
Automating the Injection of Believable Decoys to Detect
Snooping

Brian M. Bowen Vasileios P. Kemerlis Pratap Prabhu

Angelos D. Keromytis Salvatore J. Stolfo

Department of Computer Science
Columbia University
New York, NY, USA

{bb2281, vk2209, pvp2105, ak2052, sjs11}@columbia.edu

ABSTRACT

We propose a novel trap-based architecture for enterprise
networks that detects “silent” attackers who are eavesdrop-
ping network traffic. The primary contributions of our work
are the ease of injecting, automatically, large amounts of be-
lievable bait, and the integration of various detection mech-
anisms in the back-end. We demonstrate our methodology
in a prototype platform that uses our decoy injection API to
dynamically create and dispense network traps on a subset
of our campus wireless network. Finally, we present results
of a user study that demonstrates the believability of our
automatically generated decoy traffic.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection—invasive software, unau-
thorized access; K.6.m [Management of Computing and
Information Systems]: Miscellaneous—security

General Terms

Design, Measurement, Security

Keywords

Decoys, Honeyflow, Honeytoken, Traffic generation, Trap-
based defense, Deception

1. INTRODUCTION
The ubiquity of wireless networking exposes information

to threats that are difficult to detect and defend against.
Even with the latest advances aimed at protecting wireless
networks, compromises still occur that allow sensitive infor-
mation to be recorded and absconded. Secure protocols such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’10, March 22–24, 2010, Hoboken, New Jersey, USA.
Copyright 2010 ACM 978-1-60558-923-7/10/03 ...$10.00.

as Wi-Fi Protected Access 2 (WPA2) can help in preventing
network compromise, but in many cases they are not used
for reasons that may include cost, complexity, or overhead.
In fact, the 2008 RSA Wireless Security Survey reported
that only 49% of the corporate access points in New York
City (NYC) and 48% in London used advanced security [6].
To make things worse, only 24% and 19% of the NYC and
London total APs respectively, used a WPA2 variant.

In general, there is little that can be done to detect passive
eavesdropping on networks, and the problem is only exacer-
bated with Wi-Fi due to the range of signals and the absence
of physical access barriers. Some techniques that have been
applied to wired networks for detecting snoopers—although
unreliably—are based on DNS behavior or network and ma-
chine latency [2]. The nature of radio communication makes
the problem far more challenging; generally speaking, these
methods are not applicable. We address the problem of
eavesdropping and offer a proactive defense that makes diffi-
cult for snoopers to avoid detection by targeting the seman-
tic information sought by the attackers rather than network-
level observables that has been the focus of previous efforts.
We broadly target two types of attackers:

• Insiders, who legitimately have access to a network,
but attempt to use it for attaining illegitimate goals.
In the case of shared-key encrypted wireless networks,
(e.g., WEP and some instances of WPA malicious in-
siders may eavesdrop with little difficulty since they
are already within the protective security perimeter.
In other cases, there may simply be no data encryp-
tion (e.g., as in many enterprise networks and wireless
hotspots), where the only barriers to separate the out-
side are firewalls or some form of physical security.

• Those that successfully infiltrate the network through
attacks at the protocol level [3, 4], password guessing,
router hijacking [1, 16], or some vulnerability in Wi-Fi
security. As a concrete example, consider the case of
the massive credit card heist that occurred at TJX [11]
in which attackers exploited the vulnerable WEP pro-
tocol to gain internal network access. Once inside, at-
tackers eavesdropped undetected, acquired additional
credentials, and eventually stole over 45 million credit
cards [8].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161438236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Our intuition is to confuse, deceive, and detect attackers
by leveraging uncertainty. We achieve this by introducing
decoy traffic with enticing information that will, eventually,
cause the eavesdropper to undertake some observable action,
such as accessing a decoy account using sniffed credentials.
Our methodology for building a trap-based network is de-
signed to maximize the realism of decoy traffic. We propose
and demonstrate the utility of a novel architecture based on
a “record, modify, replay” paradigm to automatically gen-
erate large quantities of decoy traffic that are injected into
the network. The system continuously regenerates decoys
to prevent an adversary from learning how to recognize bait
over time. While the use of decoys is not a new concept, our
contribution lies in the automation of decoy generation and
injection, which allows the use of decoys in large volumes.

