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ABSTRACT

Synergizing human-machine intelligence:
Visualizing, labeling, and mining the

electronic health record

Noah Lee

We live in a world where data surround us in every aspect of our lives. The key

challenge for humans and machines is how we can make better use of such data.

Imagine what would happen if you were to have intelligent machines that could give

you insight into the data. Insight that will enable you to better 1) reason about, 2)

learn, and 3) understand the underlying phenomena that produced the data. The

possibilities of combined human-machine intelligence are endless and will impact our

lives in ways we can not even imagine today.

Synergistic human-machine intelligence aims to facilitate the analytical reason-

ing and inference process of humans by creating machines that maximize a human’s

ability to 1) reason about, 2) learn, and 3) understand large, complex, and heteroge-

neous data. Combined human-machine intelligence is a powerful symbiosis of mutual

benefit, in which we depend on the computational capabilities of the machine for the

tasks we are not good at, and the machine requires human intervention for the tasks

it performs poorly on. This relationship provides a compelling alternative to either

approach in isolation for solving today’s and tomorrow’s arising data challenges.

In his regard, this dissertation proposes a diverse analytical framework that lever-

ages synergistic human-machine intelligence to maximize a human’s ability to better

1) reason about, 2) learn, and 3) understand different biomedical imaging and health-



care data present in the patient’s electronic health record (EHR). Correspondingly,

we approach the data analyses problem from the 1) visualization, 2) labeling, and 3)

mining perspective and demonstrate the efficacy of our analytics on specific applica-

tion scenarios and various data domains.

In the first part of this dissertation we explore the question how we can build in-

telligent imaging analytics that are commensurate with human capabilities and con-

straints, specifically for optimizing data visualization and automated labeling work-

flows. Our journey starts with heuristic rule-based analytical models that are derived

from task-specific human knowledge. From this experience, we move on to data-

driven analytics, where we adapt and combine the intelligence of the model based on

prior information provided by the human and synthetic knowledge learned from par-

tial data observations. Within this realm, we propose a novel Bayesian transductive

Markov random field model that requires minimal human intervention and is able to

cope with scarce label information to learn and infer object shapes in complex spatial,

multimodal, spatio-temporal, and longitudinal data. We then study the question how

machines can learn discriminative object representations from dense human provided

label information by investigating learning and inference mechanisms that make use

of deep learning architectures. The developed analytics can aid visualization and la-

beling tasks, which enables the interpretation and quantification of clinically relevant

image information.

The second part explores the question how we can build data-driven analytics

for exploratory analysis in longitudinal event data that are commensurate with hu-

man capabilities and constraints. We propose human-intuitive analytics that enable

the representation and discovery of interpretable event patterns to ease knowledge

absorption and comprehension of the employed analytics model and the underlying

data. We propose a novel doubly-constrained convolutional sparse-coding framework

that learns interpretable and shift-invariant latent temporal event patterns. We ap-



ply the model to mine complex event data in EHRs. By mapping the event space to

heterogeneous patient encounters in the EHR we explore the linkage between health-

care resource utilization (HRU) in relation to disease severity. This linkage may help

to better understand how disease specific co-morbidities and their clinical attributes

incur different HRU patterns. Such insight helps to characterize the patient’s care

history, which then enables the comparison against clinical practice guidelines, the

discovery of prevailing practices based on common HRU group patterns, and the

identification of outliers that might indicate poor patient management.

In general, we present novel approaches that exploit the synergistic aspect of

human-machine intelligence by addressing problems from biomedical imaging to health-

care informatics. The generic nature and applicability of the proposed techniques,

when integrated together, enable the holistic analysis of the electronic health record

and its diverse data sources, which in turn can reveal hidden patterns across the

different data sources.
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with whom I had fruitful discussions.

xii



To gaeguree...

xiii



1

Chapter 1

Introduction

We live in a world where data are alive. When we take a cab, make a phone call, go to

the bank, surf the internet, or visit the doctor, we generate a unique data footprint.

Data surround us in every aspect of our lives. In the financial industry business

transaction logs generate massive data amounts that capture the financial information

flow of our society [1; 2; 3; 4; 5]. Advances in internet technology such as the Web 2.0

and the emergence of large social networks generate petabytes of personality profiles

that provide information about people’s preferences, their communications, and social

interactions [6; 7; 8; 9; 10; 11]. And lastly, the healthcare industry and its initiative

to bring forward the electronic health record generating enormous amounts of digital

data ranging from diagnostic images, laboratory results, genetic profiles, and other

healthcare specific data sources [12; 13; 14; 15; 16; 17; 18; 19].

The key challenge for humans and machines is how we can make better and more

efficient use of such data. Often times, the information that may lead to actionable

insight is hidden due to data scale, complexity, and data heterogeneity. Humankind

will generate over one sextillion bytes of electronic data this year alone amounting to

roughly one zettabyte, i.e. one trillion gigabytes. Moreover, it is predicted that the
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yearly amount of data humankind produces will increase by a factor of 44 over the

next decade [20]. In practice the data are complex and often are incomplete, high-

dimensional, noisy, and ambiguous. In addition, data heterogeneity expresses itself in

multiple data sources with textual, numerical, and visual characteristics, which poses

challenges to humans in coping with the diversity and scale of diverse data structures

and to transform data into actionable knowledge.

Imagine what would happen if you were to have intelligent machines that could

give you insight into the data. Insight provided by intelligent analytics and raw

computational power that will enable you to better 1) reason about, 2) learn, and

3) understand the underlying phenomena that produced the data. Imagine having

machines that could intuitively communicate the data insights in a form humans can

better absorb and comprehend. Machines that are designed to exchange and combine

effectively synthetic knowledge with human knowledge. The possibilities of combined

synergistic human-machine intelligence are endless and will impact our lives in ways

we can not even imagine today.

1.1 Motivation

While research in artificial intelligence [21; 22; 23; 24], machine learning [25; 26; 27],

and data mining [28; 29; 30] show promising progress and state-of-the-art performance

in many data analyses tasks, the intelligent aspect of machines is still a product of

human-engineered knowledge and intelligence.

One question that has received limited attention is how one can best leverage

synergistic human-machine intelligence to better cope with large, complex, and het-

erogeneous data? This question is not trivial since a human and a machine deal with

data at multiple scales in different ways. Clear is that with increasing data scale,

complexity, and data heterogeneity humans quickly become overwhelmed and have

difficulties in reasoning about and making inference from data.
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In this regard, synergistic human-machine intelligence aims to facilitate the ana-

lytical reasoning and inference process of humans by creating machines that maximize

a human’s ability to 1) reason about, 2) learn, and 3) understand large, complex, and

heterogeneous data. Combined human-machine intelligence is a powerful symbiosis of

mutual benefit, in which we depend on the computational capabilities of the machine

for the tasks we find difficult, and the machine requires human intervention for the

tasks it performs poorly on. This relationship provides a compelling alternative to

either approach in isolation for solving today’s and tomorrow’s data challenges.

We hypothesize that in order to leverage synergistic human-machine intelligence,

an analytical model (i.e. the machine) or framework must be commensurate with

human capabilities. Further it is of essence that the human and the machine com-

municate effectively. Therefore, the input/output and the internal structure of the

model should take into account the human factor. For the input, the model should be

able to make optimal use of available human knowledge where possible, while at the

same time cope with situations where human knowledge resources are constrained.

The intermediate and output level of the model should adhere to the capabilities of

humans so that the analytical model is intuitive and understandable.

Having data-driven analytics that are commensurate with human capabilities and

constraints is essential for facilitating the knowledge exchange between a human and a

machine. The synergistic interaction of human-machine intelligence has also immense

practical importance, since it will be impossible to give machines and their learning

algorithms all of the knowledge that they will need to serve useful autonomous long-

term roles in our dynamic and complex environment. Rather, it is more practical to

have humans control the intelligence of the machine when it is desired and enable

humans to effectively make use of the synthetic knowledge the machine generates.

The healthcare industry in particular provides a challenging environment to de-

velop intelligent analytics that leverage synergistic human-machine intelligence. In

healthcare, medical practitioners deal with large, complex, and heterogeneous data
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sources for purposes of improved diagnosis and evidence-based decision making. Tech-

nological advances in biomedical imaging provide us with novel ways to see and ana-

lyze the functioning of the human body to understand and improve disease diagnosis.

Such data can take on many forms, e.g. unimodal, multimodal, or longitudinal image

data in planar or volumetric form. On another front, technical advances towards the

availability of electronic health records (EHRs)1provide a rich collection of hetero-

geneous data sources including numerical, textual, visual, and time-dependent data

such as time series and events.

EHRs provide a complete record of patient encounters and a detailed account of

the medical history of the patient that enable improved data integration and auto-

mated access, yet the wealth and diversity of information they provide is currently

underutilized. Most data analyses approaches take a short-sighted approach by focus-

ing on a particular data and problem domain. Only recently have researchers begun

to fuse multiple data sources together for combined analyses to search for individual

data patterns and correlations between different data sources. Yet, a holistic approach

to analyze the complete electronic patient record with its diverse data sources has

not been accomplished yet. Fig. 1.1 depicts an illustrative example of the diversity

of data sources that are contained in an EHR.

The scale and complexity of biomedical and healthcare data in EHRs pose chal-

lenges not only to medical practitioners, but also to the data and information analysis

by machines. Often times, data that could provide important insight for decision

making are hidden, making it difficult to understand and transform the data into

actionable knowledge. What would be desirable to medical practitioners are generic

data analyses tools that can 1) visualize, 2) label, and 3) discover meaningful infor-
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Figure 1.1: The electronic healthcare record–a large, complex, and heterogeneous

data source. An electronic healthcare record may include all of the key administrative

clinical data relevant to that person’s care, including demographics, progress notes,

problems, medications, vital signs, past medical history, immunizations, laboratory

data, test results, radiology reports, and diagnostic imaging data.

mation from EHRs in a holistic human-intuitive form.

1.2 Challenges

In this section we focus on three inter-related challenges that to us seem most im-

portant considering the increasing amount of data in the biomedical and healthcare

domain and in particular the EHR.

1EHRs capture the medical history of a patient or patient population and may include all of

the key administrative clinical data relevant to that person’s care, including demographics, progress

notes, problems, medications, vital signs, past medical history, immunizations, laboratory data, test

results, radiology reports, and diagnostic imaging data.
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• Challenge 1: Data scale and complexity. The problem of data scale

arises in two contexts. First, the EHR of a single patient may consist of large

amounts of diagnostic image data and other auxiliary data sources as outlined

above. Second, medical practitioners often need to perform group and pop-

ulation analyses that involve a large number of patients. Data scale already

introduces the first dimension of complexity. In addition, data heterogeneity

of the medical patient record introduces another dimension of complexity. The

data contain latent structural, temporal, and relational information that make

the automatic extraction by machines a tremendous challenge. Problems such

as data noise, artifacts, ambiguity, and data incompleteness further exacerbate

this challenge.

• Challenge 2: Missing label information. With the popularity of machine

learning and data mining comes the need for labeled data. Label information

serves two purposes in this context: categorization of data into semantically

meaningful concepts and supervision of the learning and inference process of

data-driven analytics. Yet, the amount of available label information is a limit-

ing factor. Large annotated medical image databases are yet to be created. In

the medical domain the acquisition of label information requires expert knowl-

edge from humans, an error-prone, time intensive, and costly process.

• Challenge 3: Shallow intelligence. Machine learning and data mining in-

tend to reveal the latent structure, dynamics, and relationships of data from

which the machine can learn the kind of complicated functions that imitate

human-like cognitive abilities such as recognition or other high-level abstrac-

tions. However, machine learning has not yet mastered the essence of human

learning, and still requires the intelligent aspects of learning to be engineered

by humans [31]. It has been suggested by a number of researchers that deep

architectures, which are composed of multiple levels of non-linear operations,
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might advance the state-of-the-art towards human-like artificial intelligence.

Above challenges motivate the need for novel analytical methods that leverage the

power of synergistic human-machine intelligence. What would be desired is a diverse

set of tools, which enable medical practitioners to better cope with the diversity of

data sources contained in the electronic health record to perform holistic analysis. A

holistic approach would offer potential to find hidden relationships between different

data sources and their latent patterns.

1.3 Objectives

This dissertation proposes a diverse analytical framework to maximize a human’s

ability to better 1) reason about, 2) learn, and 3) understand biomedical imaging

and healthcare data within the patient’s electronic health record. The goal of this

work is to improve the capabilities of medical practitioners to efficiently cope with

the diversity of the EHR and its large, complex, and heterogeneous data sources by

leveraging the synergistic aspect of human-machine intelligence.

