
IEEE TDSC 1

On The General Applicability of Instruction-Set
Randomization

Stephen W. Boyd, Gaurav S. Kc, Michael E. Locasto, Angelos D. Keromytis, and Vassilis Prevelakis

Abstract— We describe Instruction-Set Randomization (ISR),
a general approach for safeguarding systems against any type of
code-injection attack. We apply Kerckhoffs’ principle to create
OS process-specific randomized instruction sets (e.g., machine
instructions) of the system executing potentially vulnerable
software. An attacker who does not know the key to the
randomization algorithm will inject code that is invalid for that
(randomized) environment, causing a runtime exception. Our
approach is applicable to machine-language programs, scripting
and interpreted languages.

We discuss three approaches (protection for Intel x86 executa-
bles, Perl scripts, and SQL queries), one from each of the above
categories. Our goal is to demonstrate the generality and appli-
cability of ISR as a protection mechanism. Our emulator-based
prototype demonstrates the feasibility ISR for x86 executables,
and should be directly usable on a suitably modified processor.
We demonstrate how to mitigate the significant performance
impact of emulation-based ISR by using several heuristics to limit
the scope of randomized (and interpreted) execution to sections
of code that may be more susceptible to exploitation.

The SQL prototype consists of an SQL query-randomizing
proxy that protects against SQL-injection attacks with no changes
to database servers, minor changes to CGI scripts, and with
negligible performance overhead. Similarly, the performance
penalty of a randomized Perl interpreter is minimal. Where
the performance impact of our proposed approach is acceptable
(i.e., in an already-emulated environment, in the presence of pro-
grammable or specialized hardware, or in interpreted languages),
it can serve as a broad protection mechanism and complement
other security mechanisms.

Index Terms— Interpreters, Emulators, Buffer Overflows, SQL
Injection, Randomization, Security, Performance.

I. INTRODUCTION

Software vulnerabilities have been the cause of many computer
security incidents. Among these, code-injection attacks are per-
haps the most widely exploited type of vulnerability, accounting
for a large percentage of the CERT advisories in the past few years
[41]. One of the most traditional vectors of code injection, buffer
overflows attacks, typically [32] (but not always [13]) exploit
weaknesses in software that allow them to alter the execution flow
of a program and cause arbitrary code to execute. This code is
usually inserted in the targeted program, as part of the attack, and
allows the attacker to subsume the privileges of the program under
attack. Because such attacks can be launched over a network, they
are regularly used to break into hosts or as an infection vector for
computer worms. In their simplest (and perhaps most common)
form [2], [32], such attacks overflow a buffer in the program stack
and cause control to be transfered to the injected code. Similar

This work was partially supported by National Science Foundation Grants
ITR CNS-04-26623 and ANI-0133537.

Manuscript received XXX; revised XXX; revised XXX;
S. Boyd, G. Kc, M. Locasto and A. Keromytis were with Columbia

University at the time of this work. V. Prevelakis was with Drexel University.

attacks overflow buffers in the program heap [27] or use other
injections vectors (e.g., format strings).

However, such code-injection attacks are by no means restricted
to languages like C; attackers have exploited failures in input
validation of web CGI scripts to permit them to execute ar-
bitrary SQL [11], UNIX command line (shell) [10], and Perl
instructions on the target system respectively. Similar attacks have
been demonstrated and successfully exploited by self-propagating
malcode against web sites using PHP. The intuition behind
the latter type of attacks is that logical expressions within a
pre-defined query can be altered simply by injecting language
operations of the attacker’s choice. This injection (which is quite
effective in practice [3], [25]) typically occurs through a web
form; the associated CGI script neglects to perform appropriate
input validation. One solution to the problem is to improve pro-
gramming techniques or to use type-safe languages. For example,
improved SQL programming practices include escaping single
quotes, limiting input length, and filtering exception messages.
Despite these suggestions, vulnerabilities continue to surface,
implying the need for a different and systematic approach.

Although the specific techniques used in each attack differ,
they all result in attackers executing code of their choice. This
capability implies that attackers know what “type” of code (e.g.,
x86 code, SQL, unix shell commands) can be injected.

A. Our Approach: This observation led us [21] (and
concurrently others [4], [5]) to introduce a general approach
for preventing code-injection attacks, instruction-set randomiza-
tion (ISR). By randomizing the underlying system’s instructions,
“foreign” code introduced by an attack would fail to execute
correctly, regardless of the injection approach. Thus, our approach
addresses (at least in principle) not only stack- and heap-based
buffer overflow attacks, but any type of remote code-injection
attack. What constitutes the instruction set to be randomized
depends on the system under consideration: common stack or
heap-based buffer overflow attacks typically inject machine code
that corresponds to the underlying processor (e.g., Intel x86
instructions). For Perl injection attacks, the “instruction set” is
the Perl language, since any injected code will be executed by
the Perl interpreter. To simplify the discussion, we will initially
focus on machine-code randomization in our discussion of ISR,
although we discuss our prototype randomized Perl in Section III.

Randomizing an arbitrary instruction set, such as x86 machine
code, involves three components: the randomizing element, the
execution environment, and the loader. Where the processor
supports such functionality (e.g., the TransMeta Crusoe, some
ARM-based systems, or other programmable processors or inter-
faces between main memory and processor [34]), our approach
should be implementable without noticeable loss of performance,
since the randomization process is straightforward, as we report
in Section II. We describe the necessary modifications to the
operating system and the randomizing element. We use a modified

Digital Object Indentifier 10.1109/TDSC.2008.58 1545-5971/$25.00 Â© 2008 IEEE

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TDSC 2

version of the bochs-x86 Pentium emulator to determine the
feasibility of our design and to identify the necessary changes to
the operating system and user-space tools. Generally, the loss of
performance associated with an emulator is unacceptable for most
(but not all [42]) applications: we present a small but concrete
example of this in Section II-D.4. Our prototype demonstrates the
simplicity of the necessary software support.

We then explore one way for reducing the performance impact
of emulated randomization. Our emphasis on the performance
aspect of our systems is motivated by our belief that practical,
deployable security mechanisms must be efficient enough that
the users will not notice their presence, or they will simply not
be used. EMUrand, our in-line emulator, allows execution of
a program in emulated and native modes within the same run.
Specifically, we randomize (and emulate) only those portions of
the program code that are more likely to be susceptible to remote
exploitation. Once the vulnerable sections are identified, it is a
simple matter to automatically insert the code for enabling and
disabling the emulator. This approach should greatly reduce the
performance overhead of emulating the entire OS and application
code. EMUrand, by enabling the selective emulation of vulnerable
code slices, outperforms our first, straightforward implementa-
tion of ISR for x86. We explore three different mechanisms
to identifying likely vulnerable code slices: heuristics-based,
honeypot-directed and through static source code analysis. These
mechanisms can be used in conjunction with each other to identify
both a priori and dynamically those portions of the code that are
(or may be) exploitable. Other coverage strategies are possible,
and remain the topic of future research.

Other hardware-based techniques, such as the NoExecute (NX)
flag that is available in some recent x86-compatible processors
[19], have been proposed for dealing specifically with the problem
of machine-code injection. In terms of protection, NX and
ISR offer very similar type and level of protection, except for
the (probably very rare) cases where code and (overwritable)
data can be legitimately co-located in the same memory page.
However, NX and other hardware-based techniques do not easily
translate to other runtime environments and threats (e.g., SQL
injection), as ISR does. PaX [29] simulates a per-page NoExecute
flag by exploiting the existance of different instruction and data
translation lookaside buffers (TLB) in modern x86 processors.
This can offer effective protection without hardware support,
but is non-generalizable to other environments or even to other
processors, including older x86 CPUs.

Finally, we apply ISR to the problems of Perl script injection
and SQL injection attacks. For the former, we use a modified
Perl parser that accepted scripts with randomized keywords, with
the randomization key provided as a parameter to the interpreter.
For the latter, we create randomized instances of the SQL query
language, by randomizing the template query inside the CGI script
and the database parser. To allow for easy retrofitting of our solu-
tion to existing database systems, we introduce a de-randomizing
proxy, which converts randomized queries to proper SQL queries
for the database. Code injected by the rogue client evaluates to
undefined keywords and expressions. When this is the outcome,
then standard keywords (e.g., “or”) lose their significance, and
attacks are frustrated before they can even commence. The
performance overhead of our approach is minimal, as we show
in Section IV. For interpreted languages, our approach does not
lead to any measurable loss in performance relative to non-ISR-

enabled execution. Compared to previous techniques, we offer
greater transparency to languages, applications and compilers, as
well as a smaller impact on performance.

Paper Organization: Sections II, III and IV describe the
application of ISR to binary executables. Perl, and SQL Injection
respectively. We discuss some details of the approach, limitations,
and future work in Section V. Section VI gives an overview of
related work aimed at protecting against code-injection attacks.

II. INSTRUCTION-SET RANDOMIZATION FOR BINARIES

Code-injection attacks attempt to deposit executable code (typ-
ically machine code, but there are cases where intermediate or
interpreted code has been used) within the address space of the
victim process, and then pass control to this code. These attacks
can only succeed if the injected code is compatible with the
execution environment. For example, injecting x86 machine code
into a process running on a SUN/SPARC system may crash the
process (either by causing the CPU to execute an illegal op-code,
or through an illegal memory reference), but will not cause a
direct security breach (but will cause a self-inflicted DoS, as we
discuss in Section V). Notice that in this example, there may well
exist sequences of bytes that will crash on neither processor.

Our approach leverages this observation: we create an execution
environment that is unique to the running process, so that the
attacker does not know the “language” used and hence cannot
“talk” to the machine. Conceptually, we can achieve this by
applying a reversible transformation between the CPU and main
memory. Effectively, we create new instruction sets for each
process executing within the same system. Code-injection attacks
against this system are unlikely to succeed as the attacker cannot
guess the transformation that has been applied to the currently
executing process. Of course, if the attackers had access to the
machine and the randomized binaries through other means, they
could easily mount a dictionary or known-plaintext attack against
the transformation and thus “learn the language”. However, we
are primarily concerned with attacks against remote services (e.g.,
http, dhcp, DNS, and so on). Vulnerabilities in this type of
server allow external attacks (i.e., attacks that do not require a
local account on the target system), and thus enable large-scale
automated exploitation. Protecting against internal users is a much
more difficult problem, which we do not address in this work.

