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Abstract. Mobile Ad-hoc Networks (MANETs) are very dynamic net-
works with devices continuously entering and leaving the group. The
highly dynamic nature of MANETs renders the manual creation and
update of policies associated with the initial incorporation of devices
to the MANET (admission control) as well as with anomaly detection
during communications among members (access control) a very diffi-
cult task. In this paper, we present BARTER, a mechanism that auto-
matically creates and updates admission and access control policies for
MANETs based on behavior profiles. BARTER is an adaptation for fully
distributed environments of our previously introduced BB-NAC mech-
anism for NAC technologies. Rather than relying on a centralized NAC
enforcer, MANET members initially exchange their behavior profiles and
compute individual local definitions of normal network behavior. During
admission or access control, each member issues an individual decision
based on its definition of normalcy. Individual decisions are then ag-
gregated via a threshold cryptographic infrastructure that requires an
agreement among a fixed amount of MANET members to change the
status of the network. We present experimental results using content
and volumetric behavior profiles computed from the ENRON dataset. In
particular, we show that the mechanism achieves true rejection rates of
95% with false rejection rates of 9%.

1 Introduction

Mobile Ad-Hoc Networks (MANETs) are composed of devices that enter and
leave the network dynamically, quickly changing the network topology and ad-
ministrative domain membership. MANETs differ from wired/wireless networks
in that there is no central control, no base station, and no wireless switches.
As a result, any task in the network must be distributed and executed by all
its members. These tasks include manually creating and updating policies for
the admission as well as the access control of devices over time. Admission con-
trol refers to the decision process prior to the incorporation of devices to the
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MANET. On the other hand, access control involves the membership update of
devices that are already part of the MANET. In general, admission and access
control policies are difficult to create manually unless one has a profound under-
standing of the resource that needs to be controlled. Additionally, the update of
policies is even more difficult given the highly dynamic nature of MANETs.

In our previous work, we introduced BB-NAC, a behavior-based network
admission and access control mechanism for NAC technologies that centralized
the decision process on a unique NAC enforcer located at the edge of the net-
work [3] [4] [5]. Behavior was intended to represent the typical communications
of network devices i.e., the traffic payload observed or specific volumetric mea-
surements of the traffic such as average number of packets. In this paper, we
present BARTER, a behavior-based admission and access control mechanism for
MANETs. BARTER is an adaptation of BB-NAC for fully distributed networks.
As in the BB-NAC mechanism [5], a newcomer would present its behavior profile
to the MANET members during admission control. If an agreement is reached
among the members, the newcomer is admitted into the MANET. Analogously,
during access control, the traffic exchanged would be checked against the behav-
ior profiles of similar MANET members to perform anomaly detection.

Unlike BB-NAC, the admission and access control decisions in BARTER are
distributed among the MANET members rather than being centrally performed
by a NAC enforcer. The decision of each individual MANET member is based
on the accumulation of knowledge gathered from the behavior profiles of other
members. Ultimately, the final admission or access control decision is achieved
by building BARTER on top of a threshold cryptographic infrastructure that
guarantees not only distributed decision making but also secure communications
among MANET members. Due to the limited computational resources of many
MANET platforms (such as cellphones or PDAs), the calculation of clusters of
behavior profiles similar to the one implemented in the BB-NAC mechanism
would not be feasible. Instead, BARTER takes advantage of the restrictions
imposed by the threshold cryptographic infrastructure as a way to approximate
groups of similar behavior within the network.

Apart from the full description of the mechanism, we present an experimen-
tal evaluation of BARTER based on content and volumetric behavior profiles
computed from the ENRON dataset [2]. Throughout the paper, we assume that
there exists a tamper resistance scheme [6] [11] running in the MANET that
prevents devices from having multiple identifications (each device has a unique,
identifiable IDi) and that detects manipulations in the packets exchanged be-
tween MANET members.

The main contributions of the BARTER mechanism are the following:

– A mechanism that provides automatic and fully distributed creation of ad-
mission and access policies for MANETs. Individual decisions are made by
each MANET member based on the knowledge accumulated from previous
profile exchanges among members. The final admission or access control de-
cision is determined from the aggregation of individual decisions using a
threshold cryptographic layer that runs under the BARTER mechanism.
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– A mechanism that is robust against attacks from MANET members. The
mechanism adjusts over time in order to maintain its robustness even in the
presence of malicious devices within the MANET.

