces 2 new parameters beyond

those of the pair-based model: the time constants τpre and τpost.

4.2.3 The NMDAR-based model

The NMDAR-based model (Senn et al., 2001; Gerstner and Kistler, 2002) is based

on the assumption that NMDARs can be in one of three different states, “rest”,

“up” and “down”. The variables f rest, fup and f
dn denote the fraction of NMDARs

in each state respectively (fup + f
dn + f

rest = 1). In the absence of pre- and

postsynaptic spikes, the receptors in up and down states return to the rest state with

time constants τupf and τdnf respectively. Each presynaptic spike up-regulates the

receptors immediately after its arrival by an amount proportional to a parameter
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A
up
f , and each postsynaptic spike down-regulates the receptors proportional to a

parameter Adn
f . The dynamics of the NMDARs in the ‘up’ and ‘down’ states can

be expressed as:

df
up

dt
= −f

up

τupf

+ A
up
f f

rest
�

i

δ(t− t
(i)
pre)

df
dn

dt
= −f

dn

τdnf

+ A
dn
f f

rest
�

i

δ(t− t
(i)
post) , (4.4)

where the sums run over all pre- (t(i)pre) or postsynaptic (t(i)post) spike times, indexed

by i. In this and subsequent equations, we assume the convention that a quantity

multiplying a δ function is evaluated immediately before the time when the argu-

ment of the δ function is zero.

The fraction of active second messengerMup is increased by postsynaptic spikes

proportional to the amount of up-regulated NMDARs fup and the available inac-

tive messengers 1−M
up. Likewise, the fraction of active second messenger Mdn is

increased by presynaptic spikes proportional to the amount of down-regulated NM-

DARs fdn and available inactive messenger 1−M
dn. In the absence of spikes, these

second messenger fractions decay with time constants τMup and τMdn , respectively.

Thus,

dM
up

dt
= −M

up

τupM

+ A
up
M f

up(1−M
up)

�

i

δ(t− t
(i)
post)

dM
dn

dt
= −M

dn

τdnM

+ A
dn
M f

dn(1−M
dn)

�

i

δ(t− t
(i)
pre) , (4.5)

where the sums run over all pre- (t(i)pre) or postsynaptic (t(i)post) spike times. The
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parameters Aup
M and A

dn
M governing the magnitude of the changes in the messengers

on spiking events. Finally, synaptic potentiation occurs in response to postsynap-

tic spikes and depends on the amount of Mup, and synaptic depression occurs in

response to presynaptic spikes depending on the amount of Mdn, so that

dw

dt
= A+ [Mup−θup]+

�

i

δ(t− t
(i)
post− �)−A− [Mdn−θdn]+

�

i

δ(t− t
(i)
pre− �) (4.6)

where θup and θdn are thresholds above which the corresponding messengers take

part in plasticity, and [x]+ denotes the piece-wise linear threshold function [x]+ = x

for x > 0 and zero otherwise. The small parameter � is included because, in this

case, we evaluate the factors multiplying the δ functions after the time of a spike,

as required by the model.

4.3 Results

To study the effect of different STDP models on synaptic weights, we simulated a

single spiking neuron receiving Nex excitatory and Nin inhibitory presynaptic spike

trains with Poisson statistics at rates rpre and rin, respectively. The strengths of the

excitatory synapses, denoted by w, change according to STDP, while the strengths

of inhibitory synapses remain constant. To examine the different forms of stability

of each STDP model, we check whether the steady-state distribution of synaptic

strengths is bounded without imposing external limits, or whether the increase or

decrease of the weights is stopped only when they hit a boundary. We distinguish

between the partially stable and unstable cases by computing the evolution of the

average of the synaptic weights, which reaches a fixed point only in the partially
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Triplet Suppression NMDAR-based

A+ 5.3× 10−3 mV 1.3× 10−2 mV 10−3 mV
A− 3.5× 10−3 mV 5.1× 10−3 mV 10−3 mV
Apre 0 – –
Apost 8× 10−3 mV – –
A

up
f – – 1

A
dn
f – – 0.5

A
up
M – – 0.7

A
dn
M – – 0.7

τ+ 16.8 ms 13.3 ms –
τ− 33.7 ms 34.5 ms –
τpre – 28 ms –
τpost 40 ms 88 ms –
τupf – – 300 ms
τdnf – – 300 ms
τupm – – 600 ms
τdnm – – 600 ms
θup – – 0.7
θdn – – 0.35

Table 4.1: Original parameters of the multi-spike STDP models used to generate
figures 4.1B, 4.4B, 4.7B and 4.10

stable case. Fully stable STDP is characterized by a fixed point for the average rate

and bounded deviations for the strengths of individual synapses about this mean.

As a probe of synaptic competition, we induce correlations in half of the excita-

tory inputs (Chapter 2, Methods) and check whether STDP causes the synapses

corresponding to correlated and uncorrelated subsets to compete for control of the

postsynaptic firing. This also allows us to determine whether the effect of correla-

tions is Hebbian or anti-Hebbian. The neuronal and input parameters used in our

simulations are given in Chapter 2, Table 2.1.
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FIG. 4.1: A. Schematic illustration of spike interactions in the triplet model in
which previous presynaptic spikes induce extra depression (top) and previous post-
synaptic spikes induce extra potentiation (bottom). B. Plasticity due to triplets of
spikes: pre-post-pre triplets induce depression or weak potentiation (top left), and
post-pre-post ordering induces potentiation (bottom right). This figures is based
on parameters fit to hippocampal data (Table 4.1).

4.3.1 Stability and competition in the triplet model

Experimental results on synapses in hippocampal cultures reveal a marked asymme-

try in the plasticity induced by post-pre-post and pre-post-pre spike sequences, in

contrast to the predictions of the pair-based model (Chapter 2, figure 2.1B). Post-

pre-post sequences induce potentiation, and pre-post-pre have little or no effect

(Wang et al., 2005). In addition, in experiments on cortical synapses, the balance

between potentiation and depression shifts toward potentiation when the frequency

of pre-post pairing events increases, another property not captured by pair-based
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STDP (Sjöström et al., 2001). These results motivated Pfister and Gerstner (2006)

to propose the triplet model, which takes into account interactions of spikes beyond

pre-post pairings. In addition to the effect of pre-post pairings, the triplet model

includes additional depression due to previous presynaptic spikes and additional

potentiation from earlier postsynaptic spikes (figure 4.1A). This is accomplished

through a presynaptic depression variable and a postsynaptic potentiation variable

assigned to each synapse. In the absence of incoming presynaptic spikes, the presy-

naptic depression variable decays exponentially with time constant τpre. Likewise,

the value of the postsynaptic potentiation variable decreases exponentially in the

absence of postsynaptic spikes with time constant τpost. When a presynaptic spike

reaches the synapse, the presynaptic depression variable abruptly increases by the

amount Apre, and when a postsynaptic spike occurs, the postsynaptic variable in-

creases by Apost. This is how the triplet model accounts for the asymmetry of

synaptic modification in response to triplets. For a pre-post-pre triplet, the first

presynaptic spike induces extra depression on the synapse, while for a post-pre-

post triplet the first postsynaptic spike induces extra potentiation (figure 4.1B).

The triplet model that we consider sums the contributions of all previous pre- and

postsynaptic spikes as well as all pre-post pairings (all-to-all). Pfister and Gerstner

(2006) also provided a version of the triplet model based only on nearest neighbor-

ing spikes, but the qualitative behavior of both versions is similar.

As we did for the pair-based STDP model (Chapter 2), we can derive equations

governing the evolution of the mean synaptic strengths and deviations around the

mean for individual synaptic weights. The average values of the presynaptic de-

pression and postsynaptic potentiation variables, obtained from substituting rates
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for spikes in equation (4.5), are Apre τpre rpre and Apost τpost r̄post. Using these values

and averaging over the probability of pre-post pairings, the drift of the mean of the

synaptic weights in the triplet model is

d�w�
dt

= A+ τ+ rpre r̄post+Apost τpost τ+ rpre r̄
2
post − A− τ− rpre r̄post − Apre τpre τ− r

2
pre r̄post

+
(A+ + Apost τpost r̄post)τ+τs rpre �w�

(τs + τ+)(Vth − Vr)τm
. (4.7)

As in the pair-based model, the last term in this equation is the w-dependent drift

and the other terms make up the baseline drift. The dynamics of deviations of

individual synapses from the mean is governed by the w-dependent drift, so

dδw

dt
=

(A+ + Apost τpost r̄post)τ+τs rpre δw

(τs + τ+)(Vth − Vr)τm
. (4.8)

As in the pair-based model, the coefficient of δw is always positive, so individ-

ual weights will drift away from the mean for any choice of parameters, making

individual synaptic weights unstable.

The parameters of the original model were optimized separately by Pfister and

Gerstner (2006) to match experimental data from hippocampal cultures and corti-

cal slices, resulting in two sets of parameters. Our simulation results indicate that,

for both sets of parameters, the distribution of synaptic weights is unstable, so that

all the synaptic weights cluster around the upper bound. In addition, no competi-

tion takes place between correlated and uncorrelated synapses with these parameter

sets. This led us to consider properties of the triplet model for a range of param-

eter values. As in our discussion of pair-based STDP, we study the triplet model

when pair-based potentiation is larger than pair-based depression (A+ = 0.005 mV,
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A− = 1.01A+) and when pair-based depression is larger than pair-based potentia-

tion (A− = 0.005 mV, A+ = 1.01A−). In each case, we varied the ratio between

postsynaptic potentiation and presynaptic depression (Apost/Apre) systematically,

while keeping Apost constant at 0.001 mV.

We first examine the fixed points of the mean synaptic weight (figure 4.2A &

F). When Apost/Apre is small, the average synaptic weight has two nontrivial fixed

points (figure 4.2B & G). The first is stable (figures 4.2B & G, filled circle) and the

second is unstable (figure 4.2B & G, open circle). The appearance of the unstable

fixed point in the triplet model is due to the dependence of the postsynaptic po-

tentiation on the postsynaptic firing rate. This added potentiation increases when

the mean synaptic weight increases, eventually overcoming the combined effect of

presynaptic and pair-based depression. The existence of two fixed points makes the

steady-state distribution of synaptic weights sensitive to the initial distribution. If

the mean of the initial distribution is greater than the unstable fixed point, the

distribution will be unstable and all of the weights will be pushed toward the upper

bound (figure 4.2D & I, middle). If the mean of the initial distribution is lower

than the unstable fixed point, the mean of the steady-state distribution converges

to the stable fixed point and individual weights drift away from the mean toward

the lower and upper bounds, resulting in partial stability and a U-shaped distri-

bution similar to the pair-based model (figures 4.2D & I, left). When Apost/Apre

reaches a critical value, the two fixed points coalesce and annihilate each other,

and only the trivial unstable fixed point remains (figures 4.2C & H). In this case,

regardless of the initial distribution, the final distribution is unstable and tightly

clustered near the upper bound (figures 4.2D & I, right).
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As we argued in the case of the pair-based model, synaptic competition can

only take place when the steady-state distribution has a nontrivial stable mean and

is partially stable. In the triplet model, when Apost/Apre is relatively small and the

initial mean synaptic weight is lower than the unstable fixed point, this condition is

fulfilled (figures 4.2A & F, dark gray areas; figure 4.2E, left). However, if the stable

and unstable fixed points are too close together, there is no guarantee of synaptic

competition (figure 4.2J, left). The reason is that when a subset of the synaptic

inputs are correlated, presynaptic spikes tend to arrive in tandem and induce large

transients in the postsynaptic firing rate, causing large fluctuations in the mean

synaptic weight. This can cause the mean synaptic strength to fluctuate beyond

the unstable fixed point, destabilizing the weight distribution. As a result, the

parameter regime for synaptic competition in the triplet model is highly restricted

to the region of small Apost/Apre. This region is even smaller when the pair-based

component of potentiation is larger than the pair-based depression (figure 4.2F,

dark gray area). Thus, it is not surprising that the original parameters obtained

by (Pfister and Gerstner, 2006) did not lead to competitive synaptic plasticity. In

summary, what appear as novel properties of the triplet model compared to the

pair-based model are the sensitivity to the initial distribution of weights and a

tighter parameter range for Hebbian competition.

4.3.1.1 Stability and competition in the shifted triplet model

The distribution of synaptic weights can be stabilized by a shift in the triplet model

as well, similar to the model described in Chapter 3. Simulations show that the final
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FIG. 4.2: Stability and competition in the triplet model. A. Fixed points of �w� as
functions of the ratio Apost/Apre. B. Average drift of the weights, when Apost/Apre =
0.2. Gray area: simulation, solid curve: analytic, filled circle: stable fixed point,
open circle: unstable fixed point, inset: w-dependent drift near the stable fixed
point. C. Average drift of the weights when Apost/Apre = 1.2. D. Distribution of
synaptic weights obtained from simulation, with parameters as in B and an initial
mean of 0.4 mV (left) or 1.6 (middle), or using parameters as in C. (right). E.
Synaptic competition for the parameters and initial values used in D. F-J. Same as
A-E, but when pair-based potentiation is larger than pair-based depression. For this
figure, the time constants of presynaptic depression and postsynaptic potentiation
were τpre = τpost = 40 ms), and the pair-based time constants of the model equal
were τ+ = τ− = 20 ms.
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FIG. 4.3: The shifted triplet model. A. The final distribution of weights for different
values of Apre and Apost. Except for very high depression values, the distribution is
unimodal and stable. We used the representative value of 0.003mV for both (Apre

and Apost, red dotted box) for the remaining results in this figure. B. The shift
stabilizes the distribution of synaptic weights. The horizontal axis is the value of the
shift, the vertical axis is the synaptic strength, and the gray level is the probability
density of the strengths (as in figure 3.2), obtained by simulation. C. The steady-
state firing rate of the postsynaptic neuron as a function of the excitatory and
inhibitory input rates. D. The shift in the triplet model can implement both
Hebbian and anti-Hebbian competition. As in figure 3.4, the top panel shows
the distribution of the uncorrelated synapses (cyan) and the bottom panel shows
the distribution of the correlated ones (magenta), as a function of the inhibitory
input rate. The transition from anti-Hebbian to Hebbian competition occurs at an
inhibitory input rate of 16 Hz.
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distribution of weights is stable and unimodal (figure 4.3A) using a triplet model in

which the window of the pre-post pairing is shifted by 2ms, unless the presynaptic

depression is extremely high, which causes the firing rate of the postsynaptic neuron

to go to zero, terminating plasticity. After finding that the shifted STDP in the

triplet model stabilizes weights for a wide range of parameters, we set Apre and Apost

to 0.003mV and examined other properties of shifted STDP in this model. Further

simulations showed that shifted STDP within the framework of the triplet model has

all the qualitative properties of the shifted pair-based STDP model (Chapter 3). A

shift as low as 0.1 milliseconds is sufficient to stabilize the weights, with larger delays

resulting in lower mean values and sharper distributions for the weights (figure

4.3B). The steady-state firing rate of the postsynaptic neuron decreases when the

rate of the excitatory and/or inhibitory presynaptic input increases (figure 4.3C).

Finally, either anti-Hebbian or Hebbian competition occurs depending on the rate

of inhibitory input to the neuron (figure 4.3D).

4.3.2 Stability and competition in the suppression model

Plasticity experiments in cortical slices using triplets of spikes showed different ef-

fects than in cultured hippocampal neurons. In the synapses of the visual cortex of

rats, pre-post-pre triplets induce potentiation whereas post-pre-post triplets induce

depression (Froemke and Dan, 2002). These results led Froemke and Dan (2002) to

propose the suppression model, in which plasticity is induced by nearest neighbor

pre- and postsynaptic spikes. The plasticity is computed from the standard STDP

curve, but the effect of the presynaptic spike in each pair is suppressed by previ-

ous presynaptic spikes and, similarly, the plasticity induced by the postsynaptic

spike in each pair is suppressed by previous postsynaptic spikes (figure 4.4A). The
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suppression is maximal immediately after each pre- or postsynaptic spikes, and it

decreases exponentially as the interval between consecutive pre- or postsynaptic

spike increases. The suppression model accounts for the asymmetry of synaptic

modification in response to triplets. In the case of a pre-post-pre triplet, the first

pair (pre-post) induces potentiation, but the amount of depression induced by the

second pair (post-pre) is suppressed by the first presynaptic spike. For a post-

pre-post triplet, the first pair (post-pre) induces depression, but the potentiation

induced by the second pair (pre-post) is suppressed by the first postsynaptic spike

(figure 4.4B).

The parameters of the model were originally set to match the synaptic modifi-

cation seen in the experiments (Froemke and Dan (2002); Table 4.1). Our numerical

simulations with these parameters show that the steady-state distribution is unsta-

ble and tightly clustered around the upper bound. When correlations are induced

in half of the synaptic inputs, no competition takes place and all the weights are

potentiated indiscriminately. To observe a range of behaviors of this model, we

set the suppression time constants equal to the values given by Froemke and Dan

(2002), namely τpre = 28 ms, τpost = 88 ms. We also set the maximum potentiation

and depression values equal (A+ = A− = 0.005 mV) and fixed the depression time

constant (τ− = 20 ms). We then varied the potentiation time constant τ+ to observe

different behaviors of the model. Transitions to different behaviors can also be seen

when changing other parameters (for example the ratio A+/A−), but our simula-

tions showed that changing the ratio between the potentiation and depression time

constants (τ+/τ−) reveals these transitions most clearly.
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FIG. 4.4: The suppression model. A. Schematic of spike interactions in the sup-
pression model, in which the effect of the presynaptic spike in a pair is suppressed
by a previous presynatic spike (top), and the effect of the postsynaptic spike is sup-
pressed by a previous postsynaptic spike (bottom). B. Plasticity in the suppression
model induced by triplets of spikes: pre-post-pre triplets induce potentiation (top
left), and post-pre-post induce depression (bottom right).

Calculating the drift of synapses in the suppression model is more complicated

than in previous models. We leave the details to Appendix A.3 and report the re-

sults here. When τ+/τ− < 1.2, the average synaptic weight has a stable nontrivial

fixed point (figure 4.5A-C). For higher values of τ+/τ− , the nontrivial fixed point

disappears and the average synaptic weigh has only the trivial zero fixed point

(figure 4.5A & D). For low τ+/τ− values, the steady-state distribution of weights is

partially stable and U-shaped, as in the case of the pair-based model (figure 4.5E).

However, for τ+/τ− between 1.05 and 1.2, the value of the average synaptic weight
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FIG. 4.5: A. Fixed points of �w� as functions of the ratio between the potentiation
and depression time constants. B. The average drift when τ+/τ− = 1. Solid curve:
analytical result, gray shading: simulation results, filled circle: stable fixed point.
C. The average drift when τ+/τ− = 1.1. D. The average drift when τ+/τ− = 1.5. E.
The partially stable bimodal steady-state distribution of weights corresponding to
the parameters of B. F. The stable steady-state distribution of weights correspond-
ing to the parameters of C. G. The unstable steady-state distribution of weights
clustered around the upper bound corresponding to the parameters of D, when no
stable fixed point exists. H-J. Competition between correlated and uncorrelated
synapses with parameter corresponding to E-G. The competition is anti-Hebbian
in all cases.
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grows rapidly (figure 4.5A, gray area), and the steady-state distribution is stable

and unimodal (figure 4.5F), implying that the w-dependent drift is negative in this

range. Because of the complexity of spike interaction in the suppression model, a

complete characterization of the w-dependent drift is beyond our analytical calcu-

lations (Appendix A.3). However, features of the response of an integrate-and-fire

neuron to a pair of presynaptic spikes in the context of the suppression model

explain why the w-dependent drift becomes negative when the average synaptic

weight is large.

Suppose that two presynaptic spikes arrive at a neuron in quick succession,

and we want to analyze the role of the second spike in inducing plasticity under

the suppression model (figure 4.6). The second presynaptic spike participates in

plasticity twice: once by pairing with the previous postsynaptic spike, and again

by pairing with the next postsynaptic spike. When the strength of the synapse is

low, the first presynaptic spike is not very likely to induce a postsynaptic action

potential after its arrival, so the pairing interval between the second presynaptic

spike and the preceding postsynaptic spike is typically long, which induces weak

depression (figure 4.6A). However, if the synapse is strong, the first presynaptic

spike is likely to induce a postsynaptic action potential, and its pairing interval

with the second presynaptic spike is then short, inducing strong depression (figure

4.6B). In addition, because of the high probability of postsynaptic firing in response

to both presynaptic spikes, the interval between the induced postsynaptic spikes

is short, which strongly suppresses the potentiation caused by pairing the second

presynaptic spike with its following postsynaptic spike. Therefore, depression dom-

inates over potentiation in the suppression model when synapses are strong. When



4.3. Results 67

this happens, deviations to even higher values lead to depression. This explains

why w-dependent drift is negative when the average synaptic weight is large, which

occurs when τ+/τ− approaches the critical value 1.2 (figure 4.5A, gray area).

weak
 depression

weak
suppression of

 potentiation

strong
 depression

strong
suppression of
 potebntiation

Weak Synapse Strong SynapseA B

FIG. 4.6: Response of a neuron to a pair of presynaptic spikes and its consequences
in the suppression model. A.When the synapse is weak, the probability of a postsy-
naptic spike does not increase significantly from the baseline. The interval between
postsynaptic spikes and also the pairing interval between the second presynaptic
and the first postsynaptic spike are likely to be long. The result is a weak depres-
sion and also a weak suppression of potentiation. B. When the synapse is strong,
the neuron is likely to fire in response to both presynaptic spikes, which results in
strong depression and also strong suppression of potentiation

When half of the synapses receive correlated spike trains and the other half

uncorrelated inputs in the suppression model, a distinctive features is that anti-

Hebbian competition takes place: the uncorrelated synapses become strong and

the correlated ones weak (figures 5H-J). This is the result of postsynaptic suppres-

sion. When correlated presynaptic spikes arrive, they tend to induce a postsynaptic

spike shortly after their arrival. This make the interval between the induced post-

synaptic action potential and the previous spike shorter than for the postsynaptic
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response to uncorrelated input. As a result, potentiation is suppressed for corre-

lated synapses, and they eventually lose the competition with uncorrelated ones.

In analogy with what was described in the previous paragraph, correlated inputs

are similar to inputs with strong synapses and, in either case, the high probability

of postsynaptic spiking makes the w-dependent drift negative. In summary, the

characteristic properties of suppression model are anti-Hebbian competition and

stability of the synaptic distribution when the mean synaptic strength is large.

4.3.3 Stability and competition in the NMDAR-based model

The NMDAR-based model (Senn et al., 2001) was proposed as an explanation for

the original STDP experiments of Markram et al. (1997), and it predates both the

triplet and suppression models and the data that inspired them. Nevertheless, as

we will see below, it has features that resemble both of these models, and it is

sensitive to spike interactions beyond pre-post pairings. The original version of the

NMDAR-based model (Senn et al., 2001) includes the dynamics of the probability

of presynaptic vesicle release. We focus on a simpler version that only models the

modification of synaptic strengths by pre- and postsynaptic spikes (Gerstner and

Kistler, 2002).

In the NMDAR-based model, the NMDAR is assumed to have three states,

rest, up and down. Each incoming presynaptic spike moves a portion of the NM-

DARs in the rest state into the up state, and each postsynaptic spike transitions a

portion of the rest state NMDARs into the down state (figure 4.7A). The NMDAR

decays back to the rest state exponentially in the absence of spikes. In accord with

the molecular kinetics of NMDARs (Shouval et al., 2002; Malenka and Bear, 2004),
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FIG. 4.7: The NMDAR-based model. A. Schematic of spike interactions in the
NMDAR-based model. The presynaptic spike up-regulates f rest, activates Mdn and
potentiates the synapse. The postsynaptic spike down-regulates f

rest, activates
M

up and potentiates the synapse. B. Plasticity in the NMDAR-based model due
to triplets of spikes with parameters as in Table 4.1. The effect is asymmetric, with
pre-post-pre triplets inducing potentiation (top left) and post-pre-post depression
(bottom right).

the rest state can be interpreted as an NMDAR that is not bound to glutamate

and is blocked by Mg2+, the up state as an NMDAR that is bound to glutamate

but blocked by Mg2+, and the down state as an NMDAR that is not bound to

glutamate but has had its Mg2+ block removed by a postsynaptic spike. The model

also has two second messengers, called up and down messengers, that mediate po-

tentiation and depression, respectively (figure 4.7A). These can be in either active

or inactive states. When a presynaptic spike arrives, a fraction of the inactive down

messengers transition to the active state, proportional to the amount of NMDAR

in down state. Likewise, when a postsynaptic spike reaches the synapse, it moves

a portion of the inactive up messengers into their active state, proportional to the

amount of NMDAR in up state. The messengers decay back to their inactive states

in the absence of spikes. Finally, upon arrival of a presynaptic spike, the synapse

is depressed proportional to the amount of active down messenger, provided that
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this is larger than a threshold θdn. Similarly, each postsynaptic spike causes the

synapse to potentiate proportional to the amount of active up messenger provided

that it is larger than a threshold θup. Thus, the presynaptic spike plays three roles

in this model: it moves resting NMDARs into the up state, it activates the down

messenger, and it induces depression. The postsynaptic spike also has three roles:

it transitions resting NMDARs into the down state, activates the up messenger,

and induces potentiation (figure 4.7A).

A key feature of the NMDAR based model is that preceding spikes decrease

the amount of available resting NMDARs available to upcoming spikes. This im-

plements a mechanism akin to the suppression model, in which previous spikes

suppress the effect of subsequent spikes. If we assume that the second messengers

are extremely fast such that we could disregard their dynamics, the NMDAR-based

model reduces to the suppression model (figure 4.8, top-right). The roles of the

second messengers are quite similar to those of the presynaptic depression and

postsynaptic potentiation variables in the triplet model in that both integrate the

effects of pre- and postsynaptic spiking to modify depression and potentiation. In

fact, if we assume that the spikes have access to an unlimited pool of resting NM-

DARs and messengers, the NMDAR-based model is equivalent to the triplet model

(figure 4.8, bottom-left). Finally, if we assume both unlimited messengers and rest-

ing NMDARs and also very fast messenger dynamics, the model will be reduced to

simple pair-based STDP (figure 4.8, bottom-righ)

Given the multi-spike interactions in the NMDAR-based model, it is not sur-

prising that it responds asymmetrically to triplets of spikes. Our numerical simula-
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tions using the parameters provided by Senn et al. (2001) (Table 4.1) show that the

synaptic modification in response to triplets in this model is qualitatively similar to

that of the suppression model (figure 4.7B). They also show that, with the param-

eters provided by Senn et al. (2001), the steady-state distribution is unstable and

tightly clustered around the upper bound. When correlations are induced in half of

the synaptic inputs, no competition takes place and all the weights are potentiated

indiscriminately.