In the first part of this dissertation we explore the question how we can build in-

telligent imaging analytics that are commensurate with human capabilities and con-

straints, specifically for optimizing data visualization and automated labeling work-

flows. Our journey starts with heuristic rule-based analytical models that are derived

from task-specific human knowledge. From this experience, we move on to data-

driven analytics, where we adapt and combine the intelligence of the model based on

prior information provided by the human and synthetic knowledge learned from par-

tial data observations. Within this realm, we propose a novel Bayesian transductive

Markov random field model that requires minimal human intervention and is able to

cope with scarce label information to learn and infer object shapes in complex spatial,

multimodal, spatio-temporal, and longitudinal data. We then study the question how

machines can learn discriminative object representations from dense human provided
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label information by investigating learning and inference mechanisms that make use

of deep learning architectures. The developed analytics can aid visualization and la-

beling tasks, which enables the interpretation and quantification of clinically relevant

image information.

The second part explores the question how we can build data-driven analytics

for exploratory analysis in longitudinal event data that are commensurate with hu-

man capabilities and constraints. We propose human-intuitive analytics that enable

the representation and discovery of interpretable event patterns to ease knowledge

absorption and comprehension of the employed analytics model and the underlying

data. We propose a novel doubly-constrained convolutional sparse-coding framework

that learns interpretable and shift-invariant latent temporal event patterns. We ap-

ply the model to mine complex event data in EHRs. By mapping the event space to

heterogeneous patient encounters in the EHR we explore the linkage between health-

care resource utilization (HRU) in relation to disease severity. This linkage may help

to better understand how disease specific co-morbidities and their clinical attributes

incur different HRU patterns. Such insight helps to characterize the patient’s care

history, which then enables the comparison against clinical practice guidelines, the

discovery of prevailing practices based on common HRU group patterns, and the

identification of outliers that might indicate poor patient management.

1.4 Contributions

Our contributions can be organized into two main parts. The first part (see Chapter

2- 5) presents a diverse collection of human-assisted image analytics to visualize and

label meaningful information from large, complex, and heterogeneous image data.

The second part (see Chapter 6) presents human-intuitive exploratory analytics

for temporal event pattern mining in large collections of EHRs. Chapters 7 and

8 reiterate the contributions of our work, describe the significance of our research,
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outline the limitation of our framework, and point to future work.

The research proposed herein uniquely bridges different data domains, data analy-

ses tasks, and knowledge domains by presenting a diverse set of analytics that leverage

synergistic human-machine intelligence to enable medical practitioners to cope with

the EHR and its different data sources. Our interdisciplinary approach draws from

a variety of techniques and crosses the boundary from biomedical imaging to health-

care informatics. In addition, the generic nature and applicability of the proposed

techniques, when integrated and combined together, enable the analysis of the elec-

tronic health record within a holistic perspective. Each chapter addresses a unique

aspect of how one can exploit synergistic human-machine intelligence to solve specific

data challenges within the EHR. In general terms we approach the data analyses task

from the 1) visualization, 2) labeling, and 3) mining perspective with the following

contributions outlined below.

• In Chapter 2 we present analytics for human-assisted visualization of com-

plex latent tree structures within large volumetric image data. We invent and

implement a novel algorithm that enables the intuitive exploration of complete

vascular trees and their internal volume structure. We compare our algorithm

with the state-of-the-art and demonstrate superior performance in terms of vi-

sualization quality and the ability to preserve anatomical shape appearance.

Our developed tools enable the interpretation of sparse information in large

volumetric image data. The intuitive visualization of tree-like objects enables

medical practitioners to better reason about the complex vasculature of the

human body at different scales.

• Chapter 3 presents an interactive pipeline for human-assisted automated

labeling of object boundaries in unimodal image data. Our method enables

labeling of objects that exhibit high variability in shape, intensity, and texture.

We show as part of a large evaluation experiment that our pipeline improves
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the state-of-the-art for interactive labeling of geographic atrophy lesions in oph-

thalmic image data. The generic applicability of our pipeline enables medical

practitioners to quantify and label a wide range of disease phenotypes and organ

anatomies within the human body.

• Chapter 4 proposes extensions to the naive Bayes algorithm within a trans-

ductive learning and inference paradigm. We introduce a semi-parametric form

of the naive Bayes algorithm in combination with a Markov random field model.

We develop an algorithm for automated object and multi-object labeling with

minimal human intervention. In numerous experiments we demonstrate that

the algorithm generalizes to different data sources and application domains. We

show the performance of the algorithm on unimodal, multimodal, and spatio-

temporal data comprising planar and volumetric image data. The ability to

label multiple objects with minimal human intervention enables medical prac-

titioners to more efficiently quantify complex disease phenotypes that occur at

different locations. Labeling tools that can cope with scarce label information

are important until large annotated medical image database are available.

• Chapter 5 presents our initial investigations to employ deep learning and

inference architectures to automate anatomical labeling of human brain image

volumes. We present a novel application of convolutional networks to build

discriminative features for brain parcellation, which are automatically learned

from labels provided by human experts. Initial validation experiments show

promising results for automatic brain parcellation, suggesting that the pro-

posed approach has potential to be an alternative to template or atlas-based

parcellation approaches. Moreover, the ability to learn complex functions from

only human provided labels without feature engineering has important practical

implications. Such tools have the potential to be easily transferable to other

analysis tasks as long as rich label information is available.
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• In Chapter 6 we propose extensions to the nonnegative matrix factorization al-

gorithm. We present a novel temporal event matrix representation and learning

scheme to perform event pattern mining in longitudinal heterogeneous EHRs.

We propose a doubly-constrained convolutional sparse-coding framework that

learns interpretable and shift-invariant latent temporal event patterns. We ap-

ply our methods to study the linkage between healthcare resource utilization

and disease severity in a pool of over 20,000 patients. The developed analyt-

ics for knowledge discovery bring the aforementioned contributions together in

representing a patient within a generic event knowledge representation to en-

able the mining of group-specific patient characteristics that are derived from

heterogeneous data sources within the EHR. This work has the potential to

revolutionize the way how event data is treated within the EHR.

• Chapters 7 and 8 discuss the limitations of our proposed framework and

concludes the dissertation by reiterating the main contributions. At the end we

outline the significance of our research and point to ongoing directions of future

work.

A more detailed account of our contributions is outlined in each abstract and intro-

duction of the individual chapters. Our contributions provide a diverse set of methods

that enable medical practitioners to visualize, label, and discover a variety of hetero-

geneous data sources. Such interdisciplinary research with a focus on a diverse set

of data and problem domains is unique and enables medical practitioners to take a

holistic approach. The employed labeling methods can be extended or modified for a

diverse set of application scenarios to quantify anatomical regions within the human

body or disease phenotypes that are captured by large and complex medical imagery.

The diversity of tools developed in this dissertation addresses a broad range of prob-

lem domains in analyzing the electronic health records and its large, complex, and

heterogeneous data sources.
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The research presented in this dissertation was published/submitted for publica-

tion in [32; 33; 34; 35; 36; 37; 38; 39; 40; 41]. Research works not included in this

dissertation were published in [42; 43; 44; 45; 46]. As part of the research work several

software frameworks have been implemented, which are outlined in Section IV.
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Part I

Synergistic human-machine

intelligence for optimizing

visualization and labeling

workflows in biomedical data
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Chapter 2

Human-intuitive object

visualization in volumetric data

2.1 Abstract

In this chapter, we address the problem of enabling humans to better access and

interpret sparse information in large volumetric image data. We present analytics for

human-assisted visualization of latent tubular trees and develop a novel algorithm that

enables the intuitive exploration of the complete internal volume structure. Our work

extends the curved planar reformation (CPR) technique and overcomes limitations of

existing CPR extensions.

The shape of the medial axis of the complete tubular tree is obtained within

an energy optimization framework utilizing front propagation and graph-theoretic

approaches. The medial axis tree (MAT) guides a reformation process that projects

the complete three-dimensional tree onto two-dimensional image planes. Each image

plane slices through every compartment of the volumetric tree at certain rotation

angles. We use shape properties to estimate the orientation of the tree for rotation-

invariant projection. Radial sampling planes perpendicular to the MAT tangents are

the basis for topological and orientation invariant visualization of the vascular lumen.
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We demonstrate our algorithm within the field of diagnostic cardiology. Compar-

ative assessment of our algorithm results in superior visualization performance with

respect to the state-of-the-art.

The projective mapping from three-dimensional space to the two-dimensional

space allows intuitive exploration of the vessel tree interior, which could be used

as an interface to human intuitive labeling of the complete vessel tree.

2.2 Introduction

Visualization of diagnostic relevant information in large volumetric images is an im-

portant topic in biomedical imaging. Computed tomography angiography (CTA) or

magnetic resonance angiography (MRA) are non-invasive high-resolution in-vivo im-

age acquisition techniques that enable the examination of vascular diseases such as

coronary artery disease. Heart disease is the leading cause of death for both women

and men in the United States. In 2005, 652,091 people died of heart disease and

accounts for 27.1% of all U.S. deaths. Coronary heart disease is caused by atheroscle-

rosis; the narrowing of the coronary arteries due to fatty build ups of plaque, and is

likely to produce angina pectoris (chest pain), heart attack or both. In 2005, coro-

nary heart disease caused 445,687 deaths and is the single leading cause of death in

America today. This year an estimated 1.26 million Americans will have a new or

recurrent coronary attack. The cost of heart disease and stroke in the U.S. in 2005

was projected to exceed $394 billion: $242 billion for healthcare expenditures and

$152 billion for lost productivity from death and disability.

CTA and MRA provide high-resolution image information about the vascular

anatomy and pathology such as the narrowing of the artery lumen, calcification,

and atherosclerotic plaque formations. The vessel interior is of great importance for

characterizing the degree and extent of vascular diseases. In order to evaluate the

vascular tree the whole vessel lumen must be investigated, which is tedious and time
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consuming [47] given large volumetric images and complex tree topologies that are

hidden in the data.

Curved Planar Reformation (CPR) has proved to be a useful visualization tech-

nique for practical assessment of curved tubular structures within the human body.

CPR resamples a single vessel compartment along its medial axis to produce a curved

cross-section through the vessel lumen. This enables the accurate visualization of

diagnostic relevant information within the vessel lumen. Extensions to the CPR

technique were proposed by Kanitsar et al. [48; 49], to improve the visualization of

the complete vascular tree and its lumen for all compartments. While these projec-

tive transformations provide enhanced visualization, they are not able to correctly

visualize trees that exhibit non-planar alignment and arbitrary tree topologies.

Vascular trees in medical image volumes are not aligned to planar cross-sections of

the volumetric image grid and thus aggravate simultaneous visualization of diagnostic

relevant information. Furthermore, complex tree topologies require the need for an

adaptive projection scheme to prevent visualization artifacts in order to preserve

anatomical information. Fig. 2.1 shows volume rendering examples of two vascular

tree topologies in the human body. The left images show the MAT of the peripheral

artery tree and the right image shows the MAT of the coronary arteries.

In this chapter, we will present analytics for human-assisted visualization of latent

tubular trees and develop a novel algorithm that enables the intuitive exploration

of the complete internal volume structure. Our work extends the curved planar

reformation (CPR) technique [47; 50] and overcomes limitations of existing CPR

extensions [48; 49].

We obtain the shape of the complete medial axis tree (MAT) by means of an energy

optimization framework utilizing front propagation and graph-theoretic approaches.

The MAT guides a reformation process that projects the complete three-dimensional

tree onto two-dimensional image planes. Each image plane slices through every com-

partment of the volumetric tree at certain rotation angles. We use shape properties
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Figure 2.1: Volume rendering examples of the peripheral and coronary artery tree.

Left: Medial axis tree of the peripheral vasculature rendered in white. Right: Medial

axis tree of the coronary vasculature rendered in white. Both trees exhibit different

tree topologies and orientations with respect to the grid structure of the image volume.

to estimate the orientation of the tree for rotation-invariant projection. Radial sam-

pling planes perpendicular to the MAT tangents are the basis for topological and

orientation invariant visualization of the vascular lumen.

We will demonstrate our algorithm within the field of diagnostic cardiology. Com-

parative assessment of our algorithm results in superior visualization performance

with respect to the state-of-the-art [48; 49].

The projective mapping from three-dimensional space to the two-dimensional

space allows intuitive exploration of the complete vessel tree lumen. This transforma-

tion aids the visualization of diagnostic relevant information and the interpretation

of sparse information in large volumetric image data. By having a complete view of

the vascular tree the human can quickly obtain an overview of disease characteristics

that are otherwise difficult to assess using traditional visualization techniques. The

projective mapping could further help to obtain diagnostic relevant annotations with

the volumetric image by letting the human place seed labels on the two-dimensional

view to perform three-dimensional interactive seed label placement, which could then
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be used by an automated interactive labeling algorithm.

2.3 Prior art

2.3.1 Curved planar reformation and extensions

Not much work has been published on technical aspects of automated techniques

for visualizing the interior of vascular trees that exhibit arbitrary topology and non-

planar alignment. Regarding vascular visualization a pool of techniques exist such as

multi-planar reformation (MPR), shaded surface display (SSD), maximum intensity

projection (MIP), curved planar reformation (CPR), or volume rendering (VR). How-

ever, diagnostic features of vascular trees with small scale diameter such as in coronary

arteries are often hard to investigate simultaneously with aforementioned visualization

techniques. In VR, atherosclerotic plaque accumulating on vessel walls can obstruct

the view of the vascular lumen, which is important for disease diagnosis. Furthermore,

other body tissues often occlude the objects of interest while traditional MPR views

only visualize localized cross-sections of the vascular tree due to non-planar alignment.