In the remainder of this section, we describe ISR at the micro-
level (Section II.A), followed by a description of how an ISR-
enabled system operates (Section II.B). We then provide some
details on our implementation (Sections II.C and II.D), including
a brief performance evaluation and a discussion on security
considerations. We then describe our use of selective ISR (Section
II.E) as a possible way for minimizing the execution overhead of
our emulation-based prototype, toward making it usable in certain
scenarios (i.e., without requiring hardware support for ISR).

A. ISR Operation

The machine instructions for practically all common CPUs
consist of opcodes that may be followed by one or more argu-
ments. For example, in the Intel x86 architecture, the code for
the software interrupt instruction is 0xCD. This is followed by
a single one-byte argument which specifies the type of interrupt.
By changing the relationship between the op code (0xCD) and
its operand on the one hand, and the instruction (INT) on the

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TDSC 3

other, we can effectively create a new instruction without affecting
the processor architecture. Of course, to avoid simple brute force
attacks, we need to randomize more than just the opcode; instead,
we randomize the whole instruction (i.e., the op code and all its
operands, including immediate values).

For this technique to be effective, the number of possible
instruction sets must be relatively large. If the randomization
process is driven by a key1, we would like this key to be as
large as possible. If we consider a generic CPU with fixed 32-
bit instructions (like most popular RISC processors), hardware-
efficient randomization techniques would consist of XOR’ing
each instruction with the key or randomly (based on the key)
transposing all the bits within the instruction, respectively. An
attacker trying to guess the correct key would have a worst-case
work factor of 232 and 32! for XOR and transposition respectively
(notice that 32! >> 232). Such a scheme could very efficiently
be implemented in the interface between the L2 cache and main
memory, as was shown by Rogers et al. [34]. One disadvantage
of this simple and efficient encoding is that it is susceptible to the
equivalent of known-ciphertext attacks, where the adversary has
both the original and the randomized binaries. As we are primarily
concerned with remote attacks, in which the adversary does not
have a priori access to the system, we believe this is of limited
concern. Furthermore, by re-randomizing the binary periodically
(e.g., per execution), we can limit the risk of disclosure.

Notice that, in the case of XOR, using a larger block size
does not necessarily improve security, since the attacker may
be able to attack the key in a piece-meal fashion (i.e., guess
the first 32 bits by trying to guess only one instruction, then
proceed with guessing the second instruction in a sequence, etc.).
However, we believe that a 32-bit key is sufficient for protecting
against code-injection attacks, since the rate at which an attacker
can launch these brute-force probing attacks against randomized
software is much smaller than in a brute-force attack against a
cryptographic algorithm. Processors with 64-bit instructions (and
thus 64-bit keys, when using XOR for the randomization) are even
more resistant to brute-force attacks. When using bit-transposition
within a 32-bit instruction, we need 160 bits to represent the key,
although not all possible permutations are valid (the effective key
size is log2(32!)). Increasing the block size (i.e., transposing bits
between adjacent instructions) can further increase the work factor
for an attacker. The drawback of using larger blocks is that the
processor must have simultaneous access to the whole block (i.e.,
multiple instructions) at a time, before it can decode any one of
them. Because we believe this greatly increases complexity, we
would avoid this scheme on a RISC processor. Unfortunately, the
situation is more complicated on the x86 architecture, which uses
variable-size instructions. The danger is that the effective key size
is not really 32 or 64 bits: many of the “interesting” instructions in
the x86 are 2 bytes long. Thus, an attacker will have to guess two
(or four) independent sub-keys of 16 bits each. At first glance, it
appears that the work factor remains the same (232 = 216×2), but
in fact it is possible for an attacker to independently attack each
of the sub-keys, as shown by Sovarel et al. [38]. The implication
of this is that on x86 the program’s text segment must be re-
randomized each time a new process is started (we discuss this
further in Section II-D.5).

1The meaning of the term “key” here is similar to its use in modern
cryptography, i.e., the security of the randomization process depends on the
entropy and secrecy of a random bit-string.

Finally, note that the security of the scheme depends on the fact
that injected code, after it has been transformed by the processor
as part of the de-randomizing sequence, will raise an exception
(e.g., by accessing an illegal address or using an invalid op code).
While this will generally be true, there are a few permutations of
injected code that will result in working code that performs the
attacker’s task. We believe that this number will be statistically
insignificant — the same probability as creating a valid buffer-
overflow exploit for a known vulnerability by using the output of
a random number generator as the injected code.

B. System Operation

Let us consider a typical system with an operating system
kernel and a number of processes. We seek to defend against code-
injection attacks that target applications. Thus, we consider using
ISR only when the processor runs in “user” mode. Therefore,
the kernel always runs the native instruction set of the processor,
which simplifies our task since we do not have to consider the
interactions between ISR and the various low-level processor
events (e.g., interrupts). Randomization is in effect only while
a process is executing in user-level mode.

The code section of each process is loaded from an executable
file. The executable file contains the appropriate decoding key in
a header, embedded there by the randomizing component of our
architecture, described in Section II-C. For the time being, we will
assume that the executables are statically linked (i.e., there is no
code loaded from dynamically linked libraries). We expect only a
small number of programs to require static linking, i.e., network
services, given our initial focus on remotely exploitable code-
injection attacks. We discuss static linking further in Section V.

The decoding key in the program header is associated with
the encoding key used for the encoding of the text segment.
Specifically, it would be the same when using XOR as the ran-
domization function, or a key specifying the inverse transposition
in the second scheme we discussed earlier. When a new process is
loaded from disk (e.g., as a result of an exec() system call), the
operating system extracts the key from the header, and stores it
in the process control block (PCB) structure. In this basic model,
executables are randomized once (possibly as the last step in
compilation). However, using the same tools we can randomize
the executables periodically (using an automated scheduled task),
or even at load time, by modifying the loader. These three
scenarios represent different tradeoffs between minimizing the
potential for leakage and exploitation of the randomizing key,
and performance overhead (primarily process-start latency).

Our approach provides for a special processor register where
the decoding key will be stored, and a special privileged in-
struction (called GAVL2) that allows write-only access to this
register. Thus, when the operating system is ready to schedule
the execution of a process, the GAVL instruction is used to copy
the de-randomization key from the PCB to the decoding register.
To accommodate programs that have not been randomized, we
provide a special key that, when loaded via the GAVL instruction,
disables the decoding process. For programs that have not been
randomized, the operating system will load the null decoding key
in the PCB. Since the key is always brought in from the PCB,
there is no need to save its value during context switches. There
is, thus, no instruction to read the value of the decoding register.

2GAVL: Gaurav, Angelos, Vassilis, plus L because it is a load instruction

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TDSC 4

When the processor is in kernel mode, the ISR decoding is
not active (regardless of the key stored in the GAV register).
Any transition from user to kernel mode (e.g., hardware or
software interrupts) will switch the processor to running the native
instruction set. Returning from the interrupt or switching back to
user mode re-enables the ISR decoding.

As we mentioned earlier, the decoding key is associated with
an entire process. It is thus difficult to accommodate dynamically
linked libraries, as these would either have to be encoded as they
are loaded from disk, or be encoded and copied into a completely
disjoint set of memory pages in the case of already memory-
resident libraries. In both cases, the memory occupied by the
encrypted code for the libraries will not be shareable with other
processes, or all the processes would have to share the same
key (the one used by the libraries). Since neither approach is
appealing, we decided to require statically-linked executables. In
practice, we would seek to randomize (and thus statically-link)
only those programs that are directly exposed to remote exploits,
i.e., network daemons, thus reducing the overall performance and
management impact of static linking to the system.

For example, a system may be running a web server, while also
supporting the web site developers. The web server application
and possibly the ssh daemon would be randomized, since both
programs are interacting with the the outside world. Other pro-
cesses such as editors, spell checkers, etc., may not need to be
randomized, and hence can be dynamically linked.

C. Randomized ELF Executables

The Executable and Linking Format (ELF) is the standard
file format used with the gcc compiler and associated utilities
like the assembler and linker in many architectures, for encoding
executable and library files. ELF completely separates code and
data sections, including read-only control data such as jump
tables. This was very useful for us to be able to single out the
executable sections in an ELF executable so that we could then
carry out their block-randomization3 . We modified several utilities
from the GNU binutils package to implement our randomization
process. In particular, the objcopy utility handles processing of
the ELF headers, but it also provided a reference to a byte-array
(representing the machine instruction block) for each given code
section in the file. We were then able to take advantage of this
fact by randomizing each 16-bit block in this array before letting
the rest of the original program continue producing the target file.

D. x86 ISR Implementation

To determine the feasibility of our approach, we built a pro-
totype of the proposed architecture using the bochs emulator [8]
for the x86 processor family. As we discussed in Section II-A,
randomization on the x86 is more complicated than with RISC-
type processors because of its use of variable-size instructions.
However, we decided to implement the randomization for the x86
both to test its feasibility in a worst-case scenario and because of
the processor’s wide use.

3Note that this data-text separation may not hold for other binary formats or
compilers. In those cases, we need avoid “randomizing” embedded read-only
data during the randomization pass.

1) Runtime Environment: Even without a specially-modified
CPU, the benefits of randomized executables can be reaped by
combining a sandboxed environment that emulates a conventional
CPU with the instruction randomization primitives discussed
earlier. Such a sandboxing environment would need to include
a CPU emulator like bochs [8], its own operating system, and the
process(es) we wish to protect.