– An extensive evaluation of the mechanism using hundreds of content and
volumetric behavior profiles computed from the ENRON dataset.

The paper is organized as follows: in Section 2 we describe the foundations of
the BARTER mechanism. Section 3 discusses possible attacks to the mechanism
and analyzes the costs incurred by the threshold cryptographic infrastructure.
Section 4 and Section 5 describe the experimental evaluation for content and vol-
umetric profiles respectively. Section 6 summarizes related work. Finally, Section
7 presents conclusions and future work.

2 The BARTER Mechanism

We start with the assumption that each device in the MANET is running an
Anomaly Detection (AD) sensor that allows the device to compute a behavior
profile that models its typical behavior. BARTER consists of an initial setup
and two main phases: admission control and access control. Initially, MANET
members exchange their behavior profiles in order to build their own individual
definition of normal behavior which will later be used during admission and ac-
cess control. During admission or access control, each MANET member emits an
individual decision based on its definition of normal behavior. Individual deci-
sions are aggregated using a threshold cryptographic scheme (t,n) that requires
at least t out of the total n MANET members to change the status of the net-
work. Next, we describe each of the phases in detail as well as the interaction
with the cryptographic infrastructure that runs underneath the mechanism.

2.1 Initial Setup

The principal goal of the setup is for each MANET member to build their own
individual definition of normal behavior, which will be ultimately used during
admission control. MANET members are not clients or servers but rather peers
i.e., all members are considered equal and can execute client or server activities
simultaneously. As a result, MANET members can have both input and out-
put behavior profiles for the same service (port). Throughout, we assume that
the behavior profiles are computed from previous interactions of the device or
alternatively are provided as built-in profiles from the vendor. We further as-
sume that the profiles of the initial MANET members are clean and provide an
accurate representation of the typical behavior in the MANET.

During setup, all the initial members broadcast their output behavior pro-
files to all the other MANET members. Each member proceeds to calculate the
distance between its own input behavior profile and the output behavior profiles
received from the other devices. Given the distributed nature of the mechanism,
MANET members are only required to provide their output behavior profiles.
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This step prevents any member from crafting attacks based on the knowledge
of the input profiles of the others. The distance between a member i and each
of the other MANET members j = 1, .., n is given by di,j = d(Pi,in, Pj,out),
where Pi,in is the input behavior profile for i and Pj,out is the output behav-
ior profile received from node j. Each pair (Pj,out, di,j) computed by member
i is then stored as an entry Qi[j] in its local table Qi. The entries are sorted
by member i according to their distance values such that the closest profiles to
Pi,in are placed at the top of the table. In general, distances can be interpreted
as a measure of confidence between a local device and the rest of the MANET
members. Specifically, profiles at shorter distances would be trusted more than
their more distant counterparts.

Armed with its sorted table, each MANET member proceeds to calculate
its local threshold τi that will determine acceptance or rejection of new devices
during admission control. The threshold τi is defined as the maximum distance
between its input profile Pi,in and its top t-1 most similar/trusted profiles. In
this context, t corresponds to the value from the (t,n) threshold cryptographic
scheme. Thus, τi = Qi[t− 1], where Qi[t− 1] represents the t− 1th entry at the
local table of member i.

Simultaneously, the members of the MANET are also responsible for setting
up the threshold cryptographic scheme (t,n). This scheme guarantees that all
communications among the n MANET members are encrypted using group keys,
which can only be reconstructed by any t members of the MANET. The thresh-
old cryptographic scheme also ensures that all decisions within the MANET
must meet the approval of at least t members.

