
Elastic Block Ciphers: Method, Security and
Instantiations

Debra L. Cook1, Moti Yung2, Angelos D. Keromytis3

1 Department of Computer Science, Columbia University, New York, NY, USA
dcook@cs.columbia.edu

2 Google, Inc. and Dept. of Computer Science, Columbia University, New York, NY, USA
moti@cs.columbia.edu

3 Department of Computer Science, Columbia University, New York, NY, USA
angelos@cs.columbia.edu

We introduce the concept of anelastic block cipher,which refers to stretching the
supported block size of a block cipher to any length up to twice the original block size
while incurring a computational workload that is proportional to the block size. Our
method uses the round function of an existing block cipher asa black box and inserts
it into a substitution- permutation network. Our method is designed to enable us to
form a reduction between the elastic and the original versions of the cipher. Using this
reduction, we prove that the elastic version of a cipher is secure against key-recovery
attacks if the original cipher is secure against such attacks. We note that while reduction-
based proofs of security are a cornerstone of cryptographicanalysis, they are typical
when complete components are used as sub-components in a larger design. We are
not aware of use of such techniques in the case of concrete block cipher designs. We
demonstrate the general applicability of the elastic blockcipher method by constructing
examples from existing block ciphers: AES, Camellia, MISTY1 and RC6. We compare
the performance of the elastic versions to that of the original versions and evaluate the
elastic versions using statistical tests measuring the randomness of the ciphertext. We
also use our examples to demonstrate the concept of a generickey schedule for block
ciphers.
key words: elastic block ciphers, variable-length block ciphers, security analysis, re-
duction proof, key recovery attacks.

1 Introduction

Standard block ciphers are designed around one or a small number of block sizes, with
most supporting 128-bit blocks. In applications, the length of the data to be encrypted
is often not a multiple of the supported block size. This results in the use of plaintext-
padding schemes that impose computational and space overheads by appending bits to
the data. When the data being encrypted is relatively small,the padding can become
a significant portion of the encrypted data. For example, encrypting a database at the
field or row level to allow for efficient querying can easily result in a substantial amount
of padding. When the plaintext is between one and two blocks,an elastic block cipher
allows all of the bits to be encrypted as a single block, avoiding the need to use a mode
of encryption and creating a stronger binding across the ciphertext bits compared to the
ciphertext produced by a mode of encryption, such as cipher block chaining (CBC).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161437985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This work is an extended version of our previous work on elastic block ciphers, includ-
ing a more detailed explanation for the selection of the basic structure utilized when
creating elastic block ciphers, extended proofs of claims and extended descriptions of
instantiations of the method from [11–13].

We introduce the concept of anelastic block cipher,which allows us to ”stretch”
the supported block size of a block cipher up to a length double the original block size,
while increasing the computational workload proportionally to the block size. This,
together with modes of encryption, permits block sizes to beset based on an applica-
tion’s requirements, allowing, for example, a non-traditional block size to be used for
all blocks, or a traditional block size to be used for all but the last block in a given mode
of encryption. We propose a general method for creating an elastic block cipher from
an existing block cipher. Our intent is not to design a newad-hoccipher, but to system-
atically build upon existing block ciphers. Our method consists of a network structure
that uses the round function from an existing block cipher, allowing us to treat the round
function of the original cipher as a black box and reuse its properties. This results in the
security of the elastic version of a cipher being directly related to that of the original
cipher.

Previous proposals for converting existing block ciphers into variable-length ones
focused on treating a block cipher as a black box and combining it with other operations
[4, 29] in what amounts to a mode of encryption. While such an approach allows the
security of the variable-length block cipher to be defined interms of the original block
cipher, the resulting constructions require multiple applications of the original block
cipher, making them computationally inefficient compared to padding. These methods
may be valuable in providing modes of encryption that preserve the length of the data
but they do not address how to design block ciphers to supportvariable-length blocks.
There have also been ad-hoc attempts to design a variable-length block cipher from
scratch [31, 36]. Ciphertext stealing is another way of preserving the length of the data
when using a mode of encryption. It involves padding the lastplaintext block using
ciphertext from the previous block. However, it provides nocomputational savings,
requires altering how the mode is applied to the last two blocks and requires decrypting
the last block before the next-to-last block.

We consider the security of elastic block ciphers against practical attacks. These
attacks typically attempt to recover the keys or the round keys of the block cipher;
differential [7, 18], linear [20] and exhaustive search methods are instances of such
attacks (but other attacks exist [6, 38]). The fact that the round function of the original
block cipher is used as a black box in the elastic version directs us to relate the security
of the elastic version of a block cipher directly to the security of the original cipher.
This is motivated by reduction-oriented proofs of security. Such proof techniques are
not typical in symmetric-key cryptography, especially in concrete designs (for a survey
of proof techniques in this area, see [37]:Chapter 4) and aremore common in generic
designs based on strong assumptions on the components (e.g.,a component is a random
or pseudorandom function [19]).

We prove that the elastic version of a block cipher is secure against attacks that
attempt to recover key bits if the original, fixed-length version of the cipher is secure
against such attacks.Our method is unique in that we show how to convert such an

attack on the elastic version directly into an attack on the original version. As a result
of our proof, if the original cipher is proven to be immune to aspecific key-recovery
attack then the elastic version is also immune to the attack.

We illustrate the method for creating elastic block cipherswith four constructions.
We construct elastic block ciphers from AES [27], Camellia [2], MISTY1 [21] and
RC6 [33] to serve as examples of the general applicability ofthe method. We analyze
the randomness of each cipher’s output using standard statistical tests and evaluate the
performance of the elastic versions. We also use our constructions to illustrate the use
of a generic key schedule for block ciphers.

The remainder of the paper is organized as follows. Section 2summarizes related
work. Section 3 describes our method for constructing elastic block ciphers. Section 4
defines the relationship between the security of the elasticversion of a cipher against
key recovery attacks to the security original cipher against such attacks. Section 5 de-
scribes four instances of elastic block ciphers. Section 6 concludes the paper.

2 Related Work

Block ciphers are, ideally, pseudorandom permutations (PRPs), which are a subset of
pseudorandom functions (PRFs). Previous work on variable-length PRFs and PRPs
includes support for variable-length inputs with fixed-length outputs as applicable to
MACs and hash functions [1, 3, 5, 8] and on multiples of the original block length [15,
16, 19, 28] (although the same goal is accomplished by modes of encryption, for which
there are numerous examples used in practice,e.g.,CBC, OFB, CFB, CTR). There has
also been work on using PRPs to create PRFs [17].

Three previous approaches for creating variable-length block ciphers are designing
a cipher from scratch, using an existing block cipher as a black box and adding opera-
tions around it, and altering existing modes of encryption.The Hasty Pudding Cipher
(HPC) [36], a submission to the AES competition that was deemed insecure in the first
round [25], is an example of designing a variable-length block cipher from scratch.
While creating a new block cipher from scratch allows the design to incorporate new
features, such as support for a range of block sizes, it also requires analyzing the cipher
against all known attacks.

A proposal by Bellare and Rogaway uses any existing block cipher as a black box to
create a variable-length block cipher [4]. Their method is shown in Figure 1. Patel,et al.,
proposed a modification to their method [29]. Bellare and Rogaway do not modify the
original block cipher, but instead add operations around it. They treat the original cipher
as a black box and analyze the construction independently ofthe specific block cipher.
The security of their variable-length block cipher is defined in terms of the original
cipher. Given a(mb+y)-bit segment of plaintext and ab-bit block cipher, for0 < y < b
andm > 1, b − y bits of padding are added before the last (rightmost)b-bit block to
producem + 1 b-bit blocks. The data is then encrypted in CBC mode. The last block
output from the CBC mode is encrypted again and the resultingb-bit output,α, is used
as input to the block cipher in CTR mode. CTR mode is run until(m − 1)b + y bits
are output. These bits are XORed with the leftmost(m − 1)b + y bits of input, to
produceu ⊕ v. The ciphertext is the concatentation ofα and andu ⊕ v. Encrypting

Fig. 1. Bellare and Rogaway’s Variable-Length Block Cipher

one plus a fractional block,b + y bits, involves four applications of the block cipher
(two applications in CBC mode, one more application to obtain α and one application
in CTR mode) plus additional operations, thus requiring more than four times the work
of the original block cipher to encrypt one plus a fractionalblock regardless of the
number of extra bits actually encrypted (e.g.,even if the data is one bit longer than the
original block length). Therefore, while their approach preserves the length of the data,
it requires at least twice the work of padding to encrypt one plus a fractional block.

The proposal by Patel,et al., is a modification of Bellare and Rogaway’s method
[29]. The CBC portion is replaced by a hash function, potentially reducing the amount
of computation in this component of the algorithm. Now blocksizes between one and
two times the original block length require one applicationof a hash function and two
applications of the cipher instead of four applications of the cipher. This modified ver-
sion also treats the original block cipher as a black box withoperations added around it
and is computationally less efficient than padding.

Finally, existing modes of encryption can be used to encryptdata without expand-
ing the length of the plaintext by using what is called ciphertext stealing. This method
does not provide any computational savings over padding; instead, it adds minor com-
putational overhead. Ciphertext stealing pads the last plaintext block using some of the
ciphertext from the previous block, and does not output the ciphertext bits used for the
padding in order to maintain the length of the plaintext. Ciphertext stealing generally
works as follows: For a block size ofb bits, when encryptingnb + y bits, for an integer
n ≥ 1 and integery where0 < y < b, the mode of encryption proceeds as normal

through the last full block.b − y bits of the last full ciphertext block are prepended to
the remainingy bits of plaintext to form the(n + 1)st block. The ciphertext consists of
the output from the mode of encryption on the firstn − 1 blocks, they bits from the
nth block of output that were not prepended to the remainingy bits of plaintext and
the entireb bits of output from the(n + 1)st block. When decrypting, the last block is
decrypted before the next to last block, and bits from the last plaintext block appended
to the next to last (the partial) ciphertext block. This requires switching the order of the
last two blocks when decrypting and computing the length of the last block to determine
how many bits from the plaintext must be appended to the next to last ciphertext block.
The need to switch the order of the last two blocks when decrypting is a disadvantage of
ciphertext stealing because changing the block order impacts the performance of high-
speed hardware encryptors. Ciphertext stealing works withany block cipher without
requiring modification to the block cipher, the only impact is to how a mode of encryp-
tion is applied to the last one plus fractional block of data.However, ciphertext stealing
is a mode of encryption and not a block cipher design. Unlike a(b+y)-bit block cipher,
there is no diffusion across all (b + y) bits and the output can easily be distinguished
from random bits. For example, encrypting two (b + y)-bit plaintext blocks of data in
which the leftmostb bits are identical will result in the firsty bits of the ciphertext being
identical.

3 Elastic Block Cipher Construction

3.1 Overview

We describe our algorithm for creating elastic block ciphers and the underlying struc-
ture, the elastic network, that serves as the basis for the algorithm. The algorithm con-
verts the encryption and decryption functions of existing block ciphers to accept blocks
of sizeb to 2b bits, whereb is the block size of the original block cipher. Our method
uses a network structure, the elastic network, into which the round function of the orig-
inal block cipher is inserted. This allows the properties ofthe original block cipher’s
round function to be reused. The elastic network creates a permutation onb + y bits
from a round function that processesb bits, where0 ≤ y ≤ b. We neither modify the
round function of the block cipher nor decrease the number ofrounds applied to each
bit; instead, the method allows bits beyond the supported block size to be combined
with bits in the supported block size.

