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ABSTRACT

Minimally Invasive Solutions to Challenges Posed by
Mobility Changes

Joshua Reich

The first computerized systems were completely immobile. During participation in computation,

user, device, and software instance were tightly coupled: each had to remain in direct physical

contact with the others.

Today, things have changed radically. As network technologies have proliferated and evolved,

the components of, and participants in, computerized systems have become increasingly decoupled.

Users travel and commute while connecting to their o�ce computer or home media server. Hardware

devices may be carried by users, move on their own, or reside in data centers, never to be seen or

touched by end-users. Even operating systems (OSes) and applications may now migrate across

the network while executing, thanks to advances in virtualization that are only just beginning to

remake the computing landscape.

The decoupling of users, devices, and software has invalidated properties that enabled desired

functionality: resulting in compromised function. Power interfaces utilize physical user interactions

to determine when transitions between high and lower power states should occur; what happens

when users are no longer physically present? Operating system execution often relies on components

such as CPU and local disk responding with tightly bounded delays; what should be done when

the OS itself is in the process of migrating between two separate physical machines?

The fundamental question explored by this dissertation is:

Can we find highly adoptable solutions to restore desired functionality that has been lost because of

changed mobility characteristics?

Our emphasis on adoptability stems from pragmatic concerns: if a solution is di�cult to adopt,

it is highly unlikely to be used. Consequently, while many potential approaches may involve changes

to the network itself, our work focuses on modifying end-point behavior.



We show that practical solutions implemented solely in software and deployed only on network

endpoints can be developed for a wide problem range. We consider concrete challenges arising from

user, device, and software mobility changes, a↵ecting sub-disciplines spanning cloud computing,

green computing, and wireless networks.

Cloud Computing: Users increasingly utilize virtual machine (VM) technology to migrate and

replicate OS and software amongst networked hosts. Traditional execution required one VM image

copy on each host’s local storage. By transitioning to networked execution, dozens, if not hundreds,

of VM replicas may now be distributed from a single networked storage location to a commensu-

rately large set of physical machines. As these systems expand, they have come to be plagued

by boot storms (and similar problems) caused when networked access to storage becomes a major

bottleneck, drastically delaying VM distribution and execution. Can we develop techniques that

resolve this network bottleneck without the need for expensive hardware over-provisioning?

Green Computing: Remote access technologies have enabled users to travel while still inter-

acting with computational machinery left in the o�ce or home. Yet, energy savings mechanisms

have traditionally relied on the activity of attached peripherals to determine power usage. The

shift to remote interaction, which bypasses physically attached peripherals, has e↵ectively broken

these energy savings mechanisms. Can we build an economic and practical system that accommo-

dates energy e�ciency without compromising the fluid remote interactions users have now come to

expect?

Wireless Computing: Increasingly advanced mobile devices have provoked a shift towards heavy

usage of 3G and 4G bandwidth use. Accordingly, the capacity of infrastructure wireless networks

becomes increasingly strained. Can we find a way of supplementing this relatively low-latency

infrastructure with high-latency, high-bandwidth opportunistic content exchange?

In each scenario, we design a solution that aims to strike the proper balance between adoptability

and technical e�ciency - producing what we believe are rigorous, practical and adoptable solutions.
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Chapter 1

Introduction

The first computerized systems were completely immobile. During participation in computation,

user, device, and software instance were tightly coupled: each had to remain in direct physical

contact with the others.

Today, things have changed radically. As network technologies have proliferated and evolved,

the components of, and participants in, computerized systems have become increasingly decoupled.

Users travel and commute while connecting to their o�ce computer or home media server. Hardware

devices may be carried by users, move on their own, or reside in data centers, never to be seen or

touched by end-users. Even operating systems (OSes) and applications may now migrate across

the network while executing, thanks to advances in virtualization that are only just beginning to

remake the computing landscape.

The decoupling of users, devices, and software has invalidated properties that enabled desired

functionality: resulting in compromised function. Power interfaces utilize physical user interactions

to determine when transitions between high and lower power states should occur; what happens

when users are no longer physically present? Operating system execution often relies on components

such as CPU and local disk responding with tightly bounded delays; what should be done when

the OS itself is in the process of migrating between two separate physical machines?

One approach to dealing with such problems advocates a complete redesign of the system from

first principles [Stuckmann and Zimmermann, 2009]. Applied to our space, this type of re-design

would not only incorporate the current mobility characteristics of the system, but also attempt to

predict how these will evolve. In doing so, a su�ciently flexible set of assumptions may hopefully
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be constructed so as to avoid need for another such re-design. Constructing such a flexible model

appears to be an incredibly tough challenge in-and-of itself, especially given that no end to the trend

towards increasingly complex mobility appears in sight. Adding to this di�culty, past performance

demonstrates notoriously bad prediction as to how mobility will evolve. Finally, even if these

hurdles can be overcome, there is still the question as to the practicality of such an overhaul. The

IPv6 protocol [Deering and Hinden, 1998], successor to the first publicly used version of the Internet

protocol IPv4 [Postel, 1981a], makes for an arguably incremental change. Yet, it is only now, almost

a decade-and-a-half since its first commercial implementation [Jim, 1998], that IPv6 is finally being

adopted in earnest [Society, 2011] - and only then in response to the complete exhaustion of the

IPv4 address space [ICANN, 2011].

Consequently, this dissertation work takes another approach. We ask:

Can we find highly adoptable solutions to restore desired functionality that has been lost because of

changed mobility characteristics?

Our emphasis on adoptability stems from pragmatic concerns: if a solution is di�cult to adopt,

it is highly unlikely to be used. Consequently, while many potential approaches may involve changes

to the network itself, our work focuses on modifying endpoint behavior. Restricting modification

to network endpoints encourages adoption in several ways. It is likely to be economically advanta-

geous. If a solution requires greater expense to deploy and maintain than the savings that solution

provides, the chances of successful adoption become vanishingly small. Avoiding changes to the

core network also supports incremental deployability, as endpoints may be changed one at a time

without dramatically a↵ecting the network’s functioning. Even if a solution proves economic and

e�cient in the long term, should the activation energy required to switch to that solution be too

high, adoption will be delayed indefinitely.

These considerations inform our emphasis on resolving, not eliminating problems. A technical

solution that provides the best performance with respect to raw metrics such as energy e�ciency,

wait time, or input/output operations per second (IOPS) will not necessarily be the most suc-

cessful ones. In most cases, the consumer will decline to spend 2X more for a 10% performance

gain. Rather, we focus on solutions that provide the right balance of technical performance and

adoptability.

We show that practical solutions implemented solely in software and deployed only on network
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endpoints can be developed for a wide problem range. We consider concrete challenges arising from

user, device, and software mobility changes, a↵ecting sub-disciplines spanning cloud computing,

green computing, and wireless networks.

1.1 Cloud Computing

The first challenge we explore lies in the realm of cloud computing. Here, maturing virtual machine

(VM) [Smith and Nair, 2005] technology combined with high performance networks has enabled

migration and replication of an OS along with its software and settings, across many physical

devices. A hypervisor decouples OS from hardware, while the network provides for high-speed

movement of VM images. In this way, IT infrastructure, web application servers, and user desktops,

may be moved onto shared hardware - allowing for reduction of administrative complexity and

e�ciencies of scale.

Whereas traditionally VMs have been relatively immobile, VM-based computation in the cloud

may be moved based on hardware availability, energy costs, network constraints, etc. Likewise, by

replicating VMs, services may be expanded quickly in response to demand.

However, challenges arise in applying VM technology to this new use paradigm. VMs have

traditionally been executed from locally stored images. With the move to the cloud, VM images

have come to be stored remotely on a storage area network (SAN) or network-attached storage

(NAS), making the network a serious potential performance bottleneck. Now in order to execute

software, instructions must be read over the network, leading to pathologies such as boot storms in

which VM-based virtual desktop execution slows to a crawl as network resources are overwhelmed

by image access. Making this problem even more challenging is the unpredictability of demand for

particular VM images in large public or private clouds. To achieve the full power of this model,

VM instantiation, migration, and replication must all be accommodated with minimal delay, under

potentially unpredictable changes in demand.

To address this problem, we design and implement of a system (vmTorrent) capable of quickly

and scalably distributing and executing VM images. vmTorrent’s custom front-end file server

allows for VM quick-start in which VMs can execute while their images traverse the network. To

this is attached a P2P back-end supporting e�cient scaling. Finally, vmTorrent’s intelligent
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pre-fetching algorithms enable smooth streaming execution: balancing the needs of local execution

(image pieces should be prefetched based on anticipated need) and swarm e�ciency (prefetch-

ing may need to be randomized to ensure piece diversity su�cient to fully exploit swarm upload

capacity).

1.2 Green Computing

Our second challenge is one of “green computation”. Remote login/access capabilities have become

widespread over the past decade. Thus a large number of enterprise users now expect they will be

able to interact at will with their work machine, whether they are at home or on the road.

However, traditionally, desktop OS power management schemes assume users and machines will

be physically collocated. If a user is present and active the machine stays awake, if not, the machine

transitions to a low-power mode. If the user returns after the machine has fallen asleep, interaction

with attached input devices will wake the machine. The introduction of remote access violates this

model, as remote access bypasses physically attached input devices.

Sleeping machines now must be prepared to wake on appropriate network events in addition

to those occurring on local peripherals, functionality unsupported by current power management

designs. Consequently, most users adopt the wasteful, but convenient, strategy of idling their

desktop computers 24/7 to support what is typically very occasional remote use [Nedevschi et

al., 2008; Agarwal et al., 2009; Webber et al., 2006; Allman et al., 2007]. The environmentally-

conscious remainder turn their machines o↵ when leaving the o�ce, but at the cost of potentially

lost productivity.

Previously proposed solutions have not been adopted in the enterprise. Arguably, this is because

these proposals have failed the adoptability test. The simplest solutions [amt, ] merely extend

Wake-on-LAN (WOL) [wol, ] capabilities to Wide Area Network (WAN) accesses, requiring end-

users to modify their behavior. In these solutions, before beginning to work, users needed to run

a separate program that manually woke their machine. Despite requiring a relatively small change

in behavior, even this bar proved too high for significant adoption. More recent proposals have

been seamless, technically e�cient [Agarwal et al., 2010], and occasionally even elegant [Das et al.,

2010]. However, these proposals have required significant investment in new hardware as well as
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relatively involved changes to client behavior. It is our belief that the costs for deployment and

upkeep have outweighed the (currently) small monetary savings even the most e�cient solution

might provide. Consequently, these too have not been adopted.

In response, we architect and implement a non-intrusive, economical, network-based sleep-

proxying system to address this problem. Each desktop machine runs a lightweight daemon that,

immediately preceding transition to sleep states, informs a sleep proxy sitting on the local network.

The network sleep proxy then redirects and monitors tra�c incoming to the sleeping host, waking

the host as appropriate.

While our lightweight design does not always provide as great power savings as other recent pro-

posals, it does handle the frequently encountered cases well. Furthermore, by choosing a lightweight

approach, our technique requires an order of magnitude less hardware and IT support - while still

realizing up to 90% of potential energy savings.

1.3 Wireless Computing

Wireless computing is the final area we examine. While at first slow and expensive, cellular data

plans have become increasingly more attractive in terms of price and performance. With the

introduction of devices well-designed to take advantage of this connectivity - most notably Re-

search in Motion’s Blackberry in the enterprise, followed several years later by Apple’s iPhone

- users have jumped on board en masse. Earlier adopters of cellular data networks had mostly

limited their use to low-bandwidth applications such as email, weather forecasts, news updates,

and light web-browsing. Now, encouraged by telecoms, user demand for high-bandwidth content

like apps and video while on the move is increasing rapidly - content which had previously been

demanded solely over their cable or ADSL network feed. Further this demand comes from not

only smartphones, but a plethora of devices including tablets, netbooks, chromebooks, and tra-

ditional laptops. This demand has overwhelmed the capacity of carriers’ 3G [Cheng, 2008b] and

fledgling 4G networks [Lawson, 2011; Wortham, 2011], leading to outages, widespread user dissat-

isfaction, lawsuits [Cheng, 2008a], and even organized grassroots protest [Heussner, 2009]. Carriers

are struggling to improve their networks quickly enough, but the required overhaul of centralized

and expensive nationwide infrastructure takes years, if not decades, while shifts in the growth of
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demand are occurring at much shorter timescales [Arar, 2011].

Our work begins with the observation that not all demand is equal. Many of the most time-

critical interactions, e.g., email, chat, news, are relatively low-bandwidth. As demonstrated by the

popularity of slow but inexpensive multimedia delivery mechanisms such as BitTorrent [Sandvine,

2010] and Netflix DVD [Seetharam et al., 2010], users are willing to wait to obtain high bandwidth

multimedia content - at least so long as price is right. If low-latency, medium-bandwidth centralized

cellular infrastructure capacity can be supplemented by some other medium-to-high-latency, high

bandwidth mechanism, then user demand might be satisfied both more successfully and more

economically than the current cellular-infrastructure only solution.

Fortuitously, the very mobility characteristics of users, combined with the increasingly large

storage and local radios of the devices they carry, may provide the material for building just such a

mechanism. A large pool of bandwidth lies untapped in the chance contacts of mobile devices. At

each such contact, meeting nodes might exchange and replicate locally stored content at high data

rates for very low cost (essentially just battery drain). However, utilizing these opportunities poses

a significant challenge; device memory is finite and this latent bandwidth is often unstructured and

unpredictable.

Consequently, we model how such a system might work, focusing on user impatience: the

function describing the decreasing utility users find as the wait for fulfillment of their demand

increases. We then show how that under certain conditions the optimal memory usage policy can

not only be described, but also approximated using a lightweight distributed mechanism. Moreover

the information required to determine what content should be replicated by any pair of meeting

nodes is entirely local, given knowledge of the impatience curve.

1.4 Contributions

The contributions of this dissertation break down naturally by the scenario explored. We begin

with our contributions in the cloud.

1. We present the vmTorrent architecture, incorporating quick-start, scalability, and smooth-

ness features into a coherent design. (Section 2.3)

2. We develop intelligent profiling and piece selection mechanisms tailored to the problem of VA
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deployment and execution. (Section 2.4 and 2.5)

3. We implement a functional vmTorrent prototype. (Section 2.6.1)

4. We measure our prototype’s performance on a variety of Virtual Desktop Infrastructure (VDI)

tasks executed on both Windows and Linux-based VMs. For these we run our prototype

on a hardware testbed, using up to 100 physical client peers. Our experimental results

demonstrate our design choices produce a scalable system. vmTorrent delivers up to an

11X improvement over a standard P2P approach that does not incorporate intelligent

prediction and a 30X improvement over demand-based streaming approach. In fact, the

vmTorrent runtimes remain nearly as good as local disk execution for all workload sizes.

(Section 2.6)

The next set of contributions are those made in reducing wasteful power use.

5. We design and prototype a lightweight and economical sleep-proxying system for use in the

enterprise. (Sections 3.3 and 3.4)

6. We roll out the first substantial deployment of any sleep-proxying system in a corporate

environment. We deploy our software on over 50 user machines in six subnets. Almost all of

these machines are primary user workstations. (Section 3.6)

7. We measure the performance of our system, collecting over half-a-year’s worth of data. We

instrument our system extensively; capturing numerous details about sleep and wake periods,

data which explains why machines wake up and why they stay up. Instead of using generic

estimates of PC power consumption, we use a sophisticated software-based, model-driven

system, Joulemeter, to estimate power draw. (Sections 3.5 and 3.7)

8. Additionally, we describe a number of practical issues we encountered when deploying a light-

weight sleep proxy in a corporate network. Many of these have been overlooked by previous

work. For example, our implementation must not only deal with vanilla IPv4 and IPv6

packets, but also tunneled packets. Our corporate network uses IPsec, and we find that a

seemingly minor implementation choice in this setup, almost entirely removes the need to

deal with this tra�c. We describe race conditions that arise when the sleep proxy attempts
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to redirect tra�c from the sleeping client to itself, and provide a practical solution. We show

how issues such as DHCP lease expiration and proxy failure can be handled without the need

for the more complex mechanisms suggested by previous work. (Section 3.4)

9. Finally, we outline several unexpected insights provided by our work, the most significant of

which indicates that the power of a sleep proxy’s reaction policy - one of the major concerns of

previous work - currently plays a secondary role in determining energy savings. The primary

factor turns out to be the configuration of IT software and network services. (Section 3.7)

Lastly, we present our contributions in wireless.

10. We demonstrate that user impatience plays a critical role in determining the optimal allocation

for disseminating content. We further find a surprisingly general behavior which holds over a

wide variety of particular delay-utility functions: As the user population becomes increasingly

impatient, the optimal allocation transitions steadily from uniformly dividing the global cache

between all content items, towards a highly-skewed distribution in which popular items receive

a disproportionate share of the global cache. We obtain these results by defining an optimal

cache allocation in terms of delay-utility and global cache allocation. (Section 4.3)

11. Furthermore, we demonstrate that this optimal allocation is unique and can be computed

e�ciently in a centralized manner. Under the simplified assumption of homogeneous meeting

rates, we show that the corresponding optimal cache allocation is known in closed form for a

general class of delay-utility functions. (Section 4.4)

12. Inspired by these results, we develop a reactive distributed algorithm, Query Counting Repli-

cation (QCR) that for any delay-utility function drives the global cache towards the optimal

allocation. Moreover QCR does so without use of any explicit estimators or control channel

information. (Section 4.5.1)

13. We show the implementation of QCR in opportunistic environments is non-trivial and demon-

strate a novel technique Mandate Routing to avoid potential pathologies that arise in insu�-

ciently fluid settings. (Section 4.5.3)

14. Finally, we validate our techniques on real-world contact traces, demonstrating the robustness

of our analytic results in the face of heterogeneous meeting rates and bursty contacts. We
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find QCR compares favorably to a variety of heuristic competitors, despite those competi-

tors having access to a perfect control-channel and QCR relying solely on locally available

information. (Section 4.6)

1.5 Organization

As this dissertation’s three areas of investigation are technically disparate, each topic is given one

chapter which includes related work. Chapter 2 covers our work on e�cient and scalable VM

distribution and execution in the cloud. Chapter 3 presents our work on saving energy through

the use of a lightweight and economical sleep-proxying architecture. Chapter 4 deals with our

e↵orts to utilize abundant untapped bandwidth in mobile networks who infrastructure backbones

are straining under the pressure of unprecedented demand patterns. Finally, Chapter 5 provides

some brief conclusions and discusses directions for future research.
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Chapter 2

Cloud Computing: Deploying Virtual

Machines Scalably

2.1 Overview

Traditionally, virtual machines (VMs) have been run using VM images stored on the local disk

and accessed by the virtual machine monitor (VMM)1. By combining host-level virtualization with

modern networking and data center facilities, the cloud computing paradigm has enabled a wide

range of new applications for VM technology. Virtualized hardware clouds such as Amazon’s EC2

and Microsoft’s Hyper-V Cloud have enabled businesses to move their operations from physical

servers and machines dedicated to running required applications to shared infrastructure on which

virtual servers and virtual appliances may execute. In doing so, money is saved both through

economies of scale. Hardware can be utilized more e�ciently by leveraging statistical multiplexing

of physical resources. Likewise, users and administrators of VMs can focus on their core com-

petency while leaving the headache of maintaining and updating physical machines to the cloud

infrastructure provider. Formerly complex tasks such as adding or removing (physical) machines

are now replaced by simple operations such as cloning a VM image and booting the cloned image.

For these same advantages, enterprises have begun eagerly adopting virtual desktop infrastructure

(VDI) technology in which end-user desktop machines are encapsulated in VMs stored in the cloud.

1Also known as a hypervisor.
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However, with the move to the cloud, VM images have come to be stored remotely on a storage

area network (SAN) or network-attached storage (NAS): making the network a serious potential

performance bottleneck. Now, in order for VMs to execute, their images must be read over the

network by the VMM on which they execute. This leads to pathologies, such as boot storms (as

they are known in hosted VDI), in which VM execution slows to a crawl as network resources are

overwhelmed by image access requests sent by VMMs.

Current VM distribution techniques either utilize a remote file-system abstraction or require

download of a VM’s complete virtual disk image, only after which the VM can be run. Given that

compressed VM sizes run anywhere from several hundred MB to a few GB, there can be significant

delays from the time a user decides he/she wants to run a particular VM until the time that VM

can be used. Likewise, most current setups are unable to service the peak input/output operations

per second (IOPS) rates required for seamless remote file-system-based execution. These problems

are only exacerbated when demand for particular VMs spikes and NAS/SAN/server bandwidth

resources become the distribution bottleneck2. Of course, hardware over-provisioning can resolve

these problems, but only at significant economic cost.

The goal of our work is to minimize VM execution time, whether to improve VDI end-

user experience or speed up deployment and execution of tasks run on virtual servers and virtual

appliances in the datacenter. We attack the problem by producing a system design based on three

critical observations:

• Typically only a small fraction of the VM image needs to be accessed in order for it to run

to completion.

• At any given time, especially in a datacenter environment, a large number of nearly identi-

cal VMs are simultaneously executing. This presents an opportunity to tap into the unused

resources of these VMs (e.g., upload bandwidth in a datacenter rack) to speed up the distri-

bution and execution of other similar “peer” VMs.

• And finally, there is a strong correlation in the image accesses across similar workloads,

enabling the creation of predictive models for VM image access. Image access is also typically

2Section 2.2 discusses why multicast is ill-suited to addressing this challenge.
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bursty, providing an opportunity to prefetch blocks that will be needed soon, based on the

predictive model.

Inspired by these observations, we have built a peer-to-peer solution, vmTorrent, to support

quick and scalable launching of VMs on-demand. Our solution is applicable to enterprise, and data-

center settings and agnostic of the particular VMM used (e.g., VMware Player [VMware Player,

], VirtualBox [VirtualBox, ], Kernel Virtual Machine (KVM) [Kivity et al., 2007]). vmTorrent

provides architectural support for e�cient just-in-time deployment and execution of VMs. When

a new guest VM is spawned, the system begins downloading the required disk image from a P2P

swarm. vmTorrent aims to fetch sections of the disk image (encapsulated in BitTorrent pieces)

just in time for their use by the VMM.

We have found the incorporation of all three of these observations into our our system design

to be essential. While elements of each have been incorporated individually in di↵erent prior work

(as detailed in Section 2.2), our results demonstrate that only by incorporating all the elements,

can true scalability be produced. We start o↵ by describing our system design in the next section.

In this chapter we make the following contributions:

1. We present the vmTorrent architecture, incorporating quick-start, scalability, and smooth-

ness features into a coherent design. (Section 2.3)

2. We develop intelligent profiling and piece selection mechanisms tailored to the problem of

VM deployment and execution. (Section 2.4 and 2.5)

3. We implement a functional vmTorrent prototype. (Section 2.6.1)

4. We measure our prototype’s performance on a variety of VM/task combinations. For these

we run our prototype on a hardware testbed, using up to 100 physical client peers. Our

experimental results demonstrate our design choices produce a scalable system. vmTorrent

delivers up to an 11X improvement over a standard P2P approach that does not incorporate

intelligent prediction and a 30X improvement over demand-based streaming approach. In

fact, the vmTorrent runtimes remain nearly as good as local disk execution for all workload

sizes. (Section 2.6)
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2.2 Related Work

There are only a few studies of e�cient on-demand deployment of virtual appliances or machines

in the local area network (LAN). A straightforward approach to deploy VMs is to sequentially copy

them to the target nodes. This approach is common in data centers, which employ provisioning

servers to distribute and execute pre-customized images on-demand [Mietzner and Leymann, 2008;

Shi et al., 2008]. However, sequential distribution can lead to long distribution times and network

hotspots when VM demand is high.

Alternative distribution methods were studied in the context of cloud computing and educa-

tional environments, including: multicast, tree, and P2P [Schmidt et al., 2010; Wartel et al., 2010;

O’Donnell, 2008]. In multicast [Albanna et al., 2001; Hinden and Deering, 2006], data is simulta-

neously delivered to multiple recipients, reducing the load on the network and the server. However,

multicast is still not widely deployed in many IP networks [El-Sayed et al., 2003], is not geared

towards on-demand image distribution which requires asynchronous data delivery, and is not well

suited to delivering data to geographically distributed networks. An alternative approach con-

structs a distribution tree (at the application-layer) between the downloading nodes [Hosseini et

al., 2007]. While this approach enables parallel image delivery, it is highly sensitive to node churn.

Another distribution method is P2P. Typically, P2P delivery is based on BitTorrent [Cohen,

2003], an e�cient solution for scalable content delivery [Qiu and Srikant, 2004]. The work in [Chen

et al., 2009] leverages this strategy to speedup the provisioning of cloud infrastructure. However,

their approach applies this idea naively, taking more than 20 minutes before a VM can even begin

execution. Contrastingly, by incorporating profile-based prediction, vmTorrent can fully execute

VMs in a fraction of this time at scale.

To obtain e�cient piece exchange, vmTorrent seeks to balance the immediate download

requirement of the VMM and maintaining a high level of piece diversity in the system. This

approach to creating diversity is inspired by P2P video streaming systems which use a sliding

window to download pieces needed for immediate playback, while still acquiring non urgent pieces

for diversity [Vlavianos et al., 2006; Zhou et al., 2007].

Conceptually similar work to ours is that of [Zhang et al., 2008]. This paper proposes a play-on-

demand solution for desktop applications. The basic idea is to store user’s data at a USB device,

and at run time, download desktop applications using P2P (specifically, via BitTorrent). These
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applications are then run in a lightweight virtualization environment. The main focus here is on

how to run an application without installation. The downloaded images here are not standalone

VMs, making this approach of more limited applicability. These images are also significantly smaller

than those of VMs, consequently they do not explore execution during on-demand download, or

VM profiling.

Similarly [O’Donnell, 2008] proposes the idea of using BitTorrent as a fast method for distribut-

ing VMs to student machines in a training environment. It provides a proof-of-concept, but also

focuses on a niche application space and leverages neither on-demand download nor VM profiling.

In the popular media [Roth, 2008] advocates the idea of using BitTorrent to perform large scale

deployments of desktop images over the WAN. Also related is Twitter’s Murder system [Twi, 2010]

which dramatically cuts down the distribution time for software binaries by optimizing BitTorrent

for the datacenter. Their techniques are complementary to our own and could be used to improve

the performance of our BitTorrent backend.

Also within this space are the Collective [Chandra et al., 2005], a server-based system delivery

of managed desktops to personal computer (PC) users. The Collective stores a portion of the man-

aged desktop in the local cache. While it does not profile the particular blocks needed to support

di↵erent tasks, the Collective will pre-fetch and fill its cache with the most popular applications.

Less popular applications are streamed on-demand. This work evolved into the commercial solu-

tion MokaFive [MokaFive, ]. VM fork [Lagar-Cavilla et al., 2009] provides a data-center oriented

method for instantaneously cloning a VM into multiple replicas running on di↵erent hosts Internet

Suspend/Resume [Kozuch and Satyanarayanan, 2002] was early work that allowed machines to be

suspended on one hardware platform, transferred over the network and resumed on another using

virtualization.

Finally, techniques such as IP multicast [Albanna et al., 2001; Hinden and Deering, 2006] can

allow the same data to be streamed simultaneously to multiple recipients with very low network

overhead. However, we believe IP multicast is ill-suited to solving the problems faced in our

domain for several reasons. (1) Virtual appliance execution paths will di↵er from instance to

instance depending on both non-determinism of OS operation and more importantly di↵ering usage

patterns amongst users. As a result, di↵erent peers will need only partially overlapping sets of

pieces, and on di↵erent schedules. (2) Multicast is poorly suited to delivering data to peer sets that
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are geographically diverse (e.g., home users, nano data centers, multiple data centers or corporate

locations). (3) Even if virtual appliances were in a single LAN and executed almost identically but

still started at staggered times (e.g., in response to increasing demand), each packet would likely

need to be multicast many times for each newly started machine that has not received that packet

yet, significantly reducing e�ciency and the e↵ective throughput of the multicast server. (4) Even

in a single network, multicast has significant setup overhead and is not used by many organizations

as a result [El-Sayed et al., 2003; Hosseini et al., 2007]

2.3 System Design

Ideally, a VM executing on vmTorrent should have execution comparable to that of execution

o↵ the local disk. vmTorrent attempts to achieve this goal by adjusting peers’ piece selection

strategies, predicting piece accesses and pre-fetching to reduce execution delay, while still maintain-

ing su�cient piece diversity to support e�cient swarming. In this, vmTorrent resembles P2P

on-demand video streaming [Huang et al., 2008] which selects pieces from the playback window

with higher priority, while still acquiring enough random pieces to ensure su�cient diversity.

