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ABSTRACT
With increase in application complexity, the need for net-
work faults diagnosis for end-users has increased. However,
existing failure diagnosis techniques fail to assist the end-
users in accessing the applications and services.

We present DYSWIS, an automatic network fault detec-
tion and diagnosis system for end-users. The key idea is
collaboration of end-users; a node requests multiple nodes
to diagnose a network fault in real time to collect diverse in-
formation from different parts of the networks and infer the
cause of failure. DYSWIS leverages DHT network to search
the collaborating nodes with appropriate network properties
required to diagnose a failure. The framework allows dy-
namic updating of rules and probes into a running system.
Another key aspect is contribution of expert knowledge (rules
and probes) by application developers, vendors and network
administrators; thereby enabling crowdsourcing of diagnosis
strategy for growing set of applications.

We have implemented the framework and the software
and tested them using our test bed and PlanetLab to show
that several complex commonly occurring failures can be
detected and diagnosed successfully using DYSWIS, while
single-user probe with traditional tools fails to pinpoint the
cause of such failures. We validate that our base modules
and rules are sufficient to detect infrastructural failures caus-
ing majority of application failures.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management,
Network monitoring; C.2.4 [Distributed Systems]:
Distributed Application

General Terms
Management, Design

Keywords
Network management, fault diagnosis, end-user, peer-
to-peer, DHT

1. INTRODUCTION

While operating systems and computers have gener-
ally become more user-friendly and reliable, Internet
usage can still be frustrating - applications fail silently,
things that worked yesterday don’t work today and fail-
ures are often transient.

Compared to a few years, consumer Internet usage
has changed in at least four aspects: Users now expect
to connect to a wide variety of networks, from home and
office to WiFi hotspots and cellular networks. Applica-
tions have become more demanding, as almost every
application, from calendars to games, relies on Inter-
net connectivity and a number of applications, such as
VoIP and VoD, require consistent performance. Finally,
such applications often rely on the proper functioning
of up to half a dozen parties, from the local wireless net-
work to DNS servers, CDNs and various middleboxes.
For all of these components, professional assistance is
either unavailable or expensive, so that most users have
to become unwilling network administrators (or rely
on their children and technically-savvy friends for sup-
port). Thus, users have no good way to know whom to
call or what to try when things go wrong.

Most applications provide, at best, minimal support
to help pinpoint the potential sources of trouble. For
example, if web access is slow, the cause could be high
packet loss on the local wireless network due to inter-
ference, an overloaded residential Internet connection,
IPv6-to-IPv4 failover, wide-area network problems, a
misconfiguration in the NAT box, or a remote server
problem. The appropriate action differs in each case,
ranging from using a third-party DNS server to simply
waiting and hoping that the server recovers.

Motivated by these real-world problems, we have de-
veloped DYSWIS (”Do You See What I See”), a sys-
tem for end users and enterprises to diagnose a range of
network-related problems. DYSWIS differs from other
approaches in relying on the assistance of other net-
work users, modeling the common pattern where one
person asks somebody close by ’hey, is your Internet
working?’. Reflecting the proliferation of services, both
standardized and proprietary, DYSWIS is designed to
be extensible by users and third parties, such as vendors
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of applications. New probes and rule sets can be added
to the running system.

Thus, DYSWIS is the first complete system that au-
tomatically diagnoses common network problems for
end users, using peer assistance and an extensible prob-
ing and rule framework. DYSWIS has two main roles:
a framework for developers and software for end-users,
which is developed based on the framework.

The main contributions of DYSWIS architecture are:
Framework design: DYSWIS is a complete frame-

work for fault detection, user collaboration and fault
diagnosis. The prototype of DYSWIS software is based
on the framework and provide multiple samples which
diagnose common fault scenarios.

Leveraging DHT: DYSWIS leverages DHTs to en-
able node collaboration and achieve Internet scale. Each
node publishes their information with their location and
network connection state via a DHT, so that a node
can effectively discover appropriate collaborating nodes
instead of contacting random nodes and receiving un-
wanted information from them.

Categorizing nodes: A node categorizes other nodes
by their properties. It allows a node to compare probing
results from different networks and reasonably infer the
status of network infrastructure, which is invisible to
end-users, without any help from network core devices.

Crowdsourcing expert knowledge and probing
modules: We adopt rule system for flexibility, which
is separated from implementation, for crowdsourcing of
network experts’ knowledge. DYSWIS provides a sim-
ple interface for adding new probing modules. The rule
and probing module interface allows the multiple groups
of developers, network administrators and application
vendors to participate in writing new probe modules as
well as to contributed rules which utilizes others’ mod-
ules without additional effort.

Failure Coverage and Diagnosis Software: Though
existing fault diagnosis probes and expert knowledge
(rules) are not application specific, it covers diagnosis of
infrastructural components which, we believe, plagues
availability of services to users and brings user applica-
tions down. In this sense, this contribution of DYSWIS
is a practical one and we believe that DYSWIS software
will successfully provide assistance to end users for ma-
jority of their failure experiences.

From Section 2 to Section 5, we present the detail of
framework design. In Section 6, we elaborate our imple-
mentation and in Section 7, to evaluate our approach,
we present several common fault scenarios and show
how DYSWIS software diagnoses these faults using our
framework. In Section 8, we discuss security issues.

2. FRAMEWORK OVERVIEW
In this section, we provide an overview of DYSWIS.

DYSWIS runs on end-users’ personal machines such as
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Figure 1: DYSWIS Architecture

desktops and laptop computers located at the edges of
the networks. Although we believe that DYSWIS’s col-
laborative architecture can be applied to network core
devices such as routers, in this paper, we focus on how
DYSWIS supports end-users and how end-users, devel-
opers, and network administrators add their own fea-
tures and modify them to fulfill their specific purposes.
In this context, DYSWIS is designed as a framework
rather than a single application. In Section 3, 4, and 5,
we describe three main modules of DYSWIS framework:
fault detection, communication, and diagnosis.