Our approach in designing elastic block ciphers falls between the design from scratch
and black box approaches. We treat the round function of the original block cipher as a
black box instead of using the entire cipher as a black box. This is the major method-
ological difference between our work and the proposals by Bellare and Rogaway, and
Patel,et al. However, we are still able to use the security properties ofthe original cipher
to avoid having to analyze the elastic version of a cipher against all attacks. Our method
results in the computational workload of elastic block ciphers being proportional to the
block size, in contrast to the black box approaches.

First, we describe the elastic network and explain why we could not use an existing
structure, specifically, an unbalanced Feistel network [34]. Second, we describe the

steps for converting any fixed-length block cipher to a variable-length block cipher.
Four instantiations of elastic block ciphers are describedin Section 5.

3.2 Elastic Network

Before introducing the elastic network, we define the following terms used in the de-
scriptions of the elastic network and the elastic block cipher construction. To assist in
understanding the need for these definitions, we point out that a round of a fixed-length
b-bit block cipher takes many forms in practice and a single application of the round
function often does not operate on the entireb-bit block. The most common example
of a round function processing a subset of the bits is found ina block cipher built on
a balanced Feistel network, where the round function operates on b

2 bits. DES [24],
MISTY1 and Camellia are examples of such block ciphers. An example other than a
balanced Feistel network is RC6, where the block is processed as quarters, with two
quarters being updated, although differently, per each application of the round function.

Definition 1. Bit Influence: Letx1 be theith bit of input to ab-bit block cipher. Letx2
be thejth bit of output from roundq of the block cipher.x1 influencesx2 if changing
x1 while holding all otherb − 1 input bits to the block cipher constant causesx2 to
change with probability> 0 when the probability is taken over all possible values of
other input bits and the key bits are held constant.

Definition 2. Rate of Diffusion: Letx be one bit of input to ab-bit block cipher. The
rate of diffusion is defined in terms of the number of bit positions influenced byx in
some number of rounds.

For example, if there are 4 rounds in a particular 128-bit block cipher and bit 1 of the
input impacts 32 bits of output from the first round, 64 from the second round, 96 from
the third round and all 128 bits of output from the fourth round, this indicates the rate
of diffusion for bit 1.

Definition 3. Complete Diffusion: If every input bit to ab-bit block cipher influences
the value in allb bits afterq rounds, then the block cipher is said to have complete
diffusion inq rounds.

Complete diffusion does not imply security and is not the same as diffusion in an ideal
block cipher where changing a single bit of input will cause each individual bit of output
to change with50% probability. In complete diffusion, the probability each individual
bit of output changes must only be> 0% and may be100%.

Definition 4. Active Bit: A bit position input to a block cipher is called active in round
j if the bit in that position is input to the round function in roundj. For example, if the
third bit of the block is input to the second application of the round function, it is active
in the second round.

Definition 5. Cycle: A cycle in a fixed-length,b-bit block cipher is the sequence of steps
in which all b bits have been processed by the round function. A cycle (withfixed key
bits, if any) is a bijection.

Another way of phrasing this definition is from Schneier and Kelsey: ”A cycle is the
number of rounds necessary for each bit in the block to have been part of both the source
and target blocks at least once”, meaning each of theb bits has been in the input and
output of the round function [34, 35]. For example, in AES, the round function is a cy-
cle. In a balanced Feistel network, a sequence of two applications of the round function,
which processesb2 bits in each application, is a cycle [34]. In RC6, the sequence of four
applications of the round function is a cycle.

Definition 6. Cycle Key: The expanded key bits used within a cycle will be referred to
as the cycle key.

Definition 7. Round Function for an Elastic Block Cipher: A round functionin the
elastic version of a fixed-length,b-bit block cipher is a cycle of theb-bit block cipher.
The round function of an elastic block cipher (with a fixed keybits, if any) is a bijection.

Definition 8. Round Key: The expanded key bits used within a round (of the original
or elastic version of a cipher) will be referred to as the round key.

Fig. 2.Two-Round Elastic Network

The purpose for creating the elastic network is to have a structure that enables ex-
isting fixed-length block ciphers to be converted to variable-length block ciphers by
adding steps between cycles of the block cipher. While we didnot want to use an exist-
ing block cipher as a black box in order to gain computationalefficiency compared to
padding data to an integral number of blocks, we did want to use the round function of
the block cipher in order to leverage its properties. Therefore, one of our goals was to

create a structure in which operations can be inserted between cycles of a block cipher
that are independent of the cycle (and thus round function) of the block cipher. The
properties we require of the structure are:

1. It provides a permutation onb + y bits for any0 ≤ y ≤ b whereb is the block size
of the fixed-length block cipher.

2. It is a single, generic, construction that can be used withany block cipher.
3. The round function of any existingb-bit block cipher becomes a component of the

structure without any modifcation required to the round function.
4. The number of rounds is not set by the structure, but ratherthe round function can

be applied as many times as needed by a specific cipher.
5. The operations involved in the structure allow for efficient implementations in

terms of time and memory requirements.
6. The rate of diffusion forb + y bits is defined in terms of the rate of diffusion forb

bits in the fixed-length block cipher.

The elastic network satisfies these properties. A two-roundversion of the network is
shown in Figure 2. It works by inserting the unmodified cycle of the original,b-bit block
cipher into the network. To create a permutation onb+y bits,b bits are input to the round
function, as would normally occur in the original block cipher, andy bits (letY denote
these bits) are omitted from the round function. After the round function is applied, but
before its output is given as input to the next application ofthe round function,y of
the b bits output from the round function (let X denote thesey bits) are XORed with
Y , allowing Y to become part of theb bits input to the next application of the round
function.X becomes they bits omitted from the next application of the round function.
Therefore, the first, second and third properties are satisfied. Any number of rounds of
the elastic network can be applied, satisfying the fourth property. The operations added
around the round function are simple, involving only the XORof bits and swapping of
bit segments, thus satifying the fifth property. Finally, the rate of diffusion is defined
in terms of the rate of diffusion of the original cipher. Complete diffusion refers to the
point at which every bit of the input to the block cipher has influenced every other bit.
The elastic network requires at most one more cycle than the original block cipher to
obtain complete diffusion. Therefore, the last property from our list is satisfied.

Claim 1: If complete diffusion occurs afterq cycles in the original, fixed-length
version of a block cipher, it occurs after at mostq + 1 rounds in the elastic version of
the block cipher.

Proof. A round in the elastic version of the block cipher uses a cyclefrom the original
version of the cipher followed by the swapping of bits. By theend of the first round,
they bits left out of the round function have not impacted any other bits. The rate of
diffusion for theb bits input to the first round function is the same as in the cycle of
the original cipher. The inputs to the second through the last application of the round
function are influenced by allb + y bits because of the XOR in the swap step after each
round. Thus beginning at the second round, allb+y bits influence the input to the round
function and complete diffusion will occur withinq rounds, which areq cycles of the
original cipher. Theb bits output from the(q+1)st round function have been influenced
by all b + y bits; therefore, after the swap of bits that follows the(q + 1)st application

of the round function, allb+y bits have influenced the leftmostb bits and the rightmost
y bits resulting from the swap step. Therefore, complete diffusion occurs by the end of
the(q + 1)st round in the elastic version.

3.3 Comparison of the Elastic Network to an Unbalanced Feistel Network

The elastic network is similar to an unbalanced Feistel network. One question that arises
is why an unbalanced Feistel network cannot be used instead of the elastic network?
An unbalanced Feistel provides the benefit of being its own inverse, with the round
keys used in reverse so the round function does not have to be invertible; whereas this
is not true of the elastic network. We compare the elastic network to an unbalanced
Feistel network and explain why an unbalanced Feistel network does not possess all
the properties required to create a variable-length block cipher from any existing block
cipher.

Fig. 3. Unbalanced Feistel Network Compared to Elastic Network

While the two networks may appear similar, it is not feasibleto use an unbalanced
Feistel network to create elastic block ciphers. Figure 3 shows the structure of an unbal-
anced Feistel network compared to the elastic network. In a (balanced) Feistel network,
the block is split into two components of equal length; whereas, in an unbalanced Feis-
tel network the components do not have the same length and thelengths of the round
function’s input differs from the length of its output. The elastic network also involves
splitting the block into two components, applying the roundfunction to one compo-
nent then XORing and swapping bits between the components toform the input to the

next round. However, the elastic network differs from an unbalanced Feistel network in
several ways.

1. The round function of the elastic network must be invertible; whereas, the round
function of the unbalanced Feistel network does not need to be invertible. This is
because the structures differ in what bits form the input to the round function.

2. In an unbalanced Feistel network the input to roundi is XORed with the output of
roundi + 1 to form the input to roundi + 2. In the elastic network, bits from the
outputs of roundsi andi + 1 are XORed when forming the input to roundi + 2.

3. The round function mapsb bits tob bits in the elastic network and mapsb bits toy
bits in the unbalanced Feistel network. This alone does not prevent an unbalanced
Feistel network from being used with the round function of anexisting block cipher
that mapsb bits tob bits becausey bits can be chosen from the output of the round
function wheny ≤ b.

4. y ≤ b in the elastic network. Whereas, an unbalanced Feistel network places no
restriction on the length ofy in relation tob.

5. The most important difference is that the unbalanced Feistel network provides poor
diffusion to the extent that, forr rounds and a(b + y)-bit block, b − y(r − 1)
bits of input appear in the output. Therefore, when encrypting data, part of the
plaintext appears in the ciphertext wheny(r − 1) < b. In contrast, the elastic
network guarantees complete diffusion in at most one more round than the original
cipher. Even whenr is large enough to prevent input bits from appearing in the
output for ally, where0 < y ≤ b, an unbalanced Feistel network provides no
guarantee on the rate of diffusion. Instead, the rate of diffusion depends on the
specific round function. This is due to the second and third items.

It is the last item that prevents an unbalanced Feistel network from being used to
convert existing block ciphers to variable-length block ciphers in the same manner as
the elastic network. Obviously, such a cipher is insecure wheny(r − 1) < b. Even if
the number of rounds is set such thaty(r − 1) ≥ b, an unbalanced Fiestel network is
not suitable for creating a variable-length block cipher byinserting the round function
or cycle of an existing block cipher into the network. In order to (attempt) to use an
unbalanced Feistel network to create a variable-length block cipher, the block will be
divided intob-bit andy-bit portions wherey ≤ b andy bits will be selected from the
round function’s output to use in the XOR. However, this can result in poor diffusion.
The cycles of block ciphers used in practice do not provide complete diffusion in a
single application (which is one reason for multiple cycles). We consider what happens
in an unbalanced Feistel network wheny < b and if all input bits to the round function
do not impact all output bits. If one of theb bits, letq be the position of this bit, input
to the round function does not impact the bit positions that are involved in the XOR
with they bits and the bit in positionq only influences bits in the rightmosty bits of
the output, then the bit in positionq going into roundi will have no influence in the
(i + 1)st round. In fact, the round function in an unbalanced Feistel network must be
defined very carefully; otherwise, it is possible for certain bits to have no impact on the
other bits over several rounds. We require a network structure that allows ”plugging in”
a cycle from any existing block cipher and viewing the cycle (and thus round function
of the original cipher) as a black box while at the same time providing the same level of

security as the original cipher (in that the elastic block cipher is immune to any practical
attack that recovers key or round-key bits to which the original cipher is immune).