However, unlike video streaming, playback of VMs is both less structured and less predictable.

Non-sequential piece access is extremely frequent and user actions - each one potentially accessing

di↵erent sections of the VM image - add to the inherent stochasticity of VMM/VM operation.

Moreover, while most video streams will eventually use all pieces in the stream, we have found

that across the workloads we have studied, only a fraction of the VM image is accessed (see

Table 2.2); most programs, drivers, and files are never used in the average execution. Consequently,

vmTorrent consults a profile of likely block access patterns associated with each guest VM to

determine a preferable streaming order.

Given that individual peers can accurately predict which pieces will be needed, and in what

order, to continue execution, these peers then must determine which pieces should be requested

from the swarm. Naively requesting pieces earliest-first, even according to the highest probability

profiled execution path, can backfire as swarms grow larger. vmTorrent aims to have peers

arrange their requests to both ensure su�cient piece diversity for the swarm to function well and

also avoid “over downloading” (bringing unneeded pieces, or needed pieces too quickly) which may
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impair host performance by unnecessarily loading the host and diverting bandwidth from other

peers.

Recall that our system design is motivated by observing that (1) only a small fraction of a VM

image needs be accessed in order for it to run to completion, (2) peers have plenty of unused upload

bandwidth, particularly in the datacenter, and (3) the portions of the image accesses in order to

execute a given workload are strongly and positively correlated with the actions carried out in that

workload.

Consequently, we design vmTorrent to take advantage of these properties. Firstly, due to

observation (1), vmTorrent does not need to wait until the whole machine image is downloaded.

When spawning a new VM, vmTorrent can make the VM image immediately available to the

VMM, which can immediately begin booting the VM. However to do this without incurring unrea-

sonable transport delay (i.e.,the time image accesses are stalled waiting for data to be downloaded

from the network), vmTorrent must prefetch the portions of the image that will be needed. Ob-

servation (3) provides the basis for successfully predicting which portions of the VM image those

will be. Finally, observation (2) provides us with the opportunity to do this at scale. By leveraging

and modifying P2P mechanisms, we can turn each downloading peer into an uploading server that

has many of the image sections other peers are likely to need.

In our approach, vmTorrent predicts which pieces will be needed by consulting a profile

associated with the guest VM being executed. This profile summarizes the execution behavior(s)

and corresponding disk image access patterns of that VM. These profile-based predictions of which

file system blocks will be needed enable vmTorrent to proactively fetches the BitTorrent pieces

in which these blocks are contained. vmTorrent also changes the download schedule reactively in

response to real-time demand by the VMM for blocks that may not be in the profile or have been

accessed earlier than expected.

vmTorrent instance may operate on hosts that are part of, or attached to a cloud. For

instance, hosts can be users’ computers connected to a cloud, or data center nodes inside a cloud.

Each host comprises a VMM that can run guest VMs, as well as an instance of vmTorrent that

provides file system services for the VMM. vmTorrent operates as a file server that stores and

provides access to a locally modifiable copy of the VM disk image while concurrently downloading

that image. Each vmTorrent instance keeps a pristine copy of the disk image blocks so that it
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Figure 2.1: vmTorrent architecture.

can serve these copies to peer vmTorrent instances. The collection of vmTorrent instances

operating on all hosts running a given VM forms a P2P swarm.

To support this mode of operation, vmTorrent is composed of two components: a custom

file server (FS) and a custom P2P manager (P2PM). Figure 2.1 illustrates the operation of the

system. As the VM starts to execute, (1) the VMM tries to access the disk image in response to the

guest’s virtual disk accesses. If a block is not yet present, then (2) FS requests that block with high

priority from P2PM. Meanwhile, (3) P2PM continuously downloads pieces of the disk image from

the network and (4) uploads pieces already on disk to other swarm members in response to requests

generated by their instances of vmTorrent. As pieces arrive, vmTorrent’s P2PM stores each

piece in a pristine copy of the VM image and (5) passes the file blocks comprising this piece to the

file server. VMM access requests to these file blocks can then be served (6) by FS.

Sections 2.4 and 2.5 focus on profile creation and vmTorrent data exchange, respectively. The

remainder of this section lays the groundwork for this, delving more deeply into vmTorrent’s FS

and P2PM components and their interaction with one another.

2.3.1 File Server

The vmTorrent FS is responsible for providing read and write access to the guest VM’s disk

image. FS operates similarly to traditional remote file systems: the root directory of file server is

mounted in a designated location, making its files visible to the system. All disk accesses performed

to the sub-tree under this mount point are intercepted by the operating system and delegated to

the server. In this way FS enables a standard file system view that is indistinguishable from that

of other common remote file systems such as NFS and CIFS - allowing vmTorrent to operate in

a manner that is fully transparent to the VMM. Like other remote file systems, the accesses to FS
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may sometimes incur significant delays. In Section 2.4 we discuss when such delays may impact

the correctness of VM execution and how such special cases may be handled.

When a new guest VM is launched, FS creates a placeholder file for that VM’s disk image,

which from the VMM’s view of the file system is indistinguishable from a complete local copy of

the image. However, initially this file is empty; its content is gradually streamed in from the P2P

network. As soon as the local placeholder is present FS can begin to serve requests to access the

data - even if no data is yet present. For blocks that have already been downloaded locally, the

server will respond to VMM requests immediately. However, if the VMM attempts to access blocks

that are not yet present, FS will issue demand requests for these blocks to P2PM which will stall

until the needed blocks have been received from the swarm. There may be multiple concurrent

image accesses stalled at the same time, as VMM image accesses correspond to activity in the

guest VM which itself may be running multiple processes.

File accesses arrive at the server as tuples of the form ⌧file,offset,length�, indicating

that the VMM is attempting file access to a contiguous range of data of a particular size starting

at a given o↵set. As accesses can be for ranges of arbitrary length, the server divides these accesses

into a set of accesses to fixed-size chunks referred to as file-system blocks.

vmTorrent uses one bitmap for each file to track which blocks are exist locally. Initially

this bitmap is empty corresponding to the empty placeholder. FS consults a file’s bitmap to

determine whether requested blocks are present, and updates the bitmap as additional pieces finish

downloading and their blocks become locally available.

FS distinguishes between read and write accesses that fully align to a set of block (aligned

accesses). Those accesses that only require part of the first or last disk block(s) we refer to as

unaligned accesses. While read accesses always require a check to the bitmap to ensure the blocks

being accessed are present (and download should some be missing), aligned write accesses can be

served without checking the bitmap - since such write requests would have overwritten the original

content of that block anyway. Unaligned write accesses, however, cannot safely overwrite the

partially written blocks since it is possible that these blocks have not yet been downloaded. Thus

the non-written portion of such blocks might need to be filled in later, which would require an order

of magnitude more book-keeping complexity to support. Consequently, in such cases, vmTorrent

first performs a standard bitmap check (and demand-request if needed) on any partially written
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blocks to ensure they are in place, and if not, these unaligned write accesses stall until the blocks

have been downloaded from the swarm.

2.3.2 P2P Manager

The vmTorrent P2PM is responsible for downloading the VM disk image asynchronously from

the P2P swarm and uploading requested pieces to swarm peers. In order to upload the downloaded

disk image to other peers, vmTorrent must maintain a pristine copy of the data downloaded from

the swarm. Those blocks modified by FS writes cannot by uploaded to other swarm, since doing so

would violate the consistency of the VM image being shared. To solve this problem vmTorrent

provides a P2P-backed file system that stores two copies of the data: one copy for read-only access

used by P2PM for uploading data to peers, and one copy used by FS to provides read-write access

to the VMM. 3

The primary goal of the P2P manager is to fetch the disk image data so that the data is

available for use when needed by the VMM. vmTorrent employs two mechanisms that exercise

intelligent piece selection strategies to minimize guest VM execution stalls due to missing disk

blocks. Firstly, the P2P manager fetches blocks proactively based on when it estimates they will

be needed. Secondly, if the VMM attempts access to a block that is not present, the file system

will issues a demand request to the P2P manager, which in turn will immediately request the piece

containing that block from the swarm.

vmTorrent implements proactive piece fetching through use of a profile associated with the

VM that provides the P2P manager with the expected block access order and normalized inter-

access intervals for common execution paths. By tracking the block access history and current

progress, the P2P manager can use this profile to predict which blocks are most likely to be needed

in the future, and estimate how much delay in receiving these blocks may be tolerated. When all

information in the profile has been utilized, the download of the remaining pieces proceeds in the

background. These non-profiled pieces are downloaded rarest-first, as in traditional P2P systems,

albeit at a much lower rate and with lower priority so as not to divert resources from other swarm

members downloading pieces critical to their execution path.

3A space optimizing version of vmTorrent could be constructed by doing copy-on-write, in which modified blocks

would be stored by FS, while all other blocks would be read directly from the pristine image stored by P2PM.
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Task OS Type Description

Boot-Shutdown All Boot, login, and shutdown.

Latex Linux Compile 30-page Latex document, view result in PDF viewer.

DocEdit Linux Create new OpenO�ce document, save, reopen, edit, spell-check.

PowerPoint Windows View PowerPoint slide-show.

Multimedia Windows Play 30 second music file.

Table 2.1: Tasks.

When a demand request for data arrives from the file server, the P2P manager will attempt to

fetch the corresponding piece(s) from the swarm. Moreover, the P2P manager will prioritize this

request over other existing requests so as to satisfy this critical request as quickly as possible. As

pieces arrive, the P2P manager pushes requested data back to the file server which notifies any

threads that may be waiting for the data.

2.4 Profiling

To provide quick and scalable VM execution, vmTorrent’s P2P manager intelligently prefetches

pieces so as to minimize file system access delays experienced by the VMM. To do so, the P2P

manager must have a way of predicting which pieces will be needed and when. vmTorrent uses

profiles summarizing VM image access behavior to provide the P2P manager with this information.

To build these profiles, we analyze the VM disk image access patterns for a variety of VMs

and workloads. For each VM/workload combination, we examine access order, access time, and

frequency of use. We aim to identify those sections of the VM image that are common across the

runs, and encode them in a profile that can be utilized by the P2P manager’s prediction logic.

In this work, we examine straightforward o✏ine mechanisms for doing so (although we find they

perform quite well in many scenarios). Future work will examine more sophisticated prediction

utilizing recent execution history and explore online techniques for profile improvement. To better

understand our profiling approach, we first discuss the set of tasks and VMs we examine.
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VM Size % Accessed

Fedora 4.2GB 7-9%

Ubuntu 3.9GB 6-10%

Win7 4.3GB 7-8%

Table 2.2: Virtual machines.

2.4.1 VMs and Workloads

We used a set of workload scenarios designed to simulate typical short VDI user tasks. Table 2.1

lists the usage scenarios for our experiments. These scenarios represent di↵erent user activities on

desktop virtual appliances. Each benchmark consists of first booting the guest VM, then executing

a script that performs a desired task by mimicking user actions and finally shutdown the guest VM.

To automate the execution of these benchmarks, we configured guest VMs to auto-login once they

boot, and then execute a script that selects the appropriate task to run.

While the set of tasks we could explore in this work were necessarily limited, we believe the

results produced are relevant to both longer VDI tasks, as well as those run on virtual servers and

virtual appliances. For each of these, as we will shortly see, the most challenging portion of execution

is the boot and login sequence - in both the latency and volume of image access. Consequently,

vmTorrent’s e�ciency on long VDI tasks can be expected to mirror those of shorter VDI tasks.

Moreover, many of the tasks we examine (e.g., Latex compile, playing a music file) are essentially

straightforward non-interactive workloads with similar characteristics to those virtual servers or

virtual appliances would be expected to execute.

Figure 2.2 shows disc image access rates for VM execution from RAM disk on a modern host

machine (Section 2.6.2) when running the Boot-Shutdown task on each of the guest VMs listed in

Table 2.2. This execution performance represents a best-case scenario in which there is no network

or disk I/O overhead. Each figure plots cumulative disk accesses in MB (y-axis) against time (x-

axis). We see that the disk access patterns vary significantly by virtual appliance type and exhibit

bursty behavior. Since the peak (local) access rate can easily exceed the throughput of a standard

network, execution delays due to section of the VM image being unavailable are highly likely. These

network delays arise inherently from the mismatch between network and local memory throughput.

We illustrate these delays by computing the idealized cumulative delay for profile and demand
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(a) Fedora.

(b) Ubuntu.

(c) Win7.

Figure 2.2: Best-case access rates and unavoidable network delay.
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polices based on the collected image access traces and assuming a 100Mbps network operating

at standard e�ciencies (15% protocol/IP/loss overhead). We see that for both the Ubuntu and

Windows 7 VMs, the access rate experiences a sharp spike at 13 s and 22 s, respectively - resulting

in like delays for both idealized demand and profile network I/O. These spikes indicate a high

level of parallelism in the boot sequence. However, the Fedora VM has a much more gradual boot

behavior - likely indicative of a significantly more sequential boot sequence.

Finally, it should be noted that the delays shown only take into account the e↵ect of throughput

restrictions. Delays due to network latency, serving peer response, and similiar factors, will only

increase those predicted in Figure 2.2. The extent to which these factors increase delay will depend

on both the degree of parallelism in VM execution (greater parallelism will tend to mask latency-

related delays in execution as resources shift to some non-I/O blocking thread), as well as the

e�cacy of prefetching (demand fetch requests will clearly be e↵ected by latency-related sources of

delay, while the latency of prefetch requests is more likely to be masked).

These computations provide insight into the baseline completion time we might expect from

vmTorrent. For all of the virtual appliances we explore, with the exception of Fedora, we

see that equaling performance of RAM disk with our approach is essentially unachievable in our

experimental setup. There simply isn’t time to get all the image content downloaded in time to

continue uninterrupted execution. Here, the largest distance in time a given curve lags behind

the best-case curve, serves as a lower bound on the delay an execution of that type is likely to

experience, (precise numbers for the scenarios we consider are shown in in Section 2.6.5, Table

2.4). However, with the Fedora virtual appliance vmTorrent can (in theory) to always prefetch

content before it is needed. However, as discussed above, latency-related delays will a↵ect the

Fedora VM’s performance more greatly than that of the others. Consequently, while the Fedora

VM’s performance using our straightforward profiling and prediction will not match that of a

memory cached system, it may still potentially outperform execution from local disk. In fact, we

will see that this is precisely what happened in our experiments (Section 2.6.3).

2.4.2 Profile Creation

We use two profiles for our experiments per VM/task combination. The first is built using just

one sample run. It simply lists the order in which blocks are accessed for the first time in the
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sample run. The second is built using 1000 runs. Each block is ranked based on its access times

and notated with the fraction of runs in which it was requested.

Rank values provide an easy to utilize encoding of “average” download behavior. The frequency

values allow our prediction algorithm to easily adjust the aggressiveness of its prefetching strategy

by filtering out those entries below a threshold frequency. We shall see how vmTorrent’s piece

selection logic incorporates these in Section 2.5.

To rank blocks, we determine their average access time across multiple runs. Then the blocks are

ordered earliest-first with ties being broken randomly. We tried other statistics such as median, and

min, but these other measures o↵ered no noticeable improvement. When using runs from di↵erent

machine types to create the profile, these runs would first need to be normalized. However, as we

deploy on a single machine type in our experiments, we leave this challenge for future work.

An important caveat is that, like other remote file-systems, vmTorrent may introduce sig-

nificantly larger than normal file system access delays as perceived by the VMM. Consequently

problems may occur in which VM images fail to boot because a variety of bootup check timeouts

may occur if VM execution is delayed during that check. We refer to a set of blocks accessed during

such a check as critical. To deal with such checks, an additional level of analysis must be added to

the profiler that identifies such sequences and marks them accordingly. Then vmTorrent’s file

server needs only to block on the access attempt immediately before the critical section, waiting

until all pieces in that section are downloaded. Practically, we were able to avoid this exigency by

setting the boot wait parameters of our VMs much larger than they might ever be stalled.

The only critical section for which we would have needed to implement this facility appears

to be an undocumented timeout in Windows 7 auto-login. A slowdown of much above 4x mem-

cached execution time will trigger this timeout, causing auto-login to fail. As this issue only

a↵ected techniques against which we compared vmTorrent’s performance (see Table 2.6.2 in

Section 2.6.2), we leave the development of automated techniques for identifying critical sections

to future work.

We note that there is significantly more structure available to exploit. This can be seen even

when using a relatively crude measure of clustering that defines a cluster as the set of all blocks

that are completely positively correlated within one another (i.e., one is accessed if and only if

all others are accessed). As Figure 2.3 - plotting the probability mass function (y-axis) of cluster
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Figure 2.3: Profile access structure.

size (x-axis) for a variety of VM/workload combinations - shows there are a significant number

of non-trivial clusters (y-axis). As brief inspection indicates, these clustering patterns are quite

consistent across di↵erent VMs and workloads. Clearly a naive improvement to our policy would

be to conditionally fetch all pieces in such a cluster as soon as the first had been accessed. We expect

more sophisticated statistical clustering method may provide significant additional opportunity for

prefetching improvement, which we leave to future work.

2.4.3 Mapping Blocks to Pieces

Thus far, this section’s discussion has focused on FS blocks. However ultimately the profile will be

used to predict which pieces will be requested by the P2PM. These data units are not necessarily

of the same size.

For the P2PM, we leverage previous work [Marciniak et al., 2008] which showed that piece size

is a critical parameter for the overall performance, as it determines the degree of both the paral-

lelism and overhead peers will encounter. In particular, small pieces are suitable for small-sized

content, but may severely a↵ect system performance for larger content. Smaller pieces produce

proportionately larger meta-info (torrent) files and incur considerably higher communication over-

head. In fact most BitTorrent codebases restrict the maximum number of pieces allowed. To meet

these restrictions we need pieces of at least 32KB for typically-sized VMs and have chosen to use

256KB pieces.

For the FS, using a smaller granularity block for file accesses will allow vmTorrent to avoid



27 CHAPTER 2. CLOUD COMPUTING: DEPLOYING VIRTUAL MACHINES SCALABLY

many unaligned writes. Since aligned writes do not require vmTorrent to fetch anything from

the network, this clearly provides a performance gain. Consequently vmTorrent, block sizes

should be chose so several fit in one piece. Our prototype uses blocks of 16KB. To ensure correct

operation, vmTorrent uses a mapping function to select which blocks should be packed into the

same piece. We use a simple packing that maps contiguous ranges of blocks into pieces using a

straightforward modulo operator on the block index. This mapping is useful for access patterns

with high spatial locality, or when the access pattern is largely sequential, since it packs together

adjacent blocks. As part of future work, we intend to examine more sophisticated mapping schemes.

For example, a scheme that makes better use of the network bandwidth by avoiding downloading

blocks earlier than needed when the access pattern exhibits weak locality at the piece-level. We

are also exploring the use of data compression at the block-level.

2.5 Piece Selection

The goal of the vmTorrent piece selection policy is to balance the need to (1) ensure pieces needed

to support execution arrive with the least possible delay, (2) maximize swarm e�ciency, and (3)

avoid overuse of resources and bandwidth that may hamper the performance of local processes

(particularly the VMM) or other peers.

To achieve this goal vmTorrent’s piece selection policy contains components for

1. piece prediction

2. piece diversity

3. resource management

vmTorrent implements its piece selection policy using three piece request types: (a) demand

requests, (b) profiled requests, and (c) default requests. vmTorrent issues demand requests in

response to missing blocks that are accessed through the file system. These requests are the highest

priority and must be delivered immediately. Profiled requests are requests for blocks included in the

profile and selected for prefetch by the prediction logic. These requests are high priority and may

have varying deadlines. Finally, all other requests are default requests that have very low priority
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and no latency requirements. P2PM will only issue default requests when the set of profiled blocks

has been completely exhausted and no demand requests are enqueued.

2.5.1 Piece Prediction

Piece prediction errors come in three types:

1. false positive (pieces fetched but never used), resulting in wasted bandwidth and increased

local overhead.

2. false negatives (pieces needed but never predicted) will result in pieces not being present

when needed, causing increased latency as demand requests are issued and putting increased

pressure on peers’ queues as these demand requests are given priority over other pending

requests.

3. mistimed requests either won’t be prefetched in time for use, acting much as a false-negative,

or will be prefetched too early and cause the same increased overheads as false-positives, but

without the bandwidth waste.

Our piece prediction mechanism is straightforward. We select pieces in order of their profile

ranks, filtering out those whose frequency of appearance lies below some cuto↵ threshold. We

have found 0.25 to provide a good trade-o↵ between aggressive prefetching that will result in an

overabundance of false positives, and overly conservative prefetching that will su↵er from over-many

false negatives.

2.5.2 Piece Diversity

When VM instances begin execution in a highly staggered fashion, selecting pieces based on profile-

based prediction alone may provide su�cient piece diversity to be exploited by the swarm - partic-

ularly if the VMs are running somewhat di↵erent tasks. If however, VM instances start as a flash

crowd - a scenario for which our technique is designed, such policies will likely provide too little

piece diversity, leaving swarm members without almost any pieces to exchange. This holds espe-

cially true during the boot sequence. As we will see in Section 2.6.6, this is one of the main causes

of the significant performance gap between naive P2P provisioning and vmTorrent demonstrated

in Section 2.6.3.
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To provide additional diversity, we utilize a window-randomized selection policy that picks one

of the first k pieces at the head of the prediction queue to request4. Here, the window size k is a

tunable parameter that attempts to balance the urgency of pieces against the need for su�cient

peer diversity. If a large k is chosen, the gain from accurately predicting piece accesses degrades

as pieces fail to be prefetched in the order of predicted use. On the other hand, the choice of an

overly small k will prevent the swarm from providing scalability since too little piece diversity will

be achieved. Consequently, as the number of peers decreases, the time staggering of peers increases,

or the usage pattern diversity increases the optimal k will tend to be lower (since the pressure on

centralized servers is lower and the relative piece diversity in the network greater) and vice-versa.

2.5.3 Resource Management

On highly utilized end-hosts, allowing download bandwidth saturation by the P2PM may in fact

interfere with VM execution by hogging resources needed by the VMM. This e↵ect is due to

potential competition over scare resources such as memory, bus, etc. Particularly, given that the

majority of a VM is not used in most runs, downloading pieces comprised of such blocks at the

same rate as higher priority pieces containing profiled-or-demanded blocks “litters” bu↵er cache.

vmTorrent addresses this challenge by rate limiting the issuance of new piece requests when

possible. Default priority requests are always highly throttled, as it is rather unlikely they will

be of any use. Additionally in network regimes that provide more capacity than vmTorrent

needs to prefetch every piece in time, peers should additionally throttle their download rates while

prefetching in order to allow other peers, who may have a more urgent need, to utilize the swarm’s

upload capacity. Moreover, doing so reduces the load on the local system, thereby potentially

avoiding local resource contention between the P2P manager and the VMM. To do this vmTorrent

leverages deadline-aware throttling. If a su�cient bu↵er has been prefetched, further prefetch

operations will be throttled significantly until additional pieces will soon be needed. We do not go

into further detail here as our testbed environment did not provide su�ciently high data rates for

this technique to be applicable.

4In order to avoid radical modification to the libraries used to build our prototype, our prototype broke this single

k up into two di↵erent windows - one in the custom P2P manager code, the other in the BitTorrent library.
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Figure 2.4: vmTorrent prototype.

2.6 Experimental Evaluation

To evaluate our design, we implement a prototype version of vmTorrent for Linux hosts and

conduct extensive experimental evaluation. The foremost aim of our experiments is to determine

vmTorrent’s e�cacy in providing quick and scalable virtual appliance distribution and execution.

Our primary assessment metric is completion time: the time that it takes to execute a virtual

appliance/workload combination. In addition, we characterize VM execution delays due to late

arrival of image data. Our investigation focuses on two sources of delay: delay introduced by

prefetching mistakes made by our profile based prediction; and delay introduced by P2P delivery

ine�ciency.

2.6.1 Experimental Setup

Our prototype, shown in Figure 2.4, comprises a user-space file server tightly integrated with a

P2P client. This implementation is capable of transparent operation with any VMM/guest VM

combination, and without requiring any changes to the VMM, guest VMs, or the underlying system.

Our file server builds on bindfs [bindfs, ], a FUSE [Szeredi, ]-based file system for mounting
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a directory onto another location. The server provides a virtual file system that stores a locally

modifiable copy of the guest VM image. While a user-level file server potentially introduces perfor-

mance penalties over a kernel-based implementation, we show this overhead is su�ciently low for

our purposes (Section 2.6.4).

Our prototype’s P2P component is built on top of the libtorrent 0.15.5 [libtorrent, ] library. Like

most BitTorrent clients, libtorrent optimizes its piece selection policy to maximize file download

throughput. Since our goal is to minimize the delay for downloading particular pieces needed for

the VM execution, we modify libtorrent’s default piece section policy (e.g., rarest-first selection) to

support the low-latency prioritized piece download needed by the piece selection policies described

in Section 2.5. We also implement a high-frequency rate-throttling mechanism needed to support

both resource usage management and deadline-based policies.

We deploy vmTorrent on an Emulab network testbed [White et al., 2002]. Each experiment

consists of multiple hosts and an initial server which stays in the system for the duration of the

experiment. The hosts are selected from a pool of 160 “d710” machines at the University of Utah’s

Emulab installation. Each host was equipped with a 64-bit 2.4GHz Quad-Core Intel Xeon X5530

CPU, 12GB RAM, and a Barracuda ES.2 SATA 3.0-Gbps/7200-RPM/250-GB local disk. The

hosts run 64-bit Ubuntu 10.04.1 LTS with a modified 2.6.32-24 Linux kernel provided by Emulab.

The hosts use VMware Workstation 7.1.0 build-261024 as the VMM.

Hosts and server are connected to a 100Mbps private experiment LAN. While we would have

preferred to test vmTorrent on a 1 or 10Gbps network, 100Mbps was the upper limit o↵ered by

Utah’s Emulab. Hence, peer upload and download capacity was limited 100Mbps. All experiment

control and logging are conducted on a separate control network interface. While, unless otherwise

specified, peer metadata exchange is conducted on a full-mesh topology. Each host wis limited to

actively upload to at most five other hosts.

2.6.2 Methodology

We evaluate the performance of vmTorrent across the set of VM/workload combinations intro-

duced in Section 2.4. To study the system’s scalability, we vary the number of concurrent physical

machines hosting vmTorrent instances (i.e., the swarm size) from 2 to 100. For each set of pa-

rameters, we run 2-10 trials of each experiment (fewer trials were taken for larger swarm sizes as it
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Method Summary

demand FS front-end + ram-disk sshfs mount

p2p+demand vmTorrent without prefetching

p2p+demand+profile vmTorrent

local disk FS front-end + local disk

memory-cached FS front-end + ram-disk

Table 2.3: Deployment methods used for comparison.

was increasingly di�cult to obtain a su�cient number of physical machines from the shared pool),

presenting averaged results.

We compare the performance of four di↵erent scenarios summarized in Table :

1. demand refers to the scenario where pieces are fetched directly from a server via sshfs [Hoskins,

2006], run through the FS front-end mounted on a RAM disk (so all accesses after the first

read are done locally).

2. p2p+demand refers to vmTorrent with profiling turned o↵, where pieces are fetched from

the P2P swarm as they are demanded by the FS.

3. p2p+demand+profile refers to a full vmTorrent execution where piece selection is driven

by the profiled prefetching sequence of pieces.

4. local disk where the VM image is present locally at the start of the execution. While comparing

p2p+demand+profile against local disk is helpful in providing insight as to whether and how

well a given cloud setup can support virtualized execution, our main comparison is against

demand and p2p+demand, which as discussed on Section 2.2, are the current state-of-the-art

solutions in this domain.

We normalize our results with respect to a memory-cached execution using a RAM disk. Thus

memory-cached measurements provide a theoretical best-case scenario as neither network nor disk

I/O is incurred.
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2.6.2.1 Demand Performance Model

We also provide a back-of-the-envelope estimate of demand performance. Doing so allows us to

both sanity-check the performance of our prototype and to provide a performance comparison when

we are not able to empirically obtain demand numbers. Particularly, as discussed in Section 2.4.1,

the Win7 VM fails to auto-login if slowdown becomes too great, breaking our automated testing in-

frastructure. Consequently, Win7 graphs will be missing points for both demand and p2p+demand

scenarios on which normalized execution times are much greater than 4.

To produce our model, we break the network-execution time of a VM into two components.