The initial setup of the threshold cryptographic scheme is executed in a
distributed fashion without a central authority (CA) following the approach
proposed by Narasimha et al. [9] using the cryptosystem theory without initial
trusted parties from Perdersen [12]. In the approach by Naramsimha et al., the
group of all MANET members (Mi, i=1..n) uses Shamir’s secret sharing [13] to
divide a group secret S into n shares. Specifically, the secret is represented as
a polynomial f(z) = f1(z) + ... + fn(z), where each fi(z) is generated by each
individual MANET member Mi. Each MANET member Mi computes its share
as follows. First, each Mi chooses a random polynomial fi(z) ∈ Zq (where q is
a prime number) of degree t-1 such that fi(0) = Si. Next, each Mi computes
Mj ’s share as sj

i = fi(j) (for j=1..n) and securely transmits these values to each
j through a secure channel. Finally, Mj computes its share sj of the secret S

(partial signature) by summing all the shares received as sj =
∑n

i=1(s
j
i ) and

computes its Group Membership Certificate (GMCi).

Under this scheme, any group of t members among the total n will be able
to jointly recover the secret S via Lagrange interpolation. Subsequently, this
threshold cryptographic scheme will play a principal role during the admission
and access control discussed in the following sections. It is important to note that
the merger between BARTER and the threshold cryptographic layer creates
a robust mechanism that guarantees distributed admission and access control
decisions as well as secure communications among the MANET members.
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Cross-Validation The initial cross-validation seeks to find the ratio t/n that
yields the best results for the admission and access control mechanism. In par-
ticular, the performance of BARTER for each ratio t/n is measured in terms
of false rejection (FR) i.e., number of normal profiles wrongly rejected from
entering the MANET, true rejection (TR) i.e., number of anomalous profiles
detected as such, cryptographic costs (CC) and possibility of Distributed Denial
of Service (DDoS) attacks. The values of the ratios t/n are ranked according
to their performance r = (1 − FR) + TR + (1 − CC) + DDoS and the highest
ranked value is selected. Here, the cryptographic costs (CC) quantify the total
time involved during key (re)generation by the MANET members. For practical
purposes, the value of CC is normalized between 0 and 1. On the other hand,
DDoS evaluates the robustness against MANET members lying about their de-
cisions in order to manipulate the admission and access control. At the end of
the setup and cross-validation, each device will have a sorted local table Qi,
a local threshold τi as well as the best t/n ratio for the MANET. The actual
computation of the parameters used for the ranking is discussed in more detail
in Section 3. Experimental results are presented in Section 4 and Section 5.

2.2 Admission Control

Whenever a new device attempts to enter the MANET, it needs to broadcast its
own local output behavior profile to the current members. Initially, the members
will check whether the new device is blacklisted. If it passes this check, the mem-
bers proceed to compute the distance between their own input profile and the
output profile of the newcomer. If the distance is within its own local threshold
of normalcy, the member emits a favorable vote vi = 1. The final MANET vote
v can be expressed as:

v =
1

n

∑

i=0..n

vi

vi = 0 if d(Pi,in, Pnew,out) > τi

vi = 1 if d(Pi,in, Pnew,out) ≤ τi

where n is the number of members in the MANET, τi is the threshold of member
i, Pi,in is the input behavior profile of member i and Pnew,out is the output
behavior profile of the newcomer. If t or more members of the MANET emit a
favorable vote vi = 1, the newcomer is admitted. Otherwise, the newcomer is
rejected and added to a grey list that keeps track of the number of admission
attempts by the device. If a device exceeds a fixed number of attempts, it will
be added to a blacklist. In order to keep the latest updates, grey and blacklists
are exchanged among MANET members.

Upon acceptance of the newcomer, all the members of the MANET submit
their output behavior profiles to the new member. The new member stores the
profiles together with the distance measures between its own input profile and the
output profiles of the remaining members of the MANET in its local table. Then,
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Fig. 1. Admission Control of a Newcomer new to the MANET.

it proceeds to sort the values in its local table according to their distance. The
maximum distance value among its top t−1 profiles determines its local threshold
τPnew

. The original members of the MANET store the output behavior profile
of the newcomer in their local tables and update their distance computations as
well as thresholds accordingly.

