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ABSTRACT

On Black-Box Complexity and Adaptive, Universal
Composability of Cryptographic Tasks

Dana Dachman-Soled

Two main goals of modern cryptography are to identify the minimal assumptions necessary to

construct secure cryptographic primitives as well as to construct secure protocols in strong and

realistic adversarial models. In this thesis, we address both of these fundamental questions.

In the first part of this thesis, we present results on the black-box complexity of two basic

cryptographic primitives: non-malleable encryption and optimally-fair coin tossing. Black-box

reductions are reductions in which both the underlying primitive as well as the adversary are

accessed only in an input-output (or black-box) manner. Most known cryptographic reductions

are black-box. Moreover, black-box reductions are typically more efficient than non-black-box

reductions. Thus, the black-box complexity of cryptographic primitives is a meaningful and

important area of study which allows us to gain insight into the primitive.

We study the black box complexity of non-malleable encryption and optimally-fair coin tossing,

showing a positive result for the former and a negative one for the latter. Non-malleable encryption

is a strong security notion for public-key encryption, guaranteeing that it is impossible to ”maul”

a ciphertext of a message m into a ciphertext of a related message. This security guarantee is

essential for many applications such as auctions. We show how to transform, in a black-box manner,

any public-key encryption scheme satisfying a weak form of security, semantic security, to a scheme

satisfying non-malleability. Coin tossing is perhaps the most basic cryptographic primitive, allowing

two distrustful parties to flip a coin whose outcome is 0 or 1 with probability 1/2. A fair coin tossing

protocol is one in which the outputted bit is unbiased, even in the case where one of the parties may

abort early. However, in the setting where parties may abort early, there is always a strategy for

one of the parties to impose bias of Ω(1/r) in an r-round protocol. Thus, achieving bias of O(1/r)



in r rounds is optimal, and it was recently shown that optimally-fair coin tossing can be achieved

via a black-box reduction to oblivious transfer. We show that it cannot be achieved via a black-box

reduction to one-way function, unless the number of rounds is at least Ω(n/ logn), where n is the

input/output length of the one-way-function.

In the second part of this thesis, we present protocols for multiparty computation (MPC) in

the Universal Composability (UC) model that are secure against malicious, adaptive adversaries.

In the standard model, security is only guaranteed in a stand-alone setting; however, nothing is

guaranteed when multiple protocols are arbitrarily composed. In contrast, the UC model, introduced

by (Canetti, 2000), considers the execution of an unbounded number of concurrent protocols, in

an arbitrary, and adversarially controlled network environment. Another drawback of the standard

model is that the adversary must decide which parties to corrupt before the execution of the protocol

commences. A more realistic model allows the adversary to adaptively choose which parties to

corrupt based on its evolving view during the protocol. In our work we consider the the adaptive

UC model, which combines these two security requirements by allowing both arbitrary composition

of protocols and adaptive corruption of parties.

In our first result, we introduce an improved, efficient construction of non-committing

encryption (NCE) with optimal round complexity, from a weaker primitive we introduce called

trapdoor-simulatable public key encryption (PKE). NCE is a basic primitive necessary to construct

protocols secure under adaptive corruptions and in particular, is used to construct oblivious transfer

(OT) protocols secure against semi-honest, adaptive adversaries. Additionally, we show how to

realize trapdoor-simulatable PKE from hardness of factoring Blum integers, thus achieving the first

construction of NCE from hardness of factoring. In our second result, we present a compiler for

transforming an OT protocol secure against a semi-honest, adaptive adversary into one that is secure

against a malicious, adaptive adversary. Our compiler achieves security in the UC model, assuming

access to an ideal commitment functionality, and improves over previous work achieving the same

security guarantee in two ways: it uses black-box access to the underlying protocol and achieves a

constant multiplicative overhead in the round complexity. Combining our two results with the work

of (Ishai et al., 2008), we obtain the first black-box construction of UC and adaptively secure MPC

from trapdoor-simulatable PKE and the ideal commitment functionality.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Is it possible for two parties who have never met to exchange messages over

a public channel while an eavesdropper learns nothing?

This intriguing question was first posed over 30 years ago by Diffie and Hellman. The task seems

impossible, and in an information-theoretic sense it is: A computationally unbounded eavesdropper

can learn just as much about the exchanged messages as the designated parties. However, if we

limit the computational powers of the parties and make strong computational hardness assumptions

such as ”factoring is hard” or ”discrete log is hard” then, surprisingly, the above task and a myriad

of other interesting tasks can be achieved.

Thus, the field of cryptography, as we know it today, relies on computational assumptions.

Whether an assumption is credible or not may be difficult to determine and may change over time.

Therefore, a main goal of the theoretical foundations of cryptography is to determine the minimal

assumptions necessary for a given cryptographic task.

Is it possible for mutually distrustful parties to jointly compute a function of

their inputs while revealing nothing more than the output?

Whether or not a cryptographic task is achievable depends on how we model adversaries and how we

define security. For example, depending on our adversarial model and security definition, it is either

possible to achieve the task above under appropriate hardness assumptions, or it is unconditionally
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impossible to achieve. More specifically, in a model where the protocol runs in a standalone setting,

we can achieve the above task for any functionality, based on various computational hardness

assumptions. However, if we require the protocol to be secure in a setting where concurrent

executions are allowed, then it becomes impossible to compute most functionalities securely without

trusted setup. Thus, a second main goal of the theoretical foundations of cryptography is to construct

protocols that are secure in the most realistic models and against the strongest adversaries possible.

This thesis addresses these two broad goals by focusing on the following two topics: Investigat-

ing the black-box complexity of basic cryptographic primitives and constructing protocols that are

secure in the UC-model under adaptive corruptions. Studying black-box complexity is a first step in

determining minimal assumptions necessary for cryptographic tasks; the adaptive UC-model is one

of the strongest and most realistic models that have been proposed thus far for proving security of

cryptographic protocols.

1.1 Black-Box Complexity.

The study of the black-box complexity of a cryptographic primitive P involves determining the

relationship between primitive P and some other primitive Q by showing either a black-box

reduction from P to Q, or ruling out such a reduction. Black-box reductions are reductions

in which both the underlying primitive as well as the adversary are accessed only in an input-

output (or black-box) manner. The vast majority of known cryptographic reductions are black-

box (with a few notable exceptions [Feige et al., 1999; Dolev et al., 2000; Barak, 2001;

Barak, 2002]). Moreover, black-box reductions are typically more efficient than non-black-box

reductions since, in most cases (with the exception of the work of [Barak, 2001; Barak, 2002])

non-black-box reductions involve generic zero-knowledge (ZK) proofs. Such proofs tend to be

inefficient for two reasons: First, generic ZK proofs usually require Karp reductions to an NP-

complete problem such as Hamiltonian cycle, and although guaranteed to be polynomial-time, these

reductions can be highly inefficient. Second, if the statement of the proof involves the underlying

cryptographic primitive, as is the case in non-black-box usage, the size of ZK proof will depend

on the complexity of the underlying primitive. For example, consider proving in ZK that two

ciphertextsC1, C2 both encrypt the same messagem (we note that a very similar example will come
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up in the context of constructing non-malleable encryption schemes). The number of commitments

required in the ZK proof will be at least the size of the verification circuit, which in turn is at least

as large as the encryption circuit. For security parameter k, a typical encryption circuit has size

k3 ([Ishai et al., 2006]) and so for a typical setting of k = 1024 or k = 2048 the proof will need

to contain over 1 billion commitments. Clearly, this overhead is unsustainable in many practical

applications.

One of the main goals of modern cryptography has been to identify the minimal assumptions

necessary to construct secure cryptographic primitives. Understanding the black-box complexity of

cryptographic primitives is a meaningful step towards reaching this goal. In the positive case, in

which it is shown that there exists a black-box reduction from primitive Q to primitive P , we may

conclude that the minimal assumptions necessary for realizing P are also sufficient to achieve Q.

Searching specifically for black-box reductions is important since black-box constructions lead to

simpler and more efficient protocols that avoid the inefficiency of generic zero knowledge proofs.

In the negative case, in which it is proven that there exists no black-box reduction from primitive

Q to primitive P , we provide evidence that the minimal assumptions necessary for realizing Q are

stronger than the minimal assumptions necessary for realizing P . Indeed, the first work in this area

by Impagliazzo and Rudich ([Impagliazzo and Rudich, 1989]) proved that there is no black-box

reduction of key agreement (KA) to one-way function (OWF). Because of this result, it is widely

accepted by the community that achieving KA requires stronger hardness assumptions than OWF,

even though the result itself only rules out black-box reductions.

In this work we investigate the black box complexity of two basic cryptographic primitives,

non-malleable encryption and optimally-fair coin tossing, showing a positive result for the former

and a negative one for the latter. Non-malleable encryption is a strong security notion for public-

key encryption, guaranteeing that it is impossible to ”maul” a ciphertext of a message m into a

ciphertext of a related message. This security guarantee is essential for many applications such as

auctions. We show how to transform, in a black-box manner, any public-key encryption scheme

satisfying a weak form of security, semantic security, to a scheme satisfying non-malleability. Coin

tossing is perhaps the most basic cryptographic primitive, allowing two distrustful parties to flip a

coin whose outcome is 0 or 1 with probability 1/2. A fair coin tossing protocol is one in which the

outputted bit is unbiased, even in the case where one of the parties may abort early. However, in
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the setting where parties may abort early, it’s been long known that there is always a strategy for

one of the parties to impose bias of Ω(1/r) in an r-round protocol. Thus, achieving bias of O(1/r)

in r rounds is optimal, and it was recently shown that optimally-fair coin tossing can be achieved

via a black-box reduction to oblivious transfer. We show that it cannot be achieved via a black-box

reduction to one-way function, unless the number of rounds is at least Ω(n/ logn), where n is the

input/output length of the one-way-function.

1.2 Adaptive UC-security.

In an overlapping theme, this work explores strong adversarial models and presents efficient,

provably secure protocols in these models. In the standard model, security is only guaranteed

in a stand-alone setting; however, nothing is guaranteed when multiple protocols are arbitrarily

composed. Thus, in today’s world of multiprogramming, proving security of protocols in the

stand-alone setting does not give us meaningful real-world guarantees. In contrast, the UC

(Univeral Composability) model, introduced by Canetti [Canetti, 2000], considers the execution of

an unbounded number of concurrent protocols, in an arbitrary, and adversarially controlled network

environment. Another drawback of the standard model is that the adversary must decide which

parties to corrupt before the execution of the protocol commences. A more realistic model allows

the adversary to adaptively choose which parties to corrupt based on its evolving view during the

protocol. In our work we consider the adaptive UC model, which combines these two security

requirements by allowing both arbitrary composition of protocols and adaptive corruption of parties.

We introduce an improved, more efficient construction of non-committing encryption (NCE).

NCE is a basic primitive that is necessary for proving security under adaptive corruptions.

Intuitively, NCE is a semantically secure public key encryption scheme with the added property

that a simulator playing the part of both the sender and receiver can generate encryptions that can

be opened later to either 0 or 1. NCE is necessary in the adaptive model even to realize the simplest

functionality of private bit transfer over public channels. In our work we present a construction of

NCE from a new, weaker primitive we introduce called trapdoor-simulatable public-key encryption

(PKE). Additionally, we show how to realize trapdoor-simulatable PKE from hardness of factoring

Blum integers, thus achieving the first construction of NCE from hardness of factoring. In addition
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to the private bit transfer functionality, NCE can be used to construct semi-honest oblivious transfer

(OT), as shown by [Canetti et al., 2002]. Building on this construction of semi-honest OT from

NCE, we next present a compiler for transforming an OT protocol secure against a semi-honest,

adaptive adversary into one that is secure against a malicious, adaptive adversary. Our compiler

achieves security in the UC model, assuming access to an ideal commitment functionality, and

improves over previous work achieving the same security guarantee in two ways: it uses black-

box access to the underlying protocol and achieves a constant multiplicative overhead in the round

complexity. Combining our two results with the work of [Ishai et al., 2008], we obtain the first

black-box construction of UC and adaptively secure MPC from trapdoor-simulatable PKE and the

ideal commitment functionality.
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Part I

Black-Box Complexity
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Much work in modern cryptography has been dedicated to understanding the relationships

between different primitives and notions of security. For example, [Yao, 1982; Goldwasser and

Micali, 1984; Rompel, 1990; Håstad et al., 1999; Goldreich et al., 1986; Luby and Rackoff, 1988;

Impagliazzo and Luby, 1989; Naor and Yung, 1989; Naor, 1991] have shown that private key

encryption, pseudorandom generators, pseudorandom functions and permutations, bit commitment,

and digital signatures exist if and only if one-way functions exist. On the other hand, some

cryptographic primitives such as public key encryption, oblivious transfer, and key agreement are

not known to be equivalent to one way functions. Thus, it is natural to ask whether the existence

of one-way functions implies these primitives. However, it seems unclear how to formalize such a

question; since it is widely believed that both one-way functions and public key encryption exist, this

would imply in a trivial logical sense that the existence of one-way functions implies the existence of

public key encryption. Thus, we can only hope to rule out restricted types of constructions that are

commonly used to prove implications in cryptography. Impagliazzo and Rudich [Impagliazzo and

Rudich, 1989] were the first to develop a technique to rule out the existence of an important class of

reductions between primitives known as black-box reductions. Intuitively, this is a reduction where

the primitive is treated as an oracle or a “black-box”. There are actually several flavors of black-box

reductions (fully black-box, semi black-box and weakly black-box [Reingold et al., 2004]). In our

work, we only deal with fully black-box reductions, and so we will focus on this notion here.

Informally, a fully black-box reduction from a primitive Q to a primitive P is a pair of oracle

ppt Turing machines (G,S) such that the following two properties hold:

Correctness: For every implementation f of primitive P , g = Gf implements Q.

Security: For every implementation f of primitive P , and every adversary A, if A breaks Gf (as

an implementation of Q) then SA,f breaks f . (Thus, if f is “secure”, then so is Gf .)

Subsequently to the initial groundbreaking work of [Impagliazzo and Rudich, 1989], there

has been substantial work on proving the impossibility of black-box reductions between other

fundamental primitives. Such proofs are frequently called ”black-box separations” since they show

that one primitive is more powerful than the other with respect to the class of black-box reductions.

Some examples of these works are: A separation between one-way permutations and collision-

resistant hash functions [Simon, 1998], a separation between public key encryption (PKE) and
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oblivious transfer (OT) [Gertner et al., 2000], a separation between trapdoor predicates and trapdoor

functions [Gertner et al., 2001], a partial separation between semantically-secure encryption and

CCA-secure encryption [Gertner et al., 2007], as well as many other works.

Another related area of work has been to study the best possible efficiency of black-box

reductions and to show that any black-box construction of some primitiveQ from another primitive

P must make at least q queries to primitive P . Such questions have been studied in the works of

[König et al., 1999; Gennaro et al., 2005; Barak and Mahmoody-Ghidary, 2007]. There are other

notions of efficiency that may be of interest as well such as round-efficiency and communication

complexity as studied in the works of [Haitner et al., 2007; Haitner et al., 2008].

A compelling question that arises from the above discussion is the following: are arbitrary

reductions more powerful than black-box reductions? Intuitively, it may seem that non-black-box

access to the code of an adversary does not give any practical advantage over input/output access

since we know that ”backward engineering” the code of the adversary is a hard problem. For

example, if the code of the adversary is ”obfuscated” then, by definition, having access to the

code provides no advantage over having only input/output access to the adversary. However, in

a groundbreaking result, [Barak, 2001] showed that this intuition is false: For specific primitives

P and Q, there exists a reduction from Q to P where the simulator accesses the code of the

adversaryA, while such a reduction provably does not exist in the case where the simulator accesses

the adversary A only in a black-box manner. Still, even in the context of the work of [Barak,

2001], the reduction always accesses the underlying primitive P in a black-box manner and only

requires access to the code of the adversary, A. This raises the question of whether reductions

of cryptographic task Q to primitive P that access the code of P but not the code of A are more

powerful than reductions that are black-box in both P and A. In the past several years, there has

been significant progress towards answering this question. It has been shown in multiple cases how

to achieve fully-black-box constructions where previously all known constructions required non-

black-box access to the underlying primitive (c.f. [Ishai et al., 2006; Haitner, 2008; Choi et al., 2008;

Choi et al., 2009b; Ishai et al., 2008; Lindell and Pinkas, 2007]), and where previously non-black-

box access was believed to be essential. In our work, we continue this line of research by presenting

a black-box construction of non-malleable encryption from any semantically-secure encryption.

Previously, all known constructions required non-black-box access to the underlying semantically-
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secure encryption.

We also study the minimal assumptions necessary for optimally-fair coin-tossing. In the

standard notion of security, ”fairness” is not guaranteed: Namely, if one of the parties aborts

early, perhaps after receiving output, nothing is guaranteed about the correctness of the output of

the remaining party. Recently, the problem of fairness in computation has come to the forefront

with the exciting works of [Gordon et al., 2008; Gordon and Katz, 2009; Moran et al., 2009;

Gordon and Katz, 2010] after almost no progress in this area for over 20 years. Since coin-tossing

is a foundational cryptographic primitive with widespread use in multiparty computation protocols,

better understanding of the black-box complexity of coin-tossing is necessary to determine the

possibilities and limitations of fairness in secure multiparty computation.

A fair two-party coin-tossing protocol is one in which both parties output the same bit that

is almost uniformly distributed. Unfortunately, Cleve [Cleve, 1986] showed that for every coin-

tossing protocol with r rounds, an efficient fail-stop adversary (adversary that behaves honestly but

may choose to abort the protocol at any point) can bias the output by Ω(1/r). Since this is the best

possible, a protocol that limits the bias of any adversary to O(1/r) is called optimally-fair. The

only known optimally-fair coin-tossing protocol (introduced recently by Moran et al. [Moran et

al., 2009]) relies on the existence of oblivious transfer (OT). However, it is possible to use Blum’s

protocol [Blum, 1981] to achieve a bias of O(1/
√
r) in r rounds relying only on the assumption

that one-way functions (OWF) exist [Cleve, 1986].

In this work we address the question of whether it is possible to achieve a bias of o(1/
√
r) in

r rounds relying only on the assumption that OWF exist. We show that it is impossible to achieve

coin-tossing with bias o(1/
√
r) via a black-box reduction to OWF for r that is less thanO(n/ log n),

where n is the input/output length of the OWF. However, the [Moran et al., 2009] protocol based

on OT achieves bias of O(1/r) even for r less than O(n/ log n). Thus, our work gives the first

evidence that the assumptions needed for optimally-fair coin-tossing are stronger than those needed

for unfair coin-tossing.
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Chapter 2

Black-Box Construction of a

Non-Malleable Encryption Scheme from

any Semantically-Secure One

2.1 Introduction

The most basic security guarantee we require of a public key encryption scheme is that of semantic

security [Goldwasser and Micali, 1984]: it is infeasible to learn anything about the plaintext from

the ciphertext. In many cryptographic applications such as auctions, we would like an encryption

scheme that satisfies the stronger guarantee of non-malleability [Dolev et al., 2000], namely that

given some ciphertext c, it is also infeasible to generate ciphertexts of some message that is

related to the decryption of c. Motivated by the importance of non-malleability, Pass, Shelat and

Vaikuntanathan raised the following question [Pass et al., 2006]:

It is possible to immunize any semantically secure encryption scheme against malleabil-

ity attacks?

Pass et al. gave a beautiful construction of a non-malleable encryption scheme from any

semantically secure one (building on [Dolev et al., 2000]), thereby addressing the question in

the affirmative. However, the PSV construction – as with previous constructions achieving non-



CHAPTER 2. BLACK-BOX CONSTRUCTION OF A NON-MALLEABLE ENCRYPTION
SCHEME FROM ANY SEMANTICALLY-SECURE ONE 11

malleability from general assumptions [Dolev et al., 2000; Sahai, 1999; Lindell, 2006] – suffers

from the curse of inefficiency arising from the use of general NP-reductions. In this work, we

show that we can in fact immunize any semantically secure encryption schemes against malleability

attacks without paying the price of general NP-reductions:

Main theorem (informal) There exists a (fully) black-box construction of a non-

malleable encryption scheme from any semantically secure one.

That is, we provide a wrapper program (from programming language lingo) that given any

subroutines for computing a semantically secure encryption scheme, computes a non-malleable

encryption scheme, with a multiplicative overhead in the running time that is quasi-linear in the

security parameter. Before providing further details, let us first provide some background and

context for our result.

2.1.1 Relationships amongst Cryptographic Primitives

Much of the modern work in foundations of cryptography rests on general cryptographic assump-

tions like the existence of one-way functions and trapdoor permutations. General assumptions

provide an abstraction of the functionalities and hardness we exploit in specific assumptions such

as hardness of factoring and discrete log without referring to any specific underlying algebraic

structure. Constructions based on general assumptions may use the primitive guaranteed by the

assumption in one of two ways:

Black-box usage: A construction is black-box if it refers only to the input/output behavior of

the underlying primitive; we would typically also require that in the proof of security, we

can use an adversary breaking the security of the construction as an oracle to break the

underlying primitive. (See [Reingold et al., 2004] and references within for more details.).

As emphasized earlier, our construction is black-box, using only oracle access to the key

generation, encryption and decryption functionality of the underlying encryption scheme.

Non-black-box usage: A construction is non-black-box if it uses the code computing the func-

tionality of the primitive. The PSV construction along with the work it builds on fall into

this category: they use an NP reduction applied to the circuit computing the encryption
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functionality of the underlying encryption scheme in order to provide a non-interactive zero-

knowledge proof of consistency.

Motivated by the fact that the vast majority of constructions in cryptography are black-box, a rich

and fruitful body of work initiated in [Impagliazzo and Rudich, 1989] seeks to understand the power

and limitations of black-box constructions in cryptography, resulting in a fairly complete picture of

the relations amongst most cryptographic primitives with respect to black-box constructions (we

summarize several of the known relations pertaining to encryption in Figure 2.1). More recent work

has turned to tasks for which the only constructions we have are non-black-box, yet the existence

of a black-box construction is not ruled out. Two notable examples are general secure multi-party

computation against a dishonest majority and encryption schemes secure against adaptive chosen-

ciphertext (CCA2) attacks1 (c.f. [Goldreich et al., 1988; Dolev et al., 2000]).

The general question of whether we can securely realize these tasks via black-box access to a

general primitive is not merely of theoretical interest. A practical reason is related to efficiency,

as non-black-box constructions tend to be less efficient due to the use of general NP reductions to

order to prove statements in zero knowledge; this impacts both computational complexity as well

as communication complexity (which we interpret broadly to mean message lengths for protocols

and key size and ciphertext size for encryption schemes). Moreover, if resolved in the affirmative,

we expect the solution to provide new insights and techniques for circumventing the use of NP

reductions and zero knowledge in the known constructions. Finally, given that there has been no

formal model that captures non-black-box constructions in a satisfactory manner, the pursuit of a

positive result becomes all the more interesting.

Indeed, Ishai et al. [Ishai et al., 2006] recently provided an affirmative answer for secure multi-

party computation by exhibiting black-box constructions from some low-level primitive. Their

techniques have since been used to yield secure multi-party computation via black-box access to

an oblivious transfer protocol for semi-honest parties, which is complete (and thus necessary) for

secure multi-party computation [Haitner, 2008]. This leaves the following open problem:

Is it possible to realize CCA2-secure encryption via black-box access to a low-level

1These are encryption schemes that remain semantically secure even under a CCA2 attack, wherein the adversary is
allowed to query the decryption oracle except on the given challenge. A CCA1 attack is one wherein the adversary is
allowed to query the decryption oracle before (but not after) seeing the challenge.
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primitive, e.g. enhanced trapdoor permutations or homomorphic encryption schemes?

Previous work pertaining to this problem is limited to non-black-box constructions of CCA2-secure

encryption from enhanced trapdoor permutations [Dolev et al., 2000; Sahai, 1999; Lindell, 2006];

nothing is known assuming homomorphic encryption schemes. In work concurrent with ours,

Peikert and Waters [Peikert and Waters, 2008] made substantial progress towards the open problem

– they constructed CCA2-secure encryption schemes via black-box access to a new primitive they

introduced called lossy trapdoor functions, and in addition, gave constructions of this primitive

from number-theoretic and worst-case lattice assumptions. Unfortunately, they do not provide a

black-box construction of CCA2-secure encryption from enhanced trapdoor permutations.

Our work may also be viewed as a step towards closing this remaining gap (and a small

step in the more general research agenda of understanding the power of black-box constructions).

Specifically, the security guarantee provided by non-malleability lies between semantic security

and CCA2 security, and we show how to derive non-malleability in a black-box manner from

the minimal assumption possible, i.e., semantic security. In the process, we show how to enforce

consistency of ciphertexts in a black-box manner. This issue arises in black-box constructions of

both CCA2-secure and non-malleable encryptions. However, our consistency checks only satisfy

a weaker notion of non-adaptive soundness, which is sufficient for non-malleability but not for

CCA2-security (c.f. [Pass et al., 2006]). As a special case of our result, we obtain a black-box

construction of non-malleable encryptions from any (poly-to-1) trapdoor function. Our results are

incomparable with those of Peikert and Waters since we start from weaker assumptions but derive a

weaker security guarantee.

Related positive results.

A different line of work focuses on (very) efficient constructions of CCA2-secure encryptions under

specific number-theoretic assumptions [Cramer and Shoup, 1998; Cramer and Shoup, 2004; Canetti

et al., 2004]. Apart from those based on identity-based encryption, these constructions together

with previous ones based on general assumptions can be described under the following framework

(c.f. [Blum et al., 1988; Naor and Yung, 1990; Rackoff and Simon, 1991; Elkind and Sahai, 2002]).

Start with some cryptographic hardness assumption that allows us to build a semantically secure
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IND-CPA

NM-CPAIND-CCA1

IND-CCA2

NM-q-CCA2

IND-q-CCA2

eTDP lossy TDF

(poly-to-1) TDF

Solid lines indicate black box constructions, and dotted lines indicate non-black-
box constructions. The separations are with respect to black-box reductions, or
black box shielding reductions. Our contributions are indicated with the thick
arrows.

Figure 2.1: Relations among generic encryption primitives

encryption scheme, and then prove/verify that several ciphertexts satisfy certain relations in one of

two ways:

• exploiting algebraic relations from the underlying assumption to deduce additional structure

in the encryption scheme (e.g. homomorphic, reusing randomness) [Cramer and Shoup, 1998;

Cramer and Shoup, 2004];

• apply a general NP reduction to prove in non-interactive zero knowledge (NIZK) statements

that relate to the primitive [Dolev et al., 2000; Sahai, 1999; Lindell, 2006].

None of the previous approaches seems to yield black-box constructions under general assumptions.

Indeed, our work (also [Peikert and Waters, 2008]) does not use the above framework.

2.1.2 Our Results

As mentioned earlier, we exhibit a black-box construction of a non-malleable encryption scheme

from any semantically secure one, the main novelty being that our construction is black-box. While

this is interesting in and of itself, our construction also compares favorably with previous work in

several regards:
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• Improved parameters. We improve on the computational complexity of previous construc-

tions based on general assumptions. In particular, we do not have to do an NP-reduction

in either encryption or decryption, although we do have to pay the price of the running

time of Berlekamp-Welch for decryption. The running time incurs a multiplicative overhead

that is quasi-linear in the security parameter, over the running time of the underlying CPA

secure scheme. Moreover, the sizes of public keys and ciphertext are independent of the

computational complexity of the underlying scheme.

• Conceptual simplicity/clarity. Our scheme (and the analysis) is arguably much simpler than

many of the previous constructions, and like [Pass et al., 2006], entirely self-contained

(apart from the Berlekamp-Welch algorithm). We do not need to appeal to notions of zero-

knowledge, nor do we touch upon subtle technicalities like adaptive vs non-adaptive NIZK.