Demonstrating decoy efficacy and accuracy against snoop-
ers requires an indeterminate amount of time; in Section 4
we simulate attacks to show that the monitoring works well
and would capture snoopers if they misuse the stolen cre-
dentials. This assurance depends on whether the snoop-
ing adversary captures decoys that are believed to be real.
Hence, it is the believability of decoys that is the most impor-
tant property evaluated in this work. We posit that the be-
lievability of decoy network flows can be measured by their
indistinguishability from what is real and we demonstrate
that by conducting a user study analogous to the Turing
Test [17]; results are presented in Section 5 that testify to
decoy realism.

2. RELATED WORK
Deception-based information resources that have no pro-

duction value other than to attract and detect adversaries
are commonly known as honeypots. Honeypots serve as ef-
fective tools for profiling attacker behavior and gathering
intelligence for understanding how attackers operate. They
are considered to have low false positive rates since they
are designed to capture only malicious attackers, except for
perhaps an occasional mistake by innocent users. Spitzner
discusses the use of honeytokens, which he defines as “a hon-
eypot that is not a computer” [13], citing examples that
include bogus medical records, credit card numbers, and
credentials, with descriptions of how they can be used to
detect malicious insiders. Oudot [10] gave a simple example
of how honeypots can be used on wireless networks, but in
his case, all of the sessions are the same, making them triv-
ial to avoid. Grundschober [7] created a sniffer detector for
wired networks that relied on simple scripts to create telnet
and ftp sessions with bait information. However, no atten-
tion was given to the believability of those sessions. More
importantly, the detector relied on a network intrusion de-
tection system to detect decoy misuse on the network rather
than misuse at the application layer, as we do; the benefits
of which are discussed in Section 3.3.

Currently, the decoy/honeytoken creation is a laborious
and manual process requiring large amounts of intervention.
In contrast, we have devised a system that automatically
generates and disseminates, continuously, decoy informa-
tion (of various different types) throughout an operational
network to create indistinguishable “honeyflows.” Indeed, it
is the indistinguishability of our honeyflows, the volume at
which they can be produced, and the non-interference with
real flows that makes our work novel.

Figure 1: Injection Platform

3. PLATFORM IMPLEMENTATION
Synthetic network traffic is typically generated to support

simulations, or emulations, that require traffic to be struc-
turally and syntactically correct with respect to protocols.
In contrast, decoy traffic is designed with a fundamentally
different goal—to induce deception on the human viewer.
To guide in the creation of decoys, we leverage a core set
of decoy properties defined in [5] which include believability,
non-interference, detectability, variability, and enticement.
We used some of these properties to aid in the design of
our platform and its evaluation. We posit that achieving
the deception goal requires traffic to be believable, a qual-
ity ultimately measured by humans, in addition to the more
general requirements of syntactical and structural correct-
ness. Our system addresses these objectives with an archi-
tecture comprised of several hardware and software compo-
nents that have been designed to support the “record, mod-
ify, replay” paradigm for producing honeyflows. This model
produces believable decoys by leveraging human-generated
content from recorded flows, as opposed to relying solely
on machine intelligence. The resulting honeyflows contain
both cover and carry traffic; carry traffic contains the decoys,
whereas cover traffic includes everything else to support the
believability of carry traffic. The architectural components,
shown in Figure 1, include a decoy traffic generator, a dis-
tribution platform built on commodity hardware, and a set
of broadcasters for performing the injection of the various
types of decoys. The implementation details are discussed
in the following subsections.

3.1 Automated Decoy Traffic Generator
The decoy traffic generator uses the software API that

we developed to produce honeyflows through a multi-step
process, as shown in Figure 2. The automated process be-
gins by loading recorded network data, which might either
be a template containing anonymous trace data, or ideally,
a complete network trace containing authentic traffic—we
have specifically designed the API to handle both types of
input. Within the university environment, we use the tem-
plate approach in which sets of protocol-specific templates
are manually created and passed to the API as input. The
templates contain traffic of various network protocols includ-
ing TCP session samples for protocols used by our decoys.
The obvious drawback of templates is that the diversity of
the content is limited, which may subtract from the realism

Figure 2: Honeyflow creation process

AUTH PLAIN

EHLO

MAIL FROM:

RCPT TO:

From:

Reply−To:

Date:

Message−Id:

250

220

221

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

Figure 3: SMTP Identifiers

of the overall generated traffic. However, it is important
to note that there are other environments in which it is le-
gal and common to record traffic (e.g., enterprise environ-
ments). In these environments, it would be advantageous to
use live network traces as a basis for decoy traffic.