3.4 Elastic Block Cipher Algorithm

The method for converting a fixed-length block cipher into anelastic block cipher in-
volves inserting the block cipher’s cycle into the elastic network. Also, we add (or
expand from the original cipher) whitening steps, and we adda key-dependent permu-
tation before the first round and after the last round. The general structure of the method
is shown in Figure 4. The following notation and terms will beused in the description
and analysis of the elastic block cipher:
Notation:

– G denotes any existing block cipher with a fixed-length block size that is structured
as a sequence of rounds. By default, any block cipher that is not structured as a
sequence of rounds is viewed as having a single round.

– r denotes the number of cycles inG.
– b denotes the block length of the input toG in bits.
– y is an integer in the range[0, b].
– G′ denotes the modifiedG with a (b + y)-bit input for any valid value ofy. G′ will

be referred to as the elastic version ofG.
– r′ denotes the number of rounds inG′.
– The round function ofG′ will refer to one entire cycle ofG, as defined in Section

3.2.

The process of converting a fixed-length block cipher into anelastic block cipher
involves inserting the cycle of the block cipher into the elastic network, adding initial
and final key-dependent permutations, adding or expanding initial and end of round
whitening, and determining the number of rounds required. Given a block cipherG
with a b-bit block size, the following modifications are made toG to convert it to its
elastic version,G′, that can processb + y bits, for0 ≤ y ≤ b.

1. Set the number of rounds,r′, such that each of theb + y bits is input to and active
in the same number of cycles inG′ as each of theb bits is inG. r′ = r + ⌈ ry

b
⌉.

2. Apply initial and end of round whitening (XORing with expanded-key bits) to all
b + y bits. If G includes these whitening steps, the steps are modified to include
all b + y bits. If G does not have these whitening step, the steps are added when
creatingG′. In either case, additional bits of expanded-key material are required
beyond the amount needed forG.

3. Prior to the first round and after the last round, apply a key-dependent mixing step
that permutes or mixes the bits in a manner that any individual bit is not guaranteed
to be in the rightmosty bits with a probability of 1. The leftmostb bits that are
output from the initial mixing step are the input to the first round function. The
initial mixing step is between the initial whitening and first round function. The
final mixing step is after the last round function and prior tothe final whitening.

Fig. 4. Elastic Block Cipher Structure

4. Alternate whichy bits are left out of the round function by XORing they bits left
out of the previous round function withy bits from the round function’s output, then
swap the result with they bits left out of the previous round. This step is performed
after the end of round whitening. Specifically:
(a) LetY denote they bits that were left out of the round function.
(b) LetX denote some subset ofy bits from the round function’s output ofb bits.

A different set ofX bits (in terms of position) is selected in each round. How
to selectX is discussed in Section 3.5.

(c) SetY ← X ⊕ Y .
(d) SwapX andY to form the input to the next round.
This step will be referred to as ”swapping” or the ”swap step”, and may be added
to the last round if it is required that all rounds be identical. However, having the
swap step after the last round does not provide additional security.

The result,G′, is a permutation onb+y bits. Its inverse, the decryption function, consists
of the network applied in reverse and the round function replaced by its inverse.

3.5 Explanation of Algorithm

The method is designed forG′ to be equivalent toG, with the possible addition of
whitening and the key-dependent mixing steps, when the datais an integral number
of b-bit blocks, while accommodating a range ofb to 2b-bit blocks. The construction
allows the round function ofG (in the form of a cycle) to be reused and thus builds

upon the round function’s properties, including its differential and linear bounds. The
following is an explanation of why specific steps are included in the construction.

Step 1:Each bit position of the input is required to be active in the same number of
rounds inG′ as the number of cycles in which it is active inG. This requirement allows
the computational workload to increase proportionately tothe block size while avoiding
a reduced round attack onG from being applied toG′. As y increases, the number of
rounds increases gradually fromr + 1 when0 < ry

b
≤ 1 to 2r whenr − 1 < ry

b
≤ r.

Step 2:Whitening is a useful heuristic against attacks that relatethe output of a
round to the input of the next round. The whitening steps assist in letting rounds work
in isolation from each other in that the input to a round is unknown even when given the
output of the previous round. In differential cryptanalysis, whitening does not impact
the probability of a differential characteristic holding across the rounds of a block cipher
because the whitening cancels with itself when computing the XOR of two inputs or
outputs of a round. Linear cryptanalysis is an example of an attack whitening helps to
prevent. In linear cryptanalysis, linear relationships amongst the plaintext, ciphertext
and key bits are now based on the input of theith round being the output of the(i−1)st

round⊕ whitening as opposed to being equal to the output of the(i− 1)st round.

Step 3:A key-dependent permutation or mixing of bits prior to the first round when
encrypting or decrypting eliminates a one round differential that occurs with a proba-
bility of 1. This allows the first round to contribute to preventing a differential attack.
The mixing step will need to take less time than a single round; otherwise, an additional
round can be added instead to decrease the probability of a specific differential occur-
ring. A trivial mixing that prevents the attacker from knowing with probability 1 which
y bits are excluded from the first round is a key-dependent rotation. Refer to Section 5
for the exact steps in the permutation used in four constructions of elastic block ciphers.
The key-dependent mixing steps are assumed to be designed ina sensible manner. For
example, the inverse of the round function would not be used.

Step 4:X ⊕ Y is performed instead of merely swappingX and Y in order to
increase the rate of diffusion. IfG does not have complete diffusion in one cycle, then
at the end of the first round ofG′ there is some subsetS of bits output from the round
that have not been impacted by some of the bits inX . While the bits inY may impact
S in the second round ofG′, swappingX andY would result in the bits inX having
no impact in the second round; whereas, swappingX with X ⊕ Y will allow the bits
in X to impact the second round. Per Claim 1, complete diffusion in the elastic version
of a block cipher takes at most one more cycle than in the original version. As shown
in Section 4.3 when proving that there is a direct relationship between the security of
G′ and the security ofG, the relationship is independent of the bit positions involved in
the swap step. In practice when implementing elastic block ciphers, we chose to vary
the bit positions selected forX to ensure that all bit positions are involved in both the
b-bit andy-bit components, as opposed to always selecting the samey positions for use
in X . The bit positions chosen to be swapped out after each round are a known part of
the algorithm and are not determined by the key, plaintext orciphertext.

Key Schedule:The options for a key schedule include modifying the key schedule
of G to produce additional bytes, increasing the original key length and running the key
schedule multiple times, or using an existing efficient stream cipher that is considered

secure in practice (this also permits the key schedule to independent of the choice of
G). In all of our implementations of elastic block ciphers, the RC4 stream cipher with
the first 512 bytes of output discarded is used as the key schedule. Having one standard
key schedule that can output as many expanded-key bits as needed is beneficial because
it means only one implementation of a key schedule is necessary regardless of the block
cipher and it avoids the need to analyze one key schedule per block cipher for flaws.
A stream cipher was chosen to significantly increase the randomness of the expanded-
key bits over those produced by existing key schedules. Thisdoes incur a performance
penalty over existing key schedules, but eliminates certain attacks which arose because
of the structure of existing key schedules. Refer to Section5 for further discussion of
key schedules.

Decryption:The inverse of the round function, if it is not its own inverse, must be
used for decryption. We remind the reader that the swap step is added after a complete
cycle when the original cipher is a Feistel network, thus theinverse of the ”round”
function in the elastic version is merely running the cycle in reverse, as is normally
done in any block cipher which is a Feistel network.

4 Security Analysis

4.1 Overview

For any concrete block cipher used in practice, as opposed toa pseudorandom permu-
tation (PRP) in theory, the cipher cannot be proven secure ina theoretical sense (is not
proven to be a PRP or strong PRP) but rather is proven secure against known types of
attacks. Thus, we can only do the same for the elastic versionof such a cipher. In order
to provide a general understanding of the security of elastic block ciphers, we provide
a method for reducing the security of the elastic version against key-recovery attacks to
that of the original version. Our security analysis ofG′ exploits the fact that there is an
instance ofG embedded inG′ and is independent of the specific block cipher used for
G.

We prove thatG′ is secure against any attack that attempts to recover the keyor the
expanded-key bits ifG is secure against the attack. This is accomplished by showing
how to convert such an attack onG′ to an attack onG. The result is independent of the
method by which the attacker obtains plaintexts and/or ciphertexts to use in the attack,
(i.e., in general any known plaintext/ciphertext attack that recovers key bits is covered
by our result.) This result is important because it impliesG′ does not have to be analyzed
against any practical attack to whichG is immune. Our approach is novel because
we show how to convert an attack on the variable-length version of a block cipher
directly into an attack on the fixed-length version of the block cipher. Security against
key recovery attacks does not by itself imply security (e.g.,the identity function which
ignores the key is insecure while key recovery is impossible). However, all concrete
attacks against real ciphers (linear, differential, higher order differential, impossible
differential, related key attacks,etc.) attempt key (or expanded-key) recovery and thus
practical block ciphers should be secure against such attacks.

4.2 G within G
′

Before stating our theorem, we provide some preliminary analysis that assists us in
conveying the linkage between the original and elastic versions of a block cipher. We
first draw attention to the fact that the operations performed in G′ on the leftmostb-bit
positions inr consecutive rounds is an application ofG. This is depicted intuitively in
Figure 5. We note that we are concerned only withr consecutive rounds ofG′ and do
not include either the initial or final key dependent mixing step present in the definition
of elastic block ciphers. This relationship can be used to convert an attack which finds
the round keys forG′ to an attack which finds the round keys forG. Let Grk denoteG
using round keysrk. Specifically, ifGk

′(p ‖ x) = c ‖ z, a set of round keys,rk, for
G such thatGrk(p) = c can be formed from the round keys and the round outputs in
G′ by collapsing the end-of-round whitening and swapping steps inG′ into a whitening
step. The leftmostb bits of the round key for the initial whitening are unchanged, and
the rightmosty bits are dropped. The resulting whitening key bits will varyin up to
y positions across the (plaintext, ciphertext) pairs due to the previous round’s output
impacting the end-of-round whitening step. However, it is possible to use these keys to
solve for the round keys ofG.

Fig. 5.G within G
′

The following claim shows that for any set of (plaintext, ciphertext) pairs encrypted
under sets of round keys inG′ where the rightmosty bits used for whitening in each
round may vary amongst the sets and all other key bits are identical amongst the sets,
there exists a corresponding set of (plaintext, ciphertext) pairs forG where the round
keys used inG′ for the round function and the leftmostb bits of each whitening step
are the same as those used inG, the plaintexts used inG are the leftmostb bits of the
plaintexts used inG′, and the ciphertexts forG are the leftmostb bits of output of the
rth round ofG′ prior to the swap step.