Our construction may be covered in an introductory graduate course on cryptography without

requiring zero knowledge as a pre-requisite.

• Ease of implementation. Our scheme is easy to describe and can be easily implemented in a

modular fashion.

We may also derive from our construction additional positive and negative results.

Bounded CCA2 non-malleability.

Cramer et al. [Cramer et al., 2007] introduced the bounded CCA2 attack, a relaxation of the CCA2

attack wherein the adversary is only allowed make an a-priori bounded number of queries q to the

decryption oracle, where q is fixed prior to choosing the parameters of the encryption scheme. In

addition, starting from any semantically secure encryption, they obtained2:

• an encryption scheme that is semantically secure under a bounded-CCA2 attack via a black-

box construction, wherein the size of the public key and ciphertext are quadratic in q; and

• an encryption scheme that is non-malleable under a bounded-CCA2 attack via a non-black-

box construction, wherein the size of the public key and ciphertext are linear in q.

2While semantic security and non-malleability are equivalent under a CCA2 attack [Dolev et al., 2000], they are not
equivalent under a bounded-CCA2 attack, as shown in [Cramer et al., 2007].
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Combining their approach for the latter construction with our main result, we obtain an encryption

scheme that is non-malleable under a bounded-CCA2 attack via a black-box construction, wherein

the size of the public key and ciphertext are linear in q.

Separation between CCA2 security and non-malleability.

Our main construction has the additional property that the decryption algorithm does not query

the encryption functionality of the underlying scheme. Gertner, Malkin and Myers [Gertner et

al., 2007] referred to such constructions as shielding and they showed that there is no shielding

black-box construction of CCA1-secure encryption schemes from semantically secure encryption.

Combined with the fact that any shielding construction when composed with our construction is

again shielding, this immediately yields the following:

Corollary (informal) There exists no shielding black-box construction of CCA1-

secure encryption schemes from non-malleable encryption schemes.

Note that a CCA2-secure encryption scheme is trivially also CCA1-secure, so this also implies a

separation between non-malleability and CCA2-security for shielding black-box constructions.

Our techniques.

At a high level, we follow the cut-and-choose approach for consistency checks from [Pass et al.,

2006], wherein the randomness used for cut-and-choose is specified in the secret key. A crucial

component of our construction is a message encoding scheme with certain locally testable and self-

correcting properties, based on the fact that low-degree polynomials are simultaneously good error-

correcting codes and a secret-sharing scheme; this has been exploited in the early work on secure

multi-party computation with malicious adversaries [Ben-Or et al., 1988]. We think this technique

may be useful in eliminating general NP-reductions in other constructions in cryptography (outside

of public-key encryption).
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Towards CCA2 Security?

The main obstacle towards achieving full CCA2 security from either semantically secure encryp-

tions or enhanced trapdoor permutations using our approach (and also the [Pass et al., 2006]

approach) lies in guaranteeing soundness of the consistency checks against an adversary that can

adaptively determine its queries depending on the outcome of previous consistency checks. It seems

conceivable that using a non-shielding construction that uses re-encryption may help overcome this

obstacle.

2.1.3 Overview of our Construction

Recall the DDN [Dolev et al., 2000] and PSV [Pass et al., 2006] constructions: to encrypt a message,

one (a) generates k encryptions of the same message under independent keys, (b) gives a non-

interactive zero-knowledge proof that all resulting ciphertexts are encryptions of the same message,

and (c) signs the entire bundle with a one-time signature. It is in step (b) that we use a general

NP-reduction, which in return makes the construction non-black-box. In the proof of security, we

exploit that fact that for a well-formed ciphertext, we can recover the message if we know the secret

key for any of the k encryptions.

How do we guarantee that a tuple of k ciphertexts are encryptions of the same plaintext

without using a zero-knowledge proof and without revealing any information about the underlying

plaintext? Naively, one would like to use a cut-and-choose approach (as has been previously used

in [Lindell and Pinkas, 2007] to eliminate zero-knowledge proofs in the context of secure two-party

computation), namely decrypt and verify that some constant fraction, say k/2 of the ciphertexts are

indeed consistent. There are two issues with this approach:

• First, if only a constant number of ciphertexts are inconsistent, then we are unlikely to detect

the inconsistency. To circumvent this problem, we could decrypt by outputting the majority

of the remaining k/2 ciphertexts.

• The second issue is more fundamental: decrypting any of the ciphertexts will immediately

reveal the underlying message, whereas it is crucial that we can enforce consistency while

learning nothing about the underlying message.
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We circumvent both issues by using a more sophisticated encoding of the message m based on

low-degree polynomials instead of merely making k copies of the message as in the above schemes.

Specifically, we pick a random degree k polynomial p such that p(0) = m and we construct a

k × 10k matrix such that the i’th column of the matrix comprises entirely of the value p(i). To

verify consistency, we will decrypt a random subset of k columns, and check that all the entries in

each of these columns are the same.

• The issue that only a tiny number of ciphertexts are inconsistent is handled using the error-

correcting properties of low-degree polynomials; specifically, each row of a valid encoding is

a codeword for the Reed-Solomon code (and we output ⊥ if it’s far from any codeword).

• Low-degree polynomials are also good secret-sharing schemes, and learning a random subset

of k columns in a valid encoding reveals nothing about the underlying message m. Encoding

m using a secret-sharing scheme appears in the earlier work of Cramer et al. [Cramer et al.,

2007], but they do not consider redundancy or error-correction.

As before, we encrypt all the entries of the matrix using independent keys and then sign the entire

bundle with a one-time signature. It is important that the encoding also provides a robustness

guarantee similar to that of repeating the message k times: we are able to recover the message

for a valid encryption if we can decrypt any row in the matrix. Indeed, this is essentially our entire

scheme with two technical caveats:

• As with previous schemes, we will associate one pair of public/secret key pairs with each

entry of the matrix, and we will select the public key for encryption based on the verification

key of the one-time signature scheme.

• To enforce consistency, we will need a codeword check in addition to the column check

outlined above. The reason for this is fairly subtle and we will highlight the issue in the

formal exposition of our construction.

Decreasing ciphertext size. To encrypt an n-bit message with security parameter k, our

construction yields O(k2) encryptions of n-bit messages in the underlying scheme. It is easy to
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see that this may be reduced to O(k log2 k) encryptions by reducing the number of columns to

O(log2 k).

2.1.4 Follow-up work

The encoding scheme introduced here has been used in a number of follow-up works: a black-box

construction of set intersection protocols from homomorphic encryption [Dachman-Soled et al.,

2009], and a black-box construction of a CCA2-secure encryption scheme for strings starting from

one for bits [Myers and Shelat, 2009].

2.2 Preliminaries & Definitions

Notation.

We adopt the notation used in [Pass et al., 2006]. We use [n] to denote {1, 2, . . . , n}. If A is

a probabilistic polynomial time (hereafter, ppt) algorithm that runs on input x, A(x) denotes the

random variable according to the distribution of the output of A on input x. We denote by A(x; r)

the output of A on input x and random coins r. Computational indistinguishability between two

distributions A and B is denoted by A
c≈ B and statistical indistinguishability by A

s≈ B.

2.2.1 Semantically Secure Encryption

Definition 2.2.1 (Encryption Scheme) A triple (Gen,Enc,Dec) is an encryption scheme, if Gen

and Enc are ppt algorithms and Dec is a deterministic polynomial-time algorithm which satisfies

the following property:

Correctness. There exists a negligible function µ(·) such that for all sufficiently large

k, we have that with probability 1 − µ(k) over (PK, SK) ← Gen(1k): for all m,

Pr[DecSK(EncPK(m)) = m] = 1.

Definition 2.2.2 (Semantic Security) Let Π = (Gen,Enc,Dec) be an encryption scheme and let

the random variable INDb(Π,A, k), where b ∈ {0, 1}, A = (A1,A2) are ppt algorithms and

k ∈ N, denote the result of the following probabilistic experiment:
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INDb(Π,A, k) :

(PK, SK)← Gen(1k)

(m0,m1, STATEA)← A1(PK) s.t. |m0| = |m1|

y ← EncPK(mb)

D ← A2(y, STATEA)

Output D

(Gen,Enc,Dec) is indistinguishable under a chosen-plaintext (CPA) attack, or semantically secure,

if for any ppt algorithms A = (A1,A2) the following two ensembles are computationally

indistinguishable: {
IND0(Π,A, k)

}
k∈N

c≈
{
IND1(Π,A, k)

}
k∈N

It follows from a straight-forward hybrid argument that semantic security implies indistinguishabil-

ity of multiple encryptions under independently chosen keys:

Proposition 2.2.3 Let Π = (Gen,Enc,Dec) be a semantically secure encryption scheme and let

the random variable mINDb(Π,A, k, `), where b ∈ {0, 1}, A = (A1,A2) are ppt algorithms and

k ∈ N, denote the result of the following probabilistic experiment:

mINDb(Π,A, k, `) :

For i = 1, . . . , `: (PKi, SKi)← Gen(1k)

(〈m1
0, . . . ,m

`
0〉, 〈m1

1, . . . ,m
`
1〉, STATEA)← A1(〈PK1, . . . , PK`〉)

s.t. |m1
0| = |m1

1| = · · · = |m`
0| = |m`

1|

For i = 1, . . . , `: yi ← EncPKi(m
i
b)

D ← A2(y1, . . . , y`, STATEA)

Output D

then for any ppt algorithmsA = (A1,A2) and for any polynomial p(k) the following two ensembles

are computationally indistinguishable:

{
mIND0(Π,A, k, p(k))

}
k∈N

c≈
{
mIND1(Π,A, k, p(k))

}
k∈N
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2.2.2 Non-malleable Encryption

Definition 2.2.4 (Non-malleable Encryption [Pass et al., 2006]) Let Π = (Gen,Enc,Dec) be an

encryption scheme and let the random variable NMEb(Π,A, k, `) where b ∈ {0, 1}, A = (A1,A2)

are ppt algorithms and k, ` ∈ N denote the result of the following probabilistic experiment:

NMEb(Π,A, k, `) :

(PK, SK)← Gen(1k)

(m0,m1, STATEA)← A1(PK) s.t. |m0| = |m1|

y ← EncPK(mb)

(ψ1, . . . , ψ`)← A2(y, STATEA)

Output (d1, . . . , d`) where di =


⊥ if ψi = y

DecSK(ψi) otherwise

(Gen,Enc,Dec) is non-malleable under a chosen plaintext (CPA) attack if for any ppt algorithms

A = (A1,A2) and for any polynomial p(k), the following two ensembles are computationally

indistinguishable:

{
NME0(Π,A, k, p(k))

}
k∈N

c
≈

{
NME1(Π,A, k, p(k))

}
k∈N

It was shown in [Pass et al., 2006] that an encryption that is non-malleable (under Defini-

tion 2.2.4) remains non-malleable even if the adversaryA2 receives several encryptions under many

different public keys (the formal experiment is the analogue of mIND for non-malleability).

2.2.3 (Strong) One-Time Signature Schemes

Informally, a (strong) one-time signature scheme (GenSig,Sign,VerSig) is an existentially unforge-

able signature scheme, with the restriction that the signer signs at most one message with any key.

This means that an efficient adversary, upon seeing a signature on a messagem of his choice, cannot

generate a valid signature on a different message, or a different valid signature on the same message

m. Such schemes can be constructed in a black-box way from one-way functions [Rompel, 1990;

Lamport, 1979], and thus from any semantically secure encryption scheme (Gen,Enc,Dec) using

black-box access only to Gen.
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2.3 Construction

Given an encryption scheme E = (Gen,Enc,Dec), we construct a new encryption scheme Π =

(NMGenGen,NMEncGen,Enc,NMDecGen,Dec), summarized in Figure 4.2, and described as follows.

Polynomial encoding. We identify {0, 1}n with the field GF(2n). To encode a message m ∈

{0, 1}n, we pick a random degree k polynomial p over GF(2n) such that p(0) = m and construct

a k × 10k matrix such that the i’th column of the matrix comprise entirely of the value si = p(i)

(where 0, 1, . . . , 10k are the lexicographically first 10k + 1 elements in GF(2n) according to some

canonical encoding). Note that (s1, . . . , s10k) is both a (k+1)-out-of-10k secret-sharing ofm using

Shamir’s secret-sharing scheme and a codeword of the Reed-Solomon codeW , where

W = { (p(1), . . . , p(10k) | p is a degree k polynomial }.

Note thatW is a code over the alphabet {0, 1}n with minimum relative distance 0.9, which means

we may efficiently correct up to 0.45 fraction errors using the Berlekamp-Welch algorithm.

Encryption. The public key for Π comprises 20k2 public keys from E indexed by a triplet

(i, j, b) ∈ [k]× [10k]× {0, 1}; there are two keys corresponding to each entry of a k× 10k matrix.

To encrypt a message m, we (a) compute (s1, . . . , s10k) as in the above-mentioned polynomial

encoding, (b) generate (SKSIG, VKSIG) for a one-time signature, (c) compute a k × 10k matrix

~c = (ci,j) of ciphertexts where ci,j = EncPK
vi
i,j
(sj), and (d) sign ~c using SKSIG.



EncPK
v1
1,1
(s1) EncPK

v1
1,2
(s2) · · · EncPK

v1
1,10k

(s10k)

EncPK
v2
2,1
(s1) EncPK

v2
2,2
(s2) · · · EncPK

v2
2,10k

(s10k)

...
...

. . .
...

EncPK
vk
k,1

(s1) EncPK
vk
k,2

(s2) · · · EncPK
vk
k,10k

(s10k)
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Consistency Checks. A valid ciphertext in Π satisfies two properties: (1) the first row is an

encryption of a codeword in W and (2) every column comprises k encryptions of the same

plaintext. We want to design consistency checks that reject ciphertexts that are “far” from being

valid ciphertexts under Π. For simplicity, we will describe the consistency checks as applied to the

underlying matrix of plaintexts. The checks depend on a random subset S of k columns chosen

during key generation.

COLUMN CHECK (column-check): We check that each of the k columns in S

comprises entirely of the same value.

CODEWORD CHECK (codeword-check): We find a codeword w that agrees with

the first row of the matrix in at least 9k positions; the check fails if no such w

exists. Then we check that the first row of the matrix agrees with w at the k

positions indexed by S.

The codeword check ensures that with high probability, the first row of the matrix agrees with w in

at least 10k− o(k) positions. We explain its significance after describing the alternative decryption

algorithm in the analysis.

Decryption. To decrypt, we (a) verify the signature and run both consistency checks, and (b) if all

three checks accept, decode the codeword w and output the result, otherwise output ⊥. Note that to

decrypt we only need the 20k secret keys corresponding to the first row of the matrix and 2k secret

keys corresponding to each of the k columns in S.

Note that the decryption algorithm may be stream-lined, for instance, by running the codeword

check only if the column check succeeds. We choose to present the algorithm as is in order to keep

the analysis simple; in particular, we will run both consistency checks independent of the outcome

of the other.

2.4 Analysis

Having presented our construction, we now formally state and prove our main result:
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Theorem 2.4.1 (Main Theorem, restated).

Assume there exists an encryption scheme E = (Gen,Enc,Dec) that is semantically secure under a

CPA attack. Then there exists an encryption scheme Π = (NMGenGen,NMEncGen,Enc,NMDecGen,Dec)

that is non-malleable under a CPA attack.

We establish the theorem (as in [Dolev et al., 2000; Pass et al., 2006], etc) via a series of hybrid

arguments and deduce indistinguishability of the intermediate hybrid experiments from the semantic

security of the underlying scheme E under some set of public keys Γ. To do so, we will need to

implement an alternative decryption algorithm NMDec∗ that is used in the intermediate experiments

to simulate the actual decryption algorithm NMDec in the non-malleability experiment. We need

NMDec∗ to achieve two conflicting requirements:

• NMDec∗ and NMDec must agree on essentially all inputs, including possibly malformed

ciphertexts;

• We can implement NMDec∗ without having to know the secret keys corresponding to the

public keys in Γ.

Of course, designing NMDec∗ is difficult precisely because NMDec uses the secret keys corre-

sponding to the public keys in Γ.

Here is a high-level (but extremely inaccurate) description of how NMDec∗ works: Γ is the set

of public keys corresponding to the first row of the k × 10k matrix. To implement NMDec∗, we

will decrypt the i’th row of the matrix of ciphertexts, for some i > 1, which the column check (if

successful) guarantees to agree with the first row in most positions; error correction takes care of

the tiny fraction of disagreements.

2.4.1 Alternative Decryption Algorithm NMDec∗

Let VKSIG∗ = (v∗1, . . . , v
∗
k) denote the verification key in the challenge ciphertext given to the

adversary in the non-malleability experiment, and let VKSIG = (v1, . . . , vk) denote the verification

key in (one of) the ciphertext(s) generated by the adversary. First, we modify the signature check

to also output ⊥ if there is a forgery, namely VKSIG = VKSIG∗. Next, we modify the consistency

checks (again, as applied to the underlying matrix of plaintexts) as follows:
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COLUMN CHECK (column-check∗): This is exactly as before, we check that the

each of the k columns in S comprises entirely of the same value.

CODEWORD CHECK (codeword-check∗): Let i be the smallest value such that

vi 6= v∗i (which exists since VKSIG 6= VKSIG∗). We find a codeword w that

agrees with the i’th row of the matrix in at least 8k positions (note agreement

threshold smaller than before); the check fails if no such w exists. Then we check

that the first row of the matrix agrees with w at the k positions indexed by S.

To decrypt, run the modified signature and consistency checks, and if all three checks accept, decode

the codeword w and output the result, otherwise output ⊥. To implement the modified consistency

checks and decryption algorithm, we only need the 10k secret keys indexed by VKSIG∗ for each row

of the matrix, and as before, the 2k secret keys corresponding to each of the k columns in S.

Remark on the Codeword Check. At first, the codeword check may seem superfluous. Suppose

we omit the codeword check, and as before, define w to be a codeword that agrees with the first

row in 9k positions and with the i’th row in 8k positions in the respective decryption algorithms;

the gap is necessary to take into account inconsistencies not detected by the column check. Now,

consider a malformed ciphertext ψ for Π where in the underlying matrix of plaintexts, each row is

the same corrupted codeword that agrees with a valid codeword in exactly 8.5k positions. Without

the codeword checks, ψ will be an invalid ciphertext according to NMDec and a valid ciphertext

according to NMDec∗ and can be used to distinguish the intermediate hybrid distributions in the

analysis; with the codeword checks, ψ is an invalid ciphertext according to both. It is also easy to

construct a problematic malformed ciphertext for the case where both agreement thresholds are set

to the same value (say 9k).

2.4.2 A Promise Problem

Recall the guarantees we would like from NMDec and NMDec∗:

• On input a ciphertext that is an encryption of a message m under Π, both NMDec and

NMDec∗ will output m with probability 1.
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• On input a ciphertext that is “close” to an encryption of a message m under Π, both NMDec

and NMDec∗ will output m with the same probability (the exact probability is immaterial)

and ⊥ otherwise.

• On input a ciphertext that is “far” from any encryption, then both NMDec and NMDec∗ output

⊥ with high probability.

To quantify and establish these guarantees, we consider the following promise problem (ΠY ,ΠN )

that again refers to the underlying matrix of plaintexts. An instance is a matrix of k by 10k values

in {0, 1}n ∪ ⊥.

ΠY (YES instances) — for some w ∈ W , every row equals w.

ΠN (NO instances) — either there exist two rows that are 0.1-far (i.e. disagree in at least k

positions), or the first row is 0.1-far from every codeword in W (i.e. disagree with every

codeword in at least k positions).

Valid encryptions correspond to the YES instances, while NO instances will correspond to “far”

ciphertexts. To analyze the success probability of an adversary, we examine each ciphertext ψ it

outputs with some underlying matrix M of plaintexts (which may be a YES or a NO instance or

neither) and show that both NMDec and NMDec∗ agree on ψ with high probability. To facilitate the

analysis, we consider two cases:

• If M ∈ ΠN , then it fails the column/codeword checks in both decryption algorithms with

high probability, in which case both decryption algorithms output ⊥. Specifically, if there

are two rows that are 0.1-far, then column check rejects M with probability 1 − 0.9k. On

the other hand, if the first row is 0.1-far from every codeword, then the codeword check in

NMDec rejects M with probability 1 and that in NMDec∗ rejects M with probability at least

1 − 0.9k; that is, with probability 1 − 0.9k, both codeword checks in NMDec and NMDec∗

rejects M.

• If M /∈ ΠN , then both decryption algorithms always output the same answer for all choices

of the set S, provided there is no forgery. Fix M /∈ ΠN and a set S. The first row is 0.9-close
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to codeword w ∈ W and we know in addition that every other row is 0.9-close to the first

row and thus 0.8-close to w. Therefore, we will recover the same codeword w and message

m whether we decode the first row within distance 0.1, or any other row within distance 0.2.

This means that the codeword checks in both decryption algorithms compare the first row

with the same codeword w. As such, both decryption algorithms output ⊥ with exactly the

same probability, and whenever they do not output ⊥, they output the same message m.

2.4.3 Proof of Main Theorem

In the hybrid argument, we consider the following variants of NMEb as applied to Π, where VKSIG∗

denotes the verification key in the ciphertext y = NMEncPK(mb):

Experiment NME
(1)
b

— NME
(1)
b proceeds exactly like NMEb, except we replace sig-check in NMDec with

sig-check∗:

(sig-check∗) Verify the signature with VerSigVKSIG[c, σ]. Output ⊥ if the signature

fails to verify or if VKSIG = VKSIG∗.

Experiment NME
(2)
b

— NME
(2)
b proceeds exactly like NMEb except we replace NMDec with NMDec∗:

NMDec∗SK([c, VKSIG, σ]):

1. (sig-check∗) Verify the signature with VerSigVKSIG[c, σ]. Output ⊥ if the

signature fails to verify or if VKSIG = VKSIG∗.

2. Let c = (ci,j) and VKSIG = (v1, . . . , vk). Let i be the smallest value such

that vi 6= v∗i . Compute sj = DecSK
vi
i,j
(ci,j), j = 1, . . . , 10k and w =

(w1, . . . , w10k) ∈ W that agrees with (s1, . . . , s10k) in at least 8k positions. If no

such codeword exists, output ⊥.
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3. (column-check∗) For all j ∈ S, check that DecSK
v1
1,j
(c1,j) = DecSK

v2
2,j
(c2,j) =

· · · = DecSK
vk
k,j
(ck,j).

4. (codeword-check∗) For all j ∈ S, check that DecSK
v1
1,j
(c1,j) = wj .

If all three checks accept, output the messagem corresponding to the codewordw; else,

output ⊥.

Claim 2.4.2 For b ∈ {0, 1}, we have
{
NMEb(Π,A, k, p(k))

}
c≈
{
NME

(1)
b (Π,A, k, p(k))

}
Proof: This follows readily from the security of the signature scheme.

Claim 2.4.3 For b ∈ {0, 1}, we have
{
NME

(1)
b (Π,A, k, p(k))

}
s
≈

{
NME

(2)
b (Π,A, k, p(k))

}
Proof: We will show that both distributions are statistically close for all possible coin tosses in

both experiments (specifically, those of NMGen,A and NMEnc) except for the choice of S in

NMGen. Once we fix all the coin tosses apart from the choice of S, the output (ψ1, . . . , ψp(k))

of A2 are completely determined and identical in both experiments. We claim that with probability

1−2p(k) ·0.9k = 1−neg(k) over the choice of S, the decryptions of (ψ1, . . . , ψp(k)) agree in both

experiments. This follows from the analysis of the promise problem in Section 2.4.2.

Claim 2.4.4 For every ppt machine A, there exists a ppt machine B such that for b ∈ {0, 1},

{
NME

(2)
b (Π,A, k, p(k))

}
≡

{
mINDb(E ,B, k, 9k2)

}

Proof: The machine B is constructed as follows: B participates in the experiment mINDb (the

“outside”) while internally simulating A = (A1,A2) in the experiment NME
(2)
b .

• (pre-processing) Pick a random subset S = {u1, . . . , uj} of [10k] and run GenSig(1k) to

generate (SKSIG∗, VKSIG∗) and set (v∗1, . . . , v
∗
k) = VKSIG∗. Let φ be a bijection identifying

{(i, j) | i ∈ [k], j ∈ [10k] \ S} with [9k2].
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• (key generation) B receives 〈PK1, . . . , PK9k2〉 from the outside and simulates NMGen as

follows: for all i ∈ [k], j ∈ [10k], β ∈ {0, 1},

(PK
β
i,j , SK

β
i,j) =


(PKφ(i,j),⊥) if β = v∗i and j /∈ S

Gen(1k) otherwise

• (message selection) Let (m0,m1) be the pair of messages A1 returns. B then chooses k

random values (γu1 , . . . , γuk) ∈ {0, 1}n and computes two degree k polynomials p0, p1

where pβ interpolates the k+1 points (0,mβ), (u1, γu1), . . . , (uk, γuk) for β ∈ {0, 1}. B sets

m
φ(i,j)
β = pβ(j), for i ∈ [k], j ∈ [10k] \ S and forwards (〈m1

0, . . . ,m
9k2
0 〉, 〈m1

1, . . . ,m
9k2
1 〉)

to the outside.

• (ciphertext generation) B receives 〈y1, . . . , y9k2〉 from the outside (according to the distribu-

tion EncPK1(m
1
b), . . . ,EncPK9k2

(m9k2

b )) and generates a ciphertext [c, VKSIG∗, σ] as follows:

ci,j =


yφ(i,j) if j /∈ S

Enc
PK

v∗
i

i,j

(γj) otherwise

B then computes the signature σ ← SignSKSIG∗(c) and forwards [c, VKSIG∗, σ] to A2. It is

straight-forward to verify that [c, VKSIG∗, σ] is indeed a random encryption of mb under Π.

• (decryption) Upon receiving a sequence of ciphertexts (ψ1, . . . , ψp(k)) from A2, B decrypts

these ciphertexts using NMDec∗ as in NME
(2)
b . Note that to simulate NMDec∗, it suffices for

B to possess the secret keys {SK
β
i,j | β = 1− v∗i or j ∈ S}, which B generated by itself.

Combining the three claims, we conclude that for every ppt adversaryA, there is a ppt adversary

B such that for b ∈ {0, 1},

{
NMEb(Π,A, k, p(k))

}
c
≈

{
NME

(1)
b (Π,A, k, p(k))

}
s≈
{
NME

(2)
b (Π,A, k, p(k))

}
≡

{
mINDb(E ,B, k, 9k2)

}
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By Prop 2.2.3, mIND0(E ,B, k, 9k2)
c
≈ mIND1(E ,B, k, 9k2), which concludes the proof of

Theorem 2.4.1.

2.4.4 Achieving Bounded-CCA2 Non-Malleability

We sketch how our scheme may be modified to achieve non-malleability under a bounded-CCA2

attack. Here, we allow the adversary to query Dec at most q times in the non-malleability experiment

(but it must not query Dec on y). The modification is the straight-forward analogue of the [Cramer

et al., 2007] modification of the [Pass et al., 2006] scheme: we increase the number of columns in

the matrix from 10k to 80(k + q), and the degree of the polynomial p and the size of S from k to

8(k + q), and propagate the changes accordingly. The analysis is basically as before, except for

the following claim (where NME− q− CCA
(1)
b ,NME− q− CCA

(2)
b are the respective analogues

of NME
(1)
b ,NME

(1)
b ):

Claim 2.4.5 For b ∈ {0, 1}, we have

{
NME− q− CCA

(1)
b (Π,A, k, p(k))

}
s≈
{
NME− q− CCA

(2)
b (Π,A, k, p(k))

}

Proof:[sketch] As before, we will show that both distributions are statistically close for all possible

coin tosses in both experiments (specifically, those of NMGen,A and NMEnc) except for the choice

of S in NMGen. However, we cannot immediately deduce that the output of A2 are completely

determined and identical in both experiments, since they depend on the adaptively chosen queries to

NMDec, and the answers depend on S. Instead, we will consider all 2q possible computation paths

of A which are determined based on the q query/answer pairs from NMDec. For each query, we

consider the underlying matrix of plaintexts M:

• If M ∈ ΠN , then we assume NMDec returns ⊥.