We refer to the first component as base throughput delay : the number of bytes needed to complete

execution divided by the available network bandwidth. As was shown previously in Figure 2.2

(Section 2.4.1), peak throughput requirements may well outstrip available bandwidth - particularly

in OSes such as Windows 7 whose memory access patterns peak very sharply, causing additional

delay. Moreover, the RTT to request and obtain the first byte of a demand-fetched block will delay

execution even further. For now, we combine these two sources into a second component we refer

to as fetch delay. Given empirical measurements of both single-server, single-client execution time

and number of blocks accessed for a given task, we can then describe the expected demand delay

of a set of n peers as:

E[D
n

] = D
fetch

+ nD
throughput

(2.1)

The intuition here is that as the number of nodes increases, the fetch delay will play an increasingly

smaller role, becoming masked behind throughput delays.

2.6.3 Scalability

We show the results of running the four primary scenarios: p2p+demand+profile, p2p+demand,

demand and local disk where a number of clients attempt to execute a VM workload. We show

how closely our main vmTorrent scenario (p2p+demand+profile) matches local disk performance,

how well it scales with the number of participating clients, and how strikingly it outperforms other

network-based scenarios.

We run a series of experiments consisting of a single server with a complete copy of disk image

cached in memory and a set of peers running vmTorrent instances. We consider two downloading
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(a) Key. (b) Fedora/Boot-Shutdown. (c) Fedora/Latex.

(d) Ubuntu/Boot-Shutdown.. (e) Ubuntu/Latex. (f) Ubuntu/DocEdit.

(g) Win7/Boot-Shutdown. (h) Win7/PowerPoint. (i) Win7/Music.

Figure 2.5: Swarm-size vs. runtime: flash crowd/immediate departure.



35 CHAPTER 2. CLOUD COMPUTING: DEPLOYING VIRTUAL MACHINES SCALABLY

(a) Key. (b) Fedora/Boot-Shutdown. (c) Fedora/Latex.

(d) Ubuntu/Boot-Shutdown. (e) Ubuntu/Latex. (f) Ubuntu/DocEdit.

(g) Win7/Boot-Shutdown. (h) Win7/PowerPoint. (i) Win7/Music.

Figure 2.6: Swarm-size vs. runtime: flash crowd/delayed departure.
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(a) Key. (b) Fedora/Boot-Shutdown. (c) Fedora/Latex.

(d) Ubuntu/Boot-Shutdown. (e) Ubuntu/Latex. (f) Ubuntu/DocEdit.

(g) Win7/Boot-Shutdown. (h) Win7/PowerPoint. (i) Win7/Music.

Figure 2.7: Swarm-size vs. runtime: staggered arrival/immediate departure.
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(a) Key. (b) Fedora/Boot-Shutdown. (c) Fedora/Latex.

(d) Ubuntu/Boot-Shutdown. (e) Ubuntu/Latex. (f) Ubuntu/DocEdit.

(g) Win7/Boot-Shutdown. (h) Win7/PowerPoint. (i) Win7/Music.

Figure 2.8: Swarm-size vs. runtime: staggered arrival/delayed departure.



CHAPTER 2. CLOUD COMPUTING: DEPLOYING VIRTUAL MACHINES SCALABLY 38

peer arrival patterns: staggered, in which a new peer joins the system one second after the previous

peer had joined, and flash crowd, in which all peers arrive simultaneously. Likewise, we consider

two departure patterns: delayed departure, in which nodes stick around until the experiment is

over, and immediate departure, in which nodes leave the system as soon as they are finished.

The graphs in Figures 2.5-2.8 plot mean normalized runtime (y-axis) vs. swarm size (x-axis) for

both vmTorrent (p2p+demand+profile - using both 1-run and 1000-run profiles) and comparison

setups (p2p+demand, demand, and local disk). Each figure consists of eight plots, one for each

VM/workload combination described in Section 2.4. Each figure details one combination of peer

arrival and departure pattern.

From a scalability perspective, we would expect the most di�cult of these for both p2p variants

to be flash crowd arrival and immediate departure (Figure 2.5) and the easiest to be the combination

of staggered arrival and delayed departure (Figure 2.8). The results shown bear this expectation out.

However, as can be seen from visual inspection, vmTorrent’s performance remains substantially

the same across all arrival/departure patterns patterns for up to 32 nodes. For larger swarm

sizes of 64 and 100 nodes, performance does di↵er between immediate and staggered arrival, while

departure pattern appears to have minimal impact on both vmTorrent and p2p+demand.

While vmTorrent’s scaling with staggered arrival appears essentially flat, realizing our design

goals, for both 64 and 100 nodes, we observe a significant uptick in runtime (although vmTorrent

still radically outperforms current state-of-the-art). In Section 2.6.6 we will show that swarming

e�ciency problems appear to cause this flash-crowd performance issue, and provide suggestions on

how it may be ameliorated.

The lack of impact departure pattern has on runtime and scaling is less concerning, however we

provide brief explanation here. What happens, at least in the scenarios we have explored thus far, is

that peers arriving earlier take longer to run and all peers finish around the same time. Thus peers

that immediately disappear have little negative impact as other peers in the swarm have already

completed the vast majority of their download by that point. We observe a positive correlation

between transport delay and arrival time which accounts for much of the disparity, but not all of

it. Our hypothesis is that peers arriving earlier take a double performance hit: they benefit the

least from swarm upload (as newer peers had less to share with them) while getting essentially the

same share of the server (the portion of delay explained by transport delay), and they incur more
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overhead uploading than other peers (the portion of delay unexplained by transport delay). In this

way vmTorrent appears to naturally provide a degree of fairness to execution of VMs in a given

swarm.

The most essential take-away from this section is that across all arrival/departure patterns

and VM/workload combinations, the performance advantage of vmTorrent over state-of-the-art

competitors is best measured in orders of magnitude: 4-11X better than p2p+demand and 16-30X

better than demand. Further, vmTorrent’s performance remains comparable to that of local disk

for all swarm sizes examined and would seem likely do so for staggered arrival of significantly larger

numbers of peers without the need to introduce any additonal features to our prototype5. All of the

above observations appear to hold equally for the single-run and 1000-run profiles, indicating that,

at least for the relatively straightforward profiling approach we currently take, a small amount of

profiling goes a long way.

As predicted by Equation 2.1, the runtime of demand instances increases quickly with the num-

ber of clients as the server becomes the bottleneck. p2p+demand outperforms demand as it is able

to utilize some of the peer upload bandwidth. However, p2p+demand also scaled poorly due both

to sub-optimal bandwidth utilization and the e↵ects of latency delays discussed in Section 2.4.1.

This holds especially true when all peers arrive within a short time of one another (flash crowd),

they will all request highly overlapping sets of blocks. Consequently, su�cient piece diversity is

never achieved to allow for e�cient use of swarm member bandwidth. Since peers have relatively

little to exchange, each uses server bandwidth aggressively again causing bottlenecks.

This reasoning also explains why p2p+demand improves slightly under staggered arrival while

demand performance remains essentially the same. In staggered-arrival scenarios vmTorrent

avoids this problem completely by randomizing prefetched content as discussed in Section 2.5.

While for flash-crowd arrival, we will see in Section 2.6.6 that the abundance of high-priority

demand requests limits the e�cacy of such an approach.

Finally, we observe the small gap between vmTorrent execution and that of local disk on

both the Ubuntu and Win7 VMs across all tasks. On the Fedora VM this is even more pronounced

with vmTorrent significantly outperforming execution from local disk, confirming our guess from

Section 2.4.1 that Fedora workloads on vmTorrent might outperform those run from local disk.

5Section 2.6.6 discusses potential changes that would enable like scalability for flash-crowd arrival.
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(a) Cumulative delay vs. runtime.
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(b) Probability of mistimed errors vs. rank deviation.

Figure 2.9: Baseline performance: Ubuntu/Latex.

Moreover, we can see that because of the relatively serial execution of the Fedora VM (as opposed

to the highly parallelized execution of the Ubuntu and Win7 VMs), the advantage of vmTorrent’s

profile-based prefetching over non-prefetching p2p+demand is roughly twice as great as that of the

workloads run on the Ubuntu and Win7 VMs.

For the same reason, we can see the OS with the greatest peak-to-average access ratio, Win7,

performs worst with respect to local disk - at 100Mbps, even assuming perfect prefetching and

no latency delay, there is still a substantial gap between what the network can provide and what

the VMM’s ideal access pattern demands. However, we will see in Section 2.6.5 that these same

factors cause Fedora execution delays to extend significantly above the lower bounds shown in

Section 2.4.1, while the Win7 VM is able to essentially achieve that lower bound.

It is worth noting that our prototype achieves this performance despite having only approxi-

mately implemented the selection policies specified in Section 2.5. (1) Due to its queuing design,

libtorrent often reorders the pieces selected by our policy within a short time of one another. (2) A

peer fulfills multiple piece requests from a given neighbors highest priority first, however, it allocates

bandwidth amongst neighbors according to libtorrent’s default mechanisms which are di�cult to

modify.

2.6.4 Baseline Performance

We now dive deeper to examine why vmTorrent performs as it does. We begin by examining

the baseline overheads of vmTorrent running on a single client and server. In the subsequent
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discussion we attempt to isolate the e↵ect of profiling. In these single peer investigations the P2P

component of the architecture is inactive. Consequently we will omit the prefix p2p since it conveys

no additional meaning in this context.

We measure both the file server and transport delays. The file server delay is the cumulative

time VMM file access operations wait before completing. The transport delay measures the portion

of file server delay that is incurred while waiting for data to be downloaded from the network.

For this discussion, we consider the baseline performance of the Ubuntu VM running the Latex

workload. We found the performance of other VM/workload combinations to be substantially

similiar. Figure 2.9(a) plots both the total file system delay and its network transport component

(y-axis) as functions of VM runtime (x-axis) using normal (demand+profile) and prefetch disabled

(demand) delivery policies, as well as the total file system delay for execution from local disk. This

figure shows that the dominant part of the delay experienced by the VMM is due to network delay.

The shapes of the demand+profile and demand curve pairs will likely remind the reader of those

shown in Section 2.4.1, plotting cumulative disk access against runtime. This is no coincidence -

the delay spikes in this graph correspond directly to the access spikes shown in Figure 2.2(b).

Figure 2.9(a) shows that in the first five seconds of runtime all network-based execution vari-

ants experience a small spike in file server delay and an almost equally-sized spike in transport

delay. From this we can conclude the the transport delay component of file server delay completely

dominates other components during this period. Confirming this conclusion, we see that file server

delay seen by execution from memory does not budge during this period. In fact, over the course

of the entire run it accounts for slightly over 1% of the total runtime.

This early spike in delay experienced by network-based variants corresponds to the first set of

file accesses made by the VMM on boot of the VM. Between five and 15 seconds, demand+profile

encounters no additional delay. This is because during this period, prefetch over the network at

100Mbps stays ahead of download. demand, however, being unable to prefetch data su↵ers another

delay spike at 10 seconds as it waits to fetch additional data for the boot process. From 15 to 35

seconds both demand+profile and demand experience linear increases in delay as they their maxi-

mum download rates are exceeded by those of the memory-cached run. However, after 35 seconds,

demand+profile based execution has managed to download all of the data it will need (save for oc-

casional false negatives), after which file access and transport delays diverge slightly (separated by
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Test Demand (s) Profile (s)

Fedora 08 / 46 00 / 19

Ubuntu 24 / 27 13 / 18

Win7 32 / 36 21 / 21

Table 2.4: Transport delay by VM (lower bound / empirically observed).

less than 4% of total runtime). Meanwhile, demand lags behind, encountering additional transport

delay all the way until shutdown. These transport delays translate directly to increases in runtime,

from 37 s for mem-cached to 56 s for demand+profile and 66 s for demand.

In summary, the baseline overhead for both vmTorrent’s file server and P2PM (single-client

mode) is minimal with respect to other causes of delay such as prediction errors, swarm ine�ciency,

which we now examine.

2.6.5 Prediction/Profiling Performance

We continue our single server and client investigation, exploring demand+profile-based prediction

performance. We begin by comparing the runtimes of demand+profile and demand with the trans-

port delay lower bounds described in Section 2.4.

These numbers are shown in Table 2.4 which list lower bound (from Section 2.4.1) transport

delay / empirically observed file server delay pairs for demand and demand+profile respectively. The

first thing to note is that our demand+profile-based prediction technique does provide significant

improvement over demand across all VM types.

Additionally, the lower bounds calculated earlier appear to bound empirically observed delays

quite well for both the Ubuntu and Win7 VMs, particularly for the latter. However, perhaps

unsurprisingly by this point, the observed delay for the Fedora VM greatly exceeds the caculated

lower bound. As previously, the di↵erence here is attributable to the Fedora VM’s relatively

serial startup execution pattern. While the latency delays (e.g., network RTT and peer request

servicing time) discussed previously may be masked by the highly parallel execution behavior of

the Ubuntu and Win7 VMs, the Fedora VM lacks such parallel threads behind which to mask these

delays. Consequently, even utilizing profile-based prefetching, Fedora execution on vmTorrent

encounters significant delay - as any misprediction will directly impact performance. Conversely,
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for the most highly parallelized VM, Win7, vmTorrent-based execution actually achieves the

calculated lower bound (at measured granularity of one second), as latency delays due to less-than-

optimal prefetching are hidden by other non-I/O-blocking threads that can utilize system resources

during that thread’s I/O wait.

Given that many VMs will not possess su�cient parallelism to completely mask latency-based

delay (and some, like our Fedora VM, will be greatly e↵ected by such delays), we now consider

the impact of false positives and false negatives. Interestingly, here, we find that there were many

pairings of ordering metric and frequency cuto↵ (Section 2.5), that produced the shortest runtimes

for a given workload on the Ubuntu and Fedora VMs. The reduction in false negatives for frequency

cuto↵s below a certain point was more than o↵set by the increase in false positives. Likewise

above a certain frequency cuto↵, the reverse occurred. In between these, all cuto↵s had essentially

equivalent performance. Similarly, switching the ordering metric between mean, median, and min

altered the distribution of delays but had relatively little impact on their sum. In order to do

better, it appears a more sophisticated policy that predicts pieces accesses based on the execution

trace will be needed.

Mistimed errors present the final source of missed performance. From Section 2.4, we know

that at 100Mbps networks, hosts that fail saturate their bandwidth with prefetching requests will

experience linearly increasing delays. Consequently, we only need worry about mistimed errors

on blocks that were need earlier than predicted. We use rank deviation as the measure of these

mispredictions. Rank deviation for piece u is defined by

rankDev(u) = rank(u)� accessRank(u) (2.2)

where rank(u) is piece u’s position in the profile and

accessRank(u) = |v|+ |w| (2.3)

for pieces v earlier in the profile that were actually accessed before u and false positive pieces

w that came before u in the profile. Essentially, the larger the rank deviation, the earlier the

piece was used with respect to those predicted to be needed before that piece. Figure 2.9(b) show

the relationship between the likelihood of mistimed errors occuring (y-axis) and rank deviation

(x-axis) for a representative vmTorrent-based VM execution. The essential, although perhaps

unsurprising, insight here is that the less accurate our predictions are, the more likely we are to
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(a) Single peer. (b) 16 peers. (c) 100 peers.

Figure 2.10: Diversity parameter settings.

incur overheads. This finding indicate that by improving the quality of our predictions we may

avoid such errors. Here again, it appears that we require more sophisticated profiling and prediction

techniques to considerably improve performance.

2.6.6 Swarming E�ciency

As discussed in Section 2.5.2, vmTorrent’s scalability requires e�cient swarming. If vmTorrent

is unable to leverage the spare bandwidth of peers e↵ectively, the potential gains from P2P will re-

main unrealized. Consequently, we conclude our investigation by examining the swarming e�ciency

of our vmTorrent prototype. In this study, we examine the swarming e�ciency of the Ubuntu

VM running the Boot-Shutdown workload. We expect that other VM workload combinations will

demonstrate substantially similiar properties. The graphs shown here were produced for flash crowd

arrival, as our current prototype implementation already possesses the scaling properties we desire

for staggered peer arrival.

In Section 2.5.2, we discuss the theoretic trade-o↵ between in-order and randomized prefetch,

noting that increased randomization increases piece diversity at the expense of potential VMM

delays due to pieces being fetched out of order. Roughly speaking, we would expect that for small

swarms, in which swarming is less likely to be e�cient and the server is likely to fill the bulk of

requests, the best strategy for peers would be to keep their downloads fairly strictly time-ordered

with respect to their predicted image access pattern. As swarm size increases, however swarm

e�ciency will become critical for peers to obtain good throughput and latency, implying that



45 CHAPTER 2. CLOUD COMPUTING: DEPLOYING VIRTUAL MACHINES SCALABLY

diversity ought to be maximized, even at the cost of potential additional late positives.

The three plots in Figure 2.10 demonstrate this trade-o↵ for one, 16, and 100 nodes respectively,

plotting runtime (z-axis) against the pair of diversity windows used in our prototype’s implemen-

tation6 (in log-scale) on the x and y axes.

As expected, for a single node, increasing randomization simply results in additional delay

as pieces arrive out of the required order (Figure 2.10(a)). However, in both Figures 2.10(b)

and 2.10(c), we can see that in-order prefetch provides the very worst performance, since it fails

to provide su�cient piece diversity to support e�cient swarming. Moreover, the delay due to

throughput losses from ine�cient swarming exceeds that of the delay due to out-of-order piece

arrival (as seen in the single node case) by orders of magnitude. While increasing diversity for both

the 16 and 100 nodes cases past a certain point does result in slightly decreased performance, these

decreases are tiny compared to the drastic gains achieved by increasing prefetch randomization (and

thereby swarming e�ciency). However, as can be seen from these figures, irrespective of how much

prefetch randomization is introduced, the lowest achievable runtime using prefetch randomization

increases greatly from 16 to 100 nodes.

To determine why this occurs, for each data point shown in Figures 2.10(b) and 2.10(c), we

analyze the average peer download rate over time. These time-series are shown in Figures 2.11(a)

and 2.11(b), respectively, plotting the average peer download rate (y-axis) against time (x-axis).

Examining Figure 2.11(a), we see that the best parameterizations shown in Figure 2.10(b) can

achieve a sustainable peak rate of roughly 80Mbps. Further this rate is reached after a relatively

short six s startup period and remains relatively stable thereafter (until a drop-o↵ when the profile

is exhausted and vmTorrent transitions to non-prefetching mode).

Contrastingly, the behavior shown for 100 nodes in Figure 2.11(b) di↵ers greatly. Firstly, the

best parameterizations shown in Figure 2.10(c) only achieve roughly 60Mbps sustainable peak

rates - a 25% drop from those achieved in 16 node swarms. Secondly, the startup period required

until vmTorrent attains significant download speed is close to 3X longer than needed for the 16

node swarm. Finally, even after this point, significant fluctuation in the download rate occurs as

it swings up and down until stabilizing (to the extent it does) at the peak rate roughly 35 seconds

6Recall from earlier discussion in Section 2.5.2 that randomization needed to be introduced in both our custom

P2P manager code and the libtorrent library in order to minimize changes to that library.
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(a) 16 peers.

(b) 100 peers.

Figure 2.11: Swarming e�ciency.



47 CHAPTER 2. CLOUD COMPUTING: DEPLOYING VIRTUAL MACHINES SCALABLY

after arrival of the flash crowd. While this clearly explains the flash-crowd arrival scaling problems

seen for larger swarm sizes in Figures 2.5 and 2.6, can we use this information to devise a fix?

The behavior of this average rate indicates that for larger node populations and flash crowd

arrival, randomizing prefetch requests will not provide su�cient piece diversity to support reason-

ably e�cient swarming until a significant period of time has elapsed. The long period until the

swarm begins providing significant benefit indicates that the node population lacks su�cient piece

diversity for most of the first 20 seconds. Likewise, the increasingly small rate swings that occur

thereafter indicate piece diversity increasing, being used up and then increasing again in fits and

starts. We believe our design choice to deterministically prioritize demand requests over profile

requests (see Section 2.3.2) bears responsibility for this pathology.

In smaller swarms, the server has enough capacity to fill a reasonable proportion of prefetch

requests even during startup, while in larger swarms a significantly larger proportion of requests

serviced are demand requests. But since all VMs in the swarm are issuing demand requests for

essentially the same pieces (at the expense of low-priority randomized prefetch requests), it takes

a relatively long time to achieve piece diversity in the swarm. Moreover, even once piece diversity

has been realized, this diversity may quickly shrink when several of the quickest executing peers hit

a section of the VM image for which their prefetch requests have not yet been filled - and thus are

upgraded to demand requests, which again starve randomized prefetch requests for a short time.

We believe that this pathology can be avoided by introducing a more nuanced technique for

servicing demand request and prefetch requests. Instead of giving demand requests deterministic

priority over prefetch requests, the server may keep track of recently filled demand requests and

demote subsequent ones for the same piece. Likewise, peers may keep local estimates of current

swarming e�ciency (based on upload and download rates to peers) and use these to reprioritize

demand and prefetch requests. When swarming e�ciency is low, a peer may increase the priority of

prefetch requests and vice-versa. In future work, we plan to implementation and test such policies.

2.7 Summary

We have presented our design, implementation and evaluation of our vmTorrent system. By

incorporating quick-start, scalability, and smoothness features into our design, we have been able
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to achieve close to perfect scalability in our quest to minimize VM execution time. Our

vmTorrent prototype outperforms current state-of-the-art by up to 11X. Further, we provide

detailed examination of our prototype’s functioning with concrete suggestions for future work likely

to resolve current shortcomings.
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Chapter 3

Green Computing: Enabling Desktop

Energy-E�ciency

3.1 Overview

Remote login/access capabilities have become widespread over the past decade. Thus a large

number of enterprise users now expect they will be able to interact at will with their work machine,

whether they are at home or on the road.

However, traditionally, desktop OS power management schemes assume users and machines will

be physically collocated. If a user is present and active the machine stays awake, if not, the machine

transitions to a low-power mode. If the user returns after the machine has fallen asleep, interaction

with attached input devices will wake the machine. The introduction of remote access violates this

model, as remote access bypasses physically attached input devices.

Sleeping machines now must be prepared to wake on appropriate network events in addition

to those occurring on local peripherals, functionality unsupported by current power management

designs. Consequently, most users adopt the wasteful, but convenient, strategy of idling their

desktop computers 24/7 to support what is typically very occasional remote use [Nedevschi et

al., 2008; Agarwal et al., 2009; Webber et al., 2006; Allman et al., 2007]. The environmentally-

conscious remainder turn their machines o↵ when leaving the o�ce, but at the cost of potentially

lost productivity. Our own study at Microsoft Research finds hundreds of desktop machines awake,

day or night – a significant waste of both energy and money. Indeed, potential savings can amount
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to millions of dollars per year for large enterprises [Washburn, ].

As businesses become more energy conscious, more desktops may be replaced by laptops. How-

ever, currently desktops comprise the majority of enterprise machines [eforcast, ], with hundreds

of millions additional desktops being sold every year [idc, ; Maisto, 2009; eforcast, ]. Where users

make heavy use of local resources (e.g., programming, engineering, finance), desktops continue to

be the platform of choice. Hence, managing desktop power consumption is an area of both active

research [Nedevschi et al., 2008; Agarwal et al., 2009; Webber et al., 2006; Allman et al., 2007] and

commercial [Adaptiva Technologies, ; verdiem, ; rwt, ] interest.

The most common reason that desktops are kept idling is that users and IT administrators want

remote access to machines at will. Users typically want to log into their machines or access files

remotely [Agarwal et al., 2009], while IT administrators need remote access to backup, patch, and

otherwise maintain machines. A number of solutions to this problem have been proposed [rwt, ;

Agarwal et al., 2009; Allman et al., 2007; Nedevschi et al., 2008]. The core idea behind these is to

allow a machine to sleep, while a sleep proxy maintains that machine’s network presence, waking

the machine when necessary. Some of these proposals rely on specialized NIC hardware [rwt, ;

Agarwal et al., 2009]; others advocate use of network-based proxies [Allman et al., 2007; Nedevschi

et al., 2008].

Unfortunately, most previous work has been evaluated either using small testbeds [Agarwal et

al., 2009; Nedevschi et al., 2008; Allman et al., 2007] or trace-based simulations [Nedevschi et al.,

2008]. We are not aware of any paper detailing the deployment of any of these proxying solutions

in an operational enterprise network on actual user machines.1 This is disconcerting: systems that

work well on testbeds often encounter potentially serious challenges when deployed in operational

networks.

This work aims to fill that gap. We describe the design and deployment of a network-based sleep

proxy on our corporate network. Our design expands on the light-weight network proxy approach

proposed in [Allman et al., 2007; Nedevschi et al., 2008], avoiding hardware modification [Agarwal

et al., 2009] and the overhead of virtualization [Das et al., 2010]. Our architecture comprises two

core components: a per-subnet sleep proxy, and a sleep notifier program that runs on each client.

The sleep notifier alerts the sleep proxy just before the client goes to sleep. In response, the proxy

1Concurrent work [Agarwal et al., 2010], provides the first study of sleep proxy deployment in an academic network.



51 CHAPTER 3. GREEN COMPUTING: ENABLING DESKTOP ENERGY-EFFICIENCY

sends out ARP probes [Cheshire, 2008] to ensure that all future tra�c meant for the sleeping client

is delivered to the proxy instead. The proxy then monitors this tra�c applying a reaction policy :

responding to some packets on the client’s behalf, waking the sleeping client for certain specified

tra�c (using Wake-on-LAN (WOL) [wol, ] packets), and ignoring the rest. Our reaction policy

of waking for incoming TCP connection attempts on listening ports was chosen both in keeping

with our goal for a light-weight, easily deployable system and based on the performance predictions

of [Nedevschi et al., 2008]. We provide in-depth discussion of the merits of this and alternative

approaches in Section 3.3.

While our system has been in continuous operation since our first deployment in summer 2009,

gaining both users and IT buy-in, this work presents the first six months of data on our initial

deployment of slightly over 50 active users. Our software is deployed on user’s primary workstations,

not test machines. We have instrumented our system extensively; capturing numerous details about

sleep and wake-up periods, why machines wake up and why they stay up. Instead of using generic

estimates of PC power consumption, we use a sophisticated software-based, model-driven system,

Joulemeter, to estimate power draw.

In this chapter:

2. We design and prototype a lightweight and economical sleep-proxying system for use in the

enterprise. (Sections 3.3 and 3.4)

3. We roll out the first substantial deployment of any sleep-proxying system in a corporate

environment. We deploy our software on over 50 user machines in six subnets. Almost all of

these machines are primary user workstations. (Section 3.6)

4. We measure the performance of our system, collecting over half-a-year’s worth of data. We

instrument our system extensively; capturing numerous details about sleep and wake periods,

data which explains why machines wake up and why they stay up. Instead of using generic

estimates of PC power consumption, we use a sophisticated software-based, model-driven

system, Joulemeter, to estimate power draw. (Sections 3.5 and 3.7)

5. Additionally, we describe a number of practical issues we encountered when deploying a

light-weight sleep proxy in a corporate network. Many of these have been overlooked by

previous work. For example, our implementation must not only deal with vanilla IPv4 and
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IPv6 packets, but also tunneled packets. Our corporate network uses IPsec, and we find

that a seemingly minor implementation choice in this setup, almost entirely ameliorates the

overhead of dealing with this tra�c. We describe race conditions that arise when the sleep

proxy attempts to redirect tra�c from sleeping client to itself, and provide a practical solution.

We show how issues such as DHCP lease expiration and proxy failure can be handled without

the need for the more complex mechanisms suggested by previous work. (Section 3.4)

6. Finally, we outline several unexpected insights provided by our work, the most significant of

which indicates that one of the major concerns of previous work currently plays a secondary

role in determining energy savings. The primary factor turns out to be the configuration of

IT software and network services. (Section 3.7)

The highlights of our deployment experience and performance assessment are: A light-weight

system using a simple reaction policy can produce significant savings. By analyzing trace

data from our system, we find that our system allowed the clients to sleep quite well. Many machines

slept over 50% of the time, despite use of a simple reaction policy. However, the average power

savings was only 20%, casting a pall over the optimistic predictions made in [Nedevschi et al., 2008;

Agarwal et al., 2009].

IT servers and applications proved a major impediment to sleep. The main cause of

reduced power savings in our enterprise network was due to the IT setup. We find that while users

do access their machines remotely, remote accesses by IT applications are the primary cause of both

machines being woken (fitful sleep) and being kept awake (insomnia). IT server connection attempts

repeatedly woke sleeping machines. In one extreme case, a single machine was contacted over 400

times within a two-week period. Additionally, some of the locally running IT applications (e.g.,

virus scanners) kept machines up by temporarily disabling sleep functionality. We also identify bugs

in common software (e.g., Adobe Flash player) that interfere with proper sleeping. Fortunately, it

appears there is significant room for improving the compatibility of IT setup and e↵ective sleep.