Once the API obtains an input trace, a new trace is auto-
matically created with decoy information as follows. First,
each input trace consists of multiple protocols and TCP ses-
sions. We demultiplex each session/protocol into individual
trace files for simpler processing. Configuration informa-
tion (e.g., decoy information, IP/MAC addresses of emu-
lated network) is read from a user specified configuration
file. Each of the demultiplexed trace files are passed through
protocol-specific traffic identifier functions for the protocols
we support (currently Gmail, SMTP, POP, IMAP, FTP,
HTTP) to find the best match. The best match is found us-
ing predefined rules that examine network trace data to de-
termine protocols based on the content of application-layer
headers and protocol status messages. The approach relies
on the presence of identifiers specific for a given protocol.
The API can handle identifiers which are both simple lit-
eral strings or complex regular expressions. For example,
Figure 3 shows the identifiers we use for the SMTP pro-
tocol. To accommodate varying application-layer protocol
implementations, we rely on a percentage of identifiers be-
ing present for each protocol, as shown in Table 1, rather
than all of them. We determined the percentage by manu-
ally observing real traffic from various implementations on

Table 1: Rules used to match protocols
Protocol No. of Identifiers % Required

FTP 14 65%
GMail 7 70%
IMAP 10 40%
POP3 5 80%
SMTP 10 50%

a per-protocol basis. Specifically, for the SMTP identifiers
we rely on 80% of the identifiers being present. If protocol
determination does not succeed, the trace is marked as un-
known and the API proceeds to step 6. Identified traces are
then passed through a protocol modifier function to insert
decoy information. The API supports rules for adding bait
to protocol headers (e.g., Gmail cookies, SMTP passwords)
and protocol payloads (i.e., email body, web page content).
Our implementation includes rules for creating several types
of decoys including: Gmail authentication cookies, URLs,
passwords for unencrypted protocols (SMTP, POP, IMAP),
and beaconed documents as email attachments [5]. The API
can also be used to introduce bait HTTP flows that con-
tain monitored URLs. The implementation can easily be
extended to support other protocols by manually determin-
ing protocol identifiers and creating a new rule for them.
Our API also handles protocol complexities such as:

1. If multi-packet editing is required (e.g., insert decoy
file attachment in POP3 trace), we buffer the data in
memory. When a boundary is found (e.g., a proto-
col status code indicating an end of file), the modifier
function stops buffering and inserts the decoy object.
This data is then written back to the output trace file
as multiple packets.

2. The API formats the decoy information appropriately
for the given protocol (e.g., Base64 for POP3 attach-
ments).

Rules are also used for the replacement of MACs and IPs
to those from a predefined set to suit the environment. Ad-
ditional variability and randomness are introduced to the
honeyflows using the following techniques:

1. For identified TCP server protocols the client port is
randomly generated.

2. TCP sequence numbers are modified to be consistent
with the size of the newly generated packets, whereas
heuristics are used to modify aspects of content like
names, addresses, and dates so that they match those
of the decoy identities.

3. Parameterization of temporal features (e.g., total flow
time, inter-packet time) that can be extracted from
Netflow or packet trace data [12], enable the creation
of honeyflows that are statistically similar to normal
traffic.

OS fingerprint models of p0f [19] are also used to gener-
ate honeyflows that resemble the host OS. For example, to
generate traffic that appears to emanate from a Linux host,
we avoid creating traffic that appears to have come from the
MS Outlook email client. Finally, the demultiplexed traces
are combined into a single trace, which is then broadcasted
to the environment.

3.2 Decoy Broadcaster
The goal of our system is the realization of an inexpensive

mechanism for broadcasting bait content over a network.
Figure 1 indicates that it is comprised of both hardware
and software entities. The underlying hardware consists of
a low-cost, general-purpose, wireless router with the ability
to inject traffic. The device is strategically placed in the
vicinity of a legitimate access point so as to maximize the
coverage of the replayed traffic.