• If M /∈ ΠN , then we consider two branches depending on the two possible outcomes of the

consistency checks.

We claim that with probability 1 − 2q · p(k) · 0.98(k+q) > 1 − neg(k) over the choice of S, the

decryptions of (ψ1, . . . , ψp(k)) agree in both experiments in all 2q computation paths.
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Remark on achieving (full) CCA2 security. It should be clear from the preceding analysis that

the barrier to obtaining full CCA2 security lies in handling queries outside ΠN . Specifically, with

even just a (full) CCA1 attack, an adversary could query NMDec on a series of adaptively chosen

ciphertexts corresponding to matrices outside ΠN to learn the set S upon which it could readily

break the security of our construction.
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NMGen(1k):

1. For i ∈ [k], j ∈ [10k], b ∈ {0, 1}, run Gen(1k) to generate key-pairs (PKbi,j , SKbi,j).

2. Pick a random subset S ⊂ [10k] of size k.

Set PK =
{
(PK0

i,j , PK1
i,j) | i ∈ [k], j ∈ [10k]

}
and SK =

{
S, (SK0

i,j , SK1
i,j) | i ∈ [k], j ∈

[10k]
}

.

NMEncPK(m):

1. Pick random α1, . . . , αk ∈ GF(2n) and set sj = p(j), j ∈ [10k] where p(x) =
m0 + α1x+ . . .+ αkx

k.

2. Run GenSig(1k) to generate (SKSIG, VKSIG). Let (v1, . . . , vk) be the binary
representation of VKSIG.

3. Compute the ciphertext ci,j ← EncPK
vi
i,j
(sj), for i ∈ [k], j ∈ [10k].

4. Compute the signature σ ← SignSKSIG(~c) where ~c = (ci,j).

Output the tuple [~c, VKSIG, σ].

NMDecSK([~c, VKSIG, σ]):

1. (sig-check) Verify the signature with VerSigVKSIG[~c, σ].

2. Let ~c = (ci,j) and VKSIG = (v1, . . . , vk). Compute sj = DecSK
v1
1,j
(c1,j),

j = 1, . . . , 10k and the codeword w = (w1, . . . , w10k) ∈ W that agrees with
(s1, . . . , s10k) in at least 9k positions. If no such codeword exists, output ⊥.

3. (column-check) For all j ∈ S, check that DecSK
v1
1,j
(c1,j) = DecSK

v2
2,j
(c2,j) = · · · =

DecSK
vk
k,j
(ck,j).

4. (codeword-check) For all j ∈ S, check that sj = wj .

If all three checks accept, output the message m corresponding to the codeword w; else,
output ⊥.

Figure 2.2: THE NON-MALLEABLE ENCRYPTION SCHEME Π
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Chapter 3

On the Black-Box Complexity of

Optimally-Fair Coin Tossing

3.1 Introduction

We study the fundamental problem of (two-party) coin tossing, where two mutually distrustful

parties wish to generate a common random bit. Ideally, this bit should be almost completely

unbiased (namely be equal to 1 with probability that is at most negligibly far from 1/2).

Furthermore, by the definition of a secure coin tossing protocol, if the two parties follow the protocol

then they must both output the same random bit. Unfortunately, however, as shown in a classic result

by Cleve [Cleve, 1986], if one of the parties may deviate from the protocol (even if the deviation is

only “fail-stop” meaning that the adversary merely aborts early), then secure coin tossing cannot be

achieved. In fact, Cleve proved that for any coin tossing protocol running for r rounds there exists

an efficient fail-stop adversary that can bias the resulting bit by at least Ω(1/r).

On the positive side, an early result by Blum [Blum, 1981] uses one-way functions to construct

a coin tossing protocol in a weaker model, where an unbiased output is achieved if both parties

complete the protocol, but if a malicious party aborts early, the honest party does not output any bit.

This protocol was used by Cleve [Cleve, 1986] to construct a coin tossing protocol that runs for r

rounds and for which no efficient adversary can bias the output bit by more thanO(1/
√
r) assuming
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that one-way functions exist.1

This gap between the lower and upper bounds in [Cleve, 1986] remained open for more than two

decades. Recently, it was closed by Moran et al. [Moran et al., 2009], who constructed a protocol

for coin tossing that matches the lower-bound of [Cleve, 1986]. Specifically, they constructed an

O(r)-round protocol with the property that no adversary can bias the output by more than O(1/r).

Thus, they demonstrated that the Ω(1/r) lower-bound is tight. We call such a protocol optimally-

fair because no protocol can achieve lower bias.

Interestingly, the protocol of [Moran et al., 2009] uses general secure computation and thus

requires the assumption that oblivious transfer exists (or any assumption implying it, like enhanced

trapdoor permutations). We note that by combining the works of [Kilian, 1988; Haitner et al., 2011;

Pass and Wee, 2009], it is possible to construct constant-round protocols for secure computation of

any functionality in a black-box manner from semi-honest oblivious transfer. Thus, the result of

[Moran et al., 2009] implies a black-box construction of optimally-fair coin tossing from oblivious

transfer. In contrast, the coin tossing protocol of Blum [Blum, 1981] and the protocol of [Cleve,

1986] achieving bias of O(1/
√
r) can be constructed in a black-box manner from any one-way

function. This disparity was observed by [Moran et al., 2009] who state: “A challenging problem is

to either achieve the optimal bias based on seemingly weaker assumptions (e.g., one-way functions),

or to demonstrate that oblivious transfer is in fact essential.”

In this paper we take a step toward answering this question, and show that one-way functions are

not sufficient for achieving optimally-fair coin tossing via black-box reductions when the number

of rounds r is o(n/ log n) for security parameter n (i.e., the input/output length of the one-way

function). We note that the protocols mentioned above of [Cleve, 1986; Moran et al., 2009] are

indeed black-box

Theorem 3.1.1 (Main Theorem, Informal) Let Π be a black-box construction for two-party

optimally-fair coin tossing based on one-way functions with input and output length n. Then the

number of rounds r of interaction in Π is at least r = Ω(n/ log n).

Thus, we rule out black-box constructions of optimally-fair coin tossing secure against semi-

1Essentially, this protocol works by running Blum’s protocol r times sequentially and outputting the bit that appeared
in most executions. (If one of the parties halts prematurely, then the other party takes locally chosen uniformly distributed
bits as the output bits for the remaining Blum executions.)



CHAPTER 3. ON THE BLACK-BOX COMPLEXITY OF OPTIMALLY-FAIR COIN TOSSING 35

honest, fail-stop adversaries (with o(n/ log n) rounds) from one-way functions. In contrast, the

positive result of [Moran et al., 2009] is a black-box construction of optimally-fair coin tossing

secure against malicious adversaries from oblivious transfer.

In fact, we prove something even stronger:

• Stronger primitives. The same result holds even if the primitive used in the construction

is an exponentially-hard one-way function or an exponentially hard collision resistant hash

function h : {0, 1}n 7→ {0, 1}θ(n) (or in fact any primitive which can be derived in a black-

box manner from a random oracle). The result holds also for more structured primitives such

as one-way permutation. The latter extension is based on the simple observation that a random

function and a random permutation can not be distinguished with “few” queries asked by the

construction.

• Optimality of the bias. The same result holds even when Π achieves any o(1/
√
r) bias (not

only for optimally-fair protocols with a bias of O(1/r)).

Our main technical lemma in order to prove Theorem 3.1.1 is to show how to remove random

oracles from certain secure protocols in the random oracle models which we believe to be of

independent interest.

Lemma 3.1.2 (Simulation Lemma, Informal) Let Π be a two-party protocol in the random oracle

model in which the parties query a (random) oracle of input/output length n, ask a total of m =

poly(n) queries and communicate for o(n/ log n) rounds. Then there are two protocols: ΠE (the

extended protocol) and ΠT (the threshold-simulation protocol) such that the following holds. (a) In

ΠE the parties act as Π but the ask up to 2o(n) extra queries from the oracle. (b) ΠT is performed

in the plain model without the random oracle. (c) The joint views of the parties in ΠE and ΠT are

λ-close for an arbitrary parameter λ = 1/poly(n).

The high level structure of the proof of Theorem 3.1.1 is to use the simulation lemma and the

result of [Cleve and Impagliazzo, 1993] which breaks any coin-tossing protocol in the plain model

with “few” rounds. See Section 3.1.1 for more details.

We also observe that our simulation lemma can be used to derive impossibility results in the

context of secure two-party computation of non-trivial functions. Kushilevitz [Kushilevitz, 1992]
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classified the finite functions that have perfectly secure two-party protocols against semi-honest

adversaries and called them “decomposable functions”. Maji, Prabhakaran and Rosulek [Maji et al.,

2009] extended this result to the regime of statistical security and showed that only decomposable

functions can have (randomized) two-party protocols which are statistically secure against semi-

honest parties. The latter result together with our simulation lemma imply that if a function is not

decomposable, it can not have a black-box secure protocol based on one-way function (or based

on the other primitives mentioned above) with o(n/ log n) rounds of communication. The steps of

the proof of this result are very similar to the case of coin-tossing described in Theorem 3.1.1. See

Section 3.1.1 for more details.

Discussion and Implications. Our lower-bound proves that either there is no black-box

construction of optimally-fair coin tossing from any of the primitives mentioned in Theorem 3.4.1,

or if there is any such construction it will suffer from an almost linear Ω̃(n) lower-bound on

its round-complexity (which arguably is the main efficiency measure) depending on the security

parameter of the primitive used. We leave open the question of whether there exists an Ω̃(n)-

round optimally fair coin-tossing protocol from one-way function (or any of the other primitives

mentioned in Theorem 3.4.1). However, such a construction, where the number of rounds, and thus

the bias, must depend on the security parameter, seems counter-intuitive and is unlike the known

coin-tossing protocols of [Cleve, 1986; Moran et al., 2009] (yet see the comparison below with

statistically hiding commitments which do have constructions with the number of rounds depending

on the security parameter).

In particular, our negative result implies that the use of oblivious transfer (as an assumption

stronger than one-way function) in the construction of [Moran et al., 2009], achieving O(1/r) bias

for any r, is inherent. Moreover, the construction of [Cleve, 1986], using commitments (that can be

constructed in a black-box way from one-way functions) and achieving O(1/
√
r) bias for any r, is

actually optimal (as Theorem 3.4.1 holds for any o(1/
√
r) bias).

It is also interesting to contrast our lower bound with the original impossibility result of Cleve

[Cleve, 1986]. One way to view the result of [Cleve, 1986] is as a proof that in order to achieve

O(1/r) bias any protocol must have at least Ω(r) rounds of interaction. Our lower bound then says

that it is only possible to achieve O(1/r) bias with r rounds when relying on one-way functions
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(or any of the primitives mentioned in Theorem 3.4.1) for r = Ω(n/ log n) which is very large.

In particular, it is not possible to construct a protocol (using a black-box reduction) whose round

efficiency depends only on the desired bias and is independent of the security parameter n used to

determine the input length to the one-way function. This has the ramification that increasing the

security parameter in order to obtain a stronger guarantee of invertibility of the one-way function

(to get a more secure protocol) has an effect also on the round complexity of the protocol.

Our work also leaves open the question of whether there exists an optimally fair coin-tossing

protocol based on semantically-secure public-key encryption (PKE) for r = o(n/ log n) number of

rounds. This is an interesting question since there is no black-box reduction from oblivious transfer

to public key encryption [Gertner et al., 2000] or from public key encryption to one-way function

[Impagliazzo and Rudich, 1989]. This tells us that, with respect to black-box reductions, public

key encryption is a strictly stronger primitive than one-way function but a strictly weaker primitive

than oblivious transfer. Thus, we may ask whether the [Moran et al., 2009] positive result relies on

the full power of multi-party computation (which is implied by oblivious transfer but not by public

key encryption) or whether it merely exploits the ability to do key agreement (which is implied by

public key encryption but not by one-way function).

Black-Box Separations. One of the main goals of modern cryptography has been to identify the

minimal assumptions necessary to construct secure cryptographic primitives. For example, [Yao,

1982; Goldwasser and Micali, 1984; Rompel, 1990; Håstad et al., 1999; Goldreich et al., 1986;

Luby and Rackoff, 1988; Impagliazzo and Luby, 1989; Naor and Yung, 1989; Naor, 1991]

have shown that private key encryption, pseudorandom generators, pseudorandom functions and

permutations, bit commitment, and digital signatures exist if and only if one-way functions exist.

On the other hand, some cryptographic primitives such as public key encryption, oblivious transfer,

and key agreement are not known to be equivalent to one way functions. Thus, it is natural to ask

whether the existence of one-way functions implies these primitives. However, it seems unclear

how to formalize such a question; since it is widely believed that both one-way functions and

public key encryption exist, this would imply in a trivial logical sense that the existence of one-

way functions implies the existence of public key encryption. Thus, we can only hope to rule out

restricted types of constructions that are commonly used to prove implications in cryptography.
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Impagliazzo and Rudich [Impagliazzo and Rudich, 1989] were the first to develop a technique to

rule out the existence of an important class of reductions between primitives known as black-box

reductions. Intuitively, this is a reduction where the primitive is treated as an oracle or a “black-

box”. There are actually several flavors of black-box reductions (fully black-box, semi black-box

and weakly black-box [Reingold et al., 2004]). In our work, we only deal with fully black-box

reduction, and so we will focus on this notion here. Informally, a fully black-box reduction from a

primitiveQ to a primitive P is a pair of oracle PPT Turing machines (G,S) such that the following

two properties hold:

Correctness: For every implementation f of primitive P , g = Gf implements Q.

Security: For every implementation f of primitive P , and every adversary A, if A breaks Gf (as

an implementation of Q) then SA,f breaks f . (Thus, if f is “secure”, then so is Gf .)

We remark that an implementation of a primitive is any specific scheme that meets the

requirements of that primitive (e.g., an implementation of a public-key encryption scheme provides

samplability of key pairs, encryption with the public-key, and decryption with the private key).

Correctness thus states that when G is given oracle access to any valid implementation of P , the

result is a valid implementation of Q. Furthermore, security states that any adversary breaking Gf

yields an adversary breaking f . The reduction here is fully black-box in the sense that the adversary

S breaking f uses A in a black-box manner.

Comparison to Similar Lower-Bounds on the Round-Complexity. The only similar lower-

bound on the round-complexity of black-box constructions that we are aware of is the result of

Haitner, Hoch, Reingold, and Segev [Haitner et al., 2007] which deals with the round-efficiency

of statistically hiding commitment schemes. Interestingly, our lower-bound is exactly the same

as that of [Haitner et al., 2007] which also is based on the security parameter of the one-way

function used in the construction . It seems that the techniques used in [Haitner et al., 2007] and our

techniques explained below are quite different. This raises the question of whether there are more

connections between the two results. For instance, is it possible to simplify any of these arguments

using ideas from the other work? More importantly, this suggests the intriguing possibility that

perhaps a positive solution for optimally-fair coin tossing from one-way functions can be achieved
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with O(n/ log n) rounds, using the techniques which are used in constructing the positive results of

O(n/ log n)-round statistically hiding commitments [Naor et al., 1998; Haitner and Reingold, 2007;

Haitner et al., 2009]. We note, however, that there is a black-box construction of collision-resistant

hash functions (CRHF) in the random oracle model. This implies that our black-box separation

extends also to constructions of optimally-fair coin tossing from CRHF. In contrast, since there

exists an O(1)-round protocol for statistically-hiding commitment from CRHF, the [Haitner et al.,

2007] result clearly does not extend to constructions from CRHF.

3.1.1 Our Technique

We recall a result of Cleve and Impagliazzo [Cleve and Impagliazzo, 1993] which shows that for

any coin tossing protocol with r rounds, there exists a computationally unbounded adversary who

can achieve bias of at least Ω(1/
√
r) (see Appendix A.1). Moreover, this adversary follows the

protocol as specified, except that it may abort prematurely; as such the adversary is fail-stop. We

show that a black-box construction of an o(n/ log n)-round coin tossing from own-way functions

with input/output length n (or in fact any primitive which is implied by a random-function in a

black-box way) will essentially suffer from the same attack of [Cleve and Impagliazzo, 1993] and

thus cannot guarantee any bias below Ω(1/
√
r) through a black-box proof of security.

We start by assuming that there is a black-box construction Π of optimally-fair coin tossing from

one-way function with r = o(n/ log n) rounds. A random function is one-way with overwhelming

probability, so informally speaking, if we feed the construction Π with a random function it

should still be an optimally-fair coin tossing protocol. In fact, something stronger happens when

a construction based on one-way function is fed with a random function: Such a construction will

now be secure even against computationally unbounded adversaries who are allowed to ask 2o(n)

oracle queries to the random oracle. The reason for this is that if there were such an adversary,

then the security reduction will imply that there is an adversary inverting a random function with

2o(n) number of queries (see the proof of Theorem 3.4.1 for more details) which is not possible.

We will take advantage of this stronger property to derive the contradiction by presenting a 2o(n)-

query attack whenever the round complexity is o(n/ log n). The idea of feeding a black-box

construction with a random-function and enhancing its security, and then deriving contradiction

by a simple counting argument (rather than refuting the relativizing reductions [Impagliazzo and
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Rudich, 1989]—which is a much harder task) is also employed in previous works such as [Gennaro

et al., 2005; Barak and Mahmoody-Ghidary, 2007].

Our main technical step will be to show that the round-complexity of o(n/ log n) for the black-

box construction of coin tossing implies the existence of a 2o(n)-query adversary who is able to bias

the output bit by ω(1/r). In fact we show how to achieve bias Ω(1/
√
r) = ω(1/r). The existence

of such an attack implies the result because by the security reduction the ability to bias the protocol

yields an adversary inverting the one-way function. Our 2o(n)-query attacker runs the protocol (of

the corresponding party) honestly except that it gathers more information about the random oracle

along the execution of the protocol by asking poly(n, r)r (which is 2o(n) for r = o(n/ log n)) more

queries and achieves bias of Ω(1/
√
r) by deciding to stop at some point during the protocol.

We shall emphasize that the reason that we can not directly use the attack of [Cleve and

Impagliazzo, 1993] in the presence of a random oracle is that, even conditioned on the transcript

of the interaction, the random oracle builds dependencies between the views of Alice and Bob.

However the attack of [Cleve and Impagliazzo, 1993] essentially uses the fact that conditioned on

the transcript the views of Alice and Bob are independent in a plain protocol (where no random

oracle is used). Thus we need to find a way to “kill” this dependency to be able to use their attack.

Our 2o(n)-query attacker uses special properties of an attack given by Barak and Mahmoody

[Barak and Mahmoody, 2009] to break any key-agreement protocol with an optimal number of

queries to the random oracle. The attacker of [Barak and Mahmoody, 2009]—which here we call

the “independence learning algorithm”, or the simply the learning algorithm for short—gets as

input a threshold parameter ε which controls its efficiency and accuracy at the same time. Roughly

speaking if Alice and Bob ask m oracle queries in their execution, it will lead to O(m/ε) queries

asked by the learner and the error of mε. This learning algorithm can be described more naturally

as an online algorithm which learns certain oracle queries during the interaction between Alice and

Bob (despite the fact that passive adversaries can always wait till the end of the interaction). Our

attacker uses this learning algorithm internally and feeds it with different values for the threshold

parameter ε for each round; the parameter ε taken grows exponentially with the round numbers.

Due to the heavy use of the threshold parameter of the learning algorithm in our attack, we call it

the “threshold attacker” TA. Note that since the learning algorithm only requires the knowledge of

the public transcripts, both Alice and Bob can run the learning algorithm in any two-party protocol
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(e.g., a coin tossing protocol rather than a key-agreement protocol). Thus our threshold attacker TA,

which is in fact executed by either Alice or Bob, can also run the learning algorithm during the coin

tossing protocol.

The Threshold Attacker—More Details. For an arbitrary two-party protocol Π in the random

oracle model (or any other oracle model) we can think of “curious” parties who run the protocol

honestly but will ask more oracle queries along their execution of the protocol2. We use the

terminology of [Goyal et al., 2010] and call such a game a curious extension of the original protocol

Π. To get the threshold attacker, Alice or Bob (whoever is performing the attack) will need to

play a curious extension of the original protocol by asking up to 2o(n) oracle queries. Here we

will only deal with an extension based on the learning algorithm of [Barak and Mahmoody, 2009].

That is, the attacking party runs the learning algorithm along the honest execution of the original

coin-tossing protocol and decides to abort prematurely. We let the parties take turn in simulating

the learning algorithm in the following way: Whenever Alice (or Bob) is sending a message wi,

they attach to it the set of query/answer pairs that the learning algorithm would learn after wi is sent

across the channel. For brevity we call this specific curious extension in which both Alice and Bob

run the learning algorithm along the original game (and attach the learner’s view of each round to

their messages) simply “the extended execution” of the original protocol (without referring to the

learning algorithm explicitly). We show how our threshold attacker can perform their attack in the

extended execution.

We prove that the extended protocol has the interesting property that now Alice and Bob can in

fact “simulate” the random oracle on their own (using their private randomness) in a way that their

views are statistically close to those in the execution of the original extended game in the random

oracle model. To perform the simulation, Alice and Bob will answer their queries to the random

oracle using fresh randomness unless they have asked this query at some point before (and thus

chose the answer already) or that they are told by the other party what the answer to this query

should be (through the extra messages simulating the learner’s view).

To prove that the above simple simulation is indeed a statistically-close simulation of the

2This is slightly different from the semi-honest parties who run the protocol honestly without asking more oracle
queries and only later analyze their view of the interaction.
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extension game we need to show that (unless with small probability) there is no inconsistencies

between the oracle answers chosen by Alice and Bob for their oracle queries. Here we crucially use

the fact that the learning algorithm provides enough information along the game so that Alice and

Bob will always choose consistent oracle answers for their queries. Suppose that Alice is sending

a message wi and is also attaching a list of k ≈ m/εi simulated learning queries to the message

wi where εi is the learner’s threshold used in round i by Alice and m is the total number of queries

in the original protocol. For any query q among these k queries which are being asked by Alice

from the random oracle (and thus being simulated) for the first time, we want that q is not among

Bob’s “private” queries which was simulated at some point before (yet is not announced through

the learner’s simulation). The learner’s algorithm has the property that if Bob uses threshold εi−1 to

simulate the learner in the previous round i− 1 then any such query q has chance of at most εi−1 to

be a “private” query of Bob. Therefore, by a union bound, the probability that any of these k queries

cause an inconsistency is at most ≈ kεi−1 = mεi−1/εi. By taking εi−1 � εi/m, we can control

the probability of such event to be arbitrary small. This clarifies why we end up using exponentially

smaller thresholds for smaller rounds.

Finally, since we could simulate the extended execution through a plain protocol, we can use the

inefficient attack of [Cleve and Impagliazzo, 1993], which can be applied to any plain protocol and

apply it to the simulation of the extension game. Since the extended execution and its simulation

are statistically close experiments, we conclude that almost the same bias would be achieved by the

attacker in the extension execution with only 2o(n) queries and so we are done.

A Parallel Work. The threshold simulation technique was discovered independently in a parallel

work by Maji and Prabhakaran [Maji and Prabhakaran, 2010] in the context of using random oracle

for the aim of achieving statistically secure protocols.

3.2 Definitions and Useful Lemmas

Definition 3.2.1 (coin tossing from one-way function) For (interactive) oracle algorithms A,B

we call Π = 〈A,B〉 a black-box construction of coin tossing with bias at most δ based on

exponentially-hard one-way functions with security parameter n, if the following properties hold:
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• A and B have their own private randomness RA, RB. They take as input 1n and run in time

poly(n) and interact for r(n) = poly(n) number of rounds.

• Completeness: For any function f : {0, 1}n 7→ {0, 1}n, when A and B are given oracle

access to f , then at the end of the protocol A’s output a and B’s output b are such that

a = b and b is considered the output of the protocol. Also if during the protocol A (resp.,

B) receives the special message ⊥ (denoting that the other party has stopped playing in the

protocol) then A (resp., B) outputs a bit a (resp b) on their own which is considered as the

output of the protocol.

• Security (against bias δ): There is an oracle algorithm S running in time 2o(n) with the

following property. For any f : {0, 1}n 7→ {0, 1}n given as oracle, if Â (resp., B̂) is a

malicious interactive algorithm interacting with B (resp., A) which makes the output bit b

to be δ(n)-biased, then Sf,Â (given oracle access to f and Â) breaks the security of f (as an

exponentially-hard one-way function).

We denote by (a|b) ← 〈Â,B〉 (resp. (a|b) ← 〈A, B̂〉) the joint output of Â and B (resp. A and B̂)

generated by an interaction of Â and B (resp. A and B̂).

The proof of the following two lemmas can be verified by inspection.

Lemma 3.2.2 (Inverting Random Functions) Let A be a computationally unbounded oracle

algorithm given oracle access to a random function f : {0, 1}n 7→ {0, 1}n (the randomness of

f is chosen after A is fixed). Then if A asks at most 2αn queries from f , the probability that A can

successfully invert a given input y = f(Un) (to any preimage of y) is at most 2 · 2(α−1)n + 2−n

which is negligible for any constant α < 1.

Lemma 3.2.3 (Inverting Random Functions with a Fixed Subdomain) Let S ⊂ {0, 1}n be of

size |S| ≤ 2βn for β < 1, and let fS : S 7→ {0, 1}n be a fixed function. Let F be the set of all

functions f : {0, 1}n 7→ {0, 1}n which are equal to fS over S. Now, let A be a computationally

unbounded oracle algorithm which can depend on fS and is given oracle access to a random

function f ←R F (the randomness of f is chosen after A is fixed). Then if A asks at most 2αn

queries from f , the probability that A can successfully invert a given input y = f(Un) (to any
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preimage of y) is at most 2 · (2(α−1)n+2(β−1)n)+ 2−n which is negligible for any constants α < 1

and β < 1.

3.3 Simulation Lemma

In this section, we present a general lemma that holds for any two-party protocol in the random

oracle model. This lemma will be useful for proving our result on coin tossing, but also has

applications to general two-party computation as we describe below.

Lemma 3.3.1 (Simulation Lemma) Let Π be a two-party protocol between Alice and Bob in the

random oracle model where they ask at most m oracle queries and interact for r rounds. Then

there exist protocols ΠT and ΠE called the λ-threshold simulation and λ-extended execution of Π

such that the views of Alice and Bob (as a jointly distributed random variable) in ΠT and ΠE are

λ-close. Moreover, the following properties hold:

• ΠT makes no oracle queries.

• For λ = 1/poly(n), r = o(n/ log n) and m = poly(n), ΠE makes at most 2o(n) queries.

• Let WΠ = [wΠ
1 , . . . , w

Π
i ] be the sequence of messages sent between Alice and Bob so far in

an execution of protocol Π relative to oracle f with random tapes RA, RB respectively. For

λ = 1/poly(n), r = o(n/ log n) and m = poly(n), both Alice and/or Bob can make at most

2o(n) queries and produce the transcript WΠE = [wΠE
1 , . . . , wΠE

i ] that is generated by an

execution of the protocol ΠE relative to oracle f with random tapes RA, RB.