We discuss IT setup impediments and remedies further in Section 3.7.6.

The rise of cloud-based applications may demand more complex reaction policies. Three

of our users required support for two popular cloud-based applications, LiveMesh and LiveSynch.

Machines running these, or similar, applications must initiate TCP connections to the cloud server,

which are used to inform them of any pending updates. These connections can either be periodic,
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or long-lived, but it must be initiated by client. We refer to cloud applications of this type as

persistent2. Consequently, to support such cloud-based applications the sleep proxy will need to

keep some additional state which may be as simple as sending TCP keep-alives or as complex as

running a virtualized client-side of the application. While this did not pose a major issue in our

operational environment/population, as/where the predominance of persistent cloud applications

increases, reaction policies supportive of this model will be needed.

Overall, we believe that the insights gleaned from our experience will be useful in guiding the

design and deployment of future sleep solutions in enterprise networks.

3.2 Related Work

While the basic concept of sleep proxying has been known for some time [Christensen and Gulledge,

1998], it has received much renewed attention lately [Allman et al., 2007; Nedevschi et al., 2009;

Agarwal et al., 2009]. Among recent publications, the two most closely related to our work

are [Agarwal et al., 2009] and [Nedevschi et al., 2009].

In [Agarwal et al., 2009], the authors describe a hardware-based solution. They augment the

NIC with a GumStix [gumstix, ] device, which is essentially a small form factor, low-powered PC.

Once the host machine goes to sleep, the GumStix device takes over. It handles select applications

(e.g., file downloads) on behalf of the host PC, but wakes up the host PC for more complex

operations. While this approach is more flexible than the sleep proxy we have built, it is far

less practical for two reasons. Not only is additional hardware required on every PC, but both

applications and host OS modification are required to enable state transfer between host PC and

GumStix device. Both these requirements are a substantial barrier to widespread deployment

of this technology. In contrast, our approach requires neither extra hardware, nor application

modifications.

In [Nedevschi et al., 2009], the authors carry out an extensive trace-based study of network

tra�c, arguing for a network-based sleep proxy. Their primary finding is that in an enterprise

environment, broadcast and multicast tra�c related to routing and service discovery cause sub-

2Many cloud-based applications including most “software as a service” applications (e.g., Google Docs) are not of

this type
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stantial network “chatter”, most of which can be safely ignored by a sleep proxy. They also posit

that most unicast tra�c directed to a host after it has gone to sleep can also be ignored, so

long as the host is woken when tra�c meant for a set of pre-defined applications arrive (early

work had focused on avoiding disrupting existing TCP connections [Christensen et al., 2004;

Jimeno et al., 2008]). Based on these insights, they propose a number of sleep proxy designs.

While our proxy design builds upon the insights of [Nedevschi et al., 2009], we make several ad-

ditional contributions in this dissertation. First, unlike [Nedevschi et al., 2009], our design includes

a client-side agent, which considerably simplifies the overall architecture, making it robust, and

virtually configuration-free. Secondly, we build and deploy our sleep proxies in a real operational

network on users’ primary workstations. In contrast, the prototype in [Nedevschi et al., 2009] was

tested only a small testbed without real users, and did not address challenges such as IPsec tra�c

and proxy failures. Third, our instrumentation measures sleep and wake-up behavior of operational

machines. We document why machines do not sleep, when and why they wake, etc. Fourth, our

deployment includes a model-based power measurement component. Since machine power usage

can vary by 2.5x while awake, our power estimates provide significantly greater fidelity than the

“one size fits all” model used by [Nedevschi et al., 2009].

Two pieces of concurrently published work address alternative sleep proxying architectures that

make use of a networked sleep proxy. [Agarwal et al., 2010] implements a stub-based reaction policy

along the lines of [Agarwal et al., 2009] and evaluates it in an academic network, while [Das et al.,

2010] runs client machines within a hypervisor and migrates these to the sleep proxy machine. We

provide further comparison in Section 3.3.3.

We now turn to commercial systems. Intel o↵ers two hardware-based solutions, Remote Wakeup

Technology (RWT) [rwt, ] and Active Management Technology (AMT) [amt, ], that can remotely

wake up a sleeping machine. AMT is primarily meant for management tasks (e.g., out of band

access for asset discovery, remote troubleshooting). RWT is more closely related to our work.

RWT requires the NIC of the sleeping machine to maintain a persistent TCP connection to an

authorized server. The NIC wakes up the host machine upon receiving a special message over

this TCP connection. RWT requires modification of client applications and works only with Intel

hardware. Even the wakeup service has to be digitally signed by Intel. In contrast, our solution is

entirely software-based, hardware-agnostic, and requires no application modification.
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Apple has recently released a sleep proxy geared toward home networks that works only with

select Apple hardware [apple-wol, ]. For enterprise networks, systems such as Adaptiva [Adaptiva

Technologies, ] and Verdiem [verdiem, ] are available. The primary focus of these systems is to

enable the system administrator to estimate power usage, and wake up sleeping machines to perform

management tasks such as patching. A number of industry participants are trying to standardize

basic sleep proxy functionality [Committee, 2009].

Several other approaches to saving power, such as power-proportional computing [Barroso and

Hölzle, 2007], dynamic voltage and frequency scaling [Sinha and Chandrakasan, 2001], the TickLess

kernel [tic, 2009] and OS-level power management [Snowdon et al., 2009] have been investigated,

and can be used in conjunction with our system. Researchers have also looked at networking

hardware and software stacks as potential targets for power savings. Examples include [Gupta

and Singh, 2003; Nedevschi et al., 2008; Chabarek et al., 2008; Blackburn and Christensen, 2009].

[Al-Fares et al., 2008; Valancius et al., 2009; Mahadevan et al., 2009] examine data center power

consumption and savings approaches.

Prior work has shown that CPU utilization and certain performance counters can be used to

estimate computer energy use [Rivoire et al., 2008; Bircher and John, 2007; Fan et al., 2007].

Our power estimation technology provides enhanced accuracy by considering additional factors not

considered in prior work, such as processor Dynamic Voltage and Frequency Scaling (DVFS) states

and monitor power.

3.3 Design Goals & Alternatives

As discussed earlier, enterprise users often do not let their machines sleep as they may require

remote access. Our goal in deploying a sleep proxy is to encourage users to allow their machines to

sleep – by ensuring their machine will wake on remote access attempts. We now describe the basic

functionality required from a sleep proxy, define our design goals, and describe design alternatives.

Before we begin, we note that our use of the term ”sleep” refers to ACPI S3 (suspend to RAM) [acpi,

]. Our system supports ACPI S4 (hibernate) and S5 (power o↵) as well.
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3.3.1 Basic sleep proxy functionality

A sleep proxy detects when a sleep client machine (M) has gone to sleep, typically because that

machine’s idle timeout had been reached.3 The proxy then monitors network tra�c destined for

M . Based on a pre-defined reaction policy, the sleep proxy will, (a) respond to some of the tra�c

on behalf of M (e.g. ARP requests for M), (b) wake M for selected tra�c (e.g. TCP SYNs for M)

and (c) ignore the remainder.

3.3.2 Design goals

Our goal is to build a practical, deployable sleep proxy for typical corporate networks, composed

of desktop machines with wired connectivity. In a typical usage scenario, the user’s machine goes

to sleep, and wakes automatically on remote connection attempts.

The design of our sleep proxy was directed by four goals. (a) The system had to save as much

power as possible, (b) while minimizing disruptions to users. It is critically important to ensure

a sleeping machine is always woken when the user desires access: otherwise no one would use the

system. Furthermore, the system had to be (c) easy to deploy and maintain, since we operated

without the benefit of a large IT sta↵. We explicitly decided not to add hardware to client machines,

as it makes deployment significantly harder. Finally, we required the architecture be (d) scalable

and extensible, since the system had to operate in a dynamic live network

It was not our goal to support laptops per se as they o↵ered much less opportunity for power

savings. They consume much less power when active, and are more often put to sleep by users.

Thus, while some of the work we have done is applicable to laptops, we do not address laptop-specific

challenges such as mobility in our work.

As all the machines in our network run Windows, some details of our implementation are

Windows specific. However, our architecture is designed to be OS agnostic.

3.3.3 Design alternatives

We now consider three design alternatives, and evaluate them in light of our requirements.

3In Windows, the idle timeout is typically 30 minutes from power up / last user activity, and two minutes for any

other wake cause (e.g., scheduled wakeup, WOL).
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3.3.3.1 NIC Pattern Matching

The first potential approach is to simply use the combination of Wake-On-Pattern+ARP O✏oad.

This capability is available on most modern wired NICs.

How it works: The NIC e↵ectively acts as the sleep proxy for the machine. It responds to incoming

ARPs on behalf of the sleeping machine (ARP O✏oad), thereby maintaining the machine’s network

presence. The NIC can be programmed to detect specific patterns in incoming tra�c, and wake

up the host machine if a packet with specified pattern arrives (Wake-On-Pattern). The interface

for specifying patterns [ndis-pattern, ] includes built-in support for IPv4 and IPv6 TCP-SYNs; one

only need specify additional information (e.g., ports). Raw bit patterns can also be specified.

Pros: These NICs are available on most modern machines, so no additional hardware needs to be

deployed.

Cons: We found that for our purposes the capabilities o↵ered by these NICs were not adequate.

Our corporate network is quite complex: it supports IPv4, IPv6, v6-over-v4 and requires IPsec. To

ensure machines were woken whenever users required access, we had to handle packets requiring

flexible inspection (e.g. a TCP SYN in an ESP packet carried in an IPv6 packet, tunneled in

an IPv4 packet - Section 3.4.3.2). While such packets may be detected by explicit bit-pattern

matching, the number of wakeup patterns needed is a multiple of the number of listening ports

(to detect tunneled variations) plus several base patterns for standard WOL functionality. NICs

on older machines can support as few as four wake patterns and are limited to detecting matches

in the beginning of the packet which restricts the ability to detect tunneled packets. Moreover,

future needs (e.g., support for persistent cloud applications) may dictate stateful reaction policies

or deeper packet inspection, beyond current NIC capabilities. Thus, this approach fails criteria (b)

and (d).

3.3.3.2 Virtualization

How it works: Users install a hypervisor on their desktop, and then install and use a VM on top

of the hypervisor[Das et al., 2010]. When the desktop machine needs to sleep, the VM is migrated

to a hosting server. When necessary, (e.g. a CPU intensive application is run), the desktop machine

is woken, and the VM migrated back.

Pros: This approach is attractive because if the migration can be made seamless, the desktop does
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not have be woken up for transactions of even moderate complexity that can be carried out on the

hosting server. As the machine can go to sleep without interrupting existing network connections,

the machines can go to sleep much more often, and hence the power savings may be greater.

Cons: To deploy a system based on this approach, we would have had to install hypervisor on the

end user systems and boot their existing OS as a VM. Most users would not have agreed to such a

drastic change to their work environment. Apart from taking a performance hit, virtualization may

encounter problems with a number of common end-user devices (e.g., cameras, external drives),

whose drivers do not always work well when virtualized.

3.3.3.3 Network-Based Sleep Proxies

This approach was proposed in [Christensen and Gulledge, 1998], its feasibility recently given careful

study by [Nedevschi et al., 2009].

How it works: This approach relies on a separate machine acting as a sleep proxy for the sleeping

machine. The sleep proxy detects when a client goes to sleep. It then modifies Ethernet routing

(Section 3.4.3.1) to ensure that all packets destined for the sleeping machine are delivered to the

sleep proxy instead. The proxy examines the packets, and wakes up the sleeping client when needed,

by sending a Wake-On-LAN (WOL) [wol, ] packet.

Pros: Very little hardware support is required from the client machine - the client NIC only needs

to support WOL. As the sleep proxy runs on a separate, general purpose computer, it has great

flexibility in handling incoming tra�c for the sleeping machine. The sleep proxy can do complex,

conditional packet parsing and can even wake the sleeping machine based on non-network events

such as requests by system administrators, users entering the building (with support from building

access systems), etc. This design also scales well (Section 3.7.5.2).

Cons: This design requires deployment of a sleep proxy on a separate machine (generally one per

subnet supported). In most variations a client-side application must be installed as well.

We have chosen this approach as it is both very easy to deploy and requires minimal changes to

user machines. It a↵ords great scalability and flexibility as the sleep proxy can be changed without

disturbing the client machines. We have chosen to use light-weight reaction policy which simplifies

both client and proxy software complexity and allows a very large number of hosts to be handled

by a single proxy. This reaction policy does cause existing network connections are broken. We
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argue that this is not an issue for typical corporate workloads (Section 3.4.4), although this may

change if persistent cloud computing applications play a greater role in corporate environments.

Contrastingly, [Agarwal et al., 2010] uses a stub-based reaction policy, capable of maintaining

existing network connections and waking the host somewhat more infrequently. This comes at the

cost of implementation complexity and will allow fewer clients to be hosted on a sleep proxy. Their

implementation uses an ESX server that would preclude either low-power sleep proxies (Section 3.6)

or peered proxying (Section 3.8). Their reaction policy faces the same impediments from sleep-

unfriendly IT setups as ours - by far the main source of lost sleep opportunities in our environment

- as IT tasks generally require waking clients.

3.4 Architecture

LAN

SUBNET 
ROUTER

Experiment
DB

Apps.

Sleep 
Notifier

Joulemeter

Sleep 
Proxy

CLIENTS

WAN
Remote

Application
User

Figure 3.1: System block diagram. Blocks shaded gray represent existing components that

are not modified in any way for the sleep proxy to work. Blocks with dashed outlines are part

of our instrumentation setup.

The overall architecture of our system is shown in Figure 3.1. We require one sleep proxy per
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subnet. We also required the clients to install a small background service4, sleep notifier. In this

section, we will focus on the design of the sleep proxy and the sleep notifier which form the core of

our solution. We discuss Joulemeter in Section 3.5.1

As discussed earlier, a sleep proxy responds to some tra�c, wakes the sleep client for other

tra�c, and ignores the rest. Our choice of reaction policy is similar to that of the proxy scheme

(proxy3 ), which [Nedevschi et al., 2009] found provided the highest simulated power savings. This

reaction policy, whose rationale is discussed in Section 3.4.4, responds mechanically to IP resolution

requests (e.g., ARP) and wakes the sleep client only on TCP connection attempts to listening ports5,

ignoring other tra�c.

Before digging into design details (Section. 3.4.2 and 3.4.3), we provide a quick overview of how

our system works.

3.4.1 System Overview

Imagine a sleep client M running sleep notifier. M ’s sleep notifier registers with the OS to receive

notification when the machine is about to go to sleep. At such time, the OS alerts the sleep notifier.

M ’s sleep notifier then alerts the sleep proxy S that M is going to sleep, providing a list of M ’s

TCP ports in the listening state (actively listening for incoming connections). Assume that the

SSH port, 22, is one such port.

Upon receiving the notification, S adds M to its list of proxied clients and sends out an ARP

probe (Section 3.4.3.1), re-mapping the switched Ethernet to direct future packets for M to the

network port at which S resides. S now begins receiving tra�c that was meant for M . S responds

to ARP requests and IPv6 Neighbor Discovery packets as if it were M , thereby maintaining M ’s

network presence and ensuring tra�c for M continues to arrive at S.

Some time later a remote client C attempts to connect to the sleeping machine M , using SSH.

As the first transport-layer action taken in establishing this new connection, C sends a TCP SYN

on port 22 to M which the switched Ethernet routes to S.

Upon examining the packet, S determines that it is a TCP SYN meant for M and destined to a

4A daemon, in Unix terminology.

5There being no reason to wake the machine for connections to non-listening ports, which would just be ignored

anyway.
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port on which M was listening when it when to sleep. S therefore wakes M up by sending it a WOL

packet (Section 3.3.3.3), removes M from the proxied client list, and drops the TCP SYN. As M

wakes up, it sends its own ARP probes, which ensure that future tra�c meant for M will arrive at

M ’s network port. Meanwhile, C retransmits this SYN following the normal TCP timeout. The

retransmitted SYN arrives at M , who responds as normal, thereby establishing the TCP connection

without C being any the wiser, except for a small delay - quantified in Section 3.7.5.1.

3.4.2 The Sleep Notifier

Installing the sleep notifier on sleep clients greatly simplifies the overall design. As the service runs

on user desktops, our aim is to make the sleep notifier code robust and stateless, requiring as simple

configuration as possible.

The primary purpose of the sleep notifier is to notify the sleep proxy when the machine is going

to sleep. Just before a machine is put to sleep, the Windows OS sends out a ‘get ready for sleep”

(a Win32 PowerManagementEvent) event to all the processes and drivers running on a machine,

allowing them to prepare for sleep. The sleep notifier registers to receive this event. Upon receiving

the event, the notifier immediately broadcasts a sleep notification packets (encapsulated in a UDP

packet to port 9999), containing a “going-to-sleep” opcode and list of the sleep client’s listening

TCP ports, to the subnet broadcast address. For reliability it retransmits the packet three times.

In keeping with our light-weight approach, sleep notification packets are broadcast. The sleep

client does not need to know the identity of the sleep proxy and requires no configuration nor stable

storage, as there is no state to be kept. The sleep notification packet obviates the need for active

probing sleep clients to determine sleep status (as done in [Nedevschi et al., 2009]) or which ports

should be proxied ([Nedevschi et al., 2009] restricted proxied ports to a manually pre-configured

set).

Since the sleep notifier may have less than two seconds in which to send the sleep notification

packet before the machine falls asleep 6, it is possible, albeit unlikely, that the notification packets

will not be sent in time. Consequently, the sleep notifier also sends out periodic heartbeats when

the machine is awake. These heartbeats are identical to the sleep notification packet, save that

they use a “heartbeat” opcode. In our current implementation, heartbeats are sent out every 5

6The sleep notifier cannot reliably force the system to remain awake once the notification is broadcast
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minutes, with some jittering. When the sleep proxy misses two consecutive heartbeats from a

client, it immediately sends a WOL packet to that client. If, after sending the WOL, neither a

heartbeat nor a sleep notification is subsequently received from the client, the proxy assumes that

the machine has left the network and removes it from the list of proxied sleep clients.

3.4.3 The Sleep Proxy

The sleep proxy needs to monitor incoming tra�c to the sleep client and also wake that client by

sending a WOL packet on the subnet broadcast address 7. Redirecting tra�c destined for a given

machine to another machine outside of its local subnet requires substantial support from routers.

Thus, the sleep proxy has to run either on the subnet router itself, or on some other subnet machine.

Running a sleep proxy on the subnet router was not possible, so we use one dedicated machine per

subnet to act as a sleep proxy for machines in those subnets.

3.4.3.1 Rerouting

Like most enterprise networks, our network is a switched Ethernet network. Thus, unicast tra�c

for a host is not generally visible to other hosts on the network. Thus, upon receiving the sleep

notification from a client, the sleep proxy needs to ensure that the tra�c destined for sleeping

clients is re-routed to the sleep proxy’s NIC.

While there are a few ways to a↵ect such re-routing, we have found sending ARP probes

[Cheshire, 2008], as shown in Figure 3.2, to be the most reliable method. A machine uses these

ARP probes to advertise its MAC and IP address, and to perform duplicate address detection

(DAD). Also, the subnet switches refresh/remap their internal routing tables upon receiving these

probes.

Thus, when a sleep proxy receives a sleep notification from a client, it issues specially crafted

ARP probes pretending to be the sleep client (refer again to Figure 3.2). This ensures that subse-

quent network tra�c meant for the sleeping machine is delivered to the sleep proxy instead.8

7This packet must be broadcast since at the time it is sent, the subnet’s routing is set to deliver all packets meant

for the sleeping host to the sleep proxy.

8An alternate way of doing this would be to replace M.MAC ADDR with the sleep proxy’s MAC address, however

this could cause the DAD mechanism to be triggered if the sleep client were to wake very quickly after sleep.
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Field Value

Ethernet Source Addr M.MAC Addr

Header Destination Addr FF:FF:FF:FF:FF

Sender MAC Addr M.MAC Addr

ARP Sender IP Addr 0.0.0.0

Request Target MAC Addr 00:00:00:00:00:00

Target IP Addr M.IP Addr

Figure 3.2: ARP probe for sleep client M .

When a sleeping machine wakes (either because the sleep proxy woke it, or because it was woken

for some other reason), it will naturally send out a fresh set of ARP probes generated by the OS to

ensure that it can re-use the same IP address that it had before it went to sleep. This has two nice

side e↵ects. First, the subnet switches now begin forwarding tra�c meant for the sleeping (and

now awake) machine, back to that machine, instead of the sleep proxy. Secondly, as these probes

are broadcast, the sleep proxy can see them, allowing it to immediately recognize when clients have

woken and cease proxying.

3.4.3.2 Reaction Policy

As discussed earlier our sleep proxy reaction policy responds to IP address resolution tra�c, exam-

ines incoming TCP connection attempts, and ignores all other tra�c. This means that (a) current

TCP connections are broken and (b) UDP applications are not supported.

Intuitively, the former would seem to be a safe strategy for many applications. The sleep proxy

is not responsible for putting a machine to sleep. That decision is taken by the local OS. If the local

OS deemed it safe to put a machine to sleep while it had TCP connections open, then clearly the

applications to which those TCP connections correspond have not placed requests to prevent sleep

(a standard feature of modern OSes). Moreover, most common corporate network applications are

inherently disconnection tolerant (e.g., email, web browser).

As for the latter, in our network, practically all desktop applications use TCP. Users typically

access their machines either via SMB (to retrieve files) or via Remote Desktop. Upon initiation,

both these applications start new TCP connections, and hence send corresponding SYNs. Routine
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maintenance is handled via RPC calls, and this tra�c also goes over TCP. Additionally, it given

the flexible parsing power of our sleep proxy, it should not be di�cult to extend our technique to

cover UDP tra�c meant to initiate new connections for particular applications requiring such (e.g.,

NFS version 2).

The impact of ignoring non-TCP tra�c and breaking currently existing TCP is di�cult to

estimate empirically. However, we believe the proof is in the pudding: after months of running our

code, none of our users or IT sta↵ have complained that their machines did not wake on remote

access and the only applications which we received request support for were the two cloud-based

applications run by a small minority of users. [Nedevschi et al., 2009] provides a more detailed

discussion of our reaction policy and comparison with other possibilities.

3.4.4 Implementation Challenges

IPsec:green: Responding to IP address resolution tra�c is easy: the sleep proxy simply issue

ARP responses and Neighbor Discovery advertisements as if it were the sleeping client. Handling

TCP connection attempts is more complicated. To detect an incoming TCP connection attempt

the sleep proxy must examine the packet’s IP header confirming it was destined to a currently

proxied machine, and contains a TCP SYN with a destination port on which that machine had

been listening. While it is easy to parse a TCP SYN contained in a vanilla IPv4 or IPv6 packet, our

network (like most corporate networks) is more complicated in both its use of IPv6 tunneling and

IPsec ESP authentication9. Tunneling comes in three flavors, ISATAP, 6over4, and Teredo [teredo, ].

Our current implementation handles ISATAP and 6over4. ISATAP packets are already unwrapped

for the sleep proxy by the ISATAP router and arrive as IPv6 packets on the sleep client’s ISATAP

IPv6 address. Thus these packets require no additional processing. 6over4 packets arrive as IPv4

packets whose next protocol is 6over4. The inner packet is then removed and parsed as a standard

IPv6 packet. Our current implementation does not handle Teredo wrapping, since it is being phased

out in favor of the first two mechanisms.

The use of IPsec [win-ike, ] presents a number of challenges. Imagine a remote machine C trying

9Note that tunneling and IPsec can be (and indeed are) used together. Our sleep proxy routinely sees and handles

TCP SYNs that are encapsulated in an ESP payload, which is carried in an IPv6 packet, which is tunneled inside an

IPv4 packet.
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to connect to sleeping machine M using TCP. Let S be the sleep proxy. If IPsec is in use, there

are two possibilities. Either C has not communicated with M in recent past, or it has.

If C has not recently communicated with M it would first try to establish a new security

association by doing IPsec key exchange (IKE). The IKE packets are sent via UDP. The IKE sent

by C end up at S. Recall, however, that our sleep proxy wakes up packets only on receiving TCP

SYNs. Thus, the sleep proxy would never wake up M . However, Windows optimizes connection

establishment by requiring C to send a TCP SYN “in the clear” as it begins the key exchange [win-

ike, ]. This is done to speed up the connection establishment: TCP handshake can happen in

parallel with IPsec handshake. This works in our favor: the sleep proxy can detect the TCP SYN

transmitted by C, and wake up M , which can then finish the key exchange. Otherwise, M would

need to be woken for every IKE attempt. As we shall see later, in our network this would have

lead to many spurious wake-ups.

Conversely, if C has recently communicated with M , it may have cached the security association

information. Since our network uses Encapsulated Security Payload (ESP) [Kent and Seo, 2005]

protocol, C would encrypt the TCP SYN it sends. While the TCP SYN would end up at S, there

is no way for S to decode the packet. This would have been incompatible with our reaction policy,

except that our network uses ESP only with integrity service: the payload itself is not encrypted.

Thus, S can parse the packet, inspect it, and wake M if needed.

Thus by choosing an IPsec setup in which both ESP payload encryption is disabled and enabling

TCP connection establishment optimization, the need for running a heavier-weight reaction policy

is ameliorated.

ARP probe timing: The sleep proxy cannot simply send out ARP probes as soon as it receives

the sleep notification from a client, as that client may send other packets before the network card

sleeps. If ARP probes from the sleep proxy intermingle with tra�c generated from the client that

is about to fall asleep, the spanning tree protocol may end up in state where packets meant for

the sleeping machine are not routed to the sleep proxy. In our early implementations, this problem

created much heartache.

To avoid this problem, after receiving the sleep notification, the sleep proxy begins pinging that

sleep client. The sleep proxy waits for five consecutive ping failures before sending out ARP probes

and thereby taking over for the sleeping client.
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Daily wake-up & DHCP lease expiration: Currently, the sleep proxy wakes all sleeping clients

at 5AM. The primary reason is to allow these machines to initiate any backup or scanning activity.

The wake-up also obviates the need for the sleep proxy to handle DHCP tra�c on behalf of the

clients. In our network, DHCP leases are valid for 30 days. When the client is awake, it renews

the lease every day. Furthermore, it also renews the lease when it wakes up. As each client is

guaranteed to wake up at least once a day, we did not need to implement DHCP renewal on our

sleep proxy. The same mechanism also protects against address black-holing: whereby a sleep proxy

keeps holding on to the address of a machine that has departed the network. If heartbeats are not

seen for a sleep client after the daily wake-up, that machine is inferred to have left the network (as

described earlier).

Failure of sleep proxy: In our current implementation, each subnet is served by a single sleep

proxy. This creates a single point of failure. We have designed, but not yet implemented a primary-

backup solution for ensuring additional reliability. Another possibility is to design a purely peer-

to-peer solution (Section 3.8). Our design does o↵er protection against a sleep proxy crashing, and

restarting. The sleep proxy stores the MAC addresses of all the machines that it is proxying for in

a log maintained on non-volatile network storage. Upon restarting, the sleep proxy checks the log,

and proactively wakes up all the machines by sending them WOL packets. This ensures that the

sleep proxy starts operations in a consistent state.

Multi-homed machines: The sleep proxy architecture can easily handle multi-homed machines

as long as (i) the sleep notification goes out on all interfaces and (ii) a sleep proxy is available on

each network that receives incoming connection attempts.

Manual wake-up: Apart from the “automatic” wake-up described so far, we also provide for

remote, manual wake-up of sleeping clients. This is achieved by maintaining a website outside our

corporate firewall. Every sleep proxy maintains an open TCP connection to this web server. Users

can type in the name of their machine on this website. The web service sends the name to every

sleep proxy, and if a sleep proxy has the specified machine as a client, it wakes that machine up

by sending it a magic packet. This service provides a “last resort” wake-up alternative and also

allowed the small minority of cloud application users to manually reconnect cloud apps.
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3.5 Instrumentation

Our sleep proxy keeps a detailed log of its interactions with clients, including when and why the

clients go to sleep or wake up. On client side, we use Joulemeter, to estimate the power consumption

of the clients, and gather information about why clients stay awake. Joulemeter is installed as a

separate, optional service on clients.

3.5.1 Monitoring power consumption

To quantify the energy savings of our approach, we desired an accurate method of estimating our

deployment’s power consumption. Di↵erent machine makes and models consume power at di↵ering

rates. Further, a given machine consumes vastly di↵erent power depending on its CPU utilization

level, P-state and whether its monitors are on or o↵. For instance, the power usage of an HP

xw4300 workstation with two monitors varied from 141W to 240W with processor utilization, and

changed by an additional 120W with monitor power state for a total variation of 2.5X.

