
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Development of Photochemical Surface Modification Technique 
 

Ellane J. Park 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Submitted in partial fulfillment of the 
Requirements for the degree 

of Doctor of Philosophy 
in the Graduate School of Arts and Sciences 

 
COLUMBIA UNIVERSITY 

 
2011 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2011 
Ellane J. Park 

All Rights Reserved 



 

ABSTRACT 

Development of Photochemical Surface Modification Tehcnique  

Ellane J. Park 

 

This thesis will investigate two main areas of surface modification research:  

I. Designing a photoactive monolayer with improved photo-grafting efficiency  

II. Fabrication of NP-Films via phthalimide self-assembled monolayer on glass 

surfaces 

Concluding the thesis, I will briefly describe an outreach research project in collaboration 

with my GK-12 fellowship team.   

In Chapter One, we will introduce nanotechnology and surface chemistry, with an 

emphasis on the use of monolayers for photochemical surface modification.  The goal of 

this chapter is also to equip the reader with a comprehensive overview of common 

surface analytical techniques and a “how-to” analysis guide for thin films.  Chapter Two 

delves into the fundamentals of SAMs and thin films – the behavior and orientation of 

adsorbates on surfaces, particularly at air-monolayer interfaces.  We discuss the 

importance of studying the orientation of phthalimide-undecyl-thiol molecules on gold 

surfaces because the photo-reactivity (i.e. accessibility) of phthalimide terminal groups is 

dependent on its tilt angle, surface exposure, and packing density.  One of the interesting 

observations includes the possibility that low packing density can potentially have higher 

photo-grafting efficiency.   

In Chapter Three, we address the challenge of applying nanoparticles to surfaces.  

We introduce a fairly well known photochemical surface modification technique to 



 

fabricate nanoparticle-films.  By using a phthalimide self-assembled monolayer on a 

glass substrate, we photo-grafted organic nanoparticles to the surface and subsequently, 

produced a patterned NP-film.  Using a photomask allows us to have spatial control and 

selection on NP-grafting.   

Lastly, Chapter Four is a brief introduction and overview of the outreach project, 

studying the heavy metal intake of oysters in the New York Harbor.  As a GK-12 fellow, 

I was given the opportunity to start a research project for the high school students and 

contribute to the New York Harbor Oyster restoration efforts.  The research is focused on 

detecting heavy metal concentrations in oyster tissue and shells.   
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1  Introduction to Photochemical Surface Modification 

Surface chemistry, the study of chemical reactions at interfaces, has a significant 

presence in nature as exemplified in Figure 1-1.  On the macro-scale, a large body of 

water meets air at the air-water interface while there is an expansive surface area of solid-

air interfaces across a forest of trees.  On the micro- and nano-scale, as you examine a 

leaf closely, photosynthesis takes place at the water-membrane interface of chloroplast 

cells.  Interfacial chemistry is a critical component of essential chemical processes such 

as photosynthesis.  This area of study is oftentimes at the forefront of developments in 

biomedical and technological applications due to its unique ability to change surface 

properties without altering the bulk material.  For example, a biomedical device may not 

operate desirably because the surface is interacting too strongly with cells and proteins in 

physiological conditions.  A common solution involves coating the surface of the device 

with an anti-biofouling layer to deliver its optimal performance without changing the core 

technology.  Changes at the surface level can also be seen to be economically efficient, as 

the bulk material itself does not need to be compromised.   

Due to the powerful ability that surface chemistry has in shaping the macroscopic 

world, surface engineering techniques are being used in a wide range of industries 

including electronics1 and biomedical2.  Because the ability to control the chemical and 

physical properties at surfaces is very important, general surface engineering methods 

need to be developed.  This thesis will introduce surface modification techniques based 

on photochemical reactions and cover analytical methods that are used to study these 

interfacial changes on a nanoscopic level.   
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Figure 1-1. Interfaces can provide functional properties at the air-water, water-
solid, and solid-air interfaces on the macro- (left) to micro/nano-scale (top right; 
bottom right).   
  
1.1 History and Fundamental Study of Monolayers 

Self-assembled monolayers (SAMs) have been extensively studied for the ability 

to control surface properties that has important implications from the point of view of 

both fundamental and technological advances.  In 1983, Nuzzo and Allara3 discovered 

the chemisorption capabilities of dithiols to form ordered SAMs on gold surfaces.  Since 

then, further studies have demonstrated the differences in structure between long- and 

short-chain thiol monolayers by using surface techniques such as optical ellipsometry, 

infrared spectroscopy, and electrochemistry.4  Porter et. al. proved that SAMs of long-

chain thiols on gold have strong potential as model systems for studies of heterogeneous 

electron transfer, ion transport, and double-layer phenomena.  These results further reveal 

the significant role that organic molecular structure plays in the overall structure of 

monolayers.  Consequently, the preparation and structural characterization of SAMs are 

of great interest in a variety of interface applications from catalysis5 to biomedical 
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applications2, 6.  Two methods were predominantly used in SAM preparation: Langmuir-

Blodgett techniques,7 involving the transfer of an assembled film at an air-water interface 

to a solid substrate, and self-assembly,8 based on the natural occurrence of molecules in 

solution adsorbing onto a substrate.  A substrate is referred to as material that provides 

the surface on which something is deposited, in this case, the deposition of SAMs.  For 

example, the silicon wafer used to manufacture integrated circuits.  Commonly studied 

SAM systems include chlorosilanes on silicon,9 carboxylic acids on metal oxides,10 and 

organosulfur compounds on gold3, 11.  SAMs of organosulfur compounds on gold will be 

the system of focus in the introduction because they are, in general, the most studied and 

understood.   

Optimal preparation methods have been developed to produce highly ordered, 

supported monolayers with wide range of choices for the functional group (terminal 

group) located at the ambient interface.  Surface functionalization of hard substrates 

generally requires the synthesis of organic molecules with three constituents, each with 

an important function in the self-assembly process.  As illustrated in Figure 1-2, each 

organic molecule consists of a sticky foot (SF), molecular spacer (SP), and terminal 

group, in this case, a photoactive group (PA) and collectively, the organic molecules 

spontaneously assemble onto a substrate as an ordered monolayer.   
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Figure 1-2. Schematic illustration of an idealized self-assembled monolayer with a 
photoactive group (PA) exposed at the air-monolayer interface.12 

  
1.1.1 Self-Assembly Process 

The organized structure is formed by a directed self-assembly process as shown in 

Figure 1-3.  Initially the molecules orient themselves close to the air-water interface 

before the substrate is immersed into solution (not shown).  When the substrate is 

immersed into solution, the molecules are observed to physisorb to the surface until the 

sticky foot (SF) group provides anchoring to the substrate via a covalent bond.  The SF 

group determines the lateral positioning of the molecule on matrix surface, and until 

recently, believed to orient the molecule such that the photoactive moiety is presented at 

the monolayer interface (Figure 1-3A).  However, recent studies13 have surfaced the 

argument that the SAM molecules initially orient themselves in a “lying down” phase 

before orienting its PA group to the solvent-monolayer interface, as illustrated in this 

figure.   

From the lying down phase, the spacer groups contribute to greater order of the 

monolayer as the attractive in-plane van der Waals interactions play a significant role in 

driving molecular assembly (Figure 1-3 B).  When the SF-substrate interactions are 

stronger than the intermolecular interactions, the molecules form a film on the surface via 
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covalent bonding with or chemisorption onto the substrate.  For example, thiol, disulfide 

and alkyne groups are known to have a strong affinity for gold substrates.14  The 

intermolecular interactions may be due to strong van der Waals interactions that are 

attributed to hydrocarbon chains, which are typical of SP groups.  The degree of 

intermolecular interactions depends on the alkyl chain length – as the number of carbons 

in the chain increase, the van der Waals interactions grow stronger.   

With the interplay and balance between the SF-substrate and van der Waals 

interactions, the idealized SAM is densely packed and highly ordered as illustrated in 

Figure 1-3C.  However, the impossibility of eliminating all SAM defects is well 

understood.  In the next section, we will discuss the factors that affect the quality of 

SAMs.   

 

Figure 1-3. Schematic Illustration of Self-assembly process.  

1.1.2 Quality of SAMs: Defects, Density, Order 

While the resulting SAM in Figure 1-3 is sketched as a perfect monolayer with 

the molecules in a closely packed conformation, this image is far from real.  In fact, there 

are several types of defects13a that can influence the performance efficiency of SAM-

coated devices, in the case of sensors, for example.  There are some strategies used to 

minimize the effects of these defective monolayers, but it is important to realize that they 
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will always be present.  We will explore these possible defects at the molecular level, as 

illustrated in Figure 1-4.   

In general, the monolayers tend to deviate from well-arranged structures such as 

Figure 1-4 and exhibit structural defects and disorder when there is a mismatch between 

the various types of interactions.  Detailing the possible molecular arrangements gives us 

a better understanding of the factors that may cause structural defects in monolayers.    

 

Figure 1-4. Overview of possible defects in SAMs13a  

Knowing these fundamental chemical and physical interactions is key to 

controlling the formation, structure, and reactivity of chemically modified surfaces.  The 

approach to studying these SAMs has two integral parts: the proper selection of 

molecular systems that allow us to probe these interactions that direct the attachment, 

orientation and packing density of the adsorbates, and the search for useful 

characterization tools to apply to these systems.  Moreover, theories and experimental 
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results that detail the self-assembly process itself determine the orientation of molecules 

on surface and overall structural information of monolayers.13b, 15  We are interested in 

understanding how the orientation of the adsorbate’s photoactive terminal group will 

affect its photo-reactivity (grafting external species) at the air-monolayer interface.   

 Factors that affect the density and ordering of SAMs include temperature, nature 

of terminal groups, adsorption time, hydrocarbon chain length, and substrate quality.  

With increase in temperature, there is an increased occurrence of gauche defects.  The 

chemical nature of the photoactive groups are very important.  As varying groups (-SH, 

COOH, OH and NH2) are introduced as opposed to a terminal methyl group, there is 

typically a decrease in SAM ordering.  The effect of the terminal group on the chain 

ordering (hydrogen bonding, electrostatic interactions) is still not completely clear.  In 

particular, the effect of solvent, pH and surface topography should be carefully 

investigated in this matter.  Other factors, as mentioned, are adsorption time, hydrocarbon 

chain length, and substrate quality that make significant changes in how a monolayer is 

assembled naturally.   

1.2 Design and Engineering of Nanoparticle-Films: Photo-grafting 

1.2.1 Introduction 

SAMs alone have pioneered the history of surface modification, but in the area of 

device fabrication, SAMs are used as building blocks in sensors, biosensors, actuators, 

and molecular motors.16  SAMs can be used to graft a new species such as biomolecules, 

polymers, or nanoparticles to a surface.  Surface modification methods can range from 

organic synthesis17 to photo-chemistry6, particularly focused on grafting polymers and 

biomolecules.  This thesis will explore the design of photoactive SAMs and its role in the 
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engineering of nanoparticle-films (NP-films).  As illustrated in Figure 1-5, SAMs can be 

used to covalently bind any external species (represented by white squares) upon light 

exposure.  NP-films are typically prepared by lithography, a costly technique that 

requires a complex infrastructure setup and produces unstable films due to non-covalent 

NP-attachment to the surface.  With limited techniques available, it is desirable to 

develop a simple approach that fabricates covalently bound NP-films.   

 

Figure 1-5. Schematic illustration of photo-grafting ability of SAMs. White squares 
represent external species (e.g. biomolecules, polymers, nanoparticles) that are 
photo-grafted to the surface.  

  

Here, we propose to deposit the NPs onto a monolayer-functionalized surface by 

spin-coating and then exposed to UV light to form covalent bonds at the NP-monolayer 

interface.  Spin-coating18 a solution of the nanoparticles (Figure 1-6; left) allows for a dry 

deposition of NPs (Figure 1-6; right) by spinning the surface at a high speed and 

evaporating the solvent.  Spin-coating is a convenient way to produce a physisorbed layer 

of the NPs, but there are some issues such as NP aggregation that will be addressed in 

Chapter 3.  Upon spin-coating, the NP-films are exposed to UV light to activate the 

photoactive SAM.  This method is commonly referred to as photo-grafting and patterning 

when using a photomask.   
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Figure 1-6. Schematic illustration of spin-coating a solution of nanoparticles.   
  