The above lemma implies the following corollary:

Corollary 3.3.2 Let p = 1/poly(n) and let Q be some two-party cryptographic task such that

for every implementation Πplain in the plain model with r = o(n/ log n) rounds, there is a

computationally-unbounded, semi-honest, fail-stop adversary which breaks the security of Πplain

with probability p. Let Π be a black-box construction of Q with r rounds based on exponentially-

hard one-way functions with security parameter n (i.e. the input/output length of f ). Then

r = Ω(n/ log n).
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In other words, Corollary 3.3.2 implies that unless there exists an implementation of Q in

the plain model that ensures security and fairness for semi-honest parties, there is no black-box

construction ofQ from one-way functions (with input/outpus length n) that with o(n/ log n) rounds.

The corollary follows from Lemma 3.3.1 due to the following: Assume such a construction Π

exists with r = o(n/ log n) rounds. Now consider ΠT , the λ-threshold simulation of Π. Since

ΠT also has r = o(n/ log n) rounds and does not make calls to the oracle, we have by hypothesis

that there is an unbounded attacker Â (resp. B̂) which breaks the security of ΠT with probability

p = 1/poly(n). Now, for λ ≤ p/2 = 1/ poly(n), we have that the views of Alice and Bob

(as a jointly distributed random variable) in ΠT and in the λ-extended exection, ΠE , are λ-close.

Moreover, given the transcript generated by Π, Alice (resp. Bob) can make at most 2o(n) queries

and produce the corresponding transcript of ΠE . Thus, there is a threshold attacker TA which plays

the part of Alice (resp. Bob) in Π, makes at most 2o(n) queries to compute the messages of ΠE , runs

Â (resp. B̂) internally while simulating the view of Â (resp. B̂) using the λ-close view produced by

ΠE and finally outputs whatever Â (resp. B̂) outputs. So TA breaks the security of ΠE (and thus of

Π) with probability p/2, where the probability is computed over the randomness of f . Having the

threshold attacker TA the proof can be concluded as follows:

(a) Since the attacker TA breaks security with probability p/2 = 1/poly(n), by an averaging

argument, for at least p/4 fraction of the functions f : {0, 1}n 7→ {0, 1}n, the attacker TAf breaks

security with probability p/4. We call such function f , a good function. (b) Using the security

reduction S, for all good functions f , Sf,TA
f

inverts y = f(Un) with probability at least 2−o(n).

(c) We can combine the algorithms S and TA to get a single oracle algorithm T f which inverts

f(Un) with probability 2−o(n) when f is a good function by asking only 2o(n) queries to f . Which

means that in this case T asks only 2o(n) oracle queries and inverts a random f with probability at

least p/4 · 2−o(n) = 2−o(n) (because f is a good function with probability at least p/4). The latter

contradicts Lemma 3.2.2.

Before we prove Lemma 3.3.1, we review relevant previous work.

The Independence Learner of [Barak and Mahmoody, 2009]. Here we describe the properties

of the attacker of Barak and Mahmoody [Barak and Mahmoody, 2009] presented in the context of

breaking any key agreement protocol with optimal number of queries to the random oracle. Since
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the main property of the learning algorithm is that conditioned on the learner’s information Alice

and Bob’s views are almost independent, we call this attack the independence learning algorithm.

Lemma 3.3.3 (The Independence Learner of [Barak and Mahmoody, 2009]) Let Σ be any two-

party protocol in the random oracle model (with arbitrary number of rounds) between Alice and Bob

in which Alice and Bob ask at most m queries from the random oracle H . Then there is a universal

constant c and a (computationally unbounded) independence learning algorithm which is given a

parameter ε (called the threshold) as input and has the following properties. For brevity we denote

the independence learning algorithm by Eve.

• Eve only has access the public messages sent between Alice and Bob and can ask queries

from the random oracle.

• (cm/ε)-Efficiency: Eve is deterministic and, over the randomness of the oracle and Alice

and Bob’s private randomness, the expected number of Eve queries from the oracle H is at

most cm/ε.

• Eve asks its queries along the game. Namely, although Eve can wait till the end and then ask

all of her queries, her description defines which queries to be asked right after each message

is sent across the public channel. So the learning algorithm is divided into the same number

of rounds as the protocol.

• (c
√
mε)-Security: Let W = [w1, . . . , wi] be the sequence of messages sent between Alice

and Bob so far, and let I be the list of oracle query/answer pairs that Eve has asked till the

end of the i’th round, and let AB = (A,B) be the joint distribution over the views of Alice

and Bob only conditioned on (W, I). By A and B we refer to the projections of AB over

its first or second components (referring to the view of either Alice or Bob only) as random

variables. For a specific view A← A for Alice, by Q(A) we refer to the set of oracle queries

that A contains. We also use the notation Q(I) to refer to the queries denoted in I .

With probability at least 1−c
√
mε over the randomness of Alice, Bob, and the random oracle

H the following holds at all moments during the protocol when Eve is done with her learning

phase in that round: There are independent distributions Â, B̂ such that:
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1. The statistical distance between Â× B̂ and AB is at most ∆(Â× B̂,AB) ≤ c
√
mε.

2. For every oracle query q 6∈ Q(I), it holds that Pr[q ∈ Q(Â) ∪Q(B̂)] ≤ ε.

• Robustness. The learning algorithm is robust to the input parameter ε in the following sense.

If the parameter ε changes in the interval ε ∈ [ε1, ε2] arbitrarily during the learner’s execution

(even inside a learning phase of a specific round), it still preserves O(cm/ε1)-efficiency and

(c
√
mε2)-security.

Lemma 3.3.3 is implicit in [Barak and Mahmoody, 2009], and we show how to derive it from

the explicit results of [Barak and Mahmoody, 2009] in Appendix A.2.

Given a protocol Π, we now describe the λ-extended execution, ΠE , and the λ-threshold

simulation, ΠT , of Π that were mentioned in Lemma 3.3.1.

Definition 3.3.4 (Extended Execution) Let Π be a two-party protocol between Alice and Bob in

the random oracle model where they ask at most m oracle queries and interact for r rounds. The

extended execution ΠE of Π gets as input a parameter λ and simulates the original protocol Π in

the random oracle model as follows.

• Let εr = 1
m ·

(
λ
9rc

)2
and for j ∈ {r, r − 1, . . . , 2} define εj−1 = εj · λ2

90r2m
. Note that if

r, λ,m are ≤ poly(n), then εr = 1/poly(n) and ε1 = poly(n)−r.

• Now imagine an Eve who runs the independence learner of Lemma 3.3.3 and uses εi as its

learning parameter in the learning phase after the i’th round.

• In round i, the party who is sending the message wi, also runs the i’ih round of the learning

phase of Eve and attaches to wi the list of all the query/answer pairs that are the result of this

learning algorithm. Note that since Eve’s algorithm is only depending on the messages being

sent and her previous knowledge about the oracle, the parties are able to do this job.

Definition 3.3.5 (Threshold Simulation) Let Π be a two-party protocol between Alice and Bob in

the random oracle model where they ask at most m oracle queries and interact for r rounds. A

threshold simulation ΠT of Π gets as input a parameter λ and simulates the original protocol Π

plainly as follows.
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• The parameters εi for i ∈ [r] are defined similar to the extended execution.

• In the i’th round the party who sends the i’th message tries to simulate the i’th round of the

extended execution but without using a random oracle. The way the simulation is done is as

follows: To compute the message wi, suppose q is a query to be asked from the oracle. Now if

q is in the set of queries learned by Eve so far or if q was asked previously by the same party,

the same answer will be returned which was used before. But, if the query q is new, a fresh

random answer will be used. The same is also done to answer any query that the learning

algorithm Eve tries to learn.

The following lemma explains why a threshold simulation is indeed a good simulation of the

extended execution.

Lemma 3.3.6 (Properties of the Threshold Simulation) Let Π be a two-party protocol between

Alice and Bob in the random oracle model where they ask at most m oracle queries and let ΠT and

ΠE be in order its λ-threshold simulation and λ-extended execution. Then the views of Alice and

Bob (as a jointly distributed random variable) in ΠT and ΠE are λ-close.

Proof: It is easy to see that the extended execution and the threshold simulation will be exactly

the same games until the following happens: A party, say Alice sends a message wi along with the

simulation of Eve’s i’th round, but one of these queries (which are asked in this round either for her

own protocol or to simulate Eve) will hit one of Bob’s “private” queries which are not announced

through Eve’s previous simulated query/answers. We show that this “bad” event happens with

probability at most λ.

Note that by the robustness of the independence learner Eve and by the choice of the (largest)

parameter εr = 1
m ·

(
λ
9rc

)2
, Eve’s algorithm remains at least c

√
mε = λ/(9r) secure in round i. So,

except with probability at most r · λ/(9r) = λ/9 we can pretend (as a mental experiment) that at

all moments the security requirement of the learning algorithm holds with probability 1 rather than

1 − c
√
mε. In the following we show that (up to the bad event mentioned above which happens

with probability at most λ/9) the probability that an “inconsistency” happens in round i is at most

λ/(3r), and thus we will be done by a union bound. By inconsistency we mean that Alice announces

(a different) answer for an oracle query that is privately asked by Bob already (or vice versa).
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Suppose Alice is sending the message in the i’th round and suppose no inconsistency has

happened so far. Let fix W = [w1, . . . , wi−1] to be the sequence of the messages sent till this

moment and let I be the union Eve’s simulated queries till the end of the (i − 1)’th round. An

inconsistency in round i can happen as follows: one of the queries asked by Alice (either to run

her own protocol or to simulate Eve) hits one of Bob’s private queries. We bound this probability

conditioned on any fixed (W, I) over which the security property of the learner holds (as we said

this property will hold with probability at least 1− λ/9).

As a mental experiment we can continue the game (after fixing (W, I)) by sampling from the

random variable (A,B) ← AB for the views of Alice and Bob so far conditioned on (W, I) and

then continue Alice’s simulation. Let assume for a moment that we sample (A,B)← Â× B̂ rather

than from AB. We bound the probability of any inconsistency in the former case to be 2λ/(9r),

and since the distributions AB and Â × B̂ are λ/(9r) close, it follows that the probability of any

inconsistency in this round is bounded by 2 · λ/(9r) + λ/(9r) = λ/(3r) which is small enough for

us.

But now we use the security property of the independence learner. Note that when we get the

sample (A,B)← Â× B̂, A and B are sampled independently. So, we can sample A first, continue

Alice’s computation, and then sample B ← B̂ at the end (and we will abort if the private queries

collide). The number of queries that Alice will ask to run her own protocol is at most m. By the

efficiency property of the learning algorithm applied to round i, the number of Eve’s simulated

queries in this round are, on average, at most cm/εi. By a Markov bound, this number is at most
cm
εi
· 9rλ with probability at least 1 − λ/(9r). So except with probability λ/(9r) the total number

of queries asked by Alice in this round is at most m+ 9cmr/(εjλ) < 10cmr/(εjλ). Note that the

probability that any of these 10cmr/(εjλ) queries are among the private queries of a sample from

B̂ (sampled as Bob’s view) is at most εj−1. So, by a union bound, the probability that at least one of

these queries hits B̂’s private queries is at most 10cmr
εjλ
· εj−1 = λ/(9r) and this finishes the proof.

So, all left to do is to count how many queries are asked by our λ-extended execution ΠE and

show that it is (say on average) at most 2o(n). This is indeed the case because of the robustness

and the efficiency properties of the learning algorithm. The smallest threshold used in our attack is

ε1 = poly(n)−r because λ = 1/r and r = poly(n),m = poly(n). Therefore our attacker asks
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at most O(m/ε1) number of queries on average which for r = o(n/ log n) is at most O(m/ε1) =

poly(n)r = 2o(n).

3.4 Proof of the Main Theorem

In this section we first prove our main theorem for the case of exponentially-hard one-way function

as the primitive used. Extending the proof to stronger primitives implied by a random oracle is

discussed at the end.

Theorem 3.4.1 (Main Theorem, Formal) Let Π be a black-box construction for two-party coin

tossing (between Alice and Bob) with bias at most o(1/
√
r) (where r is the number of rounds in

Π) based on exponentially-hard one-way functions with security parameter n (i.e., the input/output

length of f ). Then r = Ω(n/ log n).

Proof: For sake of contradiction let assume that such construction exists with r = o(n/ log n) round

complexity. The proof goes through the following steps. We first feed Alice and Bob’s protocols

in the construction Π with a random function f : {0, 1}n 7→ {0, 1}n. We show that in that setting

at least one of the parties can ask nO(r) queries to f and bias the output by at least Ω(1/
√
r) by a

fail-stop attack. The probability over which the bias is computed also includes the randomness of

f . As in Section 3.3, we call this attacker the threshold attacker, TA. Having the threshold attacker

TA the proof can be concluded as follows.

(a) Since the attacker TA achieves bias δ = Ω(1/
√
r) and since the bias is always δ < 1,

therefore by an averaging argument, for at least δ/2 fraction of the functions f : {0, 1}n 7→ {0, 1}n,

the attacker TAf achieves bias at least δ/2 = Ω(1/
√
r). We call such function f , a good function.

(b) Using the security reduction S, for all good functions f , Sf,TA
f

inverts y = f(Un) with

probability at least 2−o(n). (c) We can combine the algorithms S and TA to get a single oracle

algorithm T f which inverts f(Un) with probability 2−o(n) when f is a good function by asking

only 2o(n) poly(n)r queries to f . For r = o(n/ log n), it holds that poly(n)r = 2o(n), which

means that in this case T asks only 2o(n) · 2o(n) = 2o(n) oracle queries and inverts a random f with

probability at least δ2 · 2
−o(n) = 2−o(n) (because f is a good function with probability at least δ/2).

The latter contradicts Lemma 3.2.2.
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In the following we first describe the results that we borrow or derive from previous work needed

for our threshold attacker TA, and then will describe and prove the properties of TA.

The Fail Stop Attacker of [Cleve and Impagliazzo, 1993]. Cleve and Impagliazzo [Cleve and

Impagliazzo, 1993] showed that when computationally unbounded parties participate in any coin

tossing protocol, at least one of them can bias the output bit by following the protocol honestly and

aborting at some point based on the information provided to them by their view.

Lemma 3.4.2 (The Attacker of [Cleve and Impagliazzo, 1993]) Let Σ be any two-party protocol

for coin tossing between Alice and Bob with r rounds of interaction. Then either Alice or Bob can

bias the output bit by Ω(1/
√
r) in the fail-stop model through a computationally unbounded attack.

3.4.1 Our Threshold Attacker

In this section we use the attack of Lemma 3.4.2 as well as the results of Section 3.3 to finish the

proof of Theorem 3.4.1 by presenting our threshold attacker. We will do so first in a special case

where the protocol Π is of a special form which we call instant. The case of instant constructions

carries the main ideas of the proof. Later we prove Theorem 3.4.1 for constructions which are not

necessarily instant.

Definition 3.4.3 (Instant Constructions) A black-box construction of coin tossing is an instant

construction if whenever a party aborts the protocol, the other party decides on the output bit

without asking any additional queries to its oracle.

We note that the protocol of Cleve [Cleve, 1986] which achieves bias at most O(1/
√
r) based on

one-way function is in fact an instant construction.

Given an instant coin-tossing protocol Π, we apply Lemma 3.3.1 to obtain the λ-threshold

simulation and λ-extended execution of Π, ΠT , ΠE . Since the threshold simulation, ΠT , is a plain

protocol we can apply Lemma 3.4.2 to get an attack of bias Ω(1/
√
r) by either Alice or Bob. Now

if we take the simulation parameter λ to be at most 1/r = o(1/
√
r), then the same exact attack will

also give a bias of Ω(1/
√
r) − o(1/

√
r) = Ω(1/

√
r) in the extended execution. Here we crucially

rely on the instant property because of the following: As soon as Alice or Bob (who is the attacker)
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stops continuing the game, the other party in the threshold simulation will decide on the final output

bit by looking at their current view. But this last step will not be statistically close between the

extended execution and the threshold execution if in the extended execution the deciding party

chooses the output after asking more queries. In other words, if the party who announces the output

bit (not the attacker) wants to ask more oracle queries to compute the output bit, there should be

some simulated random answers chosen by the corresponding party in the threshold simulation to

on behalf of these queries, but that step is not taken care of by Lemma 3.3.6 (because the aborted

party is not given the learning algorithm’s queries for the aborted round). By Lemma 3.3.1, our

attacker asks at most 2o(n) queries.

Before going over how to handle the non-instant constructions we clarify that extending

Theorem 3.4.1 to stronger primitives such as exponentially-hard collision resistant hash function

is immediate. All one has to do is to substitute the collision resistant hash functions h : {0, 1}n 7→

{0, 1}n/2 used in the construction by a random function f : {0, 1}n 7→ {0, 1}n/2 (which is in fact

a 2Ω(n)-secure hash function). To provide access to a family of hash functions one can use the

random oracle over larger domains of input/output length 3n and use the first n bits of the input as

the index to the hash family and simply throw away the last 5n
2 bits of the output. The rest of the

proof remains the same.

3.4.2 Handling Non-instant Constructions

It is instructing to recall that given a random oracle there is indeed a one-round protocol which is

optimally-fair: Alice asks H(0) (assuming that the random oracle is Boolean) and then sends H(0)

to Bob which is the final output bit. If Alice aborts and does not send H(0), Bob will go ahead

and ask H(0) himself and takes that as the final output bid. It is clear that this trivial protocol is

completely fair because H(0) is an unbiased bit. Also note that the proof of the previous section

handing the instant constructions works just as well for protocols which use a truly random oracle

(rather than a one-way function) as their primitive used. So it should be of no surprise that the proof

of the instant case does not immediately generalize to cover all the black-box constructions (the

trivial coin-tossing protocol based on random oracle is clearly a non-instant protocol). To handle

the non-instant constructions we inherently need to use the fact that the constructions we deal with

are optimally-fair protocols given any one-way function as the primitive used. In the following we
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show how this stronger requirement of the construction gives us what we need in Theorem 3.4.1.

Making constructions almost instant. It is easy to see that any construction for coin tossing can

be changed into an equivalent protocol which is “almost” an instant one. Namely, whenever a party

A is sending a message m, it can also consider the possibility that the other party B will abort the

game right after A sends his message. So, during the computation of m, A can go ahead and ask

whatever query from the oracle which is needed to compute the final bit in case B aborts. This way,

A will not need to ask any oracle queries in case B aborts in this round. By doing this change (which

clearly does not affect the security of the protocol) the construction becomes “almost” instant. The

point is that the receiver of the first message can not follow the change suggested here because

they do not send any message before the first round. Therefore, in the following we only consider

constructions which are “almost-instant” (i.e., the only moment that a party might violate the instant

property is when the sender of the first message aborts the protocol, and the receiver might still need

to ask oracle queries before deciding on the output.)

Handling almost-instant constructions. Suppose Π is an almost-instant construction. Suppose

ΠE and ΠT be in order Π’s extended execution and the threshold simulation games. The proof of

Lemma 3.3.6 shows that if no party aborts the experiments ΠE and ΠT are λ-close. The discussion

following the proof of Lemma 3.3.6 shows that if one of the parties runs the same fail-stop attack in

ΠE and ΠT the experiments are still λ-close conditioned on the assumption that the round in which

the abort happens is any round other than the first one. So, all we need to handle is the case in which

the sender of the first message (which we assume to be Alice) aborts the game in the first round

(after asking some oracle queries). In the following we focus on this specific cease.

Note that when aborted in the first round Bob can not simply simulate the extended execution

by using fresh randomness to answer his oracle queries in order to decide the output bit. If he does

so it might not be consistent with Alice’s queries asked before aborting and thus it will not be a

good simulation.3 Despite this issues, if we are somehow magically guaranteed that when aborted

in the first round, none of Bob’s queries to compute the output bit collides with Alice’s queries asked

3This will be more clear if one consider the trivial protocol mentioned above which uses a truly random oracle. If
Alice aborts whenever H(0) = 0, and if Bob uses a fresh random answer whenever he gets aborted by Alice, then the
final output will be equal to 1 with probability 3/4 which is clearly a huge bias!



CHAPTER 3. ON THE BLACK-BOX COMPLEXITY OF OPTIMALLY-FAIR COIN TOSSING 54

before, then we can still use fresh random answers to answer Bob’s queries to compute the output

bit.

Suppose after Alice computes her message but right before she sends this message we run the

independence learning algorithm with parameter λ/(10m). This learning algorithm will announce

a set of O(10m2/λ) queries and answers conditioned on which any other query has a chance of at

most λ/(10m) of being asked by Alice in her computation of the first message. Let the set S be

the set of all these O(10m2/λ) queries and let f(S) be their answers. By the security property of

the learning algorithm, conditioned on S and f(S), an aborted Bob will not ask any query out of S

which collides with Alice’s private queries out of S before aborting (unless with probability at most

O(λ)).

The idea is to sample the set S and f(S) once for all, and hardwire them into the random oracle

and Alice and Bob’s algorithms. This way, simulating Bob’s queries with random answers after

being aborted will not lead to any inconsistency with Alice’s queries unless with probability at most

O(λ). But if we fix the answer of such queries that might hurt the protocol’s fairness. At this

point we use the fact that the construction is supposed to be fair given any one-way function (and

not necessarily a random function). Any random oracle is one-way with overwhelming probability

even if we fix a subdomain S ⊆ {0, 1}n, |S| ≤ poly(n) of its domain and this idea is formalized in

Lemma 3.2.3. Namely, if we hardwire the random function over a subdomain S ⊆ {0, 1}n, |S| ≤

poly(n) we can still use the same exact proof as the case of instant constructions for Theorem 3.4.1

with the only difference that now we will use Lemma 3.2.3 rather than Lemma 3.2.2.
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Part II

Universal Composability and Adaptive

Security
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Secure multi-party computation (MPC) allows several mutually distrustful parties to perform a

joint computation without compromising, to the greatest extent possible, the privacy of their inputs

or the correctness of the outputs. In the absence of an honest majority, secure MPC protocols

can only be realized under computational assumptions. The first MPC protocol achieving security

without an honest majority was presented by [Goldreich et al., 1988] and proceeds in the following

two-step paradigm: the first step in the construction is to obtain protocols that are secure against

semi-honest adversaries, and the second step handles malicious behavior by having the parties prove

in zero knowledge that they are adhering to the protocol constructions. This second step requires

the code of the underlying primitive with the use of general NP reductions to prove statements in

zero knowledge.

In their seminal work, Ishai et al. [Ishai et al., 2006] exhibited MPC protocols that are secure

against a static adversary corrupting any number of parties and that rely only on black-box access

to a low-level primitive, such as (enhanced) trapdoor permutations or homomorphic encryption

schemes. This, along with the follow-up work of Haitner [Haitner, 2008], resolves the theoretical

question of the minimal assumptions under which we may obtain black-box constructions of secure

MPC protocols against a static adversary. The main technical contribution in both works is to

construct a secure protocol for a specific two-party functionality, that of oblivious transfer (OT).

The general result then follows from a classic result of Kilian’s [Kilian, 1988] showing that any

multi-party functionality can be securely computed using black-box access to a secure OT protocol.

A natural and challenging problem in the study of secure multi-party computation is to deal

with adaptive adversaries – namely adversaries that may choose which parties to corrupt during

the course of the computation, without having to trust that honest parties can securely erase any

state information. The main tool we have for designing protocols that are secure against adaptive

adversaries is that of non-committing encryption (NCE). Non-committing encryption schemes were

introduced by Canetti, Feige, Goldreich and Naor [Canetti et al., 1996], who used them to simulate

secure channels against an adaptive adversary, thus (by combining with the information theoretically

secure protocol of [Ben-Or et al., 1988]) obtaining a protocol secure against an adaptive adversary

corrupting up to one third of the parties.4 Non-committing encryption has also proved a crucial tool

4More recent work [Damgård and Ishai, 2005] uses standard pseudorandom generators to achieve security against an
adaptive adversary corrupting a minority of the parties.
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in the recent constructions of adaptively secure protocols tolerating a dishonest majority [Canetti et

al., 2002; Katz and Ostrovsky, 2004].

In our work, we revisit the problem of constructing non-committing encryption schemes,

and present a construction of NCE, from a new primitive called trapdoor simulatable PKE,

which simultaneously improves upon all of the previous constructions in [Canetti et al., 1996;

Damgård and Nielsen, 2000]. More specifically, our scheme enjoys optimal round complexity,

relies on weaker assumptions, and has better efficiency.

Informally, a simulatable PKE is an encryption scheme with special algorithms for obliviously

sampling public keys and random ciphertexts without learning the corresponding secret keys and

plaintexts; in addition, both of these oblivious sampling algorithms should be efficiently invertible.

We define a weaker assumption, which we refer to as trapdoor simulatable cryptosystems, and

prove that it is sufficient for our construction and analysis to go through. Next, we show how

to realize tradoor simulatable cryptosystems from from a variant of Rabin’s trapdoor permutations

(c.f. [Halpern, 1995; Schnorr, 1996; Fischlin and Fischlin, 2002]) based on the hardness of factoring

Blum integers. This yields the first factoring-based non-committing encryption scheme.

NCE is used to construct OT secure against semi-honest, adaptive adversaries which, in

turn, is used to construct protocols for general MPC secure against adaptive adversaries. Thus,

improving the efficiency of NCE is a valuable contribution towards improving the efficiency of

adaptively-secure MPC protocols. Another, perhaps more fundamental, cause of inefficiency

in MPC protocols is the use of generic zero knowledge proofs to ensure semi-honest behavior.

Consequently, an important research goal is to construct adaptively-secure protocols for MPC that

do not require generic zero knowledge proofs. Towards this goal, Ishai, Prabhakaran and Sahai

[Ishai et al., 2008] recently established an efficient analogue of Kilian’s result that holds even

in the Universal Composability (UC) model against a malicious, adaptive adversary. Thus, they

reduce the problem of finding black-box constructions of MPC protocols in the UC model secure

against a malicious, adaptive adversary to finding black-box constructions of OT protocols in the

UC model secure against a malicious, adaptive adversary. While there has been fairly extensive

work on secure OT protocols against a static malicious adversary (e.g. [Naor and Pinkas, 2001;

Kalai, 2005; Peikert et al., 2008]), very few - namely [Beaver, 1998; Canetti et al., 2002;

Katz and Ostrovsky, 2004] - provide security against an adaptive adversary; moreover, all of
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those which do follow [Goldreich et al., 1988] paradigm and exploit non-black-box access to the

underlying primitive.

In our work, following the paradigm introduced by [Ishai et al., 2006; Haitner, 2008], we present

a compiler for transforming an OT protocol secure against a semi-honest, adaptive adversary into

one that is secure against a malicious, adaptive adversary. Our compiler achieves security in the UC

model, assuming access to an ideal commitment functionality, and improves over previous work

achieving the same security guarantee in two ways: it uses black-box access to the underlying

protocol and achieves a constant multiplicative overhead in the round complexity. Combining our

two results with the work of [Ishai et al., 2008], we obtain the first black-box construction of UC

and adaptively secure MPC from trapdoor-simulatable PKE and the ideal commitment functionality.
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Chapter 4

Improved Non-Committing Encryption

with Applications to Adaptively Secure

Protocols

4.1 Introduction

Secure multi-party computation (MPC) allows several mutually distrustful parties to perform a joint

computation without compromising, to the greatest extent possible, the privacy of their inputs or

the correctness of the outputs. An important criterion in evaluating the security guarantee is how

many parties an adversary is allowed to corrupt and when the adversary determines which parties to

corrupt. Ideally, we want to achieve the strongest notion of security, namely, against an adversary

that corrupts an arbitrary number of parties, and adaptively determines who and when to corrupt

during the course of the computation (and without assuming erasures). Even though the latter is a

very natural and realistic assumption about the adversary, most of the MPC literature only addresses

security against a static adversary, namely one that chooses (and fixes) which parties to corrupt

before the protocol starts executing. And if indeed such protocols do exist, it is important to answer

the following question:

What are the cryptographic assumptions under which we can realize MPC
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protocols secure against a malicious, adaptive adversary that may corrupt a

majority of the parties?