2) Bochs Modifications: Bochs is an open-source emulator of
the x86 architecture. Since it interprets each machine instruction
in software, bochs allows us to perform any restoration operations
on the instruction bytes as they are fetched from instruction
memory. The core of bochs is implemented in the function
cpu loop() that uses another function, fetchDecode(), passing a
reference into an array representing a block of instruction code.
The fetchDecode() function incrementally extracts a byte from
that array until it can complete decoding of the current instruction.
This behavior closely simulates the i486 and Pentium processors,
with their instruction “prefetch streaming buffers”. On the i486,
this buffer held the next 16-bytes worth of instructions; on later
processors, this has typically been 32 bytes. We carry out our de-
randomizing of this instruction at the beginning of fetchDecode(),
based on the decoding key value that is currently loaded on the
special processor register, as discussed in Section II.

3) Single-System Image Prototype: To simplify the creation
and evaluation of our prototype, we adopted the techniques
we used to construct embedded systems for VPN gateways
[33]. We use automated scripts to produce compact (2-4MB)
bootable single-system images that contain a system kernel and
applications. We achieve this by linking the code of all the
executables that we wish to be available at runtime in a single
executable using the crunchgen utility. The single executable
alters its behavior depending on the name under which it is run
(argv[0]). By associating this executable with the names of the
individual utilities (via file system hard-links), we can create a
fully functional /bin directory where all the system commands
are accessible as apparently distinct files. This aggregation of
the system executables in a single image greatly simplifies the
randomization process, as we do not need to support multiple
executables or dynamic libraries. Although this also greatly con-
strains the real-world applicability of our technique, we felt this
was an acceptable compromise for a prototype implementation.
The root of the run-time file system, together with the executable
and associated links, are placed in a RAM-disk that is stored
within the kernel binary. The kernel is then compressed (using
gzip) and placed on a bootable medium (in our case a file that
bochs considers to be its boot device). This file system image also
contains the /etc directory of the running system in uncompressed
form, to allow easy configuration of the runtime parameters.

At boot time, the kernel is copied from the boot image to bochs’
main memory, and is uncompressed and executed. The file system
root is then located in the RAM-disk. The /etc directory is copied
to the RAM-disk from the temporarily mounted boot partition.
The system is running entirely off the RAM-disk and proceeds
with the regular initialization process. This organization allows
multiple applications to be combined within a single kernel where
they are compressed, while leaving the configuration files in the
/etc directory on the boot partition. Thus, these files can be easily
accessed and modified. This allows a single image to be produced
and the configuration of each sandbox to be applied to it just
before it is copied to this separate boot partition.

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TDSC 5

4) Performance: Since our goal was simply to demonstrate
the feasibility of our approach, we chose a few, very simple
benchmarks. Generally, interpreting emulators (as opposed to
virtual machine emulators, such as VMWare) impose a consid-
erable performance penalty; depending on the application, the
slow-down can range from one to several orders of magnitude.
This makes such an emulator generally inappropriate for high-
performance applications, although it may be suitable for certain
high-availability environments.

Table I compares the time taken by the respective server
applications to handle some fairly involved client activity. The
times recorded for the ftp server were for a client carrying out a
sequence of common file and directory operations, viz., repeated
upload and download of a ≈ 200KB file, and creation, deletion
and renaming of directories, and generating directory listings by
means of an automated script. This script was executed 10 times,
and the execution times averaged to produce the times listed.
This ftp result illustrates that a network I/O-intensive process does
not suffer execution time slowdown proportional to the reduction
in processor speed. The sendmail numbers, taken from the mail
server’s logging file, represent the overall time taken to receive
100 short e-mails (≈ 1KB each) from a remote host.

TABLE I

Experimental results: average execution times (in seconds) for
identical binaries on Bochs and a regular Linux machine (the

same one that hosted the emulator). The performance numbers
of individual runs were within 10% of the listed averages.

ftp sendmail fibonacci
bochs 39.0s ≈ 28s ≈ 93s

linux 29.2s ≈ 1.35s 0.322s

The last column demonstrates the significant slowdown in-
curred in the emulator when running a CPU-intensive application
(as opposed to the I/O-bound jobs represented in the first two ex-
amples), such as computation of the fibonacci numbers. However,
this only helps confirm the existence of real-world applications
for emulators. All the applications were compiled with the -static
-falign-labels option for gcc, with zero optimization.

Emulator-based approaches have also been proposed in the
context of intrusion and anomaly detection [17], as well as
one way to retain backward compatibility with older processors
— often exhibiting better performance. However, to make our
proposal fully practical, we will need to modify an actual CPU.

5) Security Considerations: Performing code injection in a
few vulnerable applications that used ISR caused the targets
to terminate with a segmentation violation or illegal opcode
exception. Barrantes et al. did a comprehensive study on the types
of faults that ISR would cause a compromised process to exhibit,
showing that such processes execute at most 5 x86 instructions
before causing an exception [5]. These instructions are effectively
random bytes derived from the attacker’s injected code through
the (unpredictable to the attacker) de-randomization process.

Brute Force Attacks: One obvious way to attack our system
is through brute-force code injection: the adversary simply tries
all possible randomization keys on the attack payload they wish
to inject. For that reason, it is important to maximize the key
space of our technique. We believe 32 bits to be sufficient for our
purposes, since attackers can try these guesses at a relatively slow
rate (compared to brute-forcing a cryptographic key) because they

need to do so remotely. The fact that the targetted process will
stop for at least a short period of time further limits the probing
rate. If the randomization key is changed every time the process
is restarted (as we discuss next), then the attack becomes a pure
game of chance where the attacker has 2−32 probability of success
in any given trial. Furthermore, as Cox et al. showed [16], one can
construct quorum architectures where each replica is randomized
differently (with a different key) to defeat all guessing attacks.

When to randomize: As Sovarel et al. [38] demonstrated, it is
possible to extract information about the randomization key such
that only a small number of attempts is needed to succeed in
injecting code. Similar attacks were shown against address-space
randomization [35]. If ISR is used in a production environment,
the randomization process should take place when the program
is executed (load time). Under such a scheme the code segment
of the program is randomized as it is copied into the swap area.
While this increases the load time latency, the overhead is low
(adding approximately less than 10% to the startup time of a
process). For long-lived processes (such as most network-facing
daemons), this cost is amortized over a long period of time.

In the case of server processes that fork() a copy of the parent
process to handle each request, the attacker can attempt multiple
guesses against the same key by injecting code consisting of short
instructions (assuming a variable instruction-length architecture,
like the x86). In such cases, the fork() system call itself can
be modified so that if the process is employing instruction-set
randomization, the text segment is actually copied (rather than
copy the page table entries of the parent) and re-randomized. It
is worth noting that such failures can be used to perform near-real-
time forensic analysis to identify the vulnerability the attacker is
exploiting and to generate a signature [14], [45], [26], [23].

Known Ciphertext Attacks: Since program code is highly
structured, an attacker with access to the randomized code seg-
ment of a running process can easily determine the randomization
key and thus create valid attack payloads. Such access may
be easy (depending on system configuration) for an attacker
that already has local access to the system, e.g., through the
/proc interface, and will allow a privilege-escalation. One way to
mitigate this problem is to use a strong encryption algorithm as
the randomization primitive, possibly incurring a performance hit.
We believe our technique to be primarily applicable in deterring
remote attackers seeking to use code injection.

Even in that scenario, however, it is imperative that the ap-
plication does not expose parts of its code segment, e.g., by
improperly returning such information as part of an error message.
Although we believe this not to be a significant problem for binary
applications, it is an important issue in other domains where ISR
may be used, such as SQL-injection prevention. As we discuss
in Section IV, one way of dealing with this problem is through a
scrubbing proxy (an approach that lends itself to SQL injection,
but is probably not generalizable).

E. EMUrand: Selective Instruction Set Randomization

Our solution to the performance problem of software-based
ISR is to provide a lightweight, minimally invasive emulator that
can switch freely between derandomizing the instruction stream
and normal execution of the instruction stream on the underlying
hardware. We may then employ several selection strategies to
identify code sections that are likely to contain a vulnerability
and wrap this code with tags that invoke the emulator.

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TDSC 6

We take three approaches to address the selection problem.
First, we take advantage of the CoSAK study4, which used
statistical analysis to determine the probability that a particular
function was vulnerable to code injection attacks. This probability
is based on the function’s location in a call graph relative to input
functions (like the read() system call). The study analyzed open-
source applications with known vulnerabilities. The researchers
constructed a call graph of each application and then counted
back from input routines to functions where a vulnerable buffer
was declared. On average, the distance in the call graph was 5.5
function calls. The average number of functions which fall within
this range is approximately 3%.

Second, we can utilize an approach suggested by the Worm
Vaccine project [36] to set up an appropriately instrumented
“victim” application to act as a honeypot. Once the victim
receives an exploit string that causes a buffer overrun or similar
code injection attack, the instrumentation (a modified version of
ProPolice5) precisely identifies the vulnerable buffer and function.
This information can then be used to automatically protect (via
EMUrand) that section of code in the absence of a patch.

Third, we employ static source code analysis tools like RATS6

or Splint [18] to identify sections of code that are likely to
contain some well-known vulnerability. Static analysis is far from
perfect: it produces a number of false positives and may miss
some vulnerabilities (false negatives). However, such tools help
us target the use of EMUrand to likely vulnerable code.

These selection strategies are useful heuristics. As such, they
are prone to a certain amount of error. Finding and fixing
bugs through regular code audits should proceed regardless of
the protection mechanism in use. Even though the selection
strategies can identify potential vulnerabilities, the application
will still require some protection during the window in which
a developer fixes these new vulnerabilities and deploys the fix
to the application. Even if the attempt to fix every identified
vulnerability is made, there is no guarantee that the solution will
be free of defects. In contrast, ISR will function regardless of the
particular content of an attack or method of injection. In cases
where the identification of a vulnerability is fairly specific, such
as in the approach proposed by Sidiroglou et al. [36], ISR can
serve as a first line of defense while a patch is being generated
by a developer or applied by a system administrator.

1) EMUrand Implementation: Absent a programmable pro-
cessor, unscrambling randomized instructions requires software
emulation. Since current x86 emulators do not perform either ISR
or selective emulation, we designed EMUrand to bridge the gap.
EMUrand runs inside of an executable and only needs to maintain
enough state to process instructions: the general, segment, eflags,
and FPU registers. Memory management and other OS specific
tasks operate normally.