1.2.2 Photo-Grafting and Patterning Surfaces 

Both SAMs and NP-films provide interfaces that can be modified in order to 

instill a surface with a new physical or chemical property.  Using light to perform this 

surface chemistry is one of the cleanest surface modification methods.  Photochemical 

methods also provide the opportunity to pattern a surface by using a photomask because 

photons have the ability to penetrate through the smallest spaces in a mask (Figure 1-7).  

Using light to perform chemistry at interfaces allows for control over spatial deposition 

of various materials such as proteins19, DNA20, and nanoparticles21.  Photochemical 

methods can be carried out on SAMs and thin films to make chemical and physical 

modifications at the interfacial level.   

Photoactive SAMs present preprogrammed terminal groups at the air-monolayer 

interface that chemically transform upon exposure to light.  The nature of the PA group 

not only determines the surface chemical properties, but also controls surface physical 

properties such as wettability and adhesion.  

Among the various surface photoreactions12, the concept of photo-addition, 

commonly known as surface photografting, is most relevant to this thesis.  Photografting 
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can be approached in two ways: the photoactive (PA) group can be located on the 

external species that is immobilized onto a derivatized substrate (referred to as “grafting-

to”) or the PA group can be located on the substrate itself (referred to as “grafting-from”).  

For the purpose of this thesis, we will focus on the photografting-from method.  These 

photo-transformation methods are typically applied through a photomask (as shown in 

Figure 1-7) to achieve patterned deposition of external species, such as proteins, DNA, 

and nanoparticles.  The feature size of the mask pattern and wavelength of incident light 

determine the resolution of such patterns.   As a result, light penetrating into small spaces 

allows for high spatial selectivity compared to other lithography techniques used for 

surface patterning.   

 
Figure 1-7. Photo-patterning scheme. All of the photo-induced surface modification 
reactions can be patterned onto self-assembled monolayers on hard and soft 
substrates by using a photomask.  
 
1.2.3 Selection of Photoactive Molecule 

Commonly used photografting methods originate from a well-known 

photochemical mechanism called hydrogen abstraction (Figure 1-8).  Hydrogen 

abstraction occurs when there are two types of species present: carbonyl group that is 

excited and an external species that has a hydrogen readily available.   The photo-grafting 

approach relies on the selection of photoactive functional groups that react directly with 
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C-H groups have been incorporated into a variety of surfaces. The photoactive groups 

utilized in such a mechanism include aromatic ketones, diao compounds and azides.12 

 

Figure 1-8.  Hydrogen Abstraction Mechanism for carbonyl containing photoactive 
groups.  
  

Of the various families, benzophenone (BP) derivatives are the most commonly 

used in the immobilization of polymers to a variety of surfaces as schematically 

illustrated in Figure 1-9.22  BP delivers one of the best chemical functions under various 

conditions of light and solvent.  BP derivatives are excited at a wavelength of 

approximately 350 nm22b, which helps avoid protein-damaging wavelengths.  Compared 

to other photoactive groups such as aryl azides, diazirines, and diazo esters, BPs are 

chemically more stable.   
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Figure 1-9.  Benzophenone-functionalized surface used in photo-grafting any 
external species (represented by circle).22e  
  

Monolayers with phthalimide chromophores6, 23 have delivered similar results as 

BP-monolayers.  However, phthalimide derivatives are excited at shorter wavelengths 

averaging at 254 nm in wavelength.  Comparing the chemical properties of a phthalimide 

with a BP, we observe that the imide functional group makes the overall chemical 

structure more hydrophilic than BP.  Consequently, the more hydrophilic nature of 

phthalimide-monolayers affects the surface wettability and therefore, the grafting 

efficiency of an external species.  For example, carbohydrates (hydrophilic) will more 

easily wet a phthalimide-monolayer surface as opposed to a BP-monolayer and 

consequently, can produce carbohydrate-films with greater thickness and coverage.6   
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Figure 1-10.  Phthalimide-functionalized monolayer undergoes a hydrogen 
abstraction to covalently bind an external species (represented by the circle) to 
surface. The hydrocarbon chain (linker) can be varied to give the monolayer 
different physical properties, thereby possibly altering the photoreactivity of the 
phthalimide chromophores.   

  

BP and phthalimide derivatives have been utilized in the form of self-assembled 

monolayers to photograft biopolymers onto surfaces but no quantitative analysis has been 

conducted to calculate their photografting efficiency.  Comparing the two PA groups, we 

determined phthalimide SAMs to be more advantageous, owing to better wetting 

capabilities and higher surface tensions.6  As Chapter 3 will introduce, the better wetting 

capability of the phthalimide SAM allows for hydrophilic molecules to more strongly 

adhere to the surface and increase chances of greater photo-grafting efficiency.  



14 
 
 

 

1.2.4 Selection of Substrate 

The depth and quality of analysis for monolayers and thin films can depend 

heavily on the selection of a substrate.  For example, selecting a gold surface will open 

opportunities to use techniques such as Infrared Grazing Incidence Reflection (GIR) and 

Surface Plasmon Resonance Spectroscopy (SPR).  These techniques will be reviewed in 

Chapter 1.3.  

The photochemical surface modification method can be applied to both hard and 

soft substrates.  The design of the project also plays a role in this selection process.  If the 

project has biomedical applications in the development of diagnostic devices, the 

substrate of choice is ‘hard’ (e.g. glass or gold). On the other hand, if the project has 

aerospace engineering applications, most surface chemistry involves the use of paint, 

which is a ‘soft’ polymeric base.   

Hard substrates range in a variety of choices from metal (e.g. Au, Ag, Cu) to non-

metal (e.g. glass, quartz).  In Chapter 2 of this thesis, the concept self-assembly on gold 

surfaces will be introduced.  For this particular project, gold was chosen to be the ideal 

substrate for the following reasons.  First, gold exhibits a low chemical reactivity and 

provides the opportunity to apply both vibrational spectroscopic and electrochemical 

techniques.  Secondly, gold can potentially enhance the photochemistry of the PA group 

in the SAM due to surface plasmons and possible energy transfer. Thirdly, using gold 

substrate allows for a wider selection of techniques to study the molecular system.  In 

Chapter 2, the hard substrates used were glass and silicon, which made the use of 

techniques such as SPR not possible.   
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1.3 Review of Surface Characterization Techniques 

This section is to serve as a guide to the various techniques used to study surfaces.  

Purely optical techniques can be used to study interfaces under a wide variety of 

conditions.  

Table 1-1.  Overview of Surface Characterization Techniques, focusing on the type 
of information obtained and the limitations experienced. 

  
Techniques Information Obtained Limitation 

Contact Angle 
Goniometry 

Hydrophilicity, hydrophobicity  Difficult to measure extremes 
from superhydrophilic (~0°) to 
superhydrophobic (>150°) 

FTIR-GIR Orientation/Conformation of 
molecules in monolayer/thin 
film  

Substrate must be reflective (e.g. 
Au) 

UV-Vis Absorbance of film/monolayer 
(detect wavelength shift) 

S/N may be low for 
monolayers/thin films 

CFM Imaging capability to detect 
film patterns  

S/N may be low for 
monolayers/thin films; Use 
transparent substrate (e.g glass)  

SPR Changes in refractive index and 
chemical environment for 
biomolecules 

Substrate needs to be metal (e.g. 
Ag, Au)  

XPS Atomic Composition, 
molecular conformation with 
multi-resolution spectra, 
thickness of film with ADXPS 

Carbon contamination that can 
contribute to low S/N; Sample size 
needs to be 1 cm x 1 cm for most 
instruments 

AFM/STM Depth profiles, rms values Substrate is highly recommended 
to be metal and needs to be 
extremely clean and stable 

SEM Morphology, roughness, 
patterns 

Limited Resolution to micro-scale; 
Need conductive substrate 

Ellipsometry Thickness value and optical 
constant 

Theory or model based 

Xray Reflectivity Density, chemical composition, 
thickness, and surface 
roughness 

Intensity values are sensitive to 
defects on thin films 
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1.3.1 Contact Angle Goniometry 

Contact Angle Goniometry is one of the most basic techniques used to measure 

the wettability of a surface.24  Wettability basically refers to the attraction of a liquid to a 

solid substrate and is determined by the contact angle at which the liquid/vapor interface 

meets the solid surface.  As shown in Figure 1-11, the contact angle meets at the 

intersection of three surface interactions – the solid liquid interfacial tension, &SL, liquid-

vapor interfacial tension, &LV, and solid-vapor interfacial tension, &SV.  Based on these 

surface interactions, a contact angle is an indication of how hydrophilic or hydrophobic a 

liquid is on a surface. A liquid is highly wettable on a given surface if the droplet spreads 

out on the substrate, but on a hydrophobic surface, the drop of liquid will ball-up and roll 

off the surface when tilted.   

 

Figure 1-11.  Contact Angle !  of a liquid on a surface that is dependent on the 
interactions between the interfacial tensions at the solid-liquid, solid-vapor, and 
liquid-vapor interfaces.    
  

Contact angle goniometry is limited in its inability to accurately measure the 

extreme degrees of hydrophilicity and hydrophobicity.  When the droplet completely 

spreads out on the solid surface, the contact angle will be close to 0°, thereby making the 

measurement more difficult.  The other extreme on a highly hydrophobic surface is 

challenging as the liquid may bead off the surface too quickly to be measured.  

Furthermore, static contact angle measurements are limited by its assumption that the 
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surface is flat and rigid.   In many cases where the surfaces are far from this ideal 

situation, dynamic contact angle measurements are used to measure additional features 

such as surface roughness with more advanced models.   

1.3.2 Fourier Transform Infrared Grazing Incidence Reflection (FTIR-GIR) 

Spectroscopy 

Fourier-Transform Infrared (FTIR) Spectroscopy is widely used to identify 

compounds, in particular their functional groups, by characteristic vibration modes within 

a defined spectral range.  FTIR spectrometer can analyze samples via transmission, 

absorption and reflection.  Reflection-based spectroscopy, referred to here as FTIR-

Grazing Incidence Reflection (GIR) Spectroscopy, is advantageous in studying the 

chemical composition on surfaces. Polarization is used in GIR to determine the 

orientation of the molecules in a SAM by reflecting the IR beam off the surface at an 

angle between 80 and 88 degrees, as demonstrated in Figure 1-12.  Isolating the 

perpendicular electric field provides information on the orientation of the transition 

moment in the SAM molecule – whether it is aligned with the electric field perpendicular 

or parallel to the plane of the substrate. 
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Figure 1-12. Grazing Incidence Reflection (GIR) Setup in FTIR Spectrometer. Red 
lines trace the IR beam path from the source to detector reflecting off the sample at 
an angle between 80 and 88 degrees.   
  

Consequently, FTIR-GIR works particularly well with reflective surfaces such as 

gold, silver, or copper and exhibits poor signal-to-noise (S/N) ratio for non-reflective 

surfaces.  The thin film/monolayer under spectral investigation can be as thin as 1 nm, 

which is a distinct advantage compared to other surface techniques.  FTIR-GIR provides 

unique information on the orientation and conformation of the molecules composing the 

mono- and multi-layer films.  The S/N ratio is typically low for monolayers, but a higher 

S/N can be reached with a functional group that has large absorption coefficient.  For 

example, the carbonyl group, in the spectral range of 1700-1780 cm-1, typically 

demonstrates a strong signal in the infrared spectrum.  When the group more strongly 

couples with the perpendicular electric field that is isolated in FTIR-GIR spectroscopy, a 

stronger intensity of the peak is observed.  The changes in absorption intensity of the 
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molecule’s functional group can be used as a good indicator for molecular orientation on 

the surface in the form of a monolayer or thin film. It is known that the degree of chain 

ordering is dependent on the chain length and substrate quality.13a 

1.3.3 Ultraviolet-Visible (UV-Vis) Spectroscopy 

Ultraviolet-visible (UV-Vis) Spectroscopy uses light in the visible and adjacent 

ranges to analyze molecules that undergo electronic transitions and absorb light at a 

specific wavelength.  UV-Vis is a quantitative measurement of different analytes that is 

typically carried out in solutions.  With Beer-Lambert Law, the absorbance of a solution 

is used to calculate the concentration of the absorbing species in the solution and the path 

length. The wavelengths of the absorption peaks can be correlated with the types of 

bonds in a given molecule and are valuable in identifying the functional groups within a 

molecule.   Any shift in wavelength is a good indicator of change in chemical 

composition of the molecule.  While UV-Vis is typically used to analyze molecules in 

solution, there are modifications of this technique or sample handling that allows for 

analysis of molecules on surfaces in the form of monolayer or thin films.  Monolayers or 

thin films that are immobilized onto a quartz substrate can be studied by UV-Vis because 

the quartz material allows the light to be transparent in this spectral region thereby not 

masking over the sample signal.   However, UV-vis spectroscopy of a monolayer/thin 

film on quartz surfaces will be limited by weak S/N as the amount of material being 

analyzed is significantly lower than the bulk material studied in solution.   