LTPLTD

NMDAR-based model

LTPLTD

Suppression model

LTPLTD

Triplet model

1 1

1 1

LTPLTD

Pair-based model

1 1

In!nie reserve of resting NMDAR
 and seccond messengers

Instantaneous 
second messengers

In!nie reserve of resting NMDAR
 and seccond messengers

Instantaneous 
second messengers

FIG. 4.8: Relationships between multi-spike STDP models. If the second messen-
gers activate instantaneously by NMDRs, the NMDAR-based will be qualitatively
equivalent to the suppression model (top, right). If there exists an infinite reserve
of resting NMDARs and inactive second messengers, the NMDAR-base model will
be reduced to the triplet model (bottom-left). If both assumptions are fulfilled,
the NMDAR-based model will be reduced to the simple pair-based model (bottom-
right)
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0.1, and the time constants are as in Table 4.1.
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To examine the spectrum of behaviors in the NMDAR-based model, we cal-

culated the synaptic drift (Appendix A.4). Interesting transitions into different

regimes occur when the threshold of the down messenger is larger than that of the

up messenger (θdn = 0.2, θup = 0), and the ratio between maximum potentiation

and maximum depression (A+/A−) is varied (figure 4.9). All other parameters of the

model are held constant at equal values for potentiation and depression components,

and the time constants are set to the values provided by Senn et al. (2001)(Table

4.1). When A+/A− is smaller than a critical value (0.042), the average synaptic

weight has both stable and unstable nontrivial fixed points. At the critical value,

these two fixed points coalesce and disappear, and beyond the critical value the av-

erage synaptic weight has only the trivial fixed point at zero (figure 4.9A). The sign

of w-dependent drift also changes as A+/A− varies. When A+/A− is smaller than

0.025, the w-dependent drift is negative, and for larger ratios it is positive (figure

4.9B). Taken together, three different behaviors are observed in the NMDAR-based

model: 1) When a stable mean synaptic weight exists and w-dependent drift is

negative (0 < A+/A− < 0.025, figures 4.9A & B, dark gray area), the steady-

state distribution of synaptic weights is stable and unimodal (figures 4.9C & F).

2) When a stable mean synaptic weight exists and w-dependent drift is positive

(0.025 < A+/A− < 0.042, figures 4.9A & B, light gray area), the steady-state dis-

tribution of synaptic weights is partially stable and U-shaped (figures 4.9D & G).

3) When the mean synaptic weight has no stable fixed point (A+/A− > 0.042), the

steady state distribution is unstable, and it clusters near the upper bound (figures

4.9E & H).

Synaptic competition is different in these three regions of the parameter space.
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When half of the input spike trains are correlated, the competition in the first region

is anti-Hebbian because the w-dependent drift is negative and correlated synapses

receive more depression (figure 4.9I). It is Hebbian in the second region because

the w-dependent drift is positive (figure 4.9J). There is no competition in the third

region because the mean is not stable (figure 4.9K). In short, the distinguishing

features of the NMDAR-based model compared to the pair-based model are the

possibility of a stable synaptic distribution and anti-Hebbian competition when the

maximum depression is significantly larger than the maximum potentiation.

4.3.4 STDP with soft bounds

In previous sections, we imposed hard bounds on the synaptic strengths to confine

them between zero and a maximum allowed value (wmax). As in the case of the pair-

based model, it is also possible to confine the synapse by implementing soft bounds,

that is, by making the maximum depression and potentiation weight-dependent so

that when a synaptic strength approaches the bounds, its rate of change gradu-

ally decreases. This can be done by multiplying A+ and A− by 1− (w/wmax) and

w/wmax respectively. In the case of the triplet model, the presynaptic depression

and postsynaptic potentiation variablea should be also multiplied by 1− (w/wmax)

and w/wmax respectively, bescause they appear as potentiation and depression fac-

tors as well.

The steady-state distribution of synaptic strengths is stable and unimodal for

all three multi-spike STDP models with soft bounds (figure 4.10). This behavior is

robust and holds for a wide range of parameters (we only show simulation results
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FIG. 4.10: Stability and competition in multi-spike STDP models with soft bounds.
A. Steady-state distribution of synaptic strengths in the triplet model with soft
bounds. B. Steady-state distribution of synaptic strengths in the suppression
model with soft bounds. C. Steady-state distribution of synaptic strengths in
the NMDAR-based model with soft bounds. Insets: steady-state distribution of
weights when half of the synapses receive correlated input (magenta) and the other
half receive uncorrelated input (cyan). In each case, the original parameters (Table
4.1) are used.

for the original parameters (Table 4.1) in each model). The soft bounds weaken

synaptic competition drastically, so than the distributions of correlated and uncor-

related synapses are close to each other (figure 4.10, insets). As has been shown for

pair-based STDP (Chapter 2, van Rossum et al. (2000); Rubin et al. (2001)), soft

bounds turn STDP into a homeostatic plasticity mechanism with minimal sensitiv-

ity to the correlation structure of the external input.

4.4 Discussion

The main focus of this study was synaptic stability and competition, two desirable

but often conflicting features of activity-dependent plasticity rules (Miller, 1996).

Our analytical tool for assessing these properties was calculating the drift of a pop-

ulation of synapses under each multi-spike STDP model. This method has been

applied to the pair-based STDP model in a number of previous studies (see Chapter
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2). The pair-based model with hard bounds was shown to produce a partially stable

U-shaped steady-state distribution of weights and Hebbian competition that favors

correlated synapses over uncorrelated ones (Song et al., 2000; Song and Abbott,

2001; Cateau and Fukai, 2003). On the other hand, the pair-base model with soft

bounds has been shown to have a stable steady-state distribution at the expense

of losing synaptic competition and sensitivity to input correlations (van Rossum

et al., 2000; Rubin et al., 2001). Our analysis in this chapter can be viewed as a

reconfirmation and extension of these results into the domain of multi-spike STDP

models.

Table 4.2 summarizes the results of this survey of stability and competition

in multi-spike STDP models, together with the results for shifted STDP from the

previous chapter. Like the pair-based model, the triplet model produces an unsta-

ble steady-state distribution of synaptic weights and Hebbian synaptic competition.

The suppression model shows predominantly anti-Hebbian competition and a stable

steady-state distribution of synaptic weights when the average weight is high. The

NMDAR-based model displays both stable and unstable steady-state distributions

depending on the parameters, with anti-Hebbian competition in the former case

and Hebbian in the latter.

It is interesting that anti-Hebbian plasticity, which does not occur in the pair-

based model unless a temporal shift is added (Babadi and Abbott, 2010), can arise

in the suppression and NMDAR-based models. The dichotomy between full synap-

tic stability and Hebbian competition persists in multi-spike STDP models, and

anti-Hebbian competition can coexist with full synaptic stability for at least at
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Stability Partial Hebbian Anti-Hebbian
stability competition competition

Pair-based - � � -
Shifted � - � �
Triplet - � � -

Suppression � � - �
NMDAR-based �∗ � � �

Table 4.2: Summary of stability/plasticity in STDP models. ∗ Stability only coex-
ists with anti-Hebbian competition is NMDAR-based model.

some parameter regimes in the suppression and NMDAR-based models. A number

of solutions have been proposed to reconcile stability and competition in pair-based

STDP. By interpolating between hard and soft bounds, it is possible to obtain both

synaptic competition and stability, but over a limited parameter range (Gütig et al.,

2003). Another solution, based on a small temporal shift in the STDP window as

described in Chapter 3, can stabilize the distribution of synaptic weights while

maintaining competitiveness. As we saw in this chapter, the shift has a similar

effect in the triplet model (Babadi and Abbott, 2010).

To search the parameter space of the models for different stability/plasticity

interplay, we systematically varied the balance between potentiation and depression

parameters in each multi-spike STDP model. However, for each model, a fixed set of

parameters was originally proposed to match experimental results. Our paremeter

changes may cause the response profile of the model to deviate from its originally

optimized form. This can be justified because both the temporal spread and the

magnitude of potentiation and depression vary considerably along the dendritic tree

(Froemke et al., 2005; Letzkus et al., 2006; Froemke et al., 2010). Therefore, each

parameter set in our analyses and numerical simulations might coincide with the
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characteristics of the STDP window at a particular location on the dendritic tree.

Although all of the models we considered were proposed on basis of observa-

tions of synaptic modification under similar conditions, their effect on a population

of synapses onto a postsynaptic neuron can be quite different. One of the use-

ful computational aspects of STDP is its ability to implement Hebbian learning

and to functionally organize neural circuits. None of the three multi-spike models

generated Hebbian competition among synapses when their original optimized pa-

rameters were used. Moreover, using these parameters, all three models produced

an unstable distribution of weights tightly clustered near the upper bound of their

allowed range. Given the observed broad distribution of synaptic weights that has

been observed (Turrigiano et al., 1998; O’Brien et al., 1998; Song et al., 2005) this

is implausible. As it is possible to construct several phenomenological models that

explain a given experimental data set, it is reasonable to use the effects of plasticity

at the population level (evaluated through simulations or analytical calculations)

as a criteria for selecting an appropriate model.

It should be possible to unify different multi-spike STDP model into a single

framework. The triplet and suppression models were motivated by different experi-

mental data sets that showed opposite synaptic modification in response to triplets

(Froemke and Dan (2002) vs. Wang et al. (2005)). However, the NMDAR-based

model, which is phenomenologically closer to the molecular machinery involved in

synaptic modification, can match the effects of either of these models, depending

on the parameters used. This leads to the possibility that both the triplet and

suppression models might arise from a single biophysical mechanism with different
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parameters in different neural circuits (Shouval and Wittenberg, 2010). A simpler

model that similarly encompasses both cases would be useful.

In conclusion, as long as the experimental methods are confided to observation

of plasticity at a single synapse, we propose more stringent criteria in constructing

phenomenological models, to take into account the behavior of the model at the

level of synaptic populations along with the underlying molecular mechanisms.
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Chapter 5

Structures arising from STDP in a
network

The whole however, is merely the essential nature of parts reaching its
completeness through the process of its own development.

Georg Wilhelm Friedrich Hegel

5.1 Introduction

STDP is inherently a local synaptic modification rule because its sole determinants

of synaptic modification are the timings of pre- and postsynaptic spikes. Cortical

neurons, on the other hand, are embedded in highly interconnected networks in

which each neuron receives up to ten thousand synapses from other neurons (Brait-

enberg and Schuz, 1991; Stepanyants et al., 2008). Thus, although STDP operates

locally, the synapses in a neural network do not change in isolation. In previous

chapters, I studied the effect of STDP in shaping the distribution of weights for a

population of synapses converging onto a single neuron. This is one step toward

bridging the gap between the locality of STDP and the global structures that it

generates. In this chapter, I take a further step beyond the level of a single neuron
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and extend the focus to a recurrent network of spiking neurons by surveying the

global structures that arise from this local synaptic modification mechanism within

a large network.

The antisymmetric form of the STDP window led to the proposal that this

synaptic modification rule should eliminate strong recurrent connections between

two neurons (Abbott and Nelson, 2000). This principle has recently been expanded

by Kozloski and Cecchi (2010) to larger polysynaptic loops in the case of a “bal-

anced” STDP window in which the magnitudes of potentiation and depression are

equal. These authors have also shown that balanced STDP organizes the neu-

rons in a network into in- and out-hubs. Here, I show that, surprisingly, all of

the above network properties can be explained through an understanding of the

effect of STDP on pairwise interactions of neurons. This provides an analytically

tractable way of relating the structures arising in a network to properties of the

STDP model being used, even beyond the simple balanced case. The results show

that the loop-elimination property of STDP without a shifted window lessens as

potentiation dominates over depression. STDP with a shifted window (Chapter 3),

on the other hand, can operate as a loop-generating mechanism and also has home-

ostatic properties that maintain the average value of the synaptic weights across a

network.
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5.2 Methods

5.2.1 Network model

A network of Nex = 1000 excitatory and Nin = 250 inhibitory leaky integrate-and-

fire (LIF) neurons was simulated. The dynamics and parameters of the LIF neurons

are the same as in previous chapters (see Chapter 2, table 1). Each neuron receives

excitatory and inhibitory inputs from all the other neurons in the network. The

strengths of the excitatory-to-inhibitory, inhibitory-to-excitatory and inhibitory-to-

inhibitory synapses are fixed. At the beginning of each simulation, their strengths

are drawn from uniform distributions with means �wex→in� = 2 mV, �win→ex� = 8

mV, and �win→in� = 8 mV respectively. The excitatory-to-excitatory connections

are modified by pair-based STDP as described in Chapters 2 and 3. They are also

initialized at the beginning of each run to random values from a uniform distribu-

tion with mean �wex→ex� = 2 mV and range wmin = 0 to wmax = 4 mV. These values

are chosen to establish an excitation/inhibition balance in the initial network. Self

connections are prohibited for all neurons.

In addition to synaptic inputs originating from the neurons within the network,

each neuron receives uncorrelated noise as an external input. Taken together, the

input to the i
th excitatory or inhibitory neuron can be described by

dIi

dt
= −Ii

τs
+

Nex,Nin�

j=1,j �=i

wij

�

k

δ(t− t
k
j ) + µ+ σ ξ(t) . (5.1)

Here, the first sum runs over all neurons (Nex and Nin for excitatory and inhibitory

populations, respectively). The second sum runs over all of the spike times t
k
j



5.2. Methods 83

produced by neuron j, indexed by k. In addition, wij is the synaptic strength from

neuron j to neuron i, µ and σ are determine the mean and variability of the external

input, and ξ(t) is zero mean white noise. The parameter σ was set to 22 mV/
√
ms to

provide an average initial baseline firing rate of 10 Hz for the neurons in the network

when µ is zero. In the simulations, the value of µ is changed systematically to

modify the initial baseline firing rate, which connects the average initial firing rate

of the network to the strength of the external input. The synaptic time constant

τs = 5mV is taken to be the same for excitatory and inhibitory synapses. Each

simulation is run until the excitatory-to-excitatory connections reach a steady-state

in which the average firing rate, and the mean and variance of the weights remain

constant.

5.2.2 Counting the loops

To count the number of closed loops (or recurrent connections) in the matrix of

excitatory-to-excitatory synaptic weights (W ), we first turn the network into a

directed graph. This is done by comparing each synaptic weight to a threshold

value h, and assigning the value 1 to the synapse if its weight is greater than or

equal to h, and assigning a zero otherwise. This defines the adjacency matrix M

of the resultant directed graph, which can be written formally as

M = Θ(W − h) , (5.2)

where Θ(x) is the Heaviside step function. The number of closed loops of length n

in the adjacency matrix M is

Ln =
tr(Mn)

n
, (5.3)
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where tr denotes the matrix trace (the sum of the diagonal elements). To evalu-

ate the degree of recurrence in a network, we compare the number of closed loops

obtained from the above equation with the number in a randomly permuted (shuf-

fled) version of the same matrix. This method distinguishes between recurrent

connections formed purely by chance and those that arise from the structure of the

connectivity matrix. In the following sections, whenever we mention the number of

loops in a network, we are in fact referring to the number of loops in the adjacency

matrix formed by turning the network into a directed graph as described above.

5.3 Results

Pair-based STDP is parameterized by the maximum values of potentiation and

depression (A+ and A− , respectively) and by the time constants of the windows

for potentiation and depression (τ+ and τ− , respectively). Except for the case of

shifted STDP, we assume that spike interactions are all-to-all, i.e. all possible pre-

post pairs, and not only the nearest neighbors, contribute to plasticity. Using an

STDP model with nearest-neighbor interactions does not qualitatively alter the

results obtained below (see Appendix A.7). To gain analytical insight into the

structures that arise from STDP in a network, we first consider the simplest possi-

ble network element; a pair of connected neurons (figure 5.1). As will be shown in

the following sections, many of the structures induced by STDP in a large network

can be explained by properties of this simple two-neuron system.

Assume that two representative excitatory neurons from a network, labeled

neuron 1 and neuron 2, are reciprocally connected (figure 5.1, middle). We denote



5.3. Results 85

1 2

FIG. 5.1: Pairwise interactions of neurons through reciprocal synapses. Two repre-
sentative neurons embedded in a network are shown with their reciprocal synapses
(middle). Both synapses are modified by the pairings of the baseline spike trains
of the neurons (blue area in top and bottom panels). Whenever neuron 1 fires, the
synapse w1 (yellow) induces a transient increase in the firing rate of neuron 2 (yel-
low areas in top and bottom panels). This transient firing rate increase potentiates
w1 because it falls into the potentiation domain of STDP (top), but depresses w2

(green), as it falls into depression domain for this synapse (bottom). The transient
increase in the firing rate of neuron 1 in response to spikes of neuron 2 (green areas
in top and bottom panels) has the opposite effect.
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the strength of the synapse from neuron 1 to neuron 2 as w1 and the strength of the

synapse from 2 to 1 as w2 . Because the two neurons receive uncorrelated external

input and are embedded in a larger network, each fires at a constant baseline rate

(r̄1 and r̄2 , respectively). We assume that we can disregard correlations between

the baseline spike trains of neurons 1 and 2 (Renart et al., 2010), but our results

hold as long as any such correlations are symmetric functions of time. The two

synapses are modified primarily by random pre-post pairings of their baseline spike

trains. The average amount of modification is the same for both synapses. On top

of the baseline firing, the reciprocal synaptic connections induce correlations into

the spike trains of the two neurons. Each spike arriving from neuron 1 to neuron

2 transiently increases the firing rate of neuron 2 proportional to w1 (figure 5.1,

yellow areas). This transient increase (or causal bump, as we called it in previous

chapters) on the one hand induces potentiation in w1 (figure 5.1, top) and, on the

other hand, depresses w2 (figure 5.1, bottom). Likewise, the causal bump induced

by neuron 2 into neuron 1 (figure 5.1, green areas) potentiates w2 and depresses

w1 . Taken together, the average drift of the synaptic pair can be expressed as

dw1

dt
= A r̄1 w1 − B r̄2 w2 + C r̄1 r̄2

dw2

dt
= A r̄2 w2 − B r̄1 w1 + C r̄1 r̄2 , (5.4)

where the coefficients A, B and C can be calculated from the parameters of the

neural and plasticity models (see Appendix A.5). The coefficient A represents the

potentiation induced in a synaptic weight by its own causal effect on postsynaptic

firing, B represents the depression induced by the causal effect of the other the
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other synapse, and C characterizes the synaptic modification due to random pair-

ings of the baseline spike trains of the two neurons. The drift of the synaptic pair

due to the above linear system is restricted to a limited region in the state space,

because the synaptic strengths are bounded between zero and wmax. As we will see

in the following sections, this restriction results in a number of interesting effects

beyond those expected for a simple linear system.

In what follows, we first examine the effect of different parameterizations of

the STDP window on the synaptic pair. This leads to a number of predictions

about the structures arising from STDP in networks. We then test each prediction

with numerical simulations of a large network. The time constants of the STDP

window are assumed to be equal (τ+ = τ− = 20 ms), but we vary the balance

between potentiation and depression by changing the maximum values A+ and A− .

The same qualitative results hold when the maximum values are set equal and the

potentiation/depression balance is modified by changing the time constants.

5.3.1 Balanced STDP

The simplest form of STDP that we consider is balanced with equal potentiation

and depression domains, i.e. with A+ = A− = 0.005 mV. In this case, the co-

efficient C vanishes because the baseline potentiation and depression cancel. In

addition, the coefficients A and B are equal as is the amount of potentiation and

depression induced by pre-post pairs and post-pre pairs. These conditions greatly

simplify the system of equations (5.4). When the baseline firing rates are equal

(r̄1 = r̄2), the values of the synaptic weights do not change when w1 and w2 are

equal, i.e. the synaptic drift is zero on the line w1 = w2 (figure 5.2A, solid line).
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FIG. 5.2: Dynamics of reciprocal synapses when STDP is balanced. A. When the
baseline firing rates of the two neurons are the same (10 Hz), synapses that have the
same weight remain at equilibrium (solid diagonal line). When one of the synapses
is initially larger than the other, it grows while the smaller one shrinks until they
hit the boundaries and eventually settle into the attractors at the bottom right
or top left. Attractors are depicted as filled circles and unstable fixed points as
open circles. The attractors correspond to unidirectional connection as depicted
schematically. The arrows show the flow of trajectories, obtained by numerical
evaluation of equation (5.4) at each point. B. When the baseline firing rates are
not the same (10 Hz vs. 15 Hz), the line of equilibria becomes tilted. The neuron
with the higher rate (depicted larger) is more likely to send out a unidirectional
synapse.

However, this equilibrium is unstable. If the two synapses have unequal strengths,

the stronger synapse grows even stronger and weakens the other synapse until they

reach the boundary of their allowed range (figure 5.2A, arrows). Then, the synapses

continue their dynamics along the boundary edge until they reach the upper-left

(w1 = 0, w2 = wmax) or lower-right (w1 = wmax, w2 = 0) corner of the state space

(figure 5.2A, filled circles), depending on which synapse was stronger to begin with.

These “attractors” of the synaptic dynamics indicate that, at steady-state, loops
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between pairs of neurons are eliminated by this form of STDP. Note that a linear

system of differential equation cannot have more than one attractor. The appear-

ance of two attractors is a consequence of restricting the dynamics to a limited

range. The existence of these attractors suggests that STDP favors unidirectional

connections and eliminates loops in a network (figure 5.3A), as was shown by Ko-

zloski and Cecchi (2010).

When the baseline rates of the two neurons are not equal, the line of equilib-

rium is tilted (figure 5.2B, see Appendix A.6). As a result, the size of the basins

of the two attractors differ, and the neuron with the higher firing rate is more

likely to strengthen its outgoing synapse and weaken its incoming synapse (figure

5.2B, top-left corner). Conversely, the neuron with the lower firing rate is more

likely to weaken its outgoing synapse and strengthen its incoming synapse (fig-

ure 5.2B, bottom-right corner). If we generalize this behavior to the context of

a network, an important prediction can be made: neurons with low firing rates

attract strong excitatory synapses to themselves but project weaker synapse onto

other neurons. Neurons with high firing rates experience the opposite trend; they

lose incoming synaptic input through synaptic weakening. At the same time, the

synapses they send to the other, typically slower firing neurons of the network tend

to get stronger. Therefore, STDP organizes network neurons into in- and out-hubs,

as has been shown by Kozloski and Cecchi (2010). Our simulation results also con-

firm this prediction (figure 5.3B). Also, since the weakening/strengthening effects

act in opposite directions in neurons with low and high initial firing rates, it is

expected to see an inverse relationship between the strength of incoming and out-

going synapses to each neuron in the steady-state connectivity matrix (figure 5.3B).
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FIG. 5.3: Simulation results for a network with balanced STDP. A. The number
of loops in the steady-state weight matrix, divided by the number of loops in a
shuffled version of this matrix, as a function of the length of the loop. The initial
firing rate of the network was 10 Hz. Error bars depict the standard deviations
from using 10 different shuffled versions. Different colors correspond to different
threshold values h for counting the loops (Methods). The ratios are less than one for
all loop lengths, so STDP decrease the number of loops from the chance level. B.
The number of outgoing synapses plotted against the number of incoming synapses
in the steady-state connectivity matrix. Each marker depicts a neuron. Different
colors correspond to different threshold values h for counting the synapses. Inset
shows the same plot for a shuffled version of the steady-state weight matrix. C. The
steady-state weight matrix when neurons 1-100 receive stronger external input and
initially fire at 12 Hz, while the rest of the neurons fire initially at 10 Hz. Neurons
1-100 send out more synapses to the network (light vertical band) and receive less
synapses (dark horizontal band), so they have turned into out-hubs.

Another related prediction is that, if the external input is biased to give a

sub-population of excitatory neurons an initially higher firing rate than the rest of

the network, these neurons will become out-hubs through STDP. We tested this by

increasing the mean of the external input to the first 100 of 1000 excitatory neurons

in a network, giving them a 20% higher initial rate (12 Hz in our example, compared

to a baseline rate of 10 Hz for the rest of the network). The results show that this

sub-population indeed turns into out-hubs once the synaptic weights reach steady
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state (figure 5.3C). This also implies that these high-firing neurons are is insulated

from the rest of the network, because their incoming connections are weakened.

5.3.2 STDP with dominant potentiation

When the potentiation/depression balance is tipped in favor of potentiation (A+ =

0.0055 mV and A− = 0.0050 mV in our examples), the coefficient A in equation

(5.4) becomes larger than B (see Appendix A.6). In addition, the baseline param-

eter C is positive. By setting the right-hand-sides of equations (5.4) to zero, the

fixed point for the values of the two synaptic weights can be determined to be at

w̄1 = Cr2/(B − A) and w̄2 = Cr1/(B − A). Both of these values are negative, so

the fixed point lies out of the allowed range of synaptic strengths. Furthermore,

this fixed point is unstable, so the weights tend to drift away from it (figure 5.4;

see also Appendix A.6).

We now examine the influence of the outlying fixed point on the dynamics

within the allowed region of synaptic values when the baseline firing rates of the

two neurons are equal. If the initial weights are fairly close to each other (figure

5.4A, red area), they eventually end up at the attractor in the upper-right corner

of the phase space due to repulsion from the outlying fixed point. The attractor on

the upper-right corner corresponds to strong recurrent connections. Trajectories of

weights that hit the upper boundary (w2 = wmax) perpendicularly, form another

fixed point that is unstable (figure 5.4, open circles on top). Trajectories to the left

of this critical line are eventually absorbed by the attractor at the top-left corner

(corresponding to a unidirectional connection), while trajectories to its right are

absorbed by the top-right attractor (corresponding to recurrent connections). A
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FIG. 5.4: Dynamics of reciprocal synapses when STDP is potentiation-dominated.
A. When the baseline firing rates of the two neurons are both 10 Hz, an unstable
fixed point exist out of the allowed range, schematically illustrated at the bottom
left. Arrows show that the trajectories drift away from this outlying fixed point.
Initial conditions starting within the red area end up in the attractor at the top-
right corner, which corresponds to recurrent connections. Trajectories that hit the
boundaries perpendicularly delineate the borders of the basins of attraction (solid
curves). Initial conditions in the yellow area end up at the attractor at the bottom
right, corresponding to a unidirectional connection from neuron 1 to neuron 2.
Initial conditions within the green area go to the attractor at top left, corresponding
to a unidirectional connection from neuron 2 to neuron 1. B. The same as A when
the baseline firing rates are 15 Hz. The basin of attraction for recurrent connections
(red area) becomes larger when the baseline firing rate increases.

similar unstable fixed point exists on the rightmost boundary (w1 = wmax; figure

5.4, open circles on the right). As a result, the state-space of the weights is parti-

tioned into three basins of attraction: one leading to the attractor corresponding

to recurrent connections (figure 5.4, red shading) and the others to attractors that

produce unidirectional connections (yellow and green shadings).

The appearance of the attractor corresponding to recurrent connections leads
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to a prediction about networks: STDP with dominant potentiation is not as effi-

cient as balanced STDP at eliminating loops in a network, because it maintains

some of the recurrent connections. This prediction is confirmed by our numerical

simulations showing that there are more loops in the steady-state weight matrix of

a network in this case (compare figures 5.5A and 5.3A).

