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Abstract

This paper deals with the design of Monte Carlo experiments
in the context of cointegrated VAR models. Such experiments of-
ten seek to establish the applicability of asymptotic distributional
results for samples of size 100 to 200, which are typical of macro
economic time series. Hithertofore, the design of such experiments
has relied on certain simple models given in Bannerjee et al. (1986),
Engle and Granger (1987), and Phillips (1991). Here we provide the
framework for designing experiments based on much more general
models, of which the designs above are special cases.
Key Words: Monte Carlo; nonstationary processes; stationary pro-
cesses; mixing processes; companion matrix; stable roots; unit roots;
cointegration.

1 Introduction

The literature on the detection of cointegration in nonstationary, 1(1), pro-
cesses is rich with general results on the asymptotic properties of various
test statistics or estimators in a. great variety of models. In particular, see
Dickey and Fuller (1978), (1981), Phillips and Durlauf (1986), Stock and
Watson (1988), Phillips and Ouliaris (1990), Phillips and Loretan (1991),
Phillips and Perron (1991), to mention but a few. There are also a number
of Monte Carlo studies, which are either illustrative of a particular theo-
retically investigated procedure, as for example Stock and Watson (1988),
Engle and Granger (1987), or aim at comparing the performance of various
estimators or test procedures, see for example Haug (1996), Toda (1995),
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Gonzalo (1994), Hooker (1993), Gardeazabal and Regulez (GR) (1992),
and several others. In the latter genre one typically deals, see e.g. GR,
with models of the form

yt-xtb = zu zt = zt_xp + etl

yta-xtc = wt, wt = 7 ^ - 1 + Q2, (1)

preserving for the moment the original notation of the authors. Similarly,
Phillips (1991), in a theoretical context, and Toda (1995), in a Monte Carlo
context, deal with the model

Vit = By2t + ult, Ay2t = u2u where ut = (ult,u2t)' (2)

is a stationary, or a suitably specified mixing process. As portrayals
of a VAR model, the virtue of the first representation is that it immediately
discloses the nature of the process, through the magnitude of the param-
eters /9, 7 . Its disadvantage is that this is possible only in the case of a
single lag. The virtue of the second representation is its extreme simplicity;
its disadvantage is that it contains only unit roots, and all stationary roots
are null. Both of these features will disappear if we introduce more lags.
In fact, this system may be thought of, somewhat informally, as a singular
system, an interpretation we shall give below.

2 A More General Formulation

Consider the general VAR(n) model

Xt.U{L) = tt., t > 1, and es. = 0, for s > 0, (3)

where Xt. is 4-element (row) vector denoting a cointegrated 1(1) process,
and {et. : t > 1} is, similarly, a q -element row vector denoting either an
i.i.d. sequence with mean zero and covariance matrix S > 0 , or a (strictly)
stationary process, or a suitably specified mixing process. In addition,

n(L) = jriLjL\ II0 = /9, L° = I, (4)

where / , without a dimension denoting subscript is always the identity
operator, and L is the usual lag operator.

The object of the Monte Carlo design is to generate a, VAR(n) with
prespecified roots; for example, we may wish to investigate a system that



has three unit roots and relatively small stationary roots, say not exceed-
ing .5 in absolute value. Or, we may wish to examine a system that has
five unit roots, and stationary roots that range between .75 and .98. If
n > 1, it is not simple to construct such systems by the two devices above,
nor is it feasible to do so by trial and error.

We begin by noting that the model in Eq. (3) may be rewritten as a
first order difference equation with forcing function gt. = e\. ® et., where
e\. is a q -element row vector all of whose elements are zero except the
first, which is unity. The system in question is

(t-= (t-i-C

n
Iq 0 0
0 L

• n n _ ! o o o
- I L o o o o

(5)

where (t. = (yt., yt-\., yt-2-, • • • , Vt-n+i-) • The matrix C is generally re-
ferred to as the companion matrix. It is shown in Dhrymes (1984), pp.
133-139, that the (ordered) characteristic roots of the companion matrix,
say Aj, are related to the characteristic roots of the system |n(z)| = 0 , say
Z{, by A; = z~x. In the literature of this topic we consider exclusively
models that have only real positive unit roots, and stationary roots
that are less than unity in absolute value, i.e. we consider a system with
the properties

A, = 1, i = 1,2, 3 , . . . , r0 , | A.-1 < 1, for z > r0;

thus, if we denote the roots of | n ( z ) | = 0 by Z{ , we have

Zi = 1, i = 1, 2, 3 , . . . , 7̂ 0, zz- > 1, for i > r0.