In order to detect network faults, we monitor both in-
coming and outgoing network packets. Capturing those
packets continuously, we monitor layer-3 protocols (TCP
and UDP) as well as application protocols such as DNS,
HTTP, SMTP, SIP, and RTP. We suggest three fault
detection methods: finite state machine, timeout, and
protocol observation. We discuss these methods in Sec-
tion 3.

When DYSWIS is launched, the communication mod-
ule automatically joins the DHT network and publishes
the node-specific information such as subnet, IP ad-
dress, whether it is using firewall or not, and whether
it is behind NAT or not. A DYSWIS node periodi-
cally collects this information and keeps the list of the
nodes, which are categorized into three groups: sister
node, near node, and far node. Then, the communi-
cation module sends probe request to those nodes or
responses to requests from other nodes. Section 4 dis-
cusses the process in detail.

Once a fault is detected, diagnosis module determines
rules to be executed and follows the pre-defined rules
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step by step. In most cases, the rules encode decision
trees. They indicate which probing modules should be
invoked and the result of previous probing module de-
termines the next step. The probing modules can be ex-
ecuted locally (local probe) or remotely (remote probe).
We elaborate on the diagnosis process in Section 5.

As a framework, DYSWIS has a scalable feature which
everyone can contribute to develop and improve the sys-
tem. We define three groups who participate to build
the system: end-users, network experts, and module
developers.

3. FAULT DETECTION
In this section, we describe the types of faults we

focus on and show how DYSWIS detects them auto-
matically.

3.1 Fault model
Rather than focusing on simple network connectivity

problems, we are more concerned about partial network
problems, which are often more complex to diagnose
(e.g., network is working, but a particular application,
protocol, server, or infrastructure is not), as well as net-
work performance problems (e.g., TCP congestion, slow
wireless connection).

3.2 Packet classification
DYSWIS continuously monitors users’ network ac-

tivity by capturing network packets. These packets
are classified according to application protocols, distin-
guished by port numbers. Also, TCP control packets
like SYN, ACK, and FIN are monitored and classified to
check network faults which are related to TCP streams.
After classification, each packet is delivered to corre-
sponding Session Trackers which are tracking multiple
active sessions in the user’s system. The packets are
categorized again by 4-tuples (source IP address, source
port, destination IP address, and destination port) to
decide to either initiate a new session or add this packet
to an existing session.

For example, in TCP protocol case, if we detect a
TCP SYN packet, we initiate a new TCP session tracker
and it begins to record the following packets to detect
any anomalies. In HTTP case, HTTP GET message
will start a new session if it is not matched with any
existing sessions.

3.3 Fault discovery
The second step is judging each session to determine

whether network faults have occurred or not. For this,
we have four mechanisms.

3.3.1 Error Response and Error Flag
The simplest method to determine network fault is to

check the response code of each packet. This is depen-

dent on protocols. For example, if 500 Internal Server
Error has been detected in a HTTP response message,
we regard this as a network fault. Also, we monitor
some important flag bits of the packets. For example,
TCP RST flag is being monitored because it means that
connection was attempted to an unavailable TCP port
on a server. We regard this flag as a network fault, so
we start to diagnose: (1) request other nodes to try to
connect to the same port on the server; (2) compare the
feedbacks from other nodes; and (3) conclude whether
there was any complicated reason of RST flag or it was
caused simply by user’s mistake (typing a wrong port).

3.3.2 Timeout
However, if a server is unavailable, no response mes-

sage would come back. In this case, we have to install a
timer for each session and see whether timeout happens.
For example, we can define TCP connection timeout er-
ror as “No TCP ACK packet has been detected for 15
seconds since a TCP SYN packet had been sent out.”
Similarly, we can define another timeout fault for SIP
protocol: “No SIP 200 response has been detected for
10 seconds since a SIP Invite message had been sent
out”

3.3.3 Abnormal Flow
Above approaches are not enough for some protocols.

If duplicated TCP packets, which have the same se-
quence numbers, are detected, it means that a TCP re-
transmission occurred; some of the packets were dropped
at some points of the network path to the receiver. Al-
though this is a natural phenomenon rather than a se-
rious problem, which is caused by TCP congestion con-
trol, if this happens abnormally often, there may be
some problem or transient faults in the network. In this
case, because it is not an explicit error, we have to fol-
low the flow of the TCP sessions and check the sequence
numbers. TCP session tracker raises a fault when there
are too much retransmissions and duplicated ACKs.

3.3.4 Finite State Machine
Finite State Machine is another approach to detect

network faults. It is very useful because it can inte-
grate the three models above. Figure 3 shows a HTTP
1.1 FSM which has multiple GETs and multiple RE-
SPONSEs in a single session. The FSM covers error
messages, timeout, and unexpected flows. (Adding the
function of checking sequence numbers, we can create
TCP FSM in a similar manner.) The FSM for each
protocol can be created manually by experts of the pro-
tocol or automatically by machine learning approach.
This approach remains future work.

As we stated earlier, our main idea is to share knowl-
edge of experts of particular protocols with general users
who do not have deep understanding of those proto-
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cols. The experts or creator of the protocol may define
the fault FSM of their protocol and distribute it with
DYSWIS.

4. COMMUNICATION
The communication module discovers other available

nodes and communicates with them to diagnose a fault.
Instead of running a central database to maintain a
list of collaborating nodes, we use a DHT because it
allows us to avoid central bottleneck problem (e.g., a
database failure) and reduce burden to operate central
servers. Once appropriate nodes are found, we send re-
mote probing requests to other nodes and receive the
result from them (Figure 1).