Manual creation of curved MPRs for whole vascular trees is tedious and time con-

suming especially in large patient studies. Other methods for automatic generation

of curved planar reformations only consider a single vessel segment to visualize [47;

50]. Vrtovec et al. applied CPR on 3D spine images for automated visualization

[51]. Kanitsar et al. proposed extensions to traditional CPR techniques consisting

of ”multi-path” and ”rotated” CPR [48]. They also proposed two advanced CPR

techniques called ”helical” and ”untangled” CPR enabling the visualization of com-

plete vascular interiors for single vessel segments in one image and occlusion free

reformation of the whole vascular tree using an untangling scheme [49].

However, to deal with arbitrary topology and non-planar alignment aforemen-

tioned projective transformations cannot directly be applied. Complex tree topology

with high vessel curvature requires an adaptive projection scheme with tangential
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aligned radial sampling planes for artifact-free visualization. In this work we will

describe solutions and implementation details to the problem of handling arbitrary

tree topology and orientations of vascular networks and apply our projection scheme

to the visualization of coronary artery and peripheral artery trees. We will name the

proposed projection scheme as tangential curved planar reformation (TCPR).

2.4 Methods

2.4.1 Preliminaries

Consider a voxel x = (x1, x2, x3) ∈ Z3. In Z3, x can have different neighborhood

structures. The most simplest setting is the 6, 18, and 26-neighborhood of x expressed

through the following distance constraints

N6(x) = {y|
∑
i

|yi − xi| ≤ 1} (2.4.1)

N26(x) = {y|max
i
|yi − xi| ≤ 1} (2.4.2)

N18(x) = {y|
∑
i

|yi − xi| ≤ 2} ∩ {y|max
i
|yi − xi| ≤ 1}. (2.4.3)

The concept of a voxel neighborhood is important since its neighborhood charac-

terizes the connectivity of a set of voxels Ω = {xi}Ni=1. Further, the topology of Ω can

be assessed by analyzing the neighborhood structure of each voxel.

Besides the topology of Ω we are interested in distance properties of each voxel

with respect to the boundary of Ω. We notate this boundary with ∂Ω. This brings us

to the concept of front propagation and the Eikonal equation by considering ∂Ω to be

the starting point of an evolving surface Γ, from which one can measure movement

and distance properties.

The Eikonal equation is a non-linear partial differential equation encountered in

problems of wave propagation and takes the following form
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|∇u(x)| = F (x),x ∈ Ω, (2.4.4)

s.t. u(x)|∂Ω = 0.

Here Ω is an open set in Rn, u an unknown function, F (x) the time cost at x, and

∂Ω the boundary to x in side Ω. An approximate solution to Equation 2.4.4 can be

obtained by the fast marching method. In the case of F = 1, u(x) gives the signed

distance from ∂Ω to each point x.

A signed distance function f(x) of a set Ω in a metric space determines the closest

distance of a given point to ∂Ω. At the boundary we have f(x) = 0. Outside of Ω

the signed distance function takes negative values f(x) < 0. This distance function

f(x) enables the characterization of medial points in Ω.

2.4.2 Representation of the medial axis tree

We are interested in finding the medial axis tree of an object. Let’s assume MT

represents an anatomical manifold of a tree with arbitrary shape topology and ori-

entation in domain Ω ⊂ R3. MT is binarized such that MT (x) = 1 corresponds

to the inside and MT (x) = 0 to the outside region. Furthermore, let’s assume this

manifold is topological correct, i.e. does not contain holes or handles, is closed, and

differentiable. We seek the set of medial paths MP ⊂ MT , such that MP fulfills

the following properties of medialness : 1) connectedness, 2) one-voxel thickness, and

3) reconstruct-ability of MT from MP . With medial we mean, that MP is centered

with respect to the boundary ∂MT .

First, we assign a label to each voxel in MT with a distance function f from the

boundary set ∂MT = {x ∈ ∂MT |N6(x) < 6}. From ∂MT we propagate a front Γ

with constant travel time F in the normal direction of the boundary pointing inwards.

The arrival time t of Γ labels every voxel in MT , such that the Eikonal equation is
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satisfied

|∇MT | =
n∑
i=1

(
∂MT

∂xi

)2

= 1 (2.4.5)

Since F = const, arrival time t is a measure for medialness. Once all voxels in MT

have a label associated to their medialness measure, we build an undirected graph

G = (V,E) fromMT . Each edge e ∈ E is assigned a value from a weighting function

w(e) : E → R. To obtain a set of connected and one-voxel thick medial paths MP

we form a minimum spanning treeMST ⊂ G by minimizing the following weighting

function

min
e
w(MST ) =

∑
e∈MST

w(e) = −f(xi) + |xi − xi−1|, with (2.4.6)

xi−1 ∈ N26(xi). (2.4.7)

where we use two distance metrics: 1) negative medialness −f(x) computed from

Equation 2.4.5 and 2) the geodesic distance in the topological neighborhood N26(x).

Note that the edge weights must be distinct, i.e. w(ei) 6= w(ej) for any pair of

edges ei and ej, so the MST is unique. For obtaining the MST from G we use

Kruskal’s algorithm. To reduce the complexity ofMST we perform a recursive node

abstraction, where the MST is simplified into a binary node tree such that a single

node in the tree has at most 2 children.

2.4.3 Tree orientation determination and adjustment

As noted before, MST can have arbitrary orientation due to non-planar alignment,

thus no assumption can be made regarding the axis of projection vector p. To be

invariant against arbitrary tree orientations, we change the viewing vector (basis) v,
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such that v is perpendicular to p pointing towards the human observer. To determine

p we first compute the center of mass µn from all nodes {ni}Ni=0 ∈MST

µnx =

∫ ∫ ∫
nxρ(nx, ny, nz)dV

M
(2.4.8)

µny =

∫ ∫ ∫
nyρ(nx, ny, nz)dV

M
(2.4.9)

µnz =

∫ ∫ ∫
nzρ(nx, ny, nz)dV

M
, with (2.4.10)

M =

∫ ∫ ∫
ρ(nx, ny, nz)dV, (2.4.11)

where ρ(·) is a node density function. Then, p is defined as the direction vector

pointing from µn to n0, with n0 being the root node ofMST . Note that this approach

is robust against different tree orientations and to ambiguous shape topologies, which

cause problems when simply assuming the largest principle component to be p. Our

assumption allows to determine a correct p for tree topologies that are flat in depth,

but wide. Recalling the property of reconstructability,MT can be reconstructed from

MST . At last, in order to be able to projectMST onto R2 we convert the discrete

node representation to a continuous representation by resampling every path inMST
using a B-Spline interpolation scheme. The result is a smooth, connected, one-voxel

thick medial axis tree as shown in Fig. 2.1

2.4.4 Tree projection from three to two dimensions

We project theMST from R3 to R2 and perform alignment, such that the projection

is oriented top-to-bottom meaning that the root of the tree is at the top of the image

and the leaves of the tree at the bottom part of the image. Furthermore, we project

MST at different viewing angles θ ∈ [0...2π], where each view is projected on a

separate image plane Iθ.

From the tree root we cast a line segment into a predefined direction perpendicular

to the global rotation axis p. The length is determined by computing the maximum
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distance of all medial axis tree points to p. For a specific viewing angle we project

every node inMST onto Iθ, where the x-coordinates are determined by the shortest

distance from each centerline point to the reference plane and the y-coordinates are

computed by taking the absolute travel distance to the root element of the tree. This

preserves the original vessel length information in the final image.

2.4.5 Topological invariant tangential resampling

We compute the Frenét trihedral for the set of vector functions {ri(t)}Mi=1, where i

indexes the individual path segments ofMST . The set of paths satisfy the following

conditions: 1) ri(t) is open and 2) the second derivative r
′′
i (t) exists. Then we sample

along each ri(t) by casting a set of sample lines L = {lθ}2π
θ=0 for each point in ri(t),

such that L lies in a plane P that is perpendicular to r′i(t). The plane P is spanned

by n̂(t) and b̂(t) defined as

t̂(t) =
r′(t)

‖r′(t)‖ (2.4.12)

n̂(t) =
t̂′(t)

‖t̂′(t)‖
(2.4.13)

b̂(t) = t̂(t)× n̂(t), (2.4.14)

where × denotes the cross product, t̂(t) a tangent, n̂(t) a normal, and b̂(t) a binormal

vector. To cast corresponding sampling lines lθ for tangential sampling we rotate b̂(t)

around t̂(t) using
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s = 1− cos(θ), (2.4.15)

â = (x, y, z) (2.4.16)

R(â, θ) =



sx2 + cos(θ) sxy − sin(θ)z sxz + sin(θ)y 0

sxy + sin(θ)z sy2 + cos(θ) syz − sin(θ)x 0

sxz − sin(θ)y syz + sin(θ)x sz2 + cos(θ) 0

0 0 0 1


, (2.4.17)

where â is the axis of rotation, θ the rotation angle, and R the rotation matrix with

homogeneous coordinates. Each sampling line is defined as

lθ = 〈rx, ry, rz〉+ t 〈aθ, bθ, cθ〉 , with (2.4.18)

t ∈ [dnl,−dnl] (2.4.19)

〈aθ, bθ, cθ〉 = R(t̂(t), θ) · b̂(t), (2.4.20)

where t is a scale parameter, which upper and lower bound is the maximal node-to-

line distance dnl. Note that lθ samples a complete cross-section of the lumen at ri(t)

and since L is perpendicular to r′i(t), the visualization of vessel interiors is invariant

to arbitrary tree topologies. The final step consists of mapping the line samples L to

consecutive image regions.

2.4.6 Image partitioning and rendering

Once we map the projected tree MST ⊂ R2 onto the image Iθ we obtain an image

partitioning R by casting horizontal rays from each point in the tree until all empty

image pixels have been visited once. The locations where two rays meet mark the

region boundaries between two neighboring tree segments. This procedure is repeated

for all rotation angles θ. Each region is filled with the tangential line sample data
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obtained in Section 2.4.5. The rendering process starts with the tree segments that

are most distant to the projection plane. By prioritizing the partition rendering to

the segments that are closest to the observer, we can prevent rendering artifacts.

2.5 Experiments and results

We implemented an interactive user interface and performed validation experiments

on two types of vascular trees: 1) coronary and 2) peripheral abdominal trees. Coro-

nary trees are highly curved and comprise arbitrary shape topology and non-planar

orientation. Peripheral trees are elongated long structures and span hundreds of im-

age slices. Binary label masks of both types of trees were obtained from CTA and

MRA volumetric image datasets using a human-assisted model-based vessel labeling

algorithm. The visualization proceeds in an automatic fashion and computes within

a couple of seconds. The human can interactively examine different aspects of the

tree and its interior by adjusting the projection and radial sampling angle.

Visualization results obtained by our TCPR algorithm on the coronary artery tree

are shown in part B and D of Fig. 2.2. Comparison between non-tangential CPR

and TCPR are shown in part A and B. The visualization results on two peripheral

trees are shown in part C.

2.6 Discussion

The goal was to visualize the whole vessel tree in one image plane while being able

to show the whole vessel lumen throughout the vascular tree. We found that TCPR

is able to produce artifact-free visualization of the vascular tree lumen. The reforma-

tion procedure is computationally efficient and runs fully automatic, but also enables

user interactive manipulation. In Figure 2.2 we can see the superior visualization

performance of our TCPR algorithm in comparison to the state-of-the-art when com-
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Figure 2.2: Comparison of the proposed Tangential Curved Planar Reformation

(TCPR) algorithm with the state-of-the-art. (A), (B) Comparison between the non-

tangential and our TCPR projection scheme in MRA data. Note the sampling

artifacts of the lumen structure in A, whereas the TCPR algorithm shows correct

artifact-free anatomic information of the vessel lumen in (B). (C) Complete vascular

tree visualization using TCPR on two different peripheral artery trees. (D) Coronary

vascular tree visualization using TCPR at different radial sampling angles.

paring the images in part A and B. Coronary vessels exhibit high curvature changes,

which may cause visualization artifacts when the re-sampling direction and the pro-

jection vector coincide. It is possible that parts of the vessel tree are aligned along the

sampling direction, which leads to artificial lumen scaling as shown in part A. In con-

trast, TCPR samples along perpendicular directions of the medial axis tangent. The
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projection scheme adapts to the tree topology resulting in artifact-free visualization

of highly curved vessel compartments as shown in part B, which makes the method

suitable for a wide range of vascular networks within the human body. We further

demonstrate that TCPR can be applied to other tree topologies (e.g. abdonimal

vascular trees) as shown in part C.

