
Ensuring Deterministic Concurrency through Compilation

Nalini Vasudevan
Department of Computer Science

Columbia University
New York, NY

naliniv@cs.columbia.edu

Stephen A. Edwards
Department of Computer Science

Columbia University
New York, NY

sedwards@cs.columbia.edu

Abstract—Multicore shared-memory architectures are be-
coming prevalent but bring many programming challenges.
Among the biggest is non-determinism: the output of the
program does not depend merely on the input, but also on
scheduling choices taken by the operating system.

In this paper, we discuss and propose additional tools that
provide determinism guarantees—compilers that generate de-
terministic code, libraries that provide deterministic constructs,
and analyzers that check for determinism. Additionally, we
discuss techniques to check for problems like deadlock that
can result from the use of these deterministic constructs.

Keywords-Determinism, Concurrency, SHIM , Deadlocks

I. I NTRODUCTION

Non-deterministic functional behavior arising from timing
variability—a data race—is among the nastiest thing a pro-
grammer may confront. It makes debugging all but impos-
sible because the unwanted behavior is rarely reproducible.
Inevitably, re-running a non-deterministic program on the
same input will make the bug appear to go away.

We believe any parallel programming environment should
ensure input-output determinism [7]. Sequential program-
ming languages such as assembly or C have always guaran-
teed determinism, but most parallel environments do not.

A few concurrent programming languages provide de-
terminism through their semantics. SHIM [2], [12], for
example is designed to guarantee scheduling independence.
SHIM adopts an asynchronous model but uses CSP-like [4]
rendezvous communication so the input/output function of a
SHIM program does not depend on any scheduling choices
taken by the operating system.

Our main contribution has revolved around theSHIM

programming language. We wish to demonstrate that de-
terminism has advantages for code synthesis, optimization,
and verification because it makes it easier for an automated
tool to understand a program’s behavior. The advantage is
particularly helpful for formal verification algorithms, which
can safely ignore alternative execution interleavings ofSHIM

programs.
We begin by describing the language, our contributions to

the language and the field of deterministic concurrency, and
related work. We conclude by exposing some of the open
problems in this area that we plan to address in the future.

II. T HE SHIM LANGUAGE

The SHIM model guarantees functional determinism by
restricting inter-thread communication to a multi-way ren-
dezvous mechanism. TheSHIM language, which embodies
the model, is a C-like language with additional constructs
for concurrency. Specifically,

• p par q runs the statementsp and q concurrently,
waiting for both statements to finish before proceeding.
There are no global variables. To share data,SHIM tasks
must rendezvous.

• send and recv are blocking communication operators
on channels.

f(chan int a) {
// a is a copy of c
a = 3; recv a; // a gets c’s value
// a = 5

}

g(chan int &b) {
// b is an alias for c
b = 5; sendb; // synchronize with f
// b = 5

}

main() {
chan int c = 0;
f(c); par g(c);

}

This program creates two tasks,f and g, and runs them
in parallel. Thepar statement blocks until bothf and g
terminate.c is a channel and botha andb are incarnations
of c. g takesc by reference; any modification ofb is therefore
reflected in main’sc. f takesc by value, and hence maintains
a local copy of it. Supposef wants to receive the updated
value, then it explicitly callsrecv on b. This statement
synchronizes withsend bof g to exchange values.

The language prohibits any variable from being passed
by reference to more than one task at a time and this makes
it impossible for a task to modify another task’s copy of
a variable through a simple assignment. Only a reference
variable can act as a sender; pass-by-value channels are
always receivers. The compiler rejects programs that do not
follow this rule.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161438246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


To make communication deterministic, a send or receive
forces all the tasks sharing the channel to synchronize
with either a send or recv. At most one task may send
data; the language allows multiple receivers. All receivers
participating in the rendezvous receive the same value.

III. G ENERATING CODE FROMSHIM

We developed a backend [3] forSHIM that generates
C code that made calls to thePOSIX thread (pthread)
library to ask for parallelism. Each communication action
acquires the lock on a channel and checks whether every
process connected to it also had blocked (i.e., whether the
rendezvous could occur). Table I shows statistics for aJPEG

decoder [14] compiled with our pthread backend on an Intel
Quad Core machine. The parallel version achieves a 3.05×
speedup: 76% of an ideal 4× speedup on four cores.