As stated in Section 3.1, we are more focusing on
partial network faults, so that we assume a node can
connect to the DHT network or at least connected once
to the DHT network and retrieved and cached the list of
available collaborating nodes. However, Service Discov-
ery Technology such as Bonjour [3] can be also adopted

when we cannot join DHT network while the local area
network is available.

4.1 Publishing node information
DYSWIS publishes the node’s network information to

the DHT network immediately after it is launched. By
doing this, the node advertises to others that it is ready
to help them and also will request help to them when it
detects faults. DYSWIS nodes gather other nodes’ in-
formation periodically from the DHT network and store
the list locally. The nodes in the list are categorized into
four groups:

• Local Node : A node currently diagnosing the
faults.

• Sister Node : A node sharing the same NAT de-
vice with the local node.

• Near Node : A node within the same subnet as
the local node.

• Far Node : A node located in any other subnets.

DYSWIS stores and queries the node information us-
ing (key, value) pairs. The key is a single string, which
is used when a node wants to find a particular group
of nodes stated above (See Section 4.2). It indicates
whether a node has a public IP address or not and
which subnet the node is located at. A single node con-
structs multiple keys with its information because com-
mon DHTs only support exact matching query. The
value corresponding to the key contains the node’s IP
address, port number, and properties such as name of
operating system, network connection (e.g., wireless),
or wireless information. Followings are samples of (key,
value) pairs.

Note that a single node publishes multiple (key, value)
pairs. For example, in Figure 4, a node that has a pub-
lic IP address publishes (A1, B1) and (A2, B1). Key A1
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Key A1: “public”
Key A2: “public@128.59.16.1/24”
Value B1: “IP=128.59.21.16; Port=1234; ASN=14;
subnet=128.59.16.0/24; Firewall=No; Wire-
less=No; OS=WindowsXP;”

Figure 4: A public node

Key C1: “NAT”
Key C2: “NAT@128.59.21.16”
Value D1: “IP=192.168.0.1; Port=1234; ASN=14;
subnet=128.59.16.0/24; Firewall=No; Wire-
less=No; ”

Figure 5: A node with a private network address

means that the node has a public IP address and key
A2 has additional information, the subnet of the node.
Also, in Figure 5, a node behind a NAT publishes (C1,
D1) and (C2, D1). Key C1 means that the node is be-
hind a NAT and key C2 implies that the node’s external
network address is 128.59.21.16. This (key, value) pairs
allow other nodes to easily find appropriate nodes. For
example, key C2 is used when a node tries to discover
a sister node. We discuss the search process in the next
section.

4.2 Searching nodes
To discover available collaborating nodes, DYSWIS

queries the DHT network with keys which depend on
what kind of collaborative nodes are required to assist
the diagnosis process. For example, if a diagnosis rule
needs a near node, DYSWIS queries to DHT with a
key formatted like A2 in Figure 4. The subnet-address
field should be filled with the subnet address of the lo-
cal node. If the local node is behind a NAT, we often
need to discover sister nodes to obtain the view from
the same environment. To discover them, we create a
key with a format of C2 in Figure 5. Note that, in this
case, we use the public the IP address instead of subnet
address. It means, ‘we are seeking a node that is be-
hind a NAT which has a particular public IP address,
143.248.1.123’, which implies a node sharing the very
same NAT device with the local node. To seek a far
node, we simply query with a key, “public”. It returns a
list of public nodes (near and far nodes). In this case,
in order to create a list of far node, we check the subnet
address field in values and filters near node out. Also,
with the same format of the key, we can discover a node
located at a specific subnet. This is used when we need
a probing result from the nodes in a particular subnet
where our target server to be diagnosed is located at.
The examples of keys are summarized in Table 1. The
next step is sending probe request to discovered nodes
and receive result from them. The IP addresses and

port numbers contained in the returned value tell us
where we can send the probing requests. We present
this step in the next section.

4.3 Request and Response
DYSWIS sends probing requests to remote nodes us-

ing the IP address and port number obtained from the
response of DHT query. The request contains a name
of probing module to be invoked and fault information
to be used as parameters. The response from the re-
mote probing can be either a return value of probing
module (Section 5.1.2) or ‘no response’. Sometimes,
‘no response’ provides an important clue to diagnose
the fault. For example, if a node can contact some near
nodes while it fails to contact every far node, we can
guess there is a network connection issue from the local
subnet to outside network.

5. DIAGNOSIS
DYSWIS automatically records detected faults in the

fault history repository and begins to diagnose the fault
immediately if the user configured to do it. Fault diag-
nosis is processed in a particular sequence which is pre-
defined by diagnosis rules. The diagnosis rules indicate
which probing modules are to be invoked to diagnose
the network fault.

5.1 Probing module
In this section, we present probing modules in detail.

5.1.1 Probing model
We advocate active probing which means the nodes

probe the faults dynamically in real time. This is dif-
ferent from passive probing which merely shares pre-
obtained knowledge such as configuration data or past
successful history of a node. We more focus on active
probing in our system because the pre-obtained knowl-
edge can be stale.

Also, in the remainder of this paper, we use local prob-
ing to denote probing executed by the node itself which
detected the fault and remote probing to denote a prob-
ing executed by other nodes to help diagnose the fault.

5.1.2 Interface
In order to reduce redundancy and increase reusabil-

ity, each probing module must have minimum functions.
In our module design and interface, we have two main
features: (1) Each probing module has only one prob-
ing function; (2) Identical format of input parameters
and return values - The unified format enables scalable
system.

• Input parameters: (1) Type of probing (remote
or local); (2) Fault description (e.g., protocol, fault
type); and (3) Parameters of probing request (e.g.,
target server).
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Table 1: Searching nodes
Key Format Example Return Values

public@[subnet X] “public@128.59.16.0/24” Near nodes

public@[subnet Y] “public@143.248.1.0/21” Far nodes in a specified subnet Y
public “public” Random public nodes. (near and far nodes) - Check subnet field

in the values and exclude near nodes to get only far nodes

NAT[IP address Z] “NAT@128.59.21.16” Sister nodes behind the same NAT device

• Return value : The return value is either success
or failure - it indicates the result of requested prob-
ing. For example, in the case of TCP connection
test, success is returned when connection to the
target server was successful.