As the baseline firing rates of the neurons increase, the basin for the attractor

with recurrent connections expands (figure 5.4B, red area). This leads to the pre-

diction that when a network is driven by stronger external input and consequently

has a higher initial average firing rate, it will have more loops in its steady-state

weight matrix. Numerical simulation confirms this observation (figure 5.5B). To

quantify the degree of recurrence in the network, we define a “recurrence index” as

the sum of the number of loops with less than 10 synapses, divided by the sum of

similar loops in a shuffled version of the network (see Methods). Simulation results

show that the recurrence index increases rather abruptly when the initial rate of

the network exceeds 70 Hz (figure 5.5B), even though the steady-state firing rate of

the network increases smoothly as a function of the initial firing rate (figure 5.5C).

Other factors, such as the regulatory role of inhibitory neurons, may contribute to

defining the steady-state firing rate. Our conclusion is that the relationship between

the degree of recurrence and the steady-state firing rate is nonlinear.

5.3.3 STDP with dominant depression

If depression dominates over potentiation in STDP (A+ = 0.0050 mV and A− =

0.0055 mV in our examples), the coefficient B in equations (5.4) is larger than

A (see Appendix A.6), and the baseline parameter C is negative. For these con-
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FIG. 5.5: Simulation results for a network with potentiation-dominated STDP.
A. The number of loops in the steady-state weight matrix divided by the number
of loops in a shuffled version of this matrix, as a function of the length of the
loop. The initial firing rate of the network was 10 Hz. Error bars depict the
standard deviations from 10 different shuffled versions. Different colors correspond
to different threshold values h for counting the loops. The ratios are less than
one for all loop lengths, so potentiation-dominated STDP decreases the number of
loops, but less efficiently than balanced STDP (figure 5.3A). B. Recurrence index
of the steady-state weight matrix as a function of the average initial firing rate. The
recurrence index is defined as the total number of loops shorter than 10 divided by
the same quantity for a shuffled network. The steady-state weight matrix becomes
more recurrent when the initial rate (i.e. the external input) is higher. C. The
average steady-state firing rate as a function of the average initial firing rate.
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ditions, both elements of the fixed point of the weights, w̄1 = Cr2/(B − A) and

w̄2 = Cr1/(B − A), are negative, which is once again outside of the allowed range

of synaptic values. In this case, however, the fixed point is a saddle node, which

attracts trajectories from one direction and repels them from the other (see Ap-

pendix A.6).

As before, we consider two neurons with equal baseline firing rates. The weight

trajectories tend to approach the outlying fixed point in the direction that passes

through the origin (w1 = w2 = 0; see figure 5.6A, arrows). This tendency makes the

origin an attractor of the dynamics within the allowed range of synaptic weights.

This attractor correspond to completely disconnected neurons. Because the out-

lying fixed point is a saddle node, the trajectories also tend to drift away from it

in the direction perpendicular to the positive-slope diagonal. This tendency pro-

duces attractors corresponding to unidirectional connections (figure 5.6, top-left

and bottom-right). Once again, trajectories that hit the borders perpendicularly

partition the weight space into three basins of attractions corresponding to each

attractor (figure 5.6).

The dynamics of the synaptic pair we have considered shows that some pairs

of neurons tend to become disconnected when depression dominates over potenti-

ation. This is a more potent mechanism for eliminating loops than the previous

cases, so we expect that STDP with dominant depression eliminates more loops in

a large network than the other forms we have considered. Numerical simulations

confirm that, indeed, there are fewer loops in the steady-state of a network with

depression-dominated STDP compared to the previous cases (figure 5.7A vs. 5.3A
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FIG. 5.6: Dynamics of reciprocal synapses when STDP is depression-dominated.
A. When the baseline firing rates of the two neurons are 10 Hz, a saddle node
exist out of the allowed range, schematically illustrated at the bottom left. Arrows
show the movement of trajectories. Initial conditions starting within the blue area
end up in the attractor at the origin, which corresponds to the loss of connectivity.
Trajectories that hit the boundaries perpendicularly delineate the borders of the
basins of attractions (solid curves). Initial conditions in the yellow area go to the
attractor at the bottom right, corresponding to a unidirectional connection from
neuron 1 to neuron 2. Initial conditions in the green area go to the attractor at top
left, corresponding to a unidirectional connection from neuron 2 to neuron 1. B.
The same as A but for a baseline firing rates of 15 Hz. The basin of attraction for
the origin (connectivity loss) becomes larger when the baseline firing rate increases.

and 5.5A).

When the baseline rates of the two neurons increase, the basin of the attractor

corresponding to disconnected pair becomes larger (figure 6B). This implements a

buffering mechanism against high firing rates: when neurons become excessively

active, the connections between them are eliminated, so the rate returns to a lower

value. Thus, the steady-state firing rate of a network with depression-dominated



5.3. Results 97

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

10 30 50 70 900

0.5

1

1.5

2

2.5

3

Loop length

# 
lo

op
s 

  #
 lo

op
s Sh

uf
fle

d
/

Initial rate (Hz)

St
ea

dy
-s

ta
te

 ra
te

 (H
z)

A B

h = 1.75 mV
h = 2 mV
h = 2.25 mV

FIG. 5.7: Simulation results of a network with depression-dominated STDP. A.
The number of loops in the steady-state weight matrix divided by the number of
loops in a shuffled version of this matrix, as a function of the length of the loop.
The initial firing rate of the network was 10 Hz. Error bars depict the standard
deviation from 10 different shuffled versions. Different colors correspond to different
threshold values h for counting the loops. The ratios are less than one for all
loop lengths. Depression-dominated STDP decrease the loops more efficiently that
balanced STDP (figure 5.3A). B. The average steady-state firing rate as a function
of the average initial firing rate. Depression-dominated STDP buffers the effect of
external input on the average steady-state firing rate

STDP should be quite insensitive to the initial firing rate. Simulation results cor-

roborate this conjecture by showing that the steady-state firing rate of the network

varies only slightly as a function of the initial firing rate (figure 5.7B).

5.3.4 STDP with a shifted window

The shifted STDP model, as defined in Chapter 3, only considers pairings between

nearest neighbor pre- and postsynaptic spikes. This makes the dynamics of the pair

of weights more complicated than in the previous cases, because the coefficients A,

B and C in equations (5.4) depend on the baseline firing rates (see Appendix A.7).
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Furthermore, the coefficient A can become negative at high firing rates, which

makes the behavior of the system even more complicated. However, if we consider

the system in three different rate regimes, we can elucidate the full range of its

behaviors. As in Chapter 3, we assume that the potentiation domain is larger than

the depression domain (A+ = 0.0085mV and A− = 0.0050mV). We set the amount

of the shift to be d = 2 ms.
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FIG. 5.8: Dynamics of reciprocal synapses with shifted STDP.A.When the baseline
firing rates of the two neurons are 2 Hz, a saddle node exist out of the allowed
range, schematically illustrated at the top right. Arrows show the movement of
trajectories. Initial conditions starting within the red area end up in the attractor
at the top right corner, which corresponds to strong recurrent connections. This
increases the baseline firing rate of the embedding network and pushes the network
into the regime shown in B. B. When the baseline firing rates of the two neurons
are 30 Hz, a single stable fixed point exist within the allowed range of synaptic
weights. All initial conditions end up at this fixed point, resulting in a recurrent
reciprocal connection. C. When the baseline firing rates of the two neurons are 90
Hz, a stable fixed point exists out of the allowed range, schematically illustrated at
the bottom left. Movement of trajectories toward the stable fixed point results in
connectivity loss, regardless of the initial condition. This effect reduces the rate of
the embedding network and pushes the system into the regime shown in B.

When the baseline firing rates of the two neurons are low, the coefficients A, B



5.3. Results 99

and C are all positive. This is because the pairing intervals are not typically short

enough to fall into the depression domain caused by the shift. In addition, the

coefficient A is slightly smaller than B. This makes the fixed point for the weights

positive and large, so once again it falls out of the range of allowed synaptic weights,

but this time on the positive not the negative side (figure 5.8A). The fixed point

is a saddle node (see Appendix A.7) and attracts the trajectories of weights along

the direction toward the top-right corner of the state space (figure 5.8A, arrows),

which corresponds to recurrent connections. This state is qualitatively similar to

what we found for STDP with dominant potentiation (compare figures 5.8A and

5.4A & B).

As the strengths of recurrent connections in the embedding network increase,

the baseline firing rates of the neurons go up, which eventually causes the coefficient

A to become negative. This occurs because the pairing intervals between presy-

naptic spikes and their causally induced postsynaptic spikes become short enough

to fall into the depression domain caused by the shift. This creates a single stable

fixed point for the two weights located within the allowed range of the synaptic

weights. Both weights are attracted to this fixed point, forming a recurrent connec-

tion (figure 5.8B, arrows; see also Appendix A.7), though not of maximal strength.

If the two neurons start with even higher baseline rates, the coefficients A and

C are both negative. This follows because at very high firing rates, even the in-

tervals between randomly paired spikes of the baseline activity are short enough to

fall into the depression domain caused by the shift. This pushes the fixed point of

the weights out of the allowed range (figure 5.8C) but, in this case, on the negative
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FIG. 5.9: Simulation results of a network with shifted STDP. A The number of
loops in the steady-state weight matrix, divided by the number of loops in a shuffled
version of this matrix, as a function of the length of the loop. The initial firing
rate of the network was 10 Hz. Error bars illustrate the standard deviation from
10 different shuffled versions. Different colors correspond to different threshold
values h for counting the loops. The ratios are all greater than one, showing that
the network generates loops B. The average mean of the steady-state weights as
a function of the average initial firing rate. Depression-dominated STDP buffers
the effect of the external input on the average of the steady-state weights. C. The
average steady-state firing rate as a function of the average initial firing rate.
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side. Because this fixed point is stable, the weights tend to approach it, creating an

attractor at the origin that eliminates both weights and disconnects the neurons.

This mechanism prunes the weights in the embedding network until the baseline

firing rate decreases enough to make the parameter C positive. Then, the regime

with a stable fixed point within the allowed range (figure 5.8B) is restored.

Combining these effects, we find that, if the parameters of shifted STDP are

set properly, a network will settle into a regime with a single stable fixed point

within the allowed range of synaptic weights, regardless of the initial firing rate

or the strength of the external input. By generalizing from the dynamics of a

pair of synapses in this case, two predictions can be made. First, the steady-state

matrix of synaptic weights will have many recurrent connections because there is no

mechanism to eliminate loops, and reciprocal connections tend to be strengthened.

This prediction is confirmed by numerical simulations that show a highly recurrent

steady-state connectivity (figure 5.9A). Second, because the pairwise connections

settle into a regime with a single stable fixed point regardless of the initial baseline

rate, the mean excitatory-to-excitatory synaptic strength of the network in the

steady-state should be resilient to changes in the external input or in the initial

firing rate. Numerical simulations show that the steady-state mean of the synaptic

weights changes only slightly as a function of the initial firing rate (figure 5.9B),

even though the final firing rate of the network increases with the initial firing rate.

Thus, shifted STDP implements a homeostatic mechanism that buffers the value

of the mean synaptic strength from external influences.
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5.4 Discussion

By analyzing pairwise interactions of neurons through STDP, we showed that con-

ventional pair-based STDP functions as a loop-eliminating mechanism in a network

of spiking neurons and organizes neurons into in- and out-hubs, as reported by Ko-

zloski and Cecchi (2010). Loop-elimination increases when depression dominates

and decreases when potentiation dominates. STDP with dominant depression im-

plements a buffering mechanism for network firing rates, and shifted STDP can

generate recurrent connections in a network, and it functions as a homeostatic mech-

anism that maintains a roughly constant average value of the synaptic strengths.

All the above analytical results were obtained by considering the effect of im-

posing weight constraints on a linear system describing pairwise interactions of

neurons in the presence of STDP. The effect of constraints on Hebbian plasticity

has been explored before by Miller and MacKay (1994) to explain the formation of

visual receptive fields. Our work can be viewed as an extension of this approach to a

specific form of Hebbian plasticity that involves the timing of spikes, namely STDP.

The network used in our numerical simulations was densely connected so that

every neuron could potentially form a synaptic connection to every other one. This

assumption is not compatible with the observed sparseness of cortical circuits, where

each pyramidal neuron makes synaptic contacts with a small fraction of the other

neurons in its vicinity (Markram and Tsodyks, 1996; Barthó et al., 2004). However,

our analytical results does not rely on any particular assumption about density or

sparsity of network connectivity. Instead, the results indicate that STDP can orga-
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nize patterns of connectivity in particular ways within the framework provided by

anatomical constraints, developmental hard-wiring and other physiological mecha-

nisms, such as other forms of plasticity.

A prominent feature of STDP is its ability to organize neurons into in- and

out-hubs. The dependence of hub-formation on baseline firing rate shows how het-

erogeneity of external inputs can influence the internal structure of a neural net-

work. Moreover, this property of STDP can play an important protective role in

pathological cases in which a sub-population of excitatory neurons fires at atypically

high rates. Through STDP, most of the incoming synapses to this sub-population

will be weakened (i.e. they become purely out-hubs), thereby preventing a further

increase in their firing rate due to the intrinsic activity of the network. In fact,

decoupling of a highly active sub-population from an embedding network through

STDP has been observed previously by Morrison et al. (2007) in networks with an

excitation-inhibition balance.

The relative magnitude of potentiation and depressions varies considerably

along the dendritic tree (Froemke et al., 2005; Letzkus et al., 2006; Froemke et al.,

2010). As hypothesized in Chapter 3, the effect of a shift in the STDP window

might be more significant in proximal dendrites. Therefore, all the different param-

eter regimes of the STDP window considered in the present study could take place

along the dendritic tree. A general prediction of our study is then that different

regions of the dendritic tree might participate in different network structures as a

result of variations of their STDP windows.
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This study only addressed structures arising from pair-based STDP in a net-

work. As in the case of synapses converging onto a single neuron (Chapter 4),

multi-spike STDP models are expected to induce different structures into a net-

work. A recent study by Clopath et al. (2010) showed that an STDP rule that is

phenomenologically similar to the triplet model can induce feedback connections,

feedforward structures or localized receptive fields in a small recurrent network,

depending on the external input. Furthermore, correlations in the external input,

which were not considered here, can have significant impacts on network structure

through STDP. This issue has been explored recently in a series of articles by

Gilson et al. (2009a;b;c;d; 2010a;b). Another simplifying assumption in our study

was the similarity of the STDP windows for both of the synapses connecting the

two neurons. Relaxing this assumption will lead to more complex synaptic weight

dynamics under STDP.

In conclusion, studying pairwise interactions of neurons through STDP pro-

vides a number of important insights about the structures that arise from this

plasticity rule in large networks. This approach can be extended to networks with

more complex STDP models and more structured external input.
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Chapter 6

Concluding Remarks

Experience without theory is blind, but theory without experience is
mere intellectual play.

Immanuel Kant

I started this dissertation by characterizing simple pair-based STDP models with

respect to the interplay of synaptic stability and competition, and showed that

Hebbian competition is incompatible with full stability in these class of models,

with either hard or soft bounds imposed to the range of synaptic strengths. There-

after, I showed that a small temporal shift in the pair-based STDP window can

stabilize synaptic strengths and implement both Hebbian and anti-Hebbian forms

of competitive synaptic plasticity. This work points out that the detailed shape

of the STDP window function near the transition from depression to potentiation

is of the utmost importance in determining the consequences of STDP, suggesting

that this region warrants further experimental study.

Next, I turned to the question of the interplay between stability and competi-

tion in multi-spike STDP models. Experimental results have inspired three models

for STDP that take into account the contribution of ensembles of pre- and post-
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synaptic spikes larger than mere pairs. By analyzing the steady-state distribution

of synaptic weights on a neuron, I showed that multi-spike STDP rules can have

radically different consequences at the population level, depending on the exact

implementation of the multi-spike interactions. Nevertheless, the dichotomy be-

tween full stability and Hebbian competition persists in these models, although

anti-Hebbian competition can coexist with synaptic stability in some parameter

regimes.

As the next logical step, I focused on structures arising from STDP in recurrent

networks of spiking neurons. As previously shown, STDP eliminates feedback loops

and organizes neurons into in- and out-hubs (Kozloski and Cecchi, 2010). I found

that all of these network properties could be explained by understanding the effect

of STDP on pair-wise interactions. This provided an analytically tractable way

of relating structures in a network to properties of the STDP model. Depending

on the balance between potentiation and depression and also the temporal shift of

the STDP window, feed-forward structures, feedback structures, buffering of the

average firing rate and homeostasis of the average synaptic strength can emerge in

a network.

From a larger perspective, the above results can be viewed as relating the

phenomenological models of plasticity proposed on the basis of observations of sin-

gle synapses, to the structures that arise in a population of synapses from these

plasticity rules, thereby bridging the cellular/molecular and circuit/network lev-

els described in the first chapter. From the viewpoint of the neural network triad

proposed in the first chapter, the results can be interpreted as showing how neu-
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ral activity gives rise to connectivity patterns through one of the most widespread

synaptic plasticity mechanisms in the nervous system, namely STDP.

Our results are now awaiting experimental evaluation. Due to technical difficul-

ties, to date the majority of experimental studies on plasticity have been confined

to the level of a single synapse. Ideally, theoretical/computational studies can

transcend these technical limitations and provide directions and insights for future

experimental studies. Recent developments in methods for observing the activity

of large populations of neurons such as calcium imaging (Cossart et al., 2005) and

voltage sensitive dyes (Grinvald and Hildesheim, 2004), together with advanced sta-

tistical techniques for inferring neural connectivity from observed activity (Pillow

et al., 2008), pave the way for experimental studies of synaptic structures in large

neural networks. I hope this research suggests constructive questions that can be

addressed by these new experimental techniques in the near future.
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Appendix A

Mathematical appendices

A.1 Calculating the causal increase in postsynap-

tic firing

We first derive an approximate expression for the causal effect of presynaptic spikes

on postsynaptic firing rate of the LIF neuron. Assuming that the excitatory input

to the neuron is significantly larger than inhibitory input (Iex >> Iin), the first term

(leak) on the right-hand-side of equation (2.1) can be disregarded. The fluctuations

of the input are also negligible in this regime, and the neuron fires almost regularly

with inter-spike-intervals 1/r̄post. If we suppose that the neuron has fired the last

postsynaptic spike at time t = 0 and, in addition to the baseline input, it receives

a presynaptic spike at time tpre via a synapse with strength w, the membrane

potential at later times t > tpre can be approximated as:

V (t) ≈ Vr +
(Iex − Iin) t

τm
+ w

τs
τm

�
1− exp

�
tpre − t

τs

��
.
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From the above equation, the relationship between the time of the incoming presy-

naptic spike tpre and the time that the neuron fires its next postsynaptic spike after

the presynaptic spike ∆t = tpost − tpre can be expressed as

tpre = f(∆t) =
τm (Vth − Vr)

Iex − Iin
− w

τs
Iex − Iin

�
1− exp

�
−∆t

τs

��
−∆t . (A.1)

The probability of a presynaptic spike occurring somewhere within the typical

inter-spike-interval of the postsynaptic neuron is the reciprocal of the duration

of the interval, which is the baseline postsynaptic rate, so P (tpre) = r̄post. The

instantaneous firing rate of the neuron after the presynaptic spike is the probability

density of ∆t, which can be expressed as

rpost(∆t) = P (tpre) |f �(∆t)| (A.2)

= r̄post

�
1 + w

exp(−∆t/τs)

Iex − Iin

�

≈ r̄post + w
exp(−∆t/τs)

(Vth − Vr)τm
. (A.3)

This is the equation (2.4) of the Methods section of Chapter 2.

A.2 Derivation of the steady-state distribution of

weights for shifted STDP

The evolution of the distribution of synaptic strengths is described by the Fokker-

Planck equation (Risken, 1996; Kempter et al., 2001; Cateau and Fukai, 2003).

∂ρ(w, t)

∂t
= − ∂

∂w

�
D1(w)ρ(w, t)

�
+

1

2

∂2

∂w2

�
D2(w)ρ(w, t)

�
, (A.4)
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where D1 and D2 are drift and diffusion terms, respectively. To derive equilibrium

distributions of synaptic strengths, we need the steady-state solution, obtained

by setting the right side of equation A.4 to zero. Solving the resulting ordinary

differential equation for ρ(w), we obtain

ρ(w) =
N1

D2(w)
exp

�� ω

0

dω� 2D1(w�)

D2(w�)

�
, (A.5)

where, N1 is a normalization constant.

The terms D1 and D2 can be written as

D1(ω) =

� ∞

−∞
d� �T (w, �) and D2(ω) =

� ∞

−∞
d� �2 T (w, �) . (A.6)

Here, T (w, �) is the probability density of a synaptic modification that changes the

strength of a given synapse from w to w + �.

When the synaptic strengths are changing due to STDP, the only relevant

stochastic variable is the interval between the pre- and postsynaptic spike pairs. If

a pairing of pre- and postsynaptic spikes occurs with interval ∆t, then � = F (∆t),

where F is the STDP window function (equation 3.1). To simplify the notation,

we use t to denote ∆t in the following equations. If the probability density of a

pairing interval t is P (t), then the transitional probability density can be written

as

T (w, �) =
P (t)

|F �(t)| . (A.7)

With the transformations d� → |F �|dt and � → F , the terms D1 and D2 can be
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re-expressed as

D1 =

� ∞

−∞
dt P (t)F (t) and D2 =

� ∞

−∞
dt P (t)F 2(t) . (A.8)

Thus, to determine D1 and D2 in terms of the parameters of the model, we only

need to know the probability density of pairing intervals P (t).

We approximate the spiking behavior of the integrate-and-fire neuron by that

of a linear Poisson neuron firing at the same rate (Gütig et al., 2003; Kempter et al.,

2001). We first consider the case that the presynaptic spike follows the postsynaptic

spike (t < 0). In this case, the timing of the presynaptic spike has no causal

effect on the postsynaptic spike time. If we assume that both the presynaptic and

postsynaptic spike trains are Poisson, the probability density of nearest-neighbor

pairing intervals is

P (t) = r exp(rt) , (A.9)

where r = rex+r̄post is the sum of the excitatory presynaptic firing rate (rex) and the

baseline postsynaptic firing rate (r̄post). If we assume that both the presynaptic and

postsynaptic spike trains are Poisson, the probability density of pairing intervals is

P (t) = (rex + rpost(t)) exp

�
−
� t

0

ds (rex + rpost(s))

�
. (A.10)

If we assume that w�(Vth−Vr), we can Taylor expand equation A.10 to first order

in w and, together with equation A.2, the probability density of pairing intervals
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can be expressed as (see figure 3.1C & D)

P (t) ≈






r exp(r t) if t ≤ 0

r exp(−r t) + w
τs

τm(Vth − Vr)
(λ exp(−λ t)− r exp(−r t)) if t > 0 ,

(A.11)

with

λ = r +
1

τs
.

Note that the second term in equation A.11 for t > 0 corresponds to the causal

bump in figures 3.1C & D. The shape of the causal bump resembles that calculated

by Cateau & Fukai (Cateau and Fukai, 2003) from the equation for the first passage

time of a noisy integrate-and-fire neuron.

If we substitute A.11 into equation A.6, we obtain D1 and D2 in terms of the

parameters of the model. Because P (t) is linear in w, D1 and D2 are also linear

and can be written as

D1 = αw + β and D2 = γw + δ . (A.12)

Here, αw is the w-dependent drift and β is the baseline drift. Assuming that d�τ±,
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these coefficients can be written as

α =
1

τm(Vth − Vr)

�
A+(τ+τs + dτs)

(1 + rτ+)(rτsτ+ + τs + τ+)
− (A+ + A−)d

�
(A.13)

β = A+rτ+

�
1− dr

1 + r τ+

�
− A−r τ−

�
1 + d r

1 + r τ−

�

γ =
1

τm(Vth − Vr)

�
A

2
+
(2τ+τs + 4dτs)

(2 + rτ+)(rτsτ+ + 2τs + τ+)
− (A2

+
− A

2
−)d

�

δ = A
2
+
rτ+

�
1− d r

2 + rτ+

�
+ A

2
−rτ−

�
1 + dr

2 + rτ−

�
.

Finally, by inserting equations A.12 into equation A.5, we obtain the steady-

state distribution

ρ(w) = N0 (w + µ)k−1 exp (−(w + µ)/θ) (A.14)

with

µ =
δ

γ
, k =

2(βγ − αδ)

γ2
and θ = − γ

2α
. (A.15)

Equation A.14 is the same as equation 3.2 of the Results.

For the above distribution A.14 to be normalizable, θ and k must be positive.

Equations A.15 indicate that these conditions are met if β, γ and δ, as given by

equations A.13, are all positive and α is negative. Provided that r is less than of

order 1/d (which it always is at steady-state), β> 0 if A+τ+ is sufficiently greater

than A−τ− , which is the condition stated in the text. Over the range we consider,

γ > 0 and δ> 0 without requiring any further conditions. When r is greater than

of order
�

1/dτ+ , which it is at steady state, α<0, so stability is achieved.
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If β is positive, the mean synaptic strength is approximately

�w� = −β

α
(A.16)

Solving the above equation simultaneously with equation 2.3, gives the steady-state

firing rate of the neuron, as depicted in figure 3.3 (inset). Having solved for the

steady-state postsynaptic firing rate and the mean synaptic strength, the param-

eters of the distribution (equation 3.2) are fully expressed in terms of the model

parameters.

A.3 Calculating average drift of weights for the

suppression model

Equation (A.2) enables us to calculate the probability density of the intervals be-

tween pre- and post synaptic spikes (∆t = tpost − tpre). Assuming that the presy-

naptic spike train is Poisson and the postsynaptic spike train is regular (Appendix

A.1), the probability density of ∆t is

P (∆t) = rpre rpost(∆t) exp(−∆t rpre) (A.17)

=






rpre

�
r̄post + w

exp(−∆t/τs)

(Vth − Vr)τm

�
exp(−∆t rpre) if ∆t ≥ 0

rpre r̄post exp(−∆t rpre) if ∆t < 0 .
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When the neuron fires almost regularly, the interval between two consecutive post-

synaptic spikes can be considered to be 1/r̄post. However, if a presynaptic spike

arrives before a postsynaptic spike (∆t > 0), it shortens the interval between the

upcoming postsynaptic spike and the preceding one. In this case, the interval be-

tween consecutive postsynaptic spikes (∆tpost) can expressed as a function of ∆t

from equation (A.1). Taken together,

∆tpost =






1

r̄post

�
1− w

τs
�
1− exp(−∆t/τs)

�

τm (Vth − Vr)

�
∆t ≥ 0

1

r̄post
∆t < 0 .