The projective mapping from three-dimensional space to the two-dimensional

space enables intuitive exploration of the complete vessel tree lumen. This transfor-

mation aids the visualization of diagnostic relevant information and the interpretation

of sparse information in large volumetric image data. By having a complete view of

the vascular tree the human can quickly obtain an overview of disease characteristics

that are otherwise difficult to assess using traditional visualization techniques. Also

the holistic approach to provide human-intuitive visualizations of the complete vascu-

lar tree interior enables medical practitioners to quickly assess the whole tree, which

may reveal hidden patterns that would not be evident when visualizing each vessel

compartment in an independent manner. The projective mapping could further help

to obtain diagnostic relevant annotations with the volumetric image by letting the

human place seed labels on the two-dimensional view to perform three-dimensional in-

teractive seed label placement, which could then be used by an automated interactive

labeling algorithm.

One limitation of our method is the missing context information at regions that

are more distant to the vessel tree. The tangential reformation scheme follows the

curvature and topology of the tubular tree, which causes distortions far beyond the

vessel lumen. One way to circumvent this problem is to incorporate a visualiza-

tion overlay that provides contextual information of the vessel tree’s surrounding

environment. Alternatively, standard visualization techniques such as perpendicular

cross-sections could be combined to provide additional context information about the

vessel’s background structure.

Failure cases of our proposed visualization method depend on the quality of the
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pre-processing results and the correctness of the obtained vessel tree labels. The

proposed reformation method assumes a high-quality vessel labeling method. We

observed that vascular pathology and low image quality required a user-interactive

labeling method to correct for erroneous labeling results. Low image contrast at small

vessel scales and vascular pathology were the main reasons for missing vessel com-

partments. Furthermore, vessel boundary labels have to be regularized and corrected

for topological errors to provide a smooth medial axis tree.

2.7 Conclusion

We have presented novel analytics for human-intuitive topological and orientation in-

variant vascular tree visualization by exploiting intrinsic shape properties of the vascu-

lar tree for rotation-invariant projection and radial sampling planes perpendicular to

the medial axis tangent. Several visualization experiments were presented to demon-

strate the efficacy of our algorithm. The projective mapping from three-dimensional

space to the two-dimensional space allows improved intuitive exploration of the vessel

tree interior, which could be used as an interface to human intuitive labeling of the

complete vessel tree.
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Chapter 3

Human-assisted interactive object

labeling in image data

3.1 Abstract

This chapter presents a novel image analytic pipeline for human-assisted interactive

labeling of object boundaries that exhibit high variability in shape, intensity, and

texture.

We compute non-linear gradient approximations using generalized Sobel kernels

to deal with varying degrees of noise and to detect edge responses at multiple scales.

The human interactively places seed labels near the desired object boundaries, which

serve as constraints to impose local minima at the seed locations. Local minimal are

enforced by a morphological geodesic reconstruction process to remove degenerate so-

lutions when computing the watershed transform. The watershed transform produces

an image partitioning along the gradient such that the boundaries of the partition-

ing are aligned to the object boundary. Final object boundaries are obtained in an

iterative fashion through human-assisted interactive seed label refinement, where we

relabel each region according to their respective seed labels.

We demonstrate our approach within the domain of ophthalmology by quantify-
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ing pathologic image regions in patients with age-related macular degeneration. A

large evaluation study consisting of 100 test cases shows that our interactive labeling

pipeline compares favorably with respect to a state-of-the-art interactive graph-based

labeling algorithm.

The integration of human knowledge into the labeling process enables the robust

delineation of object boundaries in the presence of high variability in shape, intensity,

and texture. Compared to fully automated labeling approaches the proposed human-

assisted interactive labeling pipeline provides an optimized labeling workflow for a

broad class of object appearances.

3.2 Introduction

Fundus autofluorescence (FAF) imaging is a non-invasive technique for in vivo oph-

thalmoscopic inspection of age-related macular degeneration (AMD). AMD is the

leading cause of blindness in the U.S. and the developed world [52]. The macula

is the central region of the retina with the highest concentration of photoreceptors

responsible for sharp central vision. FAF image signals are reliable markers of lipofus-

cin in the retinal pigment epithelium (RPE) cell layer [53; 54], which closely interacts

with the photoreceptors to maintain visual function. Lipofuscin are finely granular

yellow-brown pigment granules composed of lipid-containing residues of lysosomal

digestions. The accumulation of lipofuscin is a major risk factor for AMD.

AMD occurs in two forms, dry (or atrophic) AMD and wet (or neovascular) AMD.

Geographic atrophy (GA) of the RPE, an advanced form of dry AMD, accounts for

12-21% of severe visual loss in this disorder [52]. GA is characterized by round or

multi-lobed patches of atrophy of the RPE. Over time, atrophic patches may increase

in size and number or may coalesce to form larger areas of atrophy, thus leading to

high variability in shape, intensity and texture. Figure 3.1 shows examples of the

GA disease phenotype.



31

Figure 3.1: Human-assisted interactive object labeling in the presence of high vari-

ability in shape, intensity, and texture. Ophthalmic images and pathologic examples

of age-related macular degeneration (AMD).

To reduce the enormous morbidity of AMD and its intermediate forms, we must be

able to monitor and quantify accurately the natural history and response to treatment

of the pathologic phenotype. The quantification of GA is important for determining

disease progression and facilitating clinical diagnosis of AMD. Generally, GA quan-

tification methods in the literature have typically relied on visual inspection of FAF

images [55], which prevents quantification, or time-consuming manual delineation of

GA boundaries [56]. Manual quantification of GA is time-consuming and prone to

inter- and intra-observer variability [55]. There has been a continued interest in the

use of machine vision techniques to label and quantify the pathologic phenotype of

AMD.

The problem of automatic labeling of pathological regions in image data has been

widely studied by the medical image analysis community, yet it still remains an

unsolved problem [57]. The current state-of-the-art shows that few automated image

analysis techniques can be applied fully autonomously with reliable results. Often

times post-processing of the obtained labeling result is necessary to validate labeling

accuracy and correct for errors.

In the realm of computer-aided diagnosis interactive labeling schemes are well
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received by physicians, where the combination of human and machine intelligence

can provide improved labeling accuracy and efficacy. Interactive labeling schemes

may be seen as an appropriate alternative to solve the problem of robust and accurate

labeling for a variety of different labeling problems [57; 58; 32].

In this chapter we present a novel image analytic pipeline for human-assisted in-

teractive labeling of object boundaries that exhibit high variability in shape, intensity,

and texture. We compute non-linear gradient approximations using generalized Sobel

kernels to deal with varying degrees of noise and to detect edge responses at multiple

scales. The human interactively places seed labels near the desired object bound-

aries, which serve as constraints to impose local minima at the seed label locations.

Local minimal are enforced by a morphological geodesic reconstruction process to re-

move degenerate solutions when computing the watershed transform. The watershed

transform produces an image partitioning along the gradient such that the region

boundaries are aligned to the object boundary. We choose the watershed transform

due to its well-defined properties, its simplicity, and computational efficiency [59].

Final object boundaries are obtained in an iterative fashion through interactive seed

label refinement, where we relabel each region according to their closest seed labels.

We demonstrate our approach within the domain of ophthalmology by quantifying

pathologic image regions of GA. A large evaluation study of 100 cases shows that our

algorithm compares favorably with respect to the Random Walker [57], a state-of-

the-art interactive graph-based labeling algorithm. Quantitative evaluation shows a

mean sensitivity (SE)/specificity (SP) of 98.3/97.7% for our pipeline approach and a

mean SE/SP of 88.2/96.6% for the Random Walker respectively.

The integration of human knowledge into the labeling process allows to perform

robust delineation of object boundaries in the presence of high variability in shape,

intensity, and texture. Automatic labeling algorithms have difficulties in reliably

labeling objects that exhibit high variability in appearance and data ambiguity. By

integrating human intelligence into the labeling process a variety of labeling problems
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can be addressed in a robust and accurate manner.

3.3 Prior art

Fully automatic object labeling in image data is still an unsolved problem [57; 58;

32]. Interactive object labeling also known as semi-automatic or semi-supervised la-

beling is a practical solution to alleviate the inherent limitations of fully automatic

labeling. The interactive approach to object labeling has great practical advantages

since human knowledge and synthetic machine knowledge can be combined. Interac-

tion can take various forms such as 1) direct human guidance as in the case of the

intelligent scissors [60] approach, 2) object boundary initialization based approaches

common in active contour models [61] or the level set framework [62], and 3) seed

label placement within object regions to constrain the solution space of the final

object boundaries. In this section we limit the scope to interactive object labeling

approaches that make use of the third type of interaction.

3.3.1 Graph-based interactive labeling

The literature on existing interactive graph-based labeling approaches is vast. Early

work that employed graph theory for the task of object labeling in image data was

proposed by [63]. Graph-based approaches represent the image as a weighted graph,

where each pixel in the image corresponds to a node in the graph and the edges of

the graph represent neighborhood relations between the image pixels. Edge weights

quantify the similarity between two nodes in the graph, where large values are given

to edges that link similar looking nodes together and low edge weights to dissimilar

nodes.

A popular approach for graph-based interactive labeling of object boundaries was

presented by Boykov et al. [64; 65; 66; 67]. He proposed a combinatorial optimization

technique termed Graph Cuts using a novel max-flow min-cut algorithm. So-called
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object/background seed labels (hard constraints) are treated as source/sink nodes

in a graph that provide the initial conditions for the max-flow min-cut operation

to minimize an energy objective function (soft constraints) that incorporates object

region and boundary terms. This minimum cut is a global minimizer and corresponds

to the set of edges in a graph with minimum total weight separating the source and

sink nodes in a global optimum. While the Graph Cut algorithm and extensions of it

were successfully applied to a variety of labeling problems, the Graph Cut approach

has several limitations. First, the minimum cut criterion might lead to overly cautious

estimated object boundaries in the presence of noise, low contrast, and limited number

of human-placed seed labels. Another difficulty is the extension of the Graph Cut

framework to the multi-class labeling task, an NP-hard problem requiring the use of

heuristic approximations to obtain a solution.

Grady et al. [68; 57; 69] proposed an interactive graph-based multi-class labeling

approach, where the user provides initial label information in form of seed labels

indicating the object regions within an image. A seed label is a human-provided

location in the image that has associated a certain label value. The edge weights

in the Random Walker algorithm are treated as probabilities of a particle with the

probability to first reach a certain seed label. The Random Walker algorithm labels an

unseeded pixel by resolving the question: Given a random walker starting at location

x, what is the probability that it first reaches each of the K seed points? Validation

studies have shown state-of-the-art performance.

3.3.2 Interactive labeling based on the watershed transform

Beucher et al. first applied the concept of the watershed transform to the image

labeling problem [70] in the late 1970s. The watershed transform is a morphological

image partitioning technique and found wide use in medical image processing [59].

The labeling technique is derived directly from the topographical watershed idea

whereby all points on the surface are grouped according to the concept of water falling
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onto the surface and flooding each local minimum until total immersion [71]. The

analogy can be explained by taking the example of rain drops associated with each

point in the image. Any two points are in the same region, also named a catchment

basin, if they fall to the same point. The watershed lines, which divide the image,

result from the catchment basins that start to meet each other as more rain falls onto

the surface.

Meyer et al. proposed a marker-controlled watershed labeling method [72] to

overcome the over-segmentation problem. The marker-based watershed transform [73;

74; 75] is a technique suitable for interactive labeling. Its properties have been studied

in [76] and its robustness with respect to the marker placement has been shown.

The watershed transform yields the same results for two different sets of markers as

long as they are located within the same catchment basin. Many extensions to the

marker-controlled watershed algorithm have been proposed such as [77; 59; 78; 79;

80]. Couprie et al. [81] proposed power watersheds as a new image labeling framework

extending the graph cuts, random walker, and the optimal spanning forest approach.

3.4 Methods

3.4.1 Preliminaries

A key component of our pipeline approach is the watershed transform. We can define

a continuous watershed with the help of distance functions. Assume that the image

f is an element of the space C(D) of real twice continuously differentiable functions

on a connected domain D with only isolated critical points. Then the topographical

distance between points p and q in D is defined by [82]

Tf (p, q) = inf
γ

∫
γ
‖∇f(γ(s))‖ds, (3.4.1)
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where the infimum is over all paths γ inside D with γ(0) = p, γ(1) = p. The

topographical distance between a point p ∈ D and a set A ⊆ D is defined as

Tf (p,A) = mina∈A Tf (p, a). The path with shortest Tf -distance between p and q

is a path of steepest slope on the graph of f . From this, one can define the following

definition of the watershed transform.

