
Simple and Fast Biased Locks

Nalini Vasudevan
Columbia University
New York, NY, USA

naliniv@cs.columbia.edu

Kedar S. Namjoshi
Bell Laboratories

Murray Hill, NJ, USA
kedar@research.bell-labs.com

Stephen A. Edwards
Columbia University
New York, NY, USA

sedwards@cs.columbia.edu

ABSTRACT
Locks are used to ensure exclusive access to shared memory

locations. Unfortunately, lock operations are expensive, so much
work has been done on optimizing their performance for common
access patterns. One such pattern is found in networking applica-
tions, where there is a single thread dominating lock accesses. An
important special case arises when a single-threaded program calls
a thread-safe library that uses locks.

An effective way to optimize the dominant-thread pattern is to
“bias” the lock implementation so that accesses by the dominant
thread have negligible overhead. We take this approach in this
work: we simplify and generalize existing techniques for biased
locks, producing a large design space with many trade-offs. For
example, if we assume the dominant process acquires the lock in-
finitely often (a reasonable assumption for packet processing), it is
possible to make the dominant process perform a lock operation
without expensive fence or compare-and-swap instructions. This
gives a very low overhead solution; we confirm its efficacy by ex-
periments. We show how these constructions can be extended for
lock reservation, re-reservation, and to reader-writer situations.

Categories and Subject Descriptors
D.1.m [Software]: Programming Techniques—Miscellaneous

General Terms
Algorithms, Performance

1. Introduction
Programmers typically use locks to control access to shared mem-

ory. While using locks correctly is often the biggest challenge, pro-
grammers are also concerned with their efficiency. We are too: this
work improves the performance of locking mechanisms by using
knowledge of their access patterns to speed the common case.

Figure 1 shows the standard way of implementing a spin-lock
using an atomic compare-and-swap (CAS) operation. To acquire
the lock, a thread first waits (“spins”) until the lock variable lck
is 0 (indicating no other thread holds the lock), then attempts to
change the lock value from 0 to 1. Since other threads may also

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

void lock(int ∗lck) {
bool success;
do {

while (∗lck != 0) {} /∗ wait ∗/
success = compare_and_swap(lck, 0, 1);

} while (!success);
}

void unlock(int ∗lck) { ∗lck = 0; }

atomic /∗ function is one atomic machine instruction ∗/
bool compare_and_swap(int ∗lck, int old, int new) {

if (∗lck == old) {
∗lck = new; return 1;

} else
return 0;

}

Figure 1: A spin lock using atomic compare-and-swap

be attempting to acquire the lock at the same time, the change is
done atomically to guarantee only one thread changes the value.
Although other threads’ while loops would see the lock variable
become 0, their compare-and-swap would fail because the winning
thread would have changed the lock to 1.

We found, on an unloaded 1.66 GHz Intel Core Duo, the compare-
and-swap instruction took seven times longer than “counter++,”
a comparable non-atomic read-modify-write operation. The cost
when there is contention among multiple processors can be sub-
stantially higher, especially if a cache miss is involved. This over-
head can be prohibitive for a performance-critical application such
as packet processing, which may have to sustain line rates of over
1 Gbps and thus has a very limited cycle budget for actual process-
ing. Reducing locking overhead, therefore, can be very useful.

Bacon et al.’s thin locks for Java [3] are an influential example
of lock optimization. Their technique was motivated by the ob-
servation that sequential Java programs often needlessly use locks
indirectly by calling thread-safe libraries. To reduce this overhead,
thin locks overlay a compare-and-swap-based lock on top of Java’s
more costly monitor mechanism. Thus a single-threaded program
avoids all monitor accesses yet would operate correctly (i.e., use
monitors) if additional threads were introduced. Thin locks consid-
erably reduce overhead but still require one atomic operation per
lock acquisition.

A refinement of this technique [2,9,12] further improves perfor-
mance by allowing a single thread to reserve a lock. Acquisitions
of the lock by the reserving thread do not require an atomic opera-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161438242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tion but do require the part-word technique that achieves the same
functionality as fences with almost the same cost.

Lamport [10] also optimizes for the low contention access pat-
tern by avoiding atomic operations. This algorithm uses a bakery-
style algorithm to resolve contention, which has been found to be
less efficient than algorithms that do use atomic operations, such as
the MCS lock [11].

Lopsided lock access patterns in network packet processing ap-
plications motivated our work. In a typical architecture, a packet is
read off a network card by a dedicated core and then dispatched
to one of several processing cores. In the commercial network
traffic analyzer with which we are familiar, the packets are parti-
tioned among cores by source address; i.e., all packets with the
same source address are sent to the same core. Each processing
core maintains data structures for its group of source addresses.
Nearly all access to a group is from the owner core. Occasionally,
however, a core might update information for a group held by a
different core; thus, it is necessary to maintain atomicity of updates
using locks. Such an arrangement of data and processing results in
a highly biased access pattern for a data item: the owner is respon-
sible for a large (90% or more) fraction of the accesses to its data,
the rest originate from other cores.

This work looks at the question of optimizing lock performance
under such lopsided access patterns. It makes four contributions.
First, we provide a generic method for building biased locks. In
a nutshell, we implement biased locks with a two-process mutual
exclusion algorithm between the dominant thread and a single rep-
resentative of all of the other threads, chosen with a generic N-
process mutual exclusion algorithm. This construction simplifies
and generalizes the algorithm of Kawachiya et al. [12], which is
a specific combination of this type that intertwines a Dekker-lock
for two threads and a CAS-based lock for an N-thread mutex. Our
experiments show that different choices for the N-process mutex
algorithm can improve overall performance.