Table I
BEHAVIOR OF A JPEGDECODER ON A QUAD-CORE MACHINE

Cores Tasks Time Speedup

1 Sequential 25s 1.0
4 3 16 1.6
4 4 9.3 2.7
4 5 8.7 2.9
4 6 8.2 3.05
4 7 8.6 2.9

Run on a 20 MB 21600×10800 image that expands to 668 MB.

We also developed a backend forIBM ’s CELL proces-
sor [17]. A direct offshoot of the pthread backend, it allows
the user to assign computationally intensive tasks to the
CELL’s synergistic processing units (SPUs); remaining tasks
run on the CELL’s PowerPC core (PPU). Figure 1 shows
execution times for anFFT on the cell engine. We observed
a near-ideal speedup for theFFT on six SPUs.

0
1
2
3
4
5

PPU only1 2 3 4 5 6

E
xe

cu
tio

n
tim

e
(s

)

Number of SPE tasks

Observed
Ideal

Run on a 20 MB audio file, 1024-point FFTs

Figure 1. Behavior ofFFT on the Cell Processor

IV. D EADLOCK DETECTION IN SHIM

SHIM is not immune to deadlocks. Perhaps the simplest
example is{ recv a; recv b;} par { send b; send a;}. Here
recv a of the first task waits forsend aand send bof the
second task waits forrecv b. The two tasks therefore wait
for each other infinitely.

SHIM does not need to be analyzed under an interleaved
model of concurrency since most properties, including dead-
lock, are preserved across schedules. We [15] therefore
used a synchronous model checker NuSMV [1] to detect
deadlocks inSHIM—a surprising choice sinceSHIM’s con-
currency model is fundamentally asynchronous. We later
took a compositional approach [11] in which we build an
automaton for a complete system piece by piece. The result:
our explicit model-checker outperforms the implicit NuSMV
on these problems.

V. BUFFEROPTIMIZATION IN SHIM

We also applied model checking to search for situations
where buffer memory can be shared [16]. In general, each
communication channel needs its own space to store any
data being communicated over it. However, in certain cases,
it is possible to prove that two channels can never be active
simultaneously and thus share buffer memory.

void main()
{
chan int a, b, c;
{ // Task 1

senda = 6; // Send a (synchronize with task 2)
} par { // Task 2

recv a; // Receive a (synchronize with task 1)
sendb = a + 1;// Send 7 on b (synchronize with task 3)

} par { // Task 3
recv b; // Receive b (synchronize with task 2)
sendc = b + 1; // Send 8 on c (synchronize with task 4)

} par { // Task 4
recv c; // Receive c (synchronize with task 3}
// c = 8 here

}
}

Here, the main task starts four tasks in parallel. Tasks 1
and 2 communicate ona. Then, tasks 2 and 3 communicate
on b and finally tasks 3 and 4 onc. The value of c
received by task 4 is 8. Communication ona cannot occur
simultaneously with that onb because task 2 forces them
to occur sequentially. Similarly communications onb andc
are forced to be sequential by task 3. Communications ona
and c cannot occur together because they are forced to be
sequential by the communication onb. Our tool understands
this and reports thata, b, and c can share buffers because
their communications never overlap, thereby reducing the
program’s buffer requirements by 66%.

VI. A SHIM- LIKE L IBRARY IN HASKELL

We developed a deterministic concurrent communication
library [19] for an existing multi-threaded language. We
implemented theSHIM model in the Haskell functional
language, which supports transactional memory. Figure 2
compares the execution times of a concurrent Systolic 1-D
filter running on 50 000 samples that uses our library with
the sequential version. The experiments were run on an 8-
core Intel Machine.



0

1

2

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
(s

)

Number of processors

Sequential
SHIM Concurrent Library

ideal

Figure 2. Performance of a Systolic Filter with our library

VII. R ELATED WORK

Like SHIM, the StreamIt language [13] is deterministic,
but its dataflow model is a strict subset ofSHIM’s. Our
work so far has been on a more flexible model. Regarding
optimization, Sermulins et al. [10] present cache aware
optimizations that exploit communication pattern in StreamIt
programs. They aim to improve instruction and data locality
at the cost of data buffer size. Instead, we tried to reduce
buffer sizes in section V.