Definition (Watershed transform) Let f ∈ C(D) have minima {mk}k∈I ,for some

index set I. The catchment basin CB(mi) of a minimum mi is defined as the set

of points x ∈ D, which are topographically closer to mi than to any other regional

minimum mj:

CB(mi) = {x ∈ D|∀j ∈ I \ {i} : f(mi) + Tf (x,mi) < f(mj) + Tf (x,mj)}. (3.4.2)

The watershed of f is the set of points, which do not belong to any catchment basin:

Wshed(f) = D ∩
(⋃
i∈I

CB(mi)

)c
. (3.4.3)

Let W be some label, W /∈ I. The watershed transform of f is a mapping λ : D →
I ∪ {W}, such that λ(p) = i if p ∈ CB(mi), and λ(p) = W if p ∈ Wshed(f).

So the watershed transform of f assigns labels to the points of D, such that: 1)

different catchment basins are uniquely labeled, and 2) a special label W is assigned

to all points of the watershed of f . For implementation details and other definitions

of the watershed transform we refer the reader to [82].

3.4.2 A human-assisted interactive object labeling pipeline

The interactive labeling pipeline consists of several modules, i.e. 1) an optional im-

age preprocessing module for noisy image data, 2) a module for computing non-linear
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gradient approximations, 3) a geodesic reconstruction module, 4) a watershed trans-

formation module, and 5) a relabeling module. A schematic overview of the iterative

labeling workflow is shown in Figure 3.2.

Data

Non-linear gradient
approximation

Geodesic 
reconstruction

Watershed 
transform

Relabeling

Object labels

Seed label 
placement

Interaction loop

Preproces
sing

Figure 3.2: Human-assisted interactive labeling pipeline. Interactive labeling work-

flow for object quantification. The process starts with approximate seed label place-

ment drawn by a human expert. The non-linear gradient approximation module

computes image cues that indicate object boundaries. The geodesic reconstruction

module enforces local minima on the approximated gradient map. The watershed

transform module computes an image partitioning, whose labels are reassigned by

the relabeling module to produce an intermediate label boundary. The labeling pro-

cess iterates until the final label boundaries are obtained.

The interaction pipeline starts with human input. The human draws so-called seed

labels to indicate approximate locations of the object of interests. Here we consider

the case of binary object labeling, where the image is partitioned into two disjoint

regions, one indicating the object and the other the image background. The seed

labels serve as constraints to impose local minima regions at the seed locations.
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In the next step, we perform non-linear gradient approximations using generalized

separable Sobel kernels [83; 84] for fast multi-scale edge detection and smoothing. A

Sobel edge detection operator in its standard form consists of two 3x3 kernels for each

gradient direction

Gx = Kx ? I (3.4.4)

Gy = Ky ? I (3.4.5)

Kx =


−1 0 1

−2 0 2

−1 0 1

 , Ky =


−1 −2 −1

0 0 0

1 2 1

 (3.4.6)

where ? is a two-dimensional convolutional operator, I an image, and the kernels Kx,y

itself perform a smoothing operation that is perpendicular to the direction of the

derivative, which is approximated with a central difference scheme. The integration

of a smoothing step within the Sobel kernel enables noise robustness, the reduction

of aliasing artifacts, and regularization along edge responses for smoother object

boundaries. From Equation 3.4.4- 3.4.5 one can compute the gradient magnitude

and phase as follows

|G| =
√
G2
x + G2

y, (3.4.7)

θ = atan2 (Gy,Gx) . (3.4.8)

To account for multi-scale edge responses higher order Sobel kernels can be computed

with a polynomial transform representation of the form

H(p, q) = P2[f(x, y)] =
∑

pxqyf(x, y), (3.4.9)
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where p and q are filter indices for the x and y direction with the origin being in the

left bottom corner of the filter H. Thus the Sobel kernel in Equation 3.4.6 can be

written as

Kx = H(p, q) = −1− 2q − q2 + p2 + 2pq + p2q2 (3.4.10)

= (1 + q)2(−1 + p2) (3.4.11)

= (−1 + p)(1 + p)(1 + q)(1 + q). (3.4.12)

Here each factor represents the atomatic element of the decomposed Sobel kernel into

four separable two element convolution kernels. The extension to higher order kernels

of size k × k can be computed with

∂

∂x
→ (−1 + p)n−1(1 + q)n(1 + p) (3.4.13)

∂

∂y
→ (−1 + p)n(1 + q)n−1(1 + q), (3.4.14)

where n = k − 1.

Given multiple Sobel kernels of size k×k, k ∈ {3, 5, 7, 9} we compute the gradient

magnitude of the image f using Equation 3.4.7. On |G| we impose local minima at

the seed locations that are provided by the human expert. A seed s consists of an

input output pair s = {x, y}, were x can be the seed location and y the seed label.

To enforce local minima we compute the morphological reconstruction to prevent

degenerative solutions.

To obtain an image partitioning we choose the watershed transform (WT) algo-

rithm defined in Equation 3.4.3 due to its well-defined properties and computational

efficiency [59]. We compute the WT to obtain an image partitioning and relabel each

region according to their respective seed labels. Final object boundaries are obtained
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in an iterative manner through seed label refinement. Through this interactive pro-

cess the human obtains direct feedback as object and background seed labels are

drawn onto the image. An example of the intermediate processing results are shown

in Fig. 3.3.

(a) (b) (c) (d) (e)

Figure 3.3: Intermediate processing results of the interactive object labeling pipeline.

(a) The original image, (b) the gradient magnitude image, (c) the local minima image,

(d), the watershed catchment basins, and (e) the object boundary labels.

3.5 Experiments and results

Fundus autofluorescence (FAF) images have been recorded using the Heidelberg model

HRA confocal SLO (Heidelberg Inc, Heidelberg, DE). This instrument uses blue laser

light at 488nm for illumination and a barrier filter at 500nm to limit the captured light

to auto fluorescent structures. The FAF images consisted of bit-mapped laser scans of

varying image resolution ranging from 256x256 to 870x870 pixels in size. Each image

was an average of 3 to 6 scans composed by the SLO software. A human expert

provided ground truth information for all 100 FAF images by manually drawing the

object boundaries within each image. Figure 3.4 shows an example of the pool of

images that were used for the evaluation study. From this pool one can see the high

variability in shape, intensity, and texture.

We have evaluated our interactive labeling pipeline on 100 FAF images and com-

pared the interactive labeling performance with the Random Walker [57], a state-of-

the-art interactive labeling algorithm. The Random Walker algorithm was executed
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Figure 3.4: A diverse collection of geographic atrophy cases comprising high variabil-

ity in intensity, shape, and texture.

with the default parameter value of β = 90 for all test cases. Implementation was

obtained from available source code referenced in [57]. Both algorithms used the

same seed labels that the human provided in an iterative manner. The interactive

labeling pipeline was run with a Sobel kernel size of 5x5. No other preprocessing was

performed on the image data. The labeling process was stopped as soon as one of the

algorithm produced a high-quality labeling of the desired object boundaries. Receiver

operating characteristic (ROC) analysis was performed on a pixel-by-pixel basis with

respect to human expert manual gradings and compared for both algorithms. Quanti-

tative evaluation experiments on 100 FAF images show a mean sensitivity/specificity

of 98.3/97.7% for our interactive labeling pipeline and a mean sensitivity/specificity

of 88.2/96.6% for the Random Walker algorithm.

Figure 3.5 shows the ROC curve where the red curve belongs to the interactive

labeling approach and the green curve to the labeling performance of the Random
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Walker algorithm.
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Figure 3.5: ROC curve for the two interactive labeling approaches. The upper left

curve (red) shows the performance of our interactive labeling pipeline employing the

watershed transform whereas the lower right curve (green) shows the Random Walker

performance.

Table 3.1 shows the quantitative performance results of the ROC validation study.

We report mean and standard deviations of the sensitivity and specificity.

Fig. 3.6 shows qualitative labeling results of GA boundaries obtained with our

interactive labeling pipeline.



43
ROC Statistic Watershed Transform Random Walker

µsensitivity 98.3% 88.2%

µspecificity 97.7% 96.6%

σsensitivity 2.3% 10.8%

σspecificity 2.1% 8%

Table 3.1: Comparison of receiver operating characteristics (ROC) against the random

walker algorithm.

Figure 3.6: Qualitative interactive labeling performance for geographic atrophy (GA)

quantification. The yellow contour shows the computed object boundaries by our

interactive labeling pipeline. Examples showing different labeling complexity are

shown.

3.6 Discussion

The proposed interactive labeling approach is well suited for the task of GA labeling

and quantification. The intuitive interface and interaction with the image data was

well perceived by human clinical experts and involved short learning curves to get

familiar with the graphical user interface and interactive labeling workflow. After

short training times high-quality object label boundaries could be obtained for a

variety of different object appearances. The proposed interactive labeling pipeline

outperformed the Random Walker (RW) algorithm in terms of the sensitivity and

specificity by 10.2%/1.1%. This result is surprising given the simplicity of the labeling
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pipeline.

During the validation study we observed that the RW algorithm has improved

noise resistance compared to the WT algorithm. To account for very noisy image

data an optional preprocessing step could be employed before the non-linear gradi-

ent approximation step to increase the noise robustness of the interactive labeling

pipeline. Initial experiments not reported here using a hybrid combination of total

variation norm and the bilateral filter to regularize for noise showed further per-

formance improvements. Images that contained high degree of noise could still be

robustly segmented with combined with a noise removal step in our pipeline.

One advantage of the WT algorithm compared to the RW algorithm is the robust-

ness to a noisy seed label placement. As long as the placed seed labels were within

the local catchment basins of the watershed transform the same labeling result could

be obtained, which leads to more reproducible object boundaries in settings where

the images are graded multiple times by a single grader or by multiple graders.

We note that both approaches are designed to perform single object labeling. In

cases where multiple objects are present the human needs to place many seed labels

in order to obtain high-quality label boundaries, which is time-consuming and error

prone. Our interactive labeling pipeline failed in cases where the objects of interest

exhibited elongated thin shapes (e.g. vessels). In such cases user intervention required

more iterations until the desired labeling accuracy was achieved.

Nevertheless, the developed interactive object labeling pipeline can be used to

quickly generate ground truth label information for the creation of large annotated

image databases. The interaction pipeline is intuitive and commensurate with human

capabilities and constraints.
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3.7 Conclusion

We have presented a simple and intuitive interactive labeling approach for object

boundary labeling using the watershed transform. We demonstrated our approach

for the task of quantifying geographic atrophy a wet form of age-related macular de-

generation. We validated our approach with quantitative comparison to the Random

Walker algorithm using ROC statistics. Our approach has potential to perform well

for other retinal disorders and application areas for generic object labeling. The inter-

active labeling procedure iterates to the desired labeling result that is in conformance

to the perception and knowledge of the human. Furthermore, since only approximate

label information is required the labeling process across humans is more coherent,

reproducible, and time-efficient when compared to manual labeling. Especially in

pathological cases, where medical expert knowledge is crucial to distinguish ambigu-

ous region boundaries this approach directly integrates expert a priori information,

which would be difficult to robustly model mathematically. Future research is in-

tended towards the integration of interaction tools that allow the labeling of multiple

spot-like GA manifestations.
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Chapter 4

Learning object and multi-object

labeling with minimal human

intervention

4.1 Abstract

In this chapter, we present analytics for human-assisted automated object and multi-

object labeling with minimal human intervention.

Within this realm, we propose extensions to the naive Bayes algorithm within a

transductive learning and inference paradigm. We introduce a semi-parametric form

of the transductive naive Bayes algorithm in combination with a Markov random

field model. Our extensions impose a multidimensional mixture assumption on each

covariate feature dimension to explain more complex distributions. Thus, the com-

plexity of the model grows with the data dimensionality. We combine this model with

Markov random fields to impose spatial regularization constraints.

We demonstrate our algorithm within the field of diagnostic ophthalmology and

neuro-oncology. In numerous experiments we report on the automated labeling perfor-

mance of the algorithm in unimodal, multimodal, hyperspectral, and spatio-temporal
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data comprising volumetric and planar images.

The developed analytics have practical value by leveraging the interplay of syn-

ergistic human-intelligence, enabling humans to better reason about, perceive, and

understand heterogeneous image data.

4.2 Introduction

The lack of labeled medical images is a major obstacle for devising data-driven ana-

lytics for automated interactive object labeling. In the biomedical imaging domain la-

beling objects in images requires human expert knowledge and often time-consuming

editing to obtain accurate label information. The lack of label information is also

known as the scarce label problem.

To cope with the scarce label problem, transductive learning (TL) and semi-

supervised learning (SSL) offer a workaround by either simplifying the inference

problem or by leveraging unlabeled and labeled data to perform label inferences.

TL and SSL are suitable learning paradigms for designing interactive labeling tools

that require minimal human expert intervention.

The inductive learning formulation considers a function f : X → Y that maps

instances from the entire input space x ∈ X to output labels y = f(x). In inductive

function learning we seek to form a hypothesis that can recover f given a training set

of example pairs {(xn, yn)}Nn=1. However, inductive learning and inference assumes

the availability of sufficient training data, which clearly in the medical domain is

expensive to obtain. It is realistic to assume that the training set at learning stage

is incomplete or insufficient to guarantee reliable generalization performance of the

learning algorithm.