(6)

Note that the number of roots in question is nq, so that it grows as the
product of the number of lags and the dimension of the system. Thus a
five variable system with four lags necessitates the specification of twenty
roots, which is not a trivial matter.

In view of the preceding we may write

nq

(8)

Given the specification of the roots, Z{, the left member above yields
nq nq

(9)
i=l i-0



where

a o = l , a{ = J2(zn^2 •• -Zii-iZii), i > 1, (10)

i.e. the coefficient al is the sum over all products of the roots of the system
in Eq. (8) taken i at a time.

If the matrices IIj obey

U^ATjA-1 (11)

where A is an arbitrary nonsingular matrix of order q, and Tj , j =
1, 2 , 3 , . . . , n are lower triangular matrices of order q , the right member
of Eq. (8) yields

nq

*(£) = \I, + E HjL'\ = \I, + £ TjV\ = E bkL". (12)
j=l j=l k=0

The determinant in the third member above depends only on the diagonal
elements, and it is their product. The diagonal elements are given by

d a ^ l + it^V, 2 = 1,2,3, . . . ,</ . (13)

Consequently,

An I \ nq I \

+ E £<„„„„.) U j + • • • + E E«!12,3 „ L>. (i4)
J=4 \ (q\ I J = q \ (q\ J

\\i) / \{q) /

In the preceding, the notation J2(i') indicates that the summation is over

the (q) terms resulting by taking s out of q (diagonal) elements 1 from the
matrices 7\ , k — 1, 2 , . . . , n , such that the sum of the superscripts is j .
To be more precise, let ti{ be the ith diagonal element of T^ , and consider
the product s ^ 2̂f2 ' ' ' ^«/« s u c h that the sum of the superscripts is zero;
fixing the superscripts, the elements in this product may be chosen in (q) ,
hence the notation J2(i) • The latter, however, is somewhat misleading

1 Note that this notation means that we may take more than one diagonal element
from a given matrix T^ , but cannot take a diagonal element in the same position
from more than one matrix 7): .
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since there may be, and typically are, several ways in which the diagonal
elements of the matrices Tk are chosen so that the sum of the superscripts
is 2 j . Similarly, the notation ar^.r r r s denotes the sum of all possible
terms of the form

m m
/(j-Sl-S2---Sm-l) TT f(si-l) • V^V^. . . V^ /(j-Sl-S2---Sm-l) TT /(Si-l)
6nri l l i r l r l 1 1'c- 1^,2-^ L^i Lrm llLrlrl ?

i—2 si s2 s m _ i i=2

such that the superscripts add to j .

Comparing Eqs. (12) and (14) we determine

60 = 1, 6i

= trTt + X ! E a(*-r, '•> •, » I - for 2 < fc < n,
•=2VC)

, for

.o """'

^ a(e\. * rr \ \ •> f° r 2TT, < k < 3n, and generally

VC)

;tllr2,...,7-s) I ' for ( m - A; < mn, m = 4, 5,. . ., q

0
Eqs. (10) and (15) imply

bk = aki k = 1 , 2 , 3 , - • • ,nq, (16)

2 To give an example, suppose n = 12 and we wish to compute Yl(q'\ a(3r ) • ^ °
do so, we first choose three matrices Tjs , s = 1, 2, 3 , such that ^ + jo + J3 = j — 12 .
This may be done in severl ways, say Ti,Ti,Tio; or, T\,T2,TQ; or, T2,T2,Tg , etc.
For each such choice there are (|) ways of choosing the diagonal positions to be

employed, e.g. in the first case rxl ,^2 ,̂ 33 etc.



which is thus a system3 of nq nonlinear equations in the unknowns
-f-ti) 2 — 1 2 3 . . . q 7 = 1 2 3 . . . 72 .

The prodecure above obtains the diagonal elements of the matrices Tj ;
in view of Eq. (9), and the fact that the lower diagonal elements of the
Tj , as well as the matrix A, are arbitrary, the IIj are thus completely
determined.