Towards answering this question, we revisit the problem of constructing non-committing

encryption schemes, a cryptographic primitive first introduced by Canetti et al. [Canetti et al.,

1996] as a tool for building adaptively secure MPC protocols in the presence of an honest majority.

Informally, non-committing encryption schemes are semantically secure, possibly interactive

encryption schemes, with the additional property that a simulator can generate special ciphertexts

that can be opened to both a 0 and a 1. In a more recent work, Canetti et al. [Canetti et al., 2002]

(extending [Beaver, 1998]) showed how to construct adaptively secure oblivious transfer protocols

starting from non-committing public-key encryption schemes (i.e. the key generation algorithm

must be non-interactive), which may in turn be used to construct MPC protocols secure against a

malicious, adaptive adversary that may corrupt an arbitrary number of parties.

Unfortunately, the only known constructions of non-committing public-key encryption schemes

(PKEs) are based on the CDH and RSA assumptions [Canetti et al., 1996] and the construction

exploits in a very essential way that these assumptions give rise to families of trapdoor permutations

with a common domain. If we allow for an interactive key generation phase, Damgård and Nielsen

[Damgård and Nielsen, 2000], building on [Beaver, 1997; Canetti et al., 1996], constructed 3-

round non-committing encryption schemes based on a more general assumption, that of simulatable

PKEs, which may in turn be realized from DDH, CDH, RSA and more recently, worst-case lattice

assumptions [Gentry et al., 2008] (see figure 4.1).

4.1.1 Our results

First, we present a new construction of non-committing encryption schemes, which simultaneously

improves upon all of the previous constructions in [Canetti et al., 1996; Damgård and Nielsen,

2000]:

Optimal Round Complexity. We provide a construction of non-committing PKEs from simulatable

cryptosystems. Our construction is surprisingly simple - a twist to the standard cut-and-

choose techniques used in [Damgård and Nielsen, 2000; Katz and Ostrovsky, 2004] - and

also admits a fairly straight-forward simulation and analysis. In particular, our construction
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and the analysis are conceptually and technically simpler than those in [Canetti et al., 1996;

Damgård and Nielsen, 2000]; we avoid having to analyze the number of one’s in certain

Binomial distributions as in [Canetti et al., 1996] and to consider a subtle failure mode as in

[Damgård and Nielsen, 2000].

Reducing the assumptions. Informally, a simulatable PKE is an encryption scheme with special

algorithms for obliviously sampling public keys and random ciphertexts without learning

the corresponding secret keys and plaintexts; in addition, both of these oblivious sampling

algorithms should be efficiently invertible.

We define a weaker assumption, which we refer to as trapdoor simulatable cryptosystems, and

prove that it is sufficient for our construction and analysis to go through. Roughly speaking,

we provide the inverting algorithms in a simulatable cryptosystem with additional trapdoor

information (hence the modifier “trapdoor”), which makes it easier to design a simulatable

cryptosystem.

Improved efficiency. While the main focus of this work is feasibility results (notably, reducing

the computational assumptions for both non-committing encryption schemes and adaptively

secure MPC), we show how to combine a variant of our basic construction with the use

of error-correcting codes to achieve better efficiency. That is, the amortized complexity of

encrypting a single bit is O(1) public-key operations on a constant-sized plaintext in the

underlying cryptosystem.

Thus, we obtain the following.

Theorem 4.1.1 (informal) There exists a black-box construction of a non-committing public-key

encryption scheme, starting from any trapdoor simulatable cryptosystem.

Factoring-based constructions.

Next, we derive trapdoor simulatable cryptosystems from a variant of Rabin’s trapdoor permutations

(c.f. [Halpern, 1995; Schnorr, 1996; Fischlin and Fischlin, 2002]) based on the hardness of factoring

Blum integers.
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CDH, RSA simulatable common-domain TDP 2-round NCE

DDH, LWE simulatable PKE 3-round NCE

factoring BI trapdoor simulatable PKE

Figure 4.1: Summary of previous results (solid lines) along with our contributions (dashed lines).

Theorem 4.1.2 (informal) Suppose factoring Blum integers is hard on average. Then, there exists

a trapdoor simulatable cryptosystem.

We stress that we do not know how to construct a simulatable cryptosystem under the same

assumptions; specifically, inverting the sampling algorithm for ciphertexts in our construction

without the trapdoor (the factorization of the Blum integer modulus) appears to be as hard as

factoring Blum integers. This shows that trapdoor simulatable cryptosystems is indeed a meaningful

and useful relaxation. In the process, we also obtain the first factoring-based dense cryptosystems.1

When combined with enhanced trapdoor permutations, this yields the first factoring-based non-

interactive proofs of knowledge [De Santis and Persiano, 1992].

Oblivious transfer and MPC.

We consider the applications of our main result to the constructions of adaptively secure oblivious

transfer and general MPC protocols in both the stand-alone setting and the UC setting (c.f. [Canetti

et al., 2002; Ishai et al., 2008] and Chapter 5).

Theorem 4.1.3 (informal) There exists a black-box construction of a 6-round 1-out-of-` oblivious

transfer protocol for strings in the FCOM-hybrid model2 in the UC setting that is secure against a

malicious, adaptive adversary, starting from any trapdoor simulatable cryptosystem.

We add that if the oblivious key generation algorithm in the trapdoor simulatable cryptosystem

achieves statistical indistinguishability (which is the case for all of the afore-mentioned construc-

tions), then we obtain an OT protocol that is secure against a computationally unbounded malicious

1These are PKE schemes where a random string has a inverse polynomial probability of being a valid public key.
2 FCOM is an ideal functionality for commitment.
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sender. While our OT protocol is not as efficient as that in the recent work of Garay, Wichs and Zhou

[Garay et al., 2009] (we incur an additional multiplicative overhead that is linear in the security

parameter), our protocol along with our general framework offers several advantages:

• In addition to relying on the FCOM functionality and a simulatable PKE (to implement non-

committing encryption) as in our work, the [Garay et al., 2009] framework requires a so-

called enhanced dual-mode cryptosystem. This is a relatively high-level CRS-based primitive

from [Peikert et al., 2008] augmented with two main additional properties: the first has a

flavor of oblivious sampling; the second requires that the underlying CRS be a common

random string (modulo some system parameters) and not just a common reference string.

This requirement is inherent to their framework, since this CRS is generated using a coin-

tossing protocol. This latter requirement is very restrictive, and the only known construction

of an enhanced dual-mode cryptosystem is based on the quadratic residuocity assumption.

• Our protocol immediately handles 1-out-of-` OT, whereas [Garay et al., 2009] only addresses

1-out-of-2 OT, a limitation inherited from [Peikert et al., 2008]. In addition, our protocol has

exactly 6 rounds, whereas the [Garay et al., 2009] protocol has 6 rounds in expectation.

Combined with [Canetti et al., 2002; Ishai et al., 2008] and the results of Chapter 5, we obtain the

following corollaries:

Corollary 4.1.4 (informal) Assuming the existence of trapdoor simulatable cryptosystems, there

exists adaptively secure multi-party protocols in the stand-alone setting and in the FCOM-hybrid

model in the UC setting against a malicious adversary that may adaptively corrupt any number of

parties.

Specifically, we obtain the first adaptively secure multi-party protocols based on hardness of

factoring in both the stand-alone setting and the UC setting with a common reference string.

4.1.2 Additional related work

The problem of constructing encryption schemes that are secure against adaptive corruptions was

first addressed in the work of Beaver and Haber [Beaver and Haber, 1992]. They considered a
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simpler scenario where the honest parties have the ability to securely and completely erase previous

states. For instance, an honest sender could erase the randomness used for encryption after sending

the ciphertext, so that upon being corrupted, the adversary only gets to see the corresponding

plaintext. An intermediate model, wherein we assume secure erasures for either the sender or

receiver but not both (or, by limiting the adversary to corrupting at most one of the two parties),

has been considered in several other works [Jarecki and Lysyanskaya, 2000; Canetti et al., 2005;

Katz and Ostrovsky, 2004].

4.1.3 Follow-up work

Recently, O’Neill et al. [O’Neill et al., 2011] built upon the techniques presented in Section 4.5 of

this work to construct a variant of non-committing encryption called bi-deniable encryption in the

multi-distributional model. In addition to being non-committing, deniable encryption schemes are

useful since they enable parties to resist coercion.

Organization.

We present an overview of our constructions in Section 4.2, preliminaries in Section 4.3, the

formulation of a trapdoor simulatable PKE in Section 4.4, our factoring-based trapdoor simulatable

PKE in Section 4.6, and our non-committing encryption scheme in Section 4.5. In Section 4.7, we

show the construction of a 6-round oblivious transfer protocol.

4.2 Overview of our constructions

At a high level, our non-committing PKE is similar to that from previous works [Canetti et al., 1996;

Damgård and Nielsen, 2000; Katz and Ostrovsky, 2004]. The receiver generates a collection of

public keys in such a way that it only knows an α fraction of the corresponding secret keys; this can

be achieved by generating an α fraction of the public keys using the key generation algorithm and

the remaining 1−α fraction obliviously. Similarly, the sender generates a collection of ciphertexts in

such a way that it only knows an α fraction of the corresponding plaintexts. Previous constructions

all work with the natural choice of α = 1/2 so that the simulator generates a collection of ciphertexts
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half of which are encryptions of 0 and the other half are encryptions of 1. As noted in [Katz and

Ostrovsky, 2004], this is sufficient for obtaining non-committing PKEs wherein at most one party

is corrupted. Roughly speaking, the difficulty in handling simultaneous corruptions of both the

sender and the receiver with α = 1/2 is that in the simulation, the sender’s choice of the α fraction

of keys completely determine the receiver’s choice of the α fraction of ciphertexts whereas in an

actual honest encryption, these choices are completely independent (we elaborate on this in Section

4.2). The key insight in our construction is to work with a smaller value of α (turns out 1/4 is good

enough).

A toy construction.

Consider the following encryption scheme, which is a simplification of that in [Katz and Ostrovsky,

2004; Damgård and Nielsen, 2000]. The receiver generates a pair of public keys (PK0, PK1) by

generating one key (selected at random) using the key-generation algorithm, and the other using

the oblivious sampling algorithm. To encrypt a bit b, the sender generates a pair of ciphertexts

(C0, C1) as follows: pick a random bit r, setCr to be EncPKr(b) and chooseC1−r using the oblivious

sampling algorithm. To decrypt, the receiver decrypts exactly one of C0, C1 using the secret key

that it knows. This construction corresponds to α = 1/2 where α is the fraction of public keys for

which the receiver knows the secret key, and also the fraction of ciphertexts for which the sender

knows the plaintext. Observe that this encryption scheme has the following properties:

• It has a constant decryption error of 1/4 if an obliviously sampled ciphertext is equally likely

to decrypt to 0 or 1. As shown in [Katz and Ostrovsky, 2004], this error can be reduced by

standard repetition techniques.

• It tolerates corruption of either the sender or the receiver, but not both. Consider a simulator

that generates both of (PK0, PK1) (along with SK0, SK1) using the key-generation algorithm,

and a ciphertext (C0, C1) as follows: pick a random bit β, and set C0 to be EncPK0(β) and C1

to be EncPK1(1−β). Suppose the simulator later learns that this is an encryption of 0. If only

the sender is corrupted, the simulator claims r = β and that C1−β is obliviously sampled. If

only the receiver is corrupted, it claims that it knows SKβ and that PK1−β is oblivious sampled.
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We highlight two subtleties in the above simulation strategy. First, it achieves 0 decryption error

(as opposed to 1/4 in an honest encryption); this can be fixed with a somewhat more involved

simulation strategy. This in turn becomes pretty complicated once we use standard repetition

techniques to reduce the decryption error. Next, it is always the case in the simulation that

either both PK0 and C0 are obliviously sampled, or both PK1 and C1 are obliviously sampled. As

such, this simulation strategy fails if both the sender and the receiver are corrupted, because in an

actual encryption, which of PK0, PK1 and which of C0, C1 are obliviously sampled are determined

independently.

Our encryption scheme.

As noted in the introduction, the key insight in our construction is to work with a small value of α.

In addition, following [Damgård and Nielsen, 2000], we use a random k-bit encoding of 0 and 1,

where k is the security parameter:

• The receiver generates 4k public keys PK1, . . . , PK4k: k of them are generated using the

key-generation algorithm, and the remaining 3k are generated using the oblivious sampling

algorithm. The receiver then sends PK1, . . . , PK4k along with two random k-bit messages

M0,M1.

• To encrypt a bit b, the sender sends 4k ciphertexts (one for each of PK1, . . . , PK4k), of which

k are encryptions of Mb, and the remaining ones are obliviously sampled.

• To decrypt, the receiver decrypts the k ciphertexts for which it knows the corresponding secret

key. If any of the k plaintexts matches M0, it outputs 0 and otherwise, it outputs 1.

Encoding 0 and 1 randomly as M0 and M1 is useful for two reasons:

• That an obliviously sampled ciphertext is equally likely to decrypt to 0 or 1 is no longer

needed to guarantee correctness (c.f. [Damgård and Nielsen, 2000]). Indeed, reasoning about

decryptions of obliviously sampled ciphertext is non-trivial for the lattice-based simulatable

PKEs in [Gentry et al., 2008].
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• Constructing a simulator becomes much easier as we avoid having to generate distributions

over k independent biased bits conditioned on the majority of the bits being 0, say. Generating

such distributions arises for instance in [Canetti et al., 1996] and is related to the first

subtlety associated with the naive simulation strategy. In our construction, the simulated

ciphertext comprises k encryptions ofM0, k encryptions ofM1, and 2k obliviously generated

ciphertexts. Having these extra 2k obliviously generated ciphertexts (which is possible

because α < 1/2) is crucial for handling simultaneous corruptions of the sender and the

receiver.

Trapdoor Simulatable PKEs from factoring.

Our factoring-based trapdoor simulatable PKE construction consists of two main steps. First, we

modify the Rabin trapdoor permutations based on squaring modulo Blum integer so that it remains

a permutation over any arbitrary integer modulus. This relies on the following number-theoretical

structural lemma implicit in [Halpern, 1995; Schnorr, 1996; Fischlin and Fischlin, 2002]3:

Let N be an arbitrary odd k-bit integer, and let QN = {a2k (mod N) | a ∈ Z∗N}.

Then, the map ψ : x 7→ x2 defines a permutation over QN .

We also provide an efficient algorithm for inverting ψ given the factorization of N . Note that

the standard algorithm for computing square roots does not guarantee that the output lies in QN .

Moreover, the probability that a random square root lies in QN may be exponential small so we

cannot repeatedly computing random square roots until we find one in QN ; it’s also not clear a-

priori how to test membership in QN even given the factorization of N .

The next step transforms the family of trapdoor permutations ψ acting on the domain QN

into a family of “enhanced” trapdoor permutations with the same domain QN , using an idea from

[Goldreich, 2004, Section C.1]. The latter has the property that we can obliviously sample a random

element y in QN so that given y along with the coin tosses used to sample y, it is infeasible to

compute the preimage of y under the permutation (note that the naive algorithm for sampling a

3 It was shown in [Halpern, 1995] that ψ defines a permutation over the subgroup ON of Z∗
N of odd order, and that

ON contains QN ; turns out ON = QN . While QN is trivially sampleable, it is not clear a-priori how to sample from
ON .
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random element of QN gives away its preimage under ψ). We will need the oblivious sampling

algorithm for a random element in QN in our oblivious sampling algorithm for random ciphertexts.

We will also need to realize trapdoor invertibility for the latter, which requires an efficient algorithm

that given the factorization of N and an element y in QN , outputs a random 2k’th root of y.4 Note

that iteratively computing random square roots k times does not work: after computing the first

square root, we may not end up with a 2k−1’th power.

4.3 Preliminaries

IfA is a probabilistic polynomial time (hereafter, ppt) algorithm that runs on input x, A(x) denotes

the random variable according to the distribution of the output of A on input x. We denote by

A(x; r) the output ofA on input x and random coins r. To simplify the notation, we will often omit

quantifying over the distribution for r; it will usually be clear from the context when r is not fixed,

that it is drawn from the uniform distribution over strings of the appropriate length.

We assume that the reader is familiar with the standard definitions of public-key encryption

schemes and semantic security (c.f. [Goldwasser and Micali, 1984; Goldreich, 2004]). We stress

that we allow decryption errors that are exponentially small in k:

Definition 4.3.1 (encryption scheme) A triple (Gen,Enc,Dec) is an encryption scheme, if Gen

and Enc are ppt algorithms and Dec is a deterministic polynomial-time algorithm such that for every

message m ∈ {0, 1}∗ of polynomial length, Pr[Gen(1k) → (PK, SK),EncPK(m) → c;DecSK(c) 6=

m] < 2−Ω(k).

4.3.0.1 Non-committing encryption.

For simplicity, we present the definition of a non-committing public-key encryption scheme for

single-bit messages:

Definition 4.3.2 (non-committing encryption [Canetti et al., 1996]) A non-committing (bit) en-

cryption scheme consists of a tuple (NCGen,NCEnc,NCDec,NCSim) where (NCGen,NCEnc,NCDec)

4If we are given just N and not its factorization, this problem is at least as hard is factoring random Blum integers.
This is in essence why we only obtain a factoring-based trapdoor simulatable PKE and not a simulatable PKE.
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is an encryption scheme and NCSim is the simulation algorithm that on input 1k, outputs

(e, c, σ0G, σ
0
E , σ

1
G, σ

1
E) with the following property: for b = 0, 1 the following distributions are

computationally indistinguishable:

• the joint view of an honest sender and an honest receiver in a normal encryption of b:

{(e, c, σG, σE) | (e, d) = NCGen(1k;σG), c = NCEnce(b;σE)}

• simulated view of an encryption of b:

{(e, c, σbG, σbE) | NCSim(1k)→ (e, c, σ0G, σ
0
E , σ

1
G, σ

1
E)}

It follows from the definition that a non-committing encryption scheme is also semantically secure.

Encrypting longer messages. Starting with a non-committing bit encryption scheme (NCGen,

NCEnc, NCDec, NCSim), we may encrypt a longer message of length n by generating n

independent public keys using NCGen, encrypting each bit of the message using a different key

and then concatenating the n ciphertexts. Note that this is different from the case of semantically

secure encryption, where we may encrypt each bit using the same public key.

4.4 Trapdoor Simulatable Public Key Encryption

A `-bit trapdoor simulatable encryption scheme consists of an encryption scheme (Gen,Enc,Dec)

augmented with (oGen, oRndEnc, rGen, rRndEnc). Here, oGen and oRndEnc are the oblivious

sampling algorithms for public keys and ciphertexts, and rGen and rRndEnc are the respective

inverting algorithms5. We require that, for all messages m ∈ {0, 1}`, the following distributions are

5 Existence of such inverting algorithms is called trapdoor invertibility. Compared to the simulatable cryptosystem
(without trapdoor) defined in [Damgård and Nielsen, 2000], rGen (resp. rRndEnc) takes rG (resp. (rG, rE,m)) as the
additional trapdoor information.



CHAPTER 4. IMPROVED NON-COMMITTING ENCRYPTION WITH APPLICATIONS TO
ADAPTIVELY SECURE PROTOCOLS 70

computationally indistinguishable:

{rGen(rG), rRndEnc(rG, rE,m), PK, c | (PK, SK) = Gen(1k; rG), c = EncPK(m; rE)}

and {r̂G, r̂E, P̂K, ĉ | (P̂K,⊥) = oGen(1k; r̂G), ĉ = oRndEncP̂K(1
k; r̂E)}

It follows from the definition that a trapdoor simulatable encryption scheme is also semantically

secure.

Encrypting longer messages. We note that if we started only with a trapdoor simulatable PKE

for single bits, we may encrypt a longer message of length n by generating a single public key PK

using Gen, and concatenating each of the message encrypted under PK.

4.5 Non-Committing Encryption from Weaker Assumptions

Theorem 4.5.1 Suppose there exists a trapdoor simulatable encryption scheme. Then, there exists a

non-committing encryption scheme as well as a universally composable oblivious transfer protocol

secure against semi-honest, adaptive adversaries.

We show how to construct a non-committing bit encryption scheme (NCGen, NCEnc, NCDec,

NCSim) from a k-bit trapdoor simulatable PKE (Gen,Enc,Dec) (augmented with (oGen, oRndEnc,

rGen, rRndEnc)). This is sufficient to establish the theorem by the connection between encrypting

single bits and multiple bits as discussed in Sections 4.3 and 4.4. Our construction is presented in

Figures 4.2 and 4.3.

4.5.1 Correctness.

We begin by establishing correctness.

• Assume that the input [c1, . . . , c4k] to the decryption algorithm is a random encryption of 0.

Recall that J = {DecSKi(ci) | i ∈ T} and we will output 0 unless M0 /∈ J . It is easy to see

that Pr[M0 /∈ J ] ≤
(
3k
k

)
/
(
4k
k

)
+ 2−Ω(k) where the first summand comes from the probability
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Key Generation NCGen(1k):

1. Pick M0,M1 at random from {0, 1}k.

2. Choose a random subset T ⊆ [4k] of size k.

3. For i = 1, 2, . . . , 4k, generate a pair (PKi, SKi) as follows:

(PKi, SKi) =

{
Gen(1k) if i ∈ T
oGen(1k) otherwise

Set e = [M0,M1, PK1, . . . , PK4k] and d = [T, SK1, . . . , SK4k].

Encryption NCEncPK(b):

1. Choose a random subset S ⊆ [4k] of size k.

2. For i = 1, 2, . . . , 4k, generate a ciphertext ci as follows:

ci =

{
EncPKi(Mb) if i ∈ S
oRndEncPKi

(1k) otherwise

Set c = [c1, . . . , c4k].

Decryption NCDecPK(c):

1. Compute J = {DecPKi(ci)|i ∈ T}.
2. If M0 ∈ J , output 0; else, output 1.

Figure 4.2: Non-Committing Encryption Scheme (NCGen,NCEnc,NCDec)

that S ∩ T = ∅ and the second bounds the probability of a decryption error in the underlying

encryption scheme (Gen,Enc,Dec).

• Assume that the input [c1, . . . , c4k] to the decryption algorithm is a random encryption of

1. Recall that J = {DecSKi(ci) | i ∈ T} and we will output 1 unless M0 ∈ J . To

bound Pr[M0 ∈ J ], observe that the distribution of J depends only on M1, PK1, . . . , PK4n,

T, SK1, . . . , SK4n and the coin tosses used to generate c1, . . . , c4k, and is therefore indepen-

dent of the choice of a random M0. This means that for each i ∈ T , the probability that

DecSKi(ci) equals M0 is 2−k. Taking a union bound, we obtain Pr[M0 ∈ J ] ≤ k · 2−k.

4.5.2 Security.

We need to show that for each b = 0, 1, a normal encryption of b and a simulated encryption of b

are computationally indistinguishable. Note that the view in a normal encryption of b contains two
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Simulation NCSim:

1. Pick M0,M1 at random from {0, 1}k.

2. Picking the sets S0, S1, T0, T1:

• Pick two random subsets S0, T0 of [4k] each of size k.
• Pick two random subsets S1, T1 of [4k] \ (S0 ∪ T0) such that |S1 ∩ T1| = |S0 ∩ T0|.

3. Generating the keys: for i = 1, 2, . . . , 4k, set

(PKi, SKi) =

{
Gen(1k; riG) if i ∈ T0 ∪ S0 ∪ T1 ∪ S1

oGen(1k; r̂iG) otherwise

4. Generating the ciphertext: for i = 1, 2, . . . , 4k, set

ci =


EncPKi(M0; r

i
E) if i ∈ S0

EncPKi(M1; r
i
E) if i ∈ S1

oRndEncPKi(r̂
i
E) otherwise

5. Simulating an opening to b: set σb
G = {Tb, ub,1G , . . . , ub,4kG } and σb

E = {Sb, u
b,1
E , . . . , ub,4kE },

where

ub,iG =


riG if i ∈ Tb
rGen(riG) if i ∈ T0 ∪ T1 ∪ S0 ∪ S1 \ Tb
r̂iG otherwise

ub,iE =


riE if i ∈ Sb

rRndEnc(riG, r
i
E,M1−b) if i ∈ S1−b

r̂iE otherwise

Set e = [M0,M1, PK1, . . . , PK4k], c = [c1, . . . , c4k]. Additionally output σ0
G, σ

0
E , σ

1
G, σ

1
E .

Figure 4.3: Non-Committing Encryption Scheme NCSim

sets T, S which we will label as Tb, Sb and we will append to the view two sets T1−b, S1−b that are

determined as follows: pick two random subsets S1−b, T1−b of [4k]\ (Sb∪Tb) such that |S1∩T1| =

|S0 ∩ T0|; call this distribution H0. We will also append to the view in a simulated encryption of

b the sets T1−b, S1−b as determined by the experiment NCSim; call this distribution H4k. We will

show that the augmented distributions H0 and H4k are computationally indistinguishable in two

steps:

Reasoning about the sets. First, we claim that the 4-tuple (S0, T0, S1, T1) in the augmented

distributionH0 and inH4k are identically distributed. If b = 0, this is obvious since the distributions

are defined in exactly the same way. The case for b = 1 follows from a symmetry argument,
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namely that if we switch (S0, T0) with (S1, T1) in the experiment NCSim, we get exactly the same

distribution. Henceforth, it suffices to argue thatH0 andH4k are computationally indistinguishable,

conditioned on some fixed (S0, T0, S1, T1) in both H0 and H4k. We may now WLOG focus on

the case b = 0. In fact, we may as well also fix M0,M1 in both H0 and H4k. In addition to

S0, T0, S1, T1,M0,M1, the distributions H0,H4k comprise:

• 4k public keys PK1, . . . , PK4k (generated using either Gen or oGen);

• 4k ciphertexts c1, . . . , c4k (generated using either Enc or oRndEnc);

• 4k sets of coin tosses u1G, . . . , u
4k
G for generating the public/secret keys; and

• 4k sets of coin tosses u1E, . . . , u
4k
E for generating the ciphertexts.

That is, we have 4k tuples of the form (PKi, ci, u
i
G, u

i
E), i = 1, . . . , 4k in each view. Since

S0, T0, S1, T1 are fixed, each of these 4k tuples are independently sampled from some distribution

that only depends on the index i. Denote by X1, . . . , X4k the random variables for the 4k tuples in

H0, and Y1, . . . , Y4k the random variables for the 4k tuples in H4k.

The hybrid argument. Next, we argue that Xi and Yi are computationally indistinguishable for

i = 1, . . . , 4k, from which the indistinguishability of H0 and H4k follows via a hybrid argument.

There are several cases we need to consider:

• i ∈ T0 or i ∈ [4k] \ (T0 ∪ S0 ∪ T1 ∪ S1). It is easy to verify that in either of these cases, Xi

and Yi are identically distributed.

• i ∈ S1 (“oGen, oRndEnc ∼= Gen,Enc”). Here, Xi is the distribution

{P̂K, ĉ, r̂G, r̂E | (P̂K,⊥) = oGen(r̂G), ĉ = oRndEncP̂K(r̂E)}

and Yi is the distribution

{PK, c, rGen(rG), rRndEnc(rG, rE,M1) | (PK, SK) = Gen(rG), c = EncPK(M1; rE)}.

Indistinguishability follows immediately from the security of the trapdoor simulatable PKE.
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• i ∈ S0 \ T0 (“oGen,Enc ∼= Gen,Enc”). Here, Xi is the distribution

{P̂K, c, r̂G, rE | (P̂K,⊥) = oGen(r̂G), c = EncP̂K(M0; rE)}

and Yi is the distribution

{PK, c, rGen(rG), rE | (PK, SK) = Gen(rG), c = EncPK(M0; rE)}.

Indistinguishability follows again from the security of the trapdoor simulatable PKE.