However, desktop workstations do not typically have built-in instrumentation to measure power

usage, and we wished to avoid attaching external power-meters to each machine for the same

reasons we rejected hardware augmented sleep proxying approaches. Consequently, we used a

software solution, Joulemeter , that produces power usage estimates based on hardware activity

and pre-calibrated machine models.

The key principle behind Joulemeter’s energy estimation is to use a machine specific power

model. The model consists of a set of equations that relate the hardware configuration and resource

utilization levels to power usage. Our current model takes into account processor P-states, processor

utilization, disk I/O levels, and whether the monitor(s) are on or o↵. The power model for a specific

hardware configuration is learned via calibration - controlled experiments in a laboratory settings.

Once the power model is known, the machine’s power consumption at run time can be estimated

by monitoring CPU utilization (and P-state), disk utilization and monitor status. We omit the

details of model construction due to lack of space. For a preliminary introduction see [Kansal and

Zhao, 2008].

Figure 4.2 shows Joulemeter estimates versus measured power consumption (using a hardware

power meter) for a HP d530 workstation with 2.66GHz Pentium CPU running a workload generator
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Figure 3.3: Measured and predicted power consumption.

that loaded the CPU and disk at random. The estimates were generated using the calibrated model

produced from a di↵erent workstation with the same model and CPU. The results shown confirm

Joulemeter’s estimates track closely with the actual power consumption. In practice, no two systems

are exactly alike. Still, in validation testing we found Joulemeter predictions to be accurate within

20%

In our deployment Joulemeter generated power readings were averaged over 30 second intervals

and periodically uploaded to the database. We have built up a library of power models covering

most of our client machines.

3.5.2 Monitoring machine insomnia

To determine why a machine is awake, Joulemeter relies on two sources. First, it periodically checks

the lastUserInput timer provided by the OS. This timer provides the time of last user activity. We

compare the value of this timer to the idle timeout (a typical Windows default value is 30 minutes).

If user activity has occurred more recently than the idle timeout, we assume that the machine is

being kept awake by user activity. We note that due to various technical issues this timer is not

always available, so we cannot always determine whether the user is active.

We also find that machines often stay awake even when the idle period exceeds this duration.

To determine the reasons behind this, we rely on powercfg.exe utility that ships as part of Windows

7. The utility can often (but not always) shed light on why a machine is staying up by detailing

requests to the OS for the machine to remain awake. For example, a remote machine may be

holding a file open or a defragmenting routine may be running. Joulemeter periodically collects
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this information and reports it to the central database. Analysis of this information is presented

in Section 3.7.

3.6 Implementation and Deployment

Our deployment consisted of 6 proxies (one for each of our network’s 6 wired subnets), 51 clients,

an SQL database, and the manual wakeup webservice mentioned earlier (standard IIS webserver

with code written using ASP.NET). Most of the code is written in C# (5000 lines).

Only the sleep proxy contains any significant amount of unmanaged code. The sleep proxy relies

on PCAP to capture and examine incoming packets. A small custom driver allows the sleep proxy

to craft and inject ARP probes while bypassing the network stack. The primary data structure

in the sleep proxy is a hashtable used to keep track of clients and their status. We first used

ordinary desktop machines as proxies and have begun migrating to the low-powered, small-form-

factor machines drawing less than 25 watts of power.

On client side, apart from the required sleep notifier service, the clients install three optional

applications: Joulemeter, a GUI program displaying sleep statistics and estimated energy savings,

and an auto-updater service that keeps client-side code up-to-date. During client installation, we

ensured that Wake-On-LAN was enabled and ARP o✏oad (which is enabled by default for certain

cards in Windows 7) was disabled on the client’s NIC. We also set the idle timeout to 30 minutes.

3.7 Results

This section is guided by several overarching questions. What is the sleep and wake behavior of

machines in our system? How much power did our solution save? What might be done to obtain

additional power savings? What impact did our setup have on user experience? Was the sleep proxy

architecture scalable? For the impatient reader, we highlight our main insights at this section’s end

(Section 3.7.6).

We begin by describing the details of our dataset.
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Figure 3.4: Trace length and listening port distribution.

3.7.1 Dataset Overview

While our deployment has been active for half a year in various stages, for the rest of this section

we focus on the 45 day period from 19 November 2009 through 3 January 2010. During this time,

we gathered data from 51 distinct machines belonging to 50 distinct users. As users installed our

software at di↵ering times, not all machines provided data for the entire period (although most

did). Figure 3.4(a) shows the cumulative distribution of trace lengths of individual machines. Our

users were a self selecting group, so their behavior may not be representative of all user populations.

3.7.1.1 Machines in our study

As we noted in Section 3.5.1, machine power consumption depends on the particulars of that

machine’s hardware configuration. The hardware configuration of machines in our deployment was

varied, but not overly so. Of the 51 machines, 43 are HP and 6 were Dell. Only one of the machines

has an AMD processor, the rest having Intel CPUs. Most of the machines are dual or quad cored.

The CPU frequencies vary from 2-3.4GHz. Twenty seven machines had one monitor, 20 had two,

and five had three. Five machines ran Windows Vista, all the rest ran Windows 7.

As we wake up machines for incoming TCP SYNs only on listening ports, it is worth examining

the number of listening TCP ports on each machine. This number, of course, varies over time, as

active processes and settings change. Figure 3.4(b) shows the min, max, and average number of

listening ports by machine. One machine had 35 ports open simultaneously!
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3.7.1.2 Tra�c

Since all tra�c destined for sleeping clients arrives at their sleep proxies, we can examine this tra�c

in centralized manner, without installing sni↵ers on individual machines. While we have deployed

a sleep proxy on each of our six subnets, 59% of our machines are connected to the largest subnet.

We have seen as many as 800 active machines on this subnet. We examined in detail a trace of all

(23 million) packets arriving at the sleep proxy serving this subnet during a typical work week (5.5

days).

Of this tra�c, 96% were multicast and broadcast packets. Of the multicast packets, 12.31%

were ARP requests, which the sleep proxy examined and replied to as needed. The vast majority

of the multicast tra�c was safely ignorable [Nedevschi et al., 2009]. The remaining 4% tra�c

was unicast: destined either to the proxy itself, or to the sleeping clients. 75% of these packets

were wrapped by ESP and 8.4% were tunneled v6-over-v4 packets - underscoring the importance

of parsing such packets. 7% of the total unicast packets were UDP (mostly IPsec related) and 3%

were ICMP, which the sleep proxy ignores. Most of the remaining tra�c was TCP, and the proxy

was able to ignore the vast majority of it. During this time, we woke sleeping clients for just 747

TCP SYNs. Our analysis of the tra�c data confirmed the importance of filtering TCP SYNs based

on port. More than half of incoming TCP connection attempts were destined to ports on which

the sleep client was not listening. If we had woken clients without filtering by port, we would have

had more spurious wake-ups than valid ones.

3.7.2 Sleep/Wake Behavior

We note that five of our 51 clients did not sleep at all, as their their users manually disabled sleep

functionality.

3.7.2.1 Aggregate sleep/wake behavior

Figure 3.5(a) shows the percentage of time each machine spent sleeping, as a CDF across all

machines. The uniform slope of the CDF demonstrates that the average sleep time was quite

variable, with 50% of the clients sleeping more than half the time. Figure 3.5(b) plots the CDF of

the average number of sleep-to-wake transitions per day for the machines. Most machines average
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Figure 3.5: Aggregate sleep/wake statistics.
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fewer than seven daily wake-ups. Later, we will see that most of these wake-ups were caused by IT

management tra�c (e.g., updates) arriving for a sleeping machine.

We now examine the duration of sleep and awake intervals. Note that no sleep interval is

longer than 1440 minutes because of the daily 5AM wake-up. The CDF of length of sleep and

wake intervals is shown in Figure 3.5(c), while Figure 3.5(d) shows the time-weighted CDF (i.e.,

contribution of intervals at or below a given length to the total sleep or wake time). By comparing

these two figures, we see that while most sleep and awake intervals are under one hour, the majority

of both sleep and awake time comprises intervals over one hour. This implies that insomnia should

be our first focus in attempting to reduce power usage (Section 3.7.3.2).

The awake interval CDF in Figure 3.5(c) demonstrates a bimodal distribution with abrupt

changes in slope at around two minutes, and at 30 minutes. This indicates that awake periods of

two and 30 minutes are prevalent in our trace.

3.7.2.2 Individual sleep/wake behavior

Figure. 3.6(b) and 3.6(a) show the 10th, 50th, and 90th percentile of wake and sleep intervals for

each machine. The machines are sorted in order of 10th percentile. Notably, for around half of the

machines the 10th percentile lies around two minutes, while for other half it lies around 30 minutes,

corresponding to the jumps seen in Figure 3.5(c).

We closely inspected a number of these awake periods. The prevalence of both two and 30

minute awake periods is easily understood: these being the idle timeouts after WOL wake-up and

user activity respectively. When looking at our special 5AM wake-up (which we know was not

user-initiated - Section 3.4.4) we saw a much greater than normal proportion of two minute wakes

which is precisely what we would expect.

Figure 3.6(b) shows that for about a quarter of the machines, the median sleep interval is under

10 minutes. For one machine all sleep intervals were under a minute. This machine appears to have

some driver configuration issue that causes almost immediate wake upon sleep and was unique in

our data set. Such intervals add very little to overall sleep duration and indicate potential sleep

problems which will be examined further in Section 3.7.3.
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(a) Awake interval.

(b) Sleep interval.

Figure 3.6: Per-machine sleep/wake intervals.
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(a) Cause of wake. (b) Wake-up source port.

Figure 3.7: Wake cause.

3.7.2.3 Why do machines wake up?

Figure 3.7(a) shows the causes of wake-ups. We divide these into three categories: manual wake-up

using our web site, wake-up by proxy due to incoming tra�c, and other. The last bucket includes

wake-ups caused by users walking up to the machine, any timer-based wake-ups caused by the

BIOS, as well as occasional WOL packets sent by a commercial wake-up solution being tested by

our IT department. We were able to confirm for 33% of these that the user did in fact initiate wake-

up (by checking lastUserInput - Section 3.5.2) and for 50% of these the user definitively did not

wake the machine. The remaining 27% could not be determined as lastUserInput was unavailable.

We see that while the web site was used in a few cases, it is not statistically significant. The

majority of wake-ups caused by the sleep proxy are due to incoming TCP SYNs. The ports to

which these SYNs were destined to are shown in Figure 3.7(b).

Remote Procedure Calls (port 135) were the overwhelmingly largest source of wake-up triggers,

followed by NETBIOS (139) and SMB (445). SMB is the main mechanism used for remote file

system access in our network. The two other notable ports are UPnP (2869) and Remote Desktop

(3389). In our network, Remote Desktop is the primary mechanism for interactive remote machine

access. We can see Remote Desktop is not a major wake-up source. In fact, only 39% of the

machines were ever woken up due to Remote Desktop requests. Therefore, it would seem that

while users leave their machines on for potential remote access, interactive remote access is used

relatively rarely.
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3.7.2.4 Who wakes up machines?

There were slightly over 300 IP addresses requesters whose incoming connection attempts caused

wake-ups. Most of these only attempted to connect to a single sleep client. However, a sizable

minority attempted to connect to multiple clients as seen in Figure 3.8(a). We were able to verify

that all the requesters who woke 20 or more sleep clients were machines belonging to our IT

department. These machines perform a variety of management actions such as verifying patch

status and checking security policies. We will see later that our IT configuration is sleep-unfriendly

in other ways as well (Section 3.7.3.2).

Figure 3.8(b) shows the number of wake-up events caused by requester. Just as most requesters

only connect to a single machine, many only cause only one wake-up and most cause only a handful.

However, again a large minority of requesters cause many wake-ups each. IT-owned machines again

make a large portion of this group. Interestingly, several of the most active requesters actually

connect to only one or a handful of machines. In fact, the most active requester with over 400

requests connected to only two machines, and that too in in a span of just two weeks! We are

currently investigating the role of this requester further.

3.7.3 Why Machines Don’t Sleep Better

While we have seen that our solution is fairly successful at enabling machines to sleep (Fig-

ure 3.5(a)), we wanted to investigate whether more idle time could be harvested. We begin by

noting that most machines are not being woken overly often (Figure 3.5(b)). However, a small

subset of machines su↵er from “crying-baby-syndrome” being woken as soon as they fall asleep.

Section 3.7.2.4. These machines are being bombarded by frequent connection attempts that in-

terrupt their sleep often. If a machine with a standard 30 minute idle timeout wakes 12 times a

day, one quarter of the day will have been spent awake due to wake-ups alone. It appears that

configuration issues are responsible for much of this behavior.

However, most sleep clients are being kept awake for other reasons the majority of the time.

In fact, when not being kept awake, these machines manage to sleep well, sustaining few wake-

up events per day. We now consider whether these machines would have benefited from a more

aggressive idle timeout, and then look at the problem of insomniac machines.
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(a) Distribution of requesters by # clients woken.

(b) # Wake-ups caused By requester.

Figure 3.8: Who causes wake-ups?

3.7.3.1 Aggressive idle timeout

As mentioned in Section 3.7.2.2, it appears that setting the idle timeout more aggressively could

result in some power savings. We now consider how much could be saved with a 5-minute idle

timeout (this is 1/3rd the EnergyStar guidelines recommendation [Committee, 2009]).

To do so, we examined each wake interval to see why the machine was being kept up. Recall

from Section 3.5.2 that a machine may be kept awake because the user is active, the machine has

woken up recently, or a stay-awake request placed by a local application with the OS.

We divided the total awake time into three components, recoverable, unknown, and unrecover-

able. Recoverable time was time in which the machine could have slept if the idle timeout had been

set more aggressively. This time was the sum of periods in which the user had been active within

the past five minutes or the machine had been woken within the past five minutes. The unknown

time was the time for which insu�cient data was available to diagnose cause of wakefulness. The
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Figure 3.9: Awake time as % of uptime. Broken into components unknown, recoverable, and

unrecoverable using aggressive idle timeout.

unrecoverable time consisted of all other time (i.e., an application had placed a stay-awake request

with the OS).

Thus the recoverable time is a lower bound on the awake time that could have been saved

by setting a more aggressive idle timeout. The sum of recoverable and unknown time provides

the upper bound. Figure 3.9 breaks the total wake time as percentage of uptime into these three

components on a per-machine basis. We see that on most machines the impact would be relatively

small. These machines are being kept up by local application stay-awake requests, to which we

now turn.

3.7.3.2 Insomnia

We now look more closely at which local applications keep machines awake. We label this phe-

nomenon insomnia. Figure 3.10(a) plots the fraction of awake time a given machine was kept awake

by local applications requesting OS to prevent sleep. We see that the majority of awake time is

in fact due to such stay-awake requests. So which applications cause these stay-awake requests?

Figure 3.10(b) shows the percentage of requests initiated by various applications. The news here is

heartening. Four of the top sources (Security Policy Agent, Windefend, Forefront, and Bitlocker)

are all applications mandated by our IT department. It may be possible to reconfigure or even

re-write these applications to minimize and coordinate the duration of time they are active (and
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(a) % awake time caused by requests. (b) Source of requests.

Figure 3.10: Stay-awake request data.

thus preventing sleep). At least three more (Flash, Quicktime and Audio Stream) are the result

of code or driver bugs. For example, certain older versions of Flash player may keep a machine

awake by playing silence even after the audio clip has finished (Windows prevents sleep when audio

streams are active). The third-highest request source is SMB. SMB’s default behavior prevents a

machine whose files are being accessed from sleeping. Careful changes to this behavior may allow

for greater sleep opportunities.

3.7.4 Power savings

PC consumption varied, averaging from 89-143W for individual machines. The lowest draw we saw

was 50W idling. The highest was 191W heavily loaded. While sleeping, all machines drew 1-2W.

Monitors generally added from 30-60W when on.

Figure 3.11(a) illustrates the lower bound on power savings on a per machine basis. This lower

bound is calculated with the assumption that had the machine stayed up instead of sleeping, it



CHAPTER 3. GREEN COMPUTING: ENABLING DESKTOP ENERGY-EFFICIENCY 80

Step Time (s) From!To Packet Type

1 0 M1!M2 TCP SYN

2 0.04 S1!Broadcast Magic Packet

3 2.48 M1!M2 TCP SYN

4 5.6 M2!Broadcast ARP Probe

5 8.48 M1!M2 TCP SYN

6 8.49 M2!M1 TCP SYN-ACK

Table 3.1: Time line of a wake-up.

would have consumed power at the lowest rate seen in the entire non-sleeping portion of the trace.

This represents part of the reason we saw less power savings than that predicted by previous work

(which assumed machines consumed power at a constant rate irrespective of activity level). The

average across all machines is about 20%, although variation is considerable.

Figure 3.11(b), shows aggregate power consumption for a both a representative one-week period

beginning 12/3/09 and the winter break (beginning 12/24/09). During the representative week,

weekend power consumption is low, spiking only at the 5AM wake-up. During the work-week,

power use peaks during the work day before declining into an overnight trough and bottoms out

early on Friday. In contrast we can see a markedly di↵erent pattern for the Mid-Winter week with

almost no increase in activity during the day from the day preceding Christmas (which fell on

Friday) through the following Monday. By the Tuesday following the holiday, we begin to see a

similar level of activity to that of the representative week, albeit at a lower amplitude, as employees

begin returning from the holiday. Interestingly, the power consumption over the Christmas weekend

(12/26-12/27) weekend was slightly higher than during a normal weekend (12/5-12/6).

3.7.5 Micro-Benchmarks

We now validate our architectural approach by examining wake-up delay time and sleep proxy

scalability.
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(a) Lower bound on per-Machine power savings

(b) Aggregate power draw for normal vs. mid-winter weeks.

Figure 3.11: Power draw and savings.

3.7.5.1 Wake-up delay

The energy saved by our system comes at a cost: the user experiences additional startup latency the

first time a connection (e.g., ssh login or samba file access) to a sleep client is attempted since that

client fell asleep. This happens because sleep client takes time to both wake and begin responding

to an incoming TCP connection attempt. To make the system usable, we need to minimize the

startup latency encountered by interactive transactions.

The user-perceived startup latency consists of several components: the delay involved in sending

the WOL magic packet, the time required to wake up the machine, and the time required to perform

any application-specific actions. To quantify these component latencies, we present a simple, but

representative example.

Two machines, M1 and M2 were connected to the same subnet. M1 was ran a simple TCP

sink, and was put to sleep. Thereafter, sleep proxy S1 started proxying for M1. From M2, we

attempted to establish a TCP connection to the the sink on M1. The packet trace of the connection
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establishment is summarized in Table 3.1.

The total latency is about 8.5 seconds, but the sleep proxy itself consumes only 40 milliseconds,

even though it is on a busy subnet and proxying for several other machines. The largest component

is the wake-up delay (i.e., time required for M2 to wake up and become active). This is roughly

the delay between steps 2 and 4 (about 5.5 seconds). The remaining TCP-retransmit delay occurs

between steps 4 and 5 (about 3 seconds). This delay is incurred while M1 waits to retransmit the

TCP SYN the second time, following regular TCP timeout algorithm [Postel, 1981b].

Specific applications will usually encounter slightly higher latencies, as the machine needs to

perform additional, application-specific actions. For example, when M1 tried to list a directory on

M2 via SMB, the transaction took 13.37 seconds when M2 was asleep. The additional delay was

incurred while M2 re-connected with the domain controller, and obtained security credentials to

determine whether to allow M1 access.

We stress that this delay is incurred only for the transaction that wakes the machine. Subsequent

transactions experience normal latencies. While our experience is that users do not mind this one-

o↵ penalty, both the wake-up and retransmit delays can be addressed. A number of research and

engineering e↵orts are underway to address the former. The latter can be shortened either by

having M1 retransmit TCP SYN more aggressively, or having S1 “replay” the TCP SYN.

3.7.5.2 Scalability

Our current deployment uses one sleep proxy per subnet. The load on these sleep proxies is a

potential concern. We find that the CPU load on a sleep server rarely exceeds 5%. The total

tra�c (broadcast inclusive) seen by the sleep server is also quite low (90th percentile is 250Kbps).

We conclude sleep proxy operations do not require substantial resources, and a single sleep proxy

could easily handle very large subnets if necessary. Conversely for reasonably sized subnets, the

sleep proxy could be located on a client machine without noticeably degrading the user experience

(Section 3.8).

3.7.6 Summary

Insomnia is the foremost cause of lost sleep. Thus improving the energy savings of systems

like ours, the main focus should be on addressing sources of wakefulness.
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IT applications are the main source of both insomnia and fitful sleeping. Several unco-

ordinated IT applications for patching, security, and network testing all woke machines and kept

them awake. While we studied one particular IT setup, practically all IT setups will interfere

with sleep to some extent - dependent on quantity, aggressiveness and degree of coordination of IT

applications.

Misconfiguration can result in crying-baby syndrome Requiring administrators to diagnose

and resolve the minority of machines su↵ering this issue.

Use of more aggressive idle timeouts is of secondary benefit. In enterprise systems behind

firewalls, wake-ups will occur because of valid incoming TCP connection attempts and in well

configured setups, the number of wake-ups caused by IT/misconfiguration will be minimal. Thus

savings from more aggressive idle timeouts will be minor.

Incoming TCP connection attempts need to be filtered by listening port. More incoming

TCP connection attempts arrived for non-listening ports, than listening ones.

3.8 Summary

We have designed and deployed a light-weight network-based sleep proxy in an operation enterprise

network on over 50 user workstations - the first such deployment of which we are aware. During our

work, we uncovered and addressed several practical issues that must be addressed by light-weight

sleep proxying systems in enterprise networks. Our system has functioned both to user satisfaction

and our own specification for the past several months, providing significant sleep opportunities

and power savings using a simple reaction policy. However, we find that significantly more power

savings could be achieved by altering the IT setup. Additionally, certain classes of cloud applications

require specialized reaction policies. Should use of such persistent cloud applications become more

widespread, our reaction policy would need adjustment.
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Chapter 4

Wireless Computing: Supplementing

Cellular Capacity

4.1 Overview

While at first slow and expensive, cellular data plans have become increasingly more attractive in

terms of price and performance. With the introduction of devices well-designed to take advantage

of this connectivity - most notably Research in Motion’s Blackberry in the enterprise, followed

several years later by Apple’s iPhone - users have jumped on board en masse. Earlier adopters of

cellular data networks had mostly limited their use to low-bandwidth applications such as email,

weather forecasts, news updates, and light web-browsing. Now, encouraged by telecoms, user

demand for high-bandwidth content like apps and video while on the move is increasing rapidly

- content which had previously been demanded solely over their cable or ADSL network feed.

Further this demand comes from not only smartphones, but a plethora of devices including tablets,

netbooks, chromebooks, and traditional laptops. This demand has overwhelmed the capacity of

carriers’ 3G [Cheng, 2008b] and fledgling 4G networks [Lawson, 2011; Wortham, 2011], leading to

outages, widespread user dissatisfaction, lawsuits [Cheng, 2008a], and even organized grassroots

protest [Heussner, 2009]. Carriers are struggling to improve their networks quickly enough, but the

required overhaul of centralized and expensive nationwide infrastructure takes years, if not decades,

while shifts in the growth of demand are occurring at much shorter timescales [Arar, 2011].

Our work begins with the observation that not all demand is equal. Many of the most time-
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critical interactions, e.g., email, chat, news, are relatively low-bandwidth. As demonstrated by the

popularity of slow but inexpensive multimedia delivery mechanisms such as BitTorrent [Sandvine,

2010] and Netflix DVD [Seetharam et al., 2010], users are willing to wait to obtain high bandwidth

multimedia content - at least so long as price is right. If low-latency, medium-bandwidth centralized

cellular infrastructure capacity can be supplemented by some other medium-to-high-latency, high

bandwidth mechanism, then user demand might be satisfied both more successfully and more

economically than the current cellular-infrastructure only solution.

Fortuitously, the very mobility characteristics of users, combined with the increasingly large

storage and local radios of the devices they carry, may provide the material for building just such a

mechanism. A large pool of bandwidth lies untapped in the chance contacts of mobile devices. At

each such contact, meeting nodes might exchange and replicate locally stored content at high data

rates for very low cost (essentially just battery drain). However, utilizing these opportunities poses

a significant challenge; device memory is finite and this latent bandwidth is often unstructured and

unpredictable.

To address this challenge, we examine an alternative opportunistic content dissemination schemes

for mobile devices. These schemes tap the potentially vast reservoir of capacity latent in currently

unused communication opportunities between the short-range radios (e.g., Bluetooth, 802.11) of

smartphones. Leveraging short-range communication does not come without cost or complication.

Particularly, users will need to tolerate both the energy drain from additional short-range radio

use and the fulfillment delay encountered by nodes forced to wait until they meet peers who have

the content needed to fulfill their requests. For now we assume that energy drain will be tolerable

and focus on understanding how content can be disseminated so as to minimize the impact of ful-

fillment delay on overall user satisfaction. Once this is better understood, future work may return

to rigorously address the issue of energy e�ciency.

In order to understand the impact of delayed fulfillment on user satisfaction, we develop a model

predicting fulfillment delay patterns and combine this with some monotonically decreasing delay-

utility function mapping delay to utility. We then show how the aggregate expected utility can be

calculated. This enables us to investigate how this quantity may be maximized (minimizing the

impact of delay on our users) by manipulating local cache content. Additionally, one could utilize

the aggregate expected utility to determine whether opportunistic content dissemination even makes
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sense in a given scenario, by assessing whether it is above or below the system designer’s chosen

“break-even” point. Interestingly, our use of delay-utility functions enables us to answer these

questions over the full spectrum of user impatience responses (e.g., as delay increases, the user’s

likelihood of continuing to wait for content, decreases).

In the aforementioned model, the allocation of content in the global distributed cache comprising

the union of all local caches, directly determines the pattern of demand fulfillment - and along with

the delay utility function, the expected aggregate utility. By selectively replicating local content

as node meetings provide the opportunity, the global cache can be driven towards a more e�cient

allocation.

As a motivating example, consider that an imaginary start-up VideoForU - having already

noted that users are willing to use systems that require them to donate resources which provide

them with delayed content at the right price (e.g., Bittorrent) - decides to provide 15 minute video

shows with embedded commercial content from a catalog of 500 available episodes (this catalog

changes every so often - perhaps once a week). VideoForU manages to sign up 5000 users, who

agree to dedicate a 3-episode cache on their local device’s memory for use by VideoForU’s protocol.

VideoForU can now seed one or two copies of each episode into the global cache (by using cellular

infrastructure, or base-stations run by VideoForU). They then let their protocol, running on the

users devices, replicate content and fulfill user requests as chance meetings between users provide

opportunity to do so. Assuming that the users’s impatience is known (i.e., the probability that a

user, having waited time t, will not watch the content that she requested), via previous survey or

feedback, VideoForU can design their replication protocol so as to maximize the total number of

videos and embedded commercials, watched - the only question is how.

Making the answer to this question even more di�cult is the fact that, for the same reasons

as above (unpredictable mobility and resultant sporadic contacts), it may be di�cult to gather

global knowledge of the network’s state. Consequently, we seek to develop distributed mechanisms

capable of producing optimal or approximately optimal allocations, without needing to know the

system’s global state.

