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Abstract

Climate prediction on decadal time scales is currently an active area of

research, and reliable model-based forecasts of regional “near-term” climate

change have yet to be demonstrated. In the absence of such forecasts, syn-

thetic data sequences that capture the statistical properties of observed near-

term climate variability have potential value. Incorporation of a climate change

component in such sequences can help define risk estimates for a range of cli-

matic stresses, including those lying beyond what has been experienced in the

past. Properly conditioned simulations can be used to drive agricultural, hy-

drological or other application models, enabling resilience testing of adaptation

or decision systems. The use of statistically-based methods enables the effi-

cient generation of large ensembles of synthetic sequences and consequently,

the creation of well-defined probabilistic risk estimates.

In this report we examine some procedures for the generation of synthetic

climate sequences that incorporate both the statistics of observed variability

and expectations regarding future regional climate change. Model fitting and

simulation are considered in the framework of classical time series analysis, with

methodology conditioned by requirements particular to the decadal climate

problem. A method of downscaling annualized simulations to the daily time

step, while preserving subannual statistical properties, is presented and other

possible methods discussed. Deployment in the applications setting, the details

of which may vary considerably, depending on regional climate characteristics,

available data and the design of follow-on models, is considered and elements

of a case study presented.
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1 Introduction

Decadal climate variability, sometimes referred to as “near-term climate change,” has
received increasing attention in recent years, and the potential for numerical climate
models to forecast climate variations on time scales out to a few decades is currently an
active area of research. At present, however, well-verified, reliable near-term climate
forecasts for terrestrial regions, and particularly at local to regional scales, have not
been demonstrated. Alternative methods for assessing near-term climate-related risks
may thus have considerable value.

One technique that can useful in this regard involves stochastic simulation, the
creation of synthetic climate sequences having statistical properties representative
of a region or locality of interest. Such sequences, while not forecasts per se, can
nonetheless help to quantify ranges of uncertainty associated with near-term climate
variability. Simulations may be structured so as to incorporate the long-term cli-
mate change trends associated with anthropogenic (greenhouse) forcing. These trends
then provide a slowly-changing background state on which decadal, and by extension,
higher-frequency fluctuations are superimposed. Acting in concert, these influences
can provide a better description of the expected range of near-term climate varia-
tions, and their potential impacts on statistics of interest for agriculture or other
applications, than either considered alone. It is the generation of such sequences that
constitutes the focus of the present report.

The discussion presented here can be considered an exploration of the practical
considerations involved in generating such simulations. At the heart of the simulation
process, as conceived herein, lies a statistical model. As will be seen, the structure of
such a model can only be prespecified up to a point: Its detailed form can be expected
to depend in a significant way on several factors, including characteristics of the
local or regional climate that constitutes the simulation target, availability of suitable
data with which to train the model (possibly including paleodata), the structure and
requirements of follow-on applications models and the particular impacts that are of
concern. Examples are provided that illustrate these contingencies.

The remainder of this presentation is organized as follows: In Sec. 2 we provide
some theoretical background and describe the conceptual decomposition by time scale
that underlies the proposed simulation methodology. Section 3 considers the various
issues encountered in model design and specification. Section 4 presents a detailed
rubric for the construction of a simulation model, in light of the information presented
in earlier sections. In Sec. 5 elements of a case study that illustrate one possible
realization of the simulation methodology is considered. A discussion and summary
follow in Secs. 6 and 7, respectively.
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2 Decomposition by time scale

Climate variability is often parsed according to time scale, the various canonical scales
corresponding approximately to different classes of climate process. The simulation
strategy to be discussed depends on such a decomposition, with each of several scales,
or equivalently in this view, process types, receiving quasi-independent treatment,
the results thereafter being combined. This treatment strategy has a number of
implications, which are discussed in the relevant sections.

2.1 Climate change

On the longest scales to be considered here are the slow, secular climate shifts en-
gendered by humankind’s activities, which play out over the course of a century or
longer. These are the scales at issue in recent reports of the Intergovernmental Panel
on Climate Change [Solomon et al., 2007], and involve anthropogenic “forcing” of
the climate system through changes in the radiative properties of the Earth’s atmo-
sphere, with attendant adjustments in many aspects of the climate system. One such
adjustment is reflected in temperature at the Earth’s surface, which is expected to
rise as the atmosphere becomes more and more opaque to the planet’s thermal ra-
diation, owing to increasing atmospheric burdens of carbon dioxide (CO2) and other
greenhouse gases. This is the source of the often-heard designation “global warming.”
We thus identify a “climate change” time scale, and associate with it slow, trend-like
components in the signals to be analyzed.

2.2 Subannual variations

At the opposite end of the spectrum we find subannual variability, including the
seasonal cycle and daily weather fluctuations. The former is of course a consequence
the inclination of Earth’s axis and its orbital motion around the sun, while day-to-day
variations that we think of as “weather” are an expression of very short time scale
processes acting to resolve atmospheric instabilities of various kinds. The chaotic
nature of the atmosphere implies limited predictability for such fluctuations, and for
application purposes such daily variability is often treated statistically through the
use of “weather generators,” that produce realistic sequences of synthetic data for use
in agricultural or other models requiring inputs that are highly resolved in the time
domain [Wilks and Wilby , 1999; Wilks , 1999]. Nonparametric resampling schemes are
also used for weather generation; a scheme of this type is utilized in the case study
to be discussed.
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2.3 The decadal scale: “Near-term” climate change

2.3.1 Modes

The time scale on which we focus in this report, ranging from years to decades, with
an emphasis on the longer-period end of this range, occupies a middle ground be-
tween the climate change and weather scales. Indeed, stochastic decadal simulation
may be thought of as an analog of weather generation, with the year replacing the
day as the simulation time step. Unlike climate change, which represents the response
of the land-ocean-atmosphere system to external forcing (anthropogenic changes to
the radiative properties of the atmosphere) the processes governing variability on
decadal scales are believed to be intrinsic, or internal, to the climate system. Decadal
variability is often described in terms of “modes,” an implicit reference to the “nor-
mal modes” characterizing the natural behavior of many physical systems, examples
being the tones of a bell or the natural oscillations of a swinging pendulum. Such
modes can be “excited” by random disturbances — a pebble tossed at a bell will
elicit the bell’s natural frequencies — and are intrinsic to the physical system. Simi-
larly, large-scale climate modes such as the El-Niño-Southern Oscillation (ENSO), the
Atlantic Multidecadal Oscillation (AMO) or Pacific Decadal Oscillation (PDO) may
be thought of as intrinsic to the climate system, excited by random perturbations
within the chaotically-varying climate system, but evolving along trajectories that
are determined by intrinsic properties of the system itself. In the language suggested
earlier, decadal-scale variability is the expression of a process class that is distinct
from climate change.

2.3.2 Noise, white and red

It is important to note that both the rapid fluctuations of daily weather and the
slower variations of decadal variability may be, in part or whole, expressions of ran-
domness within the climate system. Such variations are not driven by any particular
mechanism and are essentially unpredictable, beyond the decay time associated with
processes having long “memory.”. The spectra of such random processes differ be-
tween atmosphere and ocean, as illustrated in Fig. 1, which shows realizations of white
and red noise processes and Fig. 2, which shows the corresponding power spectra.

In the sequence shown in Fig. 1a, which may be taken as a surrogate for the
atmosphere, fluctuations are uncorrelated: The level, or value of the process at any
time t is unrelated to its value at any other time. Conditional on its mean and
variance, such a process is completely unpredictable from a knowledge of its own
history.

By contrast, the process illustrated in Fig. 1b, which we may take as a surrogate
for variability associated with the oceans, exhibits a degree of serial autocorrelation.
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Figure 1: Realizations of a white (a) and red (b) noise processes. These are synthetic
sequences; units are arbitrary.