Our second contribution is a simple scheme for changing the pri-
mary owner of a lock (“re-reservation”). The scheme given by
Kawachiya et al. [9] is heavyweight: it requires suspending the
thread owning the lock and often modifying its program counter
to a retry point; in their later work, they abandoned it for this rea-
son [12]. By contrast, we show a simple way to change a lock’s
owner without suspending the existing owner.

In our third contribution, we establish conditions under which
atomic and memory fence operations in a dominant thread can be
dispensed with entirely. Most multiprocessor memory systems do
not provide sequential consistency across threads: a sequence of
writes by one thread may appear to occur in a different order to
a different thread. Few synchronization algorithms can cope with
such an unruly communication mechanism, so multiprocessors typ-
ically provide costly but effective “fence” instructions that force
all outstanding writes to complete. Experiments on the Intel Core
Duo chip show that their “mfence” instructions require about two
to three clock cycles. We show memory fences are essential for
the biased lock construction described above, assuming the weaker
memory ordering imposed by store-buffer forwarding, which is a
feature of most modern processors. We prove that for a proces-
sor with store-forwarding, any mutual exclusion algorithm with a
“symmetric choice” property requires memory fences. The sym-
metric choice property is that there is a protocol state where either
of two contending threads may acquire the lock. Since standard
algorithms such as those by Dekker [7], Peterson [13], and Lam-
port [10] have the symmetric choice property, they all require mem-
ory fences to be correct. Our proposed solution, therefore, is asym-
metric by nature: it requires the dominant thread to grant access to

the lock after receiving a request from a non-dominant thread. The
protocol as a whole is free from starvation provided the dominant
thread checks for such requests infinitely often.

Finally, we introduce biased read-write locks. A read-write lock
allows multiple readers to read at the same time, but only one writer
to access the critical section at any time. We show, along with
experiments that the general construction of bias in normal locks
can be extended to provide biased read-write locks.

In summary, we make four new contributions in this paper:

1. we provide a simple, generalized construction of biased locks
(Kawachiya [9] is a special case of our algorithm);

2. we provide a light-weight scheme for changing the owner of
a lock dynamically;

3. we introduce asymmetric locks; and

4. we apply bias to read-write locks.

In the next section, we describe our generic owner-based locking
scheme, which assumes a fixed owner. We then discuss the algo-
rithm for switching ownership (Section 3). The formalization of
memory fence operations, the symmetric choice property, and the
subsequent proofs are discussed in Section 4. We define asymmet-
ric locks in Section 5. We discuss how we verified our algorithms
in Section 7 and discuss experimental results in Section 8.

2. Flexible, Fixed-Owner Biased Locks
In this section, we define a flexible biased locking scheme that

assumes a lock is owned by a fixed, pre-specified thread. The
scheme reduces the cost of access for the owning thread. In par-
ticular, the scheme does not incur the cost of a compare-and-swap
operation, but it does require memory fences for correctness. From
this point on, we focus on the x86 architecture; the kind of fences
and their placement may differ for other architectures.

At its core, our scheme employs different locking protocols for
the owner and the non-owners. For the owner, any two-process mu-
tual exclusion protocol with operations lock2 and unlock2 suffices;
for the other threads, we use a generic N-process mutual exclusion
protocol with operations lockN and unlockN. This exploits com-
plementary characteristics: protocols that rely only on atomicity
of read and write, such as Peterson’s algorithm [13], are efficient
for two processes but not necessarily for larger numbers of threads;
protocols based on atomic primitives, such as the MCS lock [11],
are more effective when there are many contending threads.

Figure 2 shows our biased lock scheme. The this_thread_id
identifier contains a unique number identifying the current thread.
The non-owner threads first compete for the N-process lock; the
winning thread then competes for the two-process lock with the
owner process.

It is easy to see the scheme assures mutual exclusion among the
threads provided the two locking protocols work and thread IDs
are well-behaved; other properties depend on the locking protocols
themselves. For example, the combined protocol is starvation-free
if both locking protocols are; if only the 2-process locking proto-
col is starvation-free, the owner is always guaranteed to obtain the
lock but one or more of the non-owning threads could remain for-
ever in the waiting state. Similar results hold for bounded waiting,
assuming starvation-freedom.

This scheme can be implemented by employing Dekker’s algo-
rithm for 2-process locking and the compare_and_swap spin-lock
algorithm from the introduction for N-process locking. Such an
implementation is similar to Onodera et al. [12], but differs in the
details of how N-process locking is invoked.

typedef struct {
ThreadId owner;
Lock2 t; /∗ lightweight, 2−process lock ∗/
LockN n; /∗ N−process lock ∗/

} Lock;

biased_lock(Lock ∗l) {
if (this_thread_id == l−>owner)

lock2(l−>t);
else {

lockN(l−>n);
lock2(l−>t);

}
}

biased_unlock(Lock ∗l) {
if (this_thread_id == l−>owner)

unlock2(l−>t);
else {

unlock2(l−>t);
unlockN(l−>n);

}
}

Figure 2: Our general biased-lock scheme

An alternative: use Peterson’s algorithm (Figure 3) for 2-process
locking and the MCS algorithm for N-process locking. On the Intel
architecture, Peterson’s algorithm requires memory fences to en-
sure operations issued before the fence are carried out before opera-
tions issued after the fence and to ensure that updates to shared vari-
ables are made visible to other threads. This is because newer x86
implementations employ “store-forwarding” that effectively prop-
agates memory updates lazily, depositing them in processor-local
store buffer before ultimately dispatching them to the memory sys-
tem. Hence the store buffer functions as an additional level of cache
and improves performance.