In this chapter we make the following contributions:

2. We demonstrate that user impatience plays a critical role in determining the optimal allocation

for disseminating content. We further find a surprisingly general behavior which holds over a
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wide variety of particular delay-utility functions: As the user population becomes increasingly

impatient, the optimal allocation transitions steadily from uniformly dividing the global cache

between all content items, towards a highly-skewed distribution in which popular items receive

a disproportionate share of the global cache. We obtain these results by defining an optimal

cache allocation in terms of delay-utility and global cache allocation. (Section 4.3)

3. Furthermore, we demonstrate that this optimal is unique and can be computed e�ciently in

a centralized manner. Under the simplified assumption of homogeneous meeting rates, we

show that the corresponding optimal cache allocation is known in closed form for a general

class of delay-utility functions. (Section 4.4)

4. Inspired by these results, we develop a reactive distributed algorithm, Query Counting Repli-

cation (QCR) that for any delay-utility function drives the global cache towards the optimal

allocation. Moreover QCR does so without use of any explicit estimators or control channel

information. (Section 4.5.1)

5. We show the implementation of QCR in opportunistic environments is non-trivial and demon-

strate a novel technique Mandate Routing to avoid potential pathologies that arise in insu�-

ciently fluid settings. (Section 4.5.3)

6. Finally, we validate our techniques on real-world contact traces, demonstrating the robustness

of our analytic results in the face of heterogeneous meeting rates and bursty contacts. We

find QCR compares favorably to a variety of heuristic competitors, despite those competi-

tors having access to a perfect control-channel and QCR relying solely on locally available

information. (Section 4.6)

4.2 Related Work

Networks that leverage local connection opportunities to communicate in a delay tolerant manner

can be classified into two categories. The first category, featuring networks such as DieselNet [Bala-

subramanian et al., 2007] or KioskNet [Seth et al., 2006], involves nodes with scheduled or controlled

routes, and routing protocols designed to communicate with predictable latency. [Chen et al., 2006]

extends the message ferrying paradigm to content dissemination in sparse MANETs. The second
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category contains network featuring unpredictable mobility [Grossglauser and Tse, 2002; Chaintreau

et al., 2007] that may be used in an opportunistic manner. In this case, it is infeasible to provide

strict guarantees on message delivery time. However, opportunistic contacts may greatly enhance

the performance of many peer-to-peer (P2P) applications: as proposed for website prefetching in

the 7DS architecture [Papadopouli and Schulzrinne, 2001], and podcast dissemination (series of con-

tent items on a channel), in the Podnet project [Lenders et al., 2007]. It is into this second category

that the content dissemination problem we investigate here falls. The performance of some of these

systems have been analyzed from a hit-rate or delay standpoint [Lindemann and Waldhorst, 2005;

Karlsson et al., 2007] for the case of a persistent demand.

PodNet [Lenders et al., 2007] is another opportunistic system that focuses on the dissemination

of podcasts, or series of content items on a channel. Self Limiting Epidemic Forwarding (SLEF)

[El Fawal et al., 2007] aims at disseminating content in a limited space, and provides generalized

TTL adaptation method.

Much previous work in the context of opportunistic networks has used utility functions as local

states variables, both for unicast routing and publish-subscribe applications. The routing protocol

PROPHET [Lindgren et al., 2003] uses past information to predict delivery probability. The RAPID

protocol generalizes this principle into an inference algorithm which accounts for several metrics

related to delay [Balasubramanian et al., 2007], while CAR [Musolesi and Mascolo, 2009] proposes

the use of Kalman filtering to improve the prediction’s accuracy. The impact of using di↵erent

utility functions has been analyzed for single-copy routing schemes [Spyropoulos et al., 2008],

bu↵er management optimization [Krifa et al., 2008], and the use of error-correcting code [Jain et

al., 2005]. In the context of pub-sub applications, utility functions were introduced to either predict

user future demands [Sollazzo et al., 2007], or leverage uneven distributions of demand and user

proximity [Boldrini et al., 2008; Costa et al., 2008]. Other advanced cache management protocols

includes utilizing filters [Greifenberg and Kutscher, 2008] and social relationships between mobile

users in community [Yoneki et al., 2007].

In general, local utility functions help a system to distinguish on-the-fly which intermediate node

is the most likely to succeed (i.e., for unicast routing, moving a packet closer to its destination, or,

for pub-sub applications, facilitating dissemination to subscribing nodes). The complexity of these

schemes makes performance analysis di�cult. Moreover, the global e↵ect of using local decisions
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based on estimated utility often proves highly non-linear.

Our work significantly departs from previous approaches in two ways. The first is that instead

of using (local) utility as an intermediate quantity used to estimate one or several parameters

informing protocols, we take (global) utility as an end-measure for network e�ciency (i.e., the

system’s performance as it is perceived by users in aggregate). At no time during the course of the

protocols is (local) utility estimated. Rather we study the e↵ect of using light-weight replication

protocols on the global utility of the network which the objective function we aim to maximize.

The second di↵erence is that we account for a general behavior of users with regard to delay,

defining the global utility (or social welfare) as a function of any individually experienced delay-

utilities (previous work either ignores user impatience or implicitly accounts for it using a fixed step

function). A similar approach had been used for congestion control [Kunniyur and Srikant, 2003],

and wireless scheduling [Liu et al., 2003], but not so far for content dissemination in opportunistic

networks.

Replication protocols were first introduced for unstructured P2P systems deployed on wired

networks, as a way to increase data availability and hence to limit search tra�c [Cohen and Shenker,

2002; Tewari and Kleinrock, 2006]. Assuming that nodes search for files in random peers, it was

shown [Cohen and Shenker, 2002] that for each fulfilled request, creating replicas in the set of nodes

used for the search (i.e., path-replication) achieves a square root allocation: a file i requested with

probability p
i

has a number of replicas proportional to
p
p
i

at equilibrium. This allocation was

shown to lead to an optimal number of messages overall exchanged in the system. Assuming that

nodes use an expanding ring search, an allocation where each file is replicated in proportion of its

probability p
i

was shown to be optimal [Tewari and Kleinrock, 2006].

[Hu et al., 2009] presents an on-going e↵ort to characterize a related channel selection problem.

The algorithm proposed in this case uses an estimate of dissemination time and a Metropolis-

Hasting adaptive scheme. One di↵erence between the two approaches is that we show, because the

optimal allocation satisfies a simple balance condition, that even simple algorithms which do no

maintain any estimates of dissemination time or current cache allocation are optimal for a known

delay-utility function. Another di↵erence is that we also prove that the submodularity property

for the cache allocation can be established even when contacts and delay-utility functions are not

homogeneous.
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4.3 E�ciency of P2P caching

Some nodes store content which they use to fulfill requests of the nodes they meet. In this section,

we assume that the allocation of content to these nodes is fixed. We show that the global e�ciency

of such a system can be measured with an objective function parameterized by a delay-utility

function representing the average user’s impatience behavior.

4.3.1 Node Types, Content Cache

Each node in the P2P system may be a client, a server, or both. The set of client nodes is denoted

by C, we generally denote its size by N . Each client demands and consumes content as described

in Section 4.3.3. The set of all server nodes is denoted by S. Servers maintain a cache in order to

make it available to interested clients (when such clients are met). This includes in particular the

two following scenarios:

Dedicated nodes server and client populations are separate (i.e., C \ S = ;).

Pure P2P all nodes act as both server and client (i.e., C = S).

The dedicated node case resembles a managed P2P system, where delivery of content is assisted

by special types of nodes (e.g., buses or throwboxes [Balasubramanian et al., 2007], kiosks [Seth

et al., 2006]). The pure P2P case denotes a cooperative setting where all nodes (e.g., users’ cell-

phones [Papadopouli and Schulzrinne, 2001; Lenders et al., 2007]) request content as well as help

deliver content to others. The motivating scenario, mentioned in the introduction, of VideoForU

is likely to resemble the Pure P2P scenario, especially if as little content as possible is seeded with

cellular infrastructure.

Caches in Server nodes The main variable of interest in the system is the cache content across

all server nodes. In this section we assume it to be fixed; in practice the global cache dynamically

evolves through a replication protocol (see section 4.5).

For any item i and m in S, we define x
i,m

to be one if server node m possesses a copy of item

i, and zero otherwise. The matrix x = (x
i,m

)
i2I,m2S represents the state of the global distributed

cache. We denote the total number of replicas of item i present in the system by x
i

=
P

m2S x
i,m

.
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In the remainder of this chapter, we assume that all servers have the same cache size so that

they can contain up to ⇢ content items (all items are assumed to have the same size). This is not

a critical assumption and most of the following results can be extended to caches or content items

of di↵ering sizes. It follows that a content allocation x in server nodes is feasible if and only if:

8m 2 S ,
X

i2I
x
i,m

 ⇢ .

4.3.2 Representing Impatience as Delay-utility

In contrast with previous work in P2P networks, P2P content dissemination over an opportunistic

mobile network induces a non-negligible fulfillment delay between the time a request is made by a

client node and the time that it is fulfilled. This delay depends on the current cache allocation, as

a request is fulfilled the next time the requesting node meets another node possessing a copy of the

desired content. The term impatience refers to the phenomenon that users become decreasingly

satisfied (or increasingly dissatisfied) with the delays they experience. A delay-utility function h(t)

can be used to characterize this phenomenon of user impatience in analytic terms, where the value

of this function is monotonically decreasing with time (as increasing delay will not translate into

increasing satisfaction).

Since di↵erent types of content may be subject to di↵ering user expectations, we allow each

content item i in the set of all system-wide content items available I, its own delay-utility function

h
i

. The value h
i

(t) denotes the gain for the network resulting from delayed fulfillment of a request

for item i when this occurs t time units after the request was created. This value can be negative,

which denotes that this delayed fulfillment generates a disutility, or a cost for the network. Note

that t is related here to the user’s waiting time, not to the time elapsed since the creation of the

item. Currently, we decided to use the same set of delay-utility functions for all users. One can

therefore interpret h
i

(t) as the average among users of the gain produced when a request is fulfilled

after waiting for t time units. All the results we present generalize to users following di↵erent

functions, but we choose to follow a simple average function to avoid notational issues, and to keep

the system design simple.

We now present several examples of delay-utility functions corresponding to di↵erent perceptions

of the performance of a P2P caching system by the users.
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Advertising Revenue Assuming content items are videos starting with embedded advertise-

ments, and that the network provider receives a constant unit revenue each time a commercial

is watched by a user (a potential business plan for the scenario of VideoForU). In this case, the

delay-utility function simply denotes the probability that a user watches a given video when she

receives the content t time after it was requested. Two possible function families modeling this

situation are:

Step function h(s)
⌧

: t 7! I{t⌧}.

Exponential function h(e)
⌫

: t 7! exp (�⌫t).

The former models a case where all users stop being interested in seeing the item after waiting for

the same amount of time. In the second case, the population of users is more mixed: at any time,

a given fraction of users is susceptible to losing interest in the content.

Time-Critical Information Assuming the content exchanged by nodes deals with an emer-

gency, or a classified advertisement for a highly demanded and rare product (i.e., a well located

apartment). In such cases, as opposed to the previous model the value of receiving this piece can

start from a high value but very quickly diminish. It is possible to capture such a behavior by a

delay-utility presenting a large reward for a prompt demand fulfillment.

Inverse power h(p)
↵

: t 7! t1�↵

↵� 1
. with ↵ > 1

Note that the value of delivering an item immediately in this case is arbitrarily large (h(0+) = 1).

Such immediate delivery can occur when a node is both a server and a user, as the local cache may

already contain the item requested. To exclude this case, we restrict the use of such delay-utility

functions to the Dedicated node case.

Waiting Cost In some situations, such as a patch needed to use or update a particular applica-

tion, users may request for an item and insist on receiving it no matter how long it takes, becoming

with time increasing upset because of tardy fulfillment. As an example, the time a user spent with

an outdated version of a software application may be related with the risk of being infected by a

new virus, and hence incurring a high cost. One can consider to represent such cases a delay-utility
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function that grows increasingly more negative with time, corresponding to a cost for the user and

the network.

Negative power h(p)
↵

as above with ↵ < 1

Negative Logarithm h(p)
1

: t 7! � ln(t).

The negative logarithm corresponds to the limit as ↵ approaches 1. It features both a high value

for fast fulfillment of request and a negative cost becoming unbounded as waiting time grows.

We plot on Figure 4.1 illustration of delay-utility functions for the three motivating examples

presented above.

(a) Advertising Revenue (b) Time-Critical Information (c) Waiting Cost

Figure 4.1: Delay-utility functions used for advertising revenue (left), time-critical

information (middle) and waiting cost (right).

To simplify the presentation below, we will assume in this chapter that h admits a finite limit

at time t = 0, (i.e., h(0+) < 1). This excludes the inverse power and the negative logarithm

delay-utility functions introduced above. These functions can be considered in the dedicated node

case where the exact same results hold, as shown in Appendix A.1.

4.3.3 Client Demand

Clients register their demand for content in the form of requests. As in previous work, we assume

that the process of demand for di↵erent items follows di↵erent rates, reflecting di↵ering content

popularity. We denote by d
i

the total rate of demand for item i. In the rest of this chapter, we

assume any arbitrary values of d
i

. As an example of demand distribution, one may use
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Pareto with parameter ! > 0: d
i

/ i�! for all i 2 I.

In simulation we use a Pareto popularity distribution, generally considered as representative of

content popularity.

We denote by ⇡
i,n

the relative likeliness of a demand for item i arising at node n, where
P

n2C ⇡i,n = 1. In other words, node n creates a new request for item i with a rate equal to d
i

⇡
i,n

.

One can generally assume that di↵erent populations of nodes have di↵erent popularity profile,

generally captured in the values of ⇡
i,n

. Otherwise, we can assume that items, especially the ones

with the highest demand, are popular equally among all network nodes. This corresponds to the

case where ⇡
i,n

= 1/|C|.

4.3.4 Node Mobility

As all nodes (whether client or server) move in a given area, they occasionally meet other nodes

- these meetings provide the opportunity for replication of cache content and fulfillment of out-

standing requests. For simplicity and as a way to compare di↵erent P2P caching schemes, we focus

on a case where contacts between clients and server nodes follow independent and memory less

processes. In other words, we neglect the time dependence and correlation between meeting times

of di↵erent pairs which may arise due to complex properties of mobility. In that case the process

of contacts between two nodes m and n is entirely characterized by their contact intensity (the

number of contacts between them per unit of time), which we denote by µ
m,n

.

Our model can be defined for any contact processes, this is what we simulate in Section 4.6

for a comparison using real traces. The memoryless assumption helps us to understand what are

optimal strategies in a simple case before evaluating them using real traces for a complete validation

of these trends. Two contact models can be considered:

Discrete time The system evolves in a synchronous manner, in a sequence of time slots with

duration �. For each time slot, we assume node contacts occur independently with probability

µ
m,n

· � (for m 2 S, n 2 C).

Continuous time The system evolves in an asynchronous manner, so that events may occur in

continuous time. We assume that node contacts occur according to a Poisson Process with

rate µ
m,n

(for m 2 S, n 2 C).
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Note that when � is small compared to any other time in the system, the discrete time model

approaches the continuous time model. In this chapter, whenever space permits we write results

for both contact model, focusing on the continuous case. Simulations results, which are based on

discrete event processes, confirm the good match between our continuous time analysis and the

discrete time dynamics of a real system.

The system is said to follow homogeneous contacts if we have µ
m,n

= µ for all nodes m 2 S

and n 2 C. This case corresponds to a population of nodes with similar characteristics where all

meeting are equally likely, as for instance it may be between the participants of a special event.

4.3.5 Content allocation objective

Demand arises in our P2P system according to content popularity, and is served as a function of

mobility and content availability, captured through variables x = (x
i,m

)
i2I,m2S .

We define U
i,n

(x) to be the expected gain generated by a request for item i created by client

node n. Following our model of users’ impatience, this expected gain is equal to E [h
i

(Y )] where Y

denotes the time needed to fulfill this request, which itself critically depends on the availability of

item i in servers’ caches.

The total utility perceived by all clients in the system, also called social welfare, may then be

written as:

U(x) =
X

i2I
d
i

X

n2C
⇡
i,n

U
i,n

(x) . (4.1)

A good allocation x of content across the global cache is one that results in a high social welfare.

Note that this objective combines the e↵ects of delay on the gains perceived by users, the popularity

of files, as well as the cache allocation.

In the remaining of this section, we derive an expression for U
i,n

(x), based on the di↵erential

delay-utility function, which will be instrumental in deriving some of its properties.

Di↵erential delay-utility function We denote this function by c
i

for the continuous time

contact model (resp. �c
i

for the discrete time contact model). These functions are simply defined

by

c
i

(t) = �dh
i

dt
(t) , and �c

i

(k�) = h
i

(k�)� h
i

((k + 1) �) .
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The values of c
i

(t) and �c
i

(k�) are always positive as h
i

is a non-increasing function. The value of

c
i

(resp. �c
i

) represents the additional loss of utility, which is incurred per additional unit of time

spent waiting (resp. the loss of utility incurred for waiting an additional time slot).

We present in the second line of Table 4.1 the expression for c
i

for all the delay-utility functions

introduced above. Note that when h
i

is not di↵erentiable (like for the step function), it may happen

that c
i

is not defined as a function but as the derivative measure in the sense of the distribution.

General expression for U
i,n

(x) Following a slight abuse of notation, we set by convention

x
i,n

= 0 when n is not a server node (i.e., n /2 S). With this notation, we find the following

expressions for U
i,n

.

Lemma 1 In the discrete time contact model, U
i,n

(x) is

h
i

(�)� (1� x
i,n

)
X

k�1

Y

m2S
(1� x

i,m

µ
m,n

�)k c
i

(k · �) ,

For the continuous time contact model, U
i,n

(x) is

h
i

(0+)� (1� x
i,n

)

Z 1

0

exp

 
�t
X

m2S
x
i,m

µ
m,n

!
c
i

(t)dt .

The proof follows from the memory less property of contacts and the expectation as obtained in

integration by part:

E [h(Y )] = h(0+) +

Z 1

0

(1� F
Y

(t))h0(t)dh .

The term (1� x
i,n

) deals with possible immediate fulfillment (i.e., request created by a node that

already contains this item in its local cache). For more details, see Appendix A.1.

Homogeneous contact case If we assume homogeneous contacts (i.e., µ
m,n

= µ), the general

expressions above simplifies. In particular, the utility depends on (x
i,n

)
i2I,n2S only via the number

of copies present in the system for each item (x
i

)
i2I .

First, in the dedicated node case (i.e., S \ C = ;), we have, respectively for the discrete time

contact model and the continuous time contact model:

U(x) =
X

i2I
d
i

0

@h(�)�
X

k�1

(1� µ�)xi

k c
i

(k · �)

1

A . (4.2)
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U(x) =
X

i2I
d
i

✓
h(0+)�

Z 1

0

e�tµx

ic
i

(t)dt

◆
. (4.3)

Similarly, for the pure P2P case, if we further assume that all N = |C| = |S| nodes follow the same

item popularity profile (i.e., ⇡
i,n

= 1/N), we have for the two di↵erent models of contact process:

U(x) =
X

i2I
d
i

0

@h(�)�
⇣
1� x

i

N

⌘X

k�1

(1� µ�)xi

k c
i

(k · �)

1

A . (4.4)

U(x) =
X

i2I
d
i

✓
h(0+)�

⇣
1� x

i

N

⌘Z 1

0

e�tµx

ic
i

(t)dt

◆
. (4.5)

All these expressions follows from a simple application of Lemma 1 (see Appendix A.1 for complete

details).

4.4 Optimal Cache Allocation

The social welfare defined above measures the e�ciency of cache allocation which captures users’

requests and impatience behavior. Finding the best cache allocation is then equivalent to solving

the following optimization problem:

max

(
U(x)

����� xi,n 2 {0, 1} , 8n 2 S,
X

i2I
x
i,n

 ⇢

)
. (4.6)

4.4.1 Submodularity, Centralized computation

A function f that maps subset of S to a real number is said to be sub-modular if it satisfies the

following property: 8A ✓ B ✓ S , 8m 2 S , f(A [ {m})� f(A) � f(B [ {m})� f(B) .

This property generalizes to set functions the concavity property defined for continuous vari-

ables. Colloquially this is referred to as “diminishing returns” since the relative increase obtained

when including new elements diminishes as the set grows.

The function U
i,n

(x) can be interpreted as a function that maps subset of S (i.e., the subset of

servers that possess a replica for item i) to a real number (the expected value of a request for item

i created in client n). Similarly, U may be seen as a function that maps subset in S ⇥ I (subsets

denoting which servers possess which replica), to a real value (the social welfare). We then have

the following result.
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Theorem 1 For any item i and node n, U
i,n

is submodular. As a consequence U is submodular.

This result can be interpreted intuitively. On the one hand, in order to increase the value of U
i,n

,

creating a new copy of item i (i.e., including a new element in the set of servers containing a copy

of i) always reduce delays and hence increases utility. On the other hand the relative improvement

obtained when creating this copy depends on the number of copies of i already present, and it

diminishes as that item is more frequently found. What is perhaps less obvious is that this result

holds for any mixed client/server population of nodes, heterogeneous contact processes, and any

arbitrary popularity profile.

An interesting consequence is that one can deduce from submodularity, under some additional

conditions, that a greedy procedure builds a (1� 1/e)-approximation of the maximum social wel-

fare for given capacity constraints (see [Nemhauser et al., 1978]). A greedy algorithm is used in

Section 4.6 to find a cache allocation for heterogeneous contact traces.

The proof of this result uses the general expression for U
i,n

found in Lemma 1 and a few

observations: First, that the expression inside the integral multiplying the di↵erential delay-utility

function is a supermodular non-increasing and non-negative function of the set of servers containing

i. Secondly, since the di↵erential delay-utility function is positive, all these properties apply to the

integral itself. Finally, that the product with (1� x
i,n

) preserves the supermodular non-increasing

and non-negative properties. A complete formal proof can be found in Appendix A.1.

In the case of homogeneous contact rates, we can obtain an even stronger result, as the social

welfare only depends on the number of replicas for each item, and not on the actual subset of nodes

that possess that item.

Theorem 2 In the homogeneous contact case, U(x) is a concave function of { x
i

| i 2 I }.

The optimal values of { x
i

2 {0, 1, · · · , |S|} | i 2 I } are found by a greedy algorithm using at

most O(|I|+ ⇢|S| ln(|I|)) computation s.

Moreover, the solution of the relaxed social welfare maximization (i.e., maximum value of U(x)

when (x
i

)
i2I are allowed to take real value) can be found by gradient descent algorithm.

The concavity property is here not surprising, as it corresponds to submodularity when the

function is defined using continuous variables rather than a set. Formally, the arguments used to

prove this result are quite similar to the previous proof: one leverages previous expressions which
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feature the product with the di↵erential delay-utility function, and then use the fact that the family

of convex non-negative non-increasing functions is closed under product.

The greedy algorithm follows a simple operation repeated once for each copy that can be cached

(⇢|S| s in total): at each time step from the current cache allocation, it adds a copy for the item

that brings the most significant relative increase in utility (assuming there does not exist already

|S| copies of this item). By doing so, the algorithm is likely to select first popular items. As the

popular items fill the cache with copies, the relative improvement obtained for each additional

copy diminishes, and the greedy rule will choose to create copies for other less popular items. The

diminishing return property ensures that this greedy algorithm selects the optimal cache allocation.

For the same reason, starting from a cache allocation, a hill climbing algorithm with full knowledge

can reach the optimal cache allocation only from local manipulation of cache between nodes that

are currently meeting. A formal proof of these results can be found in Appendix A.1.

4.4.2 Characterizing the optimal allocation

In the homogeneous contact case, whenever x
i

only takes integer values, it can be di�cult to

grasp a simple expression for the allocation maximizing social welfare, as it is subject to boundary

and rounding e↵ect. However, when the number of servers is large, x
i

may take larger values, in

particular for popular items. Hence, the di↵erence between the optimal allocation and the solution

of the relaxed optimization (where (x
i

)
i2I may take real values, as defined in Theorem 2) tends to

become small. The latter is then a good approximation of the former. In addition, when the number

of clients N becomes large, the di↵erence between the dedicated node case and the pure P2P case

tends to become negligible, as the correcting terms (1� x

i

N

) in Eq.(4.4) and (4.5) approaches 1.

We show in this section that the solution of the relaxed optimization problem satisfies a simple

equilibrium conditions. Although we only derive this condition in the continuous time contact

model, a similar condition can be found in the discrete case model.

Property 1 We consider the continuous time contact and dedicated node case. Let x̃ be the solu-

tion of the relaxed social welfare maximization (as defined in Theorem 2), then

8i, j , x̃
i

= |S| or x̃
j

= |S| or d
i

· '(x̃
i

) = d
j

· '(x̃
j

) .

where we define ' as ' : x 7!
Z 1

0

µte�µtxc(t)dt .
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This property states that, at the optimal solution of the relaxed cache allocation problem, the

amount of copies created for all items depends on their popularity exactly in the same way: via a

unique function ' defined independently of i. This equality holds only when the number of copies

is not limited by the number of servers, otherwise it becomes an inequality.

This property follows from a simple derivation of the social welfare, as
@U

@x
i

(x) = d
i

'(x
i

) ,

which may be deduced from Eq.(4.3). At the optimal solution of the relaxed allocation problem,

these derivatives should all be equal except for the value of x
i

that are on the boundary of the

domain (i.e., when x
i

= |S|). If two points are in the interior and the derivative above di↵er, it

is possible to modify x̃ slightly to remain under the capacity constraint and obtain an even larger

social welfare, which would be absurd.

The function ' can always be defined a transform of the delay-utility function. For di↵erent

choices of delay-utility, it leads to simple expressions which can be found in Table 4.1. As an

example, when all items exhibit power delay-utility (h
i

= h(p)
↵

), ' is a power function as well. The

property implies then that, for all item i that are within the boundary conditions (i.e., x
i

< |S|),

the product (x̃
i

)2�↵d
i

is a constant that does not depend on i. We deduce that the optimal cache

allocation for the relaxed problem resembles the distribution where x
i

/ d1/(2�↵)
i

, as shown in

Figure 4.2.

Figure 4.2: Coe�cient of the optimal allocation for power delay-utility functions, as a

function of ↵.

Note that, as ↵ approaches 1 (i.e., delay-utility is a negative logarithm), the social welfare is

maximized when each item receives a fraction of cache proportional to its demand. For smaller
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values of ↵ (i.e., waiting time cost) the optimal cache allocation becomes more egalitarian, it tends

to uniform as ↵ becomes arbitrary small. For larger values of ↵ (i.e., time-critical information),

the optimal allocation becomes more and more skewed towards popular items (which are likely to

give the best reward); as ↵ approaches 2, the most demanded items completely dominate the cache.

Similar qualitative observations hold for the step-function utility, the optimal allocation is more

complex but again varies between these two extreme cases.

4.5 Distributed Optimal Schemes

The previous section establishes that the cache allocation problem admits an optimal operating

point, which may in some cases be known in closed form, and can always be either computed

directly or approximated in a centralized manner. When a highly available control channel is

available, using such a centralized approach is feasible. However, making each local decisions based

on global information maintained using this control channel seems to reach the optimal allocation

only at a prohibitive cost.

In this section, we demonstrate that one does not need to maintain global information, or know

the demand of items a priori, to approach the optimal cache allocation. This results in a drastic

reduction of overhead and makes such caching service possible where no infrastructure is available.

We show that a simple reactive protocol, generalizing replication techniques introduced in the

P2P literature, are able to approach the optimal allocation using only local information. In order

to build a low-overhead reactive protocol for the opportunistic setting, two particular challenges

need be overcome:

• We must understand how to construct a replication strategy that reacts naturally to the

demand for and availability of content (Section 4.5.1), while also properly adapting our repli-

cation strategy to impatience of users (Section 4.5.2). A successful strategy will allow us to

approach the optimal e�ciency when the system reaches equilibrium.

• We must ensure that the replication technique is implemented in such a way that ensures

the convergence towards the equilibrium. This challenge proves to be non-trivial in the

opportunistic context for the strategies we examine (Section 4.5.3).
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4.5.1 Query Counting Replication

We propose a general class of distributed schemes, that we call Query Counting Replication (QCR).

QCR implicitly adapts to the current allocation of data and collection of requests, without storing

or sharing explicit estimators. QCR achieves this by keeping a query count for each new request

made by the node. Whenever a request is fulfilled for a particular item, the final value of the query

counter is used to regulate the number of new replicas made of that item. The function  that maps

the value of the query counter to the amount of replicas produced is called the reaction function.

We describe in Section 4.5.2 precisely how it should be set, given knowledge of user impatience.

As an example, consider a VideoForU client Amy who begins requesting a copy of video i. Each

time Amy (or more precisely Amy’s phone) subsequently meets another VideoForU node, Amy’s

phone queries the node met for a copy of item i and increments the query counter associated with

i. If after nine meetings Amy’s finally meets a node possessing a copy of item i and receives a

copy of video i, according to the above rule, Amy’s phone will create  (9) replicas of this item

and transmit them proactively to other nodes storing VideoForU content when the opportunity

arise. This principle generalizes path replication [Cohen and Shenker, 2002] where  (y) was a

linear function of y.

Contacts between mobile nodes are unpredictable, hence, as Amy’s phone distributes replicas,

it may encounter nodes that already contain this item. We then distinguish two implementations:

replication without rewriting where such contact is simply ignored, or replication with rewriting

where such contacts decreases by one the number of replica to be distributed, even though no new

copy can be made.