It has been generated by the relation

xt = γxt−1 + αǫt, (1)

where xt is the process level at time t, xt−1 its value at the preceding time step, γ and
α are constants and ǫt is a white noise process with unit variance. In the sequence
shown in Fig. 1b γ has been taken as 0.8 and α as 0.4. The lag-1 dependence
introduced by the first term on the rhs of (1) gives the process a degree of memory,
and as a consequence its shifts in level are more sluggish than those of the sequence
in Fig. 1a. The memory of a red-noise process is equated with the decay time of
its autocovariance function, which can be expressed as −1/log(γ). For the process
shown in Fig. 1b this would be about 4.5 yr, not very long compared with the extent
of the series but enough to produce a distinct difference in the qualitative appearance
of the plots. The two series of Fig. 1 have been adjusted so as to have equal variance.

Figure 2 shows power spectra for the sequences of Fig. 1. The white-noise spectrum
is essentially flat, with equal power at all frequencies. In the case of red noise, the
low-frequency end of the spectrum is enhanced, with spectral power dropping off in
accordance with the decay time of the underlying process.

The sequences and spectra of Figs. 1 and 2 are emblematic of a now-classical view
of ocean-atmosphere interaction that likens atmosphere and ocean to the molecules in
a liquid and and (much larger) particles suspended in that liquid, that are undergoing
“sluggish” Brownian motion as a result of the rapidly fluctuating forces of molecule-
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Figure 2: Power spectra for the sequences shown in Fig. 1. (Letters indicate the
correspondences.) The x-axis is scaled so that the highest resolvable frequency (the
Nyquist frequency) is unity.

particle collisions Hasselmann [1976]. The time series and spectra of Figs. 1a and 2a
on the one hand, and Figs. 1b and 2b on the other, would then be associated with
atmospheric (white noise) and oceanic (red noise) processes, respectively.

2.4 Simulations grounded in physical understanding

To bring this discussion back to the practical problem of decadal simulation, we
recognize that the oceans are a likely source, through their “teleconnections” with
terrestrial climates, of the variations that we wish to emulate in our stochastic se-
quences. We should not be surprised, therefore, if we find that this variability has
the character of red (or “reddened”) noise, or if such noise is present as a background
against which more “deterministic” processes play out.

The stochastic sequences to be discussed are generated on an annual time step.
To the extent that deterministic (e.g., quasi-periodic) signals are present in the ob-
servational records to be mimicked, these would be extracted, modeled and simulated
as such, using one of a number of possible methods. The residual “noise” would then
be treated as a random process, possibly (but not necessarily) having the form of
(1). We regard this procedure as consistent with the Brownian-motion view of ocean-
atmosphere interaction first articulated by Hasselmann [1976] and echoed in many
subsequent studies [e.g., Saravanan and McWilliams, 1998; Kleeman, 2008].
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2.5 A focus on low-frequency variability

Depending on the requirements of follow-on applications models, the inclusion of
realistic subannual (i.e., high-frequency) variability in a final simulation product may
be desirable, or possibly required. There are various ways of accomplishing this,
including resort to the weather generators mentioned earlier, and we touch on this
subject in Sec. 4. However, the focus of this work remains the annual and superannual
scales; the generation of daily sequences, while afforded an appropriate degree of
attention (particularly in the case study), necessarily assumes secondary importance
in the overall plan.

2.6 Section summary

In sum, the simulation rubric to be presented assumes three broad classes of cli-
mate variability: A forced component, expressed as long-term trend and presumably
owing to anthropogenic influence, a low-frequency, or decadal component, reflect-
ing unforced, “natural” variability intrinsic to the climate system and ultimately
deriving from the slow variations characteristic of oceanic processes, and subannual
high-frequency variations representing short time scale weather fluctuations as well as
the seasonal cycle. The latter two classes may have significant random components,
although the precise character of this randomness is likely to differ between them,
owing to the reddening of atmospheric noise through interaction with the ocean. Al-
though a final simulation product may require the realistic representation of daily
variability, it is the low-frequency component that constitutes the principal subject
and focus of this report.

3 Modeling contingencies

The scheme we present here is based on the fit of a statistical model to observational
data, regarding which several issues immediately arise. These include the availability
of suitable data to which to fit the model, characteristics of the regional climate itself
and requirements of the follow-on applications model or models. Each of these factors
plays a role in simulation design; they are discussed in turn.

3.1 Role of observational Data

3.1.1 Observations, climate models, satellites

If the simulations are to have realistic properties, there must be available sufficient
data of reasonably good quality to which to fit the statistical model that is ultimately
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used to generate them. The existence of GCMs, which provide data of unlimited
length, complete spatial coverage and without missing values, would seem to obviate
the need for station-based observational records, but in fact the situation is quite
the opposite: observational data are required for the validation of GCM simulations.
Representation by GCMs of the “internal” variability that is of interest here is often of
questionable realism, with the models typically exhibiting biases in signal amplitudes,
time scales, spatial patterns and very possibly, mechanisms of variability. Such models
cannot in general substitute for good-quality observational records, particularly on
the small spatial scales relevant for impacts modeling.

Satellite data is widely available but this too offers only a limited alternative to
observational records. For one thing, these data share the characteristic of models
that “ground truth” is required for their validation. In addition, satellite records
commence only around 1979, thus are too short for the confident characterization of
most decadal signals. Recall that we are interested in the statistics of low-frequency
variability, meaning that a number of realizations are required for estimation. The
lower the frequency at issue the longer the record required. The Atlantic Multidecadal
Oscillation, (AMO) exhibits what appears to be oscillatory behavior (Fig. 3), but the
period of these “oscillations,” 65-70 yr, is so long compared to the length of the
observational record (here 155 yr) that it cannot be said with confidence that the
AMO is truly periodic. (Thus the more general designation, Atlantic Multidecadal
Variability, that is sometimes applied.) Similarly, if one takes the satellite perspective
and considers the AMO only beginning in 1979, the series has the appearance of an
upward trend, giving little suggestion of oscillatory behavior. The difficulties imposed
by limited record length on the confident characterization of decadal variability should
be clear.

3.1.2 Paleodata

Given the limited length of many observational records, one can easily imagine a role
for paleoclimate data, which may extend hundreds of years or more into the past.
Tree-ring reconstructions have been used to good effect by Prairie et al. [2008], for
stochastic simulations of Colorado river streamflow, for example. The paleorecord in
that case exhibits “megadroughts,” dry epochs whose lengths greatly exceed those
of historical droughts in the American southwest. Clearly, such information has the
potential to enhance our understanding of the range of “plausible” behaviors that
might be expected in the future. Beyond the obvious requirement that suitable pale-
orecords, applicable to the region under study, must be available, the introduction of
such data raises calibration and other technical issues that lie beyond the scope of the
present study, and we do not pursue this option further in the present report. We note
in passing that Prairie et al. [2008] utilize a preexisting streamflow reconstruction,
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Figure 3: Atlantic Multidecadal Oscillation, and a version that has been lowpassed
using a Butterworth filter of order 5 having a half-power point at period of 30 yr.
Data from the Kaplan SST reconstruction [Kaplan et al., 1997, 1998] was used.

thus avoiding the necessity of dealing with calibration issues.

3.1.3 Importance of spatial coverage

Complementary to coverage in the time domain is spatial coverage of the available
records. Obviously, training data for the statistical model should be representative of
the locality or region for which simulations are to be generated. However, these data
serve an additional function that is critical to our modeling enterprise: the charac-
terization of regional low-frequency variability. If the “region” under consideration
is too small, any low-frequency component that is present may be masked by the
relatively larger local variability (in this case to be considered “noise”) in the record.
Decadal-scale processes exhibit climate footprints, on land or ocean, that tend to be
relatively large-scale. Data sources should thus be sufficiently extended in the spatial
domain to capture such regional-scale fluctuations. At the same time they should be
representative of the study area for which simulations are to be generated.