Whenever a new device enters or leaves the MANET (n increases or de-
creases), the ratio of t/n will also change. As a result, the mechanism must make
the proper adjustment to restore the ratio to its original value that yielded the
best performance for the admission control. In order to avoid recalculating t
every time that the value of n changes, we set an update window w such that
the value of t is changed only when the ratio exceeds the range t/n ± w. If we
consider t0 to be the initial value of t and n0 the initial number of MANET
members, t would be updated as t = ⌈(t0/n0) ∗ n⌉, where n is the final size
of the MANET. Throughout, we assume the members can easily calculate or
approximate the total size of the MANET (n).

Every time a newcomer attempts to be admitted into the MANET, BARTER
combines with the threshold cryptographic admission control by Narasimha et
al. [9] as follows:

1. The newcomer Mnew broadcasts its public key certificate PKCnew and its
behavior profile Pnew,out to the MANET members.
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2. Members that deem the behavior profile of the newcomer normal (d(Pi,in, Pnew,out) ≤
τi) reply with their Group Membership Certificates (GMCi).

3. Mnew forms a list of signers SLnew and sends it back to each of the members
Mj that replied initially.

4. Each Mj computes its partial signature sj and submits it to Mnew.
5. Mnew computes the complete signature s by summing t partial signatures sj

and obtains its own GMCnew as well as its partial share snew. In addition, it
updates its local table with the behavior profiles of the MANET members.

At the end of the process, if t or more members in the MANET agree on the
normal nature of the profile, the newcomer can compute its own GMC and start
communications with the MANET. Otherwise, the newcomer will not be able
to participate or even eavesdrop because the communications are encrypted.
Figure 1 depicts an example of the admission control in a MANET with six
initial members and a value of t=4.

2.3 Access Control

During access control, communications among the MANET members are contin-
uously screened to ensure that users do not deviate from their declared behavior
profiles. In practical terms, each MANET member continuously checks the in-
coming traffic from any device against its local input behavior profile as well
as against the output behavior profile of the sender that was originally saved
during the admission of the latter into the MANET. If a device considers some
traffic to be anomalous, it requires at least t members of the MANET in order
to act against the sender. Thus, the receiver of the anomalous traffic submits the
anomaly to its top t-1 most similar members drawn from its local table. If the
other t-1 members agree on the anomalous nature of the traffic, the sender is
expelled immediately from the MANET. This process relies on the assumption
that there exists an scheme that prevents data tampering within the MANET
and prevents users from falsifying alerts or replay attacks.

From a threshold cryptographic point of view, if a MANET member detects
an anomaly, it adds the anomalous member to its local Certificate Revocation
List (CRL) and proceeds to broadcast its own CRL to all the MANET mem-
bers. In order to ensure that the anomalous member no longer has a vote in the
distributed admission and access control, each member will generate new par-
tial signatures that will be submitted to each of the MANET members outside
the CRL via point-to-point communications (individual cryptographic channels).
This proactive key sharing [7] combines the approaches introduced by Ostrovsky
and Yung [10] and by Luo and Lu [8] as follows:

1. Each member Mi defines a polynomial fi(z) = f1z
1 + f2z

2 + ... + ft−1z
(t−1)

with fi(0) = Si, where f1..ft−1 ∈ Zq are randomly selected and q is a prime
number.

2. Mi secretly sends sj
i = fi(j)(mod q) to the MANET members Mj outside

the CRL. The members are assumed to have established point-to-point en-
crypted channels.
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3. Mj would reply if and only if it has received t revocation lists (CRL) from
different MANET members.

4. Mi decrypts the si
j received from the other MANET members and computes

its new share si.

3 Attacks and Cryptographic Costs

Due to the fully distributed nature of the BARTER mechanism, the main source
of attacks derives from MANET members lying about their admission control
decisions either to admit members with malicious profiles or else to prevent
members with normal profiles from joining the MANET. Small values of the
t/n ratio would permit attackers to get a hold of the admission control by com-
promising only a few MANET members. In contrast, larger t/n ratios could be
attacked by compromising a few nodes that would prevent the other members
of the MANET from reaching a decision. We quantify the robustness against
DDoS attacks via a numerical factor DDoS in the ranking index formula such
that r = (1−FR)+TR+(1−CC)+DDoS. Our assumption is that a t/n = 0.5
represents the optimal value to minimize the risk of potential DDoS attacks. As
a result, we set DDoS = 0.5 for t/n = 0.5. We set DDoS = t/n for smaller
ratios (t/n < 0.5) and assume DDoS = 1 − (t/n) for larger ratios (t/n > 0.5).
While some t/n ratios may yield better FR or TR rates, the value of DDoS
serves as a counterweight to estimate the robustness against DDoS attacks for a
certain configuration.