4.5.2 Tuning replication for optimal allocation

We now describe how to choose the reaction function  depending on users’ impatience. We first

observe that the expected value of the query counter for di↵erent item i is proportional to |S|/x
i

,

since whenever a node is met there is roughly a probability x
i

/|S| that it contains item i in its

cache. Hence, we can assume as a first order approximation that approximately  (|S|/x
i

) replicas

are made for each request of that items. Inversely, as a consequence of random replacement in

cache, each new replicas being produced for any items erases a replica for item i with probability

x
i

/(⇢|S|). When rewriting is allowed, one should account for all replicas created (including the one
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created for the same item), we focus on this case for the analysis. Otherwise one should consider all

replicas created for all other items. As a consequence, the number of copies for each item follows

the system of di↵erential equations:

8i 2 I ,
dx

i

dt
= d

i

·  ( |S|
x
i

)� x
i

⇢|S| ·
X

j2I
d
j

 (
|S|
x
j

) . (4.7)

Assuming the system converges to a stable steady state, the creation of copies should compensate

exactly for their deletion by replacement. In other words a stable solution of this equation satisfies

8i 2 I , d
i

1

x
i

·  ( |S|
x
i

) =
1

⇢|S| ·
X

j2I
d
j

 (
|S|
x
j

) .

Note that the RHS is a constant that does not depend on i anymore, so that this implies

8i, j 2 I , d
i

1

x
i

·  ( |S|
x
i

) = d
j

1

x
j

·  ( |S|
x
j

) .

In other words, the steady state of this algorithm satisfies the equilibrium condition of Property 1

if and only if we have: 8x > 0 , 1

x

 ( |S|
x

) = '(x) where ' is defined as in Property 1. Equivalently,

8y > 0 ,  (y) = |S|
y

'( |S|
y

) .

Property 2 The steady state of QCR satisfies the equilibrium condition of Property 1 if and only

if

 (y) / |S|/y
Z 1

0

µte�µ

t|S|
y c(t)dt .

The upshot of this result is that as long as the delay-utility function representing user impatience

is known, we can always determine the number of copies QCR must make to drive the allocation

towards its optimal. In particular, the optimal reaction function can be derived in a simple expres-

sion for all the delay utilities previously introduced, as seen in Table 4.1. This table was computed

for the continuous time and dedicated node case. A similar table can be derived for the pure P2P

case (see Appendix A.1). It is approximately equivalent to this one whenever the number of client

nodes N is large.
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Table 4.1: Several delay-utility functions with associated equilibrium and reaction functions.

4.5.3 Mandate routing

Up to this point we have worked under the assumption that copies can be made more or less

immediately, as in classical wired P2P networks. However, in an opportunistic context this is far

from true. Particularly:

• Copies can only be made when another node is met, which happens only sporadically. Cre-

ating a replica may also takes additional time. For example, when rewriting is not allowed

and the node met may already have a replica of that item.

• Since cache slots are overwritten randomly, it could be that, when a replica of the item needs

to be produced, this item is no longer in the possession of the node desiring to replicate it.

Mandates & Pathologies Because replicas cannot be simply generated immediately, QCR

mechanism deployed in an opportunistic context must inherently make (either implicitly or ex-

plicitly) a set of instructions for future replication of item i (i.e., instructions to be used later,

when the possibility for execution arises). We call such an instruction a replication mandate or

mandate for short.

When a meeting occurs the mandate attempts to execute itself, but as we have already discussed,

the circumstances may often not allow for its execution. This dependence of mandate execution

on the state of the distributed cache may throw a monkey wrench in the dynamics outlined in

Section 4.5.2 - for if the cache deviates to much from its expected state, the rates at which a given

replica population evolves may be higher or lower than expected as well. As an example, if there

are many fewer than expected copies of item i in the cache, and item i was erased by later random
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replacement, item i may rarely be present again, so that mandates may not be executed soon in

the future. An item i that, in contrast, is more frequently found, will execute its mandate more

quickly and hence continue to dominate. Consequently, if mandates are simply left at their node of

origin the allocation produced by any given run of QCR can diverge significantly from the target

allocation, resulting in a loss of social welfare.

Our solution In order to address the above pathology, we need to ensure that the number of

replication actions taken for each message is proportionally the same as the number of mandates

produced for that message. This could be done in several ways, which all boil down to one of the

following two approaches: (1) Move replicas to nodes with mandates for those replicas, or (2) Move

mandates to nodes possessing the replicas which those mandates need in order to execute.

The former approach (e.g., protecting items with current mandates from being erased by

random replacement) violates the dynamics we are trying to protect and introduces significant

implementation-level complexity - as we must now either replicate or protect against deletion par-

ticular messages based on locally existing mandates. While in practice these e↵ects may be more or

less severe, the second option of moving mandates to nodes with replicas provides us with a way of

solving the problem that involves no addition biasing of the overwrites, nor requires any adjustment

to the mechanism of cache adjustment. Additionally mandates are by nature quite small pieces of

data, so moving them introduces little additional overhead in terms of communication and storage.

The mandate routing scheme used for the experiments shown in Section 4.6 is simple but can

have significant impact as will be seen later. We assume that when two nodes meet, mandates

are transferred with preference to the nodes possessing copies of the messages to be replicated.

This ensures that most of the mandates that cannot be executed are soon transferred to appropri-

ate nodes. Otherwise mandates are simply spread around - split evenly between the nodes. We

demonstrate empirically that this simple modifications avoids divergence of QCR and is su�cient

to converge towards an optimal point.

4.6 Validation

We now conduct an empirical study of di↵erent replications algorithms in a homogeneous contact

setting, as well as several traces in various mobility scenarios. The goal of this study is threefold.
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Firstly, to validate empirically that the rationale behind our distributed scheme does actually

converge close to the optimal value we predict. Secondly, to observe quantitatively its improvement

over simple heuristics. Thirdly, to test if the same scheme adapts well to contact heterogeneity

present in real-world mobility traces, as well as complex time statistics and dependencies between

contacts present in these.

4.6.1 Simulation settings

We have built a custom discrete-event, discrete-time simulator in C++ which given any input

contact trace simulates demand arrival and the interactions of node meetings.

Data plots present below are the average of 15 or more trials with confidence interval corre-

sponding to 5% and 95% percentiles. As said in Section 4.3.3 items are requested following Pareto

distribution, here with parameter ! = 1. By default we assume ⇢ = 5. Other values of ! and ⇢ can

be found in Appendix A.2.

We do not consider the additional complexity of meeting durations. Instead we work on the

premise that meetings are su�ciently long for nodes to complete the protocol exchange.

Implementation of QCR When two nodes meet they first exchange meta data. If either nodes

have outstanding requests for messages to be found in the other’s cache, then each of those requests

is fulfilled. For each fulfillment a gain is recorded by the simulator, based on the age of this request

and the delay-utility function. Nodes maintain query counters and makes a set of new mandates

for each message fulfilled (as specified in Section 4.5.2). After fulfillment, the nodes then execute

and route all of their eligible mandates (by sharing it equally if both nodes still possess a copy of

the items, otherwise give it to the only node with a copy of this item). Rewriting of copy is not

allowed, which means that contacts with a node already containing a copy of this item are simply

ignored.

Each item i has one sticky replica which cannot be erased. This implementation detail has the

e↵ect of ensuring that we do not enter an absorbing state in which certain messages have been

lost through discrete stochastic e↵ects. We include them in mandate routing as preferred nodes

(they will receive 2/3 of all mandates for this particular item whenever they meet a copy with

this item, or all of them if the item has been erased on this node). We believe it is a reasonable
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assumption for a fielded system, given that the initial seeder of a content item will likely keep that

item permanently.

Competitor Algorithms We compare the performance of QCR against several heuristics using

perfect control-channel information and the ability to set the cache precisely and without restriction

to their desired allocation: OPT an approximation of the optimal obtained by a greedy algorithm

optimizing Pb.(4.6). It is exactly optimal in the homogeneous case and approximately so in the

heterogeneous ones; UNI: memory is evenly allocated amongst all items; SQRT: memory alloca-

tion proportionally to the square root of the demand; PROP: memory allocation proportional to

demand; DOM: all nodes contain the ⇢ most popular items.

4.6.2 Homogeneous contacts

We simulate a network of 50 nodes with 50 content items (I = 50), meeting according to a rate

µ = 0.05 (the absolute value of µ plays no role in the comparison between di↵erent replication

algorithm). As we wish to validate our analysis is not a mere artifact of the constraints used to

generate it, we focus on the pure P2P case (|C| = |S| = N = 50), which is the furthest from the

analysis we conducted. We tune the reaction function  according to Table 4.1.

QCR with and without mandate routing Figure 4.3 illustrates the need to implement man-

date routing in query based replication. It was obtained for the power function with ↵ = 0. This

result is representative of all comparison where mandate routing was turned on and o↵. As the

time of the simulation evolves we see that the utility (as estimated in expectation on (a), and ob-

served from real fulfillment in (b)) dramatically decreases with time when QCR does not implement

mandate routing. Further investigations have shown that simultaneously the amount of mandate

diverges for item less frequently requested. We see on (d), where the number of replicas is shown

for the five most requested items, that QCR without mandate routing systematically overestimates

their share and sometimes. In contrast, the number of replicas with mandate routing fluctuates

around the targeted value, and QCR quickly converges and stay near optimal utility.

Comparison with fixed allocations Figure 4.4 presents the utility obtained with the both

QCR and the competitor algorithms described previously. For each algorithm, we plot in the y-
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(a) Expected Utility (b) Observed Util.
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Figure 4.3: E↵ect of mandate routing (homogenous contacts, power delay-utility function

with ↵ = 0).

axis (U � U
opt

)/|U
opt

| where U is the utility obtained on average during the simulation by this

algorithm and U
opt

is the value obtained with the optimal allocation. Hence the plotted quantity

is always negative (since as we expect no algorithm outperforms OPT). Value y = �1 corresponds

to a utility 1% smaller than the optimal social welfare. Due to large variation of this quantity over

the space and algorithms investigated, we used a logarithmic scale in the y-axis to present these

results. For each algorithm, we consider two models of delay-utility (power and step function) with

di↵erent parameters, varied along the x-axis.

We observe that for both delay-utility functions, the extreme strategies (i.e., UNI and DOM)

fail to approach the optimal in general. In particular it is the case for small value of ↵, when users are
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sensitive to waiting delay and the decrease in social welfare can be high, and small value of ⌧ where

quick response is essential. While demand aware o✏ine strategies (i.e., PROP and SQRT) perform

similarly to QCR, QCR does not require control-channel information to achieve this performance.

We even observe that QCR outperforms PROP in many cases, sometimes very significantly. Across

all heuristic competitors, QCR does not incur a loss of utility beyond 5% (for step function) and

60% in the worst case of power function. One unexpected result is that the square root allocation

performs reasonably well in most cases studied, however this is an ideal performance observed when

the allocation is fixed with a priori knowledge. In contrast, proportional allocation leads to much

worse performance, in particular for power delay-utility function. Proportional allocation resembles

a passive demand based replication where a fixed number of replicas (e.g., one replica) are created

whenever a request is fulfilled (as found in [Lenders et al., 2007] and many other works). These

results illustrate that such passive replication simply gives too much weight to popular items, and

that compensating for this e↵ect is both necessary and achievable.
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Figure 4.4: Comparison between QCR and several fixed allocations (homogeneous contacts):

for power delay-utility function as a function of ↵ (left), for step delay-utility function as a

function of ⌧ (right).

4.6.3 Real Contact Traces

We now abandon the homogeneous mixing assumption needed for our analysis and look at the

performance of QCR on real-world contact traces to see if the spirit that our analysis still applies

under more realistic mobility. As in the homogeneous experiments, we use I = 50 and N = 50 for

evaluation of our techniques on both heterogeneous traces.
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Conference scenario We use the Infocom ’06 data set which measures Bluetooth sightings be-

tween 73 participants at the Infocom conference (see [Chaintreau et al., 2007] for more details) over

the course of thee days. To remove bias from poorly connected nodes, we selected the contacts for

the 50 participants (numbered from 21 to 71 in the original data sets) with the longest measurement

periods.

Figure 4.5 (a) presents the utility as seen over time (time averaged over an hour) for the

competitor set and QCR (with mandate routing). We clearly observe the alternation of daytime

and nighttime during the trace. Here, unlike in the homogeneous scenario, DOM and PROP

perform the best. QCR performs very close to the latter, despite heterogeneity and complex time

statistics. SQRT and UNI perform poorly until tau becomes quite large - as the delay requirement

is too stringent to allow significant improvement on non-popular items that would o↵set the loss

created by shifting the focus o↵ popular content.

(a) evolution with time (⌧ = 1)
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Figure 4.5: Utility for Infocom ’06 dataset and step function model of impatience.

Figure 4.5 (b) and (c) presents the relative loss of utility for di↵erent algorithms (compared

with OPT) as a function of ⌧ . We separate the impact of heterogeneity per se by presenting

the actual traces and a synthetic trace where contact rates of all pairs are identical but contacts

are assumed to follow memoryless time statistics. Heterogeneity per se does not seem to greatly

impact the performance of QCR. Indeed it appears QCR may even perform better under contact

complexity, perhaps because its implicit reaction to content availability adapts well to heterogeneous

cases. The most notable di↵erence with the homogeneous case is that SQRT is not a clear winner

anymore and that PROP and DOM seem relatively stronger. The results from actual traces show

that time statistics greatly impact the performance of a fixed allocation. First, since OPT was
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computed under the approximation of memory less contact, some competitors actually perform

slightly outperform OPT on occasion. We also observe that the DOM greatly improves due to

bursty statistics. However, the performance of QCR remains quite comparable, generally lying

within 15% of OPT.

Vehicular networks We use contacts recorded between 50 taxicabs selected from the Cabspot-

ting project contact traces. The data sets was extracted from a day of data and assumed that

taxicabs are in contacts whenever they are less than 200m apart (see [Chaintreau et al., 2009] for

more details). Results, shown in terms of performance relative to OPT, may be found in Fig-

ure 4.6 (a) (b) (c). Again, we observe that OPT, which is based on a memoryless assumption,

can be outperformed by some allocation (as in (b) for the step function case). Just as for the

Infocom data set, we see that SQRT tends to produce degraded performance, while DOM improves

as heterogeneity and complex time statistics are included in the contact trace. The performance of

QCR, the only scheme based on local information, appears less a↵ected by this change.
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Figure 4.6: Comparison between QCR and several fixed allocations (Cabspotting dataset

using actual traces): for power delay-utility function as a function of ↵ (left), for step

delay-utility function as a function of ⌧ (middle), for exponential delay-utility function as a

function of ⌫ (right).

4.7 Summary

Our results focus on a specific feature which makes P2P caching in opportunistic network unique:

users’ impatience. From a theoretical standpoint, we have shown that optimality is a↵ected by
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impatience but can be computed and moreover satisfies an equilibrium condition. From a practical

standpoint, we have seen that it directly a↵ects which replication algorithm should be used by

a P2P cache. Passive replication, ending in proportional allocation, can sometimes perform very

badly, but one can tune an adaptive replication scheme to approach the performance of the optimal,

based only on local information.
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Chapter 5

Conclusions

In this dissertation, we have sought to find solutions for problems arising through changed mobility

of user, devices, and software, that require minimal modification to existing designs We have

considered concrete scenarios from sub-disciplines spanning wireless networks, green computing,

and cloud computing. In each scenario, we design a solution that aims to strike an advantageous

balance between adoptability and technical e�ciency. We find that, not only this be done, but

that adoptable and e↵ective solutions implemented solely in software and deployed only on network

end-hosts may be devised. The network itself and its protocols need not be changed at all.

We design and implement of a system (vmTorrent) capable of quickly and scalably distribut-

ing and executing VM images in the cloud. vmTorrent’s custom front-end file server allows for

VM quick-start in which VMs can execute while their images traverse the network. To this is at-

tached a P2P back-end supporting e�cient scaling. Finally, vmTorrent’s intelligent pre-fetching

algorithms enable smooth streaming execution: balancing the needs of local execution (image pieces

should be prefetched based on anticipated need) and swarm e�ciency (prefetching may need to be

randomized to ensure piece diversity su�cient to fully exploit swarm upload capacity).

To evaluate this approach, we implement a functional vmTorrent prototype. We measure

our prototype’s performance on a variety VMs and short VDI tasks. For these we deploy our

prototype on a hardware testbed, using up to 100 physical client peers. Our experimental re-

sults demonstrate our design choices produce a scalable system. vmTorrent delivers up to an

11X improvement over a state-of-the-art P2P approaches and up to a 30X improvement over

demand-based streaming approach. In fact, the vmTorrent runtimes remain comparable to those
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of local disk execution for all workload sizes. vmTorrent provides such an e↵ective solution to

this problem that it is currently in the process of commercialization.

To save energy in enterprise networks, we architect and implement a non-intrusive, economical,

network-based sleep-proxying system. Each desktop machine runs a lightweight daemon that,

immediately preceding transition to sleep states, informs a sleep proxy sitting on the local network.

The network sleep proxy then redirects and monitors tra�c incoming to the sleeping host, waking

the host as appropriate.

We roll out the first substantial deployment of any sleep-proxying system in a corporate en-

vironment. We deploy our software on over 50 user machines in six subnets. Almost all of these

machines are primary user workstations. We measure the performance of our system, collecting

over half-a-year’s worth of data. We instrument our system extensively; capturing numerous details

about sleep and wake-up periods, data which explains why machines wake up and why they stay up.

Instead of using generic estimates of PC power consumption, we use a sophisticated software-based,

model-driven system, Joulemeter, to estimate power draw. Additionally, we describe a number of

practical issues we encountered when deploying a light-weight sleep proxy in a corporate network,

providing new insight into how such systems may most e↵ectively be deployed.

This work appears to have struck the right balance between technical e�ciency and adoptability.

Our sleep-proxying system has been in continual use since it was first rolled out two years ago, and

continues to attract more users.

Finally in the wireless domain, we model how an opportunistic content distribution mechanism

might function, focusing on user impatience: the function describing the decreasing utility users

find as the wait for fulfillment of their demand increases. We then show how that under certain

conditions the optimal memory usage policy can not only be described, but also approximated

using a lightweight distributed mechanism. Moreover the information required to determine what

content should be replicated by any pair of meeting nodes is entirely local, given knowledge of the

impatience curve.

We validate these techniques on real-world contact traces, demonstrating the robustness of our

analytic results in the face of heterogeneous meeting rates and bursty contacts. We find QCR

compares favorably to a variety of heuristic competitors, despite those competitors having access

to a perfect control-channel and QCR relying solely on locally available information.
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Our work was the first in this area to take a first-principles approach that defines and maximizes

a global objective function. Likewise, our work was the first to consider how users might respond

to such a system. Since we published, less than two years ago, a stream of at least 15 publications

from other researchers have cited our approach.

5.1 Future Directions

The trend towards increased mobility of, within, and between computerized systems appears to be

accelerating. The rapid adoption of OS-level virtualization means that more and more computa-

tional machines can, and likely will, hop from device to device. We are currently seeing both the

virtualization of the network itself and of an increasing range of devices that have traditionally

been collocated. Finally the hardware in which computation resides becomes ever more ubiquitous,

miniaturized and mobile - fully functional networked computers may masquerade as watches or sit

in children’s toys . Where this all ends is still a very open question, but we see abundant new

challenges and opportunities arising in the years ahead, as we figure out how to repurpose existing

technologies and build entirely new ones.

We now briefly outline some directions for future research related to the material covered in

this dissertation.

Improved prefetching for vmTorrent: our current prefetching mechanisms are quite simple.

In the future, we will look to explore improved techniques that determine prefetch order based

on current execution pattern, more nuanced statistical profiling methods, and swarm awareness

(e.g., being able to adjust the degree of random re-ordering introduced into the prefetch requests

based on current swarming e�ciency).

On the fly compression: whereby image pieces are transferred in a compressed state, only being

decompressed as needed. Not only will piece compression save network bandwidth, but if done

correctly, it could both reduce metadata and save space in memory.

Cross-image swarming: by dealing with VM images at the file-system, instead of block, level,

content overlap between similar VMs might be exploited.

VMs built on demand: Taking this same concept even further, VMs are already much more

disposable than the bare-metal systems they replace. Might VMs be created on-the-fly from com-
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ponents taken from pre-existing VMs already on hand, allowing for almost infinite flexibility?

vmTorrent provides much of the technology infrastructure needed to do this, although signif-

icant challenges remain on both the networking (e.g., solving the multi-swarm sharing problem)

and systems ends (e.g., determining which image components can be safely combined and how to

do so).

Computer systems built on demand: As various components are virtualized might devices

themselves become more fluidly defined, adding or deleting components as they move from one

location to another? Already, Apple has built “Remote Disc” facilities directly into Mac OS X,

allowing one machine to use another networked machine’s physical drive, as if it were directly

physically attached. Likewise, NAS designed for the home have gained widespread commercial

traction. One might reasonably imagine a future in which devices incorporate additional CPU,

RAM, monitors, etc., seamlessly on-the-fly, based on current execution requirements and geographic

availability.

Multi-device VMs: Each individual could conceivably have a VM that hops from smartphone to

tablet, to cloud, to car, and back again. Looked at another way, VM technology may lead to OSes

that span multiple devices, migrating and activating functionality as needed.

Network-aware device OSes: In the nearer term, there appear to be opportunities to improve

the underlying function of mobile devices to provide a more seamless network experience to the user.

For example, most mobile browsers today will clear cached webpages and attempt to reload these

pages, even though no connectivity is available. Several techniques, including smart virtualized

network interfaces might be used to solve these types of problems.

Plug-and-play opportunistic mechanisms: Network-aware device functionality might be par-

layed directly into truly plug-and-play opportunistic content exchange - providing a standardized

API on which such applications might be built.

P2P sleep proxy: This type of functionality might also support more advanced messaging-based

power control. Our current sleep-proxying architecture requires the use of a dedicated (albeit low-

power) sleep proxy machine on each subnet. This could be replaced with a p2p architecture in

which machines fall asleep one after the other, while the “last man standing” keeps watch for the

entire subnet. Such a setup might even be extended to mobile devices, potentially extending the

battery lives of smartphones, tablets, and similar devices.
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IT application coordination and configuration: Currently, IT maintenance tasks are un-

coordinated and consequently will keep machines awake during each of their separate execution

time periods. Devising methodologies that schedule these tasks to overlap as much as possible can

significantly increase sleep opportunities.



CHAPTER 5. CONCLUSIONS 120

This page intentionally left blank



121 BIBLIOGRAPHY

Bibliography

[acpi, ] Advanced Configuration and Power Interfae, revison 4.0. http://www.acpi.info/.

[Adaptiva Technologies, ] Adaptive Technologies. http://www.adaptiva.com/.

[Agarwal et al., 2009] Yuvraj Agarwal, Steve Hodges, Ranveer Chandra, James Scott, Paramvir

Bahl, and Rajesh Gupta. Somniloquy: augmenting network interfaces to reduce pc energy

usage. In NSDI’09, Berkeley, CA, USA, 2009.

[Agarwal et al., 2010] Yuvraj Agarwal, Stefan Savage, and Rajesh Gupta. Sleepserver: A software-

only approach for reducing the energy consumption of pcs within enterprise environments. In

USENIX ATC, 2010.

[Al-Fares et al., 2008] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable,

commodity data center network architecture. SIGCOMM Comput. Commun. Rev., 38(4):63–74,

2008.

[Albanna et al., 2001] Z. Albanna, K. Almeroth, D. Meyer, and M. Schipper. RFC 3171: IANA

Guidelines for IPv4 Multicast Address Assignments, August 2001.

[Allman et al., 2007] M. Allman, K. Christensen, B. Nordman, and V. Paxson. Enabling an energy-

e�cient future internet through selectively connected end systems. In Hotnets. ACM SIGCOMM,

Nov. 2007.

[amt, ] Intel Active Management Technology (AMT). http://www.intel.com/technology/

platform-technology/intel-amt/.

[apple-wol, ] Apple Wake On Lan. http://www.macworld.com/article/142468/2009/08/wake_

on_demand.html.

http://www.acpi.info/
http://www.adaptiva.com/
http://www.intel.com/technology/platform-technology/intel-amt/
http://www.intel.com/technology/platform-technology/intel-amt/
http://www.macworld.com/article/142468/2009/08/wake_on_demand.html
http://www.macworld.com/article/142468/2009/08/wake_on_demand.html


BIBLIOGRAPHY 122

[Arar, 2011] Yardena Arar. Why wireless carriers both promote and dread 4g. http://

technologizer.com/2011/03/23/why-wireless-carriers-both-promote-and-dread-4g/,

March 2011.

[Balasubramanian et al., 2007] Aruna Balasubramanian, Brian Levine, and Arun Venkataramani.

DTN Routing as a Resource Allocation Problem. In Proc. ACM SIGCOMM, August 2007.
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Appendix A

Wireless Computing

A.1 Proofs

A.1.1 General Expression for U

Proof of Lemma 1 We use the following two facts:

Let X be a geometric random variables in { 1, 2, · · · } with probability of success r, then for

any functions f

E [f(X)] = f(1)�
X

k�1

(1� r)k(f(k)� f(k + 1)) . (A.1)

It follows a simple Abel transformation of the series defining the expectation of this variable.

Similarly, let X be an exponential random variable with parameter �, then we have, for any

derivable function f defined on [0,1[ which admits a limit in 0+:

E [f(X)] = f(0+) +

Z 1

0

exp (��t) f 0(t)dt . (A.2)

It follows from a simple integration by part.

Whenever a demand for item i is created in client node n, two possible cases occur: Either the

node is also a server and it contains a version of this item (i.e., n 2 S and x
i,n

= 1), or the item

has to be request from a server node. In the former case, the demand is fulfilled immediately in

the next time slot, and the demand creates a gain h(�) for this user. Otherwise, it may be fulfilled

whenever a node meets a server node that stores this item. For any time slot, this client node’s

request may be fulfilled by server m with probability (x
i,m

· µ
m,n

· �). Hence the number of trials
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before this request is fulfilled follows a geometric random variable in { 1, 2, · · · } with a probability

of success

r
i,n

= 1�
Y

m2S
(1� x

i,m

µ
m,n

�) .

We may then write that the expected gain for an item i requested at node n is

E [U
i,n

] = x
i,n

h(�) + (1� x
i,n

)E [h(� ·X)] ,

where X is a geometric random variable with success probability r
i,n

, and x
i,n

= 0 by convention

whenever n /2 S. Combining the above inequality with Eq.(A.1) we have:

E [U
i,n

] = h(�)� (1� x
i,n

)
X

k�1

(1� r)k(h(�k)� h(� (k + 1))) .

After replacing r and using the di↵erential impatience function c, we obtain the expression of the

lemma.

In a continuous time contact model, when the node i does not possess a copy of item i, the time

elapsed before this request can be fulfilled is an exponential random variable with parameter:

X

m2S
x
i,m

µ
m,n

.

The result then follows from the exact same argument and Eq.(A.2).

Application to Homogeneous contact case In the homogeneous contact case, the expression

for U simplifies: Let us start with the dedicated node case first. In the discrete time case, one

can see
Y

m2S
(1� x

i,m

µ
m,n

�) = (1� µ�)xi .

Moreover, in the dedicated node case, for any n 2 C, n /2 S and hence x
i,n

is null by convention.

The expression of U
i,n

from Lemma 1 hence can be rewritten:

U
i,n

(x) = h
i

(�)�
X

k�1

(1� µ�)k·xi c
i

(k · �) .

This expression does not depend on n anymore, and we have

U(x) =
X

i

d
i

X

n2C
⇡
i,n

U
i,n

=
X

i

d
i

0

@h
i

(�)�
X

k�1

(1� µ�)k·xi c
i

(k · �)

1

A ,
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which implies Eq.(4.2).

In the continuous time case, we first observe that

X

m2S
x
i,m

µ
m,n

= x
i

· µ .

As a consequence, following the same argument as before,

U
i,n

(x) = h
i

(0+)�
Z 1

0

exp (�tx
i

· µ) c
i

(t)dt .

This expression does not depend on n any more, and implies that U(x) can be written as Eq.(4.3).

We now consider the pure P2P case, where all nodes are server, and we assume that profile

are uniform among users (i.e., ⇡
i,n

= 1/N).

U
i,n

(x) = h
i

(�)� (1� x
i,n

)
X

k�1

(1� µ�)k·xi c
i

(k · �) .

For n such that x
i,n

= 1 we have U
i,n

= h
i

(�), this case occurs exactly x
i

times. For all other value

of n we have the same expression as in the dedicated node case above, this case occurs exactly

N � x
i

times. Hence we deduce:

X

n2C
⇡
i,n

U
i,n

=
X

n2C

1

N
U
i,n

= h
i

(�)� N � x
i

N

X

k�1

(1� µ�)k·xi c
i

(k · �) .