To enable EMUrand, we provide a statically linked library that
defines special tags (combinations of macros and function calls)
which mark the beginning and end of selective emulation. Upon
entering the vulnerable section of code, the emulator captures the
program state (as defined above) and processes all instructions
inside the area designated for ISR. When the program counter
references the first instruction below the bounds of emulation,
the virtual processor copies its internal state back to the program.

4http://serg.cs.drexel.edu/cosak/index.shtml
5http://www.trl.ibm.com/projects/security/ssp
6http://www.securesw.com/download rats.htm

void foo() {
int a = 1;
emulate_begin(emurand_args);
a++;
emulate_end();
printf("a = %d\n", a);

}

Fig. 1. EMUrand invocation and termination tags.

While registers are explicitly updated, memory updates have
implicitly been applied throughout the execution of EMUrand.
The program, unaware of the instructions executed by the virtual
processor, is equipped to continue normal processing.

We implemented EMUrand to validate the practicality of selec-
tive emulation. The majority of development time was dedicated
to the functions that simulated x86 instructions for 32-bit and
16-bit operand sizes. Integrating EMUrand into an existing appli-
cation is fairly straightforward. As Figure 1 shows, special tags
are wrapped around the segment of code to be emulated.

The C macro emulate begin() moves the program state (general,
segment, eflags, and FPU registers) into an emulator-accessible
global data structure to capture state immediately before EMU-
rand takes control. EMUrand uses this data to initialize the virtual
registers. When this setup completes, emulate begin() obtains the
memory location of the first instruction following the call to itself.
The instruction address is the same as the return address and can
be found in the activation record of emulate begin(), four bytes
above its base stack pointer. The emulate begin() function takes
as argument the key used for de-randomization.

a) EMUrand Operation: The main loop of the emula-
tor fetches, decodes, executes, and retires one instruction at
a time. Before fetching an instruction, de-randomization takes
place, in the same manner as we discussed in Section II. The
fetch/decode/execute/retire cycle of instructions continues until
either emulate end() is reached, or when the emulator detects
that control is returning to the parent function. If the emulator
does not encounter un-randomized opcodes, upon completion the
emulator’s instruction pointer reaches emulate end(). To enable
the program to continue execution at this address, the return
address of the emulate begin() activation record is replaced with
the current value of the instruction pointer. By executing emu-
late end(), the emulator’s environment is copied to the program
registers and execution continues under normal conditions. If an
exception arises during emulation, it is assumed to be due to
injected (un-randomized) code; EMUrand then prints diagnostics
and terminates program execution.

The emulator is designed to execute in user-mode, so system
calls cannot be computed directly without kernel-level permis-
sions. Therefore, when the emulator decodes the Linux system
call interrupt or the sysenter instruction, it must release control
to the kernel. However, before the kernel can successfully execute
the system call, the program state needs to reflect the virtual
registers arrived at by EMUrand. The emulator saves the real
registers and replaces them with its own values. EMUrand issues
the interrupt, and the kernel processes the system call. Once
control returns, the emulator updates its registers and restores
the original values in the program’s registers.

2) EMUrand Performance Evaluation: While the main goal
of previous work on ISR was to simply demonstrate the efficacy
of the approach, a critical component of our research and ex-

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TDSC 7

perimentation has been to identify and construct an environment
which strikes the right balance between emulation overhead
and protection against code injection attacks. Keeping in mind
the selection strategies we discussed earlier, we evaluated the
performance impact of EMUrand by instrumenting the Apache
2.0.49 web server and performing micro-benchmarks on utilities
such as ls, cat, and cp.

The machine hosting Apache was a Pentium III at 1GHz with
512MB of memory running RedHat Linux with kernel 2.4.20. The
client machine was a dual Pentium II at 350 MHz with 256MB of
memory running RedHat Linux 8.0 with kernel 2.4.18smp. Both
emulated and non-emulated versions of Apache were compiled
with the –enable-static-support configuration option. EMUrand
was compiled with the “-g -static -fno-defer-pop” flags.

We used the Apache flood testing tool to evaluate how quickly
both the non-emulated and emulated versions of Apache would
process requests. In our experiments, performance was measured
by the total number of requests processed (see Figure 2). The
value for total number of requests per second is extrapolated (by
flood’s reporting tool) from a smaller number of requests sent
and processed within a smaller timeslice; the value should not
be interpreted to mean that the test Apache instances and test
hardware actually served some 6000 requests per second.

a) Emulation of Apache Inside Valgrind: To get a sense
of the performance degradation imposed by running the entire
process inside an emulator other than EMUrand (and thus de-
termine the inefficiency, if any, inherent to our implementation
of emulation), we tested Apache running in Valgrind version
2.0.0 on the Linux test machine that hosted Apache for our
EMUrand test trials. Valgrind, which was used in RISE [4],
has two notable features that improve performance over our full
emulation of the main request loop. First, Valgrind maintains a
cache of translated instructions while EMUrand translates each
encountered instruction from scratch. Second, Valgrind performs
some optimizations to avoid redundant load, store, and register
to register move operations. We ran Apache under Valgrind with
the tool Memcheck and the –trace-children=yes option. While
Valgrind performed better than our emulation of the full request
processing loop, it did not perform as well as our emulated slices,
as shown in Figure 2.

Optimizations to EMUrand to maintain a cache of already–
translated instructions should boost performance significantly. We
did not include such a cache in order to minimize the memory
footprint of EMUrand, although it may be advantageous to do so
in the future. For example, the Valgrind–ized version of Apache
is 10 times the size of the regular Apache image, while Apache
running with EMUrand is not detectably larger.

b) Full Emulation and Baseline Performance: We first
demonstrate that emulating the bulk of an application entails a
significant performance impact. In particular, we emulated the
main request processing loop for Apache and compared our
results against a non-emulated Apache instance. In handling the
processing of this main loop, the emulator executed roughly
213,000 instructions. In order to get a more complete sense of
this performance impact, we timed the execution of the request
handling procedure for both the non-emulated and fully-emulated
versions of Apache by embedding calls to gettimeofday() where
the emulation functions were (or would be) invoked.

For our test machines and sample loads, the non-emulated
Apache spent some 6300 microseconds to perform the work in

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80

re
qu

es
ts

 p
er

 s
ec

on
d

of client threads

Apache 2.0.49 Request Handling Performance

apache-mainloop
libtasvm-mainloop
libtasvm-parse-uri

libtasvm-header-parser
valgrind-apache

Fig. 2. Timing of main request processing loop including EMUrand
and Valgrind. Valgrind appears to run better than EMUrand
when executing the entire request loop. However, selective emu-
lation still performs better than Valgrind and request processing
is sustainable. EMUrand is denoted by the “libtasvm” lines (the
name of the library containing EMUrand).

TABLE II

Occurances of RATS alerts in Apache

Alert Type Alerts Files Functions
fixed size buffer 58 16 26
string format 12 3 5
strcpy, getenv 18 2 4

the main loop function. The fully instrumented loop running
in the emulator spends an average of 277927 microseconds (or
277 milliseconds) per request in that particular code section. For
comparison, we also timed Valgrind’s execution of this section
of code; after a large initial cost (presumably to perform the
initial translation and fill the internal instruction cache) Valgrind
executes the section with a 34193 microsecond average.

c) Selective Emulation: We used the RATS tool to identify
possible vulnerable sections of code in Apache 2.0.49. The tool
identified roughly 270 lines of code, the majority of which
contained fixed-size local buffers. To gain some intuition about
how much of the application actually contained some of these
alerts, we ran RATS on the server code module and produced the
results in Table II.

The main request handling logic in Apache 2.0.49 begins in the
ap process http connection() function. The effective work of this
function is carried out by two subroutines: ap read request() and
ap process request(). The ap process request() function is where
Apache spends most of its time during the handling of a particular
request. In contrast, the ap read request() function accounts for
a smaller fraction of the request handling work. We decided to
emulate subroutines of each function in order to assess the impact
that selective emulation would have.

We constructed a partial call tree and chose the ap parse uri()
function (invoked via read request line() in ap read request())
and the ap run header parser() function (invoked via
ap process request internal() in ap process request()). The
emulator processed approximately 358 and 3229 instructions,
respectively, for these two functions. In each case, the
performance impact, as expected, was much less than the
overhead incurred by needlessly emulating the entire work of

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TDSC 8

TABLE III

Emulated ISR performance for various command-line utilities.

Test Type trials mean (s) Std. Dev. Min Max Instr. Emulated
ls (non-emu) 25 0.12 0.009 0.121 0.167 0

ls (emu) 25 42.32 0.182 42.19 43.012 18,000,000
cp (non-emu) 25 16.63 0.707 15.80 17.61 0

cp (emu) 25 21.45 0.871 20.31 23.42 2,100,000
cat (non-emu) 25 7.56 0.05 7.48 7.65 0

cat (emu) 25 8.75 0.08 8.64 8.99 947,892

the request processing loop.
d) Micro-benchmarks: Using the client machine from the

Apache performance tests, we ran some micro-benchmarks to gain
a broader view of EMUrand’s performance impact. We selected
some shell utilities and measured their performance for large
workloads running both with and without EMUrand. We issued
an ’ls -R’ command on the root of the Apache source code with
both stderr and stdout redirected to /dev/null in order to reduce
the effects of screen I/O. We then used cat and cp on a large file
(also with screen I/O redirected to /dev/null).

As expected, there is a large impact on performance when emu-
lating the majority of an application. Our experiments demonstrate
that only emulating potentially vulnerable sections of code offers
a significant advantage over emulation of the entire system. While
our prototype x86 emulator, EMUrand, is a fairly straightforward
implementation, it can gain further performance benefits by using
Valgrind’s technique of caching already translated instructions.
With some further optimizations, EMUrand is a viable and prac-
tical approach to protecting code with ISR. In fact, Bruening et al.
[9] outline several ways to optimize emulators; their approaches
reduce the performance overhead (as measured by two SPEC2000
benchmarks, crafty and vpr) from a factor of 300 to about 1.7.
Their optimizations include caching basic blocks, linking direct
and indirect branches, and building traces.