3.1.4 A possible role for “intermediate” data

The simultaneous requirements that the observational data be of sufficient spatial
extent to capture regional decadal signals, while at the same time being representative
of a (possibly smaller) study area, suggests a potential role for an “intermediate” data
set that, in some circumstances, might be deployed to bridge the gap between regional
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and local scales. Thus, for example, we might be confronted with a small set of
highly localized observational records specific to a particular watershed or subregion
that represents a modeling objective. At the same time it is perhaps believed, from
independent analysis of climate variability over a larger, enclosing region, that a
significant decadal footprint is present, perhaps related to one of the recognized large-
scale modes. This decadal signature, however, is detectable at only a relatively low
level in the localized observational data. In such a situation one can imagine a
hierarchical modeling regime, in which a modicum of the inferred regional decadal
signal is introduced into simulations that are primarily based on the more localized
observational data. Formalization of this type of model lies beyond the scope of the
present report.

3.2 Regional climate characteristics

The goal of our enterprise is the simulation of regional decadal variability, respect-
ing aspects of this variability that are important for the characterization of climate
impacts, and in particular for estimating these impacts through the use of follow-
on models. We have seen that the characterization of regional variability requires
suitable observational data. Having such data in hand, then, what are the salient
characteristics that simulations must respect?

3.2.1 Trends and trend-like behavior

Trends, which we associate with anthropogenically-forced climate change, were dis-
cussed in Sec. 2 from the perspective of time scale decomposition. Here we consider
trend-like behavior from the modeling perspective. Trends represent nonstationar-
ity in the mean: an average value, changing with time, around which decadal and
high-frequency, interannual signals fluctuate. Even if the character of these fluctua-
tions changes little over time, the addition of a significant trend will eventually bring
about the occurrence of climate anomalies that lie outside the range of past expe-
rience. Natural systems, and by extension crops, may have thresholds that do not
adjust with changing climate, beyond which critical stresses occur. A shifting mean
state may imply that a particular threshold will be crossed more and more often as
climate warms, or, alternatively, that certain detrimental thresholds, such as cold
spell length or number of frost days, may be exceeded less and less often.

Thus, the inclusion of trends in simulated sequences (at least to the extent that
such trends are believed to be significant) may be considered essential from the
estimation-of-risk perspective. However, the question of how such trends are to be
estimated then arises, since they could well differ, going forward, from trends recorded
during the observational period. This issue is discussed further in Sec. 4.
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A further issue with trend, and its association with anthropogenically-forced cli-
mate change, was suggested in the discussion of Sec. 3.1.1. If we were to consider,
say the time period from 1970-2010, the AMO (Fig. 3) would appear very much like
an upward-trending signal. Attempting to extract the signature of “climate change”
by detrending such a series would yield the potentially misleading impression that a
strong anthropogenic signal is present, when in fact we would be radically undersam-
pling a largely trend-free signal that instead is exhibiting slow oscillatory behavior.
This points up the importance of drawing inferences from the longest records that are
available, or at least attempting to verify through independent means the presence
or absence of low-frequency variability in the signal or signals to be deconstructed.

3.2.2 Deterministic vs. random variations

As we have suggested in Sec. 2, decadal variability as characterized simply by time
scale is in fact not all of a piece. Broadly speaking, there are two types of processes
that may engender low-frequency variations, which we characterize here as “determin-
istic” and “random.” In the classical time series approach, for example, both trend
and seasonality are considered deterministic, meaning that they are in some sense
predictable. Thus, trend may be extrapolated or may be modeled as dependent on
a process that can be projected forward in time, while the seasonal cycle is periodic
and may be modeled as a sinusoid. When the effects of such processes have been
accounted for, what remains is the random component of variability. The analysis
then attempts to paramaterize this component as belonging to one or another family
of known processes, and both elements — deterministic plus random — are projected
forward in time, in order to generate “realizations” of the data being simulated.

We follow a similar procedure here, with the difference that since our decadal-
scale modeling is based on annual values, seasonality ceases to be relevant, at least
for the annual-superannual time scale of primary interest. That there may still exist
significant trends should be evident. But this is not the end of the decomposition,
since other deterministic components may still be present. The question then becomes
one of discrimination, between (non-trend) components that are deterministic and
those that are random, given that we are starting with annually-resolved data values.

As we have discussed, the very large thermal and physical inertia of the oceans, as
compared with the atmosphere, results in variability that is essentially random, but
having a degree of memory, as described by Equation (1). It is this type of process
(i.e., red noise) that we will use as a test, to differentiate between deterministic and
random behavior, as we examine the data to be simulated. That is, the data is tested,
in a statistically rigorous manner, against the null hypothesis that its character is
not different from that of red noise, and thus that it plausibly results from random
atmosphere-ocean interaction. Rejection of this red noise null hypothesis is taken as
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evidence of the existence of a deterministic data component, which will then require its
own model, just as seasonality requires its own model when analyzing data resolved
on subannual time scales. Residuals from the deterministically-modeled series are
then represented by a random time series model (which must encompass red-noise
processes, since these are, by construction, not classified as deterministic).

What sorts of “deterministic” processes are likely to be distinguishable from red
noise? Periodic, or quasi-periodic processes, if they represent a large enough fraction
of variance of the original data, may meet this criterion. The use of a null hypothesis
based on red noise, sometimes referred to as an autoregressive process of order unity,
or AR(1), suggests an additional possibility, namely higher-order random processes,
in which xt may be dependent on two or more past values:

xt = γ1xt−1 + γ2xt−2 + . . . + γnxt−n + ǫt, n > 1. (2)

Thus, a random AR(2) or higher-order process, under the red-noise null hypothesis,
may be classified as deterministic. Processes also can be defined for which the current
level xt depends on m previous values of x and n previous values of ǫ; such processes,
denoted as autoregressive-moving average of order (m,n), or ARMA(m,n), may also
be classified as deterministic. An example of such a process, in the seasonal to inter-
annual domain, is the Southern Oscillation (SO), which was modeled as ARMA(3,1)
by Trenberth and Hoar [1996]. Similarly, Fig. 4 shows that for ENSO, as measured
by the NINO3 sea-surface temperature (SST) index, the red noise null hypothesis can
be rejected at the 10% significance level (see Sec. 4.4. Thus, if we were attempting
to simulate the NINO3 time series, an AR(1) (red noise) process would not suffice:
Such a series would require a higher-order model.

3.2.3 Subannual variability

Seasonality is a significant factor in many, if not most, regions. In the simulation
context it may useful to model only the rainy season, for example, since this is likely
also the growing season and outside this window little significant precipitation may
accrue. On the daily time scale there may be significant covariation among climate
parameters; if simulations are to be generated at this time step, such covariation will
need to be accounted for. Other daily (or more generally, high-frequency) statistics
may also be at issue in simulation. These include extremes as well as spell lengths, for
both temperature and precipitation. The daily component of a complete simulation
scheme should attempt to account for those aspects of high-frequency variability
deemed to be significant for the intended application.
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Figure 4: Time series plot of the NINO3 index (a), wavelet spectrum (b) and global
wavelet spectrum (c), showing the 10% significance level for a red noise process. ENSO
variability, as defined by this metric, differs from red noise at the 10% significance
level. Analysis courtesy of http://paos.colorado.edu/research/wavelets.
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3.3 Follow-on modeling requirements

As noted, some applications models require data on more highly-resolved time scales
than annual. A crop model might utilize daily values of rainfall, temperature and
insolation, for example. It is these requirements that will determine whether simula-
tion must extend to the daily time step, and in fact which data must be simulated.
A problem may arise if required variables (insolation comes to mind) have not been
recorded, or if the available observational records are of short duration, in which case
empirical rules, perhaps based on data from similar sites, may have to be devised in
order to obtain reasonable simulation values. An example would be the creation of
two insolation distributions, for wet and dry days. Insolation values could then be
sampled from these distributions conditional on the occurrence of rain, as specified
by the core simulation model.

In some cases, such as the Colorado River streamflow simulations mentioned ear-
lier, univariate simulations are sufficient: The Lee’s Ferry streamflow value encapsu-
lates sufficient information for inference concerning relevant “downstream” impacts.
In others, such as the case study to be described in Sec. 5, multivariate simulations
are required, and intervariable correlation on annual-superannual time scales becomes
an important simulation target. The selection of a univariate or multivariate model
will depend in this manner on the exigencies of follow-on models to be driven with
the simulation outputs.