(A.18)

We now have all the components required to calculate the average drift of

weights under the suppression model (see equation 4.3). In this model, each nearest

neighboring pre-post pair of spikes with pairing interval ∆t induces potentiation

or depression depending on the ordering of the pair. In addition, the previous

pre- and postsynaptic spikes participate in plasticity depending on their temporal

distance from the spikes in the pair (∆tpre and ∆tpost respectively) . Of the three

intervals participating in suppression model, ∆tpre and ∆t are stochastic variables,

while ∆tpost is simply a function of ∆t. Therefore, we should average the weight

modification over all possibles values of ∆t and ∆tpre. Given the assumption that

the postsynaptic spike fires almost regularly, |∆t| cannot be longer than the length

of a typical postsynaptic ISI (1/r̄post). Also, in the case where the postsynaptic

spike precedes the presynaptic one (∆t < 0), there is a lower limit on ∆tpre: it

cannot be shorter than the pre-post interval |∆t|. By these considerations, the
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average weight change can be calculated as

d�w�
dt

=

� +1/r̄post

−1/r̄post

d∆t P (∆t)

� ∞

max(0,−∆t)

d∆tpre P (∆tpre)Fsupp(∆t,∆tpre,∆tpost)

where Fsupp is the weight modification (equation 4.3). Because the presynaptic

spike train is assumed to be Poisson, P (∆tpre) is the waiting time of the Poisson

process, namely rpre exp(−∆tpre rpre). Substituting equations (A.17) and (A.18) in

the above equation and keeping only terms up to first order in �w� results in

d�w�
dt

= E(τpost) r̄post rpre

�
A+ τ̃+ E(τ̃+)
1 + rpre τpre

− A− τ̃−E(τ̃−) + A− τ̂−E(τ̂−)
�

+ �w�
A+ rpre

τm τpost (Vth − Vr)

�
τ̂+ E(τ̂+)

�
(τpost − τs)E(τpost) + τs

�

1 + rpre τpre

−τs τ̃+ E(τ̃+)
�
1− E(τpost)

��
(A.19)

with E(τ) = 1− exp(−1/(rpost τ)) and time constants defined as

τ̃+ =
τ+

1 + rpre τ+
τ̂+ =

τs τ+
τs + τ+ + τs τ+

τ̃− =
τ−

1 + rpre τ−
τ̂− =

τpre τ−
τpre + τ− + τpre τ−

.

Equation (A.19) is numerically evaluated in figure 4.5.
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A.4 Calculating average drift of weights for the

NMDAR-based model

To calculate the average synaptic change in the NMDAR-base model, we first as-

sume that the pre- and postsynaptic spike trains are independent, i.e. we disregard

the causal effect of presynaptic spikes on postsynaptic firing. Afterwards, we in-

clude the causal relation. Assuming that the pre- and postsynaptic spike trains are

Poisson, we can replace the δ functions in equations (4.4) by their corresponding

rates (rpre and r̄post) and, setting the right-hand-side equal to zero to obtain the

mean values of the NMDAR state variables in up and down states, we find

�fup� =
A

up
f τupf rpre

1 + A
up
f τupf rpre + A

dn
f τdnf r̄post

�fdn� =
A

dn
f τdnf r̄post

1 + A
up
f τupf rpre + A

dn
f τdnf r̄post

. (A.20)

The mean values of the second messengers �Mup� and �Mdn� could be calcu-

lated using the same technique. However we use a different method for the second

messengers that is equivalent to the above technique for the mean and also enables

us to calculate the variance around the mean. At any instant t that we observe the

variable M
up(t), the last incoming postsynaptic spike has arrived ∆t previously.

The value of Mup(t − ∆t) has increased instantly in response to the postsynaptic
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spike and decayed afterwards so, according to equation (4.5),

M
up(t) =

�
M

up(t−∆t) + A
up
M f

up(t−∆t)
�
1−M

up(t−∆t)
��

exp(−∆t/τupM ) .

(A.21)

Assuming that the system is in equilibrium, the mean value of Mup should be the

same at the times t −∆ and t. Moreover, because the postsynaptic spike train is

assumed to be Poisson, the probability of an incoming postsynaptic spike ∆t before

time t is r̄post exp(−∆t r̄post). By setting the values of Mup equal to the mean and

averaging over all possible ∆t values we have

�Mup� =
�
�Mup�+ A

up
M �fup�

�
1− �Mup�

�� � ∞

0

dt r̄post exp(−t r̄post) exp(−t/τupM ) ,

which results in

�Mup� = A
up
M τupM �fup� r̄post

1 + A
up
M τupM �fup� r̄post

. (A.22)

As mentioned before, the same result could be obtained by replacing the δ

functions in equation (4.5) with their corresponding rates and solving for the steady-

state. However, the same argument as for equation (A.21) can be used to calculate

the variance of Mup around its mean. The square of Mup(t) can be obtained by

squaring both sides of equation (A.21). Assuming the mean square of Mup to be

the same at t and t−∆t and averaging over all possible ∆t values, we find

�Mup2� =
�
(1− A

up
M �fup�)2�Mup2�+2 (1− A

up
M �fup�)Aup

M �fup� �Mup�+(Aup
M )2 �fup�2

�

×
� ∞

0

dt r̄post exp(−t r̄post) exp(−2t/τupM ) ,
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which can be used to calculate the variance of Mup as

σ2
up = �Mup2� − �Mup�2 ≈ �Mup�2

2 r̄post τ
up
M (1 + A

up
M τupM �fup� r̄post)

. (A.23)

Similarly, the mean and the variance of Mdn are

�Mdn� =
A

dn
M τdnM �fdn� rpre

1 + A
dn
M τdnM �fdn� rpre

σ2
dn ≈ �Mdn�2

2 rpre τdnM (1 + A
dn
M τdnM �fdn� rpre)

. (A.24)

We have ignored the variance of fup and f
dn in the above calculations because their

contribution in σ2
up and σ2

dn is insignificant.

The second messengers Mup and M
dn participate in potentiation and depres-

sion immediately after their abrupt increase due to the most recent pre- or post-

synaptic spikes. Based on equation (4.4), the sizes of these abrupt changes are

A
up
M �fup�(1 − �Mup�) and A

dn
M �fdn�(1 − �Mdn�) respectively. Therefore, the mean

value of the second messengers participating in potentiation and depression are

µ
up = �Mup�+ A

up
M �fup�(1− �Mup�)

µ
dn = �Mdn�+ A

dn
M �fdn�(1− �Mdn�) (A.25)

Finally, assuming the steady-state values of Mup and M
dn to be Gaussian variables

with the above mean and variance, the average synaptic drift according to equation
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(4.6) can be calculated as

d�w�0
dt

=
A+ r̄post√
2π σup

� +∞

−∞
dx [x− θup]+ exp

�
−(x− µ

up)2

2 σ2
up

�
(A.26)

−
A− rpre√
2π σdn

� +∞

−∞
dx [x− θdn]+ exp

�
−(x− µ

dn)2

2 σ2
dn

�

= A+ r̄post

�
σup√
2π

exp

�
−(µup − θup)2

2 σ2
up

�
+

µ
up − θup

2
(1 + erf (

µ
up − θup√
2 σup

)

�

−A− rpre

�
σdn√
2π

exp

�
−(µdn − θdn)2

2 σ2
dn

�
+

µ
dn − θdn

2
(1 + erf (

µ
dn − θdn√
2 σdn

)

�
.

The subscript 0 on the right-hand-side denotes that we have not include the causal

effect of presynaptic spikes on the postsynaptic spikes yet.

When a presynaptic spikes arrives, it transiently increases the postsynaptic

firing rate proportional to the strength (w) of the synapse through which it arrived

(Appendix A.1). Because the amount of NMDARs in down state (fdn) increases

through postsynaptic spikes, we should take into account the effect of this transient

postsynaptic rate increase on f
dn. Apart from transiently increasing the postsy-

naptic firing rate, the presynaptic spike has another effect on the NMDARs: upon

is arrival, it consumes part of the pool of NMDARs at rest step (f rest) and turns

them into f
up, leaving less f rest available for the upcoming postsynaptic spikes. Be-

cause the NMDARs decay back to the rest state over time, the shorter the interval

between pre- and postsynaptic spikes, the less time f rest has the postsynaptic spike

at its disposal to convert into f
dn. Considering this effect and averaging over the

full range of intervals between the presynaptic spike and its induced postsynaptic
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spikes in equation (4.4), we find

d�fup�
dt

= −�fup�
τupf

+ A
up
f �f rest� rpre (A.27)

d�fdn�
dt

= −�fdn�
τdnf

+ A
dn
f �f rest� r̄post + w

rpre τs
τm (Vth − Vr)

A
dn
f �f rest�

τs + (1− A
up
f ) τupf

τs + τupf

.

As expected, if we disregard the w-dependent term (i.e. ignoring the causal

effect of the presynaptic spikes on postsynaptic firing) and solve for the steady-state,

we retrieve the result of equation (A.20). By keeping the w-dependent term in the

above equations, the following w-dependent terms will be added to the steady-states

calculated in equation (A.20),

�fup�w = −w
τs Adn

f τdnf �fup�2
�
τs + (1− A

up
f ) τupf

�

τm A
up
f τupf (Vth − Vr)(τs + τupf )

�fdn�w = w
τs Adn

f τdnf rpre (1− �fdn�)2
�
τs + (1− A

up
f ) τupf

�

τm (1 + A
up
f τupf rpre) (Vth − Vr)(τs + τupf )

(A.28)

The subscripts w denote the w-dependent contributions to the steady-state

NMDAR ratios. Note that the contribution is negative for fup and positive for fdn.

Intuitively, this implies that as the synapse gets stronger, the neuron fires more in

response to the presynaptic spikes, hence a greater portion of NMDARs move to

the down state and the share in the up state becomes smaller.

The second messenger Mup is also activated by postsynaptic spikes, therefore

we should take into account the causal effect of presynaptic spikes on the postsy-

naptic rate in this case as well. Each presynaptic spike also increases the amount of

f
up available for postsynaptic spikes according to equation (4.5). By taking these
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effects into account, including the w-dependence from equation (A.28) and aver-

aging over all possible pre-post intervals, the following w-dependent terms will be

added to the steady-state of Mup and M
dn,

�Mup�w = w
A

up
M τupM τs rpre

τm (Vth − Vr) (1 + A
up
M τupM �fup� r̄post)2

×
�
�fup�+ �f rest�

A
up
f τupf

τs + τupf

�

�Mdn�w =
�fdn�w A

dn
M τdnM rpre

(1 + A
dn
M τdnM �fdn� rpre)2

. (A.29)

The mean values in equation (A.25) inherit the w-dependence from equations (A.28)

and (A.29) in the form

µ
up
w =

�
1− A

up
M �fup�

�
�Mup�w + A

up
M

�
1− �Mup�

�
�fup�w

µ
dn
w =

�
1− A

dn
M �fdn�

�
�Mdn�w + A

dn
M

�
1− �Mdn�

�
�fdn�w . (A.30)

Finally, by inserting the above results into equation (A.26) and keeping only the

terms linear in w, the w-dependent drift in the NMDAR-based model is obtained,

d�w�w
dt

=
A+

2
r̄post µ

up
w

�
1 + erf (

µ
up − θup√
2 σup

)

�

−
A−

2
rpre µ

dn
w

�
1 + erf (

µ
dn − θdn√
2 σdn

)

�
. (A.31)

.
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Equation (A.26) together with equation (A.31) describe mean drift of weights

through NMDAR-base model,

d�w�
dt

=
d�w�0
dt

+
d�w��w�

dt
,

which is used in analytical results in figure 4.9. For small deviations of individual

synaptic weights around the mean, equation (A.31) can be used giving

d δw

dt
=

d�w�δw
dt

,

which is used in figure 4.9B.

A.5 Deriving the equations for pairwise interac-

tions of weights

Assuming an all-to-all interaction and Poisson statistics for the spike trains, the

probability distribution of pairing intervals between the pre- and postsynaptic spike

trains is simply the product of their rates. In the case of pairwise interactions of

neurons, the spike train of neuron 1 is presynaptic with respect to the synapse w1

and postsynaptic with respect to w2 . Conversely, the spike train of neuron 2 is

presynaptic to the synapse w2 and postsynaptic to w1 . The rate of the each neuron

has a baseline value (r̄1 and r̄2 , respectively) and transiently increases at a times t

after the arrival of a spike from the other neuron such that

r1(t) ≈ r̄1 +
w2 exp

�
− t/τs

�

(Vth − Vr)τm
, and r2(t) ≈ r̄2 +

w1 exp
�
− t/τs

�

(Vth − Vr)τm
.
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For w1 the transient increase of the rate of neuron 2 falls into the potentiation

domain of STDP, and the transient increase of the rate of neuron 1 falls into the

depression domain. Therefore, the average drift of w1 is

dw1

dt
= A+

� +∞

0

dt r̄1 r2(t) exp(−t/τ+)− A−

� 0

−∞
dt r̄2 r1(t) exp(t/τ−)

= A r̄1 w1 − B r̄2 w2 + C r̄1 r̄2 (A.32)

with coefficients

A =
A+ τ+ τs

τm (Vth − Vr) (τ+ + τs)

B =
A− τ− τs

τm (Vth − Vr) (τ− + τs)

C = A+ τ+ − A− τ− . (A.33)

Together with a similar calculation for w2 the system of equations (5.4) are obtained.

Setting the right sides of equations (5.4) to zero, yields the fixed point of the

weights,

w̄1 =
C r̄2

B − A
and w̄2 =

C r̄1

B − A
. (A.34)

Note that when the numerator and denominator are zero (the balanced STDP)

the fixed point is not defined. In that case, all values satisfying w1 = r̄2w2/r̄1 are

equilibrium points of the system.
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A.6 Dynamics of the pair of weights

Equations (5.4) can be expressed in vectorial form as




ẇ1

ẇ2



 =




A r̄1 −B r̄2

−B r̄1 A r̄2








w1

w2



+ C r̄1 r̄2 . (A.35)

The eigenvalues of the above matrix of coefficients that govern the dynamics of the

system, are

λ± =
A (r̄1 + r̄2)±

�
A2 (r̄1 − r̄2)2 + 4B2 r̄1 r̄2

2
(A.36)

with the associated eigenvectors [1
Ar1−λ±

B r2
]
T
.

In the case of balanced STDP (A = B), one eigenvalue is zero and the other

is positive. Therefore, the weights drift away from the equilibrium line. In the

case of potentiation-dominated STDP (A > B), both eigenvalues are positive, so

the fixed point is unstable. In the case of depression-dominated STDP (A < B),

one eigenvalue is positive and the other negative, so the fixed point is a saddle node.

Assuming that the baseline rates are equal (r̄1 = r̄2 = r̄), for the case of

potentiation-dominated STDP, the point where w1 hits its maximum and dw2/dt =

0 (i.e. the end point of the trajectory perpendicular to the rightmost boundary,

figure 5.4) is

w1 = wmax , w2 =
B wmax − C r̄

A
. (A.37)

This point defines the boundary between the basin of attractions (figure 5.4). As

equation A.37 shows, w2 becomes smaller when the baseline rate increases, and the
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boundary moves downward. Consequently, the basin of attraction for the top-right

corner (figure 5.4) grows.

In the case of potentiation-dominated STDP, the point at which w1 hits zero

and dw2/dt = 0 (i.e. the trajectory perpendicular to the rightmost boundary) is

w1 = 0 , w2 =
−C r̄

A
. (A.38)

This point defines the boundary between the basin of attractions (figure 5.6). C

is negative in this case, thus as the baseline rate increases, w2 becomes larger, the

boundary moves upward, and the basin of the attractor at origin (figure 5.6) grows.

A.7 The drift of the pair of synapses under shifted

STDP

In the shifted STDP model, only nearest-neighboring pre- and postsynaptic spike

pairs participate in plasticity. We assume that the spike trains of neurons 1 and

2 are Poisson. In this case, the probability density that neuron 2 fires an interval

t after a spike from neuron 1, and no other spike occurs between these two (i.e.

nearest-neighbor condition), is

P (t)1→2 = r̄1 r2(t) exp
�
−

� t

0

ds
�
r̄1 + r2(s)

��
. (A.39)

Because the spike of neuron 1 precedes that of neuron 2, the firing rate of neuron

2 increases transiently during the pairing interval (equation A.32). Assuming that
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w1 >> Vth − Vr, the above probability can be approximated as

P (t)1→2 ≈ r̄1 r̄2 exp
�
− (r̄1 + r̄2) t

�

+w1

r̄1 τs
τm (Vth − Vr)

exp(−r̄1 t)
�
λ2 exp(−λ2t)− r̄2 exp(−r̄2t)

�
,(A.40)

where λ2 = r̄2 + 1/τs. The drift of w1 can now be calculated as

dw1

dt
= A+

� +∞

d

dt P (t)1→2 exp
�
− (t− d)/τ+

�

−A−

� 0

d

dt P (t)1→2 exp
�
(t− d)/τ−

�

−A−

� +∞

0

dt P (t)2→1 exp
�
− (t− d)/τ−

�

= A(r̄1 , r̄2) r̄1 w1 − B(r̄1 , r̄2) r̄1 w2 + C(r̄1 , r̄2) r̄1 r̄2 (A.41)

with coefficients

A(r̄1 , r̄2) =
1

τm (Vth − Vr)

�
A+ τs (τ+ + d) (1 + r̄1τ+)

(1 + r̄ τ+) (τs + τ+ + r̄ τs τ+)
− (A+ + A−) d

�

B(r̄1 , r̄2) =
A− τs (τ− − d) (1 + r̄2τ−)

τm (Vth − Vr) (1 + r̄ τ−) (τs + τ− + r̄ τs τ−)

C(r̄1 , r̄2) =
A+ τ+ (1− r̄ d)

1 + r̄ τ+
−

A− τ+ (1 + r̄ d)

1 + r̄ τ−
, (A.42)

where r̄ = r̄1 + r̄2 . Note that, in this case, the coefficients are functions of the

baseline rates.
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The case d = 0 is equivalent to unshifted STDP with nearest-neighbor in-

teractions. The above coefficients show that in this case the model has the same

qualitative behavior as STDP with all-to-all spike interactions, because the rate-

dependence does not change the fixed points and eigenvalues qualitatively. For

d > 0 (shifted window), the coefficient A decreases and eventually becomes nega-

tive as the baseline rate increases. This is because the first term in the parenthesis,

which is positive, decreases with rate, while the second term, which subtracts a

positive amount, remains constant. At higher firing rates, the coefficient C also

becomes negative, because its first term (positive) decreases with rate while the

second term increases.

At low rates, when 0 < A < B and C > 0, both components of the fixed

point (equations A.34) are positive. Also, one of the eigenvalues (equation A.36)

is positive and the other is negative, so the fixed point is a saddle node. At high

rates, when A < 0 < B and C > 0, both components of the fixed point remain

positive, and both eigenvalues are negative, so the fixed point is stable. At even

higher firing rates, C becomes negative as well, therefore the components of the

fixed point become negative, while the eigenvalues remain negative. As a result,

the system has a stable fixed point out of its allowed range.
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Appendix B

Miscellaneous Research Projects

B.1 A generalized linear model of the impact of

direct and indirect inputs to the lateral genic-

ulate nucleus

Relay neurons in the lateral geniculate nucleus (LGN) receive direct visual input

predominantly from a single retinal ganglion cell (RGC), in addition to indirect

input from other sources including interneurons, thalamic reticular nucleus (TRN),

and the visual cortex. To address the extent of inuence of these indirect sources

on the response properties of the LGN neurons, we fit a Generalized Linear Model

(GLM) to the spike responses of cat LGN neurons. We conclude that the indi-

rect source of response modulation of the LGNrelay neurons arises from inhibitory

sources, compatible with thalamic interneurons or TRN. The results are published

in Journal of Vision (2010) 10(10):22, 1-14. A reprint is appended to the end of

this dissertation.
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B.2 Fast nonnegative deconvolution for spike train

inference from population calcium imaging.

This work presents a fast nonnegative deconvolution filter to infer the approximately

most likely spike train of each neuron, given the calcium fluorescence observations.

This algorithm outperforms optimal linear deconvolution (Wiener filtering) on both

simulated and biological data. My contribution was limited to implementing the

“barrier method” in the optimization algorithm. The results are published in Jour-

nal of Neurophysiology (2010) 104(6): 3691-704. A reprint is appended to the end

of this dissertation.
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Introduction

As the prototypical sensory nucleus of the visual
thalamus, the dorsal lateral geniculate nucleus (LGN)
has been the subject of numerous studies for decades.
However, the precise role of the LGN in processing visual
information remains a matter of debate (Carandini et al.,
2005; Mante, Bonin, & Carandini, 2008; Mayo, 2009;
Rees, 2009; Sherman, 2005; Sherman & Guillery, 2002).
One reason for this is the complicated feedforward and
feedback circuitry that drives and modulates relay cell
responses (Sherman & Guillery, 1998), which makes

isolation of the separate inputs difficult. Despite this,
much progress has been made in demonstrating that
nonretinal inputs to the relay cells significantly alter
LGN activity, and enough is known to make a plausible
case for the functional role of some of these effects
(Andolina, Jones, Wang, & Sillito, 2007; McAlonan,
Cavanaugh, & Wurtz, 2008; Rees, 2009; Wang et al.,
2007). To say that the LGN acts as more than a “mere
relay” is now a cliche of neuroscience literature, replacing
the older one to the contrary. The aim of this work is to
probe the influence of nonretinal inputs with a quantitative
statistical model and to assess their importance in shaping
fine details of LGN response.
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Thalamic relay neurons receive strong feedforward
excitation predominantly from one or two retinal ganglion
cells (RGCs) with overlapping receptive fields (Cleland,
Dubin, & Levick, 1971; Usrey, Reppas, & Reid, 1999),
from which the LGN neuron inherits the dominant
features of its concentric, center–surround receptive field.
A fundamental difference between the RGC and LGN
receptive fields is a stronger, spatially extended inhibitory
surround in the LGN, observed long ago by Hubel and
Wiesel (1961). This enhanced inhibition likely originates
in either local interneurons (Blitz & Regehr, 2005; Dubin
& Cleland, 1977) or processes emanating from the
thalamic reticular nucleus (TRN; Wang et al., 2001), with
which the LGN is known to be reciprocally connected.
The LGN and TRN also receive excitatory feedback from
the cortex; together, the LGN, TRN, and cortex form a
closed circuit in which each area has a reciprocal
connection to the others. Thus, a key issue is the extent
to which these extraretinal sources influence the visual
information processing of the LGN neurons.
Any model of the retinogeniculate pathway (Carandini,

Horton, & Sincich, 2007; Casti, Hayot, Xiao, & Kaplan,
2008) must account for the fact that the LGN transmits
only a fraction of the retinal inputs it receives (see
Figure 1). It is clear from recordings that a single spike
from the retina is sufficient (perhaps in conjunction with
unseen inputs) to drive a relay cell past threshold, yet the
fact is that in anesthetized preparations, on average, less
than half of the primary driver ganglion cell inputs trigger

an LGN spike (Kaplan, Purpura, & Shapley, 1987). The
LGN compensates for its lower firing rate by making each
spike more informative (Sincich, Horton, & Sharpee,
2009; Uglesich, Casti, Hayot, & Kaplan, 2009). This
suggests that the mechanisms responsible for repressing
LGN activity do so with a purpose and are not random.
The trend in recent studies of retinogeniculate (RG)

transmission has been to find the simplest model or
mechanism capable of explaining the variance in LGN
relay cell recordings (Carandini et al., 2007; Casti et al.,
2008; Sincich et al., 2009). Here, we take a different
approach: we try to quantify the indirect visual influences
on the RG transmission, no matter how modest, and
examine its properties and physiological origin. By
“indirect” visual influences we mean any visual input to
the LGN relay cell beyond monosynaptic RG trans-
mission. In our model, we take advantage of single-cell
extracellular recordings of LGN neurons that capture the
timing of incoming retinal spikes in the form of S
potentials (Bishop, 1953; Kaplan & Shapley, 1984). We
thus have access to both the main input and the output of
single neurons in the thalamus. Since the visual stimulus
is under our experimental control, it is possible, by fitting
a realistic neural model to these data, to examine whether
the response of the LGN neuron to the visual stimulus is
entirely governed by the direct monosynaptic retinogeni-
culate transmission, or whether some aspects of the LGN
response are dictated by indirect sources of visual input.
This is the underlying rationale of the method used in the
present study. By fitting the parameters of a generalized
linear model (GLM; Paninski, Pillow, & Lewi, 2007;
Truccolo, Eden, Fellows, Donoghue, & Brown, 2005) to
the extracellular data, we show that the visual stimulus
influences the response of the LGN neurons by paths other
than the monosynaptic RG transmission. The time scales
and spatial extent of the indirect contributions we found
are consistent with feedforward inhibition from thalamic
interneurons or feedback inhibition from the TRN.

Methods

Surgery

The experimental methods were similar to those
described in Casti et al. (2008) in accordance with the
National Institutes of Health Guidelines and the Mount
Sinai School of Medicine Institutional Animal Care and
Use Committee. In brief, adult cats were anesthetized
initially with an intramuscular (IM) injection of xylazine
(Rompun, 2 mg/kg) followed by ketamine hydrochloride
(Ketaset, 10 mg/kg). Anesthesia was maintained with a mix-
ture of propofol (4 mg/kg h) and sufentanil (0.05 2g/kg h),
which was given intravenously (IV) during the experi-
ment. Propofol anesthesia has been shown to cause no
changes in blood flow in the occipital cortex (Fiset et al.,

Figure 1. A sample extracellular voltage recording of an LGN
neuron, corresponding to the cell in Figure 5B. This record shows
seven S potentials, which are large EPSPs driven by RGC input
spikes. A “failed” S potential does not have a concomitant LGN
spike, while a “successful” S potential is typically embedded
within an LGN spike.
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1999) and appears to be optimal for brain studies.
Phenylephrine hydrochloride (10%) and atropine sulfate
(1%) were applied to the eyes. The animal was mounted
in a stereotaxic apparatus. The corneas were protected
with plastic gas-permeable contact lenses, and a 3-mm
diameter artificial pupil was placed in front of each eye.
Blood pressure, ECG, and body temperature were mea-
sured and kept within the physiological range. Paralysis
was produced by an infusion of pancuronium bromide
(0.25 mg/kg h), and the animal was artificially respired.
Such preparations are usually stable in our setup for more
than 96 h.

Visual stimuli

Visual stimuli were presented monocularly on a CRT
(mean luminance of 25 cd/m2; frame rate of 160 Hz)
driven by a VSG 2/5 stimulator (Cambridge Research
Systems, Cambridge, UK). Stimuli consisted of spatially
homogeneous circular spots of various diameters, ranging
from 0.5- to full field, modulated temporally according to
a pseudorandom sequence (Reinagel & Reid, 2000; van
Hateren, 1997). For each spot size, we presented a
sequence of 256 stimulus segments of random luminance
modulation, each 8 s long, in which 128 repeated
segments (repeats) were interleaved with 128 nonrepeat-
ing segments (uniques). The entire stimulus run thus
lasted 8 ! 256 = 2048 s, during which the spot size was
fixed. A filtered version of the repeated segment is shown
in the top panel of Figure 4A.