1.3.4 Confocal Fluorescence Microscopy (CFM) 

Fluorescence Spectroscopy is a complementary technique to UV-Vis 

Spectroscopy that is used to analyze organic compounds in biochemical and medical 
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research fields.  Fluorescence is an effective visual indicator particularly well used in 

imaging technology.  Confocal Fluorescence Microscopy allows the ability to detect 

fluorescence from thin films and be able to improve signal-to-noise ratio by averaging up 

signals from different layers/slices taken by the CFM.  The distinct advantage for CFM is 

the ability to image and detect patterns of fluorescence.  However, one limitation of CFM 

is that the substrate needs to be transparent (e.g. glass or quartz) since CFM operates in 

transmission mode.   

1.3.5 Surface Plasmon Resonance Spectroscopy (SPR) 

SPR is one of the prevalent methods used in bio-diagnostic applications, 

particularly pertaining to the analysis of biomolecules interacting with a pre-

functionalized surface in real time.  SPR sensors are typically used to characterize 

conformational changes of protein molecules on surfaces by detecting changes in 

refractive indices and overall chemical environment.  One distinct advantage is the ability 

to use SPR for in situ, real time measurements without the need for fluorescent tags.  

However, some drawbacks include the detection limit of low-concentration or low-

molecular weight analytes as well as the need to use a metallic solid substrate.   

1.3.6 X-ray Photoelectron Spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy (XPS) is a quantitative technique that 

characterizes surfaces by atomic composition.  The spectroscopic technique works by 

bombarding the surface with a beam of X-rays and measuring the kinetic energy of 

electrons that escape from the top 1 to 10 nm of the material being analyzed.  By varying 

the take off angle of the x-ray beam, XPS can be used to calculate the film thickness on 

the surface.   
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Figure 1-13.  Schematic Illustration of how X-ray Photoelectron Spectroscopy 
operates.25 
  

Furthermore, XPS can provide deep detail into the various chemical environments 

analyzed for a particular element in the film by exhibiting characteristic peaks.  Older 

XPS instruments are limited to a small sample size (1%1 cm) and oversensitivity to 

contaminants on surfaces.  In other words, the surfaces must be extremely clean for 

greatest accuracy.    

1.3.7 Atomic Force Microscopy (AFM)/Scanning Tunneling Microscopy 

(STM) 

Atomic Force Microscopy (AFM) is a high-resolution scanning probe that is 

capable of detecting films on a nano-scale.  AFM offers valuable information in the form 

of images by “feeling” the surface with a mechanical probe composed of piezoelectric 

material.  Through various modes from contact to non-contact, AFM produces micro and 

nano-scale features on the surface that is conveyed as a roughness factor.  One of the 
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distinct advantages of the AFM is that the measurements can be taken in ambient 

conditions, similar to its counterpart, Scanning Tunneling Microscopy (STM).   

STM can be used not only in ultra high vacuum but also in air, water and other 

liquid/gas ambients.  STM is based on the concept of quantum tunneling as a conductive 

tip is brought very close to the surface in order to create a tunnel of electrons through the 

vacuum between them.  By monitoring the current as the tip changes position across the 

surface, STM produces an image that offers similar information as that of AFM.   

Both AFM and STM can be challenging because the techniques require extremely 

clean and stable surfaces, sharp tips, and excellent vibration control.   

1.3.8 Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) images a sample by scanning it with a 

high-energy beam of electrons in a raster scan pattern.  SEM offers information about the 

sample’s surface topography, composition, and other properties such as electrical 

conductivity.   

Due to the nature of how SEM operates, the technique is limited in the area of 

sample preparation.  For conventional imaging, the sample must be electronically 

conductive at the surface and electronically grounded to prevent electrostatic overcharge.  

For metal samples, little sample preparation – cleaning and mounting properly onto the 

sample stage – is required for the SEM.  However, nonconductive samples must be 

coated with an ultrathin coating of electrically conducting material, such as gold, by low 

vacuum sputter coating.   
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1.3.9 Ellipsometry  

Ellipsometry is a non-destructive optical technique used to measure film thickness 

and optical constants of thin films.26  This characterization technique is commonly used 

to characterize the film thickness for single and mulit-layers ranging from a few 

angstroms to nanometer with high accuracy.  Spectroscopic ellipsometry measures the 

change of polarization in the measurement beam that is reflected from the sample.  It 

faces limitations when the sample is not composed of well-defined layers that are 

optically homogeneous and isotropic.  When these assumptions are violated, ellipsometry 

will not produce accurate results because the violated assumptions will invalidate the 

standard ellipsometric modeling procedure.  The advantages of ellipsometric 

measurements, therefore, will be best demonstrated with samples that have discrete, 

uniform layers.   

Ellipsometric measurements can also produce real time contrast images of the 

sample by using a CCD camera as a detector. Using a single-wavelength ellipsometer 

setup with a laser as a light source, the analysis of the measured data with computerized 

optical modeling leads to a deduction of spatially resolved film thickness. The images 

will provide information about the film thickness and refractive index and will be 

complimentary in detecting patterns on thin films.   

1.3.10  X-ray Reflectivity (XRR) 

X-ray Reflectivity is a surface-sensitive technique used to characterize 

monolayers and thin films on surfaces that is complementary to ellipsometry.  XRR is a 

non-destructive, commonly used technique to estimate density, thickness and roughness 

of thin films on a nano-scale.  The technique is based on total external reflection of X-
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rays on surfaces and interfaces. XRR can be used to analyze amorphous, crystalline and 

liquid samples.  The technique can measure a layer thickness ranging from 5 Angstroms 

to 400 nm and surface roughness ranging from 0 to 20 Angstroms.   

Deviations from the law of Fresnel reflectivity are analyzed to obtain a density 

profile of the interface normal to the surface as a beam of x-rays is reflected off the 

surface under investigation.  Through optimized reflectivity experiments, the specular 

reflectivity and large features characterizing the sample (e.g. Bragg’s peak, Kiessig 

oscillations) are detected.  

XRR is limited when the sample shows no difference in electron density between 

layers and with substrate.  There are further limitations with defects in thin films as XRR 

intensity values are very sensitive to inconsistent changes in roughness.  

1.4 Thesis Overview 

This thesis ties the fundamental study of a photoactive monolayer with its direct 

biomedical applications in grafting nanoparticles to the surface.  Chapter 2 covers a 

multi-faceted spectroscopic investigation of the phthalimide-thiol SAM and its similar 

molecular systems to answer fundamental questions of monolayer organization.  The 

application of a photoactive  monolayer to graft nanoparticles onto a surface will be the 

topic of Chapter 3.  The final chapter will introduce the study of oysters and its ability to 

filter heavy metals, as a result of my collaboration with Harbor High School and 

Brookhaven National Laboratory through the NSF GK-12 Fellowship.  
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2 Fundamental Study of Phthalimide Monolayers and Thin 
Films 

2.1 Introduction: Monolayers and Thin Films 
  

Self-assembled monolayers (SAMs) of organic molecules have been deposited on 

various types of substrates and been extensively studied due to their strong potential 

applications ranging from nanotechnology fabrication techniques to surface coatings on 

biomedical devices.1  Studies have attempted to answer fundamental questions on the 

nature of the interactions of the monolayer with the substrate, and the thermodynamics of 

the self-assembly process and how the molecules interact with each other as they 

spontaneously organize into a film.  Fabricating monolayers with well-defined 

composition, order, and thickness has important implications from a fundamental and 

technological standpoint. 

It is recognized that the formation of an alkanethiol SAM involves a sequence of 

several structural phase transitions with varying degree of surface coverage.  In the lower 

coverage arrangement, Scanning Tunneling Microscopic topographs2 suggest that the 

alkanethiols are oriented parallel to the Au surfaces.  While the molecules are oriented in 

a stacked lying-down phase with modest coverage, the alkanethiols in the greater 

coverage area are expected to be in the standing-up phase in which the molecules are 

oriented (semi-) perpendicular to the substrate.  These phase transitions help us 

understand that the self-assembly process depends on the length of immersion time, the 

solvent choice, temperature conditions, and other variables, thereby determining the 

overall structure of the resulting monolayer.2a, 3   
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The self-assembly sequence has been first introduced in Chapter 1, but will be 

further explored in this chapter (Figure 2-1).  In the first stage, the SF group chemisorbs 

onto the gold substrate.  Second step, once the molecule is anchored down, the molecule 

may initially be in the lying down phase, then orients itself upright perpendicular to the 

substrate (Figure 2-1A).4  Lastly, as more molecules adsorb onto the surface, the alkyl 

chains detangle and gradually, the packing density of monolayer increases (Figure 2-1B).  

The resulting monolayer leaves a certain functional group exposed at the air-monolayer 

interface once the surface is taken out of solution and dried (Figure 2-1C).   

 

Figure 2-1. Schematic illustration of self-assembly process.  

Of all the monolayers studied, alkanethiol monolayers are probably the most well 

known.  As illustrated in Figure 2-2, each component of an alkanethiol molecule in the 

monolayer is characterized by energy in varying orders of magnitude that dictate the self-

assembly process, SF-substrate interaction being the strongest at 50 kcal/mol for thiolate-

Au bond formation.  SP-SP interactions value at a mere 1-2 kcal/mol, but these van der 

Waals interactions cannot be underestimated because many of them together have the 

authority to govern the ordering of a monolayer.  Also, with regards to the stability 

against oxidation and thermal desorption of the thiol compounds adsorbed on gold 



32 
 

 

surfaces, it is important to find a way to control the chemistry and structure of SAMs.  

The search for strategies to increase oxidation resistance of SAMs has greater weight for 

their use in ambient conditions.  The fact that SAMs are only stable up to to 100°C is a 

serious concern.   

 

Figure 2-2.  Monolayer composed of Alkanethiol molecules and respective energies 
for each component.5  
  

Even after thousands of years of studying alkanethiol SAMs, there is still some 

controversy over the basic concepts of thiol SAMs related to the following: the chemistry 

of alkanethiolate-Au bond in SAMs, control over the quality of SAMs, and the structure 

of monolayer at air-adsorbate interface.  We will discuss the last topic mentioned with a 

particular focus on a photoactive moiety.  Monolayers with phthalimide terminal groups 

will be closely investigated in this thesis.  The structure and orientation of these 

molecules have been studied on glass substrates.6   

2.1.1 N-Phthalimide-heptadecyl-trichlorosilane Monolayer on Glass/Silicon 

(N-Phthalimidoheptadecyl)trichlorosilane was self-assembled onto glass/silicon 

substrate to produce a pure phthalimide monolayer (P-SAM).  P-SAMs were compared to 

mixed monolayers with hexadecyltrichlorosilane (HTS) by thorough spectroscopic 
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analysis (Figure 2-3).  XPS and FTIR Spectroscopy results provided enough information 

to calculate the surface coverage and orientation of the molecules on the surface.   

 

Figure 2-3. Mixed Monolayer of N-Phthalimidoheptadecyl-trichlorosilane (PHTS) 
and Hexadecyltrichlorosilane (HTS).6   

  

Heid et. al.6 calculated the surface coverage of pure P-SAM to be 62.5%.  The low 

surface coverage of pure P-SAM can be explained by two reasons.  First, the low surface 

coverage indicates a nonhomogeneous orientation of the molecules in the monolayer.  

The other likely possibility is that the steric or repulsive dipole-dipole interactions 

between the phthalimide terminal groups hindered the molecules from densely packing.  

To counteract such forces, researchers have prepared mixed monolayers of PHTS and 

HTS to produce films with higher surface coverage.  The mixed SAMs produced a 

surface coverage as high as 96.0% with a PHTS:HTS mixture ratio of 1:19.  The lowest 

surface coverage produced was 71.8% with a mixture ratio of 1:1, but still higher than 

that of pure P-SAMs.  As observed in Figure 2-3, the HTS molecules act as fillers in 

between the phthalimide molecules that are spaced apart from each other to minimize any 
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steric or repulsive forces.  It is interesting to note the surface coverage differences of this 

pure P-SAM on glass, compared to the mixed SAMs, because it will help us understand 

our phthalimide-undecyl-thiol SAMs on gold substrates as will be discussed in this 

chapter.   