• i ∈ T1 \ S1 (“oGen, oRndEnc ∼= Gen, oRndEnc”). Here, Xi is the distribution

{P̂K, ĉ, r̂G, r̂E | (P̂K,⊥) = oGen(r̂G), ĉ = oRndEncP̂K(r̂E)}

and Yi is the distribution

{PK, ĉ, rGen(rG), r̂E | (PK, SK) = Gen(rG), ĉ = oRndEncPK(r̂E)}.

Indistinguishability follows again from the security of the trapdoor simulatable PKE.

4.5.3 Improving the efficiency.

Instead of using sets S, T ⊂ [4k] of size k, we choose S, T ⊂ [40] of size 10. The previous analysis

still goes through, except we now have a constant decryption error. To address this problem, we

first encode the message6 with a linear-rate error-correcting code that corrects a constant fraction of

errors, and then encrypt the codeword with the encryption scheme with constant error.

4.6 Trapdoor Simulatable PKE from Hardness of Factoring

Theorem 4.6.1 Suppose factoring Blum integers is hard on average, and that Blum integers are

dense, then there exists a trapdoor simulatable PKE.

6 The codeword length (or, equivalently the message length) should be Ω(k). Then, by Chernoff bound, the number
of decryption errors remains a constant fraction of the codeword length with overwhelming probability.
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For simplicity, we only present a 1-bit trapdoor simulatable encryption scheme; we may encrypt

longer messages by encrypting bit by bit.

4.6.1 A number-theoretic lemma.

Fix any k-bit integer modulus N and we will work with the group Z∗N . We will use factor(N) to

denote the factorization of N , and we define QN = {a2k | a ∈ Z∗N}. Now, consider the map

ψN : QN → QN given by ψN (x) = x2 (mod N). As shown in [Halpern, 1995, Facts 3.5-3.7],

ψN defines a permutation on QN . We provide a more direct proof which also yields an efficient

algorithm to invert ψN given factor(N).

Claim 4.6.2 The map ψN defines a permutation on QN .

Proof: Let q denote the largest odd divisor of φ(N), where φ(·) is the Euler’s totient function. It

is easy to see that φ(N) divides 2kq, since N < 2k. Take any y ∈ QN , where y = a2
k
. Then by

Euler’s theorem, yq = 1 (mod N) and thus ψN (y(q+1)/2) = y (mod N). Clearly, y(q+1)/2 ∈ QN ,

so the map ψN is surjective. Moreover, the range and domain of ψN have equal sizes, so ψN must

define a bijection.

4.6.2 The construction.

We sketch the construction here; the formal construction is shown in Figure 4.4.

STEP 1: First, we construct a family of “weakly one-way” enhanced trapdoor permutations.

We start by modifying ψN to obtain a new family of permutations πN ; the modification is

analogous to that in [Goldreich, 2004, Section C.1] to obtain enhanced trapdoor permutations

from Rabin’s trapdoor permutations. The permutations πN : QN → QN are indexed by a

k-bit integer N and is given by:

πN (x)
def
= ψk+1

N (x) = x2
k+1

(mod N)

and the trapdoor is factor(N). We may sample from this family by running Bach’s algorithm

[Bach, 1988; Kalai, 2002] to pick a random k-bit integer along with its factorization.
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It is easy to verify πN is a family of trapdoor permutations. Clearly, πN is a permutation

because it is the (k + 1)-fold iterate of a permutation ψN . Given the index N , πN

is efficiently computable by repeated squaring. Given the trapdoor factor(N), π−1N is

efficiently computable given factor(N), by simply mapping y to y((q+1)/2)k+1
, i.e., raising

y to the (q + 1)/2’th power k + 1 times. Here, q denotes the largest odd divisor of

φ(N), which is easy to compute with the trapdoor. Moreover, we can show that if N

is a Blum integer (which occurs with probability Ω(1/k2) [Granville and Martin, 2004;

Rubinstein and Sarnak, 1994]), then inverting πN given N is at least as hard as factoring

N . This implies that πN is one-way with probability Ω(1/k2) over the choice of N .

STEP 2: Construct a “weak” encryption scheme using the standard construction of PKE from

trapdoor permutations via the Goldreich-Levin hard-core predicate. The public key is N , the

secret key is factor(N), and to encrypt a bit b, we pick a random x ∈ QN , r ∈ {0, 1}k and

output (πN (x), r, (x · r)⊕ b), where x · r is the standard dot-product of k-bit strings. Again,

this scheme will be semantically secure with probability Ω(1/k2) over the choice of N .

STEP 3: To boost the security of the “weak” encryption scheme, we define a new scheme where

the public key is k3 random k-bit strings N1, . . . , Nk3 (with overwhelming probability, one

of these is a Blum integer), and to encrypt a bit b, we pick random b1, . . . , bk3 such that

b = b1 ⊕ · · · · bk3 and concatenate the encryptions of b1, . . . , bk3 under the respective public

keys N1, . . . , Nk3 . By a standard argument (c.f. [Yao, 1982; De Santis and Persiano, 1992]),

this encryption scheme is semantically secure in the standard sense.

4.6.3 Analysis.

Indeed, we claim something stronger – that the encryption scheme derived in Step 3 is a trapdoor

simulatable PKE.

• (Oblivious sampling & trapdoor invertibility for key generation) This is trivial, since a random

public key corresponds to a string in {0, 1}4k. We can clearly sample such a public key

without learning the secret key.
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• (Oblivious sampling & trapdoor invertibility for random ciphertext) For simplicity, we present

the algorithms for sampling random ciphertext for the scheme obtained in Step 2. Here,

sampling is easy: on input the public key N , pick γ ∈ Z∗N , s ∈ {0, 1}k, β ∈ {0, 1})

and output (γ2
k
, s, β). To implement reverse sampling, we need an efficient algorithm that

given factor(N) and x ∈ QN , output a random element of the set {γ ∈ Z∗N | γ2
k

=

πN (x) = x2
k+1}. This can be accomplished as follows: pick a random η ∈ Z∗N and output

x2 · η/(η2k)((q+1)/2)k , where q is as before the largest odd divisor of φ(N). This works

because η/(η2
k
)((q+1)/2)k will be a random 2k’th root of 1 (mod N).

For the actual proof of security, we will need to show that if N is a random Blum integer, then the

following distributions are computationally indistinguishable for every b:

{(N, γ, πN (x), r, (x · r)⊕ b)} and {(N, γ, γ2k , r, β)}

The first distribution corresponds to an encryption of b using modulus N and randomness (x, r)

along with γ the output of rRndEnc (a random solution to the equation γ2
k

= πN (x)). The

second corresponds to an obliviously generated ciphertext along with the randomness. If there

exists an efficient distinguisher, then there exists an efficient procedureA that on inputN, γ, outputs

π−1N (γ2
k
) with noticeable probability. Since squaring is a bijection on quadratic residues modulo

Blum integers, the output ofA is also the 4th root of γ2. We may then use a reduction in [Goldreich,

2004, Section C.1] to derive from A an algorithm for factoring N with noticeable probability.

4.7 Oblivious Transfer and MPC

We describe the construction underlying Theorem 4.1.3, which proceeds in two steps:

STEP 1: We begin with the [Canetti et al., 2002] construction of a semi-honest OT protocol as

applied to our non-committing encryption scheme, and observe that the protocol is secure

against malicious senders. For that, we just need to show how to extract the sender’s input

when the receiver is honest. In this case, the simulator will generate the public keys sent

by the receiver in the first message along with the secret keys, so that it can then extract the

malicious sender’s input by decrypting.
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STEP 2: Next, we apply the compiler presented in Chapter 5 to “boost” the security guarantee

from tolerating semi-honest receivers to tolerating malicious receivers. (Note that we will not

need to apply OT reversal as in Chapter 5.)
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Key generation Gen(1k):

1. Run Bach’s algorithm using the randomness rG to sample random N1, . . . , Nk3 ∈ {0, 1}k
along with their factorization factor(N1), . . . , factor(Nk3).

2. Set PK = [N1, . . . , Nk3 ] and SK = [factor(N1), . . . , factor(Nk3)].

Encryption Enc(b):

1. Parse the randomness rE as (a1, . . . , ak3) ∈ Z∗
N1
× · · · × Z∗

Nk3
, r1, . . . , rk3 ∈ {0, 1}k and

b1, . . . , bk3−1 ∈ {0, 1}.
2. Compute bk3 = b⊕ b1 ⊕ · · · ⊕ bk3−1.

3. Compute xi = a2
k

i ∈ QNi , i = 1, . . . , k3.

4. Output [πNi(xi), ri, (xi · ri)⊕ bi, i = 1, . . . , k3].

Decryption Dec(c):

1. Parse c as [yi, ri, βi, i = 1, . . . , k3].

2. Compute bi = (π−1
Ni

(yi) · ri)⊕ βi, i = 1, . . . , k3.

3. Output b1 ⊕ · · · ⊕ bk3 .

Oblivious key generation oGen(1k):

1. Parse the randomness r̂G ∈ {0, 1}k
4

as N1, . . . , Nk3 ∈ {0, 1}k.

2. Output (N1, . . . , Nk3).

Trapdoor invertibility key generation rGen(rG):

1. Run Gen(rG) to obtain r̂G = (N1, . . . , Nk3).

2. Output r̂G.

Oblivious sampling of ciphertexts oRndEnc(1k):

1. Parse the randomness r̂E as (γ1, . . . , γk3) ∈ Z∗
N1
× · · · × Z∗

Nk3
, s1, . . . , sk3 ∈ {0, 1}k and

β1, . . . , βk3 ∈ {0, 1}.

2. Compute yi = γ2
k

i ∈ QNi , i = 1, . . . , k3.

3. Output [yi, si, βi, i = 1, . . . , k3].

Trapdoor invertibility for ciphertexts rRndEnc(rG, rE, b):

1. Use rG to compute factor(N1), . . . , factor(Nk). and parse rE as in Enc.

2. Set si = ri and βi = (xi · ri)⊕ bi, i = 1, . . . , k3.

3. Pick a random γi uniformly from the set {γi ∈ Z∗
Ni
| γ2ki = πNi(xi)}.

4. Output r̂E = (γ1, . . . , γk3 , s1, . . . , sk3 , β1, . . . , βk3).

Figure 4.4: Trapdoor Simulatable PKE from hardness of factoring Blum integers
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Chapter 5

Simple, Black-Box Constructions of

Adaptively Secure Protocols

5.1 Introduction

Secure multi-party computation (MPC) allows several mutually distrustful parties to perform a joint

computation without compromising, to the greatest extent possible, the privacy of their inputs or

the correctness of the outputs. An important criterion in evaluating the security guarantee is how

many parties an adversary is allowed to corrupt and when the adversary determines which parties

to corrupt. In this work, we focus on MPC protocols secure against an adversary that corrupts an

arbitrary number of parties, and in addition, adaptively determines who and when to corrupt during

the course of the computation. Even though the latter is a very natural and realistic assumption

about the adversary, most of the MPC literature only addresses security against a static adversary,

namely one that chooses (and fixes) which parties to corrupt before the protocol starts executing.

In the absence of an honest majority, secure MPC protocols can only be realized under

computational assumptions. From both a theoretical and practical stand-point, it is desirable for

these protocols to be based on general hardness assumptions, and in addition, to require only

black-box access to the primitive guaranteed by the assumption (that is, the protocol refers only

to the input/output behavior of the primitive). Indeed, the first MPC protocols achieving security

without an honest majority [Goldreich et al., 1988] require non-black-box access to the underlying
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cryptographic primitives: the first step in the construction is to obtain protocols that are secure

against semi-honest adversaries, and the second handles malicious behavior by having the parties

prove in zero knowledge that they are adhering to the protocol constructions. It is the second

step that requires the code of the underlying primitive with the use of general NP reductions to

prove statements in zero knowledge. This aversely affects both computational complexity and

communication complexity of the resulting protocol as well as the complexity of implementing

the protocol.

In their seminal work, Ishai et al. [Ishai et al., 2006] exhibited MPC protocols that are secure

against a static adversary corrupting any number of parties and that rely only on black-box access

to a low-level primitive, such as (enhanced) trapdoor permutations and homomorphic encryption

schemes. This, along with the follow-up work of Haitner [Haitner, 2008], resolves the theoretical

question of the minimal assumptions under which we may obtain black-box constructions of secure

MPC protocols against a static adversary1. The main technical contribution in both works is to

construct a secure protocol for a specific two-party functionality, that of oblivious transfer (OT).

The general result then follows from a classic result of Kilian’s [Kilian, 1988] showing that any

multi-party functionality can be securely computed using black-box access to a secure OT protocol.

However, none of these works addresses security against an adaptive adversary, which begs the

following question:

Is it possible to construct MPC protocols secure against a malicious,

adaptive adversary that may corrupt any number of parties, given only black-

box access to a low-level primitive?

Towards resolving this question, Ishai, Prabhakaran and Sahai [Ishai et al., 2008] established an

analogue of Kilian’s result for an adaptive adversary. While there has been fairly extensive work on

secure OT protocols against a static malicious adversary (e.g. [Naor and Pinkas, 2001; Kalai, 2005;

Peikert et al., 2008]), very few - namely [Beaver, 1998; Canetti et al., 2002; Katz and Ostrovsky,

2004] - provide security against an adaptive adversary; moreover, all of those which do follow the

[Goldreich et al., 1988] paradigm and exploit non-black-box access to the underlying primitive.

1We note that subsequently, the works of [Ishai et al., 2006] and [Haitner, 2008] were combined in a journal version
[Haitner et al., 2011], which we refer to henceforth.
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5.1.1 Our results

Our main technical contribution is the construction of efficient OT protocols that achieve security

against an adaptive adversary, while relying only upon black-box access to some low-level primitive.

Specifically, we provide a compiler that transforms an OT protocol secure against a semi-honest,

adaptive adversary into one that is secure against a malicious, adaptive adversary, given only black-

box access to the underlying OT protocol and an “ideal” commitment scheme. In addition, we

achieve security in the universal composability (UC) model, where a protocol may be executed

concurrently with an unknown number of other protocols [Canetti, 2001]. This is a notable

improvement over afore-mentioned works of Ishai et al. [Haitner et al., 2011] which provide a

compiler for semi-honest OT to malicious OT, but only for static adversaries in the stand-alone

model.2

Theorem 5.1.1 There exists a black-box construction of a protocol that UC realizes OT against

a malicious, adaptive adversary in the FCOM-hybrid model, starting from any protocol that UC

realizes OT against a semi-honest, adaptive adversary.3 Moreover, the construction achieves a

constant multiplicative blow-up in the number of rounds.

We note that there are two models for adaptive corruptions: with and without secure erasures, and

our result applies to both models.

Our construction also improves upon the earlier work of Canetti et. al [Canetti et al.,

2002] achieving the same guarantee; their construction is non-black-box and incurs a blow-

up in round complexity proportional to the depth of the circuit computing the semi-honest

OT protocol. Combined with the 2-round semi-honest OT protocol in [Canetti et al., 2002;

Choi et al., 2009a], we obtain the first constant-round protocol for OT in the FCOM-hybrid model

secure against a malicious, adaptive adversary.4 Moreover, the protocol uses black-box access to a

2We note that our construction does not improve on the computational complexity of the previous compiler, as
measured by the number of invocations of the underlying semi-honest OT protocol. However, we believe our construction
may be combined with the OT extension protocol in [Ishai et al., 2008, Section 5.3] to achieve better efficiency.

3In both the semi-honest and the malicious OT protocols, we allow the adaptive adversary to corrupt both the sender
and the receiver.

4In an independent work [Garay et al., 2009], Garay, Wichs and Zhou also constructed a constant-round protocol for
OT in the common reference string model, secure against a malicious, adaptive adversary. Their underlying assumptions
are comparatively more restrictive.
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Functionality FCOM

1. Upon receiving input (commit, sid, Pj , x) from Pi where x ∈ {0, 1}m, internally record
the tuple (Pi, Pj , x) and send the message (sid, Pi, Pj) to the adversary; When receiving
(ok) from the adversary, output (receipt, sid, Pi) to Pj . Ignore all subsequent (commit, ...)
inputs.

2. Upon receiving a value (reveal, sid) from Pi, where a tuple (Pi, Pj , x) is recorded, send
(x) to the adversary; When receiving (ok) from the adversary, output (reveal, sid, x) to Pj .

Figure 5.1: String Commitment Functionality

Functionality FOT

1. Upon receiving input (receiver, sid, r) from R where sid = (S,R, sid′) and r ∈ {0, 1},
record the tuple (sid, r) and send (recevier, sid) to S and the adversary.

2. Upon receiving input (sender, sid, s0, s1) from S where sid = (S,R, sid′) and s0, s1 ∈
{0, 1}`, send (output, sid, sr) to R and (output, sid) to the adversary and halt. If no
(receiver, sid, . . .) message was previously sent, ignore the message.

Figure 5.2: Oblivious Transfer Functionality

low-level primitive, that of trapdoor simulatable cryptosystems5, which may in turn be based on the

RSA, DDH, worst-case lattice assumptions or hardness of factoring.

The key conceptual insight underlying the construction is to view the [Haitner et al., 2011]

compiler as an instantiation of the [Goldreich et al., 1988] paradigm in the FCOM-hybrid model,

except enforcing consistency via cut-and-choose techniques instead of using zero-knowledge

proofs. This perspective leads naturally to a simpler, more modular, and more direct analysis

of the previous compiler for static adversaries. In addition, we immediately obtain a string OT

protocol, which is important for obtaining round-efficient MPC protocols [Lindell and Pinkas, 2007;

Ishai et al., 2008]. Showing that the modified compiler achieves UC security against an adaptive

adversary requires new insight in constructing a simulator and in the analysis. We defer a more

detailed discussion of the construction to Section 5.2, and instead focus here on the applications to

secure MPC derived by combining our OT protocol with various MPC protocols in the FOT-hybrid

model in [Ishai et al., 2008].

5Trapdoor simulatable cryptosystems are introduced in [Choi et al., 2009a], as a relaxation of simulatable
cryptosystems [Damgård and Nielsen, 2000]. These are semantically secure encryption schemes with special algorithms
for “obliviously” sampling public keys and ciphertexts without learning the respective secret keys and plaintexts. In
addition, both of these oblivious sampling algorithms are efficiently invertible given the corresponding secret key.
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MPC in the FCOM-hybrid model.

Combining our OT protocol with [Ishai et al., 2008, Theorem 2], we obtain UC-secure MPC

protocols in the FCOM-hybrid model against a malicious, adaptive adversary, which improves upon

[Canetti et al., 2002] in that we only require black-box access to the underlying primitive:

Theorem 5.1.2 There exists a protocol in the FCOM-hybrid model that uses black-box access to

a (trapdoor) simulatable cryptosystem and UC realizes any well-formed multi-party functionality

against a malicious, adaptive adversary that may corrupt any number of parties.

The round complexity of the protocol is proportional to the depth of the circuit computing the

functionality. By combining our OT protocol with [Ishai et al., 2008, Theorem 3], we obtain a

constant-round MPC protocol in the FCOM with the same guarantees, except that the adversary is

limited to corrupting up to m− 1 parties for a m-party functionality.

The advantage of constructing UC-secure MPC protocols in the FCOM-hybrid model is that they

may be combined with many of the existing UC feasibility results under various set-up or modeling

assumptions e.g. [Canetti et al., 2002; Barak et al., 2004; Canetti et al., 2007; Katz, 2007], almost

all of which start by showing how to UC realize FCOM in some new security model6. Moreover, if

the protocol realizing FCOM uses black-box access to a low-level primitive, so will the combined

protocol.

With a slight modification to our compiler Comp(Π), we obtain an analogous result for the case

where we start with Π that is secure against semi-honest, static adversaries and end with Comp(Π)

secure against malicious, static adversaries. Combining our OT protocol with [Ishai et al., 2008,

Theorem 2], as before, we obtain UC-secure MPC protocols in the FCOM-hybrid model against a

malicious, static adversary:

Theorem 5.1.3 There exists a protocol in the FCOM-hybrid model that uses black-box access to an

(enhanced) trapdoor permutation and UC realizes any well-formed multi-party functionality against

a malicious, static adversary that may corrupt any number of parties.

6This is because it is impossible to UC realize any non-trivial 2-party functionality in the plain model (even against
static adversaries) [Canetti et al., 2003; Canetti, 2001].
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MPC in the standalone model.

Next, we present our results for the stand-alone model with adaptive post-execution corruptions

[Canetti, 2000], which is a weaker notion of security than UC security with adaptive corruptions

(and in particular, our protocols in the FCOM-hybrid model achieve this notion of security). Here,

there is a two-party protocol that uses black-box access to a one-way function and securely realizes

FCOM in the plain model without any set-up assumptions [Pass and Wee, 2009]. This yields the

following corollaries (via the composition theorem in [Canetti, 2000]):

Corollary 5.1.4 There exists a constant-round string OT protocol that uses black-box access to a

(trapdoor) simulatable cryptosystem and is secure in the stand-alone model against a malicious,

adaptive adversary.

Corollary 5.1.5 There exists a protocol that uses black-box access to a (trapdoor) simulatable

cryptosystem and securely computes any well-formed multi-party functionality in the stand-alone

model against a malicious, adaptive adversary that may corrupt any number of parties.

Both of these results hold in the setting without erasures and improve on the work of Beaver

[Beaver, 1998] which achieve similar security guarantees but with non-black-box access to the

underlying primitive. Furthermore, if we assume secure erasures, then we may relax the assumption

in both results to any (constant-round) semi-honest OT protocol against static adversaries. Here, we

also rely on a result of Lindell’s that transforms a semi-honest OT protocol against static adversaries

into one that is secure against adaptive adversaries with secure erasures [Lindell, 2009].

5.1.2 Follow-up work

A variant of our compiler and simulation strategy was used in the follow-up works of Wee [Wee,

2010] and Goyal [Goyal, 2011] to obtain black-box, constant-round protocols for secure multi-party

computation in the stand-alone model.
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5.2 Construction

5.2.1 High-Level Description

We provide an overview of the [Haitner et al., 2011] compiler (which is in turn reminiscent of the

constructions in [Crépeau et al., 1995]). Our presentation is slightly different from, and simpler

than, that in the original works, and is closer in spirit to the [Goldreich et al., 1988] compiler.

Our presentation is easier to adapt to the UC setting and the adaptive setting (and also OT with

strings instead of bits) since we do not need to rely on the intermediate notion and construction of

a defensible OT protocol.7 We focus on the main transformation Comp (shown in Fig 5.3), which

“boosts” the security guarantee of an OT protocol Π from security against semi-honest receivers to

security against malicious receivers while preserving the security guarantee for corrupted senders.

Phase I: Random tape generation. The sender and the receiver engage in a coin-tossing (in the

well) protocol to determine a collection of 2n random strings for the receiver.

Phase II: Basic execution. The sender and the receiver engage in 2n parallel executions of Π with

random inputs: the sender will choose its own inputs randomly and independently for each of

the 2n executions, whereas the inputs and randomness for the receiver are determined by the

preceding coin-tossing protocol (one random string for each execution of Π).

Phase III: Cut-and-choose. The sender and the receiver engage in a coin-tossing protocol to pick

a random subset Q of n executions, and the receiver proves that it acted accordingly to Π

for the n executions in Q by revealing the inputs and randomness used for those executions.

The sender verifies that the inputs and randomness are indeed consistent with both the n

executions of Π and the coin-tossing protocol, and if so, we are guaranteed that the receiver

must have behaved honestly in at least one of the n executions of Π not in Q (except with

negligible probability). Otherwise, the sender detects the malicious behavior of the receiver

and aborts the protocol. Note that in this case the sender’s security is preserved since, although

7Specifically, the previous compiler proceeds in two phases. The first [Haitner, 2008] transforms any semi-honest OT
protocol into defensible OT protocols. A defensible OT protocol provides an intermediate level of security interpolating
semi-honest and malicious OT. The second [Ishai et al., 2006] transforms any defensible OT protocol into a malicious
one.
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the receiver may have learned all of the sender’s random inputs in Phase II by behaving

maliciously in all 2n OT executions, this information reveals nothing about the sender’s true

inputs.

Phase IV: Combiner. We may then apply a combiner that (essentially) yields a single secure OT

protocol, starting a collection of n OT protocols all of which guarantee security against a

malicious sender, but only one of which guarantee security against a malicious receiver.

To obtain a full-fledged string-OT protocol secure against both a malicious sender and a malicious

receiver starting from a semi-honest bit-OT protocol, we proceed as in [Ishai et al., 2006], with the

addition of Step 3 to directly obtain a string-OT protocol and with references to semi-honest instead

of defensible adversaries:

1. Use Comp to obtain a bit-OT protocol secure against a semi-honest sender and a malicious

receiver.

2. Use OT reversal [Wolf and Wullschleger, 2006] (shown in Fig 5.4) to obtain a bit-OT protocol

secure against a malicious sender and a semi-honest receiver.

3. Repeat in parallel to obtain a string-OT protocol secure against a malicious sender and a

semi-honest receiver.

4. Use Comp again to obtain a string-OT protocol secure against malicious sender and receiver.

In this work, we will view the above construction in the FCOM-hybrid model, where the FCOM

functionality is used to implement the coin-tossing protocol in Phases I and III [Blum, 1981;

Canetti and Rabin, 2003].

5.2.2 Achieving Security against Adaptive Adversaries

The main technical challenge in coping with adaptive adversaries in Comp(Π) lies in simulating

the sender messages in Phase II of Comp(Π) for the case of a malicious receiver and honest sender.

One possible approach is to simply run the honest sender’s code in Phase II with random inputs.

However, this approach does not allow us to handle the case that the adversary chooses to corrupt
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INITIALIZATION.

Sender input: (sender, sid, s0, s1) where s0, s1 ∈ {0, 1}`.
Receiver input: (receiver, sid, r) where r ∈ {0, 1}.

PHASE I: RANDOM TAPE GENERATION.

1. R chooses 2n random strings (rR
1 , τ

R
1 ), . . . , (r

R
2n, τ

R
2n) and sends (commit, sidi, r

R
i , τ

R
i ) to

FCOM, for i = 1, 2, . . . , 2n.

2. Upon receiving (receipt, sid1), . . . , (receipt, sid2n) from FCOM, S sends 2n random strings
(rS

1, τ
S
1 ), . . . , (r

S
2n, τ

S
2n).

3. R sets ri = rR
i ⊕ rS

i and τi = τR
i ⊕ τ S

i , for i = 1, 2, . . . , 2n.

PHASE II: BASIC EXECUTION.

1. S chooses 2n pairs of random inputs (s01, s
1
1), . . . , (s

0
2n, s

1
2n).

2. S and R engages in 2n parallel executions of the protocol Π. In the ith execution, S inputs
(s0i , s

1
i ) and R inputs ri with randomness τi and obtains output srii .

PHASE III: CUT-AND-CHOOSE.

1. S chooses a random q = (q1, . . . , qn) ∈ {0, 1}n. The string q is used to define a set of indices
Q ⊂ {1, 2, . . . , 2n} of size n in the following way: Q = {2i− qi}ni=1.

2. For every i ∈ Q, R sends (reveal, sidi) to FCOM and upon receiving (reveal, sidi, r
R
i , τ

R
i ) from

FCOM, S computes (ri, τi).

3. S checks that for all i ∈ Q, (ri, τi) is consistent with R’s messages in the i’th execution of Π.
If not, S aborts and halts.

PHASE IV: COMBINER.

1. For every j /∈ Q, R computes αj = r ⊕ rj and sends {αj}j /∈Q to S.

2. S computes σ0 = s0 ⊕ (
⊕

j /∈Q s
αj

j ) and σ1 = s1 ⊕ (
⊕

j /∈Q s
1−αj

j ) and sends (σ0, σ1).