Recording of LGN spikes and S potentials

Extracellular recordings were taken from layers A and
A1 of the LGN of 6 adult anesthetized cats. Amplified
electrical signals were sampled at 40 kHz by a data
acquisition interface (Spike 2, CED) for subsequent spike
recording and sorting. To map the receptive field (RF) of
LGN relay neurons, we first moved a mouse-controlled
light or dark bar on the CRT to find the approximate
position of the RF, and then reverse correlated the spike
train with a 16 ! 16 checkerboard, in which each check
(spanning 0.25- at 57 cm, in each linear dimension) was
modulated by an independent m-sequence (Reid, Victor,
& Shapley, 1997; Shutter, 1987). Neurons were classified
as X or Y based on the responses to contrast reversal of
fine gratings (Hochstein & Shapley, 1976). None of our Y
cell recordings were sufficiently stable to be used in this
work, so all the model results presented are for X cells.
All cells were within 15- of the area centralis. The RF
center size was estimated by fitting a Difference of
Gaussians (DOG) model to the spatial response map that
resulted from the reverse correlation procedure. The
center radius was taken to be twice the standard deviation
of the Gaussian fit. In the figures, spot sizes are reported

as a multiple of the estimated size of the RF center and are
referred to as relative spot sizes.
When the electrode tip is sufficiently close to the LGN

cell body, the retinal input to the relay cell can be
captured in the form of slow synaptic potentials (S
potentials), as shown in Figure 1 (Bishop, 1953; Kaplan
& Shapley, 1984). Because the electrode tip needs to be so
close to the cell, we used finely tapered, high-resistance
(10 M4) tungsten electrodes with platinum black tip
conditioning (FHC; epoxylite insulation). Despite the
danger of damaging the cell in this type of recording, we
were often able to hold the recordings for 12 h or more
with no apparent degradation in visual responsiveness.
Owing to the length of each recording (94 h) and the
difficulty in obtaining S potentials that are easily discrim-
inable over baseline noise, we typically were able to get
just 1 or 2 successful recordings per animal that were
suitable for the analysis presented here.
Spike times were determined offline by setting two

threshold voltages: a low threshold of approximately
0.5 mV for the S potentials and a higher threshold for the
LGN spikes. An event time was defined by the threshold
crossing at half-height. As illustrated in Figure 1, a single
retinal S potential has variable success in eliciting an LGN
relay cell response. A retinal input “failure” appears as an
isolated, small-amplitude event, and a “success” manifests
itself as a shoulder on the rising phase of the large-
amplitude relay cell spike it triggers. The S potential is
fused with the relay cell spike to various degrees,
sometimes separated entirely from the action potential
by È1 ms (Sincich, Adams, Economides, & Horton, 2007;
Weyand, 2007). In cases where a retinal input induced an
LGN spike, our method of detecting S potentials created a
slight delay between the S potential and the LGN spike
time, ranging from 0 to 1 ms, depending on the extent to
which the S potential was embedded within the LGN
spike. For a small fraction (G5%) of LGN events, the
presence of a spike-triggering S potential is not detectable
in the extracellular trace either within the spike or nearby.
In these cases, it is possible that the most recent S
potential served to “prime” the relay cell, allowing
another, perhaps smaller, input to drive it past threshold.
Whatever the case, whether an S potential is detectable or
not, we assume in the model that each LGN spike has an S
potential accompanying it. The validity of this assumption
has received experimental support in recordings from both
anesthetized (Sincich et al., 2007) and awake (Weyand,
2007) preparations. In all the cells analyzed, successive S
potentials arrived at intervals 92 ms, making it unlikely
that there were two or more dominant drivers from
separate ganglion cells.

Modeling and data analysis

To estimate distinct contributions to the response of
LGN neurons, we fit a Generalized Linear Model (GLM;
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Paninski, 2004; Paninski et al., 2007) to the stimulus and
spike train data. The GLM in this case has the following
form:

1t ¼ f

 

bþ
XdimD

i¼1

Dixtjiþ1 þ
XdimH

j¼1

Hjntjj

þ
XdimK

m¼1

Kmltjmþ1

!
: ð1Þ

The inputs to the model are xt, nt, and lt, which represent
discrete time series for the RGC spikes (S potentials), LGN
spikes, and the luminance of the visual stimulus at time t,
respectively. A distinct linear temporal filter is convolved
with each source of input to the model: The filter D

Y
acts on

the RGC spikes (xt), the filter H
Y

acts on the past LGN
spikes (nt) and models the spike-history effects on the
present activity of the neuron, and the filter K

Y
acts on the

luminance of the visual stimulus (lt). The parameter b is a
constant offset that defines the background firing rate of the
LGN neuron. Because of the presence of the constant b,
which represents the sum of all constant inputs to the
function f, the filters are mainly responsive to deviations of
the corresponding inputs around their means. In line with
this inherent separation of mean and variance in the model
and in order to make the interpretation of the filter K

Y
more

clear, we subtracted the mean luminance (25 cd/m2) from
the values lt at each time. After convolving the inputs with
the filters, the result is fed into a nonlinear, monotonically
increasing function f to calculate the instantaneous firing
rate 1t of the LGN neuron at time t. The main role of f is to
capture nonlinear thresholding effects. Finally, the number
of spikes in each time bin of duration dt is drawn from a

Poisson distribution such that nt È Poiss(1t , dt). Figure 2
depicts a schematic structure of the GLM and its
components. An important feature of the GLM used here
is that the visual input enters through two distinct routes:
first, from the RGC spikes (xt) with its corresponding
temporal filter D

Y
, and second, through the luminance of the

visual stimuli (lt), with its corresponding filter K
Y
(which we

call the “luminance” or “indirect” filter). The rationale for
incorporating the latter in the model is to account for
possible information about the visual stimulus that affects
the response of the LGN neuron but is not directly
mediated by the RGC spike train to the LGN neuron.
Thus, the filter D

Y
represents the monosynaptic RG trans-

mission, whereas K
Y

filters stimulus information beyond
that directly transmitted to the LGN by the retina (such as
cortical feedback and intrageniculate inhibition).
In order to simplify the notation, the inputs to the model

can be lumped into a single vector as

Xt
Y

¼ ½1 xt I xtjdimðDÞþ1 ntj1 I ntjdimðHÞ

lt I ltjdimðKÞþ1&: ð2Þ

The parameters of the model, i.e., the constant offset and
the linear temporal filters, can also be lumped into the
single vector

E
Y
¼ b D

Y
H
Y

K
Y &:

!
ð3Þ

Now Equation 1 can be rewritten as

1t ¼ f ðE
Y

I Xt
Y
Þ: ð4Þ

Figure 2. A schematic of the GLM that is fit to the recorded LGN data. The inputs to the model are the RGC input events xt (S potential
times; Figure 1), the LGN cell spike time history nt, and the luminance of the visual stimulus lt. The linear filters acting on the inputs are
D
Y

(blue), H
Y

(red), and K
Y

(green). A static nonlinearity f (Equation 6) transforms the sum of filtered inputs to obtain the instantaneous firing
rate of the neuron. The output spikes are generated as an inhomogeneous Poisson process with the rate parameter 1t given by Equation 1.
The model inputs derive from the experimental data, while the linear filters are given by maximizing the likelihood of the model that
reproduces the experimental LGN spike train. The temporal filter D

Y
represents the monosynaptic retinogeniculate transmission, and the

filter K
Y

captures the effects of indirect visual inputs.
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The log-likelihood L of the GLM producing the observed
LGN spike train (O) can be written as in Snyder and
Miller (1991):

L ¼ log p
!
Ok X

Y
; E
Y"

¼ cþ
X

t

!
nt log f

!
E
Y

I Xt
Y"

j f
!
E
Y

I Xt
Y "

dt
"
; ð5Þ

where c is a constant unrelated to the model parameters. If
f(u) is a convex function of its scalar argument u, and log f
(u) is concave in u, then the above log-likelihood is
guaranteed to be a concave function of the parameter E

Y
,

since in this case the log-likelihood is just a sum of
concave functions of E

Y
(Paninski, 2004). This ensures that

the likelihood has a unique maximum for some parameter
vector E

Y
ML, which can be found easily by numerical

ascent techniques. We use the standard Hessian-based
estimate for the standard error of the optimization: diag
[(lEML

2 L)j1]
1
2 provides error bars for each corresponding

entry in the parameter vector E
Y
, where lEML

2 L denotes the
Hessian of the log-likelihood evaluated at the maximum
likelihood estimate EML (Paninski, 2004; Paninski et al.,
2007; Truccolo et al., 2005; see Figures 3 and 5). The
function f(u) used here that satisfies the above conditions
is

f ðuÞ ¼ logð1þ euÞ: ð6Þ

Other choices of convex and log-concave functions
(including exponential and quadratic) did not alter the
results of this study.
For each stimulus size, the recorded data consist of

LGN responses to 128 unique and 128 repeated trials. The

parameters of the model (E
Y
) are optimized by maximizing

the log-likelihood (Equation 5) of the model in reproduc-
ing the spike train of the unique trials. Thereafter, the
repeated trials (which are not part of the GLM training
data) are used to cross-validate the model. To assess the
quality of the model fit to the observed data, we calculated
the percentage of the variance in the poststimulus time
histogram (PSTH) of the recorded LGN data accounted
for by the GLM for the repeated trials (Pillow, Paninski,
Uzzell, Simoncelli, & Chichilnisky, 2005):

r ¼ 100% 1 j

#
ðPSTH

data
j PSTH

model
Þ2
$

#
ðPSTH

data
j bPSTH

data
ÀÞ2

$

 !

; ð7Þ

where PSTHdata and PSTHmodel refer to the PSTH of the
laboratory data and the GLM, respectively, and bIÀ denotes
a time average across trials. We computed the PSTH using
a bin width of 6.25 ms, equivalent to the frame interval of
the 160 Hz stimulus presentation on the CRT. For each
experimental condition, two GLMs are fit to the observed
LGN spike trains. First, a full model that contains all the
temporal filters (D

Y
, H

Y
, and K

Y
); and second, a GLM that

Figure 3. An example of the optimized linear temporal filters for (A) an X-Off LGN neuron and (B) an X-On LGN neuron. The error bars
indicate the standard error of the optimization for each point (see Methods section). The time course of the response of each cell, obtained
by reverse correlation with checkerboard m-sequence stimuli (Recording of LGN spikes and S potentials section), is shown in the insets.
Each filter is normalized by the standard deviation of its corresponding input, so that the magnitude of the three filters may be compared
directly.
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lacks the indirect filter K
Y
. Comparison of these two

models provides the contribution of the indirect or
extraretinal routes of visual input to the LGN response.

Note that the time courses of the three filtersD
Y
, H
Y
, and K

Y

indicate LGN spike probability contributions of different
events that happen at different times. Relative to the “zero
time” (the time at which the filters are convolved with the
input and spike histories), a peak in the retinal filter D

Y

roughly corresponds to the most recent postsynaptic S
potential event at the LGN cell body. A trough in the H

Y

filter is associated with the suppression that generally
follows the most recent LGN action potential, and a peak or
trough in the indirect kernel K

Y
is associated with the

stimulus history as it appeared on the laboratory monitor.
To get an estimate of the relative time delay between relay
cell responses and any indirect inputs, we compare the time
evolution of the K

Y
filter with the time evolution of the

LGN linear receptive field at the RF center, as given by
reverse correlation with a spatiotemporal m-sequence (see
Recording of LGN spikes and S potentials section).

Results

We optimized the parameters of the GLM for 10 recorded
LGN neurons (6 X-Off and 4 X-On cells). Figure 3 shows

the optimized temporal filters for two representative LGN
neurons. Before discussing the contributions of each
model component to the LGN response, we evaluate the
overall performance of the model in capturing the
statistical properties of the recorded LGN spike trains.

Statistics of the LGN discharge

Figure 4A juxtaposes the response of a recorded X-Off
LGN neuron and the GLM fit to the repeated trials. As can
be seen, the full GLM can accurately reproduce the
instantaneous firing rate and the variance of the firing rate
of the real neuron across different trials. The inter-spike-
interval (ISI) distribution of the spikes generated by the
GLM also matches that of the real neuron (Figure 4B);
similar results were observed for the other analyzed cells
(data not shown).
Apart from the statistical parameters of the LGN

response, the GLM can capture other important features
of LGN response as well. For instance, in both the real
data and the model, the LGN neuron produces fewer
spikes than the RGC neuron. Thus, each S potential is not
necessarily accompanied by an LGN spike (Figure 4A,
rasters). Some S potentials succeed in being transmitted
by LGN to the visual cortex and some fail (Carandini et al.,
2007; Casti et al., 2008; Uglesich et al., 2009); in this data

Figure 4. The spike train of the GLM compared to the recorded (real) spike train of the LGN X-Off neuron from Figure 3A, for the
128 repeated trials. (A) The luminance of the visual stimulus is shown in the top panel; the RGC spikes (red) and the real LGN spikes
(blue) are shown in the second panel. In the third panel, the same RGC spikes (red) and the spike trains of the model LGN neuron (black)
are illustrated. The ovals highlight the tendency of the RGC spikes to cluster before the LGN spikes both in the real data and the model.
The fourth panel shows the instantaneous firing rate of the real (blue) and model (dotted black) LGN neurons averaged across trails. The
bottom panel shows the variance of the firing rate for real (blue) and model (dotted black) LGN neuron across trials. (B) The inter-spike-
interval (ISI) distribution of the spike trains of the real (blue) and model (dotted black) LGN neurons.
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set, the “transfer ratio” (the number of LGN spikes
divided by the number of retinal S potentials) was 0.24
(i.e., about one quarter of S potentials triggered an LGN
spike). The GLM predicted a similar transfer ratio of
È0.24. Both in the real data and in the model, the failed S
potentials tend to cluster prior to successful S potentials
accompanied by an LGN spike (Figure 4A, ovals); this
phenomenon is well explained by temporal summation of
RGC inputs, as has been shown previously (Carandini
et al., 2007; Casti et al., 2008; see the Discussion section).

The GLM filters

For all spot sizes and for both RF center polarities (On
and Off), the time course of the estimated RGC filter D

Y
is

approximately an exponential decay with a time constant
of È20 ms (Figure 3, blue curves). The spike history filter
H
Y

is also approximately exponential but is negative
(suppressive) and has a shorter time constant (È5 ms)
for all spot sizes (Figure 3, red curves). The filters D

Y
and

H
Y

were traced back up to 30 ms prior to the stimulus
time t. For times longer than that, these filters were
effectively zero, and taking them into account only slowed
down the optimization process. Moreover, using the repeated
trials to cross-validate the model with filters having more
time bins showed that adding redundant time bins to the
model filters did not improve the fit, and eventually made

the fit worse. This can be due to over-fitting of the model to
the details of the noise in the data. With these consid-
erations in mind, we found a 30-ms history to be
appropriate for the GLM optimization.
The luminance filter K

Y
is most significant in time

intervals beyond the range of the D
Y

and H
Y

filters: It has a
peak around 40–45 ms after stimulus onset for the Off
cells (Figure 3A) and a trough around the same time for
the On cells (Figure 3B). To give this result some
physiological context, we compared the time evolution
of K

Y
with the first-order temporal linear kernel (i.e., the

temporal receptive field; Figure 3, insets). The linear
receptive field has a peak for the On cells and a trough for
the Off cells, both appearing about 35 ms after stimulus
onset. Thus, the K

Y
filter is about 5–10 ms delayed

compared to the peak response of the LGN neurons.
The K

Y
filter represents the combined effect of the visual

response of a presynaptic neuron plus the synaptic trans-
mission to the LGN cell. Therefore, any positive or
negative fluctuations in K

Y
can have a variety of

interpretations. A positive excursion (a peak) in the K
Y

filter can be due to an excitatory input with an On origin,
or an inhibitory input with an Off origin. Similarly, a
negative excursion (a trough) in the K

Y
filter can be

attributed to an excitatory Off or an inhibitory On input.
Alternatively, since the K

Y
filter is tuned to variations of

the luminance around its mean, a peak can be interpreted
as the removal of an excitatory Off or inhibitory On input.

Figure 5. The luminance filter K
Y

for several spot sizes (relative to the RF center size), (A) for the representative Off cell corresponding to
Figure 3A and (B) for a representative On cell corresponding to Figure 3B. The error bars show the standard error of the optimization for
each point (see Methods section).
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Finally, a trough can be interpreted as the removal of an
excitatory On or inhibitory Off input. Although a linear
model (up to spike generation) like ours cannot in
principle distinguish between increased inhibition and
decreased excitation, in what follows we will discuss all
the above possibilities in light of the available literature
about thalamic circuitry and argue that the indirect visual
influence corresponds to an inhibitory source, possibly
with an opposite polarity to the RF center of the LGN
relay cell (see Discussion section).
While the RGC and spike history filters do not vary

with the size of the visual stimulus, the luminance filter
K
Y

changes as a function of spot size. Figure 5 shows the
progression of the K

Y
filter for different visual spot sizes,

corresponding to the representative Off and On cells in
Figure 3. The magnitude of the luminance filter K

Y
is

almost zero for small spot sizes and becomes more
significant as spot size increases. The magnitude of the

K
Y

filter tends to shrink again for even larger spot sizes.
Among other things, this suggests the absence of indirect
excitation or inhibition for small spot sizes and enhanced
inhibition at larger spot sizes. If this indirect effect were
due to decreased excitation, then we would have expected
to see evidence of indirect excitation at small spot sizes. It
is worth noting that in some cells the K

Y
filter may show a

polarity reversal for later times (e.g., Figure 3B). This is

expected as the luminance filter itself indirectly originates
from the activity of an RGC whose temporal RF is
typically biphasic.

Contribution of direct visual input

To quantify the indirect contribution of luminance
information through the K

Y
filter on the RG trans-

missionVas opposed to the contribution from the RGC
input and its associated D

Y
filterVwe fit a GLM without

the K
Y

filter to have a baseline for comparison. We then
calculated the performance of the full model and the model

without the K
Y

filter according to Equation 7. Figure 6A
shows the performance of the GLMs for a representative
Off cell, and Figure 6B illustrates the same results for a
representative On cell (corresponding to Figures 3 and 5,
respectively). Incorporating the luminance filter K

Y
into

the model generally improves the fit, particularly for mid-
range stimulus sizes. This finding is more evident in
Figures 6C and 6D, where the contribution of K

Y
filter is

demonstrated as a function of the stimulus size. For the
mid-ranged spot sizes, the K

Y
filter increases the perfor-

mance of the GLM up to 7% for both cells.
The bar charts in Figure 7 show the average perfor-

mance of the GLMs with and without the luminance filter

Figure 6. The performance of the GLMs and the contribution of the luminance filter (K
Y
). (A) The performance of the GLM in reproducing

the real LGN spike trains in the repeated trials, calculated according to Equation 7. The graph shows the performance of the full GLM
(green) and the GLM without K

Y
filter (blue) as a function of the relative size of the stimulus spot, for the same Off cell as in Figures 3A and

5A. (B) Similar results for the representative On cell of Figures 3B and 5B. (C) The contribution of the luminance filter K
Y

in improving the
performance of the GLM for the representative Off cell. (D) The same results for the representative On cell. Error bars indicate the
standard deviation over the 128 repeated trials in each case. Note that the contribution of the luminance filter is fairly small.
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K
Y
, together with the contribution of K

Y
for three ranges of

the relative stimulus size for all the recorded cells. In
general, the model performs better for smaller spots and
the contribution of K

Y
filter increases for larger spots.

Figure 8 shows the contribution of the luminance filter K
Y

as a function of the stimulus size for all 10 recorded LGN
neurons. Here also a clear trend is visible: the K

Y
filter

contributes to the LGN response predominantly for stimuli
that are larger than the receptive field center. The

maximum contribution of the K
Y

filter can reach up to
25% for some cells, though in most cases the contribution
is smaller. The data from some of the cells analyzed here
were also used in previous studies from our group (Casti
et al., 2008; Uglesich et al., 2009), as indicated in the inset
of Figure 8.

Discussion

In order to quantify the effect of indirect visual inputs to
the LGN relay neurons, we fit a generalized linear model
to spike trains recorded from these neurons, along with
their RGC inputs (as reflected by the recorded S
potentials), while the size of the visual stimulus was
varied systematically. We found that the indirect input
sources are most significant for stimulus sizes that were
more than two times larger than the diameter of the RF
center of LGN neurons.

The GLM class of models is a natural mathematical
extension of the basic physiological concept of a “recep-
tive field” that also includes spike-history effects such as
refractoriness, burstiness, and adaptation. Because of the
separation of linear and nonlinear components and the
incorporation of spike-history effects into the linear
component, the GLM is well suited for modeling neural
spike trains and gives an intuitive explanation of the
underlying neuronal processes. In fact, the GLM has
proved useful in a wide variety of experimental prepara-
tions (Okatan, Wilson, & Brown, 2005; Pillow et al.,
2005, 2008; Truccolo et al., 2005) and has been shown in
many cases to be of comparable accuracy to the more
widely used integrate-and-fire (IF) model (Paninski et al.,
2007). In the particular case of LGN response, IF model
neurons with a biologically realistic circuitry have been
used to predict experimental data similar to those of the
present study (Casti et al., 2008). The accuracy of the
GLM is quite comparable to that of the IF model in this
case (i.e., more than 90% variance captured for small
spots and around 80% for large spot stimuli). The IF
model has the advantage of matching more closely the
physiological intuition about the neural circuits, at the
expense of losing the speed and guarantee of finding
the optimal parameters, which are inherent in the GLM.
The GLM retains most of the appealing biophysical
interpretations of the individual model components of
the IF type models and very often offers significant
computational savings in the optimization. Besides the
general properties of the GLM, what made this model an

Figure 7. The average performance of the GLMs and the contribution of the luminance filter (K
Y
) for different relative spot sizes. The

performance of the model is calculated according to Equation 7. The GLM predicts the LGN response better for small stimuli. The
contribution of the luminance filter (K

Y
) increases for larger stimuli. The error bars depict the standard error.
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appropriate choice in the present study was the availability
of the retinal S potentials, which allowed us to separate in
the model the direct retinal input from the other, less easily
detected inputs. In the present study, we detected a
statistically significant, though modest, contribution of
inhibitory inputs to the performance of a generalized linear
model. That we were able to capture these effects highlights
an important distinction between GLM and IF models:
while the performance of the IF model is restricted by the
specifics of the implemented circuitry (such as fixed
synaptic delay, polarity of the inhibitory input, etc.), the
components of the GLM are more phenomenological and
do not require an a priori implementation of the specific
biophysical properties. It is, therefore, more flexible in
revealing the factors influencing the neural response.
Both the exponentially decaying shape and the time

course of the estimated RGC filter D
Y

here are consistent
with retinogeniculate synaptic transmission. The results
show that on average the RGC input component of the
model accounts for more than 90% of the variance of the
observed LGN activity in all stimulus conditions.
Although the contribution of indirect inputs in the LGN
visual response may reach up to 25% for some neurons, it
is generally small compared to the monosynaptic retino-
geniculate transmission. This result is in line with
previous studies showing that the LGN response is
predominantly governed by the RGC driving input and

the postsynaptic temporal summation of S potentials
(Carandini et al., 2007; Casti et al., 2008; Cudeiro &
Sillito, 1996; Sincich et al., 2007). In particular, although
the S potentials that fail to elicit an LGN spike depolarize
the membrane potential of the LGN neuron, they are not
sufficient to push it over the spiking threshold. However,
these “failures” make it easier for subsequent S potentials
to evoke an LGN spike. Therefore, the tendency of the
RGC spikes to cluster before the LGN spikes, as shown in
Figure 4, could be explained solely by temporal summa-
tion of RGC inputs (Carandini et al., 2007; Casti et al.,
2008). The same short-term temporal summation has been
shown (Sincich et al., 2009; Uglesich et al., 2009) to
account for the majority of the formal information (bits)
transmitted by LGN relay neurons. These recent studies
have shown that LGN relay neurons reencoded features of
the visual stimulus so that each output spike carried more
information about the stimulus than each RGC spike.
Further, Sincich et al. (2009) found that the most
informative dimension in the vector space of RGC inputs
corresponds to a monotonically increasing function that
starts to deviate from zero around 35 ms before the LGN
spike. This analysis is compatible with the temporal
summation of RGC spikes within a 35-ms window before
the LGN spike.
In our GLM, all potential indirect inputs are lumped

into the single luminance filter K
Y
. Although the contribu-

Figure 8. The contribution of the luminance filter K
Y

to the performance of the GLM for all 10 analyzed LGN neurons. The horizontal axis
indicates the relative spot size. The vertical axis indicates the contribution of the K

Y
filter (in the percentage units illustrated in Figure 6).

Each marker shows the results for a single neuron and a specific stimulus size. The filled circles represent Off cells and open circles
represent On cells. Each color corresponds to a distinct cell. The inset shows the identity of the cells that were also analyzed in two
previous articles of our group.
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tion of the indirect inputs in shaping the LGN response is
modest compared to the direct retinogeniculate trans-
mission, our results enable us to put forward a few
conjectures about its origin. As mentioned before, the
GLM per se cannot distinguish between excitatory or
inhibitory origin of the K

Y
filter. Although there is evidence

that LGN relay neurons may receive weak excitatory input
from a few RGC cells other than their main excitatory drive
(Cleland et al., 1971; Hamos, van Horn, Raczkowski, &
Sherman, 1987; Usrey et al., 1999; Wang et al., 2007), the
receptive fields of those RGCs are tightly overlapping and
have the same polarity as the main RGC/LGN neuron
(Usrey et al., 1999). The luminance filter K

Y
has an

excitatory effect on Off cells and an inhibitory effect on
On cells, which was observed in all 10 neurons we
analyzed. Its polarity is therefore opposite to that of the
temporal linear receptive field of the LGN neuron. An
excitatory origin with the same polarity as the LGN
neuron cannot explain the reversal of the polarity of the
observed K

Y
filter. The maximum effect of the K

Y
filter has

È40–45 ms delay with respect to the stimulus onset
(Figure 3), while the peak response of the linear temporal
receptive fields of LGN neurons occurs È35 ms after the
stimulus onset, giving an approximate relative delay of
È5–10 ms between the retinal excitation at the LGN cell
body and the indirect input. Again, the 5–10 ms delay of
the peak (or the trough in case of On cells) of the K

Y
filter

is not compatible with a feedforward excitatory input from
other RGCs. When all spot sizes are considered, our
results are consistent with the interpretation of these
indirect effects as inhibition, as we found no evidence
for indirect excitation at small spot sizes (È0.5–1 times
the RF center size). The greater impact of the contribution
of the K

Y
filter for larger stimuli implies that the receptive

field of the inhibitory source is either larger than the
receptive field of the LGN neuron itself or displaced
toward its receptive field periphery.