2.1.2 Phthalimide-undecyl-thiol Monolayer on Gold 

Phthalimide-undecyl-thiol, referred to as molecule 1, is studied in the form of 

monolayers and thin films on gold substrates (Figure 2-4).  The terminal group exposed 

at the air-monolayer interface plays a crucial role in defining the surface chemistry.  If the 

surface was functionalized with a phthalimide monolayer, the photoactive moiety holds 

the power to anchor various molecules, biomolecules, or nanostructures by strong 

covalent bond attachments.7  Furthermore, the key to controlling surface reactivity is to 

understand the orientation of the terminal group with respect to the rest of the molecule 

and to the substrate, as dictated by angles ", #, and $ (Figure 2-4).   
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Figure 2-4. Scheme of molecule 1 (phthalimide-undecyl-thiol) adsorbed onto the 
surface of a Au substrate in a standing up conformation.  Typical angles are " , # , 
and $; Pink: Gold atom; Yellow: Sulfur atom; Gray: Carbon atom; White: 
Hydrogen atom.  Red: oxygen atom; Purple: Nitrogen atom.   
  

There are two factors that affect the photo-reactivity of the phthalimide-undecyl-

thiol SAM on Au substrate.  First, the organization and density of the SAM will 

determine whether the phthalimide functional group will have poor or strong reactivities 

at the air-monolayer interface.  Results suggest that functional groups positioned within 

highly ordered organic interfaces can have poor reactivities.7  Secondly, the position of 

reactive sites is important.  Reaction sites positioned below the surface of the SAM or 

“embedded” in the SAM can be less accessible to reactants in the surrounding medium 
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than the ones positioned at the termini of the SAM.8  In mixed SAMs, steric effect is 

reduced and consequently, the reactive site may be more accessible.   

In this thesis, we will not demonstrate the reactivity of the phthalimide SAM, but 

rather study the structure of the static monolayer.  Future work, however, should 

investigate the photo-dynamics of the phthalimide SAM.  In order to understand the 

behavior of a monolayer of 1, we prepared multi-layer films that were deposited via spin-

coating.  Therefore, it is essential to learn more about the process of spin-coating and 

how that would affect the structure/composition of the formed film.  
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2.2 Methods 

2.2.1 Materials  

Sodium thiophosphate decahydrate (purchased from VWR), Potassium Phthalimide 

(purchased from Sigma-Aldrich), Dimethylformamide (DMF; purchased from Sigma-

Aldrich), Tetrahydrofuran (THF; purchased from Sigma-Aldrich), Sulfuric acid 

(purchased from Sigma-Aldrich), and hydrogen peroxide (purchased from VWR) were 

used as received.  Gold-coated microscope slides (25.4 mm % 76.2 mm % 1.5 mm, with 

100 nm Au film on a 10 nm Ti adhesion layer; Evaporated Metal Films, Inc.) were used 

for monolayer deposition.  

2.2.2 Synthesis of Molecule 1, Phthalimide-undecyl-thiol9  

Phthalimide-undecyl-bromide (1.0 equiv) and sodium thiophosphate (1.0 equiv) were 

dissolved in a water/DMF mixture.  The reaction mixture was stirred overnight at room 

temperature.  The pH was lowered to 4.0 with 3.5% HCl and the reaction was stirred 

overnight.  The reaction mixture was extracted with methylene chloride (3x) and washed 

with brine, then dried over MgSO4 and filtered under vacuum to yield a white crystalline 

solid product.   

2.2.3 Gold Substrate Cleaning  

Gold substrates for FTIR-GIR were used as provided by EMF Inc. Immediately prior to 

monolayer modification the Au substrates were cleaned in a freshly prepared “piranha” 

solution for two hours at room temperature (Caution: a “piranha” solution, 1:2 

concentrated H2SO4/30% H2O2, reacts violently with many organic materials and should 
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be used with extreme caution; it should not be stored in sealed containers), rinsed with 

deionized water and ethanol, and then dried in a flowing stream of Ar.  

2.2.4 Sample Preparation 

Self-Assembled Monolayers of Phthalimide-undecyl-thiol (A). Monolayers were 

prepared by immersing clean gold substrates overnight in 1 mM phthalimide-undecyl-

thiol dissolved in THF. Substrates were rinsed with ethanol and water, then dried with 

Ar.  

Preparation of Spincoated sample (B).  Sample B was prepared by dropping 1 mM 

phthalimide-undecyl-thiol (in THF) solution onto substrate as it was spinning at a rate of 

200 rpm for 1 min.  

Preparation of Annealed/Spincoated Sample (C).  Sample C was prepared by heating 

the spincoated samples at 80°C for 30 minutes. Rinsed with ethanol and water, three 

times, and then dried with Argon gas.  

Isotropic Sample (1). The phthalimide-undecyl-thiol solid sample was placed onto an 

Attenuated Total Reflectance (ATR) ZnSe crystal to obtain the bulk FTIR spectrum.   

2.2.5 Instrumentation 

FTIR spectra were obtained using a Thermo Nexus 570 interferometer with a 

globar, a KBr beam splitter, and a DTGS detector.  The isotropic sample as a crystalline 

solid was analyzed with Attenuated Total Reflection (ATR - 256 scans, a resolution of    

4 cm-1, equipped with ATR unit from Thermo).  Thin film samples (Samples A, B, and 

C) were characterized by FTIR-GIR spectroscopy (Nexus 570 FTIR interferometer with 

a globar element focused onto the apex of the plane mirror/monolayer support at an angle 
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of 85° as shown in Figure 2-5).  An average of 150 scans at a resolution 4 cm-1 were 

collected in nitrogen-purged conditions.  

Raman spectra were collected using a LabRam ARAMIS Raman Microscope 

from HORIBA Jobin Yvon with a 532 nm laser, no filter, 2 second/acquisition, 50 scans, 

centered grating at 1800 cm-1 with 600 grating.   

 
Figure 2-5. Schematic illustration of grazing incidence reflection setup in FTIR 
instrument using a modified Harrick attachment.  

  

X-ray photoelectron spectroscopy (XPS) spectra were recorded with a PHI 5500 

model spectrometer equipped with an Al K" monochromator X-ray source run at 15 kV 

and 23.3 mA, a hemispherical electron energy analyzer, and a multichannel detector.  The 

test chamber pressure was maintained below 2 % 10-9 Torr during spectral acquisition.  A 

low-energy electron flood gun was used to neutralize the possible surface charge. The 

XPS binding energy (BE) was internally referenced to the aliphatic C(1s) peak (BE = 

284.6 eV).  Survey spectra were acquired at an analyzer pass energy of 93.9 eV and BE 
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resolution of 0.8 eV, while high-resolution spectra were acquired with a pass energy of 

23.5 eV and BE resolution of 0.05 eV.  The takeoff angle is defined as the angle between 

the surface normal and detector. Angle-dependent XPS (ADXPS) was performed by 

using a motor to rotate sample holder to the desired takeoff angle.  A PHI data processing 

software package was used to subtract the background of high-resolution spectra and the 

spectra were resolved by fitting each peak with Gaussian-Lorentz functions under the 

constraint of setting a reasonable BE shift and characteristic full width of half-maximum 

range.   

2.3 Results and Discussion 

2.3.1 Characterization of Molecule 1 

The synthesis of 1 and analogs have been reported in literature and followed 

accordingly.9  FTIR-ATR and Raman spectroscopic results demonstrate characteristic 

peaks of 1, particularly the imide carbonyl and methylene stretching modes (Figure 2-6).  

The imide carbonyl stretches demonstrate the expected differences in intensity between 

the Raman and IR results.  The symmetric C=O stretch at 1771 cm-1 is Raman active 

while it is IR inactive at 1768 cm-1.  The stronger Raman intensity is due to polarizability 

changes during vibration that allows strong Raman light scattering (Raman active).  

Similarly, the asymmetric C=O stretch at 1710 cm-1 is Raman inactive while molecule 1 

produces a strong signal in the infrared.  In the asymmetric stretch, the electrons are more 

easily polarized in the bond that expands but are less easily polarized in the bond that 

compresses.  As a result, there is no overall change in polarizability and asymmetric 

stretch is Raman inactive at 1710 cm-1.  Mass Spectroscopy confirms the molecular mass 

of 1 as 333 g/mol.   
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Figure 2-6.  FTIR-ATR and FT-Raman Spectroscopic characterization of 1.   

2.3.2 FTIR-GIR Spectra of pure SAM and Thin films of 1 

FTIR Spectroscopy can identify a variety of substances by characteristic vibration 

frequencies, but its ability to provide comprehensive analysis is dependent on the type of 

sample analyzed and accessory used.  In this case, the samples are thin films on gold 

surfaces, which pose some challenges including difficulty in detecting a good signal-to-

noise (S/N) level.  Grazing Incidence Reflection (GIR) accessory (Section 1.3.2) can 

address this challenge and collect high S/N ratio from nanometer-thin layers on reflective 

surfaces.  FTIR-GIR is able to identify functional groups of the adsorbate, but also 

determine the molecular orientation on the surface.  GIR accessory is a good candidate 

for the type of analysis desired for SAM and multilayer films of 1 on gold surfaces.  By 

grazing the infrared beam off the gold surface at an angle of 80-88 degrees, we are able to 

isolate the electric field perpendicular to the surface, detect the functional groups that are 

more strongly coupling to the electric field, and determine the overall orientation of the 

adsorbate on the surface (See Figure 2-7).  In particular, molecule 1 has its advantage of 
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being well marked by carbonyl groups, which possess strong absorption coefficient in the 

infrared region.   

 

Figure 2-7. Schematic illustration on the right shows the path of the infrared beam 
off gold substrate.   

 

In addition to tracking the carbonyl functionality of molecule 1 on the surface, we 

can identify methylene groups and will study both functional groups for all samples.  

Samples under investigation are (A) Self-assembled Monolayer, (B) Spin-coated thin 

film, and (C) Annealed/Spin-coated thin film of 1.   

2.3.2.1 C-H and C=O Stretching Frequencies 

The relative GIR spectral change of the monolayer and thin films was used to 

determine the chemical bonding and molecular orientation of 1 at the interface region on 

gold substrates.  Figure 2-8 shows the comparison of four infrared spectra in the C-H and 

C=O stretching regions: one ATR spectrum of the isotropic sample, 1 and GIR spectra of 

samples A, B, and C.  No significant differences can be seen in these spectra in terms of 

the total number of bands.  However, the relative band intensities are quite different.  As 

seen in Figure 2-8, in the 3000–2700 cm-1 region, the C–H stretching bands, there are 

significant differences in the relative intensity of the bands and there are wavenumber 
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shifts that can be attributed to the change of the alkyl chain order on the surface.  

Molecule 1 in bulk, a crystalline state, demonstrates order as the asymmetric and 

symmetric methylene stretches are positioned at 2916 cm-1 and 2848 cm-1, respectively.10  

Interestingly, when 1 adsorbs onto a gold surface (i.e. samples A, B, or C), we observe 

the methylene peaks to shift significantly to higher wavenumbers (Table 2-1).   

The sharp and intense bands at 1774 and 1720 cm-1 on Samples A, B, and C are 

attributed to the C=O symmetric and asymmetric stretching modes of the phthalimide 

terminal group, respectively (Table 2-1).  These bands in an isotropic form have been 

reported in the literature by Rigout, M. et. al.11  The shift to higher wavenumber for  both 

methylene and carbonyl groups is an indication of disorder in the monolayer/films, and 

could be due to low surface coverage.12   

The characteristic S–H stretching mode of the thiol group at 2571 cm-1 is not 

observed in the isotropic spectrum. This absence is plausibly due to the easily oxidized 

thiol end groups in the isotropic medium, which can come together to generate a cystine 

unit with a disulfide bond (-S–S-).  In the GIR spectra, the absence of this S–H peak on 

the gold surface is expected as the thiol group interacts with gold to form a S-Au bond.  



44 
 

 

 
  
Figure 2-8. Fourier Transform Infrared Grazing Incidence Reflection (FTIR-GIR) 
Spectroscopy of SAM of 1 (A), Spincoated of 1 (B), and Annealed/Spincoated of 1 
(C), which is scaled with the left axis while the bulk spectrum of 1 is scaled with 
respect to the right axis.  Carbon dioxide gas was observed in the spectra but 
covered for easier view. 
 