Claim 2:LetG be ab-bit block cipher andG′ be its elastic version. Let{(pi, ci)} denote
a set ofn (plaintext, ciphertext) pairs such that|pi| = |ci| = b. Let b+ y be the variable
block size forG′ where0 ≤ y ≤ b. Let w be ay-bit constant. Letvi be ay bit string
that may vary peri, for i = 1 to n. Under the following assumptions regarding the key
schedules:

– The rightmosty bits of each whitening step inG′ can take on any value and are
independent of any other expanded-key bits within the roundand in other rounds.

– There are no message-dependent expanded keys. Any expanded-key bits utilized in
G depend only on the key and do not vary across plaintext or ciphertext inputs.

– Any expanded-key bits used in the round function of ther consecutive rounds ofG′

can take on the same values as the expanded-key bits used in the round functions
of G.

– If G contains initial and end of cycle whitening, any expanded-key bits used for the
leftmostb bits of each whitening step inr consecutive rounds ofG′ can take on the
same values as the whitening bits inG.

if Gk(pi) = ci then there existsn sets of round keys for the firstr rounds ofG′ that are
consistent with inputspi ‖ w producingci ‖ vi as the output of therth round prior to
the swap at the end of therth round, fori = 1 to n, such that the leftmostb bits used
for whitening in each round are identical across then sets and any expanded-key bits
used internal to the round function are identical across then sets.

Proof. Let rk = {rk0, rk1, ...rkr} be the set of round keys corresponding to keyk for
G. rk0 denotes the key bits used for initial whitening. For each(pi, ci), form a set of
the firstr round keys forG′ as follows: Pick a constant string,w, of y bits, such as a
string of 0′s. Let pi ‖ w be the input toG′. Let rki′ = {rki′0, rki′1, ...rki′r} denote
the round keys forG′ through therth round for the pair(pi, ci). Set any bits inrki′j
used internal to the round function to be the same as the corresponding bits inrkj . Set
the leftmostb bits used for whitening inrki′j to theb bits used for whitening inrkj .
Set the rightmosty bits used for whitening inrki′j to be the same as they bits left out
of the round function in roundj of G′. This is illustrated in Figure 6. Notice that the
leftmostb bits used for whitening in each round are identical across then sets of round
keys formed, and any bits used internal to the round functionare identical across the
n sets; specifically, they correspond tork in each case, and the rightmosty bits used
in each whitening step differ based on(pi, ci) across then sets. The case in whichG
does not contain whitening steps corresponds to using 0’s for the leftmostb bits of each
whitening step inG′.

The operations ofG′ on the leftmostb bits of rounds 1 through roundr, prior to the
last swap, are identical to the operations inGk(pi) because the swap step inG′ results
in XORing y bits of a round function’s output withy 0′s. Thus, the leftmostb bits in
the output of therth round prior to the swap step isci. Therefore, fori = 1 to n there
exists a set of round keys,rki′ for G′

rki′ such thatG′(pi) producesci as the leftmostb
bits in therth round prior to the swap step, thus proving the claim.

Fig. 6.Converted Key Unchanged inb Whitening Bits

4.3 Reduction Between the Original and Elastic Versions of aCipher

We use the fact that an instance ofG is embedded inG′ to create a reduction fromG′ to
G. As a result of this reduction, an attack againstG′ that allows an attacker to determine
some of the round keys implies an attack againstG that is polynomially related in
resources to the attack onG′. Assuming thatG itself is resistant to such attacks, we
conclude thatG′ is also resistant to such attacks. We note that if an attack finds the key
as opposed to the expanded-key bits (the round keys) then theattacker can apply the key
schedule to the key to obtain the round keys. Therefore, in our analysis, we view any
key recovery attack as providing the round keys to the attacker. The reduction requires
a set of (plaintext, ciphertext) pairs. This is not considered a limiting factor because
in most types of attacks, whether they are known plaintext, chosen plaintext, adaptive
chosen plaintext, chosen ciphertextetc.,the attacker acquires a set of such pairs.

In our analysis, we considerG′ without the initial and final key-dependent mix-
ing steps. This allows us to focus on the core components of the elastic block cipher
algorithm. If present, the mixing steps only serve to increase the security ofG′ since
they prevent an attacker from knowing with probability one which bits are omitted from
the first application of the round function when encrypting or decrypting. Furthermore,
since the mixing steps are added steps (as opposed to modifications to components of
G) using key material that is independent of the round and whitening key bits, they do
not impact our analysis.

Theorem 1. Given a fixed-length block cipher,G, that works onb-bit blocks and its
elastic version,G′, that works on(b + y)-bit blocks, where0 ≤ y ≤ b, if there exists an
attack,A′

G′ , onG′ that allows the round keys to be determined forr consecutive rounds

of G′ using polynomial (inb and r) time and memory, then there exists an attack on
G with r cycles that finds the expanded key forG and that uses polynomial (inb and
r) many resources asA′

G′ , assuming there are no message-dependent expanded key,
meaning any expanded-key bits utilized inG depend only on the key and do not vary
across plaintext or ciphertext inputs.

Before beginning the proof, we have a few comments on the theorem and assump-
tions. We first note that for an attack onG′ to be computationally feasible, it must
involve < 2b (plaintext, ciphertext) pairs because otherwise an exhaustive search on
G would be possible, implyingG is insecure against practical attacks. The assump-
tion that the expanded key bits do not depend on the input to the cipher (the plaintext
or ciphertext) is true of block ciphers used in practice and of elastic block ciphers.
With no further assumptions about the key schedules, an attack that finds an expanded
key for G′ implies an attack that finds an expanded key forG that produces a set of
(plaintext, ciphertext) pairs consistent withG, but which may or may not adhere
to the key schedule ofG. If the expanded key is inconsistent with the key sched-
ule of G, this itself indicates a weakness inG because it means there is some ex-
panded key that is not produced by the key schedule ofG but which produces a set
of (plaintext, ciphertext) pairs consistent with whichG would produce when using
some key generated byG’s key schedule (i.e. the attack finds an equivalent key for the
set of(plaintext, ciphertext) pairs used in the attack). If the following three assump-
tions are placed on the expanded key bits ofG′, then the attack onG will find a key
consistent with the key schedule ofG:

– The rightmosty bits of each whitening step inG′ can take on any value and are
independent of any other expanded-key bits.

– Any expanded-key bits used in the round function of the firstr consecutive rounds
of G′ can take on the same values as the expanded-key bits used inG.

– If G contains initial and end of cycle whitening, any expanded-key bits used for the
leftmostb bits of each whitening step in the firstr consecutive rounds ofG′ can
take on the same values as the corresponding whitening bits in G.

These assumptions are easily satisfied in practice by using the key schedule ofG to gen-
erate a subset of the round key bits and a separate algorithm to generate the expanded-
key bits required inG′ for the additionalr′ − r rounds and any whitening present inG′

that is not present inG. Another option is if the key schedule ofG′ generates pseudo-
random expanded-key bits such that it is possible the expanded-key bits for the round
function and leftmostb bits of whitening inr consecutive rounds can take on the same
values generated by the key schedule ofG. In practice, given an expanded-key, it is
feasible to check if the expanded-key adheres to a specific block cipher’s key schedule.
A subset of the expanded-key bits being tested can be inserted into the key schedule to
generate additional key bits which can be checked against the bits in the value being
tested.

The theorem holds by default for the case wheny = 0, sinceG′ is justG (with the
possible addition of whitening which can be set to 0’s when applying the attack ifG
does not contain whitening). We viewG as having whitening steps in the proof to Theo-
rem 1. This is not an issue for the following reason. If the attack onG′ involves solving

for the round key bits directly and allows the bits used in thewhitening steps to be set
to 0 for bit positions not swapped and to0 or 1, as necessary, for bit positions swapped,
then the whitening on the leftmostb bits is equivalent to XORing with0, which is the
same as having no whitening inG. Setting a subset of bits in each whitening step inG′

to 0’s is equivalent to using a weaker version ofG′. Any attack that works onG′ will
work on the weaker version. This is merely the case where the attacker knows certain
bits of each whitening step are0’s.

We note that Theorem 1 only states that an attack onG′ can be converted to an
attack onG and not the reverse. This is because, in general, the claim that an attack
on G can be converted into an attack onG′ does not hold. Consider the case whenG
contains the initial and end of round whitening steps. Wheny = 0, G′ is G with the
initial and final key-dependent permutations added and the key schedule replaced (such
as by a stream cipher). If the attack onG is due to the original key schedule, the attack
does not necessarily hold if the key schedule is changed to generate pseudorandom bits
when creatingG′. For any attack not due to the key schedule, in order to claim that an
attack onG implies an attack onG′, it is necessary that the attack onG be such that the
addition of the initial and final key-dependent permuations, the addition or expansion
of the whitening steps and the addition of the swap steps do not result in the attack
becoming inapplicable or computationally infeasible. In general, the conversion of an
attack fromG′ to G works because there is a decrease in the complexity of the block
cipher being attacked when going fromG′ to G; whereas, the reverse is not true because
there is an increase in the complexity of the block cipher when convertingG to G′.

To prove Theorem 1, we must show for any value ofy, where0 ≤ y ≤ b, that if
an attack exists onG′ it can be converted into an attack onG using polynomial time
and memory. We define the steps for converting a round-key recovery attack onG′ to
an attack onG. We describe two ways of performing the conversion. The firstmethod
works for any value ofy where0 ≤ y ≤ b. The second method is is applicable for
values ofy satisfyingr(y − 2) < b, wherer is the number of rounds in the original
cipher. We include the second method because it requires fewer computations than the
first method and thus is useful for small values ofy. The methods treat whitening key
bits as if they are pseudorandom in that the whitening key bits can take on any value. In
G, if there is a relationship amongst the whitening key bits and/or between whitening
key bits and key material used within the cycle due to the key schedule ofG, such keys
will be a subset of all the possible sets of round keys found using the attack onG′.
Then the set of round keys that satisfies the key schedule ofG can be determined by
checking which of the potential keys corresponds to the key schedule. If the number
of potential sets of round keys found by the attack onG′ is large enough such that it
is computationally infeasible to determine which ones adhere to the key schedule of
G, then the attack onG′ is not computationally feasible. This is because the number
of potential sets of round keys the attack finds for a set of (plaintext, ciphertext) pairs
will also be large enough such that it is computationally infeasible for an attacker to
determine which set to use to decrypt additional ciphertexts.

When we refer to converting the round keys ofG′ into cycle keys forG, we mean
the following: In roundj of G′, let bjl denote thelth bit of theb bits output from the
round function prior to the end of round whitening. Letkwjl denote the end of round

whitening key bit applied tobjl. If bjl is involved in the swap step at the end of round
j, let yjh denote the bit from the rightmosty bits with whichbjl is swapped and let
kwjh denote the whitening key bit applied toyjh. Set thelth whitening bit in roundj
of G to kwjl ⊕ kwjh ⊕ yjh whenj ≥ 2. Whenj = 1, the lth whitening bit is set to
kw1l ⊕ kw1h⊕ y1h⊕ kw0h because the initial whitening is included in the conversion.
Set all other key bits used inG (both whitening and any internal to the cycle) to be
identical to the key bits used inG′. We refer to the initial whitening as round 0 ofG′

and cycle 0 ofG. The initial whitening forG′ is converted to initial whitening forG by
using the leftmostb expanded-key bits of the initial whitening as the initial whitening
in G.