Ideally, the bait content should be sniffable by all wireless
clients inside the same cell. However, an additional require-
ment of the decoy broadcaster is the support of monitor
mode. In all other modes, injection either fails or it is lim-
ited. For example, in managed mode we found that it was
not possible to modify frame fields such as FromDS, ToDS,
or the MAC address, which may be important for creating
realistic traffic. Furthermore, it was not possible to inject
anything other than data frames (e.g., ACKs, RTS/CTS).
The problem is that such limitations may create artifacts in
the honeyflows that allow sophisticated adversaries to iden-
tify and avoid the bogus traffic.

For our prototype implementation we used Accton MR3201A

[9], a mesh router with 32 MB DRAM and 8 MB flash.
Accton’s wireless NIC uses the MadWifi [15] driver, which
supports monitor mode. We tweaked the driver in order to
suppress 802.11 ACK frames, since we have our own ACK
frames recorded as part of the decoy traffic; and ignore ACK
timeouts in injected frames.1 Finally, to inject the hon-
eyflows we ported Tcpreplay [14], a suite for replaying pre-
viously captured traffic for network testing purposes.

The most important property of the decoy repository on
broadcasters is freshness. In some cases, this is required
to support the broadcasting of valid bait. For example, we
use authentication cookies (see Section 3.3) as one type of
decoy. Since these are valid for only a finite amount of time,
they need to be routinely regenerated. Most importantly,
however, is that decoy traffic must be frequently updated so
that it remains believable to attackers. If the same traffic
was continuously replayed, it would be easily distinguishable
based on the repetition of content or on the retransmissions
of protocol header parts (e.g., TCP seq numbers, IP TTL,
TCP/UDP src port numbers, IP ID).

3.3 Trap-based Decoys
Our trap-based decoys have the inherent property of be-

ing detectable on their own, so they do not depend on host,
or network, monitoring. A benefit of being self-detectable is
that the system does not suffer the performance burden of
decoys that do require additional monitoring. This form of
decoy is made up of “bait” information such as online bank-
ing logins provided by a collaborating financial institution2,
credit card numbers, login accounts for online servers, and
web-based email accounts. The primary requirement for bait
is to be detectable when (mis) used. One form of bait that
we use are Gmail account credentials, including usernames,
passwords, and authentication cookies. In this case, custom
scripts access mail.google.com and parse the bait account
pages to gather account activity information. In case of
credit card numbers, providers such as PayPal offer APIs
that we begun to use for monitoring their activity; alterna-
tively, agreements with other financial institutions allow us
to be notified when decoy credit card numbers are used.

In this work, we make particular use of a certain type
of decoy that we refer to as a one-time decoy. One-time
decoys function by revealing themselves as a side-effect of
revealing an attacker. An example of a “one-time decoy”
is a bogus and invalid username and password combination
that is indistinguishable from one that is real, except when

1We inject whole sessions: traffic from all communicating
parties including ACK frames and retransmissions.
2By agreement, the institution requested that its name be
withheld.

it is used. Thus, the attacker is forced to test the credential
in order to distinguish and validate it. Upon testing the
decoy credential and learning that the password is bogus,
the decoy reveals itself as being fake; however, the act of
testing, results in the attacker revealing himself.

4. DETECTING SNOOPERS
Our system injects a variety of different types of “bait”

traffic into Wi-Fi channels in order to entice, deceive, and
alert us to the presence of malicious eavesdroppers. En-
ticing and detecting attackers largely depends on attackers’
goals, whether they pilfer sensitive information to sell on
the black market, or perhaps, some form of espionage. The
capacity to expose otherwise elusive attackers on wireless
networks is one of the primary contributions of this work.
Unfortunately, the ability to evaluate this contribution is
constrained by the infrequency of such attacks in our uni-
versity environment. Waiting for such an attack requires
an indeterminate amount of time and may not be practical.
Therefore, in order to assess the effectiveness of our system
in a realistic environment we conducted an experiment at the
Defcon ’09 hacking conference in Las Vegas. Defcon’s yearly
meeting includes the infamous wall of sheep [18], which is
an interactive demonstration of what can happen when net-
work users do not use the protection of encryption. Defcon
staff eavesdrop on the network traffic for unencrypted cre-
dentials, which they later post on a publicly accessible wall
as a reminder of what a malicious person could do.