Note that probing module can be invoked either lo-
cally or remotely. If remote probe is needed, the com-
munication module invoke remote nodes’ probing mod-
ules via network as described Figure 2. Since all nodes
have the same probing module interfaces, they can be
remotely invoked without conflict. In our implementa-
tion, we provide a Java interface for probing modules,
and thus module developers create a class and imple-

ment the interface to add a new module.

5.2 Rule system
Using a rule system, DYSWIS separates diagnosis

strategies from implementation of probing modules. The
rule system determines which probing modules need to
be invoked in which order and where - local or remote
- the probing modules should be. A rule also ana-
lyzes the feedbacks from other nodes and provides di-
agnostic advice to users. In DYSWIS framework, there
are two groups who participate to build new diagno-
sis strategy: Probing module programmer and network
experts (e.g., network administrators, application ven-
dors). Programmers create new probing modules which
fit to new protocol which they want to add or modify
basic probing modules which we provide while the net-
work experts write rules to determine the sequence of
executing probing modules. When they build new di-
agnosis strategy, they simply list up necessary probing
modules and construct new rule with them.

5.2.1 Decision Tree
Decision tree is a straightforward way to make a diag-

nosis rule. When a diagnosis process begins, it invokes
the first probing module and decides the next step de-
pending on the probing result. This is repeated until
we reach a leaf of tree, which is either a conclusion or
executing another rule. As described earlier, in the case
of remote probing, each decision entry usually has three
branches: success, failure, and no response. The deci-
sion tree need to be encoded to a rule language. Figure
6 is a sample of DYSWIS’s lisp-style rule syntax.

...

(deffunction TcpConnection1-no (args)

(bind other-port (RemoteProbe “ListenOtherPort” “far-node”

args))

(if (eq “success” (LocalProbe “TcpConnectionProbe” other-port))

then

(RemoteProbe “TcpConnectionProbe”“sister-node” args)

(Analysis “the port is blocked.”)

else

(Analysis “inside node test is needed”)

(TcpConnection2-no args)))

...

Figure 6: Sample rule

6. IMPLEMENTATION
We wrote the first version of DYSWIS. Since the

framework provides a number of APIs which hide the
detail of underneath operations such as capturing pack-
ets, searching nodes, and executing diagnosis rules, it
allows programmers who do not have experience with
distributed system and remote procedure call to eas-
ily add their own diagnosis modules and rules without
concerning themselves with finding collaborative nodes
and sending them probing requests. Also, on top of the
framework, we provide various diagnostic packages in
order to prove our approach as well as provide sample
diagnosis modules for the real-world network problems.
Integrating those packages and DYSWIS framework, we
provide complete standalone software with user-friendly
GUI (on Linux, Mac OS, and Windows XP). Figure 11
shows screen dumps of DYSWIS software running on
Windows XP and Mac OS.

We designed DYSWIS to attain scalability, modular-
ity, and reusability. First, DYSWIS uses the AzDHT li-
brary [12], an implementation of Kademlia [19] to build
our own overlay network. Once appropriate nodes have
been discovered via DHT, XML-RPC is used to interact
with those nodes. It enables the nodes to communicate
with XML-encoded messages and allows a user to re-
motely invoke probing methods on the machines of the
collaborating nodes with desired parameters and receive
corresponding results.

A diagnosis package is a collection of multiple diagno-
sis modules. Usually, it includes several modules which
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probe the same protocols such as HTTP, DNS, and
TCP. Otherwise, some modules which probe a particu-
lar environment such as wireless or NAT can be aggre-
gated into an independent diagnosis package. We utilize
OSGi [21] to handle these diagnosis packages. OSGi is
a java-based framework which protects each Java class
from another class’s accessing its variables and methods.
Using OSGi, DYSWIS protects each diagnosis packages
from other packages as we expect programmers would
participate to write different diagnosis packages. We
also leverage this technology to update diagnosis pack-
ages dynamically and automatically. Once DYSWIS is
installed on users’ machines, it will check the central up-
date server periodically and download updated or newly
added resources (diagnosis modules and rules). OSGi
framework dynamically replaces running modules with
the updated modules without re-launching the entire
software.

The rule system enables users add or modify exist-
ing rules without re-compiling the source code. Also,
rule developers can easily create new rules without an-
alyzing the source code. We expect this feature en-
courages not only programmers but also administrators
without knowledge of programming to participate to
write rules. The Jess rule engine and library [24] are
used in DYSWIS.

7. CASE STUDIES
In this section, we elaborate several network fault di-

agnosis cases to evaluate DYSWIS framework and its
collaborative approach. In order to provide convincing
samples, we have focused on common faults on widely-
used network protocols such as DNS, TCP, and HTTP.
Also, we introduce a couple of strategies to diagnose net-
work faults which occur under particular environments
such as NAT and wireless. In each case, we explain how
to develop a new diagnosis strategy using DYSWIS and
show how it infers the cause of the faults.

To develop a new strategy, three steps are needed:
(1) defining a network fault; (2) writing a diagnosis rule;
and (3) writing probing modules. For each fault case, we
have implemented probing modules and wrote sample
rules. Note that although new rules and probing mod-
ules are required for each fault, existing modules which
are implemented by other developers can be also reused.
For example, probing modules used in TCP protocol di-
agnosis can be reused in HTTP protocol diagnosis. In
fact, in many cases, building a rule for a new diagnosis
strategy simply means drawing a new decision tree and
filling out the tree with existing probing modules.