Unfortunately, store buffers break sequential memory consistency
between processors. To ensure local sequential consistency, a pro-
cessor always consults its local store buffer on a read to ensure it
sees all its earlier writes, but the contents of each processor’s (lo-
cal) store buffer are not made visible to other processors, meaning
a shared memory update may be delayed or even missed by other
processors. For instance, if variables x and y are both initialized
to 0, one thread executes write x 1; read y, and another thread ex-
ecutes write y 1; read x, it is possible under store-forwarding for
both threads to read 0 for both x and y, an outcome that is im-
possible under sequential consistency. Intel’s reference manual [1]
provides more details and examples.

In the protocol in Figure 3, in the absence of the first fence,
thread i may not see the updated flag value of thread j and thread
j may not see the updated flag value of thread i. This would allow
both threads to enter the critical section at once, violating mutual
exclusion. The second fence ensures all changes to global variables
made in the critical section become visible to other processors.

3. Transferring Ownership On-The-Fly
Our biased lock scheme from the last section assumes that the

dominant thread is fixed and known in advance. However, certain
applications may need to change a lock’s dominant thread, such
as when ownership of shared data is passed to a different thread.

flag[i] = 1;
turn = j;
fence(); /∗ force other threads to see flag and turn ∗/
while (flag[j] && turn == j) {} /∗ spin ∗/
/∗ ...critical section... ∗/
fence(); /∗ make visible changes made in critical section ∗/
flag[i] = 0;

Figure 3: Peterson’s mutual exclusion algorithm for process i
when running concurrently with process j. Its correctness de-
mands memory fences.

We call this ownership transfer or re-reservation. In this section,
we describe a simple method for effecting this transfer. Figure 4
shows the outline of our method. We do not fix a particular condi-
tion for switching ownership—each application may define its own
condition for when a switch is necessary. One such scheme, for
instance, is to maintain an average frequency of usage of a lock by
each thread, and switch ownership when the frequency of a non-
dominant thread exceeds that of the dominant one.

The bias transfer mechanism necessarily switches the status of
a non-dominant thread. There are certain times when doing so is
not safe. For example, it would be incorrect to do so when the
dominant thread is about to enter its critical section, so we require
that a non-dominant thread hold the biased lock before switching
its status to dominant. This requirement is not, however, sufficient
in itself. A thread may switch to being dominant at a point in time
where the earlier dominant thread (line 12) is waiting for its lock.
Therefore, we demand additional synchronization between the old
and new dominant threads.

The try flag array (line 5), which has one entry per thread, pro-
vides synchronization. If thread A is dominant, the try[A] entry,
if set, indicates to other threads that the owner may be in the pro-
cess of acquiring the lock in lines 9–12. Meanwhile, if some other
thread (say, B) calls switch_to_dominant in an attempt to become
dominant (lines 28–36), then B changes the owner and waits for the
previously dominant thread A to reach a stable state: one where it
is certain that A realizes the change of ownership (line 34).

This procedure adds a few instructions (starting line 9) to the
lock algorithm for the owner thread. The overhead is two addi-
tional assignments, one test and a fence instruction, due to the in-
frequency of owner switching and the expected infrequency in non-
owner locks.

4. Mutual Exclusion and Memory Fences
Given the high cost of atomic and fence operations, one may

wonder whether there are mutual exclusion schemes where these
operations are not needed. Classical algorithms such as Dekker or
Peterson do not use atomic operations, but do require fences to be
correct on modern architectures. In this section, we show that the
use of fences is unavoidable if the architecture supports store-buffer
forwarding unless certain requirements are relaxed.

Fence and atomic operations have the property that they both
make prior memory updates “visible” to all other processors in a
shared-memory system. Hence, the following definition.

Definition 1 A revealing operation makes updates to all shared
variables performed in the current thread prior to the operation
visible to other processors. I.e., a processor reading a shared vari-
able immediately after the operation would obtain the same value
as the revealing thread would immediately before the operation.

1 typedef struct {
ThreadId owner;

3 Lock2 t; /∗ lightweight, 2−process lock ∗/
LockN n; /∗ N−process lock ∗/

5 bool try[NTHREADS];
} Lock;

7
void biased_lock(Lock ∗l) {

9 l−>try[this_thread_id] = 1;
fence();

11 if (this_thread_id == l−>owner) {
lock2(l−>t);

13 if (this_thread_id != l−>owner) {
/∗ owner has changed ∗/

15 unlock2(l−>t);
goto NON_OWNER;

17 } else /∗ owner has not changed ∗/
l−>try[this_thread_id] = 0;

19 } else {
NON_OWNER:

21 l−>try[this_thread_id] = 0;
lockN(l−>n);

23 lock2(l−>t);
}

25 }

27 void switch_to_dominant(Lock ∗l)
{

29 lockN(l−>n);
lock2(l−>t);

31 prev_owner = l−>owner;
l−>owner = this_thread_id;

33 unlock2(l−>t);
while (l−>try[prev_owner]) {}

35 unlockN(l−>n);
}

37
void biased_unlock(Lock ∗l){

39 if (this_thread_id == l−>owner)
unlock2(l−>t);

41 else {
unlock2(l−>t);

43 unlockN(l−>n);
}

45 }

Figure 4: Bias Transfer

Without a revealing operation, updates may never be propagated
to other processors. The statement of our first theorem is not partic-
ularly surprising, but it is interesting to see where the requirement
of a revealing operation arises in the proof.