3. R computes and outputs sr = σr ⊕ (
⊕

j /∈Q s
rj
j ).

Figure 5.3: THE ADAPTIVE COMPILER Comp(Π)
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the sender at the end of the protocol: Once the sender’s inputs are revealed, we cannot go back and

change the random inputs used in Phase II to be consistent with these inputs. Another approach

is to use the simulator for Π to simulate sender messages in Phase II for the case of honest sender

and corrupt receiver. The problem with this approach is that the receiver may behave maliciously

in some of the executions in Phase II and Π is only guaranteed to be simulatable when the receiver

behaves semi-honestly. What we actually do is combine the above two approaches and simulate

honest sender messages in Phase II against a malicious receiver as follows:

1. For each i, extract the receiver’s input and randomness for the i’th execution of Π from the

commitment in Phase I.

2. Upon receiving a message from the receiver in the i’th execution of Π, check if all of the

receiver’s messages so far are consistent with its input and randomness. If so, generate the

sender’s response by using the simulator for Π. Otherwise, corrupt the sender in the i’th

execution of Π to obtain its input and random tape and complete the simulation of the sender’s

messages using the honest sender strategy.

We note that, unlike the compiler of [Haitner et al., 2011], our compiler does not require a coin-

tossing protocol to determine the set opened in the cut-and-choose in Phase III. Instead, this set is

chosen by the sender alone.

5.2.3 Achieving Security against Static Adversaries

Our analysis also extends to the UC static case. More specifically, we prove the following analogue

of Theorem 5.1.1:

Theorem 5.2.1 There exists a black-box construction of a protocol that UC realizes string-OT

against a static, malicious adversary in the FCOM-hybrid, starting from any bit-OT protocol secure

against a static, semi-honest adversary in the stand-alone model. Moreover, the construction

achieves a constant multiplicative blow-up in the number of rounds.

We note that, unlike in the adaptive case, our compiler for static adversaries requires the parties to

run a coin-tossing protocol in Phase III. The reason that coin-tossing is required in the static case but
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not the adaptive case seems closely related to the selective decommitment problem which occurs

in the static case but not the adaptive case (see, [Dwork et al., 2003]). Nevertheless, our result and

analysis for static adversaries offers several improvements over that in [Haitner et al., 2011]:

• The simulator in [Ishai et al., 2006] uses rewinding and runs in expected polynomial time,

even in the FCOM-hybrid model.

• Our result immediately yields string-OT protocols and in a constant number of rounds.

• We eliminate several complications of the analysis in both [Ishai et al., 2006] and [Haitner,

2008], most notably verifying that the OT reversal protocol in [Wolf and Wullschleger, 2006]

works for defensible adversaries [Ishai et al., 2006, Claim 5.2]. The overall analysis is

simpler, more modular, and more intuitive.

Organization.

We present our analysis of Comp and OT reversal for adaptive adversaries in the UC model in

Sections 5.3 and 5.4 respectively. We deal with the case of static adversaries in Section 5.5.

5.3 Achieving security against a malicious receiver

In this section, we show that Comp boosts the security guarantee from security against semi-honest

receivers to security against malicious receivers.

Proposition 5.3.1 Suppose Π is a protocol that UC realizes FOT against a semi-honest, adaptive

adversary, and let Comp(Π) be the protocol obtained by applying the compiler in Fig 5.3 to Π.

Then, Comp(Π) UC realizes FOT against an adaptive adversary with a semi-honest sender and a

malicious receiver. Moreover, if Π is in addition secure against a malicious, adaptive sender, then

Comp(Π) UC realizes FOT against an adaptive adversary with malicious sender and receiver.

A hybrid execution.

To facilitate the analysis, we introduce an intermediate setting (inspired by [Ishai et al., 2007])

in which the protocol Comp(Π) is executed, where there is again a sender S and a receiver R
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and in addition 2n pairs of “virtual” parties (S1,R1), . . . , (S2n,R2n). The i’th execution of Π in

Comp(Π) will be executed by Si and Ri with inputs from S and R respectively. We will require

that R1, . . . ,R2n are always semi-honest; i.e. they use a truly random tape for Π. Moreover, the

environment is not aware of the “virtual parties”.

PHASE I/II: BASIC EXECUTION.8 S chooses 2n pairs of random inputs (s01, s
1
1), . . . , (s

0
2n, s

1
2n)

and R chooses 2n random inputs r1, . . . , r2n. For each i = 1, . . . , 2n, S activates Si with

(sender, sidi, s0i , s
1
i ) and R activates Ri with (receiver, sidi, ri). In HYBRIDΠ,A,Z , the parties

Si and Ri execute Π in parallel. In HYBRIDFOT,A,Z , the parties Si and Ri call the ideal

functionality FOT.

PHASE III: CUT-AND-CHOOSE. S chooses a random q ∈ {0, 1}n which identifies Q ⊂

{1, 2, . . . , 2n} as in Comp(Π) and sends q to R. S checks that for all i ∈ Q, Si is not

corrupted. Otherwise, abort.

PHASE IV: COMBINER. Proceed as in Phase IV of Comp(Π).

We say that an adversary A in the hybrid execution is well-formed if it satisfies the following

properties:

• When A corrupts S, it also corrupts each of S1, . . . ,S2n. Moreover, if S is semi-honest, then

S1, . . . ,S2n are semi-honest.

• When A corrupts R, it also corrupts each of R1, . . . ,R2n. Moreover, R1, . . . ,R2n are always

semi-honest, even if R is malicious.

• If R is corrupted, then A may corrupt any of S1, . . . ,S2n with semi-honest behavior, without

corrupting S.

• Upon receiving the set Q in Phase III from S, A may corrupt all of Rj , j ∈ Q with semi-

honest behavior, even if neither R nor S is corrupted. However, if R is not corrupted, then

Rj , j /∈ Q are also not corrupted.

8The choice of notation is so that Phase III always corresponds to cut-and-choose and Phase IV corresponds to
combiner in both Comp(Π) and in the hybrid executions.
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We will also stipulate that the communication channels between S and each of S1, . . . ,S2n are

private and authenticated. The same holds for the communication channels between R and each of

R1, . . . ,R2n. In addition, S learns whether each of S1, . . . ,S2n is corrupted.

Lemma 5.3.2 For every adversaryA that interacts with Comp(Π) in the FCOM-hybrid model, there

exists a well-formed adversary A′ that interacts in the hybrid execution running Π, such that for

every environment Z ,

EXEC
FCOM
Comp(Π),A,Z ≡ HYBRIDΠ,A′,Z

The statement of the lemma holds for protocols Π that are secure against semi-honest, adaptive

adversaries without erasures and well-formed adaptive adversaries A′ and A′′. In the first step,

we show how to enforce semi-honest behavior of R1, . . . ,R2n in HYBRIDΠ,A′,Z . The high-level

strategy is as follows: if a corrupted receiver in Comp(Π) deviates from semi-honest behavior in the

i’th execution of Π in Phase II, we corrupt Si in HYBRIDΠ,A′,Z to obtain its input and randomness,

and continue the simulation by running the honest sender strategy. Proof: As usual, A′ works by

invoking a copy of A and running a simulated interaction of A with Z and the parties S and R. We

will refer to the communication of A′ with Z and Comp(Π) as external communication, and that

with the simulated A as internal communication. More precisely, A′ works as follows:

Simulating the communication with Z: Every input value that A′ receives from Z externally is

written into the adversary A’s input tape (as if coming from A’s environment). Every output

value written by A on its output tape is copied to A′’s own output tape (to be read by the

external Z).

Simulating the case when neither party is corrupted:

PHASE I. A′ internally passesA the message (receipt, sid1), (receipt, sid2), . . . , (receipt, sid2n)

as if sent from FCOM to S. Then, A′ chooses 2n random strings (rS
1 , τ

S
1 ), . . . , (r

S
2n, τ

S
2n),

and simulates S sending R those 2n strings.

PHASE II. For each round in the protocol Π, if it is the receiver’s turn, then for each i =

1, . . . , 2n,A′ obtains βi from Ri for the corresponding round. Next,A′ internally passes
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A the message (β1, . . . , β2n), as if sent from R to S. The sender’s turn is handled

analogously.

PHASE III. When S externally sends q which determines Q, then for each i ∈ Q: corrupt Ri

to obtain (ri, τi) and compute rR
i = ri⊕rS

i and τR
i = τi⊕τ S

i . Send (reveal, sidi, rR
i , τ

R
i )

to A as if coming from FCOM.

PHASE IV. Just forward all the messages between S and R.

Simulating the case when only the sender is corrupted: This is essentially the same as when neither

party is corrupted, except the values (rS
1 , τ

S
1 ), . . . , (r

S
2n, τ

S
2n) in Phase I, sender messages in

Phase II, and the value q in Phase III are chosen by A.

Simulating the case when only the receiver is corrupted:

PHASE I. A′ externally corrupts (R1, . . . ,R2n) and chooses (r1, . . . , r2n) and (τ1, . . . , τ2n)

at random. Next,A′ obtains fromA the messages (commit, sidi, rR
i , τ

R
i ) as sent by R to

FCOM. Then, A′ sets rS
i = ri ⊕ rR

i and τ S
i = τi ⊕ τR

i for i = 1, 2, . . . , 2n and internally

passes (rS
1 , τ

S
1 ), . . . , (r

S
2n, τ

S
2n) to A as if sent by S to R.

PHASE II. We need to simulate the external messages sent by S in Comp(Π) (with the

“help” of S1, . . . ,S2n). If R behaves consistently in the ith execution of Π, we will

just obtain the corresponding message from Si; otherwise, we will corrupt Si so that we

may compute those messages.

First, we handle receiver messages in Comp(Π). Whenever A sends a message

(β1, . . . , β2n) from R where βi is the message in the ith parallel execution of Π, do

the following for each i = 1, . . . , 2n:

• If Ri has not aborted and βi is consistent with (ri, τi), deliver the corresponding

message from Ri to Si.

• If Ri has not aborted and βi is not consistent with (ri, τi), A′ tells Ri to abort. In

addition, A′ corrupts Si to obtain its input (s0i , s
1
i ) and its randomness.

• If Ri has aborted, then record βi and do nothing.
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Next, we handle sender messages in Comp(Π). Whenever A expects a message

(γ1, . . . , γ2n) from S, where γi is the message in the ith parallel execution of Π, do

the following for each i = 1, . . . , 2n:

• If Si is corrupted, thenA′ computes γi according to Si’s input and randomness and

the previous messages from Ri.

• If Si is not corrupted, then set γi to be the corresponding message sent from Si to

Ri.

A′ then sends (γ1, . . . , γ2n) to A as if sent by S to R.

PHASE III. Deliver q sent externally by S to R. Check that for all i ∈ Q, Si is not corrupted.

Otherwise, abort.

PHASE IV. Just forward all the messages between S and R.

Dealing with corruption of parties: When the simulated A internally corrupts R, A′ externally

corrupts R and thus R1, . . . ,R2n, and learns the values r1, . . . , r2n and τ1, . . . , τ2n (in addition

to the input r). A′ then sets rR
i = ri⊕rS

i and τR
i = τi⊕τ S

i for i = 1, 2, . . . , 2n and internally

passes (rR
1 , τ

R
1 ), . . . , (r

R
2n, τ

R
2n) to A as the randomness for R in Comp(Π). Similarly, when

the simulatedA internally corrupts S,A′ externally corrupts S and thus S1, . . . , S2n and learns

the values (s01, s
1
1), . . . , (s

0
2n, s

1
2n) along with the randomness used by S1, . . . ,S2n in the 2n

executions of Π. A′ then internally passes all of these values to A as the randomness for S in

Comp(Π). In addition, for all i ∈ Q,A′ passes the value (rR
i , τ

R
i ) toA as the value sent from

FCOM to S in Phase III.

It is straight-forward to verify that in Phase III, checking Si is not corrupted in HYBRIDΠ,A′,Z

is identical to R behaving consistently in the ith execution of Π in Comp(Π). Thus, the abort

condition at the end of Phase III are identical. We may therefore conclude that the ensembles EXEC

and HYBRID are identical.

Lemma 5.3.3 For every well-formed adversary A′ that interacts in the hybrid execution running

Π, there exists a well-formed adversaryA′′ that interacts in the hybrid execution running FOT, such
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that for every environment Z ,

HYBRIDΠ,A′,Z
c≈ HYBRIDFOT,A′′,Z

The statement of the lemma is intended for protocols Π that are secure against semi-honest, adaptive

adversaries without erasures and well-formed adaptive adversaries A′ and A′′. However, we note

that the lemma also holds for protocols Π that are secure against semi-honest, adaptive adversaries

with erasures and well-formed adaptive adversaries A′ and A′′ with erasures as well as protocols

Π that are secure against semi-honest, static adversaries and well-formed static adversaries A′ and

A′′.

Proof: The idea is that we may interpret HYBRIDΠ,A′,Z as an execution involving 4n + 2 parties

S,R,S1, . . . ,S2n,R1, . . . ,R2n jointly running some protocol that uses Π as a sub-routine, and

HYBRIDFOT,A′′,Z as an execution involving the same 4n+2 parties running the same protocol except

with an ideal FOT functionality instead of Π. The claim then follows from the UC composition

[Canetti, 2001].

Lemma 5.3.4 For every well-formed adversary A′′ that interacts in the hybrid execution running

FOT, there exists an ideal-process adversary S, such that for every environment Z ,

HYBRIDFOT,A′′,Z ≈s IDEALFOT,S,Z

The statement of the lemma is intended for adaptive adversaries A′′ and S. However, we note that

the lemma also holds for adaptive adversaries A′′ and S with erasures as well as static adversaries

A′′ and S.

Proof: Again, we first specify S depending on the corruption pattern:

Simulating the communication with Z: Every input value that S receives from Z externally is

written into the adversary A′′’s input tape (as if coming from A′′’s environment). Every

output value written by A′′ on its output tape is copied to S’s own output tape (to be read by

the external Z).

Simulating the case when neither party is corrupted:
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PHASE I/II. Internally pass (receiver, sid1), . . ., (receiver, sid2n) and (output, sid1), . . .,

(output, sid2n) to A′′ as if FOT did.

PHASE III. Internally pass a random q ∈ {0, 1}n to A′′ as if S sent it to R. For each i ∈ Q,

when A′′ corrupts Ri, pick a random ri ∈ {0, 1} and a random srii ∈ {0, 1}`.

PHASE IV. Wait until (receiver, sid) comes externally from FOT. Send random {αj}j /∈Q as

if sent from R. Wait until (output, sid) comes externally from FOT. Internally pass

random (σ0, σ1) to A′′ as if S sent the pair to R.

Simulating the case when only the sender is corrupted:

PHASE I/II. Internally pass (receiver, sid1), . . ., (receiver, sid2n) to A′′ as if FOT did. When

A′′ as Si sends (sender, sidi, s0i , s
1
i ) to FOT, S records (s0i , s

1
i ) and internally passes

(output, sid1), . . ., (output, sid2n) to A′′ as if FOT did.

PHASE III. Proceed as in the case neither party is corrupted, except q is chosen by A′′.

PHASE IV. Wait until (receiver, sid) comes externally from FOT. Internally pass random

{αj}j /∈Q to A′′ as if R did. When A′′ as S sends (σ0, σ1), compute s0 = σ0 ⊕

(
⊕

j /∈Q s
αj

j ) and s1 = σ1 ⊕ (
⊕

j /∈Q s
1−αj

j ). Externally send (sender, s0, s1) to FOT.

Simulating the case when only the receiver is corrupted:

PHASE I/II. S picks 2n pairs of random inputs (s01, s
1
1), . . . , (s

0
2n, s

1
2n). If A′′ as Ri sends

(receiver, sidi, ri) to FOT, S records ri and internally passes (receiver, sidi) to A′′ as if

FOT did. Then, S internally passes (output, sidi, s
ri
i ) to A′′ as if FOT sent the message

to Ri. If A′′ corrupts Si, then S presents (s0i , s
1
i ) as Si’s input to A′′.

PHASE III. Pick a random q ∈ {0, 1}n and internally pass q to A′′ as if S did. Compute

Q ⊂ {1, 2, . . . , 2n} as in Comp(Π). Check that for all i ∈ Q, Si is not corrupted.

Otherwise, S simulates an abort from S.

PHASE IV. Compute j∗ /∈ Q where Sj∗ is not corrupted; output failure if such a j∗ does

not exist. When A′′ sends {αj}j /∈Q as R, compute r = αj∗ ⊕ rj∗ and externally send
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(receiver, sid, r) to FOT. Upon receiving (output, sid, sr) externally from FOT, compute

(σ0, σ1) so that σr is consistent with sr as follows:

• If r = 0, then σ0 = s0 ⊕ (
⊕

j /∈Q s
αj

j ) and σ1 is a random string in {0, 1}`.

• If r = 1, then σ0 is a random string in {0, 1}` and σ1 = s1 ⊕ (
⊕

j /∈Q s
1−αj

j ).

S then sends (σ0, σ1) to A′′ as if sent by S to R.

Dealing with corruptions: Corruptions of R1, . . . ,R2n,S1, . . . ,S2n may be handled as above. For

corruptions of R and S, we will consider two cases depending on the corruption schedule. In

the first case, at least one of the parties is corrupted before the message (σ0, σ1) is sent.

• Once S is corrupted, S learns the actual input (s0, s1). If S is corrupted before the

messages (σ0, σ1) are computed, then S may simply present (s01, s
1
1), . . . , (s

0
2n, s

1
2n) (as

chosen in Phase I) as the randomness of S. Otherwise, S modifies s
1−rj∗
j∗ (if necessary)

so that both relations σ0 = s0⊕(
⊕

j /∈Q s
αj

j ) and σ1 = s1⊕(
⊕

j /∈Q s
1−αj

j ) are satisfied.

• Once R is corrupted, S learns the actual input r. If R is corrupted before the messages

{αj}j /∈Q are computed, then S may simply present (r1, . . . , r2n) (as chosen in Phase

I) as the randomness of R. Otherwise, S modifies {rj}j /∈Q so that rj = r ⊕ αj . In

addition, S presents srii as the output of Ri, i = 1, 2, . . . , 2n.

In the other case, neither party is corrupted when the message (σ0, σ1) is sent.

• Once S is corrupted, we will modify both s0j∗ and s1j∗ so that (σ0, σ1) is consistent with

(s0, s1).

• Once R is corrupted, we will first modify {rj}j /∈Q as in the previous case and then

modify s
rj∗
j∗ so that σr is consistent with sr.

We claim that if S does not output failure, then the ensembles HYBRIDFOT,A′′,Z and IDEALFOT,S,Z

are identical. This is clear up to the end of Phase III. For Phase IV, observe that if S and Sj∗ are not

corrupted, then from the view of A′′ and Z in HYBRIDFOT,A′′,Z , the string s
1−rj∗
j∗ is truly random.

As such, σ1−r is also truly random. Similarly, if R is not corrupted, then from the view of A′′ and

Z , the n values {rj}j /∈Q are truly random and thus {αj}j /∈Q are also truly random. Furthermore, if
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neither S nor R is corrupted just before the message (σ0, σ1) is sent, then from the view of A′′ and

Z , both s0j∗ and s1j∗ are truly random, and thus both σ0 and σ1 are truly random.

It remains to show that S outputs failure with negligible probability. Observe that S only outputs

failure if at the start of Phase IV, all of the following conditions hold:

• Neither party has aborted. In addition, the sender is honest at the start of Phase IV, so the

challenge q is chosen at random.

• Amongst the n pairs of parties (S1,S2), . . . , (S2n−1,S2n), exactly one party in each pair is

corrupted. Otherwise, if there is a pair where both parties are corrupted, then S will abort at

the end of Phase III; and if there is a pair where neither party is corrupted, then there is an

uncorrupted Sj∗ .

• The set Q corresponding to the challenge q is exactly the set of n uncorrupted parties (one in

each pair).

Clearly, the last condition only holds with probability 2−n over a random choice of q.

5.4 Malicious sender and semi-honest receiver

In this section, we reverse the OT protocol from the previous section to obtain one that is secure

for a malicious sender and a semi-honest receiver. The construction (shown in Fig 5.4) is the same

as that in [Wolf and Wullschleger, 2006], the novelty lies in the analysis which establishes security

against an adaptive adversary. We note that the analysis though tedious, is fairly straight-forward.

Proposition 5.4.1 For every adaptive adversary A that interacts with the protocol ψ in the FOT-

hybrid model, there exists an adaptive adversary S that interacts with FOT, such that for every

environment Z ,

EXEC
FOT
ψ,A,Z ≡ IDEALFOT,S,Z .

Moreover, the corruption pattern in S is the reverse of that in A.
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INITIALIZATION.

Sender input: (sender, sid, s0, s1) where s0, s1 ∈ {0, 1} and sid = (S,R, sid′).

Receiver input: (receiver, sid, r) where r ∈ {0, 1}.

PHASE I: CALL FOT.

1. S sends (receiver, sid1, s0 ⊕ s1) to

2. Upon receiving (receiver, sid1) from FOT, R chooses a bit ρ ∈R {0, 1} and sends
(sender, sid1, ρ, ρ⊕ r) to FOT.

PHASE II: REVERSE.

1. Upon receiving (output, sid1, a) from FOT, S computes α = s0 ⊕ a and sends α to R.

2. Upon receiving α, R computes and outputs ρ⊕ α.

Figure 5.4: THE OT-REVERSAL PROTOCOL ψ

The statement of the lemma is intended for protocols ψ that are secure against semi-honest, adaptive

adversaries without erasures and adaptive adversaries A and S. However, we note that the lemma

also holds for protocols ψ that are secure against semi-honest, adaptive adversaries with erasures

and semi-honest, adaptive adversaries A and S with erasures as well as protocols ψ that are secure

against semi-honest, static adversaries and static adversaries A and S.

Proof: As usual, S works by invoking a copy of A and running a simulated interaction of A with

Z and the parties S and R in the FOT-hybrid model. We will refer to the communication of S with

Z and ψ as external communication, and that with the simulated A as internal communication. In

addition, we will refer to the FOT functionality in the real execution as the internal FOT, and that in

the ideal execution as the external FOT. S works as follows:

Simulating the communication with Z: Every input value that S externally receives from Z is

written into the adversary A’s input tape (as if coming from A’s environment). Every output

value written by A on its output tape is copied to S’s own output tape (to be read by the

external Z).

Simulating the case when neither party is corrupted: Internally pass (receiver, sid1) to A as

if FOT did. Wait until (receiver, sid) comes externally from FOT, and then internally pass
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(output, sid1) to A as if FOT did. Wait until (output, sid) comes externally from FOT, and

then choose α ∈ {0, 1} at random and internally pass α to A as if S sent it to R.

Simulating the case when only the sender is corrupted: When A as S sends (receiver, sid1, d)

to FOT, S first waits until (receiver, sid) comes externally from FOT, and then S chooses

a ∈ {0, 1} at random and internally passes (output, sid1, a) to A as if FOT did.

When A as S sends α, S externally sends (sender, sid, a⊕ α, a⊕ α⊕ d) to FOT.

Simulating the case when only the receiver is corrupted: Internally pass (receiver, sid1) to A as

if FOT did. When A as R sends (sender, sid1, a0, a1) to FOT, S sets ρ = a0, r = a0 ⊕ a1

and externally sends (receiver, sid, r) to FOT. S also internally passes (output, sid1) to A as

if FOT did.

Upon receiving (output, sid, sr) externally from FOT, S internally passes α = sr ⊕ ρ to A as

if S sent it.

Dealing with corruptions: When R is corrupted, S needs to present A with a consistent random

tape comprising of a single bit ρ. When S is corrupted, S needs to present A with the output

bit a which S receives from the internal FOT. We consider four cases depending on the

corruption schedule:

• Case 1: R is corrupted before it sends its input to the internal FOT. In this case, S

proceeds as in the case when only the receiver is corrupted to compute ρ and r. If and

when S is corrupted, S computes a = ρ ⊕ rd where d is S’s input to the internal FOT

(set to s0 ⊕ s1 if S is honest when it submits its input to the internal FOT).

• Case 2: Neither party is corrupted when α is sent. In this case, S picks a random

α ∈ {0, 1}. Then, when R is corrupted, S learns both its input r and its output sr, and

computes ρ = α ⊕ sr. When S is corrupted, S learns its input s0, s1 and computes

a = α⊕ s0.

If neither Case 1 nor Case 2 holds, then the adversary A corrupts either R or S (or both) and

learns at least one of ρ and a before seeing α.
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• Case 3: A learns a first. This means A corrupts S first and corrupts R (if at all) after

S receives a from the internal FOT. Then, S proceeds as in the case where only the

sender is corrupted and picks a random a ∈ {0, 1}. When R is corrupted, S learns r and

computes ρ = a⊕ rd (where d is again S’s input to the internal FOT).

• Case 4: A learns ρ first. This means either A corrupts R first, or A corrupts R before S

receives a from the internal FOT.9 In this case, S picks ρ ∈ {0, 1} at random when R is

corrupted, and subsequently (if and when A corrupts S) computes a = ρ⊕ rd.

Finally, we need to check that EXEC
FOT
ψ,A,Z ≡ IDEALFOT,S,Z , which is similar to that in [Wolf and

Wullschleger, 2006] which addresses static corruptions.

5.5 Security against Static Adversaries

In this section we prove Theorem 5.2.1 by modifying our analysis for the case where we start with a

protocol Π secure against semi-honest, static adversaries and end with a protocol Comp(Π) secure

against malicious, static adversaries. In order for the analysis to go through, we must ensure that

when dealing with a static adversary, the corruption pattern in the underlying components of FCOM

and Π is always static. We note that it is, in fact, the case that the corruption pattern forFCOM and the

real adversaries is always static. However, it turns out that even when dealing with a static adversary,

the corruption pattern for “virtual” parties executing Π may be adaptive. Thus, the analysis for the

static case does not immediately follow from the adaptive case. Our key insight for proving the

static case, inspired by [Ishai et al., 2008], is that in order to simulate the adaptive corruption of

“virtual parties,” it suffices for Π to be secure against adaptive adversaries with erasures. More

specifically, we prove the following theorem, for the case of adaptive adversaries with erasures:

Theorem 5.5.1 There exists a black-box construction of a protocol that UC realizes OT against a

malicious, adaptive adversary with erasures in the FCOM-hybrid model, starting from any protocol

that UC realizes OT against a semi-honest, adaptive adversary with erasures. Moreover, the

construction achieves a constant multiplicative blow-up in the number of rounds.

9In particular, it could be that A corrupts S at the start of the protocol (learning nothing at this point), and then corrupts
R immediately after it sends its input to the internal FOT .
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PHASE III: CUT-AND-CHOOSE.

1. R chooses a random qR ∈ {0, 1}n and sends (commit, sid2n+1, qR) to FCOM.

2. Upon receiving (receipt, sid2n+1) from FCOM, S sends a random qS ∈ {0, 1}n.

3. R sets q = qR⊕qS. The string q = (q1, . . . , qn) ∈ {0, 1}n is used to define a set of indicesQ ⊂
{1, 2, . . . , 2n} of size n in the following way: Q = {2i− qi}ni=1. R sends (reveal, sid2n+1) to
FCOM so that S may also compute Q.

4. For every i ∈ Q, R sends (reveal, sidi) to FCOM and upon receiving (reveal, sidi, r
R
i , τ

R
i ) from

FCOM, S computes (ri, τi).

5. S checks that for all i ∈ Q, (ri, τi) is consistent with R’s messages in the i’th execution of Π.
If not, S aborts and halts.

Figure 5.5: PHASE III OF THE ADAPTIVE WITH ERASURES COMPILER Comp(Π)

Next, recall the following theorem from [Lindell, 2009]:

Lemma 5.5.2 ([Lindell, 2009]) There exists a black-box construction of a t+O(1)-round protocol

that UC realizes OT against a semi-honest, adaptive adversary with erasures, starting from any

t-round protocol that UC realizes OT against a semi-honest, static adversary.