3.4 A note on modeling philosophy

As with many statistical models, the machinery of simulation provides many “knobs”
that the experimenter can turn at will, to generate scenarios having climate stresses
of different types. It is our considered opinion that the best policy in the use of such
controls is discretion: Simply because a parameter is modeled as adjustable does not
mean that the user should take the first opportunity to modify it, simply in order
“to see what happens.” It is more sensible, in our view, to focus on climatic shifts
that external evidence informs us are likely to occur, or at least whose likelihood is
supported by theoretical arguments. Otherwise the risk exists of generating scenarios
that have little likelihood of actually occurring, and possibly becoming lost in a maze
of simulations whose relation to reality is tenuous. In effect, this amounts to nothing
more than a recommendation for the principle of parsimony.
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4 The simulation model

4.1 Overview

Model development is keyed to the decomposition by time scale (or equivalently, as
we have argued, process class) discussed in Sec. 2. Beyond this it is conditioned
by the contingencies considered in Sec. 3, including the availability of observational
“training” data, requirements of agricultural or other follow-on models and, most
importantly, characteristics of regional climate variability. Below we go step by step
through these elements of the simulation process, noting at each stage the ways in
which these contingencies affect the development of a suitable model.

The above description hints at an emergent theme, one that will become more
evident as the discussion proceeds. This is the idea that a single, particularized
model structure will not likely be equally applicable to all situations. Climates,
observational data and application model requirements may all be expected to differ
from region to region; models utilized for simulation will doubtless need to adapt to
these differing requirements. This situation is common, perhaps even universal, in
statistical modeling. Even though there is but one climate “system,” that system is
immensely complex, incorporates many subsystems and exhibits a correspondingly
wide range of behaviors. What we attempt to do here is draw together those threads
that are likely to be common to the simulation enterprise in many, perhaps most
settings. Section 5, which follows, will provide an idea of how these common elements
are made specific in one regional setting.

4.2 Dissasembly

As suggested above, three broad classes of climate process are recognized, each being
treated separately. It is not necessarily the case that these classes are completely inde-
pendent, in the sense that changes in one will not affect changes in (the statistics of)
the others, but this is taken as a starting assumption. Consistent with the philosophy
laid out in Sec. 3.4, we prefer a parsimonious approach: Should convincing evidence
become available suggesting that that significant cross-scale coupling or dependence
is likely to play a role in the future evolution of variability, then such interaction can
be implemented in the simulation model. Absent such evidence we do not presume
to tamper. We recognize that this approach may not be shared by all workers.

4.3 Treatment of trend

Although our focus is on the decadal scale, secular shifts in the mean that we identify
here with anthropogenically forced climate change may also be important during the
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simulation target period. We therefore propose a mechanism for taking account of
such trends.

There are two aspects to trend that concern us: First, we require a detrending
procedure, to remove the (deterministic) forced response from the observational data
on which the decadal component of the simulation model is to be trained. In other
words, we expect to fit the simulation model to a detrended series. Second, in the
simulation step we require some estimate of how the mean process level will evolve
in the future, i.e., we need a plausible trend to project forward in time. These two
trends, past and future, need not be the same.

There are many options available for fitting both linear and nonlinear trends to
time series, the simplest perhaps being the straight line fit. Such a line can be
extrapolated, providing in addition a trend for the future. However, past and future
trends may differ, rendering such an approach questionable. Fitting nonlinear trends,
using exponential or other parametric forms, does not address this problem. Further,
trends fitted in the time domain have no physical basis: they are based purely on
numerics, rather than any insight into the behavior of the system.

We propose instead to parameterize trend in terms of climate sensitivity. Since
we associate trend with anthropogenic climate change, which takes the form of global
warming, we model it in terms of regional sensitivity to global temperature change:
In the absence of anthropogenic forcing the globe does not warm, and future trends
are null. The globe is not expected to warm uniformly; some regions will warm more
rapidly, others less so, than the global mean. Fitting local trends based on global
climate sensitivity takes this variation into account.

For temperature the operative method used to date is to model both past and
future trends based on the assumption that it is the spatial pattern of trends, rather
than the rate of warming, that is stationary. Thus, regional or local temperature
trends are regressed on a global mean temperature signal; the sensitivities so derived
are used to both detrend the observed temperature record and project local temper-
ature forward in time, based on the evolution with time of global mean temperature.
For consistency, the global mean signal taken as regressand is derived from the multi-
model mean of an ensemble of GCMs participating in the Fourth Assessment Report
(AR4) of the Intergovernmental Panel on Climate Change (IPCC) [Solomon et al.,
2007], as listed in Table 1. These GCMs project climate changes through the end of
the 21st century and beyond, making it a straightforward matter to derive simulation
trends for the future.

The use of a single sensitivity for both past and future local temperature seems
consistent, in view of the fact that both regressor and regressand variables are the
same, thus are more directly coupled than might be the case for local precipitation and
global temperature. This assumption can be tested, however, and future temperature
trends conditioned in a different way if desired. The discussion of precipitation trends,
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Group Model
BCCR (Norway) BCCR-BCM2.0
CCCMA (Canada) CGCM-3.1
CCCMA CGCM-3.1(T63)
CNRM (France) CM3
CSIRO (Australia) CSIRO-Mk3.0
CSIRO CSIRO-Mk3.5
GFDL (USA) GFDL-CM2.0
GFDL GFDL-CM2.1
GISS (USA) GISS-AOM
GISS GISS-EH
GISS GISS-ER
IAP (China) FGOALS-g1.0
INGV (Italy) INGV-ECHAM4
INM (Russia) INM-CM3.0
IPSL (France) IPSL-SXG
CCSR/NIES/JAMSTEC (Japan) MIROC3.2(hires)
CCSR/NIES/JAMSTEC MIROC3.2(medres)
MPI (Germany) ECHAM5/MPI-OM
MRI (Japan) MRI-CGCM2.3.2
NCAR (USA) CCSM3
NCAR PCM1
Hadley Centre (UK) HadCM3
Hadley Centre HadGEM1

Table 1: The 23 GCMs utilized from the IPCC AR4, from which the global mean
multimodel mean temperature signal is extracted.
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Figure 5: The smoothed global mean, multimodel mean temperature time series used
as regressand in the detrending of observations and possibly for the projection of
future trends.

below, offers one alternative.
The global temperature signal used as regressand is shown in Fig. 5. To obtain

this series the global mean temperature record from each of the GCMs listed in Table
1 was first smoothed, using a Butterworth filter of order five and having a half-power
point, or “cutoff,” at a period of 10 yr. The plot shows the multimodel average of
the 23 smoothed series thus obtained, extending from 1901 through 2049.

The critical operation, in forming the multimodel mean signal shown in Fig. 5,
is not the filtering but the averaging: Since internal variability is intrinsic to each
of the models, it is largely incoherent among them. Averaging thus acts to suppress
this variability, while enhancing that part of the signal that the GCMs have in com-
mon. The one thing the GCMs share is a set of boundary conditions, which include
the anthropogenic forcings that give rise to global warming. The resulting warming
tendency is clearly evident in Fig. 5. Thus, model averaging enhances the climate
change signal while attenuating internal variability noise, effectively increasing the
signal-to-noise ratio in the resultant series. The filtering further smooths this signal,
removing short-lived transients such as the effects of volcanic eruptions. Volcanos are
treated here as unpredictable external forcing, unrelated to climate; no attempt is
made to simulate their effects.