Throughout following sections, we describe the detail
of the probing modules and rules to diagnose the se-
lected network faults. We believe that these diagnosis
cases successfully verify our claim that collaboration of
users is actually helpful to diagnose complex network

faults.
To evaluate DYSWIS framework, we deployed the

linux version of DYSWIS on multiple PlanetLab nodes
and used them as far nodes. Also, we tested multiple
injected faults using our internal testbed consisting of
three laptops and a NAT device. The internal nodes dis-
cover other DYSWIS nodes on PlanetLab via the DHT
network using our search method. The failure scenarios
which we generated for evaluating DYSWIS software
are explained using the following case studies:

7.1 Network connectivity
The end-user’s local machine itself often causes net-

work faults. For example, a wireless device of a laptop
may be turned off by mistake or the LAN cable may
be unplugged. Thus, the first step of the diagnosis is
usually checking network connectivity. We define our
network connectivity test rule using various test mod-
ules such as checking network cables, IP address, DNS
server address, TCP stack, and network interfaces. If
one of the tests fails, we conclude that the user has a
network connectivity problem and invoke more specific
rule for the fault.

The network connectivity test is executed locally and
does not require the collaboration of other nodes. How-
ever, the result of the test determines whether the di-
agnosis is done or a further diagnosis step, which re-
quires help from other nodes, is needed. For example,
if an unplugged LAN cable is detected during the test,
no further steps are needed. In this case, we simply
display what we observed to end-users and terminate
the diagnosis. However, in some network connectivity
problems, it is hard to figure out the cause only with the
symptom. For example, when a user has an incorrect
IP address such as 0.0.0.0, we can reasonably guess that
there are problems related to the DHCP server but it is
difficult to determine whether the server has a problem
or DHCP client behaves incorrectly. Consequently, to
point out more detailed cause, we proceed to diagnose
the problem invoking the DHCP diagnosis rule.

Usually, those following steps require the collabora-
tion of other nodes. Network connectivity test provides
important information about which categories of nodes
are not available. In above example of incorrect IP ad-
dress, we know it is impossible to contact to far nodes
because we cannot send proper IP packets to other
nodes. Instead, we suggest to discover sister or near
nodes using service discovery technology discussed in
Section 4.

7.2 DNS
The Domain Name System (DNS) is one of the major

causes of end-user network problems. In this section, we
look into the possible network faults related to DNS and
present a diagnostic strategy.
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Table 2: DNS Error list
Fault Name Error Code

No error 0

Format error 1

Server failure 2

Name not found 3

Not implemented 4
Refused 5

No response 9

1, 7

(Local) DNS

128.59.59.70

(Outside) DNS

143.248.1.177

Local node

128.59.21.15

4, 10

2, 8

3, 9

6, 12

5, 11

Outside 

DNS?

143.248.1.177

Near node

128.59.21.16

Far node

143.248.123.123

1~6: Query the target domain

7~12: Query a random domain

Figure 7: DNS Query

We detect DNS problems with two methods. First,
they can be detected by packet monitoring as stated in
Section 3. If DNS query packets are detected but there
is no answer from DNS server within a certain amount
of time, DYSWIS concludes that a DNS timeout error
has occurred. Otherwise, if a DNS answer packet has
arrived but it contains an error flag, it will also be con-
sidered as a DNS error. We define our own DNS error
codes based on DNS error flag (Table 2). DNS faults
also can be detected by network connectivity test as
stated in Section 7.1.

DNS fault is a convincing example that clearly ex-
plains why end-user collaboration is indispensable. Due
to the hierarchical structure of DNS, a number of DNS
servers, which are responsible to different level of do-
mains, are running in the Internet and they interact
with each other to update domain resolution informa-
tion. Although this hierarchical structure has signifi-
cant benefits such as scalability and resilience to cen-
tral server failure, it also makes the system complicated
and causes confusion in diagnosing DNS fault because
the states of servers and domain data stored on those

servers cannot be completely synchronized. This means
they produce different views between the end-users. For
example, a local DNS server for a particular subnet may
be down due to its administrative problem while other
servers located in other subnets are working correctly.
It is also possible that two DNS servers have different
information about a domain because one of them has
not been updated yet. However, there is a limited num-
ber of ways to diagnose those faults from the side of
end-users because they are only aware of one or two lo-
cal DNS servers. The naive possible diagnosis steps are
as follows: (1) check whether at least one DNS server is
configured; (2) check whether the DNS server is alive;
(3) try to send domain resolving requests to the server;
and (4) if it responds, analyze the answers. While sev-
eral new facts can be learned through these steps, some
of them may simply reproduce the faults which are al-
ready observed or lead to a conclusion that is not sig-
nificantly meaningful. To overcome this shortage, we
request multiple collaborating nodes to repeat step (3)
and (4) to collect more helpful feedback, so that we can
draw a more detailed conclusion.

First of all, as Figure 7 shows, we choose two col-
laborating nodes: a near node and a far node. Also,
in order to compare the results, we choose two DNS
servers to diagnose: the local node’s default DNS server
and a random outside DNS server that is obtained from
the far node. Finally, we query two domain names at
each DNS server. One is the target domain name that
originally caused the DNS error and another one is a
random well-known domain name such as google.com.
Consequently, including the local node, total three nodes
participate in the diagnosis and they independently exe-
cute four distinct probing tests respectively. Therefore,
we have total 12 feedback from the probing tests. Figure
7 shows these 12 queries. The arrows from 1 to 6 indi-
cates queries of target domain and 7 to 12 means queries
of well-known domain name. The result of each probing
is one of the errors on the list of Table 2. Theoretically,
the number of result combinations is 912 because there
are 9 possible errors. However, fortunately, the actual
number of the result in the real-world is much less.