An alternative learning formulation is the transductive learning and inference set-

ting motivated by Vapnik in the 90’s. In transductive inference the learning algorithm

is given a labeled training set and an unlabeled test set with the goal to learn a func-
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tion f that only needs to learn the mapping to the given test set. Consequently, the

transductive learning algorithm can explore the labeled training and unlabeled test

set. The usefulness of the unlabeled test set in transduction has also been advocated

in the context of co-training and SSL.

In this chapter, we present analytics for human-assisted automated object and

multi-object labeling with minimal human intervention. Within this realm, we pro-

pose extensions to the naive Bayes algorithm within a transductive learning and infer-

ence paradigm. We introduce a semi-parametric form of the transductive naive Bayes

algorithm in combination with a Markov random field model. We demonstrate our

algorithm within the field of diagnostic ophthalmology and neuro-oncology. The al-

gorithm is applicable to different data sources and application domains. In numerous

experiments we report the automated labeling performance in unimodal, multimodal,

hyperspectral, and spatio-temporal data comprising volumetric and planar images.

We impose unconditional and conditional Gaussian mixture models on each co-

variate feature dimension to learn and infer the relationships between the input and

the output space using naive Bayesian transduction. The naive conditional indepen-

dence assumption allows efficient inference of marginal and conditional distributions

for large-scale learning and inference. The transductive generative formalism allows

us to provide 1) predictive confidence of the classification and 2) performance guar-

antees of the inference. In a probabilistic formulation and using the framework of

graphical models we consider a bounded probability measure PXY describing the

joint distribution of the given input and output label space. The generative graphical

model formalism provides a unifying framework for capturing complex dependencies

between random variables and allows the design of large-scale multivariate statistical

models to account for uncertainty and missing data. The objective is to minimize

the conditional expected error rate of a classification rule through the conditional

p(y|x) with hypothesis Ht given the observed training sample and the test set. The

posterior provides the basis for building Ht to recover f . Since the goal is to obtain
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label information only for the test set we allow the posterior distribution to depend

on the test set with spatial regularization constraints to exploit the smoothness- and

cluster assumption between p(x) and p(y|x). Our approach has the following advan-

tages: i) the classification result supports a reject option and confidence bounds for

risk-sensitive applications, ii) has the ability to handle class imbalance through scaled

likelihoods, and iii) the conditional independence assumptions allow separate model

learning and model combination and sample complexity reduction.

4.3 Prior art

4.3.1 The naive Bayes model

Here we review the naive Bayes model for learning and inference in discrete and con-

tinuous data domains. The naive Bayes model is a probabilistic model and makes

use of the Bayes’ theorem. The model can be efficiently trained within a supervised

learning setting given the independence assumption of each covariate feature dimen-

sion. Instead of learning a complete covariance matrix the naive Bayes model only

requires the learning of individual variances. The independence constraint reduces

the parameter space, which in turn minimizes the amount of training data. While

the naive independence assumption is not realistic the naive Bayes model performs

remarkably well in many real-world problem domains.

Let p(y,X) denote the joint distribution of the class labels and the input samples,

where X = [x1, ...,xn] and {xi}ni=1 ∈ Rd. Each xi is a d-dimensional feature vec-

tor. The naive conditional independence assumption allows us to factorize the joint

distribution as a product of class prior p(y) and independent conditional probability

distributions
∏d

j=1 p(xj|y). In graphical model notation the naive Bayes model has

for each xj node the parent node y, where j indexes the covariate feature dimension.

For the discrete case we assume each xj to be sampled from a multinomial probability

model of the form
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p(xj) =
M∏
m=1

θ
δ(xj=m)
m ,with

∑
m

θm = 1, and θm ≥ 0, (4.3.1)

where δ is an indicator function and m = 1, ..,M indexes the discrete states of the

multinomial. Consider the discrete multinomial case by letting X = (x1, ...,xj−1,xj,xj+1, ...,xd)

be the individual feature vectors and each xj a multinomial random variable with

components xmj . The joint distribution p(y,X) factorizes into

p(x,y|Θ) = p(y|π)
d∏
j=1

p(xj |y, θj) with (4.3.2)

Θ = (π, θ1, θ, 2, ..., θd). (4.3.3)

The class-conditional density p(x|y) takes the form

p(x1,x2, ...,xd|yk = 1, θ) =

d∏
j

∏
m

θ
xm
j

kjm, (4.3.4)

with θ
xm
j

kjm = p(xmj = 1|yk = 1, θ) being the probability that the j-th feature takes

on its m-th value for the k-th class label. Taking the log-likelihood over a labeled

training set Dl = {(xi, yi)}ni=1 we obtain the following objective function subject to

nonnegative constraints, which is solvable by forming the Lagrangian and maximizing

over Θ

max
Θ
L(Θ|Dl) =

n∑
i=1

log p(yi|π) +

n∑
i=1

d∑
j=1

log p(xji|yi, θj) (4.3.5)

subject to
∑
m

θkjm = 1.
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The class-conditional probability for each xj for the continuous case takes the form

of a Gaussian

p(xj) ∼ N (µj |σj), with (4.3.6)

µjk = E[xj |yk] and (4.3.7)

σ2
jk = E[(xj − µjk)2|yk], (4.3.8)

where µjk denotes the class-conditional mean and σ2
jk the class-conditional variance.

The class-conditional densities for xj are

p(xj |y = k, θj) =
1(

2πσ2
j

) 1
2

exp

{
− 1

2σ2
j

(xj − µkj)2

}
, (4.3.9)

with µk = (µk1, µk2, ..., µkd)
T and

∑
= diag(σ2

1, σ
2
2, ..., σ

2
d). The joint probability

with conditional independent covariates and a Gaussian class-conditional likelihood

factorizes into

p(x,y|Θ) = p(y|π)

d∏
j=1

p(xj |y, θj), (4.3.10)

with Θ = (π, θ1, θ2, ..., θd). Similar to the discrete case the log-likelihood over the

input data Dl can be obtained as in Equation 4.3.5

max
Θ
L(Θ|Dl) =

n∑
i=1

log p(yi|π) +
n∑
i=1

d∑
j=1

log p(xji|yi, θj) (4.3.11)

subject to
∑
m

θkjm = 1.
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4.3.2 The transductive naive Bayes model

The transductive naive Bayes classifier [85] was introduced for the application of text

classification. The classifier uses both the training documents and the distribution

of the test documents to learn a function f that maps the input space to the output

space. This model is similar to the discrete naive Bayes model outlined in Section

4.3.1 with the extension to perform transductive inference. The algorithm classifies

the test documents using a two-step procedure. First, [85] learns a multinomial naive

Bayes model from the labeled training documents to predict the label distribution on

the test set. Second, the test set labels are then used to train a new classifier to predict

the final class distribution. This two-step procedure iterates until the distribution of

the test set labels converges to a fixed test label distribution.

As opposed to the discrete multinomial, the continuous single Gaussian, or the

transductive discrete naive Bayes model we allow p(X) to be continuous and non-

uniformly distributed with a multimodal cluster and smoothness assumption. In real-

world applications often times the single Gaussian assumption is too limited to fully

explain the complexity of p(X). In non-negative data domains the uniform Gaussian

assumption may produce incorrect model behavior near zero due to model symmetry

or insufficient descriptive power. Previously outlined multinomial probability models

in Section 4.3.1 are often employed in text classification [86] and assume discrete

data domains with a fixed set of values. In the case of multimodal image data it is

impractical to learn a discrete multinomial model as each image value would require a

separate model parameter. Given those limitations we extend the transductive naive

Bayes model to account for continuous and multimodal image data.
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4.4 Methods

4.4.1 Preliminaries

Consider a dataset D = [DL,DU ], where DL = {(xi,yi)}li=1 denotes the labeled

training set and DU = {(xi, ŷi)}l+ui=l+1 the unlabeled test set with ŷi unknown. The

usual case is l << u, i.e., labeled data is scarce and unlabeled data is abundant. Our

goal is to learn a function f : X → Y , where X ∈ Rd and Y = [1, ..., K] by taking

into account the training and unlabeled test data to find ŷi.

4.4.2 A semi-parametric model for naive Bayesian transduc-

tion

We propose a novel transductive learning algorithm for generative classification casted

as an interactive labeling problem with minimal expert intervention. In particular we

present a conditional mixture naive Bayes model (TCMNB) with spatial regulariza-

tion constraints in a transductive learning and inference setting. Compared to [85]

and [86] our model assumes for the class-conditional likelihood a semi non-parametric

Gaussian mixture model on each covariate feature dimension allowing us to represent

and describe more complex distributions. To simplify the estimation we reduce the

parameter space by assuming naive conditional independence between the feature

space and the class label. The naive conditional independence assumption allows ef-

ficient inference of marginal and conditional distributions [87] suitable for large-scale

learning and inference. The posterior is formed by learning class-conditional mixture

models and priors for each class in each covariate feature dimension exploiting labeled

and unlabeled data. Another extension is that we allow the posterior distribution to

depend on the unlabeled test set with spatial regularization constraints to exploit the

smoothness- and cluster assumption between p(X) and p(y|X).

Our modeling problem consists of two latent variables one for the conditional
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p(y|X) and the other for approximating the marginal p(X). For the latter, we build

an unconditional mixture density on each p(xj) to account for multimodal densities

by considering a sub-probability model fc(xj|θc) for each component c = [1, ..., C]

p(xj |Θ = {αc, θc}) =
C∑
c=1

p(xj , z
c = 1|Θ) (4.4.1)

=
C∑
c=1

αcfc(xj |θc) (4.4.2)

subject to
C∑
c=1

αc = 1, and αc ≥ 0. (4.4.3)

Here Θ = (αc, θc)
C
c=1 denotes the parameter space of the complete mixture model,

fc(xj|θc) denotes the mixture components obtained by marginalizing and conditioning

over a latent or hidden multinomial variable z having c = [1, ..., C] values. The non-

negativity constraints αc are the mixing proportions and θc the model parameters

for the sub-probability models. In generative graphical model language the latent

variable z forms the parent node over the data node xj with the arrow pointing from

parent to child. This form of graphical model corresponds to the problem of density

estimation.

For the former, we consider a probabilistic model p(y|X,Θ) to infer the class

labels y using a conditional mixture model on the data. The Bayes rule inverts the

graphical model of the density estimation problem such that the observed data is the

parent with the arrow pointing to the latent variable y. Conditioning on p(xj) the

conditional probability of the latent class variable y is

p(y|X,Θ = {αk,c, θk,c}Cc=1) = p(y|π)
∑
j

p(xj |y = k,Θ), where (4.4.4)

= p(y|π)
∑
j

C∑
c=1

αk,cfk,c(xj |θk,c), (4.4.5)
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where p(y|π) is the class piror, and p(xj|y = k,Θ) the covariate conditional mixture

model.

4.4.3 Transductive learning and inference

The conditional model is learned using training data D. Given DL we learn the

class-conditional and unconditional mixture densities of each class by maximizing the

log-likelihood of p(X|y) and p(y). To learn the marginal p(X) for a given class label

we assume p(X) to be distributed as a Gaussian mixture on each covariate feature

dimension. To approximate both latent variables z and y we build the following

maximum a posteriori (MAP) model on DL and DU

L(DL|ΘL) =
l∏

i=1

p(yi|πL)
d∑
j=1

p(xji|yi, θL) (4.4.6)

L(DU |ΘU ) =
l+u∏
i=l+1

p(yi|πU )
d∑
j=1

p(xji|yi, θU ). (4.4.7)

The MAP estimates of ΘL and ΘU for D = [DL,DU ] have no closed form solution.

Maximizing the log-likelihood of Equation 4.4.6- 4.4.7 gives

max
Θ̂L={π̂L,θ̂L}

L(Θ̂L|DL) =

l∑
i=1

log p(yi|πL) +

l∑
i=1

log

d∑
j=1

p(xji|yi, θL) (4.4.8)

max
Θ̂U={π̂U ,θ̂U}

L(Θ̂U |DU ) =
l+u∑
i=l+1

log p(yi|π̂L) +
l+u∑
i=l+1

log
d∑
j=1

p(xji|yi, θ̂L), (4.4.9)

where we can independently solve for the prior and likelihoods terms. The log-sum

terms of above log-likelihood in Equation 4.4.8- 4.4.9 are marginal probabilities

with respect to each covariate feature dimension and require a non-linear optimiza-

tion scheme. We use the expectation-maximization (EM) algorithm [88] to learn the

model parameters within a maximum likelihood (ML) framework. Lower bounding
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the log-sum term with an auxiliary function L(q, θ) we can obtain a local solution by

iteratively computing the E-step and M-step equations

E-Step: qt+1 = max
q
L(q, θ(i)) (4.4.10)

M-Step: θ(i+1) = max
θ
L(q(i+1), θ). (4.4.11)

A proof that the update Equations in 4.4.10 indeed maximize the log-likelihood can

be found in [88]. The maximum likelihood estimate of the prior terms of Equations

4.4.8- 4.4.9 are much simpler. Maximizing the log-likelihood with respect to πL and

πU the solution to the constraint optimization problem for DL and DU is

π̂L = max
πL

l∑
i=1

log p(yi|πL) =

l∑
i=1

yi/l (4.4.12)

π̂U = max
πU

l+u∑
i=l+1

log p(yi|πU ) =
l+u∑
i=l+1

yi/(l + u). (4.4.13)

The knowledge of xj and Θ̂L and Θ̂U enables us to obtain the probability of the

model given the data for each class label yk. From this probability we can classify

and predict the class distribution to perform labeling using

ŷ = max
Θ

p(y = k|X) =
p(y)p(X|y)∑K

k p(y = k)p(X|y = k)
. (4.4.14)

4.4.4 Bayesian transductive random fields

The Markov random field model is an undirected graphical model that consists of a

set of nodes and edges. Consider a graph G = (V,E) with V nodes and E edges.