By combining the compiler of [Lindell, 2009] with our compiler for adaptively secure protocols

with erasures in Theorem 5.5.1, we obtain a compiler for statically secure protocols which concludes

the proof of Theorem 5.2.1.

Towards proving Theorem 5.5.1, we modify our original compiler Comp(Π) for the setting of

adaptive corruptions with erasures. The modified compiler differs from the adaptive compiler only

in Phase III, where the string q (which determines the set Q) is chosen via a coin-tossing protocol

in the static compiler and is chosen by S alone in the adaptive compiler (see Figure 5.5). As we

discuss in more detail below, this modification is necessary in order to simulate the case of a corrupt

sender and honest receiver without adaptively corrupting the virtual parties Ri in Phase III.

To prove Theorem 5.5.1 it is sufficient to reprove the analogues of Lemmas 5.3.2, 5.3.3, 5.3.4

and Proposition 5.4.1 for the case where we begin and end with protocols secure against adaptive

adversaries with erasures. Now, note that the proofs of Lemmas 5.3.3, 5.3.4 and Proposition 5.4.1

proceed identically when beginning with an oblivious transfer protocol Π secure against semi-

honest, adaptive adversaries with erasures and concluding with a protocol Comp(Π) secure under

against malcious, adaptive adversaries with erasures.
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In contrast, in the proof of Lemma 5.3.2, we do rely on the fact that Π is secure even under

adaptive corruptions without erasures. Thus, we reprove Lemma 5.3.2 below for the case of adaptive

corruptions with erasures.

Lemma 5.5.3 Let Π be an OT-protocol secure against semi-honest adversaries and adaptive

corruptions with erasures. For every adversary A that interacts with Comp(Π) in the FCOM-hybrid

model, there exists a well-formed adversary A′ that interacts in the hybrid execution running Π,

such that for every environment Z ,

EXEC
FCOM
Comp(Π),A,Z ≡ HYBRIDΠ,A′,Z

Proof: As in the proof of Lemma 5.3.2, A′ works by invoking a copy ofA and running a simulated

interaction of A with Z and the parties S and R. We will refer to the communication of A′ with Z

and Comp(Π) as external communication, and that with the simulatedA as internal communication.

More precisely, A′ works as follows:

Simulating the communication with Z: This is handled as in the proof of Lemma 5.3.2.

Simulating the case when neither party is corrupted: This is handled as in the proof of

Lemma 5.3.2 exceptA′ chooses the setQ and corrupts all parties Ri for i ∈ Q before Phase II

begins. During Phase II, A′ computes the next messages on behalf of Ri for i ∈ Q according

to the code of the honest receiver and forwards to A.

Simulating the case when only the sender is corrupted: Unlike in the proof of Lemma 5.3.2, A′

will pick q in advance (before Phase II begins) and will later fix the outcome of the coin-toss

in Phase III to q. In Phase II, for sessions i in Q, A′ computes the next messages according

to the code of the honest receiver and forwards to A. For sessions i not in Q, A′ forwards the

messages of the virtual party Ri to A.

PHASE I. This is handled as in the proof of Lemma 5.3.2.

PHASE II. A′ chooses q ∈ {0, 1}n (and the corresponding set Q) uniformly at random. For

each i ∈ Q, A′ corrupts Ri before the execution of Π commences. Next, for each round
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in the protocol Π, whenever A expects a message (β1, . . . , β2n) from R, then for each

i = 1, . . . , 2n, if i /∈ Q, A′ obtains βi from Ri for the corresponding round. Otherwise,

A′ computes βi according to Ri’s input and randomness and the previous messages from

Si. Finally, A′ internally passes A the message (β1, . . . , β2n), as if sent from R to S.

The sender’s turn is handled as in the proof of Lemma 5.3.2.

PHASE III. A′ internally passes A the message (receipt, sid2n+1) as if sent from FCOM to

S. Then, A chooses qS ∈ {0, 1}n and A′ simulates S sending R this string. Next,

A′ internally passes A the message (reveal, sid2n+1, qR) where qR is chosen such that

qR = q ⊕ qS. For each i ∈ Q, A′ computes rR
i = ri ⊕ rS

i and τR
i = τi ⊕ τ S

i . A′ sends

(reveal, sidi, rR
i , τ

R
i ) to A as if coming from FCOM.

PHASE IV. This is handled as in the proof of Lemma 5.3.2.

Simulating the case when only the receiver is corrupted: We note that it is in simulating this case

where adaptive corruptions of virtual parties become necessary. We will need to adaptively

corrupt a virtual party Si during Phase II in the case that virtual party Ri begins to deviate

from semi-honest behavior. In the proof of Lemma 5.3.2, A′ corrupts Si, learns its input

and randomness, and continues playing the role of sender honestly with party Ri using the

revealed input and randomness. When dealing with adaptive corruptions with erasures, A′

may not learn Si’s entire random tape upon corruption. However, we note that in this case

adaptive corruptions with erasures are sufficient: In the adaptive corruptions with erasures

model, upon corruption of Si, the adversary learns the internal state, which includes the

sender’s input, and by correctness, sufficient information to complete the execution of the

protocol.

PHASE I. This is handled as in the proof of Lemma 5.3.2.

PHASE II. This simulation proceeds identically to the proof of Lemma 5.3.2 except for the

following case: Whenever A sends a message (β1, . . . , β2n) from R where βi is the

message in the ith parallel execution of Π, if Ri has not aborted and βi is not consistent

with (ri, τi), A′ tells Ri to abort. In addition, A′ corrupts Si. Since Π is only adaptively

secure with erasures, we do not obtain its input (s0i , s
1
i ) and its entire randomness upon
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corruption, but only its input (s0i , s
1
i ) and a partial view. However, we note that this

partial view is sufficient for the simulation to proceed as in the proof of Lemma 5.3.2.

PHASE III. This is handled as in the proof of Lemma 5.3.2.

PHASE IV. This is handled as in the proof of Lemma 5.3.2.

Dealing with corruption of parties: This is handled as in the proof of Lemma 5.3.2 except we

assume honest parties may erase data. Thus, upon corruption of parties the adversary learns

the internal state, which includes the party’s input, and by correctness, sufficient information

to continue the execution of the protocol.
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Chapter 6

Conclusions

In this thesis we resolve several questions on black-box complexity and adaptive, universal

composibility of cryptogarphic tasks. Below we describe future research directions and open

problems relating to our work.

Black-Box Complexity: In Chapter 2 we show a black-box construction of a non-malleable

encryption scheme from any semantically-secure encryption scheme. A remaining open question

is to determine the black-box complexity of encryption schemes that guarantee a stronger form of

security, security under adaptive chosen-ciphertext (CCA2) attacks. For instance, the relationship

between CCA2-secure encryption and semantically-secure encryption is still unresolved. [Gertner

et al., 2007] consider a restricted type of black-box reduction, called a “shielding reduction” and

prove that no shielding reduction from CCA2-secure encryption to semantically-secure encryption

exists. However, the question of whether an unrestricted black-box (or even non-black-box)

reduction from CCA2-secure encryption to semantically-secure encryption exists remains open.

Another related question is to determine the relationship between CCA2-secure encryption and

enhanced trapdoor permutations (eTDP). In their seminal work, [Dolev et al., 2000] presented

a non-black-box construction of CCA2-secure encryption from eTDP, but over a decade later no

black-box construction is known. A major open problem is to either show a black-box reduction of

CCA2-secure encryption to eTDP or prove that such a reduction does not exist.

In Chapter 3 we prove that there is no black-box reduction from optimally-fair coin-tossing
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with “few” rounds to one-way function (OWF). Our work leaves open the question of whether there

exists a black-box reduction of optimally-fair coin-tossing with polynomial number of rounds to

one-way function (OWF). Resolving this question either positively or negatively is a compelling

open problem.

A high-level open problem relating to black-box complexity is determining the relative strength

of fully black-box reductions (that access both the underlying primitive and the adversary only in an

input-output manner) versus reductions that access the adversary in a black-box manner, but access

the underlying primitive in a non-black-box manner. [Brakerski et al., 2011] and [Pass et al., 2011]

both raised similar questions in their recent works and give partial answers by showing that in some

limited cases, access to the code of the underlying primitive does not increase the power of the

reduction.

Universal Composability and Adaptive Security: Although our constructions of UC and

adaptively-secure MPC in Chapters 4 and 5 are relatively efficient, they are still not efficient enough

to be used in practice. Constructing highly efficient protocols for UC oblivious transfer (OT) secure

against malicious, adaptive adversaries, based on either general assumptions or on specific hardness

assumptions, is an important open problem.

The protocol presented in Chapter 5 relies on black-box access to an Ideal Commitment

functionality FCOM. Unlike in the standard model where commitments are relatively simple

constructs, the adaptive UC Ideal Commitment functionality is a “complete” functionality (in

the sense of [Maji et al., 2010]). Thus, in order to realize the adaptive UC Ideal Commitment

functionality, we require set up assumptions such as a common reference string (CRS), or a public-

key infrastruction (PKI). An interesting parallel line of research is to determine the minimal set-

up assumptions necessary for realizing the Ideal Commitment functionality (or other complete

functionalities) in the adaptive, UC model.
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Appendix A

Appendix for Coin Tossing

A.1 The Attack of [Cleve and Impagliazzo, 1993]

Cleve and Impagliazzo [Cleve and Impagliazzo, 1993] showed that any coin-tossing protocol in the

fail-stop model with respect to computationally unbounded adversaries, has bias at least Ω(1/
√
r).

Since the details will be necessary for our analysis, we describe the [Cleve and Impagliazzo, 1993]

result in greater detail in the following. Let Π = (A,B) be a coin-tossing protocol and let RA and

RB denote the random tapes used by A and B. Let W = [w1, w2, . . . , w2r] denote the messages

that are sent when (A,B) is executed (at round i, A sends w2i−1 to B and B sends w2i to A).

Let Π = Π(RA, RB) be the output of (A,B) when run to completion. Define Π1,Π2, . . . ,Π2r

as follows. For i ∈ {1, 2, . . . , r}, Π2i−1 is the output of B when A quits right before sending its

message in round i, and Π2i is the output of A when B quits right before sending its message in

round i. Note that all these quantities are functions of (RA, RB).

Define the random variables P0, P1, . . . , P2r as follows: For j ∈ {0, 1, . . . , 2r},

Pj(RA, RB) = E(R′
A,R

′
B)
[Π(R′A, R

′
B) |Wj ].

where Wj = [w1, . . . , wj ] are the first j messages. Intuitively, Pj is the expected final value of the

protocol Π conditioned on the values of the first j messages exchanged by the parties. We stress that

Pj(RA, RB) = Pj(R
′
A, R

′
B) for all pairs (RA, RB), (R

′
A, R

′
B) that define the same first j messages.
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In [Cleve and Impagliazzo, 1993] it is proved that with probability greater than 1/5, there exists

a j ∈ {1, . . . , 2r}, such that |Pj − Pj−1| > 1
32
√
2r

. Define the random variables Q1, . . . , Q2r as

follows:

Qj(RA, RB) = ER′
A,R

′
B
[Πj(R

′
A, R

′
B) |Wj−1].

where Wj−1 = [w1, . . . , wj−1] are the first j − 1 messages. Intuitively, Qj is the expected value

output by the other party if one party quits right afterwj−1 was sent, conditioned on the values of the

first j−1 messages exchanged by the parties. As with Pj , we have thatQj(RA, RB) = Qj(R
′
A, R

′
B)

for all pairs (RA, RB), (R
′
A, R

′
B) that define the same first j − 1 messages. We alternatively define

Qj in the following way, which we will use in our analysis:

Qj(RA, RB) = ER′
A,R

′
B
[Πj(R

′
A, R

′
B) |Wj ].

whereWj = [w1, . . . , wj ] are the first j messages. Note that the difference in our alternate definition

is that we condition over the j-th message wj as well as the first j−1 messages. Since Πj(RA, RB)

is independent of the j-th message, we have that for all (RA, RB), ER′
A,R

′
B
[Πj(R

′
A, R

′
B) | Wj ] =

ER′
A,R

′
B
[Πj(R

′
A, R

′
B) |Wj−1]. Thus, the two definitions are equivalent.

Since, for all j ∈ {1, . . . , 2r}, |Pj − Qj | + |Qj − Pj−1| ≥ |Pj − Pj−1|, we may express the

event that there exists a j ∈ {1, . . . , 2r} such that |Pj − Pj−1| > 1
32
√
2r

as the union of these eight

events:

GA,0 : ∃i ∈ [r] s.t. P2i−1 −Q2i−1 >
1

64
√
2r

HA,0 : ∃i ∈ [r] s.t. P2i−2 −Q2i−1 >
1

64
√
2r

GA,1 : ∃i ∈ [r] s.t. P2i−1 −Q2i−1 < − 1
64
√
2r

HA,1 : ∃i ∈ [r] s.t. P2i−2 −Q2i−1 < − 1
64
√
2r

GB,0 : ∃i ∈ [r] s.t. P2i −Q2i >
1

64
√
2r

HB,0 : ∃i ∈ [r] s.t. P2i−1 −Q2i >
1

64
√
2r

GB,1 : ∃i ∈ [r] s.t. P2i −Q2i < − 1
64
√
2r

HB,1 : ∃i ∈ [r] s.t. P2i−1 −Q2i < − 1
64
√
2r

Since Pr[GA,0 ∨ GA,1 ∨ GB,0 ∨ GB,1 ∨ HA,0 ∨ HA,1 ∨ HB,0 ∨ HB,1] >
1
5 , at least one of these

eight events must occur with probability greater than 1
40 . Suppose Pr[GA,1] >

1
40 . Then consider

the following adversarial Â: simulate A until a round i occurs where P2i−1 − Q2i−1 < − 1
64
√
2r

in
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which case quit.

Now, when (Â,B) is executed, it follows that:

Pr
(RA,RB)

[b = 1 | (a|b)← 〈Â,B〉] > 1

2
+

1

40
· 1

64
√
2r

(A.1.1)

Intuitively, this holds because with probability 1/40 one of the necessary events must hold, and in

such a case the adversary biases the outcome by 1/64
√
2r.

Observe that in order to carry out this “attack”, the adversary Â must be able to compute all of

the Pi and Qi probabilities (in order to find a round in which the difference occurs). However, it

appears that this computation cannot be carried out efficiently, implying that a ppt Â cannot carry

out the attack. (If Â could be implemented efficiently then this would contradict the existence of

oblivious transfer because by [Moran et al., 2009] it is possible to limit the bias to O(1/r) under

this assumption.)

A.2 The Independence Learner of [Barak and Mahmoody, 2009]

In this section we show how to prove Lemma 3.3.3 which is implicit in [Barak and Mahmoody,

2009] by deducing it from the results explicitly proved there.

We will use the results of Section 4 of [Barak and Mahmoody, 2009]. We first need to clarify the

renaming of the parameters. Here we usem to denote the number of oracle queries by Alice and Bob

whereas it is denoted by n there (we saved n for the security parameter of the one-way function).

What we call as ε in this paper is equal to ε/n in [Barak and Mahmoody, 2009] which would in fact

be equal to ε/m in our terms. Namely, ε is the input parameter in [Barak and Mahmoody, 2009],

but we prefer to take ε/m = ε as the input parameter.

We need to define some events and distributions used in [Barak and Mahmoody, 2009] which

matter to us. At any point during the protocol where Eve is done with her learning algorithm for that

round, let W be the messages sent so far, and let I be Eve’s knowledge about the random oracle.

The notation EXEC(M, I) is used in [Barak and Mahmoody, 2009] to denote what we called here

AB which is the joint distribution over Alice and Bob’s views so far conditioned on (M, I). The

event Good(M, I) is defined over EXEC(M, I) as follows. Let (A,B) be an instance of the space



APPENDIX A. APPENDIX FOR COIN TOSSING 113

EXEC(M, I). Then we say that Good(M, I) holds over (A,B) iff Q(A) ∩ Q(B) ⊂ Q(I); namely

Alice and Bob do not have any “private” query in common out of Q(I). The event Fail defined over

a complete execution of the system is equal to the event that Q(A) ∩ Q(B) ⊂ Q(I) is violated at

any point during the execution. Note that the event ¬Good implies that Fail has already happened.

The independence learner given the parameter ε can be described in two lines as follows (see

Section 3 of [Barak and Mahmoody, 2009]):

As long as there exists a query q 6∈ Q(I) such that Pr(A,B)←EXEC(M,I)[q ∈ Q(A) ∪Q(B)] ≥ ε

then ask q from the oracle and add q paired with its answer to I .

Security of the Learner. The distributions Â and B̂ are the same as the product distributions

defined in Lemma 7 in [Barak and Mahmoody, 2009]. It is proved in Lemma 8 of [Barak and

Mahmoody, 2009] that the statistical distance between Â × B̂ and GEXEC(M, I) (which is the

same as AB | Good(M, I)) is at most O(ε) which is equal to O(mε) in our terms. But we are not

done yet about proving the security property of the learner, because the event ¬Good(M, I) can

still increase the statistical distance between Â × B̂ and AB. We will show that with probability

at least 1 − O(
√
ε) = 1 − O(

√
mε) it holds that Pr[Good] ≥ 1 − O(

√
mε). But before showing

the latter claim, note that the statistical distance between GEXEC(M, I) and Â × B̂ is at most

O(ε) = O(mε) < 1/2 (by Lemma 8 of [Barak and Mahmoody, 2009]) and therefore if any query

q 6∈ Q(I) has chance at most ε of being in Q(A) ∪ Q(B) for (A,B) ← GEXEC(M, I), it also has

chance at most 2ε to be in Q(Â) ∪Q(B̂) (which can be made ε by rescaling ε by a factor of 2).

Now we use Lemma 4 of [Barak and Mahmoody, 2009] which proves that Pr[Fail] ≤ O(ε) =

O(mε). Lemma 9 of [Barak and Mahmoody, 2009] which was originally proved in [Impagliazzo

and Rudich, 1989] (as Lemma 6.4) informally speaking proves that elementary average arguments

generalize to an online setting as well. Namely, Pr[Fail] ≤ O(mε) implies that with probability

1−O(
√
mε) over the execution of the system, it holds at all time during the execution of the system

that the probability of Fail happening at some point before conditioned on the current (M, I) is at

most O(
√
mε). Note that PrEXEC(M,I)[Fail] ≥ PrEXEC(M,I)[¬Good], which finishes the proof of

the security property. It is also easy to see that by making the value of ε smaller, it only can decrease

the probability of Fail and thus improve the security property.
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Efficiency of the Learner. In Lemma 11 of [Barak and Mahmoody, 2009] it is proved that up to

an event Bad of probability at most O(ε) = O(mε), the expected number of queries asked by the

learning algorithm is at most O(m2/ε) = O(m/ε). So if we stop the learning after the Bad event

happens we might loose the security of the learner by at most O(mε) ≤ O(
√
mε) which is still fine

and yet we preserve the required efficiency. All that is needed in the proof of the efficiency is that

whenever Eve asks a query while the event Bad has not happened this query is using the threshold

parameter at most ε. So if we use larger values for ε we still preserve the efficiency with respect to

parameter ε.

Robustness of the Learner. The proof of Robustness was discussed above along proving the

Security and the Efficiency properties.
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[Damgård and Ishai, 2005] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation

using a black-box pseudorandom generator. In Advances in Cryptology – CRYPTO 2005, pages

378–394, 2005.
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[König et al., 1999] H. König, C. Schütt, and N. Tomczak-Jaegermann. Projection constants of

symmetric spaces and variants of khintchine’s inequality. J. Reine Agnew. Math., 511:1–42,

1999.



BIBLIOGRAPHY 124

[Kushilevitz, 1992] Eyal Kushilevitz. Privacy and communication complexity. SIAM Journal on

Discrete Mathematics, 5(2):273–284, 1992.

[Lamport, 1979] Leslie Lamport. Constructing digital signatures from a one-way function.

Technical Report SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

[Lindell and Pinkas, 2007] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure

two-party computation in the presence of malicious adversaries. In Advances in Cryptology

– EUROCRYPT 2007, pages 52–78, 2007.

[Lindell, 2006] Yehuda Lindell. A simpler construction of CCA2-secure public-key encryption

under general assumptions. Journal of Cryptology, 19(3):359–377, 2006.

[Lindell, 2009] Andrew Y. Lindell. Adaptively secure two-party computation with erasures. In

Topics in Cryptology - CT-RSA 2009, The Cryptographer’s Track at the RSA Conference, pages

117–132, 2009.

[Luby and Rackoff, 1988] M. Luby and C. Rackoff. How to construct pseudorandom permutations

and pseudorandom functions. SIAM Journal on Computing, 17(2), 1988.

[Maji and Prabhakaran, 2010] Hemanta Maji and Manoj Prabhakaran. Personal communication.

2010.

[Maji et al., 2009] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of multi-

party computation problems: The case of 2-party symmetric secure function evaluation. In

Theory of Cryptography – TCC 2009, pages 256–273, 2009.

[Maji et al., 2010] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. A zero-one law for

cryptographic complexity with respect to computational uc security. In Advances in Cryptology

– CRYPTO 2010, pages 595–612, 2010.

[Moran et al., 2009] Tal Moran, Moni Naor, and Gil Segev. An optimally fair coin toss. In Theory

of Cryptography – TCC 2009, pages 1–18, 2009.

[Myers and Shelat, 2009] Steven Myers and Abhi Shelat. Bit encryption is complete. In Proc. 50th

IEEE Symposium on Foundations of Computer Science (FOCS), pages 607–616, 2009.



BIBLIOGRAPHY 125

[Naor and Pinkas, 2001] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols.

In Proceedings of the of the Twelfth Annual ACM/SIGACT-SIAM Symposium on Discrete

Algorithms — (SODA 2001), pages 448–457, 2001.

[Naor and Yung, 1989] Moni Naor and Moti Yung. Universal one-way hash functions and their

cryptographic applications. In Proc. 21st Annual ACM Symposium on Theory of Computing

(STOC), pages 33–43, 1989.

[Naor and Yung, 1990] M. Naor and M. Yung. Public-key cryptosystems provably secure against

chosen ciphertext attacks. In Proc. 22nd Annual ACM Symposium on Theory of Computing

(STOC), pages 427–437, 1990.

[Naor et al., 1998] Naor, Ostrovsky, Venkatesan, and Yung. Perfect zero-knowledge arguments for

NP using any one-way permutation. joc, 11(2):87–108, 1998.

[Naor, 1991] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,

4(2):151–158, 1991.

[O’Neill et al., 2011] Adam O’Neill, Chris Peikert, and Brent Waters. Bi-deniable public-key

encryption. In To appear in Advances in Cryptology – CRYPTO 2011, 2011.

[Pass and Wee, 2009] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party

protocols from one-way functions. In Theory of Cryptography – TCC 2009, pages 403–418,

2009.

[Pass et al., 2006] Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Construction of a non-

malleable encryption scheme from any semantically secure one. In Advances in Cryptology –

CRYPTO 2006, pages 271–289, 2006.

[Pass et al., 2011] Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasubrama-

niam. Towards non-black-box lower bounds in cryptography. In Theory of Cryptography – TCC

2011, pages 579–596, 2011.

[Peikert and Waters, 2008] Chris Peikert and Brent Waters. Lossy trapdoor functions and their

applications. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing

(STOC), pages 187–196, 2008.



BIBLIOGRAPHY 126

[Peikert et al., 2008] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for

efficient and composable oblivious transfer. In Advances in Cryptology – CRYPTO 2008, pages

554–571, 2008.

[Rackoff and Simon, 1991] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge

proof of knowledge and chosen ciphertext attack. In Advances in Cryptology – CRYPTO 1991,

pages 433–444, 1991.

[Reingold et al., 2004] Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibility

between cryptographic primitives. In Theory of Cryptography – TCC 2004, pages 1–20, 2004.

[Rompel, 1990] John Rompel. One-way functions are necessary and sufficient for secure

signatures. In Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC), pages

387–394, 1990.

[Rubinstein and Sarnak, 1994] Michael Rubinstein and Peter Sarnak. Chebyshevs bias.

Experiment. Math, 3(3):173–197, 1994.

[Sahai, 1999] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-

ciphertext security. In Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS),

pages 543–553, 1999.

[Schnorr, 1996] Claus-Peter Schnorr. Security of 2t-root identification and signatures. In Advances

in Cryptology – CRYPTO 1996, pages 143–156, 1996.

[Simon, 1998] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions

be based on general assumptions? In Advances in Cryptology – EUROCRYPT 1998, pages

334–345, 1998.

[Wee, 2010] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability

amplification. In Proc. 51st IEEE Symposium on Foundations of Computer Science (FOCS),

pages 531–540, 2010.

[Wolf and Wullschleger, 2006] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is

symmetric. In Advances in Cryptology – EUROCRYPT 2006, pages 222–232, 2006.



BIBLIOGRAPHY 127

[Yao, 1982] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions. In Proc. 23rd

IEEE Symposium on Foundations of Computer Science (FOCS), pages 80–91, 1982.


	1 Introduction
	1.1 Black-Box Complexity.
	1.2 Adaptive UC-security.

	I Black-Box Complexity
	2 Black-Box Construction of a Non-Malleable Encryption Scheme from any Semantically-Secure One
	2.1 Introduction
	2.1.1 Relationships amongst Cryptographic Primitives
	2.1.2 Our Results
	2.1.3 Overview of our Construction
	2.1.4 Follow-up work

	2.2 Preliminaries & Definitions
	2.2.1 Semantically Secure Encryption
	2.2.2 Non-malleable Encryption
	2.2.3 (Strong) One-Time Signature Schemes

	2.3 Construction
	2.4 Analysis
	2.4.1 Alternative Decryption Algorithm NMDec
	2.4.2 A Promise Problem
	2.4.3 Proof of Main Theorem
	2.4.4 Achieving Bounded-CCA2 Non-Malleability


	3 On the Black-Box Complexity of Optimally-Fair Coin Tossing
	3.1 Introduction
	3.1.1 Our Technique

	3.2 Definitions and Useful Lemmas
	3.3 Simulation Lemma
	3.4 Proof of the Main Theorem
	3.4.1 Our Threshold Attacker
	3.4.2 Handling Non-instant Constructions



	II Universal Composability and Adaptive Security
	4 Improved Non-Committing Encryption with Applications to Adaptively Secure Protocols
	4.1 Introduction
	4.1.1 Our results
	4.1.2 Additional related work
	4.1.3 Follow-up work

	4.2 Overview of our constructions
	4.3 Preliminaries
	4.4 Trapdoor Simulatable Public Key Encryption
	4.5 Non-Committing Encryption from Weaker Assumptions
	4.5.1 Correctness.
	4.5.2 Security.
	4.5.3 Improving the efficiency.

	4.6 Trapdoor Simulatable PKE from Hardness of Factoring
	4.6.1 A number-theoretic lemma.
	4.6.2 The construction.
	4.6.3 Analysis.

	4.7 Oblivious Transfer and MPC

	5 Simple, Black-Box Constructions of Adaptively Secure Protocols
	5.1 Introduction
	5.1.1 Our results
	5.1.2 Follow-up work

	5.2 Construction
	5.2.1 High-Level Description
	5.2.2 Achieving Security against Adaptive Adversaries
	5.2.3 Achieving Security against Static Adversaries

	5.3 Achieving security against a malicious receiver
	5.4 Malicious sender and semi-honest receiver
	5.5 Security against Static Adversaries


	III Conclusions
	6 Conclusions

	IV Appendices
	A Appendix for Coin Tossing
	A.1 The Attack of [Cleve and Impagliazzo, 1993]
	A.2 The Independence Learner of [Barak and Mahmoody, 2009]


	V Bibliography
	Bibliography