In this diagnosis example, we use a matching rule
rather than drawing a decision tree because it is more
straightforward to understand. In other words, we match
a fault conclusion to each set of results. For example,
if the error codes from 12 probing tests are all zero,
which means every test was successful, the final diag-
nosis result is ‘The problem was temporary and DNS
is working correctly now’. Similarly, if the error codes
from first 6 probing tests are 3 (name not found) while
last 6 are zero (no error), we conclude that the queried
domain name does not exist in any DNS server; the lo-
cal DNS server is fine but the domain name is wrong.
Table 3 shows the observed results of probing tests and
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Table 3: DNS diagnosis rule
no Diagnosis Observed Probing Result Local Remote

1 Temporary problem; Resolved now 0*** **** **** O O

2 The default DNS server is down 9090 9090 9090 X O

3 The default DNS server does not have an entry of queried
domain while others have

3000 3000 3000 X O

4
The default DNS server refuses to answer your query
while other DNS servers do not

2020 0000 0000
X O5050 0000 0000

9090 0000 0000

5 The default DNS server is fine. But your network has a
problem; DNS packets are blocked

9999 0000 0000 X O

6 The queried domain name does not exist in any DNS server 3300 3300 3300 X O

7 The domain has been created recently. The DNS server has
not been updated yet

Identical to #2 or #5, but
authoritative DNS has an
entry.

X O

8 Unknown problem Others X X

matched diagnosis for each result. Also, the last two
columns show that only one conclusion can be diag-
nosed by local probing and others cannot be diagnosed
without remote probing.

Another advantage we take from collaboration is that
we can obtain alternative solutions. For example, in the
cases of problem #2, #3, and #4 in Table 3, it is obvi-
ous that the local DNS server has some problems while
others are working correctly. Thus, we can temporally
configure those other servers as default DNS servers un-
til the original DNS server has recovered. Otherwise,
if those outside DNS servers restrict the queries from
other subnet, we can simply request the collaborating
nodes to query the domain to their DNS servers and
resolve the IP address on behalf of the local node. Fi-
nally, DYSWIS suggests those alternative DNS server
or resolved IP address to end-users. However, there is a
security issue that malicious nodes might provide com-
promised information. To mitigate this risk, we suggest
asking multiple nodes to collect several alternative so-
lutions and providing the most frequently answered so-
lutions to the users. It is very rare that those random
nodes provide the same compromised information.

It is true that the DYSWIS’s collaborating approach
neither guarantee to solve the problem nor always fig-
ure out the exact cause. However, note that our goal
is ’reasonably pointing out the error spots’ rather than
solving all the network problems, which is impossible
for end-users especially when the problems are located
in the network core. Considering this point, multi-user
collaboration apparently helps towards our goal com-
pare to single-user probing. Also, as stated above, in
many cases, alternative solution that temporarily re-
solves the problem can be obtained from other users -
in this case, it is an IP address of the requested domain
name.

7.3 TCP Connection
In this section, we describe how to diagnose TCP

connection failures. The potential cause can be located
at any device or link on the path from the local node to
the target server. Our diagnosis goal in this example is
pointing out the correct location of the cause.

Approximately 60% of web access problems are due
to connection failure of TCP [22]. However, traditional
diagnostic tools such as ping and traceroute are not al-
ways able to diagnose such failures because they use
ICMP packets which are based on IP packets. It is
possible that a web-server or the routers on the path
to the server respond to or forward the ICMP packets
while they block or drop TCP packets for a number of
different reasons. On the contrary, it is also possible
that routers or server do not respond to ICMP packets
while they accept TCP packets. In both cases, ping and
traceroute will produce a misleading the diagnosis. To
determine the reasons correctly, we implemented a TCP
connection probing module that tries to send TCP SYN
packet to the target server. We execute this module lo-
cally and remotely. In the previous section, we assumed
that we can communicate with any collaborating nodes.
However, if there is any network connection problem,
it is possible that we even cannot reach some of those
nodes.

A possible combination of the collaborating nodes is
showed in Figure 8. We choose three nodes as collab-
orating nodes for TCP connection test: a local node, a
sister node, a near node, and a far node. When the local
node fails to connect to the target server, the TCP con-
nection diagnosis begins and the three nodes are ran-
domly selected from each category via DHT network,
and requested to try to connect to the target server.
The result of each node, either ‘Success’, ‘Failure’, or
‘No response’, is sent back to the local node and it starts
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Figure 8: TCP Connection Diagnosis

to analyze the results.
It is notable that the TCP Connection probing mod-

ule can be implemented in a couple of lines. It simply
tries to send TCP SYN packet to the target server and
check if TCP ACK returns within a particular amount
of time. In our Java code, including error handling,
only about 20 lines are enough to implement this mod-
ule. However, executed at multiple points of different
networks, this light-weighted probing module can col-
lect important clues which indicate where the cause of
the network fault is located.

For example, in Figure 8, we pinpoint the location
of the cause among the five candidates (from 1 to 5)
using the observations from each node. We compare
all results from each node and conclude that the cause
is located at (or related to) #1 if only the local node
failed, #2 if only the local and sister node failed, #3 ifi
the local and sister node cannot connect to any outside
networks, #4 if the local, sister, and near node failed,
or #5 if every node failed.

7.4 Port Blocking
In the problems presented in Netprints [2], 5 out of 25

recent home networks problems were related to port for-
warding or port blocking. They are very common when
a node uses a NAT box, firewall, or proxy server. In
this section, we describe how DYSWIS diagnoses those
problems and shows the steps to build the diagnosis
rule and modules. For our experiment, we set up a lo-
cal node and a sister node which are sharing a NAT
device as described in Figure 9. First, we assume a
fault scenario, which often occurs in real world, that a
particular outbound port is blocked. For example, port
3389 for Windows Remote Desktop Protocol (RDP) is
blocked, and thus even though the RDP server is run-
ning correctly, the connection to the server from client
computer fails. This fault can be detected by detec-

Far node
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Figure 9: Port Blocking

tion module of TCP connection diagnosis described in
Section 7.3. After detection, by the collaboration of
other nodes, the diagnosis process narrows down the
cause of the problem. However, in many cases, it is still
not enough to point out specific cause. For instance,
suppose that TCP connection diagnosis concluded that
the cause is located at the private network because the
local node and sister node failed to connect to the tar-
get server while the far nodes succeeded. In this case,
we can reasonably guess that NAT device is blocking
our connection but cannot assure it. Also, we have to
consider carefully whether there are other possibilities.
Now, we describe the steps to leverage DYSWIS frame-
work to build a new diagnosis strategy to investigate
those possible causes.