The nodes of G can represent the pixels or voxels in an n-dimensional image, with a
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neighborhood system N encoded by the edges of G. The neighborhood system can

be a 4-, 8-, 6-, 18-, or 26-connected neighborhood. A Gibbs distribution with respect

to N has the following form

p(Y = y) =
1

Z
exp {−βU(y)} , (4.4.15)

Z =
∑
y

exp {U(y)} ,

U(y) =
∑
c∈C

ψc(yc),

where Z is a normalization factor (i.e., the partition function), β a weighting factor for

the Gibbs energy function U(y). The Gibbs energy sums over all clique configurations

c, where C denotes the set of cliques for N . A clique in G is a subset of nodes where

each node is connected to each other. Each clique in the graph has associated a

nonnegative potential function ψC(·). The potential function maps a clique to a real

number based on some homogeneity criterion on the values of each nodes within the

clique. A popular choice is the Ising model where ψC(yc) = −1 for yi = yj and

ψC(yc) = 1 for yi 6= yj, where the index j ∈ Ni is a neighbor of node i.

We present a Markov random field (MRF) model using conditional mixture naive

Bayesian assumptions within a transductive learning and inference setting. We allow

the posterior distribution to depend on the unlabeled test set DU with spatial MRF

regularization constraints to exploit the smoothness and cluster assumption between

the marginal p(X) and the conditional p(y|X) to perform labeling.

We model the prior term p(y) with a Markov random field model as described in

Equation 4.4.15. Conditional independence assumptions allow for local factorizations

of the joint distribution. To maximize our objective function constrained by the

Markov random field model we use a deterministic approach. We approximate the

MAP estimate with the iterated conditional modes (ICM) algorithm [89], which takes

the following form
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ŷi = max
yi∈[1,...,K]

p(yi|yNi ,X). (4.4.16)

4.5 Experiments and results

4.5.1 Application to multimodal data

We applied our algorithm to the task of interactive brain tumor (edema) labeling and

evaluated our method with quantitative comparisons to human expert ground truth

labels. We performed experimental evaluation on a real-world multimodal magnetic

resonance (MR) brain dataset comprising nine modalities. The dataset had a resolu-

tion of 256x256x30 voxels per modality and anisotropic voxel dimensions of 0.4mm

x 0.4mm x 5mm. Columbia University Medical Hospital provided the dataset after

de-identification of patient information. We performed intensity normalization and

multimodal registration to bring the data sources into a common coordinate system.

A combination of landmark-based and affine registration was used. The landmarks

were manually selected by an expert. We started with the most simplistic configura-

tion of multimodal features by looking at FLAIR and DWI ASSET B voxel intensities.

We assumed a bag-of-voxels representation of our multimodal features analogous to

the bag-of-words representation often used in natural language processing (NLP) ap-

plications. The human expert provided approximate object and background seed

label information on the FLAIR volume using a custom-developed interactive label-

ing environment. The interaction step continued until the desired labeling result and

accuracy was achieved. The performance of our labeling technique was evaluated with

human expert provided manual ground truths using voxel-by-voxel based receiver op-

erating characteristic (ROC) statistics. We further compared our algorithm with the

continuous single Gaussian naive Bayes model outlined in Section 4.3.1.
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Figure 4.1 shows the input labels on a single slice with the corresponding classified

labels for edema in yellow.

A

B

Object seeds

Background seeds

Classified 
label regions

Classified 
label boundaries

Edema

Figure 4.1: Example of our labeling technique on multimodal data. (A) Expert

drawn object and background seed labels on single slice (left). Classified label regions

(center) and label boundaries (right) produced by our TCMNB algorithm. (B) No

labels were provided for other slices in the image volume (left). Classified label regions

(center) and label boundaries (right) in yellow for the different slice.

Figure 4.2 shows a comparison of the continuous single Gaussian naive Bayes

model (row A) and our TCMNB algorithm (row B).

Figure 4.3 shows the nine modalities registered into a common coordinate system

and the classified label boundaries in yellow overlaid on each modality.

Our TCMNB algorithm showed a labeling performance with a sensitivity and

specificity of 90.37% and 99.74%. The technique is computationally efficient and

takes about 1-3 seconds on a 256x256x30x2 multimodal dataset using a dual core

2.4GHz machine showing that the algorithm is applicable to an interactive labeling

environment.
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A

B

Single 
Gaussian 

TCMNB

Classified 
label boundaries

Figure 4.2: Comparison between continuous single Gaussian naive Bayes model and

our TCMNB algorithm. Row A shows the classified label boundaries in yellow for

three different slices of the FLAIR dataset. Row B shows the classified label bound-

aries that were produced by the TCMNB algorithm for the corresponding slices in

row A.

4.5.2 Application to multimodal spatio-temporal data

We applied our algorithm to the task of interactive multimodal spatio-temporal brain

tumor (edema) labeling and evaluated our method with quantitative comparison to

human expert provided ground truth labels. Multimodal temporal registration was

applied to bring the longitudinal data sources into a common coordinate system. We

used the same multimodal feature configuration and preprocessing steps as outlined

in Section 4.5.1. The human expert provided approximate object and background

seed label information on the FLAIR volume using a custom-developed interactive

labeling environment. This time the seed labels were placed on a single time point

volume with the goal to predict edema regions on subsequent time points in the

multimodal longitudinal dataset. The interaction step continued until the desired

labeling result and accuracy was achieved. To apply the TCMNB algorithm to the

task of multimodal spatio-temporal labeling we casted the transductive learning and

inference setting with respect to the time domain, where the labeled training set was
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FLAIRDWI  ASSET A

Classified 
label boundaries

ADC DWI ASSET B T1 MEMP C-

T1 MEMP C+ EADCT2 FSE A T2 FSE B

Figure 4.3: Multimodal labeling for nine different modalities using the TCMNB algo-

rithm. Example images of multimodal data sources aligned to a common coordinate

frame. The labeling result is overlaid in yellow on all nine image modalities. The

DWI ASSET B and FLAIR modality are shown in the 3rd and 4th window from top

left to right bottom ordering.

drawn from a single time point volume Xt and the unlabeled test set from a future

time point volume Xt+1. The performance of our labeling technique was evaluated

with human expert provided manual ground truths using voxel-by-voxel based receiver

operating characteristic (ROC) statistics.

Fig. 4.4 shows examples of multimodal spatio-temporal labeling results produced

by our TCMNB algorithm. Discarding the yellow label boundaries for now row A

shows different image slices of the brain captured on 02/27/2008. Correspondingly

row B shows the same image slices at a later time point captured after 70 days

on 05/07/2008. The human expert provided object and background seed labels (not

shown) at a single time point volume as depicted in row A. Row B shows the predicted
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label boundaries overlaid in yellow for the time point 05/07/2008. The same label

boundaries are transferred to the image volume at time point 02/27/2008 to show

edema change. The white arrows in row A show the shrinked edema regions that

existed 70 days before.

Figure 4.4: Qualitative multimodal spatio-temporal labeling results. A) Predicted

label contours for time point B are overlaid on the dataset for time point A to show

edema change. The white arrows point out existing edema regions at time point A

that disappeared 70 days later in time point B. From left to right different image

slices of the brain are shown.

The algorithm showed a labeling performance with a sensitivity and specificity of

up to 93.16% and 99.91% respectively. By labeling a single slice at time t accurate

predictions for future observations at time t+ 1 could be obtained. We employed our

algorithm for the generation of pseudo ground truth data for assessing automated

multimodal longitudinal edema prediction. For a detailed account we refer to Caban

et al. [34].
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4.5.3 Application to unimodal data

We have applied our TCMNB labeling algorithm on real-world multimodal ophthal-

mologic images for the task of multi object labeling with minimal human expert

intervention. We evaluated our algorithm on four different modalities including flu-

orescein angiography (FA), color fundus (CF), infrared (IR), and autofluorescence

(AF) images to assess to performance of our algorithm on different labeling tasks.

The multimodal images contained retinal disorders such as drusen, geographic at-

rophy (GA), and choroidal neovascularisation (CNV) with exudates and sub-retinal

fibrosis. The motivation for the experiments was to assess the Markov random field

model in combination with the TCMNB model within a Bayesian transductive learn-

ing and inference framework.

As in Section 4.5.1 and 4.5.2 the expert provided approximate seed label informa-

tion marking object (red) and background (green) regions for the objects of interest.

Images from 16 patients were centered around the macula and cropped to 324x324

regions to reduce image size and improve visualization. The human expert continued

the labeling process until the desired labeling accuracy was achieved.

In Fig. 4.5 to 4.8 we show model comparisons for two sets of parameters β =

{0, 1.5} to show the effect on our model with and without the Markov random field

constraint. The left column shows the provided seed labels by the human expert.

The middle column shows the classified label boundaries in yellow without the MRF

constraint β = 0. The right column shows the classified label boundaries in yellow

with the MRF constraint β = 1.5.

4.6 Discussion

The validation experiments on multimodal brain MR image data showed that the

TCMNB algorithm could label volumetric edema regions with a sensitivity and speci-

ficity of 90.37% and 99.74%. The algorithm required on average approximately 250
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Object seeds

Background seeds

Without MRF With MRFSeed labels

Figure 4.5: Automated multi-object labeling with minimal human intervention on

ophthalmology FA image data.

seed labels. When compared to the sample cardinality of the unlabeled test set 0.013%

labeled training data was required, which shows that our algorithm is able to accu-

rately label edema regions with minimal human expert intervention. The algorithm

is applicable to problems involving single and multi object labeling. Transductive
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Without MRF With MRFSeed labels

Figure 4.6: Automated multi-object labeling with minimal human intervention on

ophthalmology CF image data.

learning and inference is computationally efficient given the naive Bayes assumption.

Our algorithm is suitable for large-scale learning and inference as demonstrated in

our experiments. Automated labeling of approximately two million data samples took

only a couple of seconds. Further the computational efficiency of our algorithm en-
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Without MRF With MRFSeed labels

Figure 4.7: Automated multi-object labeling with minimal human intervention on

ophthalmology IR image data.

ables the extensions to higher dimensional labeling problems involving temporal data

or the incorporation of application-specific constraints as shown in Section 4.5.2 and

4.5.3.

The comparative results shown in Fig. 4.2 demonstrate the superior performance
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Without MRF With MRFSeed labels

Figure 4.8: Automated multi-object labeling with minimal human intervention on

ophthalmology AF image data.

of our TCMNB algorithm in comparison to the continuous single Gaussian naive Bayes

model. Clearly the single Gaussian assumption is not able to distinguish between

edema regions and the brain skull given their similar intensity ranges. However, the

transductive conditional mixture assumption of the TCMNB algorithm can explain
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more complex multimodal distributions. From the qualitative labeling results we see

that false positive labels in the cerebrospinal fluid (CSF) are correctly discarded by

the TCMNB algorithm.

Fig. 4.3 shows the automated labeling results on all nine modalities. Combined

with an affine and landmark-based registration we are able to transfer the classified

label boundaries to the other modalities, which could either be used as the final label

boundaries in each respective modality or as initializations to a labeling refinement

step to adjust for modality-dependent local variations. From the experiments we

observed that while the usage of multimodal data aids the labeling performance the

naive approach in using all available image modalities led to inferior label perfor-

mance. Empirical results suggest that high labeling performance can be achieved

when combining FLAIR and DWI ASSET B modalities. By taking a look at the ap-

pearance characteristics of each modality one can see why TCMNB can successfully

discard the skull regions and why the continuous single Gaussian naive Bayes erro-

neously detects CSF regions. The CSF regions in the DWI ASSET B modality have

similar intensity regions as the edema regions in the FLAIR modality. In the DWI

ASSET B modality the skull regions exhibit dark image intensities. The conditional

mixture model in combination with the transductive learning and inference scheme

can successfully learn discriminative probability distributions of the human provided

object and background seed labels. We have to mention that due to the anisotropic

voxel dimensions the registration accuracy is a crucial factor and affects the results

of our labeling algorithm.