 

Table 2-1. Peak Positions (cm-1) Molecule 1 in Crystalline State and Adsorbed 
onto Gold Surfaces 

Sample 
Asymmetric 
Methylene 

(CH2 ) 

Symmetric 
Methylene 

(CH2) 

Symmetric 
Phthalimide 

(C=O) 

Asymmetric 
Phthalimide 

(C=O) 
Molecule 1 (bulk) 2916 2848 1768 1700 
SAM of 1 (A) 2929 2854 1774 1720 
Spincoated of 1 (B) 2937 2854 1774 1720 
Annealed/Spincoated of 
1 (C) No peak   No peak  1774 1720 
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2.3.2.2 C-H and C=O Absorbance Intensities 

The stretching frequency alone will not determine the state of disorder or order of 

the monolayer and films.  Since the stretching frequency of carbonyls has not changed 

from being in bulk to surface conformation, we will evaluate the absorbance intensities of 

carbonyl groups because the intensity change is a good indication of how the molecule is 

oriented on the substrate.  As Figure 2-9 illustrates, there are two stretching modes 

associated with the phthalimide carbonyl group – asymmetric 'a and symmetric 's.  

When the two carbonyl groups on the phthalimide stretch symmetrically, the peak 

appears at 1774 cm-1.  When the imide carbonyls vibrate disproportionately, they produce 

an asymmetric frequency at 1720 cm-1.  As expected, the asymmetric vibration is stronger 

in intensity than the symmetric vibration as shown in Figure 2-9 (left).   

 

Figure 2-9. FTIR-GIR Spectrum of Molecule 1 adsorbed onto Gold substrate (SAM) 
and coupling with perpendicular electric field.   
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As the asymmetric dipole moment couples more strongly with the electric field 

perpendicular to the substrate, we observe 'a to increase in intensity.  In order to 

determine the magnitude of the increased absorbance intensity of 'a(C=O), we compare it 

with the intensity at 'a(CH2) in the form of a ratio.  Table 2-2 shows the absorbance 

intensity ratios for molecule 1 in different conformations (bulk, A, B, and C).  The 

absorbance intensity ratio for molecule 1 in bulk is estimated to be 1.5 while that of 

Sample A is 1.3.  We know that 1 in bulk is in crystalline form and in good order.  The 

similarity in ratios between the two conformations suggests that molecule 1 is ordered in 

a similar manner when it is assembled into a monolayer (A).  However, there is a 

distinguishable difference in the absorbance intensity ratio as 1 is spin-coated onto the 

gold surface to form Sample B.  The increased ratio to 4.2 for Sample B suggests that the 

film is more ordered than the monolayer of 1.   

  
Table 2-2.  Absorbance Intensities (a.u.) of Molecule 1 in different 

conformations 

Sample 
Asymmetric 
Phthalimide 

(C=O) 

Asymmetric 
Methylene 

(CH2) 

Abs Intensity 
Ratio of 

'a(C=O) to 
'a(CH2) 

Molecule 1 (bulk) 0.28 0.18 1.5 
SAM of 1 (A) 0.0015 0.0011 1.3 
Spincoated of 1 (B) 0.0038 0.00090 4.2 
Annealed/Spincoated of 1 (C) 0.0012  No peak  N/A 

  

The increased C=O intensity ratio to 4.2 in Sample B is attributed to the carbonyl 

group being oriented more perpendicular to the substrate and its dipole moment change is 

being maximized as it couples more strongly with the perpendicular electric field. 

Spincoating 1 molecules onto the gold surface for sample B may have forced the 
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attractive (-( interactions between the phthalimide groups to be stronger than the 

repulsive steric hindrance of the bulky terminal groups.  However, keeping in mind that 

FTIR-GIR spectroscopy helps detect the entire monolayer and does not have the ability to 

isolate the air-monolayer interface, there is a possibility that this greater order does not 

have the advantage of exposing the phthalimide groups at the top of the film.  There is a 

possibility that the alkyl chain of 1 has gauche kinks that may explain the weaker 

methylene peak signal compared to the stronger C=O coupling of the phthalimide group.  

By using immersion time as a variable in future experiments, we can investigate the 

possibility of gauche CH2-CH2 interactions and dispersion of bond angles and local 

environment as seen previously.13   

2.3.2.3 Summary of FTIR-GIR Analysis  

Molecule 1 is in crystalline, ordered form in bulk conformation while 1 conforms 

to a more disordered state in monolayer conformation.  The monolayer is slightly more 

disordered than Samples B and C, suggesting that the packing density is poor.  This is 

unexpected as we expected the isotropic (bulk) to be more disordered than the anisotropic 

self-assembled monolayer.  However, as concluded by another study12, the terminal 

groups at the air-monolayer interface can still be positioned at the top of the film and 

oriented perpendicular to the surface even if the alkyl chains may not pack in an orderly 

fashion.  Low packing density does not necessarily reflect poorly on the photoreactivity 

of the phthalimide SAM because the other extreme of possessing high packing density 

can be problematic for making the phthalimide terminal groups less accessible. 
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2.3.3 XPS Spectra of pure Phthalimide-undecyl-thiol SAM and Thin films 

X-ray Photoelectron Spectroscopy (Section 1.3.6) is used to characterize pure 

monolayer and thin films.14  XPS is a characterization tool that we used to detect any 

changes in atomic composition between different conformations of 1.  In order to 

ascertain the correct assignment of fitted peaks for carbon 1s XP spectra of 1, we have 

analyzed H-Phthalimide and N-Methyl Phthalimide as our model compounds.   

2.3.3.1 XPS of model compounds 

High-resolution spectra of phthalimide model compounds were compared with 

the phthalimide SAM (A), spincoated (B), and annealed/spincoated (C).  H-phthalimide 

and N-methyl phthalimide hold the same core composition for the high-resolution carbon 

1s spectrum of molecule 1 (Figure 2-10).  As listed in Table 2-3, the fitted peaks as seen 

in the XP spectra are associated with three different chemical environments: C-C 

aliphatic/aromatic carbons, C-N carbons, and C=O carbons.  While there are these 

similarities, the differences become more obvious when a methyl group or an undecyl 

hydrocarbon chain for N-methyl phthalimide and molecule 1 replaces the hydrogen atom 

in the H-phthalimide, respectively.  The C=O peak, in particular, shifts to a greater 

binding energy as it becomes more difficult to abstract a core electron from the carbonyl 

carbon that lost electron density to the neighboring alkyl group.  The fitted peak values 

compared with those found in literature15 are similar to the experimental results.   
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Figure 2-10. High-Resolution XP Spectra of C 1s of H-Phthalimide, N-Methyl 
Phthalimide, and SAM of Molecule 1 at take-off angle of 45 degrees. 
   
 

Table 2-3.  Fitted Peak Assignments of C 1s peak in XP spectra of Molecule 1 
analog films and Monolayer at take-off angle of 45 degrees.  

Sample Fitted Peak 
# 

Peak Energy 
(eV) 

Peak Area 
% Peak Assignment 

1 284.6 70.9 C-C aromatic 

2 285.4 15.4 C-N 
(A) H-

Phthalimide  
3 287.1 13.7 C=O 

1 284.6 83.9 C-C 
aliphatic/aromatic 

2 286.4 9.4 C-N 
(B) CH3-

Phthalimide 
3 288.4 6.7 shifted C=O 

1 284.6 77.6 C-C 
aliphatic/aromatic 

2 286.1 10.9 C-N 

(C) 

Monolayer 

of 1  
3 288.5 11.4 shifted C=O 
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For the monolayer of 1, we expect the 14 aliphatic and aromatic carbons from the 

hydrocarbon chain and phthalimide’s benzene group to contribute approximately 74%, 

three carbons surrounding the nitrogen to contribute 16%, and two carbonyl carbons in 

the phthalimide group to contribute 10%, out of a total of 19 carbons in the SAM 

molecule.  We observe a close correlation with the experimental results shown in Table 

2-3.  

2.3.3.2 ADXPS Analysis of 1 in Monolayer and Films 

Angular Dependent X-ray Photoelectron Spectroscopy (ADXPS) is known to be 

one of the useful techniques to investigate the molecular orientation of thin layer 

materials on solid substrates.  This technique was used to investigate the orientation of 

dodecanethiol self-assembled monolayer on gold surface.16.   

XP spectra shown in Figure 2-11 provide quantitative information of 1 in Samples 

A, B, and C.  The high-resolution C(1s) spectra show evidence of three different types of 

carbon.  As indicated in Figure 2-11, the signal at 284.6 eV is associated with aliphatic 

and aromatic carbons that are not bonded to oxygen; the 286.1 eV signal is associated 

with C-N carbons and the carbons neighboring the carbonyl carbons in the phthalimide 

group; and the 288.3 eV signal is associated with phthalimide carbonyl carbon.  

Understanding that the depth of penetration is approximately 0.7 nm17 at take-off angle of 

15 degrees, XPS can be used to confirm that the phthalimide terminal groups of molecule 

1 are situated at the top of the monolayer and oriented normal to the surface for Sample 

A.   
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Figure 2-11. High-resolution XPS C(1s) spectra of Samples A, B, C collected with 
takeoff angle at 15 degrees.  
 
Through the integrated peak intensities associated with each carbon environment, we 

notice that peak 3 (associated to the C=O) is more prominently displayed for sample A 

than for B or C.  In Table 2-4, the intensity ratios for each sample are listed.  We observe 

that peak 3 is not as strongly detected in Samples B and C, which is most likely due to a 

signal attenuation and relates back to how the samples were prepared.  When 1 molecules 

were spin-coated onto the surfaces to produce samples B and C, the adsorbates were 

possibly “locked” into its resulting structure with the phthalimide terminal groups 

embedded inside the film rather than being exposed at the top.  Sample C displayed the 
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highest peak 2:3 intensity ratio of 1.72 because the carbonyl peak was weakly detected at 

take-off angle of 15 degrees.  This is a possible indication for a greater presence of 

hydrocarbon moieties closer to the surface.  On the other hand, there was a stronger 

detection of the carbonyl group in Sample A, producing an intensity ratio of 0.96.  The 

carbonyl signal is of interest in this study because it is the functional group responsible 

for photo-grafting.   

Table 2-4.  Intensity Ratios of Fitted Peaks 2 and 3 of XP 
C1s high resolution spectra of Samples A, B, 
and C 

Sample A B C 

Intensity Ratio 2:3 0.96 1.56 1.72 

  

Table 2-5 shows the atomic composition and the calculated C/Au ratio for all 

three samples.  The C/Au ratio can be used as an indicator for the thickness and 

composition of the films.  C/Au ratio is the lowest at 1.57 for Sample A, while it is 

highest at 6.9 for Sample C.  The monolayer has a lower thickness value than the 

spincoated films (Samples B and C) and therefore, lower carbon content with respect to 

gold signal detected.  

We also observe that there is higher oxygen content for samples B and C.  Spin-

coating molecule 1 onto surfaces in ambient conditions may have forced oxygen 

incorporation into the film composition.  Notice how the oxygen atomic percentage 

increased from Sample A to B/C with the percentage increasing from 9.6% to at least 

23% and 29%, respectively.   
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Table 2-5. Atomic Percentages for Phthalimide-
thiol Samples Determined from Fitting 
XP Spectra collected at take-off angle 
(TOA) of 15°  

Peak A B C 

Au 4f 23.89 8.2  9.2 

C 1s  61.2 59.6  63.6 

N 1s 5.4 3.0  4.15 

O 1s  9.6 29.0  23.0 

C/Au 1.57 4.28  6.9 

2.3.3.3 Thickness Measurements: ADXPS, Molecular Model, Ellipsometry 

The thickness values of A, B, and C may be estimated through angular dependent 

XPS (ADXPS) measurements by varying the photoelectron take-off angles – 45°, 35°, 

25°, and 15°.  In order to estimate the thickness of A, B, and C, the ratio of signals from 

the overlayer [C(1s)] and the substrate [Au(4f7/2)] was measured as a function of the 

takeoff angle.  Based on Equation 2-1, the experimental data is fitted onto a linear 

regression plot as shown in Figure 2-12, and the overlayer thickness was derived from the 

slope of 0.0412.  The slope was divided by 0.08, the overlayer coverage of 8% for 

coverage on gold substrates and then multiplied by the photoelectron mean free path of 

2.25 nm to produce the thickness value of 1.16  nm.  However, this value is then 

averaged with other trials and produced an average thickness value of 0.8 ± 0.3 nm for 

monolayer of 1 (Sample A).  