Theorem 1 Any mutual exclusion protocol that ensures freedom
from starvation must use a revealing operation within every matched
lock-unlock pair for each thread in the protocol.

PROOF. The proof is by contradiction. Suppose there is a pro-
tocol meeting the assumptions, i.e., it (C1) ensures mutual exclu-
sion, (C2) ensures starvation-freedom for each thread, assuming
each thread stays in its critical section for a finite amount of time,
and (C3) and does so assuming a demonic scheduler.

Consider the operation of the protocol on a pair of threads, A and
B, where operations in A’s lock, unlock, and critical section code
does not use any revealing operation. Suppose that A and B start
at their initial state. If A is at a lock operation and runs by itself,
by (C2), it must enter its critical section. After the point where A
enters its critical section, consider a new continuation, E1, where B
executes its lock instruction. By (C1), thread B is enabled but must
wait since A is in its critical section.

Continue E1 so that thread A exits its critical section and then
B runs by itself. By (C2), B must enter its critical section. The
decision by B to enter its critical section cannot be made on lo-
cal information alone since otherwise there is a different schedule
where, by (C3), the demonic scheduler can give sufficient time to B
to make its decision while A is in its critical region, violating (C1).
Thus, between the point in E1 where B waits to the point where it
enters its critical section, A must have changed at least one global
variable also visible to B and these critical changes must have been
made be visible to B.

Now consider an alternative execution, E2, from the point in E1
where A enters its critical section and B is waiting such that in E2,
thread A exits its critical section but changes to the global variables
by A are not made visible to B. Such an execution is allowed since
A is assumed not to execute a revealing operation within its lock-
unlock actions. Without a revealing operation, the architecture is
not constrained to make the shared-variable updates in A visible to
B. Thus, the state visible to B is unchanged. There are two cases
to consider at this point. If A cannot acquire the lock again (e.g.,
if the lock is turn-based), then both A and B are blocked, leading
to starvation. If A can acquire the lock, the prior sequence can be
repeated, leading to starvation for B. In either case, thread B does
not enter its critical section, contradicting (C2).

This theorem raises the question of whether revealing operations
can be eliminated by giving up starvation-freedom. The next theo-
rem shows that this is not possible for most standard protocols, all
of which have the following property.

Definition 2 A symmetric choice point in a mutual exclusion pro-
tocol is a state where two or more threads are waiting to enter a
critical section and either thread can win the race by executing a
sequence of its own actions.

A mutual exclusion protocol has the symmetric choice property if
there is a reachable symmetric choice point. The standard mutual
exclusion protocols by Dekker, Peterson, and Lamport as well as
the spin-lock protocol presented in the introduction have the sym-
metric choice property.

Theorem 2 A mutual exclusion protocol requires a revealing op-
eration for each acquire operation at a symmetric choice point.

PROOF. by contradiction. Suppose there is a mutual exclusion
protocol with a symmetric choice point, s, where two threads, A
and B are waiting to enter the critical section and A does not have
a revealing operation in its acquire operation.

By definition of symmetric choice, there is an execution E1 from
s where A acquires the lock first and another execution, E2, from
s where B acquires the lock first. Construct execution E3 by first
executing E1, then E2. Since there is no revealing operation in E1,
the values of the shared variables as seen by process B at the end of
E1 are the same as that in s, and the local state of B is unchanged
by E1 (B remains in its waiting state). Therefore, it is possible to
append execution E2 to E1 and get E1;E2, but the sequence E1;E2
results in both A and B acquiring the lock concurrently, violating
mutual exclusion.

5. Asymmetric Locks
Theorem 2 implies an algorithm that avoids revealing operations

in locks must not have a symmetric choice state—i.e., it must be
asymmetric. We now present such an algorithm.

For this section only, we return to assuming there is a fixed,
known dominant thread. The algorithm is made asymmetric by
forcing the non-dominant threads to request permission from the
dominant thread to proceed. Figure 5 shows the algorithm.

Before entering the critical section, the dominant thread checks
whether another thread is accessing the critical section by prob-
ing the grant variable (line 10). While leaving the critical section
(lines 20–24), it checks the request flag to determine whether an-
other (non-dominant) thread wishes to enter the critical section. If
the flag is set, the dominant process hands the lock to the other
thread by calling fence and setting the grant variable to 1. The
call to fence commits any changes to shared variables made in the
critical section before it passes the lock to any other thread.

A non-dominant thread that desires to enter the critical section
(lines 12–14) must first acquire a n-process lock, then set the re-
quest flag and wait for a grant. While leaving the critical section
(lines 26–28), it resets the grant variable after calling fence. The
call to fence commits all local changes to the main memory before
the lock is passed back to the dominant process.

This method has the disadvantage that a non-dominant request-
ing thread must wait for the dominant process to grant it permis-
sion. This implies the dominant thread must periodically check the
request flag. Thus, the algorithm ensures starvation-freedom for
the non-dominant threads only when the dominant thread checks
the request flag infinitely often in any infinite computation. This
can be ensured by periodically polling the request flag.