The cryptographic costs (CC) involved in this process are quantified in terms
of the total time spent during key regeneration and enter in the evaluation of
the ranking index such that r = (1−FR)+TR+(1−CC)+DDoS. As written,
the ranking index penalizes high values of CC and favors more economic key
regenerations. During the initial cryptographic setup, each MANET member
exchanges shares with all the other members in order to compute its own GMC
as well as its partial signature. If we assume that all MANET members exchange
their shares in parallel, we can approximate the initial setup cost as CC =
K × (n0 − 1), where K represents the cost of a single exchange and n0 is the
number of initial members in the MANET. Every time a device enters or leaves
the MANET, the mechanism checks that the ratio t/n is within the window w.
If the value of t needs to be adjusted, the cost incurred in the key regeneration
can be approximated by,

CC = K ×

nfinal
∑

n0

(update × n) − 1

update =

{

1 if t/n < (t0/n0 − w) or if t/n > (t0/n0 + w)

0 otherwise.
(1)

where nfinal is the final number of MANET members, n is the current number
of MANET members, and update is a boolean variable that determines whether
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an update in the value of t is required. Equation 1 describes the boolean variable
that is only true whenever the ratio t/n falls below the lower bound of the range
(t/n − w) or exceeds the upper bound (t/n + w).

4 Evaluation of BARTER with Content Profiles

In this section, we begin with a description of the AD sensor responsible for the
computation of the content behavior profiles and provide experimental results
of the BARTER mechanism using this type of profile.

4.1 Semi-supervised Content AD Sensor

We have implemented a content-based AD sensor that represents an adaptation
of Shanner’s ideas [14]. Shanner proposes an algorithm that incorporates only the
most heavily weighted grams to the behavior profile. These grams are the ones
that best discriminate between two or more classes of data. Although Shanner is
more expensive than other AD sensors, we chose it because it rapidly captures
the significant information of the traffic being exchanged.

In our sensor, we consider two classes of data (content): good samples (goodS )
and bad samples (badS ). The content of the traffic exchanged is captured as 3-
grams. This choice is less computationally expensive than higher n-grams and
appropriately captures the specifics of email traffic (as it will be shown in Section
4.3). The weight (frequency) of each 3-gram observed during training is calcu-
lated using Shanner’s Formula (see Equation 2), where the frequency W of each
3-gram i (W(i)=F(i)×U(i)×A(i)) is expressed as,

W (i) = log(
xi

Ng

)×(
1

logNg

)

Ng
∑

j=1

(pij(log(
1

pij

)))×(1−(
1

logL
)

goodS,badS
∑

j

(pij(log(
1

pij

))))

(2)
where F(i) measures the frequency of occurrence of each distinct 3-gram i over
all the good samples Ng; U(i) measures how uniformly distributed each unique
3-gram i is spread among the set of good samples Ng (pij represents the prob-
ability of seeing 3-gram i in good sample j ); and A(i) measures how uniformly
distributed each unique 3-gram i is spread across all good and bad samples
types (L=2). Once all the weights have been calculated, a top percentage of
the 3-grams are selected to represent the content profile of the device. We assert
that this is a semi-supervised learning technique since the devices store an initial
collection of bad 3-grams drawn from known malware samples.

4.2 Behavior Profile Privacy

Due to the fact that the output behavior profiles are exchanged among devices,
it may be the case that certain users do not feel comfortable sharing the content
they exchange. In order to deal with this possibility, the BARTER mechanism
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hashes the content behavior profile into Bloom Filters (BF) [1]. Input behavior
profiles, although not exchanged, are also converted into BFs so that the com-
parison with output profiles is fast and straight forward. The way the traffic is
mapped to a BF depends on the AD sensor used. The only requirement is that
all devices use the same sensor with the same type of mapping. Behavior profiles
in BARTER are then easily comparable, since boolean operators allow us to dis-
cern similarities or differences between profiles (BFs). For this type of content
profiles, the distance d(Pi,in, Pj,out) between two profiles is computed using an
exclusive OR (XOR) operator that quantifies the amount of entries that differ
between the two profiles: d(Pi,in, Pj,out) = |Pi,in⊕Pj,out|, where ⊕ represents the
XOR operator and || denotes the total number of entries with different values.