III. RANDOMIZED PERL

The attractiveness of the ISR concept lies in its generality
and applicability in different environments and runtimes. To
demonstrate its versatility, we implemented ISR for Perl.

In the Perl prototype, we randomized all the keywords, oper-
ators, and function calls in a script. We did so by appending a
random 9-digit number (“tag”) to each of these. For example

foreach $k (sort keys %$tre) {
$v = $tre->{$k};
die ‘‘duplicate key $k\n’’

if defined $list{$k};
push @list, @{ $list{$k} };

}

by using “123456789” as the tag, becomes

foreach123456789 $k (sort123456789 keys %$tre)
{

$v =1234567889 $tre->{$k};
die123456789 ‘‘duplicate key $k\n’’
if123456789 defined123456789 $list{$k};

push123456789 @list, @{ $list{$k} };
}

Perl code injected by an attacker will fail to execute, since the
parser will fail to recognize the (missing or wrong) tag.

We implemented the randomization by modifying the Perl
interpreter’s lexical analyzer to recognize keywords followed by
the correct tag. The key is provided to the Perl interpreter via
a command-line argument, thus allowing us to embed it inside
the randomized script itself, e.g., by using “#!/usr/bin/perl -
r123456789” as the first line of the script. Upon reading the
tag, the interpreter zeroes it out so that it is not available to
the script itself via the ARGV array. These modifications were

fairly straightforward, and took less than a day to implement. To
generate the randomized code, we used the Perltidy [30] script,
which was originally used to indent and reformat Perl scripts to
make them easier to read. This allowed us to easily parse valid
Perl scripts and emit the randomized tags as needed.

One problem we encountered was the use of external modules.
These play the role of code libraries, and are usually shared
by many different scripts and users. To allow their sharing in
randomized scripts, we use two tags: the first is supplied by the
user via the command line, as discussed above, while the second
is a system-wide key known to the Perl interpreter. We extended
the lexical analyzer to accept either of these tags. Using this
scheme, the administrator can periodically randomize the system
modules, without requiring any action from the users. Also, note
that we do not randomize the function definitions themselves.
This allows scripts that are not run in randomized mode to use
the same modules. Although the size of the scripts increases
considerably due to the randomization process, some preliminary
measurements indicate that performance is unaffected.

A similar approach can counter attacks against web CGI scripts
that dynamically generate SQL queries to a back-end database.
Such attacks can have serious security and privacy impact [11]. In
that case, we would modify the SQL interpreter similar to what we
described for Perl, and generate randomized SQL queries in the
CGI script. To avoid modifying the database front-end, we can use
a validating proxy that intercepts randomized SQL queries. If the
queries are syntactically correct (i.e., appropriately randomized),
they are de-randomized and passed on to the database.

We can also use randomization with CGI scripts that issue
unix shell commands. By randomizing the shell interpreter, we
can avoid injection attacks [10]. In this scenario, we would also
randomize the program names, e.g.,

#!/bin/sh

if987654 [x$1 ==987654 x""; then987654
echo987654 "Must provide directory name."
exit987654 1

fi987654

/bin/ls987654 -l $1
exit987654 0

In all cases, we must hide low-level (e.g., parsing) errors from
the remote user, as these could reveal the tag and thus compromise
the security of the scheme. Other applications of ISR include VBS
and other email- or web-accessible scripting languages.

IV. PROTECTION AGAINST SQL INJECTION ATTACKS

We applied ISR to the problem of defending database–driven
web applications from SQL injection attacks, in part to further
demonstrate its versatility in protecting against injection attacks
in a diverse set of execution environments.

Injecting SQL code into a web application requires little effort
by those who understand both the semantics of the SQL language
and CGI scripts. Many web applications combine user input with
pre-defined queries and then transmit the result to the database
for execution. Unless developers properly design application
code to protect against unexpected data input, alteration of the
database structure, corruption of data, or revelation of private and
confidential information may inadvertently occur.

For example, consider a login page of a CGI application
that expects a user-name and the corresponding password. When

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TDSC 9

Database Server

CGI
Scripts

DB

Middle−
ware

Result

Set

Result

Set

Standard

SQL

Randomized

SQL

Requests
HTTP

Client

D
a
t
a
b
a
s
e

Proxy

Web Server

Fig. 3. SQLrand System Architecture

the credentials are submitted, they are inserted within a query
template such as the following:

"select * from mysql.user
where username=’ " . $uid . " ’ and

password=password(’ ". $pwd . " ’);"

Instead of a valid user-name, the malicious user sets the $uid
variable to the string:

’ or 1=1; - -’

causing the CGI script to issue the following SQL query to the
database:

"select * from mysql.user
where username=’’ or 1=1; - -’’ and

password=password(’_any_text_’);"

The single quotes balance the quotes in the pre-defined query,
and the double hyphen comments out the remainder of the SQL
query. Therefore, the password value is irrelevant and may be set
to any character string. The result set of the query contains at
least one record, since the “where” clause evaluates to true. If the
application identifies a valid user by testing whether the result set
is non-empty, the attacker can bypass the security check.

Our solution extends the application of ISR to the SQL
language: the SQL standard operators (including keywords, math-
ematical operators, and other invariant language tokens) are
manipulated by appending a random integer to them, one that an
attacker cannot easily guess. Any malicious user attempting an
SQL injection attack would be thwarted because the user input
inserted into the “randomized” query would always be classified
as a set of non-operators, resulting in an invalid expression.

Essentially, we have introduced a new set of keywords to SQL
that will not be recognized by the database’s SQL interpreter. A
difficult approach would be to modify the database’s interpreter
to accept the new set of keywords. Attempting to change its
behavior, however, would be a daunting task. Furthermore, a
modified database would require all applications submitting SQL
queries to conform to its new language. Although dedicating the
database server for selected applications might be possible, the
random key would not be varied among the SQL applications
using it. Ideally, having the ability to vary the random SQL key,
while maintaining one database system, grants a greater level of
security by making it difficult to subvert multiple applications by
successfully attacking a single instance.

Our design consists of a proxy that sits between the client
and database server (see Figure 3). Note, however, that the proxy
may be on a separate machine. By moving the de-randomization
process outside the DataBase Management System (DBMS) to
the proxy, we gain flexibility, simplicity, and security. Multiple
proxies using unique random keys to decode SQL commands can
be listening for connections on behalf of the same database, while

allowing disparate SQL applications to communicate in their own
“tongue.” The interpreter is no longer bound to the internals of the
DBMS. The proxy’s primary obligation is to decipher the random
SQL query and then forward the SQL command with the standard
set of keywords to the database for computation. Another benefit
of the proxy is the concealment of database errors which may
reveal the random SQL keyword extension to the user. A typical
attack consists of a simple injection of SQL, hoping that the error
message will disclose a subset of the query or table information,
which may be used to deduce hidden database properties. By
stripping the randomization tags in the proxy, we need not worry
about the DBMS inadvertently exposing such information through
error messages; the DBMS itself never sees the randomization
tags. Thus, to ensure the security of the scheme, we only need
to ensure that no messages generated by the proxy itself are ever
sent to the DBMS or the front-end server. Given that the proxy
itself is fairly simple, it seems possible to secure it against attacks.
If the proxy is compromised, the database remains safe, assuming
that other security measures are in place.

To assist the developer in randomizing his SQL statements, we
provide a tool that reads an SQL statement(s) and rewrites all
keywords with the random key appended. For example, an SQL
query, which takes user input, may look like the following:

select gender, avg(age)
from cs101.students

where dept = %d
group by gender

The utility will identify the six keywords in the example query
and append the key to each one (e.g., when the key is “123”):

select123 gender, avg123 (age)
from123 cs101.students

where123 dept = %d
group123 by123 gender

This SQL template query can be inserted into the developer’s
web application. The proxy, upon receiving the randomized SQL,
translates and validates it before forwarding it to the database.
Note that the proxy performs simple syntactic validation — it is
otherwise unaware of the semantics of the query itself.

A. SQLrand Implementation

We built a proof-of-concept proxy server that sits between the
client script and SQL server, de-randomizes requests received
from the client, and conveys the query to the server. If an SQL
injection attack occurs, the proxy’s parser will fail to recognize
the randomized query and will reject it. The two primary compo-
nents were the de-randomization element and the communication
protocol between the client and database system. In order to de-
randomize the SQL query, the proxy required a modified SQL
parser that expected the suffix of integers applied to all keywords.
As a “middle man,” it had to conceal its identity by masquerading
as the database to the client and vice versa. Although our primary
implementation focused on CGI scripts as the query generators,
a similar approach applies when using the Java database access
framework (JDBC), as we describe in Section IV-B.

The randomized SQL parser utilized two popular tools for
writing compilers and parsers: flex and yacc. Capturing the
encoded tokens required regular expressions that matched each
SQL keyword (case-insensitive) followed by zero or more digits.

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TDSC 10

(Technically, it did not require a key; practically, it needs one.) If
properly encoded, the lexical analyzer strips the token’s extension
and returns it to the grammar for query reassembly. Otherwise,
the token remains unaltered and is labeled as an identifier. By
default, flex reads a source file, but our design required an array
of characters as input. To override this behavior, the YY INPUT
macro was re-defined to retrieve tokens from a character string
introduced by the proxy. During the parsing phase, any syntax
error signals the improper construction of an SQL query using
the pre-selected random key. Either the developer’s SQL template
is incorrect or the user’s input includes unexpected data, whether
good or bad. On encountering this, the parser returns NULL;
otherwise, in the case of a successful parse, the de-randomized
SQL string is returned. The parser was designed as a C library.

We used MySQL, a popular open-source database system, to
create a sample customer database. The record size of the tables
ranged from twenty to a little more than eleven thousand records.
These sample tables were used in the evaluation of benchmark
measurements described in Section IV-C. After completing the
parser and creating this database, we defined a communication
protocol between the proxy and the MySQL database.