1. Investigate the fault scenario: Any experts
such as network administrators or product ven-
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dors write a rule for port blocking diagnosis. In
this particular case, let us assume that they empir-
ically imagine three possible causes: (1) NAT de-
vice is blocking a particular outbound port. (Note
that, in this example, the near and far nodes al-
ready succeeded to the target server, thus we do
not consider the case of inbound port blocking on
the target server.); (2) Personal local firewall is
running and restricting the connection; and (3)
The target server is blocking the connection from
the local node’s IP address. (The local node and
sister node are using the same public IP address)

2. Select probing modules: Now, the experts choose
probing modules to be executed to diagnose the
fault. Since we already have basic probing mod-
ules, the experts simply choose desired modules
among them. In this case, TCP connection mod-
ule and Request-listen module can be used.

3. Create a decision tree : Draw a decision tree
and encode it to a rule. The sample decision tree
for this particular case is described in Figure 10.
The decision tree contains local probing as well as
remote probing.

4. Deploy and update : The experts deploy the
rules using their own website or DYSWIS repos-
itory. If any new modules are created, they can
also be deployed at the same time. End-users’ sys-
tem automatically check the DYSWIS repository
and download new rules and modules. Otherwise,
users can also download them from the website of
the experts.

Now, we set up a fault scenario - outbound port
blocked - with real network devices. Figure 9 shows
our experimental environment. To create the fault ar-
tificially, we configure firewall function in the NAT de-
vice to block the port. In this environment, ping and
traceroute do not provide any clues to diagnose the
fault. They return the same result as usual. Even if
we test a TCP connection to the target server, the only
thing we can observe is that the connection continues to
fail. We integrate above Tcp connection diagnosis and
Port blocking diagnosis and run those diagnosis in the
testbed. We can finally observe that the diagnosis pro-
cess follows the thick arrows in Figure 10: (1) request a
far node to open the same port as the target server; (2)
try to connect to the far node - fail; (3) request a sister
node to repeat the same action - fail; (4) try to connect
to another port - success; and (5) reaches the problem
#1 - the NAT device blocks a particular port number.

8. SECURITY ISSUES
Authentication: DYSWIS nodes will require an au-

thentication mechanism as they allow other nodes to
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Same port

Local -> Target

other
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Fail
Sister -> Far 

same port

Problem #1

Local -> Far 

other port

Success

Success

Problem #2 & #3

Fail

Unknown problem
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Success

Application

block

Problem #3

Fail
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other
Fail

Problem #2

Or, the local node is 

blocked to connect to 

the target

Success

The local and sister nodes 

failed to connect to the target 

and a far node succeeded.

Port blocking diagnosis

Request far node – 

Open the same port

Target server 

- Port scan

Request far node – 

Open another port

Request far node – 

Open another port

Fail

Figure 10: Port blocking decision tree - problem
#1: outbound port blocked; problem #2: local
firewall; problem #3: target sever blocks the
local node

request probing. So that only those nodes which are
authenticated as a part of DYSWIS network will be al-
lowed to request probes or historical results. We believe
that DYSWIS nodes can utilize authentication mecha-
nism similar to other P2P based applications such as
file sharing applications or communication applications
(e.g., Skype). We plan to provide this in future release
of DYSWIS.

Use of DYSWIS nodes for DOS: One concern
with use of DYSWIS for network fault diagnosis is se-
curity. It is possible that an adversary can use the
DYSWIS nodes to launch a Distributed Denial of Ser-
vice (DDoS) attack by initiating probes against a ser-

11



(a) DYSWIS on Windows - Fault Diagnosis (b) DYSWIS on Mac OS - TCP congestion history

Figure 11: DYSWIS screen dumps

vice. However, DYSWIS nodes before executing a probe
perform a look up in probe history to check if the ser-
vice (or a specific server) or network was probed recently
and a usable result exists. This will prevent redundant
probes to be executed.

Validation of new probes and diagnostic rules:
The authenticity and correctness of probes and diag-
nosis rules provided by application developer or net-
work/system administrator community is another mat-
ter of concern. Since we will open DYSWIS nodes open
for contributions for probe modules and diagnosis rules,
we need a way to ensure DYSWIS nodes are not used
to achieve some malicious behavior on the end host
or the network. One approach can be verifying the
contributed probing modules and diagnosis rules in a
sandbox environment before allowing it to be dissemi-
nated to all DYSWIS nodes. We recognize this issue but
believe that current deployment and usage is not hin-
dered by this and we will provide a solution for this in
the future. Additionally, using diagnosis rules, we can
leverage DYSWIS’ s mechanism itself to self monitor
DYSWIS network against malicious nodes.

9. RELATED WORK
Network fault detection and diagnosis have been an

area of interest for a number of years. Many solutions
have been proposed and implemented by industry and
academia; centralized and distributed, active probing
and passive detection, rule based systems and machine
learning based approaches. Existing solutions are ei-
ther applicable to a specific application or specific kind
of failures or applicable to enterprise or Internet ser-
vice provider scenarios. They are neither general nor
scalable to cover the diverse failures seen by end users.

We discuss prior work in networked system diagnosis
for end users and how DYSWIS relates to it.