Proof of Theorem I: First Method We describe here a method for converting the
attack onG′ to an attack onG. Without loss of generality, we use the firstr rounds of
G′ as ther consecutive rounds for which the round keys are found. The conversion is
presented in terms of solving for the round keys from the initial whitening to roundr,
but may also be performed by working from roundr back to the initial whitening or by
using any consecutiver rounds with whitening applied before the first round as long as
the plaintext forG is the leftmostb bits of input to ther rounds and the corresponding
ciphertext fromG is the leftmostb bits of the output of ther rounds.

This attack runs in quadratic time in the number of cycles ofG. The attack,A′

G′ , on
G′ is used to solve for round keys 0 and 1 forG, then repeatedly solves for one cycle
key ofG at a time, using the output of one cycle ofG as partial input to a reduced round
version ofG′, running the attack onG′ and converting the1st round key ofG′ to the
cycle key for the next cycle ofG. By the second condition in Theorem 1, an if an attack
onG′ with r′ rounds exists, then a reduced round attack onG′ exists for any number of
rounds< r′.

Let P be a set of plaintexts andC be a set of ciphertexts. We use the notation
{(P, C)} to indicate a set of (plaintext,ciphertext) pairs of the form (pi, ci) with pi ∈ P
andci ∈ C. Given a set{(P ∗, C∗)} = {(pi∗, ci∗)} of n (plaintext, ciphertext) pairs for
G, create a set{(P, C)} = {(pi∗ ‖ 0, ci∗ ‖ vir)} of n (plaintext, ciphertext) pairs for
an r-round version ofG′. Note: we only require that they bits appended to eachpi∗

when forming{(P, C)} be a constant; we choose to use 0. Thevir values appended to
theci′s are arbitrary and do not need to be identical. Ther subscript invir denotes the
number of rounds. Our method runs reduced round attacks onG′ and thevir ’s can vary
each time. SolveG′ for round keys 0 and 1. Sets of round keys exist that correspond
to {(P, C)} and which are identical in at least the initial whitening andfirst round.
The initial whitening on the leftmostb bits and any expanded key bits used by the first
application of the round function inG′ can be set to the same values as they would
in G, and the intial whitening on the rightmosty bits of the plaintext can be set to be
equal to they plaintext bits, which are constant across all plaintexts when performing
the attack. We note that the round keys across alln pairs may be identical in additional
rounds, but we are only concerned with the initial whiteningand first round at this point
in the process.rk′

0 andrk′

1 will refer to the expanded key bits used for initial whitening
and in the first round ofG′, respectively. Use the leftmostb bits of rk′

0 asrk0, for G.
Since the rightmosty bits are identical across all inputs toG′, whenrk′

1 is converted to

a cycle key forG, the result will be the same across alln elements of{(P, C)}. Use the
converted round key as cycle key 1,rk1, for G. For eachpi∗, apply the initial whitening
and first cycle ofG using the two converted round keys. Letp1i denote the output of
the first cycle ofG for i = 1 to n. Using a reduced round version ofG′ with r − 1
rounds and the initial whitening removed, set{(P, C)} = {(p1i ‖ 0, ci∗ ‖ vir−1)} and
solve for the first round key ofG′. As before, convert the resulting round key for the
first round to a cycle key forG. Use the converted round key as the second cycle key
for G. Repeat the process for the remaining cycles ofG, each time using the outputs of
the last cycle ofG for which the cycle key has been determined as the inputs toG′ and
reducing the number of rounds inG′ by 1, to sequentially find the expanded-key bits
for G one cycle at a time.

This attack involves applying each cycle ofG to n inputs for a total ofrn cycles
of G. n(r+1)r

2 rounds ofG′ are computed in the worst case ifA′

G′ requires knowing
the output of each round of the reduced round version ofG′ to find the first round key.
r applications ofA′

G′ are needed on the reduced round versions ofG′. Let tA denote
the time to runA′

G′ . Let kst be the time to check that an expanded-key found byA′

G′

adheres to the key schedule ofG. The time to attackG is O(nr2 + rtA + kst).

In summary, the attack onG can be written as:
Input{(P ∗, C∗)} = {(pi∗, ci∗) for i = 1 to n}.
Create{(P, C)} = {(pi∗ ‖ 0, ci∗ ‖ vir) for i = 1 to n} for a r-round version ofG′,

where thevi′s are arbitrary.
UsingA′

G′ , solve ar-round version ofG′ for rk′

0 andrk′

1.
Convertrk′

0 to rk0 andrk′

1 to rk1.
Setp1i = first cycle’s output ofG usingrk0 andrk1, for i = 1 to n.
For j = 1 to r − 1 {

{(P, C)} = {(pji ‖ 0, ci∗ ‖ vir−j) for i = 1 to n}.
Solve ar − j reduced round version ofG′ for the first round key,rk′

1.
Convertrk′

1 to formrkj+1.
p(j + 1)i = output of cyclej + 1 of G onpji usingrkj+1 for i = 1 to n.

}

Proof of Theorem I: Second Method Our second method for proving Theorem 1 re-
quires fewer computations than the first method, but provides rounds keys for a smaller
set of (plaintext, ciphertext) pairs. The attack works as follows: Assume there exists a
known (plaintext, ciphertext) pair attack onG′ which produces the round keys either
by finding the original key and then expanding it, or by findingthe round keys directly.
Using round keys for rounds 0 tor of G′, convert the round keys into cycle keys for
G one cycle at a time. For each round, extract the largest set of(plaintext, ciphertext)
pairs used in the attack onG′ that have the same converted cycle key. If there arenj

(plaintext, ciphertext) pairs involved at roundj, there will be at leastnj

2y pairs remaining
for which the round keys are consistent after roundj. The end result is the expanded-
key bits forG that are consistent with a set of n

2y(r−2) b-bit (plaintext, ciphertext) pairs
for G. We then describe how to take a set of (plaintext, ciphertext) pairs forG, convert
them into a set of (plaintext, ciphertext) pairs forG′ in order to run the attack onG′ to
find the expanded-key bits forG.

Let{(P, C)} = {(pi ‖ xi, ci ‖ zi)} (for i = 1 to n) denote a set ofn known(b+y)-
bit (plaintext, ciphertext) pairs forG′, where|pi| = |ci| = b and|xi| = |zi| = y.

Let AG′ be an attack onG′ that finds the key(s) corresponding to{(P, C)} in time
less than a exhaustive search for the key. Letm denote the number of keys found.
Without loss of generality, it is assumed the keys are available in expanded form. Let
kj denote thejth key found byAG′ . In practice, only one key should be found for any
set of (plaintext, ciphertext) pairs.

Let S = {ekj} for j = 1 to m be the set of expanded-keys used for whitening for
whichekj is from the expansion of keykj andG′

kj
(pi ‖ xi) = ci ‖ zi for i = 1 to n.

Let Rint denote any key material utilized within the round function of G′ and cycle
of G. The values found for such key bits for thejth round ofG′ will be the same as the
key bits for thejth cycle ofG, for 1 ≤ j ≤ r.

Let {(P, U)} = {(pi||xi, ui||vi)} such thatui||vi is the output of therth round of
G′, where|ui| = b and|vi| = y.

Let S′ = {ek′

j | ek
′

j = bits of ekj ∈ S corresponding to rounds0 to r used for
whitening} be the set of expanded-key bits used for whitening in rounds0 to r of G′.

For eachekj ∈ S′ and each(pi ‖ xi, ui ‖ vi) ∈ {(P, U)}, convert the round keys
to cycle keys forG. Let ek′

ij be the converted key corresponding to theith element of
{(P, U)} and thejth element ofS′. The part ofek′

ij corresponding to round0 will be
identical across all elements. When the round keys are converted, at mosty bits change
in the leftmostb bits. Thus, the resulting round keys for roundq, 1 ≤ q ≤ r can be
divided for each of they impacted bits into those that have a0 in the affected bit and
those that have a1 in the affected bit. Forq = 1 to r, defineS′

rndq
as the maximum-

sized set ofek′

ijs from Srndq−1 that have identical round key(s) for roundq, where
S′

rnd0
= S′. Let{(P, U)rndq

} be the corresponding elements of{(P, U)}. When form-
ing {(P, U)rndq

}, at least2−y|{(P, U)rndq−1}| of the elements from{(P, U)rndq−1}
are included.

To illustrate how the setsS′

rndq
and{(P, U)rndq

} are created, consider the example
shown in Figure 7 whereb = 4, y = 2, and the leftmost2 bits are swapped with
they bits in the swap step. The round number isq and{(P, U)rndq−1} contains three
(plaintext, ciphertext) pairs. Suppose the outputs of the round function in theqth of G′

are100101, 110011 and111111 and the whitening bits in theqth round are011010.
The whitening bits of the converted round keys corresponding to the three cases are
0110, 1110 and1110. Since1110 occurs in the majority of the cases, set theqth cycle
key of G to 1110. S′

rndq
contains the round keys for rounds 0 toq − 1 from S′

rndq−1

and0010, and{(P, U)rndq
} contains the second and third (plaintext, ciphertext) pairs

from {(P, U)rndq−1}.
Let {(P, C)G} = {(pi, ci)|(pi ‖ yi, ui ‖ vi) ∈ {(P, U)rndr

}}. |{(P, C)G}| ≥
n/2yr. {(P, C)G} is a set of (plaintext, ciphertext) pairs for whichGrk(pi) = ci ∀
(pi, ci) ∈ {(P, C)G}where the whitening round keys ofrk ∈ S′

rndq
and any additional

key material utilized by the cycles is the same as that for therounds ofG′, namelyRint.
To perform the attack onG when given a set of (plaintext, ciphertext) pairs forG,

convert the pairs into a set of (plaintext, ciphertext) pairs forG′ and find the round keys
for G′, then convert the round keys ofG′ to cycle keys forG as follows: Given a set
{(P ∗, C∗)} = {(pi∗, ci∗)} for i = 1 to n known (plaintext, ciphertext) pairs forG,

1001 01 1100 11 1111 11

KB KB

KB = 0110

KY = 01

KBKY KY KY

1111 00 1010 10 1001 10

1111 11 0010 10 0001 10

1001 1100 1111

0110 1110

1111 0010 0001

1110

converted

key bits
converted

key bits

converted

key bits

Fig. 7.FormingS
′

rndq

create the set{(P, C)} of (plaintext, ciphertext) pairs to use in the attack on anr-round
version ofG′ by settingpi ‖ xi = pi∗ ‖ 0 andci ‖ zi = (ci∗ ‖ zi) for i = 1 to n. For
the set of(P, C) pairs are created,{(P, U)} = {(pi∗ ‖ 0, ci∗ ‖ zi)}. Apply the attack
onG′ to solve for the round keys ofG′ then produce the sets{(P, U)rndr

} andSrndr
.

The sets of round keys inSrndr
will be consistent with the (plaintext, ciphertext) pairs

in {(P, U)rndr
}.