Since the proxy will act as a client to the database, the C

API library was suitable. One problem existed: the mysqlclient
C library does not have a server-side counterpart for accepting
and disassembling the MySQL packets sent using the client
API. Therefore, we needed to analyze the MySQL protocol and
incorporate it into the proxy. Unfortunately, we did not find
official documentation; however, a rough sketch of the protocol
existed which satisfied the requirements of the three primary
packets: the query, the error, and the disconnect packets.

The query packet carries the actual request. The quit message
is necessary in cases where the client abruptly disconnects from
the proxy or sends the proxy an invalid query. In either case, the
proxy becomes responsible for disconnecting from the database
by issuing the quit command on behalf of the client. Finally, the
error packet is only sent to the client when an improper query
generates a syntax error, indicating a possible injection attack.

The client application needs only to define its server connection
to redirect its packets through the proxy rather than directly to
the database. In its connection method, this is achieved simply by
changing the port number of the database to the port where the
proxy is listening. After receiving a connection, the proxy in turn
establishes a connection with the database and transmits messages
it receives from the client. If the command byte of the MySQL
packet from the client indicates the packet contains a query, the
proxy extracts the SQL and passes it to the interpreter for de-
coding. When unsuccessful, the proxy sends an error packet with
a generic “syntax error” message to the client and disconnects
from the database. On the other hand, a successful parsing of the
SQL query produces a translation to the de-randomized syntax.
The proxy overwrites the original, randomized query with the
standard query that the database is expecting into the body of
the MySQL packet. The packet size is updated in the header and
pushed out to the database. The normal flow of packets continues
until the client requests another query.

The API libraries define some methods which will not work
with the proxy, as they hardcode the SQL query submitted to the
database. For example, mysql list dbs() sends the query “SHOW
databases LIKE <wild-card-input>”. Without modification to the
client library, the workaround would be to construct the query

string with the proper randomized key and issue the mysql query()
method. Presently, binary SQL cannot be passed to the proxy for
processing; therefore, mysql real query() must be avoided.

B. JDBC-based SQL Randomization

Our JDBC-based system consists of an offline tool used to
randomize the SQL statements inserted into a Java application
(e.g., a Java servlet), and an online module that is part of the JDBC
driver. The second component both parses and de-randomizes
SQL statements and queries. Web servers delegate HTTP requests
involving dynamic content to an application server that utilizes
our modified JDBC driver to obtain data from the database. The
database answers the query, and the application server passes an
HTTP response back to the client via the web server. In our
system, the SQL statements in the application server have been
randomized and are de-randomized by the JDBC driver before
being sent to the database. Any SQL injected by the attacker
will fail to de-randomize correctly, causing the driver to raise an
exception; the injected SQL never gets to the database.

1) Implementation: Our proof-of-concept system utilizes a
simple but incomplete parsing strategy for SQL statements. Our
implementation contains a utility to randomize SQL statement
strings (from either standard input or a file) and modifications to
the JDBC driver to configure the driver with the randomization
key and de-randomize the text of SQL statements passed to it
via its API. Finally, our system includes a sample test application
that uses the modified driver and accepts SQL statements from
an interactive command prompt. This test utility can be used to
interactively attempt SQL injection and observe how the driver
refuses to accept the modified statements.

We constructed a Java class to accept text SQL statements as
input and randomize them with a given key. Web application
developers would use this tool to randomize their SQL queries
before inserting them into the application’s code. We modified the
JDBC driver to accept a new configuration parameter that contains
the randomization key. When the driver is asked to execute
a statement or query, the driver checks if this configuration
parameter exists. If it does, the driver parses the SQL statement
and attempts to strip off the key from each SQL keyword. If this
process fails, the driver raises an exception for the calling code.

2) Limitations: Dealing with stored procedures is a difficult
issue, as these SQL statements are stored directly in and invoked
by the database itself. It is imppossible to de-randomize them
without changing the SQL parsing logic in the database. In
addition, changing the randomization key is a potential issue.
One solution is to store queries in an external data source (e.g.,
an XML file) that the application reads during execution. This
content can be randomized during runtime under a different key.

SQL randomization is meant to work in an environment
where the attacker does not have direct control over the de-
randomization process. If an attacker controls this component (in
our case, the JDBC driver), they can easily discover the key.

Finally, our system does not intercept errors generated by a
failure to de-randomize SQL statements; rather, its purpose is to
detect an attack and then notify the web application by generating
an SQLException. Instances of SQLException occur nor-
mally during JDBC operations, and applications generally expect
to handle them. Web applications should be wary about displaying
the error messages. Doing so may reveal the randomization key.

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TDSC 11

C. SQLrand Evaluation

We evaluated the practicality of using a proxy to de-randomize
encoded SQL by considering the efficacy of the procedure (by
observing if it prevents known SQL injection vulnerabilities) as
well as the overhead introduced by the proxy.

1) Qualitative Evaluation: First, we wrote a sample CGI
application that allowed a user to inject SQL into a “where” clause
that expected an account ID. With no input validation, one can
easily inject SQL to retrieve account information concerning all
accounts. When using the SQLrand proxy, the injected statement
is identified and an error message issued, rather than proceeding
with the processing of the corrupted SQL query.

After testing the reliability of the proxy in this simple example,
the next step was to identify an SQL injection vulnerability in
an existing application. A web bulletin board, phpBB v2.0.5,
presented an opportunity to inject SQL into viewtopic.php, re-
vealing the password of a user one byte at a time. After the attack
was replicated in the test environment, the section of vulnerable
SQL was randomized and the connection was redirected through
the proxy. As expected, the proxy recognized the injection as
invalid SQL code and did not send it to the database. The phpBB
application did not succumb to the SQL injection attack as verified
without the proxy. However, it was observed that the application
displays an SQL query to the user by default when zero records
are returned. Since an exception does not return any rows, the
proxy’s encoding key was revealed. Again, ISR still requires good
coding practices. If a developer chooses to reveal the SQL under
certain cases, there is little benefit to the randomization process.

Another content management application prone to SQL injec-
tion attacks, PHP-Nuke, depends on the magic quotes gpc option
being enabled. Without this setting, several modules are open to
attack. Even with the option set, injections on numeric fields are
not prevented because the application does not check for numeric
input. For example, when attempting to download content from
the PHP-Nuke application, the download option d op is set to
’getit’ and accepts an unchecked, numeric parameter name ’lid’.
It looks up the URL for the content from the download table based
on the lid value and sets it in the HTTP location header statement.
If an attacker finds an invalid lid (determined by PHP-Nuke
reloading its home page) and appends ’union select pass from
users table’ to it, the browser responds with an error message
stating that the URL had failed to load, thus revealing the sensitive
information. However, when we used the proxy, injection attacks
in the affected module were averted. These vulnerabilities exist in
other PHP-Nuke modules, and can be averted by using the proxy.

2) Performance Evaluation: Next, we quantified the overhead
imposed by SQLrand. We designed an experiment to measure
the additional processing time required by three sets of concurrent
users, respectively 10, 25, and 50. Each class executed, in a round-
robin fashion, a set of five queries concurrently over 100 trials.
The average length of the five different queries was 639 bytes,
and the random key length was 32 bytes. The sample customer
database created during the implementation was the target of
the queries. The database, proxy, and client program were on
separate x86 machines running RedHat Linux, within the same
network. The overhead of proxy processing ranged from 183
to 316 microseconds for 10 to 50 concurrent users respectively.
Table IV shows the proxy’s performance.

The worst-case scenario adds approximately 6.5 milliseconds
to the processing time of each query. Since acceptable response

times for most web applications usually fall between a few
seconds to tens of seconds, depending on the purpose of the ap-
plication, the additional processing time of the proxy contributes
insignificant overhead in a majority of cases.

TABLE IV

Proxy Overhead (in microseconds)

Users Min Max Mean Std
10 74 1300 183.5 126.9
25 73 2782 223.8 268.1
50 73 6533 316.6 548.8

V. FURTHER DISCUSSION

A. Advantages

Randomizing network services and scripts not only hardens an
individual system against code-injection attacks, but also mini-
mizes the possibility of network worms spreading by exploiting
the same vulnerability against a popular software package: such
malicious code will have to “guess” the correct key. As we saw in
Section II, the length of the key depends on certain architectural
characteristics of the underlying processor, and is typically much
shorter than cryptographic keys. Nonetheless, the workload for a
worm can increase by 216 to 232, or even more. Periodically re-
randomizing programs (e.g., when the system is re-compiled for
open-source operating systems, or at installation time and then
periodically by an automated script for binary-only distributions)
will further minimize the risk of persistent guessing attacks, as
discussed in Section II-D.5.

Compared to other protection techniques, our approach offers
greater transparency to applications, languages and compilers,
none of which need to be modified (but see Disadvantages section
below), and better performance at a fairly low complexity. Based
on the ease with which we implemented the necessary extensions
on the bochs emulator, we speculate that designers of new proces-
sors could easily include the appropriate circuitry. Since security
is becoming increasingly important, adding security features in
processors is seen as a way to increase market penetration.
Various hardware manufacturers (in particular, Via) already has
some provisions for cryptographic functionality embedded inside
the processor, and the latest Crusoe processor includes a DES
encryption engine. Although these seem to have been designed
with digital-rights management applications in mind, it may be
possible to use the same mechanisms to enhance security in a
different application domain. However, using a full-featured block
cipher such as DES or AES in our system is likely to prove too
expensive, even if it is implemented inside the processor.

B. Disadvantages

a) Hardware Support: Perhaps the main drawback of our
approach as applied to binary code that is meant to execute on a
hardware processor is the need for special support by the proces-
sor. In some programmable processors, it is possible to introduce
such functionality in already-deployed systems. However, the vast
majority of current processors do not allow for such flexibility.
Thus, we are considering a more general approach of randomizing
software as a way of introducing enough diversity among different
instances of the same version of a piece of popular software that
large-scale exploitation of vulnerabilities becomes infeasible. We
view that work, which is still in progress, as complementary to
the work we presented in this paper.