The advantage of the algorithm is that the dominant thread does
not use a compare-and-swap instruction and uses a fence instruc-
tion only only when it passes control of the critical region to a non-
dominant thread. In periods of no contention from other threads,
the dominant thread does not use any atomic or fence instructions,
so locking incurs very little overhead.

6. Read-Write Biased Locks
In this section, instead of considering only exclusive locks, we

discuss the design of biased read-write locks that incur very little
overhead on the dominant thread. In general, a read-write lock
allows either multiple readers or a single writer to access a critical
section at any time.

We use a combination of 2-process lock and n-process lock. For
the 2-process lock, we use a modified version of Peterson’s algo-
rithm; see Figure 6 and Figure 7. The flag variable can take three
values: READ, WRITE, and UNLOCK. When a dominant thread
i tries to obtain a read lock, it spins if at the same time there is
another thread j writing (lines 13–16 in Figure 6). When the dom-
inant thread tries to obtain a write lock, it waits if there is another
thread that is either reading or writing (lines 4–7, Figure 7).

For a non-dominant process to acquire a write lock (lines 10–13,
Figure 7), it first acquires a normal n-process write lock, rwn. This
write lock rwn is contended only by non-dominant processes. Once
this lock is obtained, the process checks if the dominating process
is in the unlock state and then enters the critical section. At this
point the non-dominant process is the only process in the critical
section because the rwlockN provides exclusive access among the
non-dominant processes. The Peterson-like algorithm that follows
it provides exclusive access from the dominant thread.

For a non-dominant process to acquire a read lock (lines 18–
28, Figure 6), it first acquires a normal n-process read lock on n.
Since the n-process read lock on rwn can be held by multiple non-

1 typedef struct {
ThreadId owner;

3 lockN n; /∗ N−process lock ∗/
bool request;

5 bool grant;
} Lock;

7
biased_lock(Lock ∗l) {

9 if (this_thread_id == l−>owner)
while (l−>grant) {} /∗ wait ∗/

11 else {
lockN(l−>n);

13 l−>request = 1;
while (!l−>grant) {} /∗ wait ∗/

15 }
}

17
biased_unlock(Lock ∗l) {

19 if (this_thread_id == l−>owner) {
if (l−>request) {

21 l−>request = 0;
fence(); /∗ make visible all memory updates ∗/

23 l−>grant = 1; fence();
}

25 } else {
fence();

27 l−>grant = 0;
unlockN(l−>n);

29 }
}

Figure 5: Our asymmetric lock algorithm

dominating processes, the first non-dominant reader competes with
the dominant process. If the dominant process is busy writing, the
first non-dominant reader spins on the flag variable. The last non-
dominant reader to exit the critical section sets the flagj variable
to UNLOCK(lines 40–41, Figure 6). The first and last readers are
maintained by a counter variable non_owner_readers and the field
is protected by a normal n-process lock n.

As in the previous sections, for the dominant process to obtain
either a read lock (lines 12–16 in Figure 6) or write lock (lines 3–7
in Figure 7) when there is no contention, requires the manipulation
of only two flags, which results in far less overhead than normal
n-process read-write locks.

The rwlockN function, which obtains a normal n-process read or
write lock, can use standard reader writer locks and implemented
to be reader starvation-free or writer starvation-free. Between the
dominant and non-dominant process, the writer dominant process
may starve, especially when non-dominant readers keep coming
in and never relinquish the lock. But since these readers are non-
dominant, we expect the readers to arrive infrequently; therefore,
starvation is unlikely in practice.

7. Algorithm Verification
The correctness of the algorithm presented in Section 2 can be

inferred easily from its construction. The n-lock provides mutual
exclusion among non-dominant threads. The 2-lock provides mu-
tual exclusion among the dominant and the non-dominant thread.

The correctness of the asymmetric algorithm is less obvious and
in fact, we discovered several pitfalls while developing it. We veri-

typedef struct {
2 ThreadId owner;

int flagi; /∗ Owner’s flag ∗/
4 int flagj; /∗ Non−owner’s flag ∗/

bool turn;
6 RWlockN rwn; /∗ N−process read−write lock ∗/

LockN n; /∗ N−process lock∗/
8 int non_owner_readers; /∗ No. of non−dominant readers ∗/

} Lock;
10

biased_r_lock(Lock ∗l) {
12 if (this_thread_id == l−>owner) {

l−>flagi = READ;
14 l−>turn = j;

fence();
16 while (l−>turn == j && l−>flagj == WRITE) {}

} else {
18 rwlockN(l−>rwn, READ); /∗ Get a read lock ∗/

lockN(l−>n); /∗ Get an exclusive lock ∗/
20 l−>non_owner_readers++;

if (l−>non_owner_readers == 1) {
22 /∗ First non−dominant reader ∗/

l−>flagj = READ;
24 l−>turn = i;

fence();
26 while (l−>turn == i && l−>flagi == WRITE) {}

}
28 unlockN(l−>n);

}
30 }

32 biased_r_unlock(Lock ∗l) {
if (this_thread_id == l−>owner) {

34 l−>flagi = UNLOCK;
fence();

36 }
else {

38 lockN(l−>n);
l−>non_owner_readers−−;

40 if (l−>non_owner_readers == 0)
l−>flagj = UNLOCK;

42 unlockN(l−>n);
rwunlockN(l−>rwn);

44 }
}

Figure 6: Read functions of biased read-write locks

fied the algorithm from Section 5 using the SPIN [8] model checker.
We created two processes, one dominant; the other non-dominant,
and verified mutual exclusion and progress properties. Even when
there is more than one non-dominant thread in the system, mu-
tual exclusion holds because the normal n-lock provides exclusive
access among the non-dominant threads. The progress property
also holds if the normal lock satisfies the progress property. The
bounded waiting property however is not satisfied because non-
dominant threads are dependent on the dominant thread to acquire
the lock.