4.3 Evaluation Experiments

Having extensively described the foundations of the BARTER mechanism, we
proceeded to test the admission control of the mechanism with real content be-
havior profiles. We focus on the admission control because our main aim is to
prove the functionality of the mechanism together with the threshold crypto-
graphic layer. For that purpose, we used the publicly available ENRON dataset
[2] that contains 125,218 emails from 140 ENRON employees. The reason for
choosing email as a testing dataset is justified based on its use as a primary
application on handhelds. Moreover, email constitutes a good approximation
of other popular text messaging applications that could be used in MANETs.
For each of the 140 users, we computed input and output behavior profiles using
Shanner’s algorithm [14]. In particular, we first calculated the frequency for each
3-gram in the body of each user’s emails and selected the top 5000 most heavily
weighted grams. Our choice of 5000 worked well for our experiments, however,
other values might be more appropriate for different datasets. The bad samples
used to execute Shanner’s algorithm were drawn from the signature content of
the Snort rules (a total of 58) [15] and from 600 virus samples of vxheavens [17].
Finally, the top 5000 3-grams were hashed into Bloom filters in order to provide
privacy to the profiles.

For experimental purposes, we refer to the set of behavior profiles modeled
with the content of emails from the ENRON dataset as pool of normal users (140
users). The pool of normal users was considered to be clean, composed of normal
behavior profiles and ground truth. On the other hand, we refer to pool of bad
users as a set of 60 profiles that represent anomalous behavior (content) that
should be rejected from entering the MANET. In order to compute the bad pro-
files, we used content (3-grams) from 12000 executable files and code files (C or
Java). These type of files were chosen because their content is dramatically dif-
ferent from email. Each bad profile was computed with 200 executable/code files
with an average of 39 3-grams per file. Once again, behavior profiles were com-
puted using Shanner’s algorithm by selecting the top 5000 3-grams and hashing
them into Bloom filters.

We defined a group of 80 behavior profiles randomly selected from the pool
of normal users as our training set (initial MANET members). The remaining 60
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Fig. 2. FR and TR for different ratio values t/n.

profiles were divided into a cross-validation set (30 profiles) and a testing set (30
profiles). The cross-validation set was used to calculate the best ratio t/n for our
dataset determined as the highest ranking index r = (1−FR)+TR+(1−CC)+
DDoS. One by one, each randomly selected profile in the cross-validation set was
presented to the MANET members as a newcomer attempting to be admitted
into the MANET. From these attempts, we measured the false rejection rate
(FR) as the percentage of normal profiles wrongly rejected as anomalous. Next,
30 randomly selected profiles from the pool of bad users were also presented as
new devices attempting to gain access into the MANET. The latter experiment
allowed us to measure the true rejection rate (TR) by determining the percentage
of profiles correctly rejected as anomalous by the MANET members. Finally,
we proceeded to determine the cryptographic costs (CC) incurred during the
generation of new signatures for the MANET members as well as the robustness
against DDoS attacks (DDoS).

The experiments were repeated 60 times for each value of t/n to cover all
different evolutions resulting from the random selection of the initial profiles. The
results presented here constitute an average over all runs. Five different values
of t/n were considered, namely 0.1, 0.3, 0.5, 0.7, and 0.9. These values represent
MANETs whereby 10%, 30%, 50%, 70% or 90% of the total members respectively
are needed in order to emit an admission control decision. For each ratio, the
initial value of t was calculated as t/n × 80 with a window w = 0.02. Here,
80 represents the number of total profiles in the training set (initial MANET
members). Alternative values of w would produce different numerical results but
would follow the same trends observed in our experiments.