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TDSC 12

b) Static Linking: A second drawback of our approach is
that applications have to be statically linked, thus increasing
their size. In our prototype of Section II-D, we worked around
this issue by using a single-image version of OpenBSD. In
practice, we would seek to randomize (and thus statically link)
only those programs that are exposed to remote exploits, i.e.,
network daemons, thus minimizing the overall impact of static
linking to the system. Furthermore, it must be noted that avoiding
static linking is going to help reduce only the disk usage, not
the runtime memory requirements. Each randomized process
will need to acquire (as part of process loading) and maintain
its own copy of the randomized libraries using either of the
following two mechanisms, neither of which is desirable. Firstly,
the process loader can load just the main program image initially,
and dynamically copy/load and randomize libraries on-demand.
This will incur considerable runtime overhead and also require
complex process management logic, in the absence of which it
will degrade to the other mechanism, described next. The second
approach is to load and randomize the program code, and all
libraries that are referenced, right at the beginning. It is obvious
that this will result in large amounts of physical RAM being used
to store multiple copies of the same code, some of which may
never be executed during the entire life of the process.

c) Debugging: Debugging is made more difficult by the ran-
domization process, since the debugger must be aware of it. The
most straightforward solution is to de-randomize the executable
prior to debugging; the debugger can do this automatically, since
the secret key is embedded in the ELF executable. Similarly, the
debugger can use the key to de-randomize core dumps.

d) Self-modifying Code: Also note that our form of
code randomization effectively precludes polymorphic and self-
modifying code ((both binary and scripts), as the randomization
key and relevant code would then have to be encoded inside the
program itself, potentially allowing an attacker to use them.

Since it is virtually impossible to distinguish between autho-
rized and unauthorized memory writes, our architecture does not
accommodate writes to the part of memory containing executable
code or the ability of programs to dynamically generate (and
execute) code. If the process does so, it will be corrupted, since
the processor will write native instructions and then attempt to de-
code them as randomized instructions when attempting to execute
them. One possibility for accommodating self-polymorphism is
to require some form of IPC to a polymorphism service running
as a separate process (or kernel service), which either returns
properly randomized code or directly places such code in the
caller’s address space. However, it seems inevitable that any such
approach will decrease overall system security.

Other dynamic-code constructs such as trampoline functions,
which are injected by the operating system kernel for signal-
handling purposes, are randomized on the fly by the operating
system itself based on the randomization value stored in the PCB.

e) Code Introspection: Our approach also prevents programs
for performing code introspection, since instruction-fetch and
data-read operations are handled by different data paths and
logic in modern CPUs. Since our approach only modifies the
instruction-fetch logic, a program reading its own code will see
the encoded bits. This may also be a problem if an attacker man-
ages to somehow read (parts of) the code space, since this may
allow key extraction (depending on the randomization algorithm).
One solution is for the operating system to mark code pages such

that data reads (but not writes) from the code segment(s) return
de-randomized data (i.e., the un-obfuscated instructions). This can
increase the complexity of the on-processor logic, and requires
additional changes to the OS kernel.

f) Self-inflicted DoS: Instruction randomization should be
viewed as a self-destruct mechanism: the program under attack
is likely to go out of control and be terminated by the runtime
environment. Thus, this technique cannot protect against denial
of service attacks and should be considered as a safeguard of last
resort, i.e., it should be used in conjunction with other techniques
that prevent vulnerabilities leading to code-injection attacks from
occurring in the first place. One such approach [26], uses an
anomaly detection system coupled with ISR-protected software,
to allow the detector to “learn” attacks that trip the system and
eventually filter them. Other similar work seeks to create input
signatures for blocking future attacks [45], [23].

g) Comprehensive Security: Finally, our approach does not
protect against all types of buffer overflow attacks. In particular,
overflows that only modify the contents of variables in the stack or
the heap and cause changes in the control flow or logical operation
of the program cannot be defended against using randomization.
Similarly, our scheme does not protect against attacks that cause
bad data to propagate in the system, e.g., not checking for certain
Unix shell characters on input that is passed to the system() call.
None of the systems we overview in Section VI protect against
the latter, and very few can deter the former type of attack. A
more insidious overflow attack would transfer the control flow
to some library function (e.g., system()). To defend against this,
we propose to combine our scheme with randomizing the layout
of code in memory at the granularity of individual functions [6],
thus denying to an attacker the ability to jump to an already-
known location in existing code. Although key-extraction attacks
have been demonstrated against straightforward address-space
randomization [35], a more comprehensive scheme has been
shown to be resistant to such attacks [7].

VI. RELATED WORK

Encrypted software has been proposed in the context of soft-
ware piracy and digital rights management. Such approaches
treat code as content and consider users part of the threat
model. Most of these approaches focused on the complex task
of key management in such an environment (typically requiring
custom-made processors with a built-in decryption engine such as
DES). Our requirements for the randomization process are much
more modest, allowing us to implement it on certain modern
processors, emulators, and interpreters. We can take advantage
of functionality in processors that allow for encrypted software
(e.g., the Transmeta Crusoe TM5800 processor).

The work closest to ours is RISE [4], [5], which applies a
randomization technique similar to ours for binary code only, and
uses an emulator attached to specific processes (as opposed to a
full system emulator). The inherent use of and dependency on
emulation makes RISE simultaneously more practical for imme-
diate use and inherently slower in the absence of hardware. Linn
and Debray [24] use more general code obfuscation techniques
to harden program binaries against static disassembly.

FLIPS (Feedback Learning IPS) [26] incorporates a supervision
framework in the presenc of suspicious traffic and uses ISR
to isolate attack vectors, which are used to train the anomaly
detector. A similar idea (fault-driven analysis to create signatures)

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TDSC 13

using address space obfuscation (see below) was independently
proposed by Liang and Sekar [23] and Xu et al. [45]. Cox et al.
[16] used artificial diversity to create quorum systems that make
specific attacks impossible to successfully carry out.

PointGuard [15] encrypts all pointers while they reside in
memory and decrypts them only before they are loaded to a
CPU register. This is implemented as an extension to the GCC
compiler, which injects the necessary instructions at compilation
time, allowing a pure-software implementation of the scheme.
Tuck et al. [40] discuss the use of hardware support in PointGuard
for efficient code-pointer encryption to address read/write attacks,
which allow an attacker to see snapshots of parts of a PointGuard-
protected program’s memory that enable future attacks. Xu [43]
also proposes the use of control-data randomization to prevent
attacks, focusing on compiler extensions to obfuscate function
pointers and return addresses. Chen et al. [12] proposes the use of
tainting in conjunction with hardware extensions to the processor,
to detect compromised control-flow information.

Suh et al. [39] propose a hardware based solution that can
be used to thwart control-transfer attacks and restrict executable
instructions by monitoring “tainted” input data. In order to
identify “tainted” data, they rely on the operating system. If the
processor detects the use of this tainted data as a jump address or
an executed instruction, it raises an exception that can be handled
by the operating system. DIRA [37] is a technique for automatic
detection, identification and repair of control-hijacking attacks.
This solution is implemented as a GCC compiler extension that
transforms a program’s source code adding heavy instrumentation
so that the resulting program can perform these tasks. The use
of checkpoints throughout the program ensures that corruption
of state can be detected if control sensitive data structures are
overwritten. TaintCheck [28] performs dynamic taint analysis
to detect overwrite attacks. TaintCheck is implemented as an
extension to Valgrind. Although it does not require modifications
to the source code of a monitored program, it imposes a perfor-
mance penalty typical of emulator–based approaches and requires
memory resources to store taint information.

Abadi et al. [1] formalized the concept of Control Flow
Integrity (CFI), observing that high-level programming often
assumes properties of control flow that are not enforced at the ma-
chine level. CFI provides a way to statically verify that execution
proceeds within a given control-flow graph (the CFG effectively
serves as a policy). CFI enables the efficient implementation of a
software shadow call-stack with strong protection guarantees.

Another approach, address obfuscation [6], [29], randomizes
the absolute locations of all code and data, as well as the distances
between different data items. Several transformations are used,
such as randomizing the base addresses of memory regions (stack,
heap, dynamically-linked libraries, routines, static data, etc.),
permuting the order of variables/routines, and introducing random
gaps between objects. Although very effective against jump-into-
libc attacks, it is less so against other common attacks, due to
the fact that the amount of possible randomization is relatively
small. However, address obfuscation can protect against attacks
that aim to corrupt variables or other data. This approach can
be effectively combined with instruction randomization to offer
comprehensive protection against all memory-corrupting attacks.
A similar approach was independently proposed by Xu et al.
[44]. Shacham et al. [35] show that in many cases address-space
randomization is not very effective, because 32-bit address spaces

do not allow for sufficient entropy in the placement of data and
control information in memory. However, Bhatkar et al. [7] argue
that it is possible to introduce enough entropy in address-space
obfuscation by expanding the scope of randomization to include
relative code placement at the granularity of individua!l functions,
static and stack-resident data, and to continuously re-randomize
these at runtime. Sovarel et al. [38] demonstrate a key-extraction
attack against ISR systems when the system always uses the same
key across program crashes due to the attack.

Hardware features such as the NoExecute (NX) flag in recent
Pentium-class processors [19] or other similar proposals [47]
address the performance issue, but only cover a subset of exploita-
tion methods (e.g., jump-into-libc attacks are still possible); note
that ISR is also susceptible to such attacks. Lam and Chiueh [22]
use the x86 segmentation features to implement array bounds-
checking for most of the buffers in a program, resulting in
relatively low protection-mechanism overhead.

SQL Injection: It is becoming common practice to use
PREPARE statements, which allow a client to pre-issue a template
SQL query at the beginning of a session; for the actual queries,
the client only needs to specify the variables that change. Al-
though the PREPARE feature was introduced as a performance
optimization, it can address SQL injection attacks if the same
query is issued many times. When the queries are dynamically
constructed, this approach does not work well.