Because numerical accuracy is extremely important in 7(1) systems,
and particularly so for large samples, it is desirable to verify the numer-
ical accuracy of the nonlinear solution by comparing the inverse of the
characteristic roots of the companion matrix, which is solely determined
by the IIj , with the prespecified characteristic roots of the system, Z{,
i = 1,2, 3, • • • ,nq.

Finally, one may use the matrices IIj , determined by the procedure
above, in conjunction with the specification of the error process to compute,
recursively,

n
TT I _ J. 1 O Q T1 /1 7 \

^ — j . l l j - f - 6 ^ . , I — 1 , Z , O , " • • , _ £ , I , - " - ' /

using the initial conditions X_%. , i > 0 . Noting that the first n observa-
tions do not fully embody the dynamics of the VAR, one then uses the
abbreviated sample,

n
"y \ "̂  y TT | i . -| i r\ i Q

 rri

-/V^. — / -/vi j . 11 i i" £^.5 TJ — '2 1 1 , 72 "y" Z , 72 ~\~ o, * • • , J. ,

on the basis of which the Monte Carlo experiments are to be carried out.

3 Special Cases

In this section we shall show that the representations in Eqs. (1) and (2)
are special cases of the representation in Eqs. (3) and (9). To this end,
define Xt. = (yt,xt), Dx — diag(—p, — 7 ) , e*. = (en ,e<2), and note that
the model in Eq. (1) is simply

*" ~ fc^ 1 ' ~ [-I) -

Reducing the operator on the right, and multiplying on the right by A"1 ,
yields

Xt. + AVi.ADx/T1 = elA~\ (19)
3 A code in GAUSS, for solving such a system is available, on request, from the

author.



Comparing with Eq. (3), we see that III = AD1A~1 , II; = 0,z > 2,
and 6t. = ^*.A~X , which is indeed a special case. Notice, further, that
introducing more lags, i.e. another diagonal matrix, say D2 , destroys the
simplicity of the model and leads only to a slightly less complex case than
that considered in Eqs. (3) and (9). Finally, the characteristic equation of
this model is

M*) = \h + AD1A~1z\ = (1 - pz)(l - 1Z) = 0. (20)

Thus, specifying p — 1 and | —y| < 1 creates a bivariate / (I) process,
which is cointegrated of rank one.

Next, consider the model in Eq. (2), define Xt. = (y\f>y2t) •> ut- —
(ult,u2t), and multiply on the right by the matrix

where it is assumed that y2t is an r0 element vector and, thus, ylt has
r = q — rQ elements. This operation yields

Xt. + Xt^.P = Ut.F, P = [_£, J} ] , (21)

which is, evidently, a special case of Eqs. (3) and (9), with

n 1 = P , A = Iq, OYU, = TU IIt- = 0, z > 2 , tt. = ut.F. (22)

To show that this is a sort of a singular system, introduce a lag in the first
equation by means of a diagonal matrix D ; if the lag in question is y\,t-\
the matrix P becomes

p - \ ~ D ° 1
F-[-B' -In\>

which preserves the general character of the system. The characteristic
equation is

r

ir^z) = \Iq + Pz\ = (1 - z)ro U(l - diiZ\ (23)

which has r0 unit roots, and 7̂  roots z.[ — dlt
l , for i > r0 . Choosing

\da\ < 1 , we have that the system has 7̂ 0 unit roots and r = q — r0

stat ionary roots. Since T^I(Z) is continuous in the parameters da , the
roots of the system become unbounded as \da\ —> 0. The companion
matrix is — P; thus, looking at the same issue from the point of view of



the companion matrix, we note that its characteristic roots are given as
the solution to

0 = XL- ? (24)

which is also continuous in the parameters da . Thus, if \da\ < 1 we have
an 1(1) system, which is cointegrated of rank r = q — r0 . By contrast
with the previous discussion, in the companion matrix context there is no
peculiarity as \da\ —> 0. The system remains well defined, and remains
transparently cointegrated of rank r — q — r0 . The stationary roots are
all null, and the dynamics of the transients of the system are eliminated.
Thus, such a system is more suitable for studying the asymptotic prop-
erties of the system, and is not particularly appropriate for studying the
suitability of asymptotic distributional results for the typically small sam-
ples encountered in applications.
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