Statements in concurrently runningSHIM processes may
execute in different orders butSHIM’s determinism guaran-
tees this will not affect any result and hence most properties.
This is in great contrast to the motivation for theSPIN

model checker [5], one of whose main purposes is to check
different execution interleavings for consistency. SHIM has
no need forSPIN.

Our SHIM library in Haskell resembles that of Scholz [9],
which also provides a concurrency model in Haskell;
Scholz’s library is not necessarily deterministic. Unlike
Scholz, we implement our mechanisms atop the existing
concurrency facilities in Haskell [6]. We therefore believe
it is easy to implementSHIM as a library in any concurrent
programming language.

There exist other tools like Kendo [8] that provide deter-
minism, but these tools work mostly at run time, incurring
extra overhead. Our focus has been in the language and
compiler level.

We have extended our ideas to other concurrent languages.
We developed a tool [20] that mitigates the overhead of
general-purpose clocks in IBM’s X10 language by analyzing
how programs use the clocks and then by choosing op-
timized implementations when available. These clocks are
similar to SHIM’s communication constructs.

VIII. C ONCLUSIONS

The central hypothesis of theSHIM project is that its
simple, deterministic semantics helps both programming and
automated program analysis. We have been able to devise
truly effective mechanisms for clever code generation and
analysis (e.g., deadlock detection, buffer optimization). The

bottom line: if a programming language does not have
simple semantics, it is really hard to analyze its programs
quickly or precisely.

We have also attempted to solve the two major problems
of concurrent programming: non-determinism and dead-
locks. TheSHIM model is deterministic and we have pro-
vided static techniques to detect deadlocks inSHIM pro-
grams.

IX. FUTURE WORK

We plan to extend our ideas in various directions. Below,
we discuss some of our short term goals.

A. A Deterministic, Deadlock-free Language

SHIM is a deterministic concurrent programming lan-
guage, but it is prone to deadlocks. The static deadlock de-
tector forSHIM is not completely accurate since it may give
false positives. Secondly, even if the deadlock is detected
correctly, it is the programmer’s job to rectify the code.

We propose a dynamic deadlock detection algorithm that
deterministically breaks deadlock cycles during program
execution. As a result, the behavior of a program with
deadlock can be made deadlock-free and still have the
property that its output is only dependent on its input.

B. Automatic and Deterministic Buffer Sizing

Many concurrent programming models likeSHIM use
rendezvous communication: the sender and the receiver each
wait for each other for the communication to succeed. There
are two problems with this model. First, the sender cannot
go ahead to do some other computation. Therefore, there
is a performance bottleneck. Second, a program with these
blocking constructs may be susceptible to deadlocks.

A remedy is to use bounded buffers instead of rendezvous
communication. We propose to implement the rendezvous
communication ofSHIM, using bounded buffers and devise
methods to automate it. By increasing the number of places
in the buffer, we plan to maintain the determinism and the
characteristics of the original program but we should be able
to resolve deadlocks in certain cases.

C. A Determinizing Compiler

Our final goal is a determinizing compiler [18]: starting
from any program, our compiler will insert just enough ad-
ditional synchronization to guarantee deterministic behavior,
even in the presence of nondeterministic scheduling choices.
A brute-force solution would simply generate sequential
code, but our compiler will strive to preserve parallelism
to impose a minimal loss of performance.

ACKNOWLEDGMENT

We thank Julian Dolby, Baolin Shao, Satnam Singh, and
Olivier Tardieu for contributing to sections of the work. This
research was mainly supported by NSF (grant 0614799) and
partly by IBM and Microsoft.



REFERENCES

[1] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia,
Fausto Giunchiglia, Marco Pistore, Marco Roveri, Roberto
Sebastiani, and Armando Tacchella. NuSMV version 2:
An OpenSource tool for symbolic model checking. In
Proceedings of the International Conference on Computer-
Aided Verification (CAV), volume 2404 ofLecture Notes in
Computer Science, pages 359–364, Copenhagen, Denmark,
July 2002.

[2] Stephen A. Edwards and Olivier Tardieu. SHIM: A deter-
ministic model for heterogeneous embedded systems. In
Proceedings of the International Conference on Embedded
Software (Emsoft), pages 37–44, Jersey City, New Jersey,
September 2005.