Throughout the conference we repeatedly injected decoy
traffic and waited for some decoy credentials to appear on
the wall. One of our decoy credentials did indeed appear
on the wall of sheep, which is an indication of a success-
ful decoy injection. Surprisingly, a Gmail decoy alert was
triggered after someone logged into one of our Gmail ac-
counts from an IP address in New Jersey, shortly after the
account was used in Las Vegas. In that case, we believe the
decoy was the victim of a cookie hijacking attack, but we
do not have strong evidence for this. The Defcon staff post
the collected information (although passwords are only par-
tially shown), but they do not use any credential. However,
this does not exclude other participants that were passively
monitoring the wireless channel during the conference from
being malicious.

This experiment provides evidence that our system may
detect when a snooper is using automated tools for har-
vesting and exploiting credentials in the wild. Though we
have performed a detailed evaluation regarding the quality
of our decoy traffic in believability terms (see Section 5), we
expect that a typical adversary will probably utilize auto-
mated tools that massively hunt credentials or other inter-
esting information (e.g., identity data, credit card numbers).
Unfortunately, the Wi-Fi bait traffic we broadcast was not
adequately sniffed by the Defcon staff. We later learned that
Defcon staff were monitoring the switch mirroring ports as
opposed to WiFi radio channels. However, this is orthogonal
to our experiment.

5. BELIEVABILITY OF BOGUS TRAFFIC:

A DECOY TURING TEST
Alan Turing proposed [17] a method to demonstrate ar-

tificial intelligence through the failure of human judges to
distinguish between human and machine conversational sim-
ulators. The “imitation game” as it was named, was con-
ducted over a text-only communication channel whereby the
judge engaged in conversation with both a human and ma-
chine. The machine was said to have passed the test if the
judge could not reliably distinguish between it and the hu-
man. Following the notion of the original imitation game,
we designed a Decoy Turing Test (DTT) that relies upon hu-
man judges to distinguish between authentic and machine-
generated decoy network traffic. Their inability to reliably
discern one traffic source from the other attests to decoy
believability.

In our experiment, human judges were solicited and se-
lected based on their prior knowledge of networking proto-
cols and experience in examining network traces. Our final
pool of 15 judges consisted of PhD’s and graduate students
in the network security field, a staff member from the de-
partment computing research facility, and a security profes-
sional from an antivirus company. The task for the judges
required the analysis of network trace data, created specif-
ically for this experiment using the injection API. The test
trace was created through the process outlined in Section 3,
but with slight modifications to enable a structured study.
We constructed our test data set including traffic from only
10 hosts, assuming the judges would have limited patience,
and tolerate only a small volume of data.

To create the test data, we began by recording traffic from
5 hosts on a private network. The private network was used
so that we would not accidentally record other users’ traffic
and skirt legal or ethical boundaries. Due to the fact that the
network data were ultimately going to be distributed to the
judges (and perhaps elsewhere), we had users’ on the private
network assume “test” identities that were created for local
email, FTP servers, and Gmail accounts. The users were
asked to engage one another in email conversations, surf
the web as they would normally, and perform FTP trans-
actions. We recorded approximately 15 minutes of traffic in
which there were samples of HTTP, Gmail account activity,
POP/IMAP, SMTP, and FTP traffic.

This network trace was then scrubbed of all non-TCP traf-
fic to reduce the volume of data we would be asking our
judges to examine. The resulting trace was passed to the
honeyflow creation process as shown in Figure 2 to produce
honeyflows for each of the 5 hosts. These honeyflows were
loaded with the decoy credentials, given their own MACs
and valid university IP addresses, and finally interwoven
with the authentic flows to create a file containing all of the
network trace data. The choice was made to give honeyflows
distinct IP addresses to simplify the task for the judges. For
each of the resulting 10 IP addresses, the judges were asked
to make the binary decision: real or decoy. We requested
them to spend at least 15 minutes in their analysis and they
were permitted to use any automated or analysis tool to aid
in making the decision.