Let tr be the time to runr rounds ofG′, tA be the time to runAG′ andm be the
number of keys (sets of round keys) found byA′

G′ . In the case of obtaining at least one
set{(P, U)rndr

} of size≥ n
2yr , the time required beyondtA consists of:nmtr time to

obtain the outputs of the firstr rounds for each{(P, U)}, O(nmr) time to perform the
conversion of the round keys fromG′ to cycle keys forG andO(nmr) time to form
theS′

rndr
sets. Letkst be the time to check that an expanded-key adheres to the key

schedule ofG. Thus, the additional time required to attackG (beyond the time required
to attackG′

b+y) is O(nm(r + tr) + mkst). The only unknown value ism, the number
of keys produced by the attack onG′

b+1. If m is large enough, to the extent that it
approaches the average number of keys to test in a brute forceattack onG′, then this
contradicts the assumption that an efficient attack exists on G′ because the attacker is
left with a large set of potential keys for decrypting additional ciphertexts.

So far we have defined a method which produces a set of at leastn
2yr (plaintext,

ciphertext) pairs which are consistent with the round keys.This lower bound on the
number of plaintext, ciphertext pairs can be slightly increased to n

2y(r−2) by using(b +
y)-bit plaintexts that are the same in the rightmosty bits (which we did by setting these

bits to 0), and by defining theui values representing the ciphertext output ofG in the
rth round ofG′ to be the output of therth round prior to the swapping step. This will
result in |S′

rnd1
| = n and|S′

rndr
| = |S′

rndr−1
|, thus in first andrth rounds the set of

(plaintext, ciphertext) pairs is not reduced. Then the number of (plaintext, ciphertext)
pairs produced forG that are consistent with the expanded-key forG is≥ n

2y(r−2) . The
number of possible plaintexts forG is 2b; therefore, it is necessary fory(r − 2) < b to
use this method.

5 Elastic Block Cipher Examples

5.1 Overview

We describe elastic versions of AES, Camellia, MISTY1 and RC6. We choose these
particular block ciphers because they were finalists in standards competitions that rep-
resent different methods for how the round function processbits. AES serves as the
simplest example for creating an elastic block cipher because its round function pro-
cesses the entire 128-bit block in each application. Camellia, one of the recommended
128-bit block ciphers from NESSIE’s competition for cryptographic algorithms [23], is
a Feistel network with an additional function applied aftercertain cycles. MISTY1, the
recommended 64-bit block cipher from NESSIE, is also structured as a Feistel network.
Its elastic version provides an example of a cipher coveringblocks in the range of 64 to
128 bits. RC6, a finalist from the AES competition, breaks thedata block into quarters
and the round function updates two of the quarters using the values of the other two
quarters. We use a 128-bit version of RC6.

5.2 Common Items

We first describe implementation details shared by the four examples. In the elastic ver-
sions of block ciphers, the bits in a block of data are numbered from the most significant
(leftmost) to the least significant (rightmost). Bits 1 to b become theb-bit portion and
bits b+1 to b+y become they-bit portion. The initial and final key-dependent permu-
tations involve a rotation of bits followed by a swapping of bits. Theb + y bit data
is broken into segments at either the byte or 32-bit word level. The elastic versions of
AES and Camellia used byte-sized segments, and the elastic versions of MISTY1 and
RC6 used word-sized segments. The choice of the segment sizewas due to the nature of
the original cipher. The operations of AES and Camellia lendthemselves to byte level
processing; whereas, the operations of MISTY1 and RC6 lend themselve to processing
at the word level. Two expanded-key bytes are utilized by each of the permutations.
The two bytes are each viewed as an integer modulo the number of full segments in
the block. Refer to these two integers asn1 andn2. If the b + y bits of data is not an
integer number of segments, the rightmost bits are treated as a fractional segment. First,
the block is rotated to the rightn1 segments. The fractional byte or word, if any, is
omitted from the rotation. The fractional component is thenswapped with consecutive
bits from then2th segment of rotated component. If there is no fractional segment,n2
is unused. RC4 [32] was used for the key schedule. The first 512bytes of RC4’s output

are discarded [22], then RC4 is run until the required amountof expanded key bytes are
obtained. How the bits are selected for the swap steps variesslightly among our con-
structions. In all cases, the bits swapped out of theb-bit portion at the end of the round
are y sequential bits (circling back to the leftmost bit after reaching the rightmost bit),
but the starting position of this sequence varies per cipher. As shown in Section 4, the
exact positions of the bits swapped does not matter in the sense that the elastic version
will be secure against any attack that works by recovering key or round key bits if the
original cipher is secure against the attack regardless of the bit positions chosen for each
swap step.

For each cipher, we compared the performance of the elastic version to the original
version with padding. We measured the rate of encryption foreach block size that is
an integral number of bytes. This excludes the time to expandthe key. In the elastic
implementations, when the block size is not an integral number of bytes, the fractional
byte is stored in a byte and the processing time is the same as if a full byte of data is
present; therefore, the time to encrypt b+y bits is the time to encrypt(b + y)/8 bytes. It
is possible for the computational workload to vary at a more granular level, such as in a
hardware implementation. The time for the fixed-length version to encrypt a(b+ y)-bit
block is the time to encrypt 2b bits in order to represent the padding required when
using ab-bit block cipher. We measured the time to encrypt one million (b + y)-bit
blocks, where0 ≤ y ≤ b andy is an integer multiple of 8, using the elastic version and
two million b-bit blocks using the fixed-length version. The time to pad the data was not
included when measuring the performance of the original cipher. We implemented all
the ciphers in C. All tests were conducted on a 2.8Ghz Pentium4 processor with 1GB
RAM running Redhat Linux 2.4.22, unless otherwise noted.

We also compared the performance of the elastic versions to the performance of the
proposals by Bellare and Rogaway, and Patel, Ramzan and Sundarama described in 2.
As explained in Section 2, ciphertext stealing requires slightly more work than plain
padding. Therefore, the performance of the elastic block ciphers in comparison to the
original ciphers using ciphertext stealing will be slightly better than the performance
when compared to padding alone. We do not include separate measurements as a result.
Furthermore, as mentioned in Section 2, unlike the other methods, ciphertext stealing is
a mode of encryption as opposed to a block cipher design. It does not provide diffusion
across all bits and its output can easily be distinguished from random by encrypting
(b + y)-bit blocks with the firstb bits held constant. Therefore, a comparsion between
ciphertext stealing and variable length block ciphers is misleading because the later
are designed to be block ciphers, with the associated security requirements such as the
inability to distinguish the output from random bits, as opposed to a mode of encryption.

5.3 Elastic AES

We created the elastic version of AES by adding the swap step between rounds of AES
(the round function of AES is a cycle and therefore becomes the round function in
the elastic version), expanding AES’s whitening steps (AddRoundKey) fromb = 128
bits to128 + y bits, and adding the initial and final key-dependent permutations. The
round function consists of AES’s SubBytes, Shiftrows and MixColumns steps, with
the MixColumns step omitted in the last round to be consistent with the fixed-length

version of AES [27]. The number of rounds ranges from10 wheny = 0 to 20 when
116 ≤ y ≤ 128. We implemented the swap step by selectingy sequential bits from
the leftmostb bits, wrapping around from the right to the left as needed. The starting
position is varied by moving one byte to the right each round to avoid using the same
bit positions in each swap, with the first swap step starting with the leftmost bit of the
b-bit segment. This avoids any complex selection process forchoosing they bits that
would decrease performance.

We implemented two elastic versions of AES that differed in how the round function
was implemented. In Version I, we implemented the round function as a straightforward
sequence of the SubBytes, Shiftrows and MixColumns steps asdefined in [27]. In Ver-
sion II, we combined these steps into a table lookup. This results in the round function
being a series of byte-level table look-ups and XORs. Version II requires fewer CPU
cycles than Version I, at the cost of an increase in memory usage. The round function
can also be implemented to process the data as 32-bit words, in which case the table
entries are 32-bit words. We kept table lookups at the byte level because we chose to
implement the key-dependent permutations and swap step at the byte level.

The elastic versions increase the number of operations beyond the 128-bit versions
due to the swap steps, the two key-dependent permutations and the expansion of whiten-
ing to cover 128+y its. In Version I, the elastic version saves processing time over
padding. Obviously, as the block size approaches two full blocks, 20 rounds of AES
are incurred in the elastic version along with the added steps, which increases the num-
ber of operations beyond the 20 rounds of AES that are required when padding the
data to two full blocks. Therefore, it is expected that thereis no performance benefit
when encrypting blocks just under 32 bytes. In Version II, the elastic version does not
offer a performance benefit compared to padding. This is because of the simplistic na-
ture of the operations involved (table lookups and XORs) forthe round function. Even
though there are fewer rounds in the elastic version than with padding, the operations
for the swap step and the two key-dependent permutations consume any savings gained
from having fewer rounds. However, Version II offers a performance benefit over the
variable-length block cipher construction by Bellare and Rogaway, and its modification
by Patel,et al.

Figure 8 summarizes the results from the following three cases: Case 1: Version
I tested on a 1.3 Ghz Pentium 4 processor with 512MB RAM running Windows XP,
Case 2: Version I tested in the Linux environment described previously. Case 3: Version
II tested in the Linux environment described previously. Inthe first trial, the number
of (b + y)-bit blocks the elastic version can encrypt per second ranges from190% of
the number of2b-bit blocks AES can encrypt per second wheny = 1 to 100% when
y = 97. Then the elastic version’s performance decreased gradually to a low of 83%
of AES’s rate. In the second trial, the values ranged from186% to 69% of AES’s rate,
with the elastic version becoming slower than the fixed-length version wheny = 73. In
the third trial, the elastic version was slower than the fixed-sized version with padding
for all block sizes.

We compared Bellare and Rogaway’s method and Patel’s methodto AES with
padding on the Pentium 4 processor used in cases 2 and 3. Bellare and Rogaway’s
method encrypted between 49 and 50(b + y)-bit blocks in the same amount of time

Fig. 8. Normalized # of Blocks Encrypted by Elastic AES in Unit Time (Regular AES = 100)

AES with padding encrypted 100 blocks, for both Version I andII of AES. Patel’s
method encrypted 96(b + y)-bit blocks in the time it took Version I of AES to encrypt
100 blocks, and encrypted 18(b + y)-bit blocks in the time it took Version II of AES
to encrypt 100 blocks. When using Version I, elastic AES is computationally more ef-
ficient than both Bellare and Rogaway’s method and Patel’s method for all block sizes.
When using Version II, elastic AES is computationally more efficient than Bellare and
Rogaway’s method for block sizes up to 21 bytes in length, andis more efficient than
Patel’s method for block sizes less than 31 bytes and is as efficient as Patel’s method
for block sizes between 31 and 32 bytes.

5.4 Elastic Camellia

Camellia processes128-bit blocks and is a Feistel network with additional steps. A
function, referred to as the FL function, is applied after every three cycles in the Feistel
network, except after the last three cycles. FL is applied tothe left half and its inverse
is applied to right half of theb = 128 bits. Camellia contains initial and final whiten-
ing steps, but not end-of-round whitening. Creating the elastic version involved using
a cycle from the Feistel network as the round function, expanding the two existing
whitening steps to cover 128+y bits and adding end-of-roundwhitening steps to all the
other rounds, and adding the same initial and final key-dependent permutations that we
used in elastic AES. We apply the FL function after every three rounds, except for the
last round. A round of the elastic version is shown in Figure 9. The data is processed
as bytes. The swap step was implemented by altering the starting position between the
left and right halves of theb-bit portion then rotating it one byte to the right within the
half, with the first swap step starting with the leftmost bit of the left half. Camellia has
9 cycles. The number of rounds in the elastic version ranges from 9 wheny = 0 to 18
when114 ≤ y ≤ 128.