When local or regional signals are regressed onto the series of Fig. 5, the fitted
values, now representing the local or regional climate change trend, appear as a scaled
and shifted version of that series. This process and its result are shown in Fig. 6,
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Figure 6: (a) The un-detrended AMO time series (Kaplan SST reconstruction) and a
fitted trend computed by regression against the global mean temperature signal shown
in Fig. 5. (b) Residuals from this regression, representing the ”natural” component
of variability.

where the detrending operation has been applied to the AMO signal beginning in
1901. The original signal, which has an upward trend, is shown in panel (a), along
with the fitted trend, a scaled and shifted version of the the curve shown in Fig.
5. Note that the trend, although linearly dependent on the global mean temperature
signal, is not linear with respect to time. In particular, because the globe has warmed
more rapidly toward the end of the century, the trend accelerates during this time.
The effect is that a greater portion of the AMO signal is assigned to anthropogenic
causes than would be the case if the AMO were linearly detrended. The ability to
follow changes in the planetary response to anthropogenic forcing, is what gives this
detrending method its appeal.

Residuals from the regression fit of the AMO to global mean temperature are
plotted against time in Fig. 6b. Two features of this curve stand out: First, there are
large interdecadal swings, of peak-to-peak amplitude ∼ 0.4◦C. This slow “oscillation”
identifies the AMO signal as one of the principal large-scale modes of decadal climate
variability. Second, variations are not limited to the decadal/multidecadal band:
There is considerable year-to-year variability as well. Treatment of such a residual

21



signal, representing natural or unforced variability on multiple time scales, is discussed
in following sections.

The case of precipitation differs somewhat, since we are now dealing with a vari-
able that is qualitatively distinct from the global mean temperature against which
regional temperatures were regressed. The response of precipitation to changes in
global mean temperature, although it may be systematic in certain ways [Held and
Soden, 2006], has a significant indirect component, in that it depends not just on
shifts in temperature but also on changes in atmospheric circulation. Thus, project-
ing forward the results of a 20th-century regression is a less certain enterprise when
the regional variable is precipitation than with temperature.

Our recommendation in this case is to examine the GCMs, to see what they
have to tell us about future precipitation trends. Although imperfect in many ways,
GCMs are still the most sophisticated tools yet devised for the investigation of future
climate. If there is robust agreement among models, perhaps supported by theoretical
arguments, estimating regional precipitation sensitivity from them may be preferable
to assuming that 20th-century sensitivities will remain unchanged as climate warms.
The case study, discussed in Sec. 5, provides an excellent illustration of this issue.

Precipitation trends are best parameterized in terms of fractional (or equivalently,
percentage) change per degree of global temperature increase, rather than absolute
change. This is in part because precipitation amounts cannot fall below zero, and in
part because the modeling framework might call for an inferred regional sensitivity
to be “propagated” to a network of stations having differing precipitation means. A
sensitivity parameterized in terms of absolute amounts would not be appropriate in
such a situation.

4.4 Treatment of “deterministic” components

The objective now is to fit some sort of statistical model to time series that are the
analog of that shown in Fig. 6b, a detrended sequence comprising a possibly wide
spectrum of variability on periods of one year and longer. The statistical model will
be used to generate the “low-frequency” (i.e., annual-to-superannual) component of
the simulated sequences. Continuing with a treatment analogous to the classic ap-
proach, we first attempt to determine the extent to which this “natural” component
of variability represents the expression of deterministic, as opposed to random, pro-
cesses. We do this following a procedure discussed in Sec. 3.2.2, by testing our series
against a red-noise null hypothesis.
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4.4.1 Wavelets

Figure 4 illustrates a wavelet decomposition of the NINO3 SST index, with Figs. 4a,
4b and 4c showing the NINO3 time series, the wavelet spectrum and the global wavelet
spectrum, respectively. In the last of these three plots, the dotted line indicates the
10% red noise significance level. That the curve of spectral power exceeds this level
in the ENSO band, corresponding to periods of roughly 2-8 yr, implies that the
probability is less than 10% that ENSO is the expression of a red noise process.
Thus, if we wished to generate simulations that remain faithful to the properties of
the NINO3 signal shown in Fig. 4a, a red-noise model alone would not suffice. The
analysis of Trenberth and Hoar [1996] suggests the use of an ARMA(3,1) model for
this purpose. The residuals from such a model would likely have the character of red
noise, and would be assigned to the “random” component of low-frequency variability.

The “spectral summary” of Fig. 4c is in effect a byproduct of the wavelet analysis,
whose principal insights are provided via the full wavelet power spectrum, as shown
in Fig. 4b. This spectrum shows not only that the NINO3 SST index has significant
power in the 2-8 yr band, but that the expression of variability in this frequency
band has not been constant over time, experiencing a period of relative weakness
between about 1920 and 1960. On the one hand this shows that ENSO has been a
robust feature of 20th-century climate, and thus may be expected to continue into the
future. On the other, it suggests the use of a second-order model, in which ENSO-
band activity is amplitude-modulated on multidecadal time scales. In the latter case,
if one were to generate, say, sequences of length 50 yr, some would exhibit strong
ENSO variability while others would not. In the absence of additional guidance
regarding the future behavior of ENSO, it may be necessary to take this secondary
level of uncertainty into account in the design of decision-level modeling strategies.

Wavelet analysis might also reveal that a process associated with a significant
spectral peak was active only during the early part of the century, having since ap-
parently gone dormant. In this case judgment would be required, but arguably the
choice not to model such a component explicitly might be a reasonable one. In gen-
eral, modeling choices must be guided not only by the cold numerical information in
the wavelet spectrum but, as in most enterprises, the exercise of good judgment.

4.4.2 Wavelets elaborations and alternatives

A systematic method for decomposing signals using wavelets, identifying components
that differ significantly from the red noise background, modeling those components as
higher-order stochastic processes and generating corresponding simulations is wavelet
autoregressive modeling (WARM), described by Kwon et al. [2007, 2009]. Such a
method could possibly also serve here as the low-frequency component of the simula-
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tion model. The exposition by those authors involves only univariate series; elabora-
tion of the technique would be required for extension to the multivariate case.

An additional option for the low-frequency simulation component, also utilizing
a sophisticated red-noise significance test (and also basically univariate), is Monte
Carlo singular spectrum analysis (MCSSA) [Allen and Smith, 1996]. The resulting
spectral decomposition resolves the target signal into deterministic and random (red
noise) components; the former can be projected forward using a technique called
linear predictive coding [Press et al., 1986-1992]. Space limitations preclude more
detailed discussions of the methods discussed in this section, but they should be kept
in mind as options as a simulation strategy is developed.

4.4.3 Periodic phenomena; large-scale decadal “modes”

Besides stochastic processes of order > 1, the basic building blocks of the WARM
method, a deterministic signal might be periodic. The 11-year solar cycle, for example,
has been identified in many climate records. Periodic signals can of course easily be
simulated, as with the seasonal cycle in subannually resolved time series. However, we
recommend caution here, since red noise, as well as higher-order stochastic processes,
can easily be mistaken for periodic phenomena [Wunsch, 1999]. Many of the solar-
cycle findings reported with enthusiasm have ultimately proven elusive [Pittock , 1983].
Unless a plausible physical explanation or linkage can be offered to explain such
periodic signals, accumulated experience would appear to recommend skepticism.
Still, if persuasive evidence does exist, sinusoidal functions can always be deployed to
represent periodic phenomena.

A dependence on one or more of the large-scale decadal modes provides one further
example of possible “determinism” that might be present in the target signal. Studies
suggest that at least some predictability may be associated with these modes [Knight
et al., 2005; Newman, 2007], raising the possibility of simulations that contain an
actual predictive component. The modeling strategy in this case would begin with
the predictions, which would then be propagated to the study region in a manner
determined by observational analysis.

4.4.4 A range of models

It should be clear that “deterministic” elements can assume many forms, and this
is one reason that a definitive formula for decadal simulation cannot be specified in
complete detail a priori. For the deterministic component of natural variability the
form of the target signal will dictate the choice of statistical model. The range of such
models can thus be large, at least in principle. If, however, as suggested by WARM
modeling, most deterministic elements can be treated as fairly low-order stochastic
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processes, the minimally-sufficient class of models would be limited to a reasonably
small set. This may well be the case in practice, but application in a variety of
simulation settings will be required in order to better delimit such a class.