[3] Stephen A. Edwards, Nalini Vasudevan, and Olivier Tardieu.
Programming shared memory multiprocessors with deter-
ministic message-passing concurrency: Compiling SHIM to
Pthreads. InProceedings of Design, Automation, and Test in
Europe (DATE), pages 1498–1503, Munich, Germany, March
2008.

[4] C. A. R. Hoare. Communicating sequential processes.Com-
munications of the ACM, 21(8):666–677, August 1978.

[5] Gerard J. Holzmann. The model checker SPIN.IEEE
Transactions on Software Engineering, 23(5):279–294, May
1997.

[6] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne.
Concurrent Haskell. InProceedings of Principles of Pro-
gramming Languages (POPL), pages 295–308, St. Petersburg
Beach, Florida, January 1996.

[7] Robert L. Bocchino Jr., Vikram S. Adve, Sarita V. Adve, and
Marc Snir. Parallel programming must be deterministic by
default. InHOTPAR ’09: USENIX Workshop on Hot Topics
in Parallelism, March 2009.

[8] Marek Olszewski, Jason Ansel, and Saman Amarasinghe.
Kendo: efficient deterministic multithreading in software. In
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pages 97–108, New York, NY, USA, 2009. ACM.

[9] Enno Scholz. Four concurrency primitives for Haskell. In
ACM/IFIP Haskell Workshop, pages 1–12, La Jolla, Califor-
nia, June 1995. Yale Research Report YALE/DCS/RR–1075.

[10] Janis Sermulins, William Thies, Rodric Rabbah, and Saman
Amarasinghe. Cache aware optimization of stream programs.
In Proceedings of Languages, Compilers, and Tools for Em-
bedded Systems (LCTES), pages 115–126, New York, NY,
USA, 2005. ACM.

[11] Baolin Shao, Nalini Vasudevan, and Stephen A. Edwards.
Compositional deadlock detection for rendezvous communi-
cation. In Proceedings of the International Conference on
Embedded Software (Emsoft), pages 59–66, Grenoble, France,
October 2009.

[12] Olivier Tardieu and Stephen A. Edwards. Scheduling-
independent threads and exceptions in SHIM. InProceed-
ings of the International Conference on Embedded Software
(Emsoft), pages 142–151, Seoul, Korea, October 2006.

[13] William Thies, Michal Karczmarek, and Saman Amarasinghe.
StreamIt: A language for streaming applications. InPro-
ceedings of the International Conference on Compiler Con-
struction (CC), volume 2304 ofLecture Notes in Computer
Science, pages 179–196, Grenoble, France, April 2002.

[14] Nalini Vasudevan and Stephen A. Edwards. A JPEG decoder
in SHIM. Technical Report CUCS–048–06, Columbia Uni-
versity, Department of Computer Science, New York, New
York, USA, December 2006.

[15] Nalini Vasudevan and Stephen A. Edwards. Static deadlock
detection for the SHIM concurrent language. InProceedings
of the International Conference on Formal Methods and
Models for Codesign (MEMOCODE), pages 49–58, Anaheim,
California, June 2008.

[16] Nalini Vasudevan and Stephen A. Edwards. Buffer sharing
in CSP-like programs. InProceedings of the International
Conference on Formal Methods and Models for Codesign
(MEMOCODE), Cambridge, Massachusetts, July 2009.

[17] Nalini Vasudevan and Stephen A. Edwards. Celling SHIM:
Compiling deterministic concurrency to a heterogeneous mul-
ticore. InProceedings of the Symposium on Applied Comput-
ing (SAC), volume III, pages 1626–1631, Honolulu, Hawaii,
March 2009.

[18] Nalini Vasudevan and Stephen A. Edwards. A determinizing
compiler. In Programming Languages Design and Imple-
mentation (PLDI) - Fun Ideas and Thoughts Session, Dublin,
Ireland, June 2009.

[19] Nalini Vasudevan, Satnam Singh, and Stephen A. Edwards.
A deterministic multi-way rendezvous library for Haskell.
In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), pages 1–12, Miami, Florida,
April 2008.

[20] Nalini Vasudevan, Olivier Tardieu, Julian Dolby, and
Stephen A. Edwards. Compile-time analysis and specializa-
tion of clocks in concurrent programs. InProceedings of
Compiler Construction (CC), volume 5501 ofLecture Notes
in Computer Science, pages 48–62, York, United Kingdom,
March 2009.