The elastic version offered no performance gain over the fixed-length version with
padding. We also measured the performance of the elastic version without the initial and

Fig. 9.Round Function for Elastic Camellia

final permutations. Removing these two steps results in the elastic version offering a
performance benefit when encrypting blocks that are one to three bytes over the normal
16-byte block size. Results for the following two cases are shown in Figure 10: Case
1: elastic Camellia with all steps, Case 2: elastic Camelliawithout the initial and final
key-dependent permutations. By using a lower bound of twicethe work of padding for
Bellare and Rogaway’s method, elastic Camellia with the key-dependent permutations
provides a performance benefit for block sizes up to 22 bytes and the version without
the key-dependent permutations provides a performance benefit for block sizes in the
range of 9 to 25 bytes compared to Bellare and Rogaway’s method. Patel’s method
encrypted 61 (b+y)-bit blocks,0 < y < b, in the time it took Camellia with padding
to encrypt 100 blocks. Elastic Camellia is more efficient than Patel’s method for block
sizes up to 21 bytes and 23 bytes, respectively, for the two cases.

Fig. 10.Normalized # of Blocks Encrypted by Elastic Camellia in UnitTime (Regular Camellia
= 100)

5.5 Elastic MISTY

MISTY1 is a 64-bit block cipher structured as a Feistel network with an additional
function, called the FL function (not to be confused with theFL function from Camel-
lia), applied once per cycle. While the number of cycles is not fixed, four cycles are
recommended [23] and is the number upon which we base the number of rounds in the
elastic version. MISTY1 does not contain whitening steps. Acycle from MISTY1 is
used as the round function in the elastic version, shown in Figure 11. Creating the elas-

FLi FLi+1

F0i

F0i+1

right 32 bitsleft 32 bits

y bitsb bits

whitening and swap steps

round

function

Fig. 11.Round Function for Elastic MISTY1

tic version involved adding the whitening steps, the the initial and final key-dependent
permutations and the swapping of bits after each cycle. The data is processed as 32-bit
words. We alternate the starting position for the swap between the left and right halves
of the round function’s output, with the first swap step starting with the leftmost bit of
the left half.

Fig. 12.Normalized # of Blocks Encrypted by Elastic MISTY1 in Unit Time (Regular MISTY1
= 100)

We implemented elastic versions, with and without the key-dependent permutations,
and the regular version of MISTY1. The performance results are shown in Figure 12.
Case 1 refers to the version with the key-dependent permutations and Case 2 refers to
the version without the key-dependent permutations. The elastic versions increased the
number of operations beyond the 64-bit version of MISTY1 dueto the whitening, the
swap steps and, in one version, the key-dependent permutations. The elastic version of
MISTY1 provides a performance benefit compared to padding for blocks that are one
to four bytes over the 8-byte block size that MISTY1 processes. The benefit increases
significantly in Case 2 compared to Case 1 for block sizes thatare up to one additional
byte over MISTY1’s 8-byte block size. The performance benefit from removing the
initial and final key permutations decreases as the block size increases because they
represent an increasingly smaller portion of the operations as more rounds are added.
In both cases, the elastic version provides a performance benefit when compared to
Bellare and Rogaway’s method based on a lower bound of twice the work of padding
for their method. Patel’s method encrypted 51(b + y)-bit blocks,0 < y < b, in the
time it took MISTY1 with padding to encrypt 100 blocks using padding. Both cases of
the elastic version of MISTY1 encrypt at a faster rate than Patel’s method for all block
sizes between 8 and 16 bytes.

5.6 Elastic RC6

RC6 is an example of a block cipher other than a Feistel network whose round function
processes only a segment of the data block. RC6 divides a 128-bit data block into four
32-bit words, which we will refer to as ABCD. A and C are updated by the round func-
tion based on the values of B and D. At the end of the round, A andC have expanded-
key bits added to them then all the words are rotated to the left one word. B and D have
expanded-key bits added to them before the first round, and A and C have expanded-key
bits added to them after the last round. The addition of expanded-key bits to a word is
a type of whitening. Since this ”whitening” does not cover the entire data block and
is not the same as performing whitening by XORing data with expanded-key bits, we
view this addition as a step in the round function and not as whitening that should be ex-
panded to all b+y bits when forming the elastic version. A sequence of four applications
of the round function of RC6 is a cycle and serves as the round function in the elastic
version as shown in Figure 13. Initial and end-of-round whitening, and the initial and
final key-dependent permutations are also added to create the elastic version. The num-
ber of cycles in RC6 for 128-bit blocks is 5 (20 applications of RC6’s round function).
The number of rounds in the elastic version ranges from 5 wheny=0 to 10 when y=103
(20 to 40 applications of RC6’s round function). The swap step was implemented with
the starting position rotating to the right one word each round, with the first swap step
starting with the leftmost bit of theb-bit portion.

The elastic version provides a performance benefit comparedto padding for blocks
of under 21 bytes in length. The results shown in Figure 14. Using a lower bound of
twice the work of padding for Bellare and Rogaway’s method, the elastic version of RC6
provides a performance benefit for blocks under 30 bytes in length when compared to
Bellare and Rogaway’s method. Patel’s method encrypted 52 blocks(b + y)-bit blocks,

Fig. 13.Elastic RC6 Round Function

0 < y < b, in the time it took RC6 with padding to encrypt 100 blocks. Elastic RC6 is
more efficient than Patel’s method for block sizes up to 29 bytes.

Fig. 14.Normalized # of Blocks Encrypted by Elastic RC6 in Unit Time (Regular RC6 = 100)

5.7 Randonmess Test Results

We applied statistical tests used by NIST on the AES candidates to both the original and
elastic versions of the four ciphers. While these tests do not prove a cipher is secure,
they do assist in determining if there are any obvious weaknesses with the cipher. There
are sixteen tests performed on eight sets of data for each cipher. Refer to NIST’s special
publication 800-22 [26] for a description of the tests and [25] for a description of the
data sets. We tested every(b + y)-bit block size wherey is an integral of8 and0 ≤
y ≤< b. We also tested two block sizes that were not an integral number of bytes.
These were 129-bit and 171-bit blocks for the elastic versions of AES, Camellia and
RC6, and 69-bit and 75-bit blocks for the elastic version of MISTY1. We used 128-bit
keys in all of our tests. Each data set required either an initial set of random plaintexts

or random keys. We created these random bit strings by extracting bits from files of
random bits available from random.org [30]. Based on the results, each of our four
elastic block cipher examples show no signs of any statistical weakness compared to the
original ciphers. In the AES competition, finalists passed each test at a rate of96.33%
or higher [25]. The elastic versions of the ciphers also met or exceeded this rate. For
the elastic versions of the ciphers, the percentage of samples passing each test was
consistent across all block sizes and data sets. The detailed test results are available in
[10].

5.8 Key Schedules

The key schedule for an elastic version of a block cipher has to generate more expanded-
key bits than the key schedule of the original block cipher. Additional key bits are
needed due to the expansion or addition of whitening steps, the two key-dependent
mixing steps and the increase in the number of rounds. In practice, every block cipher
includes its own key schedule, which is typically designed with a focus on performance
and little concern about the lack of pseudorandomness in theexpanded-key bits. This
tendency in key schedule design results in key schedules contributing to attacks (due to
the ease in which additional key bits can be determined once afew are found and by in-
creasing the opportunity for related key attacks [9]) and forces applications supporting
multiple block ciphers to support a separate key schedule for each cipher. When creating
elastic block ciphers, we wanted to avoid these disadvantages of existing key schedules.
Furthermore, unlike the encryption algorithms of block ciphers which follow a some-
what generic structure by being a series of rounds, key schedules vary extensively in
their structures. This makes it unlikely a general method can be devised for modifying
the key schedules to generate additional bits as needed based on the block size. There-
fore, we required a generic key schedule that is independentof the block cipher and
that generates as many pseudorandom expanded-key bits (or close to pseudorandom) as
needed while adhering to a performance bound. Existing stream ciphers are potential
candidates for satisfying these requirements. We used RC4 as the key schedule in the
elastic block ciphers to illustrate the concept of a generickey schedule satisfying these
requirements. The first 512 bytes of RC4’s output are discarded due to a slight statisti-
cal weakness in the initial bytes output from RC4 [22]. A disadvantage of a generic key
schedule is that if a weakness is discovered in the key schedule, it will impact any block
cipher using the key schedule. However, having one key schedule decreases the likeli-
ness of overlooked design flaws and implementation errors compared to when multiple
key schedules are required.

In contrast to RC4 and any other stream cipher used in practice, the key schedules
of AES and Camellia generate expanded keys that can easily bedistinguished from
random bits. In AES, an expanded-key byte is a combination oftwo other expanded-key
bytes. When designing AES, Daemen and Rijmen noted the benefit of pseudorandom
key bits, but stated that they took a ”less ambitious” approach focused on avoiding
symmetry between rounds and attacks due to related keys because ”All other attacks are
supposed to be prevented by the rounds of the block cipher.” [14], page 77. In Camellia,
there is a large overlap amongst the round keys. In MISTY1, the same expanded key
bits are used in multiple locations within the block cipher.In RC6, it is more difficult to

determine key bits from other expanded-key bits compared toAES and Camellia. Each
original key byte is altered with an addition and a rotation.The resulting byte is then
added to a previous expanded-key byte and a constant to create the next expanded-key
byte.

We compared the performance of RC4 when generating enough expanded key bits
to encrypt ab-bit block to the performance of the four ciphers’ key schedules. When
encrypting b bits, the number of expanded-key bits in an elastic block cipher is 32 more
than the number in the original cipher (due to the key-dependent permutations) plus
the number of bits needed for any initial and/or end-of-round whitening that was not
in the original cipher. Recall that whitening steps were added when forming the elastic
versions of Camellia and RC6; whereas, AES already contained whitening and only
required that its whitening steps be expanded to cover all b+y bits.

Cipher Block Size # of # of
in Bytes Rounds Expanded-Key

(or Cycles) Bytes
AES 16 10 180
AES 17 11 208
AES 32 20 676

Camellia 16 9 340
Camellia 17 10 383
Camellia 32 18 980
MISTY1 8 4 196
MISTY1 9 5 246
MISTY1 16 8 444

RC6 16 20 516
RC6 17 21 562
RC6 32 40 1652

Table 1.Number of Expanded-Key Bytes Needed

When measuring the performance of the original key schedules, we removed any
statements from the original ciphers’ key schedules that were present only for the sup-
port of key sizes other than 128 bits in order to avoid executing unnecessary tests in
conditional statements. Specifically, we removed code fromAES’s key schedule that
was for the support of 192 and 256-bit keys. We also compared each elastic block ci-
pher’s key expansion rate to that of AES’s original key schedule because in practice
AES’s key expansion rate is presently accepted. Letti, for i = 1,2,3,4, correspond to the
key expansion rate for the fixed-length versions of AES, Camellia, MISTY1 and RC6,
respectively. Table 1 shows the number of expanded-key bytes needed in the elastic
block ciphers for block sizes ofb, b + 8 and2b bits. The key-expansion rates for the
elastic versions compared to that of the original versions are shown in Table 2. Recall
that Bellare and Rogaway’s method requires 4 applications and Patel’s method requires
2 applications of the original block cipher.s key schedule.The rates for the key schedule
of the elastic block ciphers in relation to the rates for Bellare and Rogaway’s method

and Patel’s method can be estimated by dividing the values incolumn 3 of Table 2 by 4
and 2, respectively.