Using the uniform overlayer model and assumption that the photoelectron mean 

free path is 2.25 nm18, the thickness values were also calculated for Samples B and C to 

be 1.8 and 1.94 nm, respectively. 
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Equation 2-1:  

Y: yield (photoionization cross-section) 
IL: Signal from overlayer (C 1s) 
IS: Signal from substrate (Au 4f) 
D: thickness of overlayer 
): Photoelectron mean free path 
!: take-off angle 

 
 

 

Figure 2-12. Substrate-Overlayer Model of SAM of Molecule 1 to show how the 
thickness value was calculated from XP spectra collected at take-off angles of 45, 35, 
25, and 15 degrees.   
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Table 2-6 provides a summary of thickness values calculated from the molecular model 

(Spartan) to ADXPS and ellipsometry.   

 

Table 2-6. Estimated Thickness values 

SAMPLE A B C 

Molecular Model (nm) 2.19 N/A  N/A  

ADXPS Estimated Thickness (nm) 0.8 ± 0.3 1.8 ± 0.3 1.94 

Ellipsometric Thickness (nm) 1.38 1.58 1.18 

 

Spartan Pro molecular modeling program was used to calculate the minimized 

energy of the structure for molecule 1, as drawn in Figure 2-13.  The bond angles and 

lengths were measured on the structure with minimized energy and used to find the total 

molecular length of 2.19 nm.   
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Figure 2-13.  Minimized Energy Structure of Molecule 1.  
  

From the molecular model of 1 and the experimental thickness values, we 

calculated an average tilt angle of the molecule in the monolayer (Sample A).  With the 

ADXPS estimated thickness average of 0.8 nm, the tilt angle was averaged to be 68.7 

degrees.  With the ellipsometric thickness, the tilt angle was calculated to be 50 degrees.  

The tilt angle calculation is an approximation because we cannot guarantee that every 

adsorbate on the surface will oriented at that particular angle.  There will be patches in 

the overlayer with different ", #, and $.   
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2.4 Summary and Outlook 

The focus of this chapter was on the self-assembled monolayer of molecule 1 and 

its overall structure and composition.  In order to achieve a detailed understanding of 

Sample A, other similar systems were also analyzed for comparison.  FTIR-GIR 

Spectroscopy, ADXPS, and Ellipsometry together produced a comprehensive picture of 

the orientation of 1 with respect to the surface of a gold substrate.   

FTIR-GIR results demonstrated that the self-assembled monolayer (Sample A) 

was not as ordered as the other systems (Sample B and C).  A more disordered film 

suggests that the packing density and coverage are low.  Low surface coverage is not 

necessarily a disadvantage for the phthalimide-undecyl-thiol monolayer because high 

packing density is known to decrease the photo-reactivity of the phthalimide terminal 

group.  One possible explanation for the Samples B and C to be more ordered is that spin-

coating applied a force that overcame any steric hindrance between the adsorbates and 

packed the molecules closely together.   

High-resolution XP spectra of C 1s for samples A, B, and C show three 

characteristic peaks for phthalimide-undecyl-thiol, as confirmed by the model compounds 

used to vary the peak positions.  With ADXPS, we were able to closely analyze each film 

at a take-off angle of 15 degrees and illustrate that Sample A was different from the other 

two samples.  Monolayer of 1 displayed a more pronounced peak 3 (associated to 

phthalimide carbonyl) at take-off angle of 15 degrees and limited depth of penetration of 

0.7 nm.  The shallow depth of penetration produces XPS results that pertain to only the 

top part of the monolayer or film and offers more information about the orientation of 

molecule 1 on the surface.  Samples B and C produced an attenuated C=O signal while 
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Sample A (monolayer of less than 1 nm thin) produced a pronounced C=O peak at the 

air-monolayer interface.  Understanding the structure of phthalimide SAM plays an 

important role in improving its photo-grafting abilities.   

For further analysis of the self-assembly process of molecule 1, Scanning 

Tunneling Microscopy can be used to look more closely at the different phases – lying 

down vs. standing up conformation.  In addition, FTIR-GIR spectroscopy can be used to 

monitor photo-reactivity of phthalimide SAM real-time and study more improved 

monolayer systems (mixed SAMs).   

2.4.1 Outlook: Exploring Photoreactivity of Phthalimide SAM  

Further experiments would be to study the photo-reactivity of phthalimide SAM 

by quantifying the changes in the C=O region in FTIR-GIR spectrum upon UV exposure 

and grafting of another species onto the surface.  Upon photoreaction of the phthalimide 

group with the assumption that both carbonyls will not be photoreduced, the initial 

carbonyl peak is expected to decrease in absorbance intensity.  Another expected change 

is a carbonyl peak shift to higher wavenumber due to less conjugation with the benzene 

and other imide carbonyl.   

2.4.2 Outlook: Mixed Phthalimide SAMs 

As discussed in Section 2.1.1, mixed self-assembled monolayers have the 

potential to improve surface coverage and any surface chemistry that follows.  When 

another molecule is introduced to a pure self-assembled monolayer of 1, there is a greater 

likelihood that the mixed SAM will have greater order and surface coverage, which may 

improve the phthalimide’s photo-grafting capabilities.   
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3 Application of Phthalimide SAM to Produce NP-Films 

3.1 Introduction: Nanotechnology and Surfaces 

The fabrication of nanoparticle (NP)-films on surfaces holds potential 

applications in optical, electronic, and biological systems due to the NPs’ distinct 

advantage in small size and high surface area to volume ratio.1  Enthusiasm for 

nanotechnology predominantly originates from the unique size-dependent property of 

nanoparticles (NP).  However, individual NPs cannot deliver the expected performance in 

actual devices and commercial applications because only a large number of NPs in robust 

assemblies can display such a quality.  Therefore, research efforts have been made to 

develop NP-assembly methods with controlled spatial distribution and geometry.  

Currently, manipulating NPs on a large scale is a great challenge.  By tethering NPs to 

surfaces, we are able to increase surface functionality.2 Nanoparticle-films can be 

patterned with conventional photolithographic methods and fabricated by a range of 

techniques: dip and spincoating3, layer-by-layer assembly4, and spray coating5 from 

supercritical fluids or water.  The efficacy of the technique is demonstrated in the wear 

resistance and strength of the NP-films fabricated.   

NP-grafting has been done previously using a variety of chemical reactions6, but 

only photo-grafting technique is known2, where microemulsions were surface tethered 

via photoinitiation of the benzophenone functional group.  Other NP-film fabrication 

techniques include lithography.7  However, these methods particularly lithographic 

techniques are costly, have limitations in its approach and produce unstable, non-covalent 

surface attachments of the NPs to the surface.   
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In response to the demands to develop a technique that is simple and inexpensive, 

it is highly desirable to design a photochemical method.  Photo-grafting is potentially a 

“universal technique” that would tether essentially any organic NP to a surface.  We 

show that a photo-functionalized monolayer composed of phthalimide groups provides an 

example that possesses the desirable properties of such a universal method.  Previously 

we have shown that this simple photochemical approach that has been used to graft 

polymers of small to high molecular weight, particularly carbohydrates, to glass and 

silicon surfaces in order to build biodiagnostic microarrays.9   

In collaboration with Professor Robert Prud’homme from Princeton University, 

we have the ability to anchor drug delivery nanosphere to material surfaces by using this 

photochemical method.  We extend the photografting technique to fabricate well-

controlled NP-films, using polymeric nanoparticles (PNPs), composed of a polystyrene 

(PS)-Hostasol red dye core and a polyethylene glycol (PEG) shell.  In Figure 3-1, the 

PNPs are schematically shown to be immobilized onto the surface via the photoinduced 

phthalimide self-assembled monolayer.  At the air-monolayer interface in the light-

exposed regions where the photochemistry occurs, a covalent bond causes the PNPs to 

adhere to the glass or silicon substrate.  Here, the PNPs were intentionally drawn as 

“flattened” spheres and will be discussed later in this chapter.   
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Figure 3-1. Schematic illustration of grafting PNPs to the photofunctionalized 
surface (glass or silicon).  Figure is not drawn to scale.   
  

3.2 Methods 

3.2.1 Synthesis of Alkyne-decorated Polymeric Particles.10  

Fluorescent nanoparticles were assembled via Flash NanoPrecipitation11 using 

polystyrene (PS)-poly ethylene oxide (PEO) diblock copolymers. Hostasol red, a 

hydrophobic fluorescent dye, was encapsulated inside the core of the polymeric 

nanoparticles. To generate nanoparticles with 20% surface alkyne coverage, hydroxyl 

terminated block copolymer PS-b-PEO-OH (8 mg/mL, 1.8 mM, PS Mw ~ 1500, PEO 

Mw ~ 3000), alkyne terminated block copolymer PS-b-PEO-alkyne (2 mg/mL, 0.44 mM, 

PS Mw ~1500, PEO Mw~3000), homopolymer PS-OH (10 mg/mL, 6.7 mM, Mw~1500),  

and hostasol red (0.01 mg/mL, 30 µM) were dissolved in THF, a water-miscible organic 

solvent (12 mL/min), and rapidly mixed with three water streams (each at 40 mL/min). 

Immediately after the nanoparticle assembly, THF was removed by dialysis against 
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ultrapure water using Spectra/Por dialysis tubing with a molecular weight cutoff of 6000-

8000.   

The surface coverage of these polymeric particles can be easily adjusted by 

changing the ratio between -OH terminated polymer and -alkyne terminated polymer. 

The particles used for this particular study had approximately a 20% alkyne coverage.  

The free alkyne groups can be used for further biological click chemistry (alkyne-azide 

cycloaddition) applications to graft azide-functionalized biomolecules such as DNA onto 

the particle-modified surfaces.10c, 12  From dynamic light scattering, it was determined 

that these polymeric NPs are approximately 100 nm in diameter in aqueous solution.  

3.2.2 Synthesis of phthalimide-undecyl-trimethoxysilane9  

A 3.3 mmol portion of 11- bromoundecanetrimethoxysilane (Gelest) was added to 

a solution of an equimolar amount of potassium phthalimide (Aldrich) in 60 mL of 

anhydrous dimethylformamide (DMF; Aldrich). The solution was stirred overnight at 

room temperature (RT) under argon. Chloroform (50 mL) was added. The solution was 

transferred to a separatory flask containing 50 mL of H2O. The aqueous layer was 

separated and then extracted with two 20 mL portions of chloroform. The combined 

chloroform extract was washed with several 20 mL portions of H2O. The chloroform was 

removed by rotoevaporation, and residual DMF was removed on a high vacuum line to 

give a pale yellow oil.   

3.2.3 Self-Assembly of Phthalimide-undecyl-trimethoxysilane onto Glass or 

Silicon wafer  

The solid substrates consisted of glass (ArrayIt) or silicon (Wafer world) typically 

with dimensions of 2.54 cm % 7.62 cm, but for XPS sample dimensions were smaller (1 
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cm % 1 cm).  The substrates and glassware were cleaned in piranha solution (2:1 H2SO4: 

30% H2O2) for 2 hours followed by extensive rinse with water and ethanol.  Substrates 

were dried with a stream of argon and immersed in a 1 mmol solution of phthalimide-

undecyl-trimethoxysilane in anhydrous toluene (Aldrich).  Substrates were kept in 

solution for 12 h in dark.  The resulting SAMs were rinsed with toluene and sonicated 

three times for 2 min each in toluene, toluene/methanol (1:1), and methanol.  Substrates 

were kept in argon-purged containers until further use.  

3.2.4 Photochemical Grafting and Patterning of Polymeric NP-Films  

Polymeric NPs (PNPs) in aqueous solution were spin-coated onto phthalimide 

SAM-functionalized glass or silicon substrates at 3000 rpm for 1 min and placed in 

argon-purged containers.  Spin-coated surfaces were irradiated at 254 nm for 15 min with 

a Rayonet photochemical reactor.  Samples were rinsed with water, dried with argon, and 

immediately analyzed by techniques described below.   

To pattern a PNP-film, a 400-mesh transmission electron microscopy (TEM) grid 

(Electron Microscopy Sciences) was used as a photomask for all patterning experiments. 

After spin-coating PNPs onto phthalimide SAM-functionalized substrate, the photomask 

was placed on top of the PNP-coated substrate. Irradiation was carried out with a desktop 

lamp containing a 254 nm Rayonet bulb for approximately 15 min.  The photomask was 

removed and photopatterned surface was rinsed with water and blown dry with argon, 

prepared for analysis.   