Sources for inhibition

The above-mentioned properties of the observed indi-
rect visual input seem consistent with a local feedforward
interneuronal source or feedback inhibition from the TRN
(or both). Interneuronal inhibition was found to be
prominent in the intracellular recordings from LGN relay
neurons by Wang et al. (2007), who had access to both the
excitatory (EPSCs) and inhibitory (IPSCs) inputs to
visually driven relay neurons. They mapped the RF of
both inhibitory and excitatory inputs and showed that the
inhibitory input most likely arises from thalamic inter-
neurons with an overlapping center–surround receptive
field structure similar to the LGN relay neurons (Dubin &
Cleland, 1977; Humphrey & Weller, 1988; Sherman &
Friedlander, 1988). It has been shown that the polarity of
the receptive field of the inhibitory input is opposite to
that of the LGN target, resulting in a pull inhibitory effect

(Wang et al., 2007). Our results deviate from this strict
pull inhibitory input. For instance, in the case of pull
inhibition to an Off LGN neuron, the inhibitory inter-
neuron responds to On transitions in the stimulus (dark to
bright). Therefore, such an interneuron would inhibit the
LGN cell for bright spot stimuli, and the K

Y
filter would

have to be negative even for small spot stimuli. However,
we observed no significant K

Y
filter influence for small

spots, and for larger spots, it is positive, contrary to what
one would expect of pull inhibition. One possible
explanation is that the K

Y
filter represents a partial removal

of a pull inhibitory input for larger spots that hit the
surround of the RF of the inhibitory interneuron. Neurons
in the TRN, on the other hand, have large receptive fields
that are often less well organized compared to LGN relay
neurons (Uhlrich, Cucchiaro, Humphrey, & Sherman,
1991). The TRN activity is also a plausible source for
the inhibition we observe since it tends to be anti-
correlated with LGN responses. This has been observed
for retinotopically matched LGN and TRN cells in
anesthetized cat (Funke & Eysel, 1998) and awake
monkey (McAlonan et al., 2008) preparations. The 5–10 ms
delay between the observed inhibition and the relay cell
peak response could accommodate a round trip to V1 and
back to the LGN through the TRN (Briggs & Usrey,
2007).
The feedforward inhibitory input arising from intra-

thalamic interneurons is classified into two distinct types
with presumably different physiological roles (Blitz &
Regehr, 2005). The “locked” feedforward inhibition,
which is observed in È33% of relay cells, is tightly
correlated with the excitatory input and is believed to arise
from the same RGC as the excitatory input. In contrast,
the “nonlocked” feedforward inhibition seen in È67% of
relay cells is believed to originate from RGCs other than
the main excitatory drive of the LGN cells. The locked
variety of inhibition has been suggested as a mechanism
for sharpening the precision of LGN responses, while the
unlocked type provides surround inhibition to LGN
receptive fields (Blitz & Regehr, 2005). Since the
maximum effect of the inhibitory input in our data is
observed when the size of the spot stimulus is larger than
the receptive field center, this suggests that the indirect
visual influence we observe tallies better with the non-
locked feedforward inhibition that arises from RGC
neurons in the vicinity of the predominant excitatory
driver of the LGN neuron. This does not imply the
complete absence of a form of locked inhibition driven by
the primary RGC input, but in the context of our GLM
and stimulus paradigm, it means that such influences
contribute little to the model performance or cannot be
disambiguated from the spike history filter H

Y
. If pull

inhibition played a prominent role in the generation of
LGN burst events, as implied by the results of Wang et al.
(2007), who used natural stimuli, then perhaps this form
of inhibition would have been captured in our model if we
had used a different stimulus. Further, a time scale of

Journal of Vision (2010) 10(10):22, 1–14 Babadi et al. 11

Baktash Babadi
150

Baktash Babadi




5–10 ms before the onset of the inhibition seems too long
to implicate a locked form of inhibition and would be
more consistent with disynaptic inhibition originating in
other ganglion cells that might be spread across multiple
interneurons with variable delays. Richer stimuli may
reveal further details about the shape, location, and origin
of the indirect visual inputs to the LGN relay neurons.
Note also that we did not include Y cells in the present
study as they did not yield stable recordings of S
potentials. Whether the indirect inputs play a similar role
in those cells is an open question.
Due to the limitations of extracellular recording and the

phenomenological nature of the GLM, it is difficult to
draw more conclusive interpretations about the exact
origin of the indirect visual input from the present results.
Nevertheless, our results show that the indirect input
contributes to the output of the LGN neuron and is more
significant for larger stimuli. To resolve the exact nature
of the indirect visual influence, intracellular recordings
with membrane potential of LGN neuron clamped at a
high depolarizing value will be required, to reveal the
IPSCs more distinctly than was possible in previous
studies (Wang et al., 2007).

Conclusions

The indirect visual inputs to LGN relay neurons have a
modest influence on the visual response. Their contribu-
tion is larger for large stimuli, with a polarity opposite to
that of the receptive field of the LGN neuron itself. The
properties of the indirect inputs are compatible with
several possibilities: feedforward inhibition from thalamic
interneurons innervated by the same RGC that provides
the main drive to the relay cell (locked inhibition),
feedforward inhibition from interneurons driven by RGCs
other than the main driver (nonlocked inhibition), or
feedback projections from the thalamic reticular nucleus.
Further experiments with prolonged extracellular record-
ing with spatiotemporal noise stimuli or natural images, or
intracellular recording from LGN neurons, or a combina-
tion of electrophysiological and anatomical techniques
will be needed to determine the exact source and the
spatial extent of these inputs.

Acknowledgments

The authors gratefully acknowledge the following grant
support. AC: K25 MH67225; EK: NEI EY016371,
EY16224, NIGM71558, and Core Grant EY12867; LP:
Sloan Research Fellowship and NSF CAREER Award.

Commercial relationships: none.
Corresponding author: Baktash Babadi.
Email: bb2280@columbia.edu.
Address: Center for Theoretical Neuroscience, Columbia
University, 1051 Riverside Dr., NewYork, NY 10032, USA.

References

Andolina, I. M., Jones, H. E., Wang, W., & Sillito, A. M.
(2007). Corticothalamic feedback enhances stimulus
response precision in the visual system. Proceedings
of the National Academy of Sciences of the United
States of America, 104, 1685–1690.

Bishop, P. O. (1953). Synaptic transmission; an analysis
of the electrical activity of the lateral geniculate
nucleus in the cat after optic nerve stimulation.
Proceedings of the Royal Society of London B:
Biological Sciences, 141, 362–392.

Blitz, D. M., & Regehr, W. G. (2005). Timing and
specificity of feed-forward inhibition within the LGN.
Neuron, 45, 917–928.

Briggs, F., & Usrey, W. M. (2007). A fast, reciprocal
pathway between the lateral geniculate nucleus and
visual cortex in the macaque monkey. Journal of
Neuroscience, 27, 5431–5436.

Carandini, M., Demb, J. B., Mante, V., Tolhurst, D. J.,
Dan, Y., Olshausen, B. A., et al. (2005). Do we know
what the early visual system does? Journal of
Neuroscience, 25, 10577–10597.

Carandini, M., Horton, J. C., & Sincich, L. C. (2007).
Thalamic filtering of retinal spike trains by postsy-
naptic summation. Journal of Vision, 7(14):20, 1–11,
http://www.journalofvision.org/content/7/14/20,
doi:10.1167/7.14.20. [PubMed] [Article]

Casti, A., Hayot, F., Xiao, Y., & Kaplan, E. (2008). A
simple model of retina–LGN transmission. Journal of
Computerized Neuroscience, 24, 235–252.

Cleland, B. G., Dubin, M. W., & Levick, W. R. (1971).
Simultaneous recording of input and output of lateral
geniculate neurones. NatureVNew Biology, 231,
191–192.

Cudeiro, J., & Sillito, A. M. (1996). Spatial frequency
tuning of orientation-discontinuity-sensitive cortico-
fugal feedback to the cat lateral geniculate nucleus.
The Journal of Physiology, 490, 481–492.

Dubin, M. W., & Cleland, B. G. (1977). Organization of
visual inputs to interneurons of lateral geniculate
nucleus of the cat. Journal of Neurophysiology, 40,
410–427.

Fiset, P., Paus, T., Daloze, T., Plourde, G., Meuret, P.,
Bonhomme, V., et al. (1999). Brain mechanisms of
propofol-induced loss of consciousness in humans:

Journal of Vision (2010) 10(10):22, 1–14 Babadi et al. 12

Baktash Babadi
151

Baktash Babadi


Baktash Babadi


http://www.ncbi.nlm.nih.gov/pubmed/18217815
http://www.journalofvision.org/content/7/14/20


A positron emission tomographic study. Journal of
Neuroscience, 19, 5506–5513.

Funke, K., & Eysel, U. T. (1998). Inverse correlation of
firing patterns of single topographically matched
perigeniculate neurons and cat dorsal lateral genicu-
late relay cells. Visual Neuroscience, 15, 711–729.

Hamos, J. E., van Horn, S. C., Raczkowski, D., &
Sherman, S. M. (1987). Synaptic circuits involving
an individual retinogeniculate axon in the cat. Journal
of Computerized Neurology, 259, 165–192.

Hochstein, S., & Shapley, R. M. (1976). Quantitative
analysis of retinal ganglion cell classifications. The
Journal of Physiology, 262, 237–264.

Hubel, D. H., & Wiesel, T. N. (1961). Integrative action in
the cat’s lateral geniculate body. The Journal of
Physiology, 155, 385–398.

Humphrey, A. L., & Weller, R. E. (1988). Structural
correlates of functionally distinct x-cells in the lateral
geniculate nucleus of the cat. Journal of Computer-
ized Neurology, 268, 448–468.

Kaplan, E., Purpura, K., & Shapley, R. M. (1987).
Contrast affects the transmission of visual information
through the mammalian lateral geniculate nucleus.
The Journal of Physiology, 391, 267–288.

Kaplan, E., & Shapley, R. (1984). The origin of the S
(slow) potential in the mammalian lateral geniculate
nucleus. Experimental Brain Research, 55, 111–116.

Mante, V., Bonin, V., & Carandini, M. (2008). Functional
mechanisms shaping lateral geniculate responses to
artificial and natural stimuli. Neuron, 58, 625–638.

Mayo, J. P. (2009). Intrathalamic mechanisms of
visual attention. Journal of Neurophysiology, 101,
1123–1125.

McAlonan, K., Cavanaugh, J., & Wurtz, R. H. (2008).
Guarding the gateway to cortex with attention in
visual thalamus. Nature, 456, 391–394.

Okatan, M., Wilson, M., & Brown, E. (2005). Analyzing
functional connectivity using a network likelihood
model of ensemble neural spiking activity. Neural
Computation, 17, 1927–1961.

Paninski, L. (2004). Maximum likelihood estimation of
cascade point-process neural encoding models.
Network, 15, 243–262.

Paninski, L., Pillow, J., & Lewi, J. (2007). Statistical
models for neural encoding, decoding, and optimal
stimulus design. Progressive Brain Research, 165,
493–507.

Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P.,
& Chichilnisky, E. J. (2005). Prediction and decod-
ing of retinal ganglion cell responses with a
probabilistic spiking model. Journal of Neuroscience,
25, 11003–11013.

Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M.,
Chichilnisky, E. J., et al. (2008). Spatio-temporal
correlations and visual signalling in a complete neuro-
nal population. Nature, 454, 995–999.

Rees, G. (2009). Visual attention: The thalamus at the
centre? Current Biology, 19, R213–R214.

Reid, R., Victor, J., & Shapley, R. (1997). The use of m-
sequences in the analysis of visual neurons: Linear
receptive field properties. Visual Neuroscience, 14,
1015–1027.

Reinagel, P., & Reid, R. C. (2000). Temporal coding of
visual information in the thalamus. Journal of Neuro-
science, 20, 5392–5400.

Sherman, S. M. (2005). Thalamic relays and cortical
functioning. Progressive Brain Research, 149,
107–126.

Sherman, S. M., & Friedlander, M. J. (1988). Identifica-
tion of x versus y properties for interneurons in the
a-laminae of the cat’s lateral geniculate nucleus.
Experimental Brain Research, 73, 384–392.

Sherman, S. M., & Guillery, R. W. (1998). On the actions
that one nerve cell can have on another: Distinguish-
ing “drivers” from “modulators”. Proceedings of
National Academy of Sciences of the United States
of America, 95, 7121–7126.

Sherman, S. M., & Guillery, R. W. (2002). The role of the
thalamus in the flow of information to the cortex.
Philosophical Transactions Royal Society of London B:
Biological Sciences, 357, 1695–1708.

Shutter, E. E. (1987). A practical nonstochastic approach
to nonlinear time-domain analysis. In V. Z. Marmarelis
(Ed.), Advanced methods of physiological systems
modeling (vol. 1, pp. 303–315). Los Angeles: University
of Southern California.

Sincich, L. C., Adams, D. L., Economides, J. R., &
Horton, J. C. (2007). Transmission of spike trains at
the retinogeniculate synapse. Journal of Neuro-
science, 27, 2683–2692.

Sincich, L. C., Horton, J. C., & Sharpee, T. O. (2009).
Preserving information in neural transmission. Jour-
nal of Neuroscience, 29, 6207–6216.

Snyder, D., & Miller, M. (1991). Random point processes
in time and space. New York: Springer-Verlag.

Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P.,
& Brown, E. N. (2005). A point process framework for
relating neural spiking activity to spiking history,
neural ensemble, and extrinsic covariate effects.
Journal of Neurophysiology, 93, 1074–1089.

Uglesich, R., Casti, A., Hayot, F., & Kaplan, E. (2009).
Stimulus size dependence of information transfer
from retina to thalamus. Frontiers in Systems Neuro-
science, 3, 10.

Journal of Vision (2010) 10(10):22, 1–14 Babadi et al. 13

Baktash Babadi


Baktash Babadi
152



Uhlrich, D. J., Cucchiaro, J. B., Humphrey, A. L., &
Sherman, S. M. (1991). Morphology and axonal
projection patterns of individual neurons in the cat
perigeniculate nucleus. Journal of Neurophysiology,
65, 1528–1541.

Usrey, W. M., Reppas, J. B., & Reid, C. (1999). Specificity
and strength of retinogeniculate connections. Journal
of Neurophysiology, 82, 3527–3540.

van Hateren, J. H. (1997). Processing of natural time
series of intensities by the visual system of the
blowfly. Vision Research, 37, 3407–3416.

Wang, S., Bickford, M. E., Horn, S. C. V., Erisir, A.,
Godwin, D. W., & Sherman, S. M. (2001). Synaptic

targets of thalamic reticular nucleus terminals in the
visual thalamus of the cat. Journal of Computerized
Neurology, 440, 321–341.

Wang, X., Wei, Y., Vaingankar, V., Wang, Q., Koepsell, K.,
Sommer, F. T., et al. (2007). Feedforward excitation
and inhibition evoke dual modes of firing in the cat’s
visual thalamus during naturalistic viewing. Neuron,
55, 465–478.

Weyand, T. G. (2007). Retinogeniculate transmission
in wakefulness. Journal of Neurophysiology, 98,
769–785.

Journal of Vision (2010) 10(10):22, 1–14 Babadi et al. 14

Baktash Babadi
153

Baktash Babadi


Baktash Babadi




 doi:10.1152/jn.01073.2009 104:3691-3704, 2010. First published 16 June 2010;J Neurophysiol
Baktash Babadi, Rafael Yuste and Liam Paninski
Joshua T. Vogelstein, Adam M. Packer, Timothy A. Machado, Tanya Sippy,
Inference From Population Calcium Imaging
Fast Nonnegative Deconvolution for Spike Train

You might find this additional info useful...

39 articles, 8 of which can be accessed free at:This article cites 
 http://jn.physiology.org/content/104/6/3691.full.html#ref-list-1

including high resolution figures, can be found at:Updated information and services 
 http://jn.physiology.org/content/104/6/3691.full.html

 can be found at:Journal of Neurophysiologyabout Additional material and information 
http://www.the-aps.org/publications/jn

This infomation is current as of May 31, 2011.
 

American Physiological Society. ISSN: 0022-3077, ESSN: 1522-1598. Visit our website at http://www.the-aps.org/.
(monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2010 by the 

 publishes original articles on the function of the nervous system. It is published 12 times a yearJournal of Neurophysiology

 on M
ay 31, 2011

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org/content/104/6/3691.full.html#ref-list-1
Baktash Babadi
154

Baktash Babadi


Baktash Babadi


Baktash Babadi


http://jn.physiology.org/content/104/6/3691.full.html
http://jn.physiology.org/


Innovative Methodology

Fast Nonnegative Deconvolution for Spike Train Inference From Population
Calcium Imaging

Joshua T. Vogelstein,1 Adam M. Packer,2,3 Timothy A. Machado,2,3 Tanya Sippy,2,3 Baktash Babadi,4

Rafael Yuste,2,3 and Liam Paninski4,5

1Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland; 2Howard Hughes Medical Institute, Chevy Chase, Maryland;
3Department of Biological Sciences, 4Center for Theoretical Neuroscience, and 5Department of Statistics, Columbia University, New York, New York

Submitted 9 December 2009; accepted in final form 3 June 2010

Vogelstein JT, Packer AM, Machado TA, Sippy T, Babadi B, Yuste
R, Paninski L. Fast nonnegative deconvolution for spike train inference
from population calcium imaging. J Neurophysiol 104: 3691–3704, 2010.
First published June 16, 2010; doi:10.1152/jn.01073.2009. Fluorescent
calcium indicators are becoming increasingly popular as a means
for observing the spiking activity of large neuronal populations.
Unfortunately, extracting the spike train of each neuron from a raw
fluorescence movie is a nontrivial problem. This work presents a
fast nonnegative deconvolution filter to infer the approximately
most likely spike train of each neuron, given the fluorescence
observations. This algorithm outperforms optimal linear deconvo-
lution (Wiener filtering) on both simulated and biological data. The
performance gains come from restricting the inferred spike trains
to be positive (using an interior-point method), unlike the Wiener
filter. The algorithm runs in linear time, and is fast enough that
even when simultaneously imaging 100 neurons, inference can
be performed on the set of all observed traces faster than real time.
Performing optimal spatial filtering on the images further refines
the inferred spike train estimates. Importantly, all the parameters
required to perform the inference can be estimated using only the
fluorescence data, obviating the need to perform joint electrophys-
iological and imaging calibration experiments.

I N T R O D U C T I O N

Simultaneously imaging large populations of neurons using
calcium sensors is becoming increasingly popular (Yuste and
Katz 1991; Yuste and Konnerth 2005), both in vitro (Ikegaya et al.
2004; Smetters et al. 1999) and in vivo (Göbel and Helmchen
2007; Luo et al. 2008; Nagayama et al. 2007), and will likely
continue to improve as the signal-to-noise ratio (SNR) of genetic
sensors continues to improve (Garaschuk et al. 2007; Mank et al.
2008; Wallace et al. 2008). Whereas the data from these experi-
ments are movies of time-varying fluorescence intensities, the
desired signal consists of spike trains of the observable neurons.
Unfortunately, finding the most likely spike train is a challenging
computational task, due to limitations on the SNR and temporal
resolution, unknown parameters, and analytical intractability.

A number of groups have therefore proposed algorithms to
infer spike trains from calcium fluorescence data using very
different approaches. Early approaches simply thresholded dF/F
[typically defined as (F Fb)/Fb, where Fb is baseline fluores-
cence; e.g., Mao et al. 2001; Schwartz et al. 1998] to obtain “event
onset times.” More recently, Greenberg et al. (2008) developed a
dynamic programming algorithm to identify individual spikes.
Holekamp et al. (2008) then applied an optimal linear deconvo-

lution (i.e., the Wiener filter) to the fluorescence data. This
approach is natural from a signal processing standpoint, but
does not realize the knowledge that spikes are always
positive. Sasaki et al. (2008) proposed using machine learn-
ing techniques to build a nonlinear supervised classifier,
requiring many hundreds of examples of joint electrophys-
iological and imaging data to “train” the algorithm to learn
what effect spikes have on fluorescence. Vogelstein and
colleagues (2009) proposed a biophysical model-based se-
quential Monte Carlo (SMC) method to efficiently estimate
the probability of a spike in each image frame, given the
entire fluorescence time series. Although effective, that
approach is not suitable for on-line analyses of populations
of neurons because the computations run in about real time
per neuron (i.e., analyzing 1 min of data requires about 1
min of computational time on a standard laptop computer).

In the present work, a simple model is proposed relating
spiking activity to fluorescence traces. Unfortunately, inferring
the most likely spike train, given this model, is computationally
intractable. Making some reasonable approximations leads to
an algorithm that infers the approximately most likely spike
train, given the fluorescence data. This algorithm has a few
particularly noteworthy features, relative to other approaches.
First, spikes are assumed to be positive. This assumption often
improves filtering results when the underlying signal has this
property (Cunningham et al. 2008; Huys et al. 2006; Lee and
Seung 1999; Lin et al. 2004; Markham and Conchello 1999;
O’Grady and Pearlmutter 2006; Paninski et al. 2009; Portugal
et al. 1994). Second, the algorithm is fast: it can process a
calcium trace from 50,000 images in about 1 s on a standard
laptop computer. In fact, filtering the signals for an entire
population of 100 neurons runs faster than real time. This
speed facilitates using this filter on-line, as observations are
being collected. In addition to these two features, the model
may be generalized in a number of ways, including incorporating
spatial filtering of the raw movie, which can improve effective
SNR. The utility of the proposed filter is demonstrated on several
biological data sets, suggesting that this algorithm is a powerful
and robust tool for on-line spike train inference. The code (which
is a simple Matlab script) is available for free download from
http://www.optophysiology.org.

M E T H O D S

Data-driven generative model

Figure 1 shows data from a typical in vitro epifluorescence
experiment (for data collection details see Experimental methods
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later in this section). The top panel shows the mean frame of this
movie, including four neurons, three of which are patched. To
build the model, the pixels within a region of interest (ROI) are
selected (white circle). Given the ROI, all the pixel intensities of
each frame can be averaged, to get a one-dimensional fluorescence
time series, as shown in the bottom left panel (black line). By
patching onto this neuron, the spike train can also be directly
observed (black bars; bottom left). Previous work suggests that this
fluorescence signal might be well characterized by convolving the
spike train with an exponential and adding noise (Yuste and
Konnerth 2005). This model is confirmed by convolving the true
spike train with an exponential (gray line; bottom left) and then
looking at the distribution of the residuals. The bottom right panel
shows a histogram of the residuals (dashed line) and the best-fit
Gaussian distribution (solid line).
The preceding observations may be formalized as follows. Assume

there is a one-dimensional fluorescence trace F from a neuron
[throughout this text X indicates the vector (X1, . . . , XT), where T is
the index of the final frame]. At time t, the fluorescence measurement
Ft is a linear-Gaussian function of the intracellular calcium concen-
tration at that time [Ca2 ]t:

Ft [Ca2 ]t t, t
iid (0, 2). (1)

The parameter absorbs all experimental variables influencing the
scale of the signal, including the number of sensors within the cell,
photons per calcium ion, amplification of the imaging system, and so
on. Similarly, the offset absorbs, for example, the baseline calcium
concentration of the cell, background fluorescence of the fluorophore,
and imaging system offset. The noise at each time t is independently
and identically distributed according to a normal distribution with zero
mean and 2 variance, as indicated by the notation iid (0, 1). This noise
results from calcium fluctuations independent of spiking activity,
fluorescence fluctuations independent of calcium, and other sources of
imaging noise.
Then, assuming that the intracellular calcium concentration [Ca2 ]t

jumps by A M after each spike and subsequently decays back down
to baseline Cb M, with time constant s, one can write:

[Ca2 ]t 1 (1 ⁄ )[Ca2 ]t ( ⁄ )Cb Ant (2)

where is the time step size—which is the frame duration, or
1/(frame rate)—and nt indicates the number of times the neuron
spiked in frame t. Note that because [Ca2 ]t and Ft are linearly related
to one another, the fluorescence scale and calcium scale A are not
identifiable. In other words, either can be set to unity without loss of
generality because the other can absorb the scale entirely. Similarly,
the fluorescence offset and calcium baseline Cb are not identifiable,
so either can be set to zero without loss of generality. Finally, letting

(1 / ), Eq. 2 can be rewritten by replacing [Ca2 ]t with its
nondimensionalized counterpart Ct:

Ct Ct 1 nt . (3)

Note that Ct does not refer to absolute intracellular concentration of
calcium, but rather, a relative measure (for a more general model see
Vogelstein et al. 2009). The gray line in the bottom left panel of Fig.
1 corresponds to the putative C of the observed neuron.
To complete the “generative model” (i.e., a model from which

simulations can be generated), the distribution from which spikes are
sampled must be defined. Perhaps the simplest first-order description
of spike trains is that at each time, spikes are sampled according to a
Poisson distribution with some rate:

nt
iidPoisson ( ) (4)

where is the expected firing rate per bin and is included to
ensure that the expected firing rate is independent of the frame rate.
Thus Eqs. 1, 3, and 4 complete the generative model.

Goal

Given the above model, the goal is to find the maximum a posteriori
(MAP) spike train, i.e., the most likely spike train n̂, given the
fluorescence measurements, F:

n̂ argmax
nt!!0∀t

P[n F], (5)

where P[n|F] is the posterior probability of a spike train n, given the
fluorescent trace F, and nt is constrained to be an integer !0 {0, 1,

mean frame

3 6 9 12 15
time (sec)

F

n

−0.4 −0.2 0 0.2
0
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FIG. 1. Typical in vitro data suggest that a reasonable
first-order model may be constructed by convolving the spike
train with an exponential and adding Gaussian noise. Top panel:
the average (over frames) of a field of view. Bottom left: true
spike train recorded via a patch electrode (black bars), con-
volved with an exponential (gray line), superimposed on the
Oregon Green BAPTA 1 (OGB-1) fluorescence trace (black
line). Whereas the spike train and fluorescence trace are mea-
sured data, the calcium is not directly measured, but rather,
inferred. Bottom right: a histogram of the residual error between
the gray and black lines from the bottom left panel (dashed line)
and the best-fit Gaussian (solid line). Note that the Gaussian
model provides a good fit for the residuals here.
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2, . . . } because of the above assumed Poisson distribution. From
Bayes’ rule, the posterior can be rewritten:

P[n F]
P[n, F]

P[F]

1

P[F]
P[F n]P[n], (6)

where P[F] is the evidence of the data, P[F|n] is the likelihood of
observing a particular fluorescence trace F, given the spike train n,
and P[n] is the prior probability of a spike train. Plugging the far
right-hand side of Eq. 6 into Eq. 5, yields:

n̂ argmax
nt!!0∀t

1

P[F]
P[F n]P[n] argmax

nt!!0∀t
P[F n]P[n], (7)

where the second equality follows because P[F] merely scales the
results, but does not change the relative quality of any particular spike
train. Note that the prior P[n] acts as a regularizing term, potentially
imposing sparseness or smoothness, depending on the assumed dis-
tribution (Seeger 2008; Wu et al. 2006). Both P[F|n] and P[n] are
available from the preceding model:

P[F n] P[F C]
t 1

T

P[Ft Ct], (8a)

P[n]
t 1

T

P[nt], (8b)

where the first equality in Eq. 8a follows because C is deterministic
given n, and the second equality follows from Eq. 1. Further, Eq. 8b
follows from the Poisson process assumption, Eq. 4. Both P[Ft|Ct] and
P[nt] can be written explicitly:

P[Ft Ct] ( Ct , 2), (9a)

P[nt] Poisson ( ), (9b)

where both equations follow from the preceding model and the
Poisson distribution acts as a sparse prior. Now, plugging Eq. 9 back
into Eq. 8, and plugging that result into Eq. 7, yields:

n̂ argmax
nt!!0∀t t 1

T 1

2 2

exp
1

2

(Ft Ct )2

2

exp ( )nt

nt ! (10a)

argmax
nt!!0∀t t 1

T 1

2 2(Ft Ct )2 nt ln ln nt ! ,

(10b)

where the second equality follows from taking the logarithm of the
right-hand side and dropping terms that do not depend on n.
Unfortunately, solving Eq. 10b exactly is analytically intractable
because it requires a nonlinear search over an infinite number of
possible spike trains. The search space could be restricted by
imposing an upper bound k on the number of spikes within a frame.
However, in that case, the computational complexity scales expo-
nentially with the number of image frames—i.e., the number of
computations required would scale with kT—which for pragmatic
reasons is intractable.