For the ownership transfer protocol, we used SPIN to verify
a configuration with one dominant thread and two non-dominant
threads. Each non-dominant thread attempts non-deterministically

1 biased_w_lock(Lock ∗l)
{

3 if (this_thread_id == owner) {
l−>flagi = WRITE;

5 l−>turn = j;
fence();

7 while (l−>turn == j && l−>flagj != UNLOCK) {}
} else {

9 rwlockN(l−>rwn, WRITE);
l−>flagj = WRITE;

11 l−>turn = i;
fence();

13 while (l−>turn == i && l−>flagi != UNLOCK) {}
}

15 }

17 biased_w_unlock(Lock ∗l) {
if (this_thread_id == l−>owner) {

19 l−>flagi = UNLOCK;
fence();

21 }
else {

23 l−>flagj = UNLOCK;
l−>rwunlockN(l−>rwn);

25 }
}

Figure 7: Write functions of biased read-write locks

to change ownership. We believe that this configuration describes
all interesting interactions; the generalization of this automatic proof
to arbitrary numbers of threads is ongoing work.

We also verified the biased read-write protocol using SPIN. We
coded one dominant thread and two non-dominant threads. Each
one non-deterministically attempt a read or a write lock. The mu-
tual exclusion property is satisfied even when there are more than
two non-dominant threads because the non-dominant thread has to
acquire either a normal n-write-lock or n-read-lock depending on
the action before entering the critical section.

The verification with SPIN is based on a sequentially consistent
model. By perturbing the sequence of assignments, it is possible to
discover which orderings are relevant for the proof of correctness;
this indicates positions where fences must be inserted for correct-
ness on modern architectures with weaker ordering guarantees. In
the future, we plan to use tools such as Check-Fence [4] to deter-
mine optimum placement of fences.

8. Experimental Results
The experiments described in this section have two purposes: to

compare the performance of the new biased lock algorithms against
similar algorithms proposed in earlier work using the pthread spin-
lock implementation on Linux as the base reference, and to confirm
our intuition about the behavior of these algorithms, i.e., that the
performance improves monotonically with increasing domination.
We coded the algorithms in C and we ran the experiments on an
Intel Core 2 Quad processor with 2GB Memory and Fedora Core
7 installed. Programs were compiled with -O flag. We reimple-
mented reference [12] in C.

8.1 Performance with varying domination
To compare the different algorithms, we created four threads and

made one of them dominant. The critical section just incremented
a counter—a deliberately small task to maximize lock overhead.

-4

-2

 0

 2

 4

 0 10 20 30 40 50 60 70 80 90

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Domination Percentage

Biased Asymmetic

Biased Pthread

Biased MCS

Biased CAS (KKO)

Unbiased Pthread

Figure 8: Behavior at varying domination percentages

 0

 50

 100

 150

 200

 250

 300

 350

 90 91 92 93 94 95 96 97 98 99 100

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Domination Percentage

Biased Asymmetic

Biased Pthread

Biased MCS

Biased CAS (KKO)

Unbiased Pthread

Figure 9: Behavior at high domination percentages

We varied the dominance percentage and measured the execution
times; see Figure 8. A dominance of 90% indicates that for 100
accesses to the critical section, the dominant thread accesses the
critical section 90 times and the remaining threads access the crit-
ical section 10 times. The lock accesses were evenly spaced: they
follow a skewed but non-bursty access pattern.

We tested our micro benchmark on various algorithms. Our base
case for comparison is the pthread spin lock (represented by a hor-
izontal line at 0). We described the biased asymmetric lock in Sec-
tion 5. The biased thread implementation uses Peterson’s algorithm
for 2-lock and p-threads for n-lock. The biased MCS implementa-
tion uses Peterson along with MCS locks. The biased CAS is the
implementation from Kawachiya et al. [12]

For each of these algorithms, we observed the performance im-
prove as we increased the dominance of the owner thread. Figure 9
shows details of the results from Figure 8 for domination between
90 and 100%, the expected range for the motivating packet process-
ing application. Not surprisingly, the asymmetric method performs
best when the domination percentage is high because asymmetric
locks are very lightweight and do not require fence instructions
in the dominant thread when there is no intervention from other
threads. On the other hand, when the domination is less, the non-
dominant threads have to wait until the dominant thread signals;
this overhead is insignificant for high dominance.

8.2 Locked vs. lockless sequential computation
Next, to measure the overhead of each of these locks, we cre-

ated a sequential program that, to represent work, does the naïve
recursive Fibonacci computation fib(n) = fib(n− 1) + fib(n− 2),

-100

-80

-60

-40

-20

 0

 5 10 15 20 25

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Fibonacci Computation

Biased Asymmetic

Biased Pthread

Biased MCS

Biased CAS (KKO)

Unbiased Pthread

Without locking

Figure 10: Lock overhead for a sequential program

-5

 0

 5

 10

 15

 20

 25

 30

 90 91 92 93 94 95 96 97 98 99 100

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Percentage of local operations

Biased Asymmetric (fib (8))

Biased Asymmetric (fib (13))

Unbiased Pthread

Figure 11: Behavior of our packet-processing simulator with
asymmetric locks

and thus shows exponential behavior with increasing n. We pro-
tected the counter by a lock and compared the performance of dif-
ferent locks with the version without locks; see Figure 10. This
setup merely measures the overhead of these locks. First, we see
that the thread locks has the maximum overhead (about 100%) and
asymmetric locks has the least (less than 1%). Second, as the com-
putation load increases, the relative overhead decreases slowly.