4.5 Treatment of random components

That part of the target signal not deemed deterministic is treated via a purely stochas-
tic model. It may be that much, or most terrestrial decadal variability falls into this
category, since the recognized modes are principally oceanic, or ocean-atmosphere
coupled. Their variations are communicated to land regions via so-called telecon-
nections, perturbations to atmospheric flow regimes giving rise to climate anomalies
in locations remote from the oceanic sources of variability. As such, low-frequency
signals may be “diluted” by the noise of atmospheric variability. True periodic phe-
nomena, other than the diurnal and annual cycles, seem to be rare. So the red noise
null hypothesis may prove a difficult barrier to surmount. The possible presence of a
deterministic component notwithstanding, a first-order autoregressive model is thus
taken as the basic building block for the random simulation component. Since the
AR(1) process has memory (Figs. 1b, 2b), it can generate fluctuations on decadal
time scales, including potentially long spells above or below the mean. However,
although AR(1) processes may meander up and down, they cannot generate true pe-
riodic behavior: As Fig. 2b suggests, the spectra of such processes exhibit no peaks.

As has been mentioned, agricultural or other applications models may require
multivariate input, in which case a natural generalization of the red noise process is the
first-order vector autoregressive (VAR) model. In this case additional considerations
come into play, since the variables, typically precipitation and temperature, are likely
to be correlated. Thus, it should be verified that the selected model can reproduce not
only the persistence characteristics of the target observations but also the intervariable
correlation structure. In either case, suitable model checking is a sensible way to verify
that the structure selected is appropriate for the target simulation data.

4.6 A nonparametric alternative

Nonparametric resampling techniques offer a possible alternative to the fitting of
a (parametric) stochastic model, and, depending on data availability, might even
obviate the necessity of separating deterministic and random components of the tar-
get signal. Methods such as K-nearest neighbor (K-NN) [Lall and Sharma, 1996;
Rajagopalan and Lall , 1999] bypass the fitting procedure completely, simulating by
resampling the data, conditional on a metric for the “distance,” in parameter space
between variables at the present time step and those at a predetermined number (K)
of similar points in the past or future.
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In pure form, K-NN admits only data points that belong to the original series,
limiting the range of simulated variability somewhat. Modified schemes permit the
addition of random elements to be added to the resampled values, adding a degree
of variation beyond the simple reordering of data points afforded by the original
method. Such a “randomness deficit” may become a handicap in the case of short
observational records, since these may severely constrain simulation variability from
one realization to the next. But given ample data from which to sample, the K-NN
method can generate simulations having distributional or spectral properties that
would otherwise be difficult or impossible to mimic.

4.7 Reassembly / downscaling

We have described the simulation process in terms of the decomposition of a target
signal into trend, low- and high-frequency components, and the decomposition of
the low-frequency component (periods of years to decades) into deterministic and
random elements. In generating the simulated sequences the process is reversed: The
components are simulated individually and the results combined.

Deterministic elements from the low-frequency signal component are simulated
first. To these a random component, based on the selected stochastic model (AR(1)
or VAR in this discussion), is added. Alternatively, the entire low-frequency com-
ponent may be simulated via a nonparametric scheme such as K-NN. The result of
this step is a simulation of regional low-frequency variability, annually resolved and
without trend, of a specified length, typically several decades. If simulations are to
be generated over a network, this low-frequency component, suitably scaled, shifted
and mixed with uncorrelated noise, will, in a later step, be propagated to all stations
in the network. The regional simulation thus serves as a sort of “master copy,” a tem-
plate to which stations across the network will be mapped. Ultimately, many such
simulations will be generated, in order to define the uncertainty ranges of interest to
applications modelers.

Separately, trend is extended into the future. If the 21st-century sensitivity is
expected to be the same as that of the 20thcentury, the trend is projected forward using
the coefficients from the 20th-century regression, applied to the 21st-century global
temperature signal. Alternatively, if the 21st-century sensitivity is GCM-derived,
this sensitivity is used instead as the basis for trend projection. For temperature
the trends are applied additively; for precipitation, multiplicatively. For a network,
the temperature trend computations are performed station by station, since differing
subregions may warm at different rates. If precipitation trends are to be estimated
from the 20th-century sensitivity this is done for precipitation as well. GCM-derived
regional precipitation trends based on 21st-century data alone are applied uniformly
over the entire network; these cannot be inferred at the station level.
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Trend and low-frequency components together represent all simulation variability
on time scales of one year or longer. What remains is the spatial/temporal down-
scaling step. As mentioned, trend computations are based either on station-level
regressions or GCM-based estimates. Thus, these are already implicitly downscaled,
or ready to be downscaled. For the low-frequency component the procedure differs
somewhat: Over a region, local stations will not be perfectly correlated with the re-
gional decadal signal. For this reason the regional simulation is propagated to the
local level using linear regression, a residual being supplied in the form of uncorre-
lated noise to insure that station variance is conserved. The downscaling of simulated
regional low-frequency variations, as distinct from trend, is performed in the same
manner for both temperature and precipitation variables.

For the temporal downscaling a weather generator or resampling method can be
used. Here, we have chosen a simpler alternative, in order to maintain the focus on
the low-frequency simulation component: Entire years from the observational record
are resampled at random, and the daily values rescaled to have the annual mean
value of the regional simulation. This method preserves the seasonal cycle, daily
variability and covariances, not only across variables but across the entire network
being simulated, while stripping out the interannual component and substituting
for it the simulation value. The result is a set of hybrid station-level simulations,
each having the subannual characteristics of the station but the annual-superannual
properties of the simulation.

For coding efficiency, the injection of low-frequency variations and trend occurs
simultaneously with the spatial downscaling step. The result is a fully-resolved sim-
ulation, for a single station or an entire network, having realistic variability on all
time and space scales. For a multivariate simulation (and assuming the low-frequency
model is well chosen) intervariable correlations will be respected, as will serial auto-
correlation in the individual variables, on annual and longer time scales, while the
resampling-by-year procedure preserves these relationships on subannual time scales.
The simulations will also have secular trends conditioned by best estimates of fu-
ture behavior (conditioned, as we have noted, by the best judgment of the modeler).
Such simulations should be suitable for driving agricultural, hydrological or other
applications models, in explorations of the ranges of potential impacts engendered by
decadal-scale climate variability.

4.8 Additional considerations

Although a simulation model can be fit to annual-mean values, this is not necessarily
an optimal procedure. The rainy season, for example, may cross the calendar bound-
ary from one year to the next, so it might be more sensible to define a hydrological
year that differs from the calendar year. Modeling annual values for a specified season
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may also constitute a useful strategy, assuming that simulated output in this form
is compatible with follow-on models. In the case study to be discussed the rainy
season is Austral Winter, which does not cross the calendar boundary. However, the
follow-on hydrological model requires full years of simulated data in order to close
the soil moisture budget. Other modeling frameworks are likely to have differing
requirements, and these will constrain simulation design accordingly.

Once the simulation model is complete, many sequences can be generated; as an
ensemble these sequences can be used to delineate confidence intervals (CI) for cli-
mate change in the near term. It should be emphasized that relevant CI may be con-
structed, not just for climate uncertainty in a given year (or decade), but for temporal
characteristics, such as dry and wet epoch lengths, as well. Using present climatology
as a baseline (and assuming fixed thresholds), such characteristics would be expected
to shift under any long-term trend. In the multivariate setting temperature trends
may play a significant role in the hydrological cycle even when precipitation exhibits
no significant trend, for example. In any event, a large ensemble of simulations, each
representing a “plausible” realization of future climate, may be generated; these sim-
ulations then become the inputs to crop or other application models, and can be used,
for example, to “stress test” adaptive systems for resilience in the near-term climate
change context.

5 Elements of a case study:

The Berg River watershed

The ideas and methods presented in this report represent a generalization of lessons
learned in implementing a highly particularized simulation scheme, which is described
in detail in Greene et al. [2011]. We abstract here certain elements of that implemen-
tation, in an attempt to show how the more generalized simulation rubric described
in the foregoing sections is actually realized in a specific simulation context.