Elastic Block Rate vs Original Rate vs
Cipher Size Cipher’s Rate AES’s Rate
AES 16 5.94t1 5.94t1

Camellia 16 43.54t2 6.89t1

MISTY1 8 119.24t3 6.09t1

RC6 16 6.29t4 7.84t1

Table 2.Key Expansion Rates

We note that Camellia and MISTY1 have the fastest key schedule of the four ci-
phers and also requires the most expanded-key bits, thus resulting in RC4 appearing
to be significantly slower. However, Camellia’s and MISTY1’s key schedules have the
least amount of randomness of the four ciphers due to reusingexpanded-key bits in mul-
tiple locations. Overall, the RC4-based key expansion usedin the elastic ciphers when
encryptingb-bit blocks is just under six to just under eight times the rate of AES’s key
schedule.

6 Conclusions and Future Work

We have proven that the elastic version of a block cipher is secure against any practical
attack that attempts to recover key or expanded-key bits if the original cipher is secure
against the attack. This eliminates the need to analyze an elastic version of a block
cipher against these types of attacks if the original cipheris secure against such attacks.
Our result follows from the network structure used in creating elastic block ciphers and
the fact that the round function (cycle) of the original fixed-length block cipher is used
as a black box when forming its elastic version. We note that while reduction-based
proofs of security are a cornerstone of cryptographic analysis, they are typical when
complete components are used as sub-components in a bigger design. We are not aware
of use of such techniques in the case of concrete block cipherdesigns.

The constructions of the elastic versions of AES, Camellia,MISTY1 and RC6 illus-
trate how to apply the method for creating variable-length block ciphers. By applying
the statistical tests used in NIST’s AES competition, we conclude that there is no ob-
vious flaw in the design because the level of randomness of theciphertext produced by
each of the elastic versions is consistent with the level required in the AES competition.
The workload of the elastic version of a cipher is proportional to the block size, with the
number of rounds increasing as the block size increases. Theperformance benefit from
using the elastic version of a block cipher depends on the original cipher and the exact
implementation. The percent of overhead involved in addingthe swap steps, whiten-
ing and two key-dependent permutations varies based on the number of operations and
exact implementation of the original cipher.

Unlike the encryption and decryption functions of block ciphers which can be viewed
as a series of rounds, there is no general structure to key schedules in practice. In order

to avoid modifying key schedules on an individual basis whencreating elastic versions
of block ciphers, we propose the use of a generic key schedulethat will output as many
expanded key bits as needed regardless of the specific block cipher and block size, and
to increase the randomness of the expanded key bits comparedto the expanded keys
generated by existing block ciphers’ key schedules. When creating the four instantia-
tions of elastic block ciphers, we used the stream cipher RC4to illustrate the concept
of a generic key schedule. Future work includes the creationof a generic key schedule
for use in elastic block ciphers with improved performance.

References

1. J.H. An and M. Bellare, Constructing VIL-MACs from FIL-MACs: Message Authentica-
tion Under Weakened Assumptions,Proceedings of Advances in Cryptology - Crypto 1999,
LNCS 1666, Springer-Verlag, 1999.

2. K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima and T. Tokita, Camellia:
A 128-Bit Block Cipher Suitable for Multiple Platforms - Design and Analysis,Proceedings
of Selected Areas in Cryptography, LNCS 2012, Springer-Verlag, pages 39-56, 2000.

3. M. Bellare, R. Canetti and H. Krawczyk, Pseudorandom Functions Re-Visited: The Cascade
Construction and its Concrete Security,Proceedings of Foundations of Computer Science,
IEEE, 1996.

4. M. Bellare and P. Rogaway, On the Construction of VariableLength-Input Ciphers,Pro-
ceedings of Fast Software Encryption 1999, LNCS 1636, Springer-Verlag, pages 231-244,
1999.

5. D. Bernstein, How to Stretch Random Functions: The Security of Protected Counter Sums,
Journal of Cryptology, Vol. 12(3), Springer-Verlag, pages=185-192, 1999.

6. E. Biham, New Types of Cryptanalytic Attacks Using Related Keys,Proceedings of Ad-
vances in Cryptology - Eurocrypt 1993, LNCS 0765, Springer-Verlag, 1994.

7. E. Biham and A. Shamir, Differential Cryptanalysis of theData Encryption Standard,
Springer-Verlag, New York, 1993.

8. J. Black and P. Rogaway, CBC MACs for Arbitrary-Length: The Three-Key Constructions,
Proceedings of Advances in Cryptology - Crypto 2000, LNCS 1880, Springer-Verlag, 2000.

9. M. Ciet, G. Piret and J. Quisquater, Related-Key and SlideAttacks: Analysis, Connections
and Improvements, Extended Abstract, UCL Crypto Group Technical Report, 2002.

10. D. Cook, Elastic Block Ciphers, Ph.D. Thesis, 2006.
11. D. Cook, M. Yung and A. Keromytis, Elastic Block Ciphers in Practice: Constructions and

Modes of Encryption,Proceedings of EC2ND, Springer-Verlag, 2007.
12. D. Cook, M. Yung and A. Keromytis, Elastic Block Ciphers:The Basic Design,Proceedings

of ASIACCS, ACM, pages 350-355, 2007.
13. D. Cook, M. Yung, and A. Keromytis, The Security of Elastic Block Ciphers Against Key-

Recovery Attacks.Proceedings of ISC, LNCS 4779, Springer-Verlag, pages 89-103, 2007.
14. J. Daemen and V. Rijmen, The Design of Rijndael: AES the Advanced Encryption Standard,

Springer-Verlag, Berlin, 2002.
15. S. Halevi and P. Rogaway, A Parallelizable Enciphering Mode, Cryptology ePrint Archive,

Report 2003/147, 2003.
16. S. Halevi and P. Rogaway, A Tweakable Enciphering Mode,Proceedings of Advances in

Cryptology- Crypto 2003, LNCS 2729, Springer-V erlag, 2003.
17. C. Hall, D. Wagner, J. Kelsey and B. Schneier, Building PRFs from PRPs,Proceedings of

Advances in Cryptology - Crypto 1998, LNCS 1462, Springer-Verlag, pages 370-389, 1998.

18. L. Knudsen, Truncated and Higher Order Differentials,Proceedings of Fast Software En-
cryption 1994, LNCS 1008, Springer-Verlag, pages 196-211, 1995.

19. M. Luby and C. Rackoff, How to Construct Pseudorandom Permutations from Pseudoran-
dom Functions,Siam Journal of Computing, vol. 17, no. 2, pages 373-386, April 1988.

20. M. Matsui, Linear Cryptanalysis Method for DES Cipher,Proceedings of Advances in Cryp-
tology - Eurocrypt 1993, LNCS 0765, Springer-Verlag, 1993.

21. M. Matsui, New Block Encryption Algorithm MISTY,Proceedings of Fast Software Encryp-
tion 1997, LNCS 1267, Springer-Verlag, pages 54-68, 1997.

22. I. Mironov, (Not So) Random Shuffles of RC4,Proceedings of Advances in Cryptology -
Crypto 2002, LNCS 2442, Springer-Verlag, 2002.

23. NESSIE, NESSIE Security Report, Version 2, https://www.cosic.esat.kuleuven.ac.be/nessie
2003.

24. NIST, FIPS 46-3 Data Encryption Standard (DES), 1999.
25. NIST, Randomness Testing of the Advanced Encryption Standard Finalist Candidates, 2000.
26. NIST, A Statistical Test Suite for Random and Pseudorandom Number Gen-

erators for Cryptographic Applications, NIST Special Publication 800-22,
http://wwww.csrc.nist.gov/publications/nistir, 2001.

27. NIST, FIPS 197 Advanced Encryption Standard (AES), 2001.
28. M. Noar and O. Reingold, On the Construction of Pseudo-random Permutations: Luby-

Rackoff Revisited,Journal of Cryptology, vol. 12, pages 29-66, 1999.
29. S. Patel and Z. Ramzan and G. Sundaram, Efficient Constructions of Variable-Input-Length

Block Ciphers,Proceedings of Selected Areas in Cryptography 2004, LNCS 3357, Springer-
Ve rlag, 2004.

30. random.org, http://wwww.random.org/files,
31. J. Reeds,III, Cryptosystem for Cellular Telephony, US Patent 5,159,634, 1992.
32. R. Rivest, RC4, in Applied Cryptography by B. Schneier, John Wiley and Sons, New York,

1996.
33. Rivest, Robshaw, Sidney and Yin, RC6 Block Cipher, http://www.rsa.security.com/rsa

labs/rc6, 1998.
34. B. Schneier and J. Kelsey, Unbalanced Feistel Networks and Block Cipher Design,Proceed-

ings of Fast Software Encryption 1996, LNCS 1039, Springer-Verlag, 1996.
35. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall andN. Ferguson, Twofish,

http://www.schneier.com/twofish.html 1998.
36. R. Schroeppel, Hasty Pudding Cipher, http://www.cs.arizona.edu/rcs/hpc, 1998.
37. S. Vaudenay, A Classical Introduction to Cryptography,Springer, Berlin, 2006.
38. D. Wagner, The Boomerang Attack,Proceedings of Fast Software Encryption 1999, LNCS

1636, Springer-Verlag”, pages 156-170, 1999.

Author Biographies
Debra Cook’s research interests are focused in applied cryptography and security.

She has a M.S. and Ph.D. in computer science from Columbia University in New York,
and a B.S. and M.S.E. in mathematical sciences from the JohnsHopkins University in
Baltimore, Maryland. After graduating from Johns Hopkins,she was a senior technical
staff member at Bell Labs and AT&T Labs before pursuing her Ph.D. She was then a
security researcher at Bell Labs. She has also taught at Columbia University, the New
Jersey Institute of Technology and the University of Crete.

Angelos D. Keromytis is an Associate Professor of Computer Science and the Di-
rector of the Network Security Laboratory at Columbia University in New York. His
current research interests include protection mechanismsagainst denial of service at-
tacks, network worms, and collaborative self-healing software systems, with a larger
view toward system survivability and performance. He is author of more than 100 tech-
nical papers and has served on over 60 technical program committees. He is an as-
sociate editor for the ACM Transactions on Information and System Security and the
IET Proceedings in Security. He received his Ph.D. and M.Sc.from the University of
Pennsylvania, and his B.Sc. from the University of Crete, inGreece.

Moti Yung works at Google, Inc. and is a visiting research scientist in the Com-
puter Science Department at Columbia University in New York. Previously, Moti has
also been an industry consultant, the Director of Advanced Authentication Research at
RSA Laboratories, the Chief Scientist of CertCo and a researcher at IBM’s T.J. Watson
Research Center. He received his Ph.D. in computer science from Columbia University
in New York. He has published extensively in many areas of cryptography, security and
computer science.