8.3 Performance of a packet-processing simulator with asym-
metric locks

From these experiments, we concluded that asymmetric locks
are the best for our packet-processing application. Also, since the
non-dominant threads require permission from the dominant/owner
thread to enter the critical section, asymmetric locks are suitable
for applications that have dominant threads that run forever. In our
packet-processing application, we replaced the thread locks by our
asymmetric locks and compared the performance with the original
one with pthreads (Figure 11). Within each lock we also added
a synthetic computation that calculates Fibonacci numbers. When
the computation time is high (e.g., for fib(13)), the non-dominant
threads have to wait more for the dominant thread to signal, there-
fore we see fib(8) performing better than fib(13). The difference be-
tween the two loads is roughly a factor of 10 because fib(n) scales
as φ n, where φ ≈ 1.618 is the golden ratio.

8.4 Biased Locks for Database Queries
Flexible locks (Section 2) that consist of 2-locks combined with

n-locks are more robust to variations in computational load, al-
though they require fence instructions whenever a dominant lock is
obtained or released. To test the behavior of these locks, we wrote

-6

-4

-2

 0

 2

 4

 6

 8

 0 10 20 30 40 50 60 70 80 90 100

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Localization Percentage

Figure 12: Performance of our biased locks on a database sim-
ulator for the query SELECT SUM(C2) GROUP BY C1

 0

 5

 10

 15

 20

 90 91 92 93 94 95 96 97 98 99 100

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Domination Percentage

Figure 13: The effect of bias transfer

code that performs the SOL query “SELECT aggregate_function(c1)
FROM t group by c2.” Such a query is typically processed concur-
rently. The table t is divided into n parts; each part is processed by
a separate thread, which maintains a local hash table. If the data c2
in t is localized, most of the hash updates are local to the thread,
otherwise it is necessary to modify the hash table of a different
thread; see Figure 12. As the locality of data increases, the biased
locks perform better. Although the performance depends strongly
on how the data are ordered, in many cases the ordering is such that
data are localized.

8.5 Ownership transfer
We fixed the ownership of locks in the above applications, but

our algorithm in Section 3 allows for ownership transfer. To test
its performance, we created four threads that each perform a Fi-
bonacci calculation in the critical section. Figure 13 compares the
performance of our biased locks that supports on-the-fly ownership
changes with the implementation that only supports static owner-
ship. The implementation that supports change of ownership does
not do as well as the the static implementation because of the extra
overhead to support bias transfer. The ownership changes to the
thread that was recently dominant, i.e, the most recent thread that
has been acquiring the lock continuously. However, it does better
than the unbiased implementation.

8.6 Ownership transfer with incorrect dominance
In Figure 14, we also compare the ownership on-the-fly imple-

mentation with a static ownership implementation, but for the latter
implementation, we set the dominance incorrectly. The ownership
on-the-fly implementation easily adapts itself and changes the dom-
inance to the most recently dominant.

8.7 Overheads for non-dominant behavior
The general trend is that as the dominance increases, biased locks

perform better than unbiased locks. With applications that do not

-30

-20

-10

 0

 10

 90 91 92 93 94 95 96 97 98 99 100

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Domination Percentage

Dominance set statically but incorrectly

With on-the-fly ownership transfer

Unbiased Pthread

Figure 14: The effect of bias transfer for incorrect biasing

 0

 20

 40

 60

 80

 100

Barnes Raytrace Water-Spatial Radiosity Ocean
In

cr
ea

se
 in

 s
pe

ed
 (

%
)

Application

Unbiased Pthread

Biased Pthread

Sequential

Figure 15: Performance of our biased locks on applications
(SPLASH2 benchmark) without dominant behavior.

exhibit dominant behavior, we do not expect any improvement. We
tested our biased locks on SPLASH2 benchmarks [15]. Most of
these benchmarks exhibit master-slave behavior where work is di-
vided among different threads. Even in the absence of dominance,
our biased implementation deteriorated by at most 2% compared to
the sequential version for these benchmarks.

8.8 Performance of biased read-write locks
Finally, we compared our biased read-write lock implementation

with the pthread implementation of read-write locks. Figure 16
shows the results. Our biased read-write lock performs very well
even when the dominance fraction is not very high because read-
write locks are generally very expensive and our dominant read-
write lock optimizes it to a large extent.

8.9 Performance on a simulated router application
To test the effect of biased read-write locks on actual examples,

we simulated a router application. A router maintains a look-up
table where the entries are mostly static, but occasionally (5% of
the time) the IP addresses change, in which case a write lock is re-
quired. It usually maintains a distributed look-up table in which
most lookups are local to a thread. Figure 17 suggests that, as
expected, as we increase the number of local lookups, the biased
read-write locks perform better.