Inferring the approximately most likely spike train, given a
fluorescence trace

The goal here is to develop an algorithm to efficiently approx-
imate n̂, the most likely spike train given the fluorescence trace.
Because of the intractability described earlier, one can approximate
Eq. 4 by replacing the Poisson distribution with an exponential
distribution of the same mean (note that potentially more accurate
approximations are possible, as described in the DISCUSSION). Mod-
ifying Eq. 10 to incorporate this approximation yields:

n̂ argmax
nt 0∀t t 1

T 1

2 2

exp
1

2

(Ft Ct )2

2 ( )exp nt
(11a)

argmax
nt 0∀t t 1

T 1

2 2(Ft Ct )2 nt (11b)

where the second equality follows from taking the log of the right-
hand side (logarithm is a monotone function and therefore does not
change the relative likelihood of particular spike trains) and dropping
terms constant in nt. Note that the constraint on nt has been relaxed
from nt ! !0 to nt 0 (since the exponential distribution can yield
any nonnegative number). The exponential prior, much like the
Poisson prior, imposes a sparsening effect, by penalizing the objective
function for large values of nt. Further, the exponential approximation
makes the optimization problem concave in C, meaning that any
gradient ascent method guarantees achieving the global maximum
(because there are no local maxima, other than the single global
maximum). To see that Eq. 11b is concave in C, rearrange Eq. 3 to
obtain nt Ct Ct 1, so Eq. 11b can be rewritten:

Ĉ argmax
Ct Ct 1 0∀t t 1

T 1

2 2(Ft Ct )2 (Ct Ct 1)

(12)

which is a sum of terms that are concave in C, so the whole right-hand
side is concave in C. Unfortunately, the integer constraint has been
lost, i.e., the answer could include “partial” spikes. This disadvantage
can be remedied by thresholding (i.e., setting nt 1 for all nt greater
than some threshold and the rest setting to zero) or by considering the
magnitude of a partial spike at time t as a rough indication of the
probability of a spike occurring during frame t. Note the relaxation of
a difficult discrete optimization problem into an easier continuous
problem is a common approximation technique in the machine learn-
ing literature (Boyd and Vandenberghe 2004; Paninski et al. 2009). In
particular, the exponential distribution is a convenient nonnegative
log-concave approximation of the Poisson (see the DISCUSSION for
more details).

Although this convex relaxation makes the problem tractable, the
“sharp” threshold imposed by the nonnegativity constraint prohibits
the use of standard gradient ascent techniques. This may be rectified
by using an “interior-point” method (Boyd and Vandenberghe 2004).
Interior-point methods solve nondifferentiable problems indirectly by
instead solving a series of differentiable subproblems that converge to
the solution of the original nondifferentiable problem. In particular,
each subproblem within the series drops the sharp threshold and adds
a weighted barrier term that approaches as nt approaches zero.
Iteratively reducing the weight of the barrier term guarantees conver-
gence to the correct solution. Thus the goal is to efficiently solve:

Ĉz argmax
C t 1

T 1

2 2(Ft Ct )2

(Ct Ct 1) z ln (Ct Ct 1) , (13)

where ln (·) is the “barrier term” and z is the weight of the barrier term
(note that the constraint has been dropped). Iteratively solving for Ĉz
for z going down to nearly zero guarantees convergence to Ĉ (Boyd and
Vendenberghe 2004). The concavity of Eq. 13 facilitates using any
number of techniques guaranteed to find the global maximum. Be-
cause the argument of Eq. 13 is twice analytically differentiable, one
can use the Newton–Raphson technique (Press et al. 1992). The
special tridiagonal structure of the Hessian enables each Newton–
Raphson step to be very efficient (as described below). To proceed,
Eq. 13 is first rewritten in more compact matrix notation. Note that:
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MC !
1 0 0 · · · 0

0 1 0 · · · 0

É Ì Ì Ì Ì É
0 · · · 0 1 0

0 · · · 0 0 1
"!

C1

C2

É
CT 1

CT

" !
n1

n2

É
nT 1

" ,

(14)

where M ! !(T 1) T is a bidiagonal matrix. Then, letting 1 be a (T
1)-dimensional column vector, " a T-dimensional column vector of
values, and # 1 yields the objective function (Eq. 13) in more
compact matrix notation (note that throughout we will use the sub-
script J to indicate element-wise operations):

Ĉz argmax
MC "0

1

2 2 # F $C "#2
2 (MC)T# z ln" (MC)T1 ,

(15)

where MC J0 indicates an element-wise greater than or equal to
zero, lnJ(·) indicates an element-wise logarithm, and !x!2 is the
standard L2 norm, i.e., !x!2

2
i xi

2. When using Newton–Raphson to
ascend a surface, one iteratively computes both the gradient g (first
derivative) and Hessian H (second derivative) of the argument to be
maximized, with respect to the variables of interest (C here). Then, the
estimate is updated using Cz ¢ Cz sd, where s is the step size and
d is the step direction obtained by solving Hd g. The gradient and
Hessian for this model, with respect to C, are given by:

g 2 (F C ") MT# zMT(MC)"
1 (16a)

H
2

2I zMT(MC)"
2M (16b)

where the exponents on the vector MC indicate element-wise opera-
tions. The step size s is found using “backtracking linesearches,”
which finds the maximal s that increases the posterior and is between
0 and 1 (Press et al. 1992).

Standard implementations of the Newton–Raphson algorithm re-
quire inverting the Hessian, i.e., solving d H 1g, a computation that
scales cubically with T (requires on the order of T3 operations).
Already, this would be a drastic improvement over the most efficient
algorithm assuming Poisson spikes, which would require kT opera-
tions (where k is the maximum number of spikes per frame). Here,
because M is bidiagonal, the Hessian is tridiagonal, so the solution
may be found in about T operations, via standard banded Gaussian
elimination techniques (which can be implemented efficiently in
Matlab using H\g, assuming H is represented as a sparse matrix)
(Paninski et al. 2009). In other words, the above approximation and
inference algorithm reduces computations from exponential to linear
time. APPENDIX A contains pseudocode for this algorithm, including
learning the parameters, as described in the next section. Note that
once Ĉ is obtained, it is a simple linear transformation to obtain n̂, the
approximate MAP spike train.

Learning the parameters

In practice, the model parameters % { , , , , } tend to be
unknown. An algorithm to estimate the most likely parameters %̂ could
proceed as follows: 1) initialize some estimate of the parameters %̂,
then 2) recursively compute n̂ using those parameters and update %̂
given the new n̂ until some convergence criterion is met. This
approach may be thought of as a pseudoexpectation-maximization
algorithm (Dempster et al. 1977; Vogelstein et al. 2009). In the
following text, details are provided for each step.

INITIALIZING THE PARAMETERS. Because the model introduced ear-
lier is linear, the scale of F relative to n is arbitrary. Therefore before

filtering, F is linearly mapped between zero and one, i.e., F ¢ (F
Fmin)/(Fmax Fmin), where Fmin and Fmax are the observed minimum
and maximum of F, respectively. Given this normalization, is set to
one. Because spiking is sparse in many experimental settings, F tends
to be around baseline, so is initialized to be the median of F and
is initialized as the median absolute deviation of F, i.e.,
mediant (|Ft medians (Fs)|)/K, where mediani (Xi) indicates the
median of X with respect to index i and K 1.4785 is the correction
factor when using the median absolute deviation as a robust estimator
of the SD of a normal distribution. Because in these data the posterior
tends to be relatively flat along the dimension (i.e., large changes in

result in relatively small changes in the posterior), estimating is
difficult. Further, previous work has shown that results are somewhat
robust to minor variations in the time constant (Yaksi and Friedrich
2006); therefore is initialized at 1 /(1 s), which is fairly standard
(Pologruto et al. 2004). Finally, is initialized at 1 Hz, which is
between average baseline and evoked spike rate for data of interest.

ESTIMATING THE PARAMETERS GIVEN n̂. Ideally, one could integrate
out the hidden variables, to find the most likely parameters:

%̂ argmax
%

$ P[F, C %]dC argmax
%

$ P[F C;%]P[C %]dC .

(17)

However, evaluating those integrals is not currently tractable. There-
fore Eq. 17 is approximated by simply maximizing the parameters
given the MAP estimate of the hidden variables:

%̂ % argmax
%

P[F, Ĉ %] argmax
%

P[F Ĉ;%]P[n̂ %]

argmax
%

ln P[F Ĉ;%] ln P[n̂ %], (18)

where Ĉ and n̂ are determined using the above-described inference
algorithm. The approximation in Eq. 18 is good whenever most of the
mass in the integral in Eq. 18 is around the MAP sequence Ĉ.1 The
argument from the right-hand side of Eq. 18 may be expanded:

ln P[F Ĉ;%] ln P[n̂ %] &
t 1

T

ln P[Ft Ĉt; , , ] &
t 1

T

ln P[n̂t ].

(19)

Note that the right-hand side of Eq. 19 decouples from the other
parameters. The maximum likelihood estimate (MLE) for the obser-
vation parameters { , , } is therefore given by:

'ˆ, ˆ, ˆ( argmax
, , 0

&
t 1

T

ln P[Ft Ĉt; , ]

argmax
, , 0

1

2
(2 2)

1

2 )Ft Ĉt *2

. (20)

Note that a rescaling of may be offset by a complementary rescaling
of Ĉ. Therefore because the scale of Ĉ is arbitrary (see Eqs. 2 and 3),

can be set to one without loss of generality. Plugging 1 into Eq.
20 and maximizing with respect to yields:

ˆ argmax
0

&
t 1

T

(Ft Ĉt )2. (21)

Computing the gradient with respect to , setting the answer to zero,
and solving for ˆ yields ˆ (1/T) +t (Ft Ĉt). Similarly, computing
the gradient of Eq. 20 with respect to , setting it to zero, and solving
for ˆ yields:

1 Equation 18 may be considered a crude Laplace approximation (Kass and
Raftery 1995).
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!̂ "!1

T"
t

(Ft # Ĉt # $̂)2, (22)

which is simply the root-mean-square of the residual error. Finally,
the MLE of %̂ is given by solving:

%̂ " argmax
% & 0

"
t

[ln (%') # n̂t%'], (23)

which, again, computing the gradient with respect to %, setting it to
zero, and solving for %̂, yields %̂ T/( #t n̂t), which is the inverse of
the inferred average firing rate.

Iterations stop whenever 1) the iteration number exceeds some
upper bound or 2) the relative change in likelihood does not exceed
some lower bound. In practice, parameter estimates tend to con-
verge after several iterations, given the above initializations.

Spatial filtering

In the preceding text, we assumed that the raw movie of fluo-
rescence measurements collected by the experimenter had under-
gone two stages of preprocessing before filtering. First, the movie
was segmented, to determine ROIs, yielding a vector !Ft
(F1,t, . . . , FNp,t

), which corresponded to the fluorescence intensity
at time t for each of the Np pixels in the ROI (note that we use the
!X throughout to indicate row vectors in space vs. X to indicate
column vectors in time). Second, at each time t, that vector was
projected into a scalar, yielding Ft, the assumed input to the filter.
In this section, the optimal projection is determined by considering
a more general model:

Fx,t " (xCt ) $x ) !*x,t, *x,t$
iid

(0, 1), (24)

where (x corresponds to the number of photons that are contributed
due to calcium fluctuations Ct, and $x corresponds to the static photon
emission at pixel x. Further, the noise is assumed to be both spatially
and temporally white, with standard deviation (SD) !, in each pixel
(this assumption can always be approximately accurate by prewhit-
ening; alternately, one could relax the spatial independence by repre-
senting joint noise over all pixels with a covariance matrix t, with
arbitrary structure). Performing inference in this more general model
proceeds in a nearly identical manner as before. In particular, the
maximization, gradient, and Hessian become:

Ĉz " argmax
MC + !0

#
1

2!2 % F
!

# C(! # 1T$
!%F

2 # (MC)T! ) z ln! (MC)T1

(25)

g " (F
!

# C(! # 1T$
!

)T
(!T

!2 # MT% ) zMT(MC)!
#1 (26)

H " #
(!(!T

!2 I # zMT(MC)!
#2M , (27)

where "F is an Np T element matrix, 1T is a column vector of ones
with length T, I is an Np Np identity matrix, and !x!F indicates the
Frobenius norm, i.e., !x!F

2 #i,j xi,j
2 , and the exponents and log

operator on the vector MC again indicate element-wise operations.
Note that to speed up computation, one can first project the back-
ground subtracted (Nc T)-dimensional movie onto the spatial filter
(! , yielding a one-dimensional time series F, reducing the problem to
evaluating a T 1 vector norm, as in Eq. 15.

The parameters (! and !$ tend to be unknown and thus must be
estimated from the data. Following the strategy developed in the
previous section, we first initialize the parameters. Because each voxel
contains some number of fluorophores, which sets both the baseline
fluorescence and the fluorescence due to calcium fluctuations, let both

the initial spatial filter and initial background be the median image
frame, i.e., (̂x $̂x mediant (Fx,t). Given these robust initial-
izations, the maximum likelihood estimator for each (x and $x is
given by:

&(̂x, $̂x' " argmax
(x,$x

P[Fx,Ĉ] (28a)

" argmax
(x,$x

"
t

lnP[Fx,t,Ĉt] (28b)

" argmax
(x,$x

"
t
(#

1

2
ln (2-!2) #

1

2!2 (Fx,t # (xĈt # $x)
2)

(28c)

" argmax
(x,$x

# "
t

(Fx,t # (xĈt # $x)
2, (28d)

where the first equalities follow from Eq. 1 and the last equality
follows from dropping irrelevant constants. Because this is a standard
linear regression problem, let A [Ĉ, 1T]T be a 2 T element matrix
and Yx [(x, $x]

T be a 2 1 element column vector. Substituting A
and Yx into Eq. 28d yields:

Ŷx " argmax
Yx

# % Fx # ATYx%2
2, (29)

which can be solved by computing the derivative of Eq. 29 with
respect to Yx and setting to zero, or using Matlab notation: Ŷx

A\Fx. Note that solving Np two-dimensional quadratic problems is
more efficient than solving a single (2 Np)-dimensional qua-
dratic problem. Also note that this approach does not regularize the
parameters at all, by smoothing or sparsening, for instance. In the
DISCUSSION we propose several avenues for further development,
including the elastic net (Zou and Hastie 2005) and simple para-
metric models of the neuron. As in the scalar Ft case, we iterate
estimating the parameters of this model " {(! , !$, !, ., %} and the
spike train n. Because of the free scale term discussed earlier, the
absolute magnitude of (! is not identifiable. Thus convergence is
defined here by the “shape” of the spike train converging, i.e., the
norm of the difference between the inferred spike trains from
subsequent iterations, both normalized such that max(n̂t) 1. In
practice, this procedure converged after several iterations.

Overlapping spatial filters

It is not always possible to segment the movie into pixels contain-
ing only fluorescence from a single neuron. Therefore the above-cited
model can be generalized to incorporate multiple neurons within an
ROI. Specifically, letting the superscript i index the Nc neurons in this
ROI yields:

F
!

t " "
i"1

Nc

(!iCi
i ) $

!
) *!t, *!t$

iid
(0, !2I) (30)

Ct
i " .iCt#1

i ) nt
i, nt

i$iidPoisson*nt
i;%i'+ (31)

where each neuron is implicitly assumed to be independent and each
pixel is conditionally independent and identically distributed with
variance !2, given the underlying calcium signals. To perform infer-
ence in this more general model, let nt [nt

1, . . . , nt
Nc] and Ct

[Ct
1, . . . , Ct

Nc] be Nc-dimensional column vectors. Then, let
diag (.1, . . . , .Nc) be an Nc Nc diagonal matrix and let I and 0
be an identity and zero matrix of the same size, respectively, yield-
ing:
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MC !
I 0 0 · · · 0

0 I 0 · · · 0

É Ì Ì Ì Ì É
0 · · · 0 I 0

0 · · · 0 0 I
"!

C1

C2

É
CT 1

CT

" !
n1

n2

É
nT 1

"
(32)

and proceed as before. Note that Eq. 32 is very similar to Eq. 14,
except that M is no longer bidiagonal, but rather, block bidiagonal
(and Ct and nt are vectors instead of scalars), making the Hessian
block-tridiagonal. Importantly, the Thomas algorithm, which is a
simplified form of Gaussian elimination, finds the solution to lin-
ear equations with block-tridiagonal matrices in linear time, so the
efficiency gained from using the tridiagonal structure is maintained
for this block-tridiagonal structure (Press et al. 1992). Performing
inference in this more general model proceeds similarly as before,
letting !! [ " 1, . . . , " Nc]:

Ĉz argmax
MC !0

1

2 2
# F

!
C!! 1T

!#F
2 (MC)T" z ln! (MC)T1 ,

(33)

g (F
!

C!! 1T
!

)T
!!T

2 MT zMT(MC)!
1 (34)

H
!!!!T

2 I zMT(MC)!
2M . (35)

If the parameters are unknown, they must be estimated. Initialize " as
above. Then, define !x [ x

1, . . . , x
Nc]T and initialize manually by

assigning some pixels to each neuron (of course, more sophisticated
algorithms could be used, as described in the DISCUSSION). Given this
initialization, iterations and stopping criteria proceed as before, with
the minor modification of incorporating multiple spatial filters, yield-
ing:

$ˆx, ˆx% argmax
x, x

1

2&
t

(Fx,t &
i 1

Nc

x
i Ĉt

i
x)

2, (36)

Now, generalizing the above single spatial filter case, let A [Ĉ, 1T]T

be an (Nc 1) T element matrix and Yx [!x, x]
T be an (Nc

1)-dimensional column vector. Then, one can again use Eq. 29 to
solve to for !̂x and ˆ

x for all x.

Experimental methods

SLICE PREPARATION AND IMAGING. All animal handling and exper-
imentation were done according to the National Institutes of Health
and local Institutional Animal Care and Use Committee guidelines.
Somatosensory thalamocortical or coronal slices 350–400 m thick
were prepared from C57BL/6 mice at age P14 as described (MacLean
et al. 2005). Pyramidal neurons from layer V somatosensory cortex
were filled with 50 M Oregon Green BAPTA 1 hexapotassium salt
(OGB-1; Invitrogen, Carlsbad, CA) through the recording pipette or
bulk loaded with an acetoxymethyl ester of Fura-2 (Fura-2 AM;
Invitrogen). The pipette solution contained 130 mM K-methylsulfate,
2 mM MgCl2, 0.6 mM EGTA, 10 mM HEPES, 4 mM ATP-Mg, and
0.3 mM GTP-Tris (pH 7.2, 295 mOsm). After cells were fully loaded
with dye, imaging was performed in one of two ways. First, when
using Fura-2, images were collected using a modified BX50-WI
upright microscope (Olympus, Melville, NY) with a confocal spin-
ning disk (Solamere Technology Group, Salt Lake City, UT) and an
Orca charge-coupled device (CCD) camera from Hamamatsu Photon-
ics (Shizuoka, Japan), at 33 Hz. Second, when using Oregon Green,
images were collected using epifluorescence with the C9100-12 CCD
camera from Hamamatsu Photonics, with arc-lamp illumination with

excitation and emission band-pass filters at 480–500 and 510–550
nm, respectively (Chroma, Rockingham, VT). Images were saved and
analyzed using custom software written in Matlab (The MathWorks,
Natick, MA).

ELECTROPHYSIOLOGY. All recordings were made using the Multi-
clamp 700B amplifier (Molecular Devices, Sunnyvale, CA), digitized
with National Instruments 6259 multichannel cards and recorded
using custom software written using the LabVIEW platform (National
Instruments, Austin, TX). Square pulses of sufficient amplitude to
yield the desired number of action potentials were given as current
commands to the amplifier using the LabVIEW and National Instru-
ments system.

FLUORESCENCE PREPROCESSING. Traces were extracted using cus-
tom Matlab scripts to segment the mean image into ROIs. The Fura-2
fluorescence traces were inverted. Because some slow drift was
sometimes present in the traces, each trace was Fourier transformed,
and all frequencies 0.5 Hz were set to zero (0.5 Hz was chosen by
eye); the resulting fluorescence trace was then normalized to be
between zero and one.

R E S U L T S

Main result

The main result of this study is that the fast filter can find the
approximately most likely spike train n̂, very efficiently, and
that this approach yields more accurate spike train estimates than
optimal linear deconvolution. Figure 2 depicts a simulation
showing this result. Clearly, the fast filter’s inferred “spike
train” (third panel) more closely resembles the true spike train
(second panel) than the optimal linear deconvolution’s inferred
spike train (bottom panel; Wiener filter). Note that neither filter
results in an integer sequence, but rather, each infers a real
number at each time.
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FIG. 2. A simulation showing that the fast filter’s inferred spike train is
significantly more accurate than the output of the optimal linear deconvolution
(Wiener filter). Note that neither filter constrains the inference to be a sequence
of integers; rather, the fast filter relaxes the constraint to allow all nonnegative
numbers and the Wiener filter allows for all real numbers. The restriction of the fast
filter to exclude negative numbers eliminates the ringing effect seen in the
Wiener filter output, resulting in a much cleaner inference. Note that the magni-
tude of the inferred spikes in the fast filter output is proportional to the inferred
calcium jump size. Top panel: fluorescence trace. Second panel: spike train. Third
panel: fast filter inference. Bottom panel: Wiener filter inference. Note that the
gray bars in the bottom panel indicate negative spikes. Gray symbols indicate
true spike times. Simulation details: T 400 time steps, 33.3 ms, 1,
0, 0.2, 1 s, 1 Hz. Parameters and conventions are consistent across
figures, unless indicated otherwise.
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The Wiener filter implicitly approximates the Poisson spike
rate with a Gaussian spike rate (see APPENDIX B for details). A
Poisson spike rate indicates that in each frame, the number of
possible spikes is an integer, e.g., 0, 1, 2, . . . . The Gaussian
approximation, however, allows any real number of spikes in
each frame, including both partial spikes (e.g., 1.4) and nega-
tive spikes (e.g., 0.8). Although a Gaussian well approxi-
mates a Poisson distribution when rates are about 10 spikes per
frame, this example is very far from that regime, so the
Gaussian approximation performs relatively poorly. Further,
the Wiener filter exhibits a “ringing” effect. Whenever fluo-
rescence drops rapidly, the most likely underlying spiking
signal is a proportional drop. Because the Wiener filter does not
impose a nonnegative constraint on the underlying spiking signal,
it infers such a drop, even when it causes nt to go below zero.
After such a drop has been inferred, since no corresponding drop
occurred in the true underlying signal here, a complementary
jump is often then inferred, to realign the inferred signal with the
observations. This oscillatory behavior results in poor inference
quality. The nonnegative constraint imposed by the fast filter
prevents this because the underlying signal never drops below
zero, so the complementary jump never occurs either.

The inferred “spikes,” however, are still not binary events
when using the fast filter. This is a by-product of approximat-
ing the Poisson distribution on spikes with an exponential (cf.
Eq. 11a) because the exponential is a continuous distribution,

versus the Poisson, which is discrete. The height of each spike
is therefore proportional to the inferred calcium jump size and
can be thought of as a proxy for the confidence with which the
algorithm believes a spike occurred. Importantly, by using the
Gaussian elimination and interior-point methods, as described
in METHODS, the computational complexity of the fast filter is
the same as an efficient implementation of the Wiener filter.
Note that whereas the Gaussian approximation imposes a
shrinkage prior on the inferred spike trains (Wu et al. 2006),
the exponential approximation imposes a sparse prior on the
inferred spike trains (Seeger 2008).

Figure 3 quantifies the relative performance of the fast and
Wiener filters. The top left panel shows a typical simulated
spike train (bottom), a corresponding relatively low SNR
fluorescence trace (middle), and a relatively high SNR fluores-
cence trace (top), as examples. The top right panel compares
the mean-squared-error (MSE) of the inferred spike trains
using the fast (solid) and Wiener (dashed) filters, as a function
of expected firing rate. Clearly, the fast filter has a better
(lower) MSE for all rates. The bottom left panel shows a
receiver-operator-characteristic (ROC) curve (Green and Swets
1966) for another simulation. Again, the fast filter dominates
the Wiener filter, having a higher true positive rate for every
false negative rate. Finally, the bottom right panel shows that
the area under the curve (AUC) of the fast filter is better
(higher) than that of the Wiener filter until the noise is very
large. Collectively, these analyses suggest that for a wide range
of firing rates and signal quality, the fast filter outperforms the
Wiener filter.