5.1 Setting

The Berg watershed lies to the north of Cape town, in the Western Cape province
of South Africa (Fig. 7). It is about 300 km in length, with an area of 7715 km2,
about two thirds of which is agricultural land. It provides water for industrial uses
and is the principal water source for the city of Cape Town. Because of its economic
importance it has been the subject of considerable study, and a suite of models has
been developed for the estimation of economic impacts owing to possible changes in
climate [Callaway et al., 2008]. A dam has recently been constructed on the river
(http://en.wikipedia.org/wiki/Berg River Dam), partly in anticipation of a climatic
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Figure 7: Map of the Berg River watershed. Cape Town lies off the large map to the
southwest. Courtesy South Africa Dept. of Environmental Affairs and Tourism.

drying trend forecast by the IPCC suite of GCMs [see Ch. 11 in Solomon et al.,
2007]. A hydrology model, the Agricultural Catchments Research Unit (ACRU)
model [Schulze, 1995; Smithers and Schulze, 2004] has been adapted for this water-
shed, and simulations were designed specifically with this model in mind. Consid-
erations extended from the required suite of input variables down to the precise file
formatting ACRU requires. The project itself is part of a broader modeling effort
undertaken in collaboration with scientists at the University of Cape Town, Univer-
sity of the Free State and University of KwaZulu-Natal, in which the International
Research Institute for Climate and Society (IRI) group was charged with the eluci-
dation of “near-term” climate variability and its potential effects on hydrology in the
watershed of the Berg.

An initial 20-yr target period, 2011-2030, was specified for investigation by the
hydrology modeling group. The object of the simulation exercise was to investigate
the degree to which decadal-scale variations might affect 20-yr mean runoff during this
period. Follow-on modeling by the economic team will attempt to infer the potential
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Figure 8: Regional (trivariate) signal for the Berg catchment.

economic effects owing to defined percentile climate deviations for the target period,
as identified via the simulation process.

5.2 Observational data

The watershed area and surroundings have been mapped into higher-level subcatch-
ments; modeling was carried out using a 50-yr daily data set, including precipitation
and minimum and maximum daily temperatures, (pr, Tmin, Tmax) defined on a
network of 171 quinary catchments, most lying within the mapped catchment (Fig.
7), the remainder in proximal regions. There is not a unique weather station located
in each quinary catchment; rather, data from a somewhat smaller network of stations
(one for each group of 3-5 catchments) is interpolated to the catchment locations
using empirical relationships.

The “regional” signal, on which the low-frequency simulation model is based, is
the 171-catchment mean climate record, reduced to annual resolution. Since the
catchment records include pr, Tmax and Tmin, this regional signal consists of a 50-
yr trivariate time series (1950-1999), the components of which are plotted in Fig.
8. Trend lines in this figure are based not on time, but on climate sensitivity, as
discussed in Sec. 4.3.
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5.3 Hydrology model requirements

The ACRU model requires, at a minimum, daily values for all three variables, im-
plying the use of a multivariate simulation model. The Western Cape, unlike most
of southern Africa, experiences a winter rainfall maximum, and modeling just this
season was initially given consideration. However, ACRU, because of its inclusion
of soil moisture, has year-to-year memory, and requires input data for the full year.
Model fitting and simulation were therefore carried out on annually-averaged data.
The Jan-Dec year was utilized; this does not have the undesired effect of dividing the
wet season across years.

ACRU has exacting specifications for the formatting of input variable arrays,
and requires as well that leap years be respected. This required the configuring of
simulation code so as to take these requirements into account.

5.4 Implementation

To detrend the regional series, each component was regressed on the global tempera-
ture signal shown in Fig. 5. The fitted values are overplotted on the regional series in
Fig. 8. The fitted trends were subtracted from the series to obtain the residual “nat-
ural” component of variability. This natural residual, like the regional series itself,
has annual time resolution.

The wavelet spectrum of each of the three natural components (pr, Tmin, Tmax)
was computed; these spectra gave no indication that the component series differed
from red noise. In other words, deterministic components were not detected in the
regional record. Because of this, a modeling step needed to account for such compo-
nents would have been superfluous. Since the regional record is multivariate, a VAR
model of order 1 was therefore selected for simulation. Experiments with two other
model structures — a two-state hidden Markov model (an alternative not discussed in
Sec. 4.5) and a K-NN resampling scheme applied to the annual values of the regional
series — indicated that neither of these models did as good a job at capturing both
intervariable correlation and serial autocorrelation in the individual variables as the
VAR model, confirming its selection as preferable.

The VAR model was thus fit to the regional data series. A single long simulation
(500 kyr) was then generated, using the fitted values. Such a simulation is equivalent
to an ensemble of 10000 50-yr simulations; the single file was utilized for convenience
in data manipulation and for bookkeeping purposes. Statistics computed on this
sequence indicated that it preserved well both the intervariable correlations and in-
dividual serial autocorrelations (thus persistence, or low-frequency variability) of the
individual regional series.

Requests from the hydrology modeling team included the 20th and 80th percentiles
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for 20-yr means of each of the variables, for the target simulation period 2011-2030.
That is, simulations were requested for which the 20-yr mean precipitation (and
eventually Tmin and Tmax) for the 2011-2030 period lay at these two percentiles.
An additional simulation with all 2011-2030 means at their 50th percentiles completed
the request, for a total of seven sequences. The simulated sequence length was set at
66 yr, extending from 2000 through 2065. This will eventually enable comparisons
with downscaled climate change simulations that rely on daily data from the IPCC
models, which is available for the 2046-2065 period.

The very long simulation sequence permitted fairly precise screening, to identify
20-year sequences for which (a) means of the specified variables fell at the designated
percentile levels and (b) means of the “secondary” variables (Tmin and Tmax if the
percentiles of pr were prespecified, and so on) lay close to their conditional mean val-
ues, given the selected percentile of the primary variable. Condition (b) was imposed
so that hydrology driven by the simulations would not be biased by atypical values
of the secondary variables.

Each of the sequences selected via the screening process was downscaled to all 171
catchments, for a total of 1197 output files, each containing 66 yr of daily data for pr,
Tmin and Tmax. Running ACRU in distributed mode (i.e., over the entire watershed)
provides a more granular description of the climate impacts on local hydrology and is
deemed desirable by the hydrology team. Given the selected simulation, downscaling
was performed one quinary catchment at a time, as described in Sec. 4.7.

For the temperature trend components, each catchment’s record was regressed
on the global mean signal; the derived coefficients were then used to project 21st-
century trends. For precipitation the 21st-century trend was computed using the
GCM ensemble alone, without reference to the observations. This was done because
20th- and 21st-century precipitation sensitivities were found to differ considerably:
There is no significant precipitation trend during 1950-1999 in either the GCMs or
observations, even though temperatures increased markedly during this period. Thus
the sensitivity derived using data from this period would be null, and simulated
precipitation would remain constant regardless of global temperature change. By
contrast, a strong drying tendency is forecast for southwestern South Africa during
the 21st century (in the GCMs), particularly for winter. This drying trend is robust
in the GCM ensemble and consistent with theoretical expectations having to do with
expansion of the dry subtropics, with a particularly robust response occurring toward
the poleward margins of the subtropical dry zones. Southwestern South Africa lies in
just such a zone [See Fig. 11.2 in Solomon et al., 2007].

Again, the judgment of the modeler is required, to resolve these two conflicting
inferences regarding future precipitation sensitivity: In this case it was decided to
heed the message of the GCM simulations, in part because the temporal pattern of
drying seems consistent with the poleward advance of a dry subtropical regime that
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reaches, and eventually overtakes, the region of the Western Cape. The 21st-century
regional precipitation sensitivity to global temperature change, as computed within
the GCM ensemble, was thus utilized in the forward projection of simulated rainfall
changes. Further investigation of the dynamics involved would certainly be desirable,
but is beyond the purview of this report.