This proves Eq.(4.4). A similar argument for the continuous case yields Eq.(4.5).

A.1.2 Submodularity and Concavity property

Proof of Theorem 1 It is su�cient to prove that, for a given item i and a client node n, U
i,n

is

a submodular function of the set { m 2 S | x
i,m

= 1 }, since the sum of supermodular functions is

supermodular.

Let us fix an item i and a client node n. For any subset A of S, we introduce the following set

function:

� : A 7!
Y

m2A
(1� µ

m,n

· �) ,

We may redefine U
i,n

as a set function such that U
i,n

(A) is given by:

h
i

(�)� (1� I{n2A})
X

k�1

�(A)kc
i

(k · �) . (A.3)
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We first observe that, for any k � 1, the function f : A 7! �(A)k is supermodular. Indeed, we

have for any subset A ✓ S and m 2 S:

f(A [ {m})� f(A) = I{m/2A} · �(A)k
⇣
(1� µ

m,n

)k � 1
⌘
.

For A ✓ B, we have

I{m/2A} (�(A))k � I{m/2B} (�(B))k � 0 ,

since both terms are positive non-increasing set function (w.r.t. set inclusion). As
�
(1� µ

m,n

)k � 1
�

is always non-positive, we deduce for A ✓ B

f(A [ {m})� f(A) =
⇣
(1� µ

m,n

)k � 1
⌘
I{m/2A} · �(A)


⇣
(1� µ

m,n

)k � 1
⌘
I{m/2B} · �(B)

 f(B [ {m})� f(B) .

We deduce for any k, f is a supermodular function, which is also positive. A weighted sum, with

positive weights, of supermodular function is a supermodular function. Hence, since c
i

(k · �) is

positive as the impatience function h
i

is non-increasing, we deduce

A 7!
X

k�1

�(A)kc
i

(k · �) ,

is a supermodular function. We also deduce that it is positive and non-increading.

Lemma 2 Let f be a supermodular, non-increasing, non-negative set function defined on S. Then,

for any n 2 S, the set function g : A 7! (1� I{n2A})f(A) is supermodular, non-increasing and non-

negative.

Proof 1 g is obviously non-negative and it is non-increasing since f is non-negative. It remains

to be shown that it is supermodular. Let A ✓ B be two subsets of S, we wish to prove that, for any

m 2 S, we have

g(A [ {m})� g(A)  g(B [ {m})� g(B) .

• If n 2 B, then the RHS above is always null. As g is non-increasing, the LHS is always

non-positive, which proves the results.

• If n /2 B, then it is by definition not in A neither. Whenever m 6= n, we then have that the

inequality above holds as g and f are equal on all these subsets. When m = n, the inequality

simplifies to �g(A)  �g(B), equivalently g(A) � g(B) which holds as g is non-increasing.
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From Eq.(A.3) and Lemma 3, we deduce that U
i,n

may be written as a constant minus a

supermodular function. It is hence by definition submodular.

The same argument holds for a continuous time model: We first introduce the following set

function defined on all subset A of S:

�̃ : A 7!
X

m2A
µ
m,n

,

We may redefine U
i,n

for the continuous time model as a set function such that U
i,n

(A) is given

by:

h
i

(0+)� (1� I{n2A})

Z 1

0

exp (�t · �̃(A)) c
i

(t)dt . (A.4)

We first observe that, for any t � 0, the function f : A 7! exp(�t · �̃(A)) is supermodular.

Indeed, we have for any subset A ✓ S and m 2 S:

f(A [ {m})� f(A) = I{m/2A} · e�t�̃(A)

�
e�tµ

m,n � 1
�
.

For A ✓ B, we have I{m/2A} · e�t�̃(A) � I{m/2B} · e�t�̃(B) , since both are positive non-increasing

function of the set. As, for any m
�
e�tµ

m,n � 1
�
is non-positive, we deduce for A ✓ B

f(A [ {m})� f(A) = I{m/2A} · e�t�̃(A)

�
e�tµ

m,n � 1
�

 I{m/2B} · e�t�̃(B)

�
e�tµ

m,n � 1
�

 f(B [ {m})� f(B) .

We deduce that, whatever be the value of t, f is a supermodular function, which is also positive. A

weighted sum, with positive weights, of supermodular function is a supermodular function, which

also generalizes to integral of function multiplied by a positive term. Hence, since c
i

(t) is by

definition positive for any value of t we deduce that

A 7!
Z 1

0

exp (�t · �̃(A)) c
i

(t)dt ,

is a supermodular function. We also deduce that it is positive. From Eq.(A.4) and Lemma 3,

we deduce that U
i,n

may be written as a constant minus a supermodular function. It is hence by

definition submodular.
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Proof of Theorem 2 With homogeneous contacts between nodes, the social welfare only depends

on the total number of copies x
i

of each item i. Let us start with the dedicated node case under

the discrete time contact model. In this case, we have

U(x) =
X

i2I
d
i

0

@h(�)�
X

k�1

(1� µ�)xi

k c
i

(k · �)

1

A .

We first observe that, if we allow x
i

to take real number value, U is a concave function of the

{x
i

|i 2 I}. It comes from the fact that, for any k � 1, the function

x 7! (1� µ�)xk ,

is convex. U is then a weighted sum of concave functions with positive coe�cient (since c(k · �)

is non-negative for all k). The same argument applies to show that the relaxed optimization for

continuous time, as well as for the pure P2P case, satisfy the same property, from Eq.(4.3)-(4.5).

Lemma 3 Let f, g be two convex, non-increasing, non-negative derivable functions, then the prod-

uct function fg is convex, non-increasing and non-negative.

Proof 2 The function fg is obviously non-negative and non-increasing (as a product of two non-

negative, non-increasing functions). In addition we have, after a derivation:

dfg

dx
(x) = f 0(x)g(x) + g0(x)f(x)

= �
�
g(x)

�
�f 0(x)

�
+ f(x)

�
�g0(x)

��
.

The function �f 0 is non-negative (as f is non-increasing) and non-increasing (as f is convex).

We deduce that g(�f 0) is non-increasing and non-negative. We deduce that the derivative of fg as

shown above is non-decreasing, hence that fg is convex.

This proves the second half of theorem and directly implies that there exists a unique maximum

of the relaxed optimization which can be found through gradient descent algorithm [Boyd and

Vandenberghe, 2004].

The only remaining point to prove the theorem is to show that, for the original problem where

x
i

only takes integer values, the maximum can be obtained by a greedy procedure
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For any x = {x
i

|i 2 I}, we denote by �U

�x

i

(x) the marginal improvement obtained when another

copy of item i is created. It is defined by

�U

�x
i

(x) = U(x
1

, . . . , x
i�1

, x
i

+ 1, x
i+1

, . . . , x
M

)� U(x) .

One key observation is that, for a given i 2 i, the marginal improvement �U

�x

i

(x) is independent of

x
j

for all j 6= i. Note that this is intuitive, as for a fixed number of copies of a given item, the delay

or waiting time to find this item is not impacted by how much copies of other items are available.

In other words, we may write �U

�x

i

(x) = f
i

(x
i

), where

f
i

(x) = d
i

X

k�1

(1� µ�)xk
⇣
1� (1� µ�)k

⌘
c
i

(k · �) .

In summary, the value of the social welfare can be decomposed, for each item i, as a sum of x
i

terms that are values of a function f
i

:

U(x) =
X

i2I
(f

i

(1) + f
i

(2) + · · ·+ f
i

(x
i

)) . (A.5)

Another important observation is that, owing to the concavity of the function U (established above),

the function f
i

above are all non-increasing.

We will now prove that a greedy procedure can find the allocation with maximum social welfare.

Let us first define two optimization problems.

OPT(C): max
X

i2I

X

l2{1,2,··· ,x
i

}

f
i

(l) such that

1  x
i

 |S| ,
X

i2I
x
i

 C

SETOPT(C): max
X

i2I

X

l2A
i

f
i

(l) such that

A
i

✓ N⇤ , 1  |A
i

|  |S| ,
X

i2I
|A

i

|  C

The problem OPT(C) with (C = ⇢ · |S|) is exactly the problem we wish to solve. The problem

SETOPT(C) is only defined for the need of the proof: it is a slightly more general problem in the

sense that it does not require to look at sum of values of f
i

on contiguous integers, but can consider

values of functions f
i

on any collection of subsets.

We start by the two following simple results:
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Lemma 4 When the functions f
i

are non-increasing for all i, the two optimization problems are

equivalent:

We have 8i 2 I , A
i

= {1, 2, . . . , x
i

} .

where { x
i

| i 2 I } (resp. { A
i

| i 2 I }) denotes the solution of OPT(C) (resp. SETOPT(C)).

One can easily show that the A
i

should be made of contiguous integers starting from 1 (If that is

not the case, is is easy to construct an even better choice of A
i

to maximize the sum). Owing to

this fact, the two problems are equivalent and the result above holds.

Lemma 5 Let { A
i

| i 2 I } and { B
i

| i 2 I } be the solutions of SETOPT(C) and SETOPT(C+

1).

• for any i 2 I, A
i

✓ B
i

.

• The only j such that B
j

6= A
j

satisfies

j = argmax

⇢
max
l /2A

i

f
i

(l)

���� i 2 I, |A
i

| < |S|
�

.

Since A cannot contain B due to size constraint, there exists j and a such that a 2 B
j

and a /2 A
j

.

Let B0
j

= B
j

\ {a} and B0
i

= B
i

for all i 6= j. Then the collection of all subsets B0
j

for all j 2 I

satisfies the conditions of problem SETOPT(C). By optimality of B we should have B0
i

= A
i

for

all i 2 I (otherwise one could always construct an even better choice than B. This concludes the

proof, as again, if the second property does not hold, one can construct an even better solution

starting from the subsets A
i

and adding one element.

As a consequence of the two lemmas, when all functions f
i

for all i are non-increasing, we deduce

that if { x
i

| i 2 I } and { y
i

| i 2 I } are the solutions of OPT(C) and OPT(C + 1) then

8
<

:
y
j

= x
j

+ 1 if j = argmax
i

{f
i

(x
i

+ 1)|x
i

< |S|}

y
j

= x
j

otherwise .

This can be used as a recursive rules to deduce the optimal allocation for any cache size C.

This is what Algorithm A.1, defined below, implements in at most O(|I|+⇢|S| · ln(|I|)) steps (since

the search for the maximum improvement can be run in at most O(ln(|I|) with a priority queue).
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x

i

 1;sum M ;

A = { 1, 2, · · · ,M };

for all i 2 A do

imp
i

 �U

�x

i

(x);

end for

while sum  ⇢|S| do

pick j = argmax
i

{ imp
i

| i 2 A };

x

j

 x

j

+ 1; sum sum+ 1;

imp
j

 �U

�x

i

(x);

if x

j

= |S| then

A A \ {j};

end if

end while

Figure A.1: Maximum welfare (Homogeneous contact).

The proof was conducted here in the discrete time for the dedicated node case, the same exact

argument applies to pure P2P case, where f
i

is defined as

f
i

(x) = d
i

(1� x

N
)
X

k�1

(1� µ�)xk
⇣
1� (1� µ�)k

⌘
c
i

(k · �) .

Similarly, we can prove the same result for a continuous time contact model, where f
i

is defined in

the dedicated node case as

f
i

(x) = d
i

Z 1

0

e�µt·x �1� eµt
�
c
i

(t)dt ,

and in the pure p2p case as

f
i

(x) = d
i

(1� x

N
)

Z 1

0

e�µt·x �1� eµt
�
c
i

(t)dt .

All these functions are positive and non-increasing, which allows to use the exact same proof.

A.1.3 Proof of Theorem 1

In the continuous time contact model and dedicated node we have:

U(x) =
X

i2I
d
i

✓
h(0+)�

Z 1

0

e�tµx

ic
i

(t)dt

◆
.
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Note that it implies
@U

@x
i

(x) = d
i

'(x
i

) . where ' is defined as in Theorem 1.

Let us assume that x̃
i

< |S|, x̃
j

< |S|. If we have d
i

· '(x̃
i

) < d
j

· '(x̃
j

), then there exists " > 0

such that U(x0) > U(x̃) where we define x0 as
8
>>><

>>>:

x0
j

= x̃
j

+ "

x0
i

= x̃
i

� "

x0
k

= x̃
k

for k 6= i, k 6= j .

This contradicts the optimality of x̃, and proves that the equilibrium condition holds.

A.1.4 Singularity of h at t = 0

As shown in Lemma 1, U
i,n

(x) and U(x) may be expressed in a simple form when h(0+) < 1.

In the dedicated node case, where servers and clients are in disjoint sets, the same expression

generalizes to other types of impatience function where h(0+) = 1. As an example, we treat here

the case of the negative logarithm (i.e., h(p)
↵

with ↵ = 1) and the inverse powers (i.e., h(p)
↵

with

↵ > 1).

Since we are in the dedicated node case, we have

U
i,n

(x) = E [h(X)] ,

where X is an exponential random variable with parameter
P

m2S x
i,m

µ
m,n

, that we can denote

by µ
i,n

for short.

Expression of U
i,n

for the Negative logarithm When ↵ = 1, the impatience function is

defined as h(p)
1

: t 7! � ln(t). Hence we have :

U
i,n

(x) =

Z 1

0

µ
i,n

exp (�tµ
i,n

) (� ln(t))dt .

A simple change of variable leads to

U
i,n

(x) =

Z 1

0

(ln(µ
i,n

)� ln(u)) e�udu

= ln

 
X

m2S
x
i,m

µ
m,n

!
�
Z 1

0

ln(u)e�udu .

This allows to compute U thanks to

U(x) =
X

i2I
d
i

X

n2C
⇡
i,n

U
i,n

(x) .
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This expression simplifies for the case of homogeneous contact as follows

U(x) =
X

i2I
d
i

ln (x
i

) + cst, where

cst =
X

i2I
d
i

✓
ln (µ)�

Z 1

0

ln(u)e�udu

◆
.

Consequence on Theorem 1 and 2 We first note that it proves that U
i,n

is, as a set function,

submodular (which extends the results of Theorem 1). Indeed, with similar notation than in

Section A.1.2, we can write:

U
i,n

(A) = ln (�̃(A))�
Z 1

0

ln(u)e�udu .

which proves this result. We also deduce that the argument for the proof of Theorem 2 holds, since

we can write �U

�x

i

(x) = f
i

(x
i

) with

f
i

(x) = d
i

ln

✓
1 +

1

x
i

◆
.

which is a positive non-increasing function.

Expression of U
i,n

for the inverse powers When 1 < ↵ < 2, we have that h(p)
↵

: t 7! t

1�↵

↵�1

,

and we may write in the dedicated node case:

U
i,n

(x) =

Z 1

0

µ
i,n

exp (�tµ
i,n

)
t1�↵

↵� 1
dt .

Again, a simple change of variable yields

U
i,n

(x) = (µ
i,n

)↵�1

Z 1

0

exp (�u)
u1�↵

↵� 1
du

=
�(2� ↵)

↵� 1

 
X

m2S
x
i,m

µ
m,n

!
↵�1

.

This equation can be used to derive U(x) in the general case. For homogeneous contact case, it

simplifies to

U(x) =
�(2� ↵)

↵� 1
µ↵�1

X

i2I
d
i

(x
i

)↵�1 .
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Model Step function Exponential decay Neg. Power

(↵ < 1)

Impatience h(t) I{t⌧} exp (�⌫t)
t

1�↵

↵� 1

Di↵. impat. c Dirac at t = ⌧ density t 7! ⌫ exp (�⌫t) density t 7! t

�↵

Gain U

i,n

(x) 1 � (1 � x

i

N

)e

�µ⌧x

i

1 � (1 � x

i

N

)

⇣
1 +

µ

⌫

x

i

⌘�1
µ

↵�1
�(1 � ↵)

⇣
�(x

i

)

↵�1
+

1
N

(x

i

)

↵

⌘

Cond. '

0
d

i

·
⇣
µ⌧ +

1�µ⌧x

i

N

⌘
e

�µ⌧x

i

d

i

·
⇣

µ

⌫

� 1
N

⌘ ⇣
1 +

µ

⌫

x

i

⌘�2
d

i

· µ↵�1
�(1 � ↵)

⇣
(1 � ↵)x

↵�2
i

+

1
N

↵x

↵�1
i

⌘

Reaction  
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Table A.1: Optimal demand reaction and cache allocation for several impatience functions

(dedicated cache case).

Consequence on Theorem 1 and 2 We have, with similar notation than in Section A.1.2,

U
i,n

(A) =
�(2� ↵)

↵� 1
(�̃(A))↵�1 .

For any 1 < ↵ < 2, the function x 7! x↵�1 is concave. The formula above proves that U
i,n

is again

in this case, a submodular function, extending again the results of Theorem 1 to a new class of

function.

Again the argument for the proof of Theorem 2 holds, as we have �U

�x

i

(x) = f
i

(x
i

) with

f
i

(x) = d
i

�(2� ↵)

↵� 1

�
(x+ 1)↵�1 � x↵�1

�
.

which is a positive non-increasing function.

As a conclusion, although the exact computation may di↵er, the exact same arguments why

all the results of this chapter apply to a general impatience function with a limit in 0+ holds for

a general family of impatience function even when it diverges in 0. It should be possible to prove

this result more generally, as well as to obtain similar expressions for the discrete time case, but

this is beyond the scope of this current work.

A.1.5 Table condition in the pure P2P case

In the continuous time contact model an pure p2p case we have:

U(x) =
X

i2I
d
i

✓
h(0+)� (1� x

i

N
)

Z 1

0

e�tµx

ic
i

(t)dt

◆
.

Note that it implies
@U

@x
i

(x) = d
i

'0(x
i

) where

'0(x) = (1� x

N
)'(x) +

1

N

Z 1

0

e�tµxc(t)dt .
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In other words, just like Theorem 1 applies to the dedicated node case, a similar equilibrium

condition exists for the optimality in the pure p2p case. We just need to define another function

'0 which contains a correcting term, that is small when N is large.

The main consequence is that, just like Theorem 2, there exists a demand reaction function

which is exactly optimal in the pure p2p case. This reaction function is shown in Table A.1. As it

can be seen on the table, most of the time the correction term is small, which is why we did not

use this version in the simulations.

A.2 Additional Results

In this section we present, for completeness, the result we obtain across all parameters we used for

validation.

A.2.1 Impact of cache size and popularity distribution

Figure A.2 presents the di↵erence in Utility as taken from optimal, for the step impatience function

with di↵erent value of ⌧ (on the x-axis), for the same strategies as in Section 4.6. The di↵erence

with previous results is that results are also shown for a smaller cache size ⇢ = 2 and a larger cache

size ⇢ = 10. Note that we also reproduce the result for ⇢ = 5 (the default value) to allow for an

easy comparison. As it can be seen, although there are small numerical di↵erences, it plays almost

no role in the qualitative behaviors, across all contact traces.

Figure A.3, presents the same result as above, except that we consider an highly skewed dis-

tribution (i.e., ! = 2) and a moderately skewed distribution (i.e., ! = 1/2), compared with the

default case where ! is equal to 1. We recall that ! corresponds to the skewness of the popularity of

file as: d
i

/ i�!. As expected, a moderately skewed distribution tends to improve the performance

of uniform and decreases that of the dominated allocation. A highly skewed distribution seems to

even out most of the strategies across all data sets, except for uniform which performs badly.

A.2.2 Full results for the homogeneous case

We consider in this section a network with homogeneous contact among the nodes. Figure 4.4

already presented for di↵erent family of impatience functions the respective performance of the
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(a) Homogeneous ⇢ =

2

(b) VANET ⇢ = 2 (c) VANET Synth

⇢ = 2

(d) Infocom ⇢ = 2 (e) Infocom Synth

⇢ = 2

(f) Homogeneous ⇢ =

5

(g) VANET ⇢ = 5 (h) VANET Synth

⇢ = 5

(i) Infocom ⇢ = 5 (j) Infocom Synth

⇢ = 5

(k) Homogeneous

⇢ = 10

(l) VANET ⇢ = 10 (m) VANET Synth

⇢ = 10

(n) Infocom ⇢ = 10 (o) Infocom Synth

⇢ = 10

Figure A.2: Impact of the cache size ⇢ (I=10, N=50, ! = 1).

di↵erent algorithms. Figures A.4 and A.5 present in more details the content of the cache, and the

utility obtained as a function of time for one run of each of this impatience functions.

A.2.3 Full results for real contact traces

We now present the same full results (cache and utility perceived as a function of time for the contact

traces (as well as the synthetic contact traces, which represents the heterogeneity of contact only).

Figures A.6 and A.7 present the result for the Infocom datasets and the step impatience function

(with ⇢ = 5.

Figure A.8 and A.9 present the same results for the Vanet data sets with power impatience

functions.

Finally A.10-A.15 present the results for the Vanet data sets, with step impatience functions

and several values of ⇢.
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(a) Homogeneous

! = 1/2

(b) VANET ! = 1/2 (c) VANET Synth

! = 1/2

(d) Infocom ! = 1/2 (e) Infocom Synth

! = 1/2

(f) Homogeneous

! = 1

(g) VANET ! = 1 (h) VANET Synth

! = 1

(i) Infocom ! = 1 (j) Infocom Synth

! = 1

(k) Homogeneous

! = 2

(l) VANET ! = 2 (m) VANET Synth

! = 2

(n) Infocom ! = 2 (o) Infocom Synth

! = 2

Figure A.3: Impact of the popularity distribution of items ! (I=10, N=50, ⇢ = 5).



APPENDIX A. WIRELESS COMPUTING 148

(a) Cache (⌧ = 1) (b) Utility (⌧ = 1) (c) Pred. Utility (⌧ = 1)

(d) Cache (⌧ = 10) (e) Utility (⌧ = 10) (f) Pred. Utility (⌧ = 10)

(g) Cache (⌧ = 32) (h) Utility (⌧ = 32) (i) Pred. Utility (⌧ = 32)

(j) Cache (⌧ = 100) (k) Utility (⌧ = 100) (l) Pred. Utility (⌧ = 100)

(m) Cache (⌧ = 1000) (n) Utility (⌧ = 1000) (o) Pred. Utility (⌧ = 1000)

Figure A.4: Homogenous mixing, step impatience: experienced utility, predicted utility, and

cache evolution over time for µ = 0.05, ⇢ = 5, I = 50, N = 50,! = 1.
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(a) Cache (↵ = 0.9) (b) Utility (↵ = 0.9) (c) Pred. Utility (↵ = 0.9)

(d) Cache (↵ = 0.5) (e) Utility (↵ = 0.5) (f) Pred. Utility (↵ = 0.5)

(g) Cache (↵ = 0) (h) Utility (↵ = 0) (i) Pred. Utility (↵ = 0)

(j) Cache (↵ = �1) (k) Utility (↵ = �1) (l) Pred. Utility (↵ = �1)

(m) Cache (↵ = �2) (n) Utility (↵ = �2) (o) Pred. Utility (↵ = �2)

Figure A.5: Homogenous mixing, power impatience: utility, predicted utility, and cache

evolution over time for µ = 0.05, ⇢ = 5, I = 50, N = 50,! = 1.
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(a) Actual Trace (b) Synthesized Trace

Figure A.6: Infocom ’06 Trace, step impatience - understanding impact of time statistics on

avg. behavior.
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(a) Cache (⌧ = 1) (b) Utility (⌧ = 1) (c) (Synthetic) Cache (⌧ =

1)

(d) (Syntetic) Utility (⌧ =

1)

(e) Cache (⌧ = 10) (f) Utility (⌧ = 10) (g) (Synthetic) Cache (⌧ =

10)

(h) (Syntetic) Utility (⌧ =

10)

(i) Cache (⌧ = 32) (j) Utility (⌧ = 32) (k) (Synthetic) Cache (⌧ =

32)

(l) (Syntetic) Utility (⌧ =

32)

(m) Cache (⌧ = 100) (n) Utility (⌧ = 100) (o) (Synthetic) Cache (⌧ =

100)

(p) (Syntetic) Utility (⌧ =

100)

(q) Cache (⌧ = 1000) (r) Utility (⌧ = 1000) (s) (Synthetic) Cache (⌧ =

1000)

(t) (Syntetic) Utility (⌧ =

1000)

Figure A.7: Infocom ’06, step impatience - timewise results for ⇢ = 5, I = 50, N = 50,! = 1.
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Figure A.8: VANET trace, power impatience, util vs. ↵.
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(a) MA VANET (↵ = 0.9) (b) Cache VANET (↵ =

0.9)

(c) MA VANET (↵ = 0.5) (d) Cache VANET (↵ =

0.5)

(e) MA VANET (↵ = 0) (f) Cache VANET (↵ = 0)

(g) MA VANET (↵ = �1) (h) Cache VANET (↵ =

�1)

(i) MA VANET (↵ = �2) (j) Cache VANET (↵ =

�2)

Figure A.9: VANET trace, power impatience for ⇢ = 5, I = 50, N = 50,! = 1.
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(a) Actual Trace (b) Synthesized Trace

Figure A.10: VANET trace, step impatience (⇢ = 2) - understanding impact of time statistcs

on avg. behavior.
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(a) Cache (⌧ = 1) (b) Utility (⌧ = 1) (c) (Synthetic) Cache (⌧ =

1)

(d) (Syntetic) Utility (⌧ =

1)

(e) Cache (⌧ = 10) (f) Utility (⌧ = 10) (g) (Synthetic) Cache (⌧ =

10)

(h) (Syntetic) Utility (⌧ =

10)

(i) Cache (⌧ = 32) (j) Utility (⌧ = 32) (k) (Synthetic) Cache (⌧ =

32)

(l) (Syntetic) Utility (⌧ =

32)

(m) Cache (⌧ = 100) (n) Utility (⌧ = 100) (o) (Synthetic) Cache (⌧ =

100)

(p) (Syntetic) Utility (⌧ =

100)

(q) Cache (⌧ = 1000) (r) Utility (⌧ = 1000) (s) (Synthetic) Cache (⌧ =

1000)

(t) (Syntetic) Utility (⌧ =

1000)

Figure A.11: VANET trace, step impatience - timewise results for ⇢ = 2, I = 50, N = 50,! = 1.
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(a) Actual Trace (b) Synthesized Trace

Figure A.12: VANET trace, step impatience - understanding impact of time statistcs on avg.

behavior.
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(a) Cache (⌧ = 1) (b) Utility (⌧ = 1) (c) (Synthetic) Cache (⌧ =

1)

(d) (Syntetic) Utility (⌧ =

1)

(e) Cache (⌧ = 10) (f) Utility (⌧ = 10) (g) (Synthetic) Cache (⌧ =

10)

(h) (Syntetic) Utility (⌧ =

10)

(i) Cache (⌧ = 32) (j) Utility (⌧ = 32) (k) (Synthetic) Cache (⌧ =

32)

(l) (Syntetic) Utility (⌧ =

32)

(m) Cache (⌧ = 100) (n) Utility (⌧ = 100) (o) (Synthetic) Cache (⌧ =

100)

(p) (Syntetic) Utility (⌧ =

100)

(q) Cache (⌧ = 1000) (r) Utility (⌧ = 1000) (s) (Synthetic) Cache (⌧ =

1000)

(t) (Syntetic) Utility (⌧ =

1000)

Figure A.13: VANET trace, step impatience - timewise results for ⇢ = 5, I = 50, N = 50,! = 1.
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(a) Actual Trace (b) Synthesized Trace

Figure A.14: VANET trace, step impatience (⇢ = 10) - understanding impact of time statistcs

on avg. behavior.
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(a) Cache (⌧ = 1) (b) Utility (⌧ = 1) (c) (Synthetic) Cache (⌧ =

1)

(d) (Syntetic) Utility (⌧ =

1)

(e) Cache (⌧ = 10) (f) Utility (⌧ = 10) (g) (Synthetic) Cache (⌧ =

10)

(h) (Syntetic) Utility (⌧ =

10)

(i) Cache (⌧ = 32) (j) Utility (⌧ = 32) (k) (Synthetic) Cache (⌧ =

32)

(l) (Syntetic) Utility (⌧ =

32)

(m) Cache (⌧ = 100) (n) Utility (⌧ = 100) (o) (Synthetic) Cache (⌧ =

100)

(p) (Syntetic) Utility (⌧ =

100)

(q) Cache (⌧ = 1000) (r) Utility (⌧ = 1000) (s) (Synthetic) Cache (⌧ =

1000)

(t) (Syntetic) Utility (⌧ =

1000)

Figure A.15: VANET trace, step impatience - timewise results for ⇢ = 10, I = 50, N = 50,! = 1.
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