For both cases (with or without pattern), two sample groups were prepared: (1) 

Irradiated surfaces as described above and (2) Non-irradiated surfaces.  The non-

irradiated samples were prepared as follows.  As the non-irradiated surfaces serve as 
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‘dark’ control samples, the phthalimide-functionalized SAMs were treated as close as 

possible to the irradiated samples except the irradiation step was eliminated.  For non-

irradiated samples, the PNPs were spin-coated onto the SAM-substrate, not exposed to 

light, rinsed with water, blown dry with argon, and prepared for technical analysis.  The 

dark controls can indicate whether or not PNPs are adhering to the surface via 

physisorption or chemisorption.  We expect the dark controls to demonstrate that PNPs 

cannot strongly bind to surfaces in the absence of light.   

3.2.5 Spectroscopic Characterization Methods  

Contact Angle Goniometry.  Static contact angle measurements were performed 

with a Rame-Hart 100-00 contact angle goniometer using Millipore Mili-Q water. With 

the use of a micropipet, a drop of 6-µL volume was placed directly onto the sample.  At 

least three droplets were measured on each sample.   

X-ray photoelectron spectroscopy (XPS) spectra were recorded with a PHI 5500 

spectrometer equipped with a hemispherical electron energy analyzer, a multichannel 

detector, and an Al K" monochromator X-ray source run at 15 kV and 23.3 mA.  The test 

chamber pressure was maintained below 2 % 10-9 Torr during spectral acquisition.  A 

low-energy electron flood gun was used as required to neutralize surface charging.  The 

binding energy (BE) was internally referenced to the aliphatic C 1s peak at 284.6 eV.  

Survey spectra were acquired using an analyzer pass energy of 93.9 eV and a BE 

resolution of 0.8 eV, while high-resolution spectra were acquired with a pass energy of 

23.5 eV and a BE resolution of 0.05 eV.  The takeoff angle is defined as the angle 

between the surface and the photoelectron detector.  Spectra were deconvoluted using 

RBD software that fits a series of Gaussian-Lorentzian functions to each chemically 
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shifted photoelectron peak, after subtracting an appropriate background.  Atomic 

concentrations were calculated by normalizing peak areas with the elemental sensitivity 

factor data in the PHI database.  Note: The XPS samples were prepared with smaller 

dimensions (1cm % 1cm) and consequently, the spin-coating conditions were adjusted to 

250 rpm for 1 min.  

Atomic Force Microscopy (AFM) images were obtained with a ThermoProbes 

Autoscope CP Research System. Surfaces were imaged in non-tapping mode across 5.0 % 

5.0 µm dimensions for the phthalimide SAM and 10.0 % 10.0 µm dimensions for the 

PNP-film.  

Confocal Fluorescence Microscopy (CFM).  The samples were analyzed using an 

inverted microscope with an Olympus Fluoview confocal system (New York/New Jersey 

Scientific, Middlebush, NJ) with dual wavelengths excitation at 488 and 568 nm (20! 

objective lens). Images were captured with 488 nm excitation wavelength.   

3.3 Results and Discussion 

The process of photo-grafting PNPs is illustrated schematically in Figure 3-1.  

The NP photo-grafting technique is based on a widely known photochemical mechanism 

that uses self-assembled monolayers (SAMs) containing aromatic carbonyls that react 

with C–H groups to form a covalent bond.13  Benzophenone (BP) derivatives are among 

the most commonly used photoactive groups to develop biological membranes.14  

Similarly, phthalimide derivatives can undergo the same photochemical reaction to cause 

grafting of organic polymers whose mechanism can be described as follows (Figure 3-2).  

Upon absorption of a photon, the phthalimide group is excited to the n-"* state; the latter 

electronically excited state abstracts a C-H hydrogen atom from a nearby molecule, in 
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this case a PNP, to form a radical pair, with one radical center firmly attached to the 

surface via the phthalimide group and the other firmly attached to the PNP.  When the 

resulting radical pair recombines, a strong covalent bond is formed between the surface 

and the PNP.  This covalent bond immobilizes the PNPs onto surfaces.  It should be 

pointed out that other secondary processes such as disproportionation and back-transfer, 

that do not lead to grafting are also possible.   However, although the grafting efficiency 

to these phthalimide-functionalized surfaces is quantitatively unknown, in practice, the 

photoactive monolayers have proven to be successful in fabricating carbohydrate 

microarrays with high signal throughputs.9  The photoactive property of phthalimide-

silane monolayer is the novel component of our NP-film fabrication technique and we 

show below that the concept works for the photografting of PNPs on to surfaces also.   

 

Figure 3-2.  Phthalimide SAM photo-grafting PNPs via a hydrogen abstraction 
mechanism upon UV exposure.  The phthalimide functional group undergoes a 
photochemical reaction where the excited carbonyl abstracts a hydrogen atom from the 
PEG polymer part of the nanoparticles, resulting in covalent bond formation from a 
radical-radical combination.   
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Standard surface techniques such as contact angle goniometry and ellipsometry 

were used for characterization of the pre-irradiated and irradiated films.  Contact angle 

goniometric analysis of phthalimide SAM, prior to PNP-film application, produced a 

water contact angle of approximately 65 ± 1° as cited before in literature for this SAM.9  

However, upon photografting PNPs onto the SAMs, the contact angle results showed 

inconsistency in the left and right readings of each water droplet, which indicated film 

roughness.  Similarly, ellipsometry could not be used to measure the thickness of the 

PNP-films due to difficulty in calculating the varying refractive indices between PNP-

film and underlying phthalimide monolayer.  

However, the photo-grafted PNP-films could be characterized by X-ray 

Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and Confocal 

Fluorescence Microscopy (CFM).  Each of these techniques is powerful in some regards, 

but also possesses some limitations.   

3.3.1 X-ray Photoelectron Spectroscopy (XPS) Results 

XPS is a conventional surface characterization tool that we used to illustrate the 

differences in atomic composition between the samples before and after NP-grafting.  XP 

spectra of the phthalimide SAM-functionalized glass substrates, before and after photo-

grafting of the PNPs are shown in Figure 3-3 (a) and (b), respectively.  Peaks are 

assigned to Si 2p (103.5 eV), Si 2s (155.0 eV), C 1s (284.6 eV), and O 1s (532.0 eV).15 

These peaks correspond to the atoms on the glass substrate, C bound to other carbons, 

hydrogens, and oxygens, and oxygen in silicon dioxide of the substrate.15  One significant 

difference seen between the two spectra in Figure 3-3 is in the relative peak heights, 
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focusing on the increase of C1s signal and decrease of Si2p signal with the addition of the 

PNPs.  

In order to quantify the magnitude of this change upon the PNP-film fabrication, 

the C1s and Si2p peaks were fitted and the percent atomic concentrations were quantified 

as shown in Table 3-1.  This change is most noticeable in comparing the C/Si ratios for 

the two samples in the bottom line of Table 3-1.  The increase of C/Si ratio from 1.46 

(phthalimide SAM) to 5.67 (PNP-Film) is significant, in contrast to negligible change 

between the phthalimide SAM and dark control.   The quantitative analysis of the peak 

area change indicates the PNPs were covalently bound to the glass substrates. 

 

Figure 3-3. Survey Spectra of (a) Phthalimide SAM and (b) PNP-film deposited onto 
clean glass substrates at a take-off angle of 45 degrees. 
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Table 3-1.  Atomic Percentages of Phthalimide SAM and NP-

Film Determined from Fitting of XP Spectra 

Peak 
Phthalimide 

SAM 

Dark 

Control 
PNP-Film 

C 1s 33.2 34.7 61.8 

Si 2p3 22.7 20.1 10.9 

C/Si 1.46 1.73 5.67 

  

Furthermore, fitting of the high-resolution C1s spectra helps identify different 
chemical environments for the elements observed in XPS.  The C1s peak for phthalimide 
SAM is well fit by three carbon components at 284.6, 286.1, and 288.0 eV, which can be 
attributed to C-C, C-N, and C=O carbons, respectively (Figure 3-4a).  However, the PNP-
film sample is fit by four carbon components at 284.6, 285.6, 287.2, and 291.9 eV 
(Figure 3-4b).    

Figure 3-4b shows the disappearance of carbonyl peak at 288.0 eV indicative of 

the phthalimide SAM signal being overshadowed by PNPs and the appearance of a new 

peaks labeled 2-4, that can be attributed to the ether carbons from the PEG shell and " to 

"* satellite structure from the PS core.  
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Figure 3-4. Fitted high-resolution corrected XP spectra of C 1s peak at 284.6 eV: (a) 
Phthalimide SAM and (b) Photo-grafted PNP-film on glass.  XP spectra were 
collected with a take-off angle of 45 degrees.  (20% alkyne terminated PEG-PS-
Hred polymeric particles photografted onto phthalimide functionalized glass 
substrate.) 
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Looking more closely at the percentage peak areas in Table 3-2, we observe that 

the shake-up intensity of the PNP-film at 291.9 eV was estimated to be 2.5% of the C1s 

peak, while a typical shake-up intensity for pure polystyrene is 5-10%.16  The weaker 

percentage of 2.5% for the PS " to "* transition confirms the expected stronger signal 

from the PEG outershell and heterogeneous nature of the block copolymer NPs.  The 

‘shake-up’ process of the PS may appear different here in the PNP-film because the PS is 

integrated into a polymeric nanoparticle core and therefore, may have a different glass 

transition temperature Tg compared to pure PS.  In addition to the different chemical 

environment being surrounded by PEG, the lower molecular weight of the PS core can 

contribute to the lower shake-up intensity.   

The peak area percentage values of the samples before and after photo-grafting 

provide more quantitative information to indicate the presence of PNPs that were photo-

grafted to the surface (shown in Table 3-2).  Before PNP-grafting, the phthalimide SAM 

is closely analyzed by comparing the experimental peak area % values with the 

estimated/expected values.  For phthalimide SAM, we expect the 14 aliphatic and 

aromatic carbons from the hydrocarbon chain and phthalimide’s benzene group to 

contribute to approximately 74%, three carbons surrounding the nitrogen to contribute 

16%, and two carbonyl carbons in the phthalimide group to contribute 10%, out of a total 

of 19 carbons in the SAM molecule.  The peak area percentages (experimental and 

expected values) are closely related enough to identify characteristic peaks of the 

phthalimide SAM on the surface.   

For the photo-grafted PNP-film, we notice that the peak area percentage values 

change significantly as new carbon environments are introduced and additional fitted 
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peaks appear.  We have already discussed the characteristic peak of polystyrene’s " to "* 

transition.  The formation of fitted peak at 285.6 eV represents one of the two most 

significant changes upon PNP-grafting with the ether carbons making up 68% of the total 

carbon environment.  The sharp increase in intensity of the ether carbon peak was 

expected as our spectral results were compared to the standard XP spectrum of a PEG 

polymer film.17  The other large difference was observed in the aliphatic carbon peak at 

284.6 eV as its peak area dropped to 15% of the total.  With the same take-off angle at 45 

degrees, the x-ray beam penetrates the same distance into the PNP-film as it did the 

phthalimide SAM.  Given the same depth of penetration, the XP spectral results more 

strictly correspond to the grafted polymeric nanoparticles, as opposed to the SAM itself.  

This explains the largest peak area of 68% relating to the PEG component of the PNPs.   

  

Table 3-2.  Fitted Peak Assignments of C 1s peak in XP spectra of Phthalimide 

SAM and photo-grafted PNP-film. Take-off angle of 45 degrees.  

Sample 
Element/ 

Transition 

Peak Energy 

(eV) 

Peak Area 

% 
Peak Assignment 

C 1s 284.6 81.5 C-C aliphatic 

C 1s 286.1 15.0 C-N 

(A) 

Phthalimide 

SAM C 1s 288.0 3.4 C=O 

C 1s 284.6 15.1 C-C aliphatic 

C 1s 285.6 68.1 C-O Ether 

C 1s 287.2 14.2 
" to "* transition OR 

shifted C=O 

(B) Photo-

grafted 

PNP-film 

C 1s 291.9 2.5 
Shake-up (" to "* 

transition) 
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This potentially universal photo-grafting approach was expected to covalently 

bind PNPs to phthalimide-functionalized surfaces and thereby alter the atomic 

composition at the surface.  XPS of the samples before and after photo-grafting PNPs 

supports the occurrence of this photochemical reaction.  Using UV exposure to graft 

PNPs demonstrates several changes by XPS, including a higher C/Si ratio and PNP-

specific carbon components in the fitted high-resolution spectra.   