Pietraszek and Berghe [31] proposed the use of taint analysis
to detect SQL injection attacks, and similar system is described
by Xu et al. [46]. While this approach requires a much tighter
coupling between the query composer (e.g., the CGI script) and
the consumer (the SQL parser in the database), it it conceptually
similar to our view that commands should originate from the
program text and not be derived from untrusted data.

AMNESIA [20] uses static analysis and training to build query
models. These models, expressed as character-level automata,
are used at runtime to monitor and enforce compliance of the
issued queries. Enforcement is done by adding checkpoints in
the application source code. Possible limitations include false
positives and false negatives, although the experiments performed
did not reveal any such problems in practice.

VII. CONCLUSIONS

We described our instruction-set randomization (ISR) scheme
for countering code-injection attacks. We protect against any type
of code-injection attacks by creating an execution environment
that is unique to the running process. Injected code will be invalid
for that execution environment, and thus cause an exception. This
approach is equally applicable to machine-code executables and
interpreted code. To evaluate the feasibility of ISR, we constructed
three prototypes, one each for x86 machine code, Perl and SQL.

The ease of implementation in all cases leads us to believe
that our approach is feasible in hardware, and offers significant
benefits in terms of transparency and performance, compared
to previously proposed techniques. Furthermore, the operating
system modifications were minimal, making this an easy feature
to support. In the case of SQLrand, we showed that we can
achieve portability and security gains through using a proxy-based
implementation, while incurring a minimal performance overhead
of at most 6.5 milliseconds per query.

Admittedly, our solution does not address the core issue of
software vulnerabilities, which is the bad quality of code. Given

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TDSC 14

the apparent resistance to the wide adoption of safe languages, and
not foreseeing any improvement in programming practices in the
near future, we believe our approach can play a significant role
in hardening systems and invalidating the “write-once exploit-
everywhere” principle of software exploits.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-Flow
Integrity: Principles, Implementations, and Applications. In Proceedings
of the ACM Conference on Computer and Communications Security
(CCS), November 2005.

[2] Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), 1996.
[3] C. Anley. Advanced SQL Injection In SQL Server Applications.
[4] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer, D. Stefanovic,

and D. D. Zovi. Randomized Instruction Set Emulation to Disrupt Binary
Code Injection Attacks. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 281–289, October 2003.

[5] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanovic. Random-
ized Instruction Set Emulation. ACM Transactions on Information and
System Security, 8(1):3–40, February 2005.

[6] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address Obfuscation: an
Efficient Approach to Combat a Broad Range of Memory Error Exploits.
In Proceedings of the 12th USENIX Security Symposium, pages 105–
120, August 2003.

[7] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient Techniques for
Comprehensive Protection from Memory Error Exploits. In Proceedings
of the 14th USENIX Security Symposium, pages 255–270, August 2005.

[8] Bochs Emulator Web Page. http://bochs.sourceforge.net/.
[9] D. Bruening, T. Garnett, and S. Amarasinghe. An Infrastructure for

Adaptive Dynamic Optimization. In Proceedings of the Symposium on
Code Generation and Optimization, pages 265–275, 2003.

[10] CERT Vulnerability Note VU#496064. http://www.kb.cert.
org/vuls/id/496064, April 2002.

[11] CERT Vulnerability Note VU#282403. http://www.kb.cert.
org/vuls/id/282403, September 2002.

[12] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and C. Verbowski. Defeating
Memory Corruption Attacks via Pointer Taintedness Detection. In
Proceedings of the International Conference on Dependable Systems
and Networks, pages 378–387, June 2005.

[13] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-Control-
Data Attacks Are Realistic Threats. In Proceedings of the 14th USENIX
Security Symposium, pages 177–191, August 2005.

[14] M. Costa, J. Crowcroft, M. Castro, and A. Rowstron. Vigilante: End-to-
End Containment of Internet Worms. In Proceedings of the Symposium
on Systems and Operating Systems Principles (SOSP), 2005.

[15] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuard: Protecting
Pointers From Buffer Overflow Vulnerabilities. In Proceedings of the
12

th USENIX Security Symposium, pages 91–104, August 2003.
[16] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,

A. Nguyen-Tuong, and J. Hiser. N-Variant Systems: A Secretless
Framework for Security through Diversity. In Proceedings of the 15th

USENIX Security Symposium, pages 105–120, July/August 2005.
[17] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.

ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging
and Replay. In Proceedings of the 5

th Symposium on Operating Systems
Design and Implementation (OSDI), December 2002.

[18] D. Evans and D. Larochelle. Improving Security Using Extensible
Lightweight Static Analysis. In IEEE Software, January/February 2002.

[19] L. Garber. New Chips Stop Buffer Overflow Attacks. IEEE Computer,
37(10):28, October 2004.

[20] W. G. J. Halfond and A. Orso. SQL Command-Form Coverage for
Testing Database Applications. In Proceedings of the International
Conference on Automated Software Engineering, September 2005.

[21] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering Code-Injection
Attacks With Instruction-Set Randomization. In Proceedings of the 10

th

ACM Conference on Computer and Communications Security (CCS),
October 2003.

[22] L. Lam and T. Chiueh. Checking Array Bound Violation Using
Segmentation Hardware. In Proceedings of the International Conference
on Dependable Systems and Networks, pages 388–397, June 2005.

[23] Z. Liang and R. Sekar. Fast and Automated Generation of Attack Sig-
natures: A Basis for Building Self-Protecting Servers. In Proceedings of
the 12th ACM Conference on Computer and Communications Security
(CCS), pages 213–222, November 2005.

[24] C. Linn and S. Debray. Obfuscation of Executable Code to Improve
Resistance to Static Disassembly. In Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS), pages
290–299, October 2003.

[25] D. Litchfield. Web Application Disassembly wth ODBC Error Messages.
http://www.nextgenss.com/papers/webappdis.doc.

[26] M. Locasto, K. Wang, A. Keromytis, and S. Stolfo. FLIPS: Hybrid
Adaptive Intrusion Prevention. In Proceedings of the Symposium on
Recent Advances in Intrusion Detection, pages 82–101, September 2005.

[27] M. Conover and w00w00 Security Team. w00w00 on heap overflows.
http://www.w00w00.org/files/articles/heaptut.txt.

[28] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic De-
tection, Analysis, and Signature Generation of Exploits on Commodity
Software. In Proceedings of the 12

th Annual Symposium on Network
and Distributed System Security (SNDSS), February 2005.

[29] PaX Home Page. http://pax.grsecurity.net/.
[30] Perltidy Home Page. http://perltidy.sourceforge.net/.
[31] T. Pietraszek and C. V. Berghe. Defending against Injection Attacks

through Context-Sensitive String Evaluation. In Proceedings of the 8th

International Symposium on Recent Advances in Intrusion Detection
(RAID), September 2005.

[32] J. Pincus and B. Baker. Beyond Stack Smashing: Recent Advances
in Exploiting Buffer Overflows. IEEE Security & Privacy Magazine,
2(4):20–27, July/August 2004.

[33] V. Prevelakis and A. D. Keromytis. Drop-in Security for Distributed and
Portable Computing Elements. Internet Research: Electronic Network-
ing, Applications and Policy, 13(2), 2003.

[34] B. Rogers, Y. Solihin, and M. Prvulovic. Memory Predecryption: Hiding
the Latency Overhead of Memory Encryption. In Proceedings of the
Workshop on Architectural Support for Security and Anti-virus (WASSA),
pages 22–28, October 2004.

[35] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D. Boneh.
On the Effectiveness of Address-Space Randomization. In Proceedings
of the 11th ACM Conference on Computer and Communications Secu-
rity (CCS), pages 298–307, October 2004.

[36] S. Sidiroglou and A. D. Keromytis. A Network Worm Vaccine Architec-
ture. In Proceedings of the IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE),
Workshop on Enterprise Security, pages 220–225, June 2003.

[37] A. Smirnov and T. .Chiueh. DIRA: Automatic Detection, Identification,
and Repair of Control-Hijacking Attacks. In Proceedings of the ISOC
Symposium on Network and Distributed System Security, February 2005.

[38] A. N. Sovarel, D. Evans, and N. Paul. Where’s the FEEB? The
Effectiveness of Instruction Set Randomization. In Proceedings of the
14th USENIX Security Symposium, pages 145–160, August 2005.

[39] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. SIGOPS Operating
Systems Review, 38(5):85–96, 2004.

[40] N. Tuck, B. Calder, and G. Varghese. Hardware and Binary Modifi-
cation Support for Code Pointer Protection From Buffer Overflow. In
Proceedings of the 37th International Symposium on Microarchitecture
(MICRO), pages 209–220, December 2004.

[41] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A First Step towards
Automated Detection of Buffer Overrun Vulnerabilities. In Proceedings
of the ISOC Symposium on Network and Distributed System Security
(SNDSS), pages 3–17, February 2000.

[42] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Performance in
the Denali Isolation Kernel. In Proceedings of the 5

th Symposium on
Operating Systems Design and Implementation (OSDI), December 2002.

[43] J. Xu. Intrusion Prevention Using Control Data Randomization. In
Supplement to the Proceedings of the IEEE International Conference
on Dependable Systems and Networks (DSN), June 2003.

[44] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent Runtime Randomiza-
tion for Security. In Proceedings of the 22

nd International Symposium
on Reliable Distributed Systems (SRDS), pages 260–273, October 2003.

[45] J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt. Automatic Diagnosis
and Response to Memory Corruption Vulnerabilities. In Proceedings of
the 12

th ACM Conference on Computer and Communications Security
(CCS), pages 222–234, November 2005.

[46] W. Xu, S. Bhatkar, and R. Sekar. Taint-Enhanced Policy Enforcement: A
Practical Approach to Defeat a Wide Range of Attacks. In Proceedings
of the USENIX Security Symposium, pages 121–136, July/August 2006.

[47] D. Ye and D. Kaeli. A Reliable Return Address Stack: Microarchitectural
Features to Defeat Stack Smashing. In Proceedings of the Workshop on
Architectural Support for Security and Anti-virus (WASSA), pages 69–76,
October 2004.

IEEE TRANSACTIONS ON DEPEDABLE AND SECURE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