Figures 2(a) and 2(b) show the FR and TR rates for different ratio values.
As can be seen, smaller ratio values produced larger FR and TR rates. This is
most likely related to the fact that smaller ratios reflect a larger number of small
sets of profiles. Consequently, the thresholds for the admission control become
very restrictive, which results in a larger rejection of normal profiles as well as a
larger detection of anomalous profiles. In contrast, larger ratios result in smaller
FR and TR rates possibly associated with fewer sets of profiles that define less
restrictive thresholds.
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We also computed the ranking indices r = (1−FR)+TR+(1−CC)+DDoS
for different ratio values t/n for the ENRON dataset, and we found that the high-
est ranked index corresponded to a ratio t/n = 0.1. Such result probably captures
the wide variety of content contained in the email exchanges among users. In
other words, small sets of normalcy provide a better characterization of the be-
haviors shared by the users. Armed with the highest ranked index t/n = 0.1
obtained from cross-validation, we proceeded to simulate the admission control
with randomly selected profiles from the testing set acting as newcomers to the
MANET. In order to compute TR and FR, we used the remaining 30 normal
and bad profiles drawn from the pool of normal and bad users respectively. For
the performance of BARTER, we obtained a false rejection FR=13%, a true
rejection TR=100% and cryptographic costs CC=179 × K.

5 Evaluation of BARTER with Volumetric Profiles

Rather than content, volumetric profiles capture the typical characteristics of
the communications such as number of emails exchanged, number of different
people contacted (clique), and frequency of usage. In this Section, we describe
the volumetric AD sensor used to compute the profiles. This is followed by an
actual evaluation of the BARTER mechanism using volumetric behavior profiles
computed from the ENRON dataset.

5.1 Histogram-based Volumetric AD Sensor

In order to compute volumetric input and output behavior profiles, we used
the EMT tool (Email Mining Toolkit) [16]. The behavior profile of each user is
represented as a daily histogram that reflects the behavior of a user exchang-
ing emails. In order to be able to compute the initial behavior profiles of the
MANET members, we presume that members have an archive of stored emails
from previous interactions in other environments. Alternatively, one can always
provide the members with an initial set of training samples chosen according to
the type of user.

EMT computes two types of daily histograms: hourly histograms and grouped
histograms. Hourly histograms divide the day in 24 bins where each bin represents
the average number of emails (sent or received) per hour. Grouped histograms,
on the other hand, divide the day in 4 bins of 6 hours each, where each bin is
the average number of emails sent or received during a 6-hour period. Hereafter,
we will refer to the number of bins in which the day is divided as bin granularity
(bg). In particular, we shall use bg = 24 for hourly modeling and bg = 4 for
grouped modeling. Each profile Pi,d is a vector with bg entries, where d represents
the direction of the traffic i.e., either input (Pi,in) or output emails (Pi,out).
Each histogram entry represents a bin bj that contains the average value a
and standard deviation σ for the number of emails sent or received by user i
during a time frame j. The average and standard deviation values for each time
frame j are averaged throughout the duration of the training period. Hence,
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Pi,d = {b1, ..., bbg} and bj = {(a, σ)} where j ∈ [1..24] for hourly histograms or
j ∈ [1..4] for grouped histograms.

The grouped histograms are intended to save bandwidth usage by exchang-
ing smaller behavior profiles among MANET members. Nonetheless, it is only
through cross-validation tests that an appropriate bin granularity that both min-
imizes the behavior profile size while maximizing BARTER performance can be
properly selected.

5.2 Evaluation Experiments

Our evaluation of the BARTER mechanism for volumetric profiles is similar
to the one presented for content profiles. Again, we used the publicly available
ENRON dataset to compute the volumetric behavior profiles of 140 users. For
each user, we computed its input and output volumetric profiles in two formats:
hourly and grouped histograms. Behavior profiles were computed by calculating
the average number of emails sent or received by a user throughout the duration
of the training period. For experimental purposes, the set of 140 volumetric
profiles modeled with emails from the ENRON dataset is referred to as pool of
normal users and is considered ground truth. In order to compute a pool of bad
users, we produced volumetric behavior profiles one, two, and three standard
deviations away from the top t-1 entries in the local table of each MANET
member. Our assumption is that the t-1 top entries represent the most similar
counterpart to a particular profile. As a result, behavior profiles separated by one
or more standard deviations from this set constitute potential anomalous profiles.
We repeated this process for all the members of the MANET and obtained a
final pool of bad users for each ratio t/n.