3.3.2 Atomic Force Microscopy (AFM) Results 

AFM analysis further supports the presence of photo-grafted PNPs on silicon 

substrates.  AFM imaging can address the question: How do the PNPs behave when spin-

coated onto a surface from a stable, aqueous solution? A previous model suggests that 

lateral capillary forces may influence particles to aggregate during the drying stage/spin-

coating in order to find stability.18  Spin-coating the PNPs onto the surface allows for dry 

deposition of the PNPs by evaporating the solvent.  As a result, the glass transition 

temperature (Tg) is expected to increase and the polymer chains become frozen on the 

surface.  Since the particles are polymeric, the PNPs may be more susceptible to surface 

rearrangement such that the higher energy functional groups may be buried in the bulk of 

the film.19  However in our case, because the PNPs are vitrified at the core, the particles 

are expected to stay intact and keep the PS material within the PNP core and PEG 

material exposed to be in contact with the surface.   

AFM allows us to probe nanoscale-deep into the structure of PNP-films and 

explore how capillary forces may or may not play a role in how the particles arrange 

themselves on a surface.  AFM height images can be used to determine the root-mean-
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square (rms) roughness of surfaces.  The rms roughness describes the rms value of the 

surface height relative to the center place.20   

Figure 3-5a shows an AFM image with 5.0 % 5.0 µm dimensions for a 

phthalimide SAM-functionalized silicon substrate that reveals a low rms value of 0.897 

nm.  However, as indicated by the AFM image of 10.0 % 10.0 µm dimensions, once the 

PNPs are photo-grafted onto the surface, the rms value increases to 3.52 nm (Figure 

3-5b).  The rms roughness is influenced by various factors which include the sharpness of 

the AFM tip, size of the nanoparticles, and packing density of the nanoparticle-film.   

Rough qualitative analysis of the AFM image in Fig. 4b suggests that the NP-film 

does not have high surface coverage.  The depth profile of this AFM image illustrates 

each featured particulate on the surface to be approximately 15 nm by 750 nm, height by 

width (Figure 3-5c).   The dimensions of the featured particulates are larger than expected 

as each PNP in aqueous solution is estimated to be 100 nm in diameter.  
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A) 

 

B) 

 

C) 

 

Figure 3-5. Atomic Force Microscopy (AFM) images of (A) phthalimide SAM on 
silicon wafer and (B) PNP-film on phthalimide-functionalized silicon wafer, and (C) 
the depth profile for line crossing of PNP-film in B. 
  

The resulting outcome suggests two possibilities.  The first possibility is that the 

PEG chains may have a strong affinity to the surface while the PS core may not be high 

enough in glass transition temperature Tg to be rigid, therefore upon drying the capillary 

forces flatten the particles onto the surface.  Addressing the first possible cause is more 

difficult than the second because it involves altering the nature of PNPs themselves.  The 
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second possibility for the large dimensioned features is that the PNPs may aggregate on 

the surface to find stability in the form of mini-islands.  PNPs are initially stable and well 

dispersed in solution, but the final presence (or not) of aggregates is linked to the key 

balance between the inter-particle surface interactions and the capillary forces.   

Thill et. al.18 collected AFM images of four different scenarios – describing the 

effect of the capillary forces, in opposition to adhesion forces, on NP-film formation.  

There are three factors in favor of the lateral capillary forces: (1) large surface coverage 

of the NPs (i.e. short distance between the adsorbed particles), (2) the wettability and size 

of particles, and (3) the surface tension of the liquid film.  It is difficult to predict and 

control the balance between adhesion and capillary forces and in general, it is not clear 

whether the capillary forces will affect the layer structure when drying onto a surface.   

Comparing our PNP-film with a similar system presented by Thill et. al., we 

observe some similarities in the conditions of the NP-film preparation and in the AFM 

images of the fabricated films, seen in Figure 3-6.  The AFM image on the right is 

indicative of a film where the lateral capillary forces seem to outweigh the adhesion 

forces.  The adhesion forces do exist, but they are weak and as a result, some aggregation 

is observed.   
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Figure 3-6. AFM images of photo-grafted PNP-film with 10.0 %  10.0 µm dimensions 
(left; experimental) and polydispersed latex particles adsorbed on Al2O3 surface 
presented in literature with 3.0 %  3.0 µm dimensions (right, literature18).   

  

While it may not be possible to completely eliminate the aggregation effects, we 

may be able to control this balance and reduce the magnitude of aggregation by 

optimizing the synthesis and surface application of PNPs.  One approach is to decrease 

the PNP solution concentration before spincoating them onto the surface.  However, the 

purpose of this study is to demonstrate and prove a rapid and efficient method that 

covalently bonded nanoparticles onto a surface using light, different from current 

techniques available. 

3.3.3 Confocal Fluorescence Microscopy (CFM) Results  

Confocal Fluorescence Microscopy illustrates a unique feature of the photo-

grafting approach – the ability to pattern nanoparticle-films, as illustrated in Figure 3-7.  

CFM was able to detect and image the presence of PNPs by using the dye-cores as visual 

indicators.  Preliminary analysis detected a photo-bleaching complication that weakened 

the dye’s fluorescence in the photo-grafting step of sample preparation.   
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Figure 3-7. Schematic Illustration of photopatterning nanoparticles to a 
phthalimide-functionalized surface with use of photomask.  (a) Only NPs that are 
exposed to hv covalently bond to the surface.  (b) The expected pattern is due to 
unreacted NPs being washed away. 
  

The image in Figure 3-8a is produced by a mask comprising a series of 50 micron 

squares.  During the photo-attachment step in PNP-film fabrication, some photo 

bleaching of the fluorescent dye in the PNP cores is observed.  The fluorescence intensity 

inside the square domains (light-exposed regions) was weaker than that of the 

surrounding gridlines that were protected from the light by the mask.  The light-exposed 

square domains represent areas where PNPs were covalently attached to the surface. At 

this irradiation step before rinsing, we did not expect to detect a pattern of fluorescence, 

but the image in Figure 3-8a displays a pattern due to photo-bleaching.  After rinsing the 

irradiated surface to remove unattached PNPs, we observe the expected fluorescence 

pattern, where fluorescent PNPs are present inside the bright square domains and absent 

along the dark borderlines.  The confocal image, Figure 3-8b, shows the fluorescent 50-

micron square domains that demonstrate successful surface attachment and patterning.  

Notice the decrease in overall fluorescence intensity from (a) to (b) and worsened S/N 

ratio as indicated by the plot profiles below each confocal image in Figure 3-8.  Despite 
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the decreased image resolution, the expected fluorescent pattern is clearly seen, resulting 

from the PNP presence inside the square domains and no PNP presence in dark gridlines.  

When comparing these results to the dark controls, we do not observe this “photo-

bleaching effect” because the irradiation step is eliminated.  As a result, the dark controls 

of PNP-films (not exposed to light) exhibit a strongly fluorescent confocal image with no 

pattern to be seen.   

  

 

  

Figure 3-8. Confocal Fluorescence Microscopy image.  CFM images of 
photopatterned NP-films on glass surface (a) before and (b) after rinsing away 
unreacted particles (Dye was excited at 488 nm).  The contrast and brightness of 
CFM images were modified to distinguish pattern features. 20% alkyne terminated 
H-red PS/PEG particles were used.  The pattern features were created using a TEM 
grid with 50-µm dimensions on each square.  The bright, lighter regions represent 
the presence of fluorescent PNPs and the darker regions indicate no PNP presence.  
ImageJ software was used to produce the plot profiles below.   
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3.4 Summary and Outlook 

Polymeric NPs were successfully photo-grafted and patterned onto hard substrates.  

XPS and AFM results indicate characteristic changes before and after PNPs are 

covalently bonded to the surface, while the CFM images demonstrate the patterning 

capacity of the universal photo-grafting method to fabricate NP-films.  For future 

applications, the alkyne functionality of PNPs can be used to advance the design of 

biological interfaces by selectively “clicking” azide-functionalized biomolecules to the 

NP-films. 

The unique feature of these PNPs is the alkyne-decorated outer shell.  With the 

PNPs’ alkyne functionality, the block copolymer nanoparticles hold promise in a number 

of fields including drug delivery.21  The alkyne-functionality of PNP-films and its natural 

click chemistry capacity can advance the design of biologically active interfaces that 

require strong, specific attachment of biological ligands onto surfaces.22 
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4 Outreach: Oyster Restoration Project 

4.1 Introduction 

Recently, there has been great interest in using oysters as an environmental 

remediation tool in coastal ecosystems.  Oysters have an advantage over other bivalve 

species to filter large quantities of heavy metals due to their habitat and feeding nature.   

Our research focuses on the eastern oyster species, Crassostrea virginica, that were re-

introduced into the New York Harbor Estuary.  We are interested in the quantitative 

analysis of the oysters’ heavy metal intake by monitoring levels of metals such as Arsenic 

and Cadmium in their tissue and shells.  The purpose of this research is to acquire 

baseline chemical data and evaluate the ecological health of the New York Harbor 

Estuary over a long period of time.   

4.1.1 History of Oysters in New York Harbor and Project Background 

In the 1800s, oysters were once prevalent in the New York Harbor for thousands 

of years, but have undergone a major decline from harsher conditions due to prolonged 

fishing pressure, habitat degradation and loss, and other stresses in the last one hundred 

years.1  Oyster reefs make a significant contribution to the estuary water quality and 

health as they promote the presence of other filter feeders and fishes that could be as 

important as oysters for their filtration ability.   

In August of 2009, the Hudson River Foundation brought together a team of 

oyster experts to proceed with the development of 6 experimental oyster reefs that were 

constructed in 2010.  Besides the Foundation, other main participants in the Oyster 

Restoration Project include the NY/NJ Baykeeper, New York City Department of Parks 
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and Recreations Natural Resources Group, and the Urban Assembly New York Harbor 

School.  The following section will introduce one of the 6 oyster sites in the estuary.   

4.1.2 Recent Oyster Restoration efforts: Flupsy 

Recent efforts have been made for oyster restoration in the harbor through an 

innovatively designed oyster nursery raft called a Floating Upweller System (flupsy), as 

shown in Figure 4-1.  Flupsy has been a proven method to culture small shellfish seed 

through their delicate “nursery” stage, from coming out of a hatchery to being large 

enough to be sorted on a tray.  Water flow and feed are increased to boost the growth of 

oyster seed in this system.  Due to the force up-flow conditions, the seed grows at high 

densities much more quickly and uniformly, compared to the natural flow conditions.  

Therefore, the oysters are smaller in size than its peers that grow in better water quality 

conditions.  A disclaimer for these young New York Harbor oysters is that they are not 

deemed edible by FDA standards due to their high levels of mercury and other toxic 

contaminants.   

 
Figure 4-1. Oyster Flupsy at an Eco-Dock on Governor’s Island. Satellite view of Governor’s Island 
(left) provides the geographic location of the oyster flupsy (right).   
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4.2 Experimental Methods 

Extensive research efforts have taken place that clearly demonstrate the special 

ability that oysters have to filter heavy metals from surrounding bodies of water.2  We 

designed an experimental protocol similar to that used in an Australian study3 to collect 

oysters and detect heavy metal concentrations from their body tissue and shells.  For 

thorough analysis, three sample groups will be collected: 1) 3-year oysters from Harbor 

Flupsy, 2) Control I: 3-year old Fisher’s oysters (same age as harbor oysters) and 3) 

Control II: Small size Fisher’s island oysters (same size as harbor oysters).   

Sample preparation includes finely grinding the shell and tissues and dissolving 

into the right solvent for analysis.  High Resolution Inductively Coupled Mass 

Spectrometer (ICP-Mass Spec) will be used to focus on the analysis and monitoring of 

the following trace metals: aluminum (Al), arsenic (As), cadmium (Cd), Chromium (Cr), 

Copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), lead (Pb), and Zinc (Zn).  

Preliminary results analyzing oyster tissue and shells with Brookhaven National 

Laboratory’s National Synchrotron Light Source (NSLS) indicate the presence of 

calcium, zinc, copper, iron, nickel, and mercury, in decreasing order of concentration.  

However, more detailed studies are needed, in relation to oyster age, oyster size, timing 

of measurements, and temperature of waters.   
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