For the natural component of variability, individual catchment records were first
regressed on the 171-catchment mean, to estimate the degree to which each catch-
ment’s record expresses the “regional” low-frequency signal. The derived regression
coefficients were then used to propagate the simulations to the catchment level, un-
correlated noise being added in order to replace variance lost to the regression. The
result of this step is a simulated local (trivariate) sequence with annual time resolu-
tion, having temperature trend components local to the catchment and a precipitation
trend component derived from the 21st-century GCM ensemble. In addition, this now-
localized signal expresses the simulated low-frequency regional variability, to the same
degree that that the catchment-level observations were found to express the signal
of regional variability during the 20th century. All of the catchment records, for all
of the variables, are positively correlated with the 171-catchment mean signals, often
strongly so, indicating that the Berg watershed is driven, on annual-superannual time
scales, by a coherent large-scale signal.

To downscale to daily resolution, entire data years (365 or 366 values at a time,
of all three variables) were randomly resampled from the catchment record for each
simulation year. The individual variables are stripped of their intrinsic annual means,
for which the simulated mean values coming from the previous step are now substi-
tuted. The resulting daily sequences are “hybrids,” having the subannual variations
of the randomly selected year, but on annual and longer time scales (excluding trend)
carrying the signature of the simulated variability. These sequences, appropriately
formatted, constitute the data passed to ACRU.

A simulated catchment-level sequence is shown in Fig. 9. The years 1950-1999 con-
sist of the original catchment-level observations; in the present scheme these years are
not simulated. The 21st-century multimodel-based drying trend, as well as warming
trends in both Tmin and Tmax, can be seen clearly. There is little or no precipitation
trend during the 20th century.

Less obvious is the negative precipitation anomaly for years 2011-2030, repre-
senting the 20th percentile for 20-yr means, as computed in the “raw” simulation
sequence, i.e., before propagation to the catchment level. (Recall that the propaga-
tion step involves some “dilution” of the decadal signal.) Statistics of 10- and 20-year
means at the catchment level suggest that on decadal time scales, natural variability
is large enough to completely offset (or potentially double), with one chance in five,
the long-range drying tendency owing to anthropogenic climate change, although de-
tails will depend on the degree to which individual catchments “subscribe” to the
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Figure 9: A typical simulated catchment-level sequence, reduced to annual time res-
olution. The declining trend in precipitation is derived from the IPCC multimodel
ensemble; increasing temperature trends are based on 20th-century sensitivities.

regional decadal signal. This is a significant conclusion for adaptation planning. An-
other observation is that both decadal and anthropogenic signals appear against a
background of significant interannual noise. Thus, planning for climate stresses ow-
ing to year-to-year variability remains an important consideration for the overall risk
assessment portfolio.

6 Discussion

The methodologies we have discussed above comprise at least two levels of generality:
The simulation “rubric” itself is broadly sketched out, while realization at the level
of the case study is considerably more particularized. Thus, the former should be
considered a framework, within which simulation details must be elaborated accord-
ing to the available evidence and particularities of the simulation setting. Evidence
to be considered should include the observational record, information from GCMs,
theoretical expectations and possibly paleorecords, if the latter are available. These
sources must be weighed with respect to both content and reliability and a coherent
narrative woven from the various threads that they present. A “one-size-fits-all” sim-
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ulation scheme is thus unlikely to fit any; in the end, as in most enterprises, skilled
judgment will be required in order to achieve a meaningful result.

In addition to decade-length swings in mean precipitation or temperature, changes
in features such as dry-spell length and extreme events merit attention. Where long
paleorecords are available, such as in the American southwest, such records may reveal
wet or dry epochs, such as the well-known “megadroughts,” that do not have parallels
in the observational record [Stahle et al., 2010]. Simulations based on such evidence,
although perhaps less certain than those based solely on observational records, have
the potential to expand our conception of the possible, in ways that the latter do not.
With respect to simulations that are based even on observed variability alone, pre-
viously unexperienced climatic stresses, perhaps in the form of threshold exceedance
frequencies, may arise as a result of interactions between low-frequency variations and
climatic trends of anthropogenic origin. In either case, study of temporal behavior
through the use of decadal simulations would seem warranted.

A large ensemble of simulations, exemplified here by the 500-kyr sequence utilized
in the case study, presents an opportunity to compute simulation statistics to high
precision. This is a direct consequence of the statistical nature of the simulation
methodology, which is computationally inexpensive. This advantage must be weighed
against the inability of any statistical method to anticipate changes owing to processes
or interactions that are not included a priori in the model.

An illustration of the way such issues might be addressed can be provided for the
case of temporal precipitation variability. As a result of anthropogenic warming it
is widely believed that such variability will increase, owing to the rapid increase of
water saturation vapor pressure with temperature: A warmer atmosphere can trans-
port more water vapor. Because of this it can rain more but also become drier, since
exchanges of water between land and atmosphere are bidirectional. Thus the vari-
ability of precipitation could increase as climate warms. There is no mechanism in
the statistical model we have described that would act to bring this about, however.
Independently (outside the model) precipitation in western South Africa in the indi-
vidual GCM runs was inspected, and it was found that, at least on interannual time
scales, this variability decreased very slightly as climate warmed during the first half
of the 21st century. (The decrease was not statistically significant.) It was concluded
that there was no basis for including a cross-scale mechanism linking precipitation
variability in the subject region to global temperature change. Such a procedure,
while not a definitive determination of what might occur in the future, can at least
serve as an indicator for processes under consideration for inclusion in a simulation
model.

Simulation covariance among pr, Tmin and Tmax is found to vary from realization
to realization, a not-unexpected result, given the stochastic nature of the simulation
process. It thus becomes natural to think of covariance in the observational record
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itself as a sample, rather than as a standard to which all realizations must be rigor-
ously held. In this way the simulation exercise can also throw light backward, onto
aspects of the observed climate that are perhaps deserving of contemplation.

7 Summary

We have described a rubric, or framework, for the generation of stochastic simulations,
with the end in mind of driving agricultural or other applications models that require
detailed climate information having a realistic representation of decadal variability.
The incorporation of such variability into impacts studies represents an advance over
the simple comparison of mean states that has typically been performed in climate
change impact studies.

The approach presented is based loosely on classical time series analysis, in that
an observational record, which is taken to represent regional climate variability, is
decomposed into trend, deterministic and random components, each of these being
treated independently. An association is made between trend — a secular shift in
the mean — and anthropogenic forcing. Accordingly, this component of variability
is modeled by regression on a global mean temperature signal, meaning that it is
modeled as a sensitivity to global temperature change, rather than as time-dependent.
Detrending, as refracted through this procedural prism, then amounts to separating
climatic changes due to anthropogenic effects, and natural variability intrinsic to the
climate system itself. Possible problems that arise in attempting to effect such a
separation using short time series were discussed.

Trend having been removed, the residual variability is examined for evidence of
deterministic processes, in the sense that the residual variations differ significantly
from red noise. If such processes are identified, they would be modeled as separate
independent components, with the residual from this step modeled as a stochastic
process. It is this component of the analysis — the deterministic and stochastic
elements of low-frequency non-trend variability — that offers perhaps the widest
latitude for the modeler, depending on the types and characteristics of the available
records and the nature of the information sought, as well as the characteristics of the
data itself. There is a trade-off in this richness, between flexibility in “customizing”
the modeling approach and a lack of specificity with regard to how to accomplish such
a customization. But every climate setting being unique in some way, flexibility in
modeling (with the attendant role for creativity) would seem on balance to constitute
a net positive.

It is hoped that the methodology outlined here will prove useful in delineating
uncertainties owing to natural internal variability, in the context of a background
climatic state undergoing secular, forced shifts. For better or worse, this is the sit-
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uation in which we are likely to find ourselves in coming decades. The investigation
and characterization of such uncertainties will play an important role in anticipating
potential climate risks in the near term, and the more confidently such risks can be
defined, the better prepared we will be to deal with them in coming years.
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