5.1 Results and Discussion
Figure 4 summarizes the results for each of 10 hosts. The

hosts are arranged in pairs in which the right bars corre-
spond to decoys and the left bars correspond to the authen-

tic traffic on which decoys are based. The height of the bars
reflect the number of judges that correctly decided whether
a given host was real or decoy. Although these results alone
suggest that judges were able to discern decoys more reg-
ularly than authentic hosts (as shown by the height of the
bars on the right), it is important to take into consideration
the judges’ overall correctness. Figure 5 shows the over-
all correctness for each of the fifteen judges. Overall, the
judges were 49.9% correct, on average, suggesting that we
have achieved the goal of indistinguishable decoys. Inter-
viewing the judges we concluded that the bias for decoys in
Figure 4 stemmed from their tendency to guess “decoy”more
frequently than not. In other words, decoy was the default
decision when a judge was uncertain. Since this tendency
led them to tag real traffic as decoys, one can surmise that
the use of decoys in a network has an additional deterrent
value against knowledgeable adversaries.

Although it is not immediately clear from the figures, one
of the judges successfully identified an initial deficiency in
the decoys that allowed him to positively distinguish decoys.
This judge achieved 7 out of 10 correct in the DTT by ex-
amining the manufacturer of the NICs. The judge observed
obscure manufacturer names (e.g., Shandong New Beiyang
Information Technology Co.) for some MACs used in decoy
traffic, which enabled a correct determination to be made
about whether traffic was decoy or not. We have since fixed
this problem by using more common vendors for our fake
MACs, but this incident does speak to the challenge of get-
ting bogus traffic to look real, especially in the eyes of highly
knowledgeable judges. Another challenge was dealing with
judges that have insider knowledge. Our study did include
judges with knowledge of the department network topol-
ogy and one who works for the computing facility, but this
knowledge did not help in distinguishing decoys. We should
also point out that there were actually 3 users that had 7
out of 10 correct, but their justification did not turn out to
be a true means for distinguishing decoys. For example, one
of the judges said that the IPs of the destination hosts in
the traffic did resolve through reverse DNS; however, these
same IPs were found in the real traffic. Hence, this judge
was simply lucky since this is not a true flaw to identify the
decoys. Regardless, the fact that some, but not all, decoys
are correctly identified is promising, since we only need a
single bait to be taken for detection to occur.

The focus of this study was limited to TCP traffic and was
conducted offline. It is important to point out that this ex-
cluded aspects of the 802.11 protocol and broadcast traffic.
In our case, it was prudent to exclude these because their
inclusion may have overwhelmed the volunteer judges to the
point of not participating. However, we believe that our re-
sults for the TCP traffic can be extended to the 802.11 proto-
col transmissions (e.g., management frames, control frames,
beacons). We should also note that in conducting the study
offline, as we did, we may have limited the information that
might otherwise be available under real- world conditions. It
might be possible for an adversary to snoop multiple access
points to try and correlate traffic in order to distinguish real
traffic from decoys. This scenario was outside the scope of
DTT. We plan to address this in future work, via a large-
scale user study and through clustering analysis of captured
traces. We also note that an adversary could possibly deter-
mine visually that a particular AP is not in use and use this
knowledge to distinguish decoy network traffic. Although

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5

#
 c

o
rr

e
c
t

node pairs

real
decoy

Figure 4: DTT Results: Real vs. Decoy.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#
 c

o
rr

e
c
t

judge id

Figure 5: DTT Results: Users’ Correctness.

we did not implement this, the problem can be easily fixed
by only broadcasting decoy traffic when there is real traffic.

The believability of the honeyflows stems from the“record,
modify, replay”model. Replaying recorded flows can poten-
tially expose sensitive information, but it is information that
has already been exposed on the network (although a com-
promise may have occurred after initial exposure). In em-
ploying this strategy, one must consider the tradeoffs (i.e.,
the replay risk) against the benefit of being able to detect an
intruder when it may not have been possible to otherwise.