As in the experiments with content profiles, we simulated an environment
where a number of profiles attempt to gain admission into an already formed
MANET. The pool of normal users (140 profiles) was divided into three sets: the
training set (80 randomly selected profiles), the cross-validation set (30 randomly
selected profiles), and the testing set (the remaining 30 profiles). Armed with
these sets, we measured the FR rate of the BARTER mechanism with volumetric
profiles. Next, we created additional cross-validation and testing sets with 30
profiles each randomly selected from the pool of bad users. The latter sets were
used to compute the TR rate of the mechanism.

The purpose of the cross-validation experiments is to determine the combi-
nation of t/n ratio and type of histogram that yields the highest ranking index
r. We experimented with five different values for the ratio t/n: 0.1, 0.3, 0.5, 0.7,
0.9 and two types of histograms: hourly and grouped. Simulations were repeated
60 times to account for the random draw of the initial profiles, and the results
were averaged among the 60 simulations. For each combination of parameters,
we computed the ranking index r and selected the highest ranked.

Figures 3(a) and 3(b) depict our TR and FR results for a wide variety of ratio
values as well as two types of histograms (hourly and grouped). As can be seen,
grouped histograms outperform hourly histograms in terms of FR an TR rates.
Our interpretation is that hourly histograms likely produce a too fine grained
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Fig. 3. FR and TR for different ratio values t/n.

modeling for our dataset. In contrast, grouped histograms can identify behaviors
more effectively thus improving the performance of BARTER. In general, higher
t/n ratios translate into smaller FR and TR rates.

We note that the highest ranked index occurs for grouped histograms and a
ratio t/n = 0.5. Such ratio indicates that the best admission results take place
when 50% of the MANET members are needed to make a decision. We can
also interpret this result as an indication of few distinct behaviors within the
ENRON dataset. Taking the highest ranked index parameters (t/n = 0.5 and
grouped histograms), each randomly selected profile from the testing set was pre-
sented to the MANET members as a newcomer attempting to be admitted into
the MANET. From these admission control experiments, we measured FR=8%,
TR=90% and cryptographic costs CC=1571×K. These results demonstrate the
feasibility of BARTER using volumetric as well as content behavior profiles.

6 Related Work

There is a body of work about the use of threshold cryptography for admission
control in ad-hoc networks. Narasimha et al. [9] and Ostrovsky et al. [10] studied
possible adaptations of existing threshold cryptographic schemes to MANETs.
However, none of the previous works have discussed the implementation of the
decision process during admission control. BARTER enhances threshold crypto-
graphic approaches by automatizing the individual admission decision at each de-
vice. AD sensors have been widely used to implement access control in MANETs.
The main idea is that profiles computed from audit data can be used as a repre-
sentation of the normal behavior. As a result, any behavior that deviates from
the profile is considered anomalous [18]. However, the current literature does
not offer a satisfactory explanation on the interaction of ADs with secure cryp-
tographic platforms. BARTER provides an access control that uses AD sensors
at an application level rather than at the routing level. Additionally, our work
describes the interaction between the AD sensors and the cryptographic layer.
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7 Conclusions and Future Work

We have presented BARTER, a mechanism that automatically creates admission
and access control policies for MANETs. Individual decisions regarding admis-
sion and access control are issued based on a local definition of normal behavior
computed from the knowledge of the behavior profiles from other members. A
threshold cryptographic layer (t,n) that runs underneath the mechanism aggre-
gates the individual decisions by requiring at least t devices to participate in
the decision. We have discussed experimental results using both content and
volumetric behavior profiles computed from the ENRON dataset. Our results
show that the mechanism can successfully perform under both types of behav-
ior profiles with FR rates ranging from 9% to 12% and TR rates between 95%
and 100%. Future work will evaluate how to best determine the most defining
behavioral characteristics of a host using techniques such as bagging or boosting.
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