9. Related Work
As we mentioned in the introduction, there is other work on

optimizing lock implementations, such as thin locks [3] and lock-
reservation algorithms [2, 9, 12]. The original thin lock algorithm
requires a compare-and-swap on each lock acquisition, which our
algorithm avoids.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Domination Percentage

Biased RW Pthread

UnBiased RW Pthread

Figure 16: A comparison of our biased rwlock with Linux
thread rwlock.

-10

 0

 10

 20

 30

 0 10 20 30 40 50 60 70 80 90 100 110

In
cr

ea
se

 in
 s

pe
ed

 (
%

)

Percentage of Local Lookups

Biased RW Pthread

Unbiased RW Pthread

Figure 17: Performance of our biased read-write locks on a
router simulator with 95% reads and 5% writes.

The lock-reservation work is closest to ours. In Kawachiya et
al. [9], the disadvantage is that when a lock is reserved for the
owner and the non-owner tries to attempt the lock, the non-owner
stops the owner thread and replaces a lock word. This step is
very expensive because the owner thread is suspended. Onodera
et al. [12] proposes a modification similar to ours: a hybrid al-
gorithm that tightly intertwines Dekker’s 2-process algorithm with
an n-process CAS algorithm. Our scheme simplifies this by keep-
ing the two algorithms separate and generalizes it by allowing any
choice of 2-process and n-process mutual algorithms.

We show how to transfer lock ownership among threads without
suspending the current owner. Although Russell and Detlefs [14]
also support bias transfer, their global safe-point technique for bias
revocation is costly. In their technique, it is difficult to determine at
any point whether a biased lock is actually held by a given thread.
Our technique is simple and inexpensive: it only requires two extra
assignments and two comparisons.

Finally, we examined the necessity of memory fence instructions
on modern processors and shed light on the key role played by the
symmetric choice property of most mutual-exclusion algorithms.
The asymmetric algorithm presented in Section 5 is, in a sense,
the most efficient possible, since it avoids both memory fence and
atomic operations in the dominant process except at the point of
transferring control of the lock, where they are unavoidable. Earlier
work on asymmetric biased locks [5,6] has a similar motivation, but
the analogues of the request-grant protocol, called SERIALIZE(t)
by Dice et al. [5], appear fairly heavyweight, involving either thread
suspension and program counter examination, or context-switches.

10. Conclusions
We have provided some simple algorithms for constructing bi-

ased locks. We implemented these algorithms as a simple library,
without any special support from the operating system. Our ex-
perimental evaluation shows that our algorithms perform well in
practice when the dominance fraction is high, as expected. This

matches the profile of our intended applications, e.g., network packet
processing. The evaluations were all carried out on an Intel Quad
core machine and the results, therefore, reflect the relatively high
costs of fence and atomic operations on the x86 architecture.

It is clear that the performance improvement of biased locks de-
pends on the relative performance of compare-and-swap, memory
fence, and simple memory instructions. There is unfortunately no
standard model that one can use to theoretically analyze perfor-
mance, therefore we picked the instance of the most common ar-
chitecture for our experiments. We plan to experiment on more
machines in the future.

References
[1] Intel IA-32 Architecture Software Developer’s Manual, vol.

3A, 2009.
[2] D. Bacon and S. Fink. Method and apparatus to provide

concurrency control over objects without atomic operations
on non-shared objects. US Patent 6772153, 2000.

[3] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin
locks: featherweight synchronization for Java. In Proc.
Programming Language Design and Implementation (PLDI),
pages 258–268, New York, NY, USA, 1998. ACM.

[4] S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence:
checking consistency of concurrent data types on relaxed
memory models. In Proc. Programming Language Design
and Implementation (PLDI), pages 12–21, New York, NY,
USA, 2007. ACM.

[5] D. Dice, H. Huang, and M. Yang. Asymmetric dekker
synchronization. Technical report, Sun Microsystems, 2001.
http://home.comcast.net/∼pjbishop/Dave.

[6] D. Dice, M. Moir, and W. Scherer. Quickly reacquirable
locks. Technical report, Sun Microsystems, 2003.
http://home.comcast.net/∼pjbishop/Dave.

[7] E. W. Dijkstra. Cooperating sequential processes.
Technological University, Eindhoven, The Netherlands,
September 1965. Reprinted in Programming Languages, F.
Genuys, Ed., Academic Press, New York, 1968, 43-112, 1965.

[8] G. J. Holzmann. The model checker SPIN. Software
Engineering, 23(5):279–295, 1997.

[9] K. Kawachiya, A. Koseki, and T. Onodera. Lock reservation:
Java locks can mostly do without atomic operations. In Proc.
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 130–141, New York, NY,
USA, 2002.

[10] L. Lamport. A fast mutual exclusion algorithm. ACM Trans.
Comput. Syst., 5(1):1–11, 1987.

[11] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
scalable synchronization on shared-memory multiprocessors.
ACM Trans. Comput. Syst., 9(1):21–65, 1991.

[12] T. Onodera, K. Kawachiya, and A. Koseki. Lock reservation
for Java reconsidered. In ECOOP, pages 559–583, 2004.

[13] G. L. Peterson. Myths about the mutual exclusion problem.
IPL 12(3), pages 115–116, 1981.

[14] K. Russell and D. Detlefs. Eliminating synchronization-
related atomic operations with biased locking and bulk
rebiasing. SIGPLAN Not., 41(10):263–272, 2006.

[15] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: characterization and
methodological considerations. In Proc. international
symposium on computer architecture (ISCA), pages 24–36,
New York, NY, USA, 1995. ACM.