End user based diagnosis: We argue that user
perceived experience helps in classifying a behavior as
failure. This in turn may depend on network events (at
the ISP) or status of infrastructural service. DYSWIS
proposes end user based detection and diagnosis. There
are several proposals in this space, specifically, Glasnost
[13] which discovers service differentiation by ISP based
on traffic tests between an end point and another con-
trolled end point in the network. CrowdSourcing [10]
proposes methodology to detect network events based
on users experiences. They aim to detect events im-
pacting user perceived application performance, by run-
ning on the end systems themselves. Effective diagnosis
of routing disruptions from end systems [28] proposes
end user based collaborative active probing. Tulip [18]
probes routers to localize anomalies such as packet re-
ordering and loss.

Cooperative diagnosis: Webprofiler [1] leverages
end host cooperation to pool observation on the suc-
cess and failure of web accesses. Although, it is sim-
ilar to DYSWIS in approach, it is only applicable to
web failures and is based on passive observations alone.
WifiProfiler [8] relies on cooperation among wireless
clients to diagnose problems and resolve them. None of
the existing cooperative diagnosis techniques provides
mechanism for sharing (or crowdsourcing) of diagnosis
rules and probes and are very specialized. DYSWIS
provides ability to write general purpose as well as spe-
cialized diagnosis rules using layered failure handlers.

P2P based diagnosis: AutoMON [6] uses a P2P-
based solution to test network performance and reliabil-
ity. The distributed testing and monitoring nodes are
coordinated by using a DHT (Distributed Hash Table)
algorithm, which helps in locating resources or agents.
Unlike DYSWIS, nodes do not cooperate nor use his-
torical information about failures. In Connected Home
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fault management is performed in a distributed fashion,
following an agent-based approach, but only focusing on
the Connected Home scenario.

Shared knowledge based: Netprints [2] is simi-
lar to DYSWIS in its use of shared knowledge; it aims
to diagnose and resolve problems in home router con-
figurations. DYSWIS is fault detection and diagnosis
framework, Netprints resolves problems by using other
user’s experiences. In that sense, Netprints is compara-
ble to Autobash [25] which helps to recover from system
configuration errors by recording the user actions to fix
a problem and then replaying the same commands on
another computer experiencing same problem and then
testing it and rolling back in case test fails. DYSWIS re-
lates to AutoBash in the sense that DYSWIS also needs
tests to examine if a service is correctly running; which
depends on network responses (protocol error codes) un-
like Autobash which uses terminal output and specific
keywords on command line after command execution.
Netprints applies decision tree based learning for work-
ing and non working configuration for different home
routers, for different applications. Since, the scope of
problem is only home router configuration, decision tree
learning is sufficient but it cannot be generalized to a lot
of end user problems which occur under a wide variety
of conditions. DYSWIS seeks cooperation from other
nodes, hence, validates if others under similar external
conditions are experiencing the problem are not.

Peer state comparison based: Strider [20] is a
black-box approach for diagnosing Windows registry
problems by performing temporal and spatial compar-
isons with respect to known healthy states. It is limited
because of lack of ability to track configuration changes
for each application without fine grained instrumenta-
tion. PeerPressure [27] improves Strider as it does not
need to obtain state from a healthy machine. Instead,
it relies on registry settings from a large population of
machines assuming that most of these are correct. It is
prone to false positives and need not identify combina-
tions of configuration settings that are problematic.

Rule based systems also called expert systems di-
agnose based on a set pre-encoded rules [7, 17, 14] which
represent the dependency between components or net-
work protocols and failures. They are limited as they
need to be updated for a change in network. How-
ever, DYSWIS tries to achieve crowdsourcing of rules
for different failures and subsystems. Also, DYSWIS
approach is based on fact that a large fraction of com-
monly occurring failures are because of infrastructural
failures [22] and can be diagnosed by diagnosing these
infrastructural components from multiple point of views.

Inference-based systems like [4, 15] diagnoses faults
based on a model of dependency graph. These models
typically learn dependency graph based on traffic flows
or instrumentation and apply scalable inference. Cohen

et al. [11] solves the problem of automated diagnosis
on a per server basis. They identify combinations of
low-level system metrics (e.g., CPU usage) that corre-
late well with high-level service metrics (e.g., average
response time) and use Tree-Augmented Bayesian Net-
works (TANs) for this. In contrast, DYSWIS does not
rely on any particular correlation or classification tech-
nique instead leverages domain knowledge of experts
and captures this knowledge into rules which use probes
and queries when fired. Additionally, it is not limited
to solving at single host level.

Network traffic based dependency discovery:
This class of work aims to infer application relationship
from traffic flows [9, 23, 4, 16] based on co-occurrence
and delay distribution properties. The aim of such
works is to determine related applications based on cor-
related flows observed on each host. Orion [9] exploits
the time correlation of different services by calculating
the delay distributions of any two-flow pairs. Another
class of work relies on tracing the request execution
paths [26] to infer the causal dependency between differ-
ent application components. Magpie [5] is a instrumen-
tation based tool that extracts a request’s processing
path via analyzing the event logs generated by different
system components.

10. CONCLUSION
DYSWIS diagnoses complex end-user’s network prob-

lems using end-user collaboration. We provide a new
framework for collaborative approach and diagnosis strate-
gies for various fault scenarios. We provide a detailed
design to discover and communicate with collaborating
nodes. Also, we provide a framework for administrators
and developers to participate to contribute to expand
the diagnosis system.

We have implemented the prototype of DYSWIS frame-
work and present how easily the participants add new
rules and modules on top of the framework in order
to diagnose several common network faults. We set
up these scenarios with real network devices and di-
agnosed them using those rules and modules we have
created. While local probing with traditional diagnosis
tools fail to point out the cause of these fault scenarios,
our evaluation presents that DYSWIS can effectively
narrow down the problematic regions and pinpoint the
detailed causes.
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