Although in Fig. 2 the model parameters were provided, in
the general case, the parameters are unknown and must there-
fore be estimated from the observations (as described in Learn-
ing the parameters in METHODS). Importantly, this algorithm
does not require labeled training data, i.e., there is no need for
joint imaging and electrophysiological experiments to estimate
the parameters governing the relationship between the two.
Figure 4 shows another simulated example; in this example,
however, the parameters are estimated from the observed
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FIG. 3. In simulations, the fast filter quantitatively and significantly
achieves higher accuracy than that of the Wiener filter. Top left: a spike train
(bottom) and 2 simulated fluorescence traces, using the same spike train, one
with low signal-to-noise ratio (SNR) (middle) and one with high SNR (top).
Simulation parameters: ! 0.5 s, " 3 Hz, 1/30 s, # 0.6 (low SNR)
and 0.1 (high SNR). Simulation parameters in other panels are the same, except
where explicitly noted. Top right: mean-squared-error (MSE) for the fast (solid
line) and Wiener (dashed-dotted line) filter, for varying the expected firing rate
". Note that both axes are on a log-scale. Further note that the fast filter has a
better (lower) MSE for all expected firing rates. Error bars show SD over 10
repeats. Simulation parameters: # 0.2, T 1,000 time steps. Bottom left:
receiver-operator-characteristic (ROC) curve comparing the fast (solid line)
and Wiener (dashed-dotted line) filter. Note that for any given threshold, the
Wiener filter has a better (higher) ratio of true positive rate to false positive
rate. Simulation parameters as in top right panel, except # 0.35 and T
10,000 time steps. Bottom right: area under the curve (AUC) for fast (solid
line) and Wiener (dashed-dotted line) filter as a function of SD (#). Note that
the fast filter has a better (higher) AUC for all # values until noise gets very
high. The 2 simulated fluorescence traces in the top left panel show the bounds
for SD here. Error bars show SD over 10 repeats.
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FIG. 4. A simulation showing that the fast filter achieves significantly more
accurate inference than that of the Wiener filter, even when the parameters are
unknown. For both filters, the appropriate parameters were estimated using
only the data shown above, unlike Fig. 2, in which the true parameters were
provided to the filters. Simulation details different from those in Fig. 2: T
1,000 time steps, 16.7 ms, # 0.4.
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fluorescence trace. Again, it is clear that the fast filter far
outperforms the Wiener filter.

Given the preceding two results, the fast filter was applied to
biological data. More specifically, by jointly recording electro-
physiologically and imaging, the true spike times are known
and the accuracy of the two filters can be compared. Figure 5
shows a result typical of the 12 joint electrophysiological and
imaging experiments conducted (see METHODS for details). As
in the simulated data, the fast filter output is much “cleaner”
than the Wiener filter: spikes are more well defined, and not
spread out, due to the sparse prior imposed by the exponential
approximation. Note that this trace is typical of epifluorescence
techniques, which makes resolving individual spikes quite
difficult, as evidenced by a few false positives in the fast filter.
Regardless, the fast filter output is still more accurate than the
Wiener filter, both as determined qualitatively by eye and as
quantified (described in the following text). Furthermore, although
it is difficult to see in this figure, the first four events are actually
pairs of spikes, reflected by the width and height of the corre-
sponding inferred spikes when using the fast filter. This suggests
that although the scale of n is arbitrary, the fast filter can correctly
ascertain the number of spikes within spike events.

Figure 6 further evaluates this claim. While recording and
imaging, the cell was forced to spike once, twice, or thrice for
each spiking event. The fast filter infers the correct number of
spikes in each event. On the contrary, there is no obvious way
to count the number of spikes within each event when using the
Wiener filter. We confirm this impression by computing the
correlation coefficient, r2, between the sum of each filter’s
output and the true number of spikes, for all 12 joint electro-
physiological and imaging traces. Indeed, whereas the fast
filter’s r2 was 0.47, the Wiener filter’s r2 was 0.01 (after
thresholding all negative spikes), confirming that the Wiener
filter output cannot reliably convey the number of spikes in a
fluorescence trace, whereas the fast filter can. Furthermore,
varying the magnitude of the threshold for the Wiener filter to
discard more “low-amplitude noise” could increase the mag-
nitude of r2 (!0.24), still significantly lower than the fast
filter’s r2 value. On the other hand, no amount of thresholding

the fast filter yielded an improved r2, indicating that thresh-
olding the output of the fast filter is unlikely to improve spike
inference quality.

On-line analysis of spike trains using the fast filter

A central aim for this work was the development of an
algorithm that infers spikes fast enough to use on-line while
imaging a large population of neurons (e.g., 100). Figure 7
shows a segment of the results of running the fast filter on 136
neurons, recorded simultaneously, as described earlier in Ex-
perimental methods. Note that the filtered fluorescence signals
show fluctuations in spiking much more clearly than the
unfiltered fluorescence trace. These spike trains were inferred
in less than imaging time, meaning that one could infer spike
trains for the past experiment while conducting the subsequent
experiment. More specifically, a movie with 5,000 frames of
100 neurons can be analyzed in about 10 s on a standard
desktop computer. Thus if that movie was recorded at 50 Hz,
whereas collecting the data would require 100 s, inferring
spikes would require only 10 s, a 10-fold improvement over
real time.

Extensions

Earlier in METHODS, Data-driven generative model describes a sim-
ple principled first-order model relating the spike trains to the
fluorescence trace. A number of the simplifying assumptions can
be straightforwardly relaxed, as described next.

Replacing Gaussian observations with poisson. In the pre-
ceding text, observations were assumed to have a Gaussian
distribution. The statistics of photon emission and counting,
however, suggest that a Poisson distribution would be more
natural in some conditions, especially for two-photon data
(Sjulson and Miesenböck 2007), yielding:

Ft!
iidPoisson ("Ct # $), (37)

where "Ct $ % 0. One additional advantage to this model
over the Gaussian model is that the variance parameter &2 no
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FIG. 5. In vitro data showing that the fast filter significantly outperforms
the Wiener filter, using OGB-1. Note that all the parameters for both filters
were estimated only from the fluorescence data in the top panel (i.e., not
considering the voltage data at all). symbols denote true spike times
extracted from the patch data, not inferred spike times from F.
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FIG. 6. In vitro data with multispike events, showing that the fast filter can
often resolve the correct number of spikes within each spiking event, while
imaging using OGB-1, given sufficiently high SNR. It is difficult, if not
impossible, to count the number of spikes given the Wiener filter output.
Recording and fitting parameters as in Fig. 5. Note that the parameters were
estimated using a 60-s-long recording, of which only a fraction is shown here,
to more clearly depict the number of spikes per event.
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longer exists, which might make learning the parameters sim-
pler. Importantly, the log-posterior is still concave in C, as the
prior remains unchanged, and the new log-likelihood term is a
sum of terms concave in C:

ln P[F C]
t 1

T

ln P[Ft Ct]
t 1

T

Ft ln ( Ct )

( Ct ) ln (Ft!) . (38)

The gradient and Hessian of the log-posterior can therefore be
computed analytically by substituting the above likelihood
terms for those implied by Eq. 1. In practice, however,
modifying the filter for this model extension did not seem to
significantly improve inference results in any simulations or
data available at this time (not shown).

Allowing for a time-varying prior. In Eq. 4, the rate of
spiking is a constant. Often, additional knowledge about the
experiment, including external stimuli or other neurons spik-
ing, can provide strong time-varying prior information (Vo-
gelstein et al. 2009). A simple model modification can incor-
porate that feature:

nt
iidPoisson ( t ), (39)

where t is now a function of time. Approximating this time-
varying Poisson with a time-varying exponential with the same
time-varying mean (similar to Eq. 11a) and letting !
[ 1, . . . , T]T , yields an objective function very similar to Eq.
15, so log-concavity is maintained and the same techniques
may be applied. However, as before, this model extension did
not yield any significantly improved filtering results (not
shown).

Saturating fluorescence. Although all the abovemen-
tioned models assumed a linear relationship between Ft and
Ct, the relationship between fluorescence and calcium is
often better approximated by the nonlinear Hill equation
(Pologruto et al. 2004). Modifying Eq. 1 to reflect this
change yields:

Ft

Ct

Ct kd
t t

iid (0, 2). (40)

Importantly, log-concavity of the posterior is no longer guar-
anteed in this nonlinear model, meaning that converging to the

global maximum is no longer guaranteed. Assuming a good
initialization can be found, however, and Eq. 40 is more
accurate than Eq. 1, then ascending the gradient for this model
is likely to yield improved inference results. In practice, ini-
tializing with the inference from the fast filter assuming a linear
model (e.g., Eq. 30) often resulted in nearly equally accurate
inference, but inference assuming the above nonlinearity was
far less robust than the inference assuming the linear model
(not shown).

Using the fast filter to initialize the SMC filter. A sequential
Monte Carlo (SMC) method to infer spike trains can incorpo-
rate this saturating nonlinearity, as well as other model exten-
sions discussed earlier (Vogelstein et al. 2009). However, this
SMC filter is not nearly as computationally efficient as the fast
filter proposed here. Like the fast filter, the SMC filter esti-
mates the model parameters in a completely unsupervised
fashion, i.e., from the fluorescence observations, using an
expectation-maximization algorithm (which requires iterating
between computing the expected value of the hidden vari-
ables—C and n—and updating the parameters). In Vogelstein
and colleagues (2009), parameters for the SMC filter were
initialized based on other data. Although effective, this initial-
ization was often far from the final estimates and thus required
a relatively large number of iterations (e.g., 20–25) before
converging. Thus it seemed that the fast filter could be used to
obtain an improvement to the initial parameter estimates, given
an appropriate rescaling to account for the nonlinearity,
thereby reducing the required number of iterations to conver-
gence. Indeed, Fig. 8 shows how the SMC filter outperforms
the fast filter on biological data and required only three to five
iterations to converge on these data, given the initialization
from the fast filter (which was typical). Note that the first few
events of the spike train are individual spikes, resulting in
relatively small fluorescence fluctuations, whereas the next
events are actually spike doublets or triplets, causing a much
larger fluorescence fluctuation. Only the SMC filter correctly
infers the presence of isolated spikes in this trace, a frequently
occurring result when the SNR is poor. Thus these two infer-
ence algorithms are complementary: the fast filter can be used
for rapid, on-line inference, and for initializing the SMC filter,
which can then be used to further refine the spike train
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FIG. 7. The fast filter infers spike trains from a large population of neurons imaged simultaneously in vitro, faster than real time. Specifically, inferring
the spike trains from this 400-s-long movie including 136 neurons required only about 40 s on a standard laptop computer. The inferred spike trains much
more clearly convey neural activity than the raw fluorescence traces. Although no intracellular “ground truth” is available from these population data, the
noise seems to be reduced, consistent with the other examples with ground truth. Left: mean image field, automatically segmented into regions of interest
(ROIs), each containing a single neuron using custom software. Middle: example fluorescence traces. Right: fast filter output corresponding to each
associated trace. Note that neuron identity is indicated by color across the 3 panels. Data were collected using a confocal microscope and Fura-2, as
described in METHODS.
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estimate. Importantly, although the SMC filter often outper-
forms the fast filter, the fast filter is more robust, meaning that
it more often works “out of the box.” This follows because the
SMC filter operates on a highly nonlinear model that is not
log-concave. Thus although the expectation-maximization al-
gorithm used often converges to reasonable local maxima, it is
not guaranteed to converge to global maxima and its perfor-
mance in general will depend on the quality of the initial
parameter estimates.

Spatial filter

In the preceding text, the filters operated on one-dimensional
fluorescence traces. The raw data are in fact a time series of
images that are first segmented into regions of interest (ROIs)
and then (usually) spatially averaged to obtain a one-dimen-
sional time series F. In theory, one could improve the effective
SNR of the fluorescence trace by scaling each pixel according
to its SNR. In particular, pixels not containing any information
about calcium fluctuations can be ignored and pixels that are
partially anticorrelated with one another could have weights
with opposing signs.
Figure 9 demonstrates the potential utility of this approach.

The top row shows different depictions of an ROI containing a
single neuron. On the far left panel is the true spatial filter for
this neuron. This particular spatial filter was chosen based on
experience analyzing both in vitro and in vivo movies; often, it
seems that the pixels immediately around the soma are anti-
correlated with those in the soma (MacLean et al. 2005;
Watson et al. 2008). This effect is possibly due to the influx of
calcium from the extracellular space immediately around the
soma. The standard approach, given such a noisy movie, would
be to first segment the movie to find an ROI corresponding to
the soma of this cell and then spatially average all the pixels
found to be within this ROI. The second panel shows this
standard “boxcar spatial filter.” The third panel shows the
mean frame. The fourth panel shows the learned filter, using
Eq. 29 to estimate the spatial filter and background. Clearly,
the learned filter is very similar to the mean filter and the true
filter.
The middle panels of Figure 9 show the fluorescence traces

obtained by background subtracting and then projecting each
frame onto the corresponding spatial filter (black line) and true
spike train (gray symbols). The bottom panels show the
inferred spike trains (black bars) using these various spatial filters
and, again, the true spike train (gray symbols). Although the
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FIG. 9. A simulation demonstrating that using a better spatial filter can significantly enhance the effective SNR. The true spatial filter was a difference of
Gaussians: a positively weighted Gaussian of small width and a negatively weighted Gaussian with larger width (both with the same center). Each column shows
the spatial filter (top), one-dimensional fluorescence projection using that spatial filter (middle), and inferred spike train (bottom). From left to right, columns use
the true, boxcar, mean, and learned spatial filter obtained using Eq. 29. Note that the learned filter’s inferred spike train has fewer false positives and negatives
than the boxcar and mean filters. Simulation parameters: !! (0, 2I) 0.5 (0, 2.5I), where (!, ") indicates a 2-dimensional Gaussian with mean ! and
covariance matrix ", !" 0, # 0.2, $ 0.85 s, % 5 Hz, 5 ms, T 1,200 time steps.

−50

0

50
fluorescence

(%dF/F)    

−75

38

voltage
(mV)  

0

1

smc filter
(a.u.)     

0 11 22 33 44 55
0

1

fast filter
(a.u.)   

time (sec)

FIG. 8. In vitro data with SNR of only about 3 (estimated by dividing the
fluorescent jump size by the SD of the baseline fluorescence) for single
action potentials depicting the fast filter, effectively initializing the param-
eters for the sequential Monte Carlo (SMC) filter, significantly reducing the
number of expectation-maximization iterations to convergence, using
OGB-1. Note that whereas the fast filter clearly infers the spiking events
in the end of the trace, those in the beginning of the trace are less clear.
On the other hand, the SMC filter more clearly separates nonspiking acti-
vity from true spikes. Also note that the ordinate on the third panel
corresponds to the inferred probability of a spike having occurred in each
frame.
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performance is very similar for all of them, the boxcar filter’s
inferred spike train is not as clean.

Overlapping spatial filters

The preceding text shows that if the ROI contains only a
single neuron, the effective SNR can be enhanced by spatially
filtering. However, this analysis assumes that only a single
neuron is in the ROI. Often, ROIs are overlapping, or nearly
overlapping, making the segmentation problem more difficult.
Therefore it is desirable to have an ability to crudely segment,
yielding only a few neurons in each ROI, and then spatially
filter within each ROI to pick out the spike trains of each
neuron. This may be achieved in a principled manner by
generalizing the model as described in Overlapping spatial
filters in METHODS. The true spatial filters of the neurons in the
ROI are often unknown and thus must be estimated from the
data. This problem may be considered a special case of blind
source separation (Bell and Sejnowski 1995; Mukamel et al.
2009). Figure 10 shows that given reasonable assumptions of
spiking correlations and SNR, multiple signals can be sepa-
rated. Note that separation occurs even though the signal is
significantly overlapping (top panels). To estimate the spatial
filters, they are initialized using the boxcar filters (middle
panels). After a few iterations, the spatial filters converge to
very close approximation to the true spatial filters [compare
true (left) and learned (right) spatial filters for the two neu-
rons]. Note that both the true and learned spatial filters yield
much improved spike inference relative to the boxcar filter.
This suggests that even when spatial filters of multiple neurons

are significantly overlapping, each spike train is potentially
independently recoverable.

D I S C U S S I O N

Summary

This work describes an algorithm that finds the approximate
maximum a posteriori (MAP) spike train, given a calcium
fluorescence movie. The approximation is required because
finding the actual MAP estimate is not currently computation-
ally tractable. Replacing the assumed Poisson distribution on
spikes with an exponential distribution yields a log-concave
optimization problem, which can be solved using standard
gradient ascent techniques (such as Newton–Raphson). This
exponential distribution has an advantage over a Gaussian
distribution by restricting spikes to be positive, which im-
proves inference quality (cf. Fig. 2), is a better approximation
to a Poisson distribution with low rate, and imposes a sparse
constraint on spiking. Furthermore, all the parameters can be
estimated from only the fluorescence observations, obviating
the need for joint electrophysiology and imaging (cf. Fig. 4).
This approach is robust, in that it works “out of the box” on all
the in vitro data analyzed (cf. Figs. 5 and 6). By using the
special banded structure of the Hessian matrix of the log-
posterior, this approximate MAP spike train can be inferred
fast enough on standard computers to use it for on-line analyses
of over 100 neurons simultaneously (cf. Fig. 7).

Finally, the fast filter is based on a biophysical model
capturing key features of the data and may therefore be
straightforwardly generalized in several ways to improve ac-
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FIG. 10. Simulation showing that when 2 neurons’ spatial filters are largely overlapping, learning the optimal spatial filters using Eq. 36 can yield improved
inference of the standard boxcar type filters. The 3 columns show the effect of the true (left), boxcar (center), and learned (right) spatial filters. A: the sum of
the 2 spatial filters for each approach, clearly depicting overlap. B: the spatial filters (top row), one-dimensional fluorescence projection, and inferred spike train
(bottom row) for one of the neurons. C: same as B for the other neuron. Note that the inferred spike trains when using the learned filter are close to optimal,
unlike the boxcar filter. Simulation parameters: !! 1 ([ 1, 0], 2I) 0.5 ([ 1, 0], 2.5I), !! 2 ([1, 0], 2I) 0.5 ([1, 0], 2.5I), !" 0, # 0.02, $ 0.5
s, % 5 Hz, 5 ms, T 1,200 time steps (not all time steps are shown).
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curacy. Unfortunately, some of these generalizations do not
improve inference accuracy, perhaps because of the exponen-
tial approximation. Instead, the fast filter output can be used to
initialize the more general SMC filter (Vogelstein et al. 2009),
to further improve inference quality (cf. Fig. 8). Another model
generalization allows incorporation of spatial filtering of the
raw movie into this approach (cf. Fig. 9). Even when multiple
neurons are overlapping, spatial filters may be estimated to
obtain improved spike inference results (cf. Fig. 10).

Alternate algorithms

This work describes but one specific approach to solving a
problem that does not admit an exact solution that is compu-
tationally feasible. Several other approaches warrant consider-
ation, including 1) a Bayesian approach, 2) a greedy approach,
and 3) different analytical approximations.
First, a Bayesian approach could use Markov Chain Monte

Carlo methods to recursively sample spikes to estimate the full
joint posterior distribution of the entire spike train, conditioned
on the fluorescence data (Andrieu et al. 2001; Joucla et al.
2010; Mishchenko et al. 2010). Although enjoying several
desirable statistical properties that are lacking in the current
approach (such as consistency), the computational complexity
of such an approach renders it inappropriate for the aims of this
work.
Second, a common relatively expedient approximation to

Bayesian sampling is a so-called greedy approach. Greedy
algorithms are iterative, with each iteration adding another
spike to the putative spike train. Each spike that is added is the
most likely spike (thus the greedy term) or the one that most
increases the likelihood of the fluorescence trace. Template
matching, projection pursuit regression (Friedman and Stuetzle
1981), and matching pursuit (Mallat and Zhang 1993) are
examples of such a greedy approach (the algorithm proposed
by Grewe et al. (2010) could also be considered a special case
of such a greedy approach).
Third, approximations other than the exponential distribu-

tion are possible. For instance, the Gaussian approximation is
more appropriate for high firing rates, although in simulations,
this more accurate approximation did not improve the Wiener
filter output relative to the fast filter output (cf. Fig. 3). Perhaps
the best approximation would use the closest log-concave
relaxation to the Poisson model (Koenker and Mizera 2010).
More formally, let P(i) represent the Poisson mass at i and let
ln Q be some concave density. Then, one could find the
log-density Q such that Q maximizes i P(i)Q(i) !
exp{Q(x)}dx over the space of all concave Q. The first term
corresponds to the log-likelihood, equivalent to the
Kullback–Leibler divergence (Cover and Thomas 1991), and
the second is a Lagrange multiplier to ensure that the density
exp{Q(x)} integrates to unity. This is a convex problem be-
cause the space of all concave Q is convex and the objective
function is concave in Q. In addition, it is easy to show that the
optimal Q has to be piecewise linear; this means that one need
not search over all possible densities, but rather, simply vary
Q(i) at the integers. Note that exp{Q(x)}dx can be computed
explicitly for any piecewise linear Q. This optimization prob-
lem can be solved using simple interior point methods and, in
fact, the Hessian of the inner loop of the interior point method
will be banded (because enforcing concavity of Q is a local

constraint). This approximation could potentially be more
accurate than our exponential approximation. Further, this
approximation encourages integer solutions for nt and is there-
fore of interest for future work.
The abovementioned three approaches may be thought of as

complementary because each has unique advantages relative to
the others. Both the greedy methods and the analytic approx-
imations could potentially be used to initialize a Bayesian
approach, possibly limiting the burn-in period, which can be
computationally prohibitive in certain contexts. A greedy ap-
proach has the advantage of providing actual spike trains (i.e.,
binary sequences), unlike the analytic approximations. How-
ever, the actual spike trains could be quite far from the MAP
spike train because greedy approaches, in general, have no
guarantee of consistency. The analytic approximations, on the
other hand, are guaranteed to converge to solutions close to the
MAP spike train, where closeness is determined by the accu-
racy of the above approximation. Thus developing these dis-
tinct approaches and combining them is a potential avenue for
further research.

Spatial filtering

Spatial filtering could be improved in a number of ways. For
instance, pairing this approach with a crude but automatic
segmentation tool to obtain ROIs would create a completely
automatic algorithm that converts raw movies of populations of
neurons into populations of spike trains. Furthermore, this filter
could be coupled with more sophisticated algorithms to initial-
ize the spatial filters when they are overlapping [for instance,
principal component analysis (Horn and Johnson 1990) or
independent component analysis (Mukamel et al. 2009)]. One
could also use a more sophisticated model to estimate the
spatial filters. One option would be to assume a simple para-
metric form of the spatial filter for each neuron (e.g., a basis
set) and then merely estimate the parameters of that model.
Alternately, one could regularize the spatial filters, using an
elastic net type approach (Grosenick et al. 2009; Zou and
Hastie 2005), to enforce both sparseness and smoothness.

Model generalizations

In this work, we made two simplifying assumptions that can
easily be relaxed: 1) instantaneous rise time of the fluorescence
transient after a spike and 2) constant background. In practice,
often either or both of these assumptions are inaccurate. Spe-
cifically, genetic sensors tend to have a much slower rise time
than that of organic dyes (Reiff et al. 2005). Further, the
background often exhibits slow baseline drift due to move-
ment, temperature fluctuations, laser power, and so forth, not to
mention bleaching, which is ubiquitous for long imaging ex-
periments. Both slow rise and baseline drift can be incorpo-
rated into our forward model using a straightforward general-
ization.
Consider the following illustrative example: the fluorescence

rise time in a particular data set is quite slow, much slower than
that of a single image frame. Thus fluorescence might be well
modeled as the difference of two different calcium extrusion
mechanisms, with different time constants. To model this
scenario, one might proceed as follows: posit the existence of
a two-dimensional time-varying signal, each like the calcium
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signal assumed in the simpler models described earlier. There-
fore each signal has a time constant and each signal is depen-
dent on spiking. Finally, the fluorescence could be a weighted
difference of the two signals. To formalize this model and to
generalize it, let 1) X (X1, . . . , Xd) be a d-dimensional
time-varying signal; 2) ! be a d d dynamics matrix, where
diagonal elements correspond to time constants of individual
variables, and off-diagonal elements correspond to dependen-
cies across variables; 3) A be a d-dimensional binary column
vector encoding whether each variable depends on spiking; and
4) " be a d-dimensional column vector of weights, determining
the relative impact of each dimension on the total fluorescence
signal. Given these conventions, we have the following gen-
eralized model:

Ft
TXt , iid (0, 2) (41)

Xt Xt 1 Ant, nt
iidPoisson ( ) (42)

Note that this model simplifies to the model proposed earlier when
d 1. Because X is still Markov, all the theory developed above
still applies directly for this model. There are, however, additional
complexities with regard to identifiability. Specifically, the param-
eters and A are closely related. Thus we enforce that A is a
known binary vector, simply encoding whether a particular ele-
ment responds to spiking. The matrix ! will not be uniquely
identifiable, for the same reason that was not identifiable, as
described in Learning the parameters in METHODS. Thus we would
assume ! was known, a priori. Note that other approaches to
dealing with baseline drift are also possible, such as letting be
a time-varying state: t t 1 t, where t is a normal random
variable with variance 2 that sets the effective drift rate. Both
these models are the subjects of further development.

Concluding thoughts

In summary, the model and algorithm proposed in this work
potentially provide a useful tool to aid in the analysis of
calcium-dependent fluorescence imaging and establish the
groundwork for significant further development.

A P P E N D I X B : W I E N E R F I L T E R

The Poisson distribution in Eq. 4 can be replaced with a Gaussian
instead of an exponential distribution, i.e., nt

iid , that, when
plugged into Eq. 7, yields:

n̂ argmax
nt t 1

T 1

2 2(Ft Ct )2
1

2
(nt )2 .

(B1)

Note that since fluorescence integrates over , it makes sense that the
mean scales with . Further, since the Gaussian here is approximating
a Poisson with high rate (Sjulson and Miesenböck 2007), the variance
should scale with the mean. Using the same tridiagonal trick as before,
Eq. 11b can be solved using Newton–Raphson once (because this
expression is quadratic in n). Writing the above in matrix notation,
substituting Ct #Ct 1 for nt, and letting 1 yields:

Ĉ argmax
C

1

2 2 F C 1T
2

1

2
MC 1 2,

(B2)

which is quadratic in C. The gradient and Hessian are given by:

g
1

2(C F 1T)
1

[(MĈ)TM MT1] (B3)

H
1

2I
1

MTM. (B4)

Note that this solution is the optimal linear solution, under the
assumption that spikes follow a Gaussian distribution, and is often
referred to as the Wiener filter, regression with a smoothing prior, or
ridge regression (Boyd and Vandenberghe 2004). Estimating the
parameters for this model follows a pattern similar to that described in
Learning the parameters in METHODS.
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APPENDIX A: PSEUDOCODE

Algorithm 1 Pseudocode for inferring the approximately most likely spike train, given fluorescence data. Note that the algorithm is robust to small
variations z, n. The equations listed below refer to the most general equations in the text (simpler equations could be substituted when appropriate).
Curly brackets, {·}, indicate comments.

1: initialize parameters, $ (see Initializing the parameters in METHODS)
2: while convergence criteria not met do
3: for z 1,0.1,0.01, . . . , z do {interior point method to find Ĉ}
4: Initialize nt n for all t 1, . . . , T, C1 0 and Ct #Ct 1 nt for all t 2, . . . , T
5: let Cz be the initialized calcium, and P̂z, be the posterior given this initialization
6: while P̂z= P̂z do {Newton–Raphson with backtracking line searches}
7: compute g using Eq. 34
8: compute H using Eq. 35
9: compute d using H\g {block-tridiagonal Gaussian elimination}

10: let Cz= Cz sd, where s is between 0 and 1, and P̂z= P̂z {backtracking line search}
11: end while
12: end for
13: check convergence criteria
14: update "! and " using Eq. 36 {only if spatial filtering}
15: let be the root-mean square of the residual
16: let T/( tn̂t)
17: end while
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