6. SUMMARY
Decoy trap-based security defenses, and deception in gen-

eral, are powerful tools against a wide range of threats in
wireless environments. We have demonstrated a system
that shows the feasibility of automatically generating large
amounts of believable decoy information, without interfering
with normal operations. We used human subjects to eval-
uate the believability of the generated decoys and showed
that is difficult to distinguish from the real thing; our ex-
perienced judges achieved only 49.9% accuracy on average,
equivalent to random guessing. We also demonstrated de-
coy efficacy against automated tools, designed to harvest
and exploit credentials in mass by sniffing network trans-
missions. Moreover, we evaluated our system in a real wire-
less network that someone was monitoring and successfully
detected eavesdropping and exploitation attempts. Consid-
erable work remains to address the potential challenges that
active adversaries may pose, such as those that may snoop
multiple access points to try and correlate traffic, or those
that may use additional sources (like an administrator) to
discern decoys without testing them.
Acknowledgements: This work was supported in part by
the National Science Foundation through Grant CNS-09-
14312 and by ONR MURI N00014-07-1-0907. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the NSF or ONR.

7. REFERENCES
[1] P. Akritidis, W. Y. Chin, V. T. Lam, S. Sidiroglou,

and K. G. Anagnostakis. Proximity breeds danger:
Emerging threats in metro-area wireless networks. In
Proceedings of the 16th USENIX Security Symposium,
pages 323–338, August 2007.

[2] AntiSniff. L0pht Heavy Industries. http://
packetstormsecurity.org/sniffers/antisniff/.

[3] M. Beck and E. Tews. Practical attacks against WEP
and WPA. In Proceedings of the 2nd ACM Conference
on Wireless Network Security (WiSec), pages 79–86,
March 2009.

[4] A. Bittau, M. Handley, and J. Lackey. The final nail
in WEP’s coffin. In Proceedings of the 27th IEEE
Symposium on Security and Privacy, pages 386–400,
May 2006.

[5] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J.
Stolfo. Baiting inside attackers using decoy
documents. In Proceedings of the 5th International
ICST Conference on Security and Privacy in
Communication Networks (SecureComm), pages
51–70, September 2009.

[6] P. Cracknell, K. Gavrilenko, and A. Vladimirov. The
wireless security survey of New York City. White
paper 4th edition, RSA, The Security Division of
EMC, 2008.

[7] S. Grundschober and M. Dacier. Design and
implementation of a sniffer detector. In Proceedings of
the 1st International Workshop on the Recent
Advances in Intrusion Detection, September 1998.

[8] L. McGlasson. Tjx update: Breach worse than
reported. Article, Bank Info Security, 2007.

[9] Mini router. Open-Mesh. http://www.open-mesh.com.

[10] L. Oudot. Wireless honeypot countermeasures.
Technical report, SecurityFocus, 2004.

[11] J. Pereira. How credit-card data went out wireless
door. Article, Wall Street Journal, 2007.

[12] J. Sommers and P. Barford. Self-configuring network
traffic generation. In Proceedings of the 4th ACM
SIGCOMM Internet Measurement Conference (IMC),
pages 68–81, October 2004.

[13] L. Spitzner. Honeytokens: The other honeypot.
Technical report, SecurityFocus, 2003.

[14] Tcpreplay. http://tcpreplay.synfin.net/trac/.

[15] the madwifi project. http://madwifi-project.org.

[16] A. Tsow, M. Jakobsson, L. Yang, and S. Wetzel.
Warkitting: the drive-by subversion of wireless home
routers. Journal of Digital Forensic Practice,
1(3):179–192, 2006.

[17] A. M. Turing. Computing machinery and intelligence.
Mind, New Series, 59(236):433–460, October 1950.

[18] Wall of Sheep. http://www.wallofsheep.com.

[19] M. Zalewski. [the new p0f]. http://lcamtuf.
coredump.cx/p0f.shtml.

http://packetstormsecurity.org/sniffers/antisniff/
http://packetstormsecurity.org/sniffers/antisniff/
http://www.open-mesh.com
http://tcpreplay.synfin.net/trac/
http://madwifi-project.org
http://www.wallofsheep.com
http://lcamtuf.coredump.cx/p0f.shtml
http://lcamtuf.coredump.cx/p0f.shtml

	Introduction
	Related Work
	Platform Implementation
	Automated Decoy Traffic Generator
	Decoy Broadcaster
	Trap-based Decoys

	Detecting Snoopers
	Believability of Bogus Traffic: A Decoy Turing Test
	Results and Discussion

	Summary
	References