Fig. 4.4 shows the results on multimodal spatio-temporal edema labeling. We

can cast the TCMNB model with respect to the time domain to perform spatio-

temporal labeling. By comparing the yellow predicted edema boundaries one can

observe that the algorithm could successfully predict the edema regions 70 days later.

In this demonstrative example we showed that the algorithm can successfully detect

edema shrinkage. Only minimal human expert intervention was required to achieve
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a sensitivity and specificity of up to 93.16% and 99.91% respectively.

In Fig. 4.5 to 4.8 we show automated labeling results of our TCMNB algorithm

in combination with a Markov Random field constraint. The spatial regularization

constraint acts as a smoothness prior allowing to perform labeling in noisy datasets.

In our experiments we considered simple neighborhood relations of 4-connected neigh-

bors. The results show that our algorithm is applicable to a wide range of different

labeling tasks. With minimal human expert intervention complex object boundaries

can be learned and inferred by the TCMNB model in combination with the Markov

random field constraint. This enables the rapid generation of pseudo ground truth la-

bels or the creation of annotated image databases without tedious manual delineation

of object boundaries.

By exploiting unlabeled data we can achieve good labeling performance for the

task of interactive brain tumor (edema) labeling in anisotropic multimodal medical

image volumes–both in cross sectional and temporal labeling tasks. Using a Bayesian

transductive learning and inference scheme enables to link human expert provided

knowledge with the synthetic knowledge obtained by the probabilistic model to adapt

to changing model assumptions over time. This is especially desirable in quantifying

unpredictable tumor growth. In general the model with spatial regularization, as

expected, provided smoother label outlines and improved the labeling results con-

firmed by the expert. Bayesian transductive Markov random fields fuses concepts

from probabilistic generative learning and spatially constrained Bayesian inference.

The combined model allows efficient learning and inference in a semi-supervised set-

ting given only minimal approximate label information.

Failure cases included images where the object boundaries in the image data

contained ambiguous appearance information with respect to the learned model. Es-

pecially in cases where the object and background had the same appearance led to

erroneous label boundaries. For known object shapes one could introduce a shape

prior model into the feature space to account for such failure cases. Another alter-
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native is to led the user define shape priors in an online fashion to complete and

refine ambiguous label boundaries during the interactive labeling procedure. We also

observed that in real data image modalities can be inconsistent and missing, which

caused our learned model to fail. Finally, we note that our approach assumes that

the object boundaries across modalities follow the same appearance model.

4.7 Conclusion

We have presented a novel interactive labeling approach for single and multi object

boundary labeling using a naive Bayesian transductive conditional mixture model in

combination with a Markov random field constraint. We demonstrated our approach

for the task of quantifying edema regions within multimodal and spatio-temporal

brain images and pathologic regions in multimodal retinal images. We validated

our approach with quantitative comparison to the continuous single Gaussian native

Bayes model using ROC statistics.

Our approach has potential to perform well for other retinal disorders and applica-

tion areas for generic object labeling. The labeling adaptively iterates to the desired

labeling result that is in conformance to the perception and knowledge of the human.

Furthermore, since only approximate label information is required the labeling pro-

cess across humans is more coherent, reproducible, and time efficient when compared

to manual labeling. Especially in pathological cases where higher medical expert

knowledge is crucial to distinguish similar looking object regions this approach di-

rectly integrates expert a priori information, which would be hard or even impossible

to robustly model mathematically. The model allows efficient learning and inference

in a transductive setting given only minimal approximate label information. This is

especially desirable in unpredictable tumor growth and other degenerative diseases.

Future research is intended towards the integration of other interaction constraints

to tune the algorithm to specific application contexts.
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Chapter 5

Learning discriminative object

representations from human labels

5.1 Abstract

In this chapter we present our initial investigations of employing deep learning and

inference schemes to automate anatomical labeling of volumetric human brain images.

We present a novel application of deep convolutional networks to autonomously

build discriminative object representations from human expert-provided parcellation

labels. Different network architectures in combination with context-sensitive feature

configurations are studied. A feature consists of a local image patch without further

manual engineering effort towards a particular task.

Initial validation experiments show promising results for automatic brain labeling

and parcellation. Preliminary results suggest that deep learning and inference schemes

can learn complicated object representations that humans find difficult.

The deep learning approach has immense practical value by leveraging human

expert intelligence in form of manual provided label regions from which the machine

autonomously learns complex discriminative object representations. This form of syn-

ergistic human-machine intelligence enables humans to leverage synthetic generated
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knowledge in situations where human intuition is limited due to data complexity.

5.2 Introduction

The human brain is a complicated object and is still today poorly understood. Delin-

eation of structural and functional regions (”parcellation”) of the human brain is an

important and challenging task for neuroscience and cognitive psychology. Accurate

and precise parcellation enables quantification of normal and abnormal changes in

the brain as well as analysis of relationships between brain function and structural

appearance. Such information is crucial for clinical diagnosis, prediction of treat-

ment outcome in neurodegenerative and pychiatric disorders, and more profoundly

for brain-machine interfaces.

However, there still does not exist a widely accepted standard (protocol) for brain

image parcellation [90]. The choice of parcellation units is usually dictated by software

packages that make use of a labeled atlas brain volume, in which a parcellation pro-

tocol has been applied to a single individual. Only recently have large-scale efforts

come about to establish and manually apply a standard brain parcellation proto-

col to many volumetric brain images1. However, because manual parcellation is a

tedious, time-consuming, and inconsistent endeavor that requires human expertise,

many researchers rely on automatic brain parcellation methods. The challenge for

both humans and machines is the intrinsic variability of the human brain and its

complexity, which makes it extremely difficult to define consistent correspondences

across brains.

To establish correspondences, researchers ubiquitously co-register brain images to

each other, commonly with a template or labeled atlas brain of the same imaging

modality [91]. However, such registration methods typically assume image similarity

as a surrogate for anatomical similarity, continuous mapping between corresponding

1http://www.braincolor.org/protocols
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Figure 5.1: Example of a brain parcellation. The top row shows a surface rendering

of the different brain regions defined by the parcellation protocol. The bottom row

shows three multi-planar reformation views (axial, sagittal, coronal) of the brain with

translucent color overlays from human-provided brain parcellation labels.

features, and representativeness of the template or atlas.

On a lower level a main drawback with existing automatic brain parcellation ap-

proaches is that they 1) employ algorithms with shallow architectures, 2) are based

on heuristic manual feature engineering, and 3) assume the validity of the underly-

ing feature engineered model. In [31] the authors have demonstrated that shallow

architectures are limited and non-optimal when learning complex high-dimensional

functions. Examples of learning algorithms with shallow architectures are kernel ma-

chines or single-layer neural networks. In comparison to deep architectures, shallow

learning algorithms are limited in efficiently representing complex function families to

learn high-level learning tasks. Many learning algorithms rely on human knowledge to

handcraft features, which requires a complete understanding of the problem domain.

Such feature engineering approaches limit the generalizability of the model, which
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may lead to feature redesign and validation, a costly, error prone, and impractical

process.

Our research is driven by two main questions. First, can we truly automate

brain parcellation in a realistic clinical setting? Second, can artificial cortical net-

work models, which possess deep learning and inference architectures, provide the

computational intelligence for this challenging task?

In this chapter we report on a novel application of convolutional networks (CNs) to

build discriminative object representations (features) for brain parcellation, which are

automatically learned from labels provided by human experts. The idea we would like

to pursue is a structured hierarchical approach using context-aware feature learning

to perform parcellation without resorting to an atlas or a template-based registration

approach. Moreover, our approach does not require the engineering design of hand-

crafted features, reducing human expert intervention and the need for prior knowl-

edge. The employed analytics model is intuitive to humans, since the architecture

consists of visual feature images that the human can assess.

We present initial validation experiments that show promising results for auto-

matic brain labeling and parcellation, suggesting that the proposed approach has po-

tential as an alternative to existing template or atlas-based parcellation approaches.

5.3 Prior art

5.3.1 Brain parcellation approaches

One of the earliest brain parcellation works was proposed by [92]. The authors de-

scribed a method for building an attributed relational graph (ARG) from T1-weighted

MRI to represent the cortical structure of the brain. They proposed a segmentation

algorithm based on topology-preserving deformations to segment the gray matter

(GM) and the cerebral spinal fluid (CSF). A 3D skeleton was extracted from the

union of GM and CSF, which was then used to build the ARG. The nodes of the



75
ARG consisted of cortex folds (sulci) and edges in the graph encoded pairwise topo-

logical connectivity between folds and pairs of gyrus-enclosing folds. The authors

used the GM/WM interface instead of the GM/CSF interface for easier segmentation

of a topologically correct and smooth surface that served as an input to noise-sensitive

3D skeletonization. The main idea of the proposed method was the notion of discrete

object homotopy and homotopic deformations derived from a relaxed topological

equivalence class. A homotopic deformation of a discrete binary object is a trans-

formation that preserves the homotopy of the object. The concept of simple points

was used to perform homotopic deformations by adding or deleting simple points in

an iterative manner. From an initial binary image with known topological proper-

ties, the proposed algorithm minimizes a Gibbs energy objective that consisted of a

data driven and a regularization term. To segment the GM/CSF interface the fol-

lowing pipeline was employed: i) brain segmentation (binarization, erosions, marker

selection, reconstruction, closing, and cavity elimination), and ii) GM/CSF segmen-

tation using homotopic deformations. From the union of GM/CSF, the authors used

homotopic thinning based on simple points to obtain a 3D skeleton surface. The

surface was further partitioned into simple surfaces, i.e. external brain surface and

hemispheric fissure.

The authors in [93] presented a nonparametric generative mixture model for su-

pervised image parcellation. The key idea was to allow global and locally weighted

label fusion within a probabilistic maximum a posteriori (MAP) framework. Special

cases of the model are i) global, ii) local (voxel-wise independence assumption + uni-

form prior of training volumes), and iii) semi-local (neighborhood-wise independence

assumption + MRF prior) mixture models. Label fusion accounts for multiple train-

ing subjects in contrast to the STAPLE algorithm []. The algorithm was validated

on 39 (9:training, 30:testing) brain T1-weigthed MR image volumes (256x256x256,

1mm isotropic voxel resolution) involving nine regions of interest, the left and right

White Matter (WM), Cerebral Cortex (CT), Lateral Ventricle (LV), Hippocampus
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(HP), Thalamus (TH), Caudate (CA), Putamen (PU), Pallidum (PA) and Amygdala

(AM).

The authors in [94] proposed a nonparametric hierarchical Bayesian model for

functional brain parcellation. Group-level patterns of functional brain images were

learned in an unsupervised manner using a two-layer generative model. The first

layer consisted of binary activation variables that model functional brain responses

induced by visual stimuli. The second layer contained a group-based prior over all

binary activation variables modeled as a hierarchical Dirichlet process. Group-specific

response patterns as well as the number of such patterns were learned. The authors

applied their method on functional brain imaging data of the visual cortex.

An in-depth review on existing registration-based brain parcellation approaches

was performed by Klein et al. [95], where they evaluated 14 non-linear deformation

algorithms applied to human brain MRI registration. Fourteen algorithms from labo-

ratories around the world were evaluated using 8 different error measures. More than

45,000 registrations between 80 manually labeled brains were performed by algorithms

including: AIR, ANIMAL, ART, Diffeomorphic Demons, FNIRT, IRTK, JRD-fluid,

ROMEO, SICLE, SyN, and four different SPM5 algorithms (SPM2-type and regular

Normalization, Unified Segmentation, and the DARTEL Toolbox). One of the most

significant findings of their study is that the relative performances of the registration

methods under comparison appear to be little affected by the choice of subject pop-

ulation, and labeling protocol, suggesting that the findings are generalizable to new

subject populations that are labeled or evaluated using different labeling protocols.

Furthermore, they ranked the 14 methods according to three completely independent

analyses (permutation tests, one-way ANOVA tests, and indifference-zone ranking).

They further derived three almost identical top rankings of the methods. ART, SyN,

IRTK, and SPMs DARTEL Toolbox gave the best results according to overlap and

distance measures, with ART and SyN delivering the most consistently high accuracy

across subjects and label sets.
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In 2010, Klein et al. provided a validation study of volume-based and surface-

based brain image registration methods [96]. In [96] the authors presented a study

that directly compared some state-of-the-art volume registration with surface regis-

tration methods. They also compared registrations of whole-head versus brain-only

(de-skulled) images. They used permutation tests to compare the overlap or Haus-

dorff distance for more than 16,000 registrations between 80 manually labeled brain

images. The authors primary findings were the following: 1. de-skulling aids volume

registration methods; 2. custom-made optimal average templates improve registra-

tion over direct pairwise registration; and 3. resampling volume labels on surfaces or

converting surface labels to volumes introduces distortions that preclude a fair com-

parison between the highest ranking volume and surface registration methods using

present resampling methods. From the results of this study, they recommend con-

structing a custom template from a limited sample drawn from the same or a similar

representative population, using the same algorithm used for registering brains to the

template.

In contrast to existing methods, we would like to advocate a deep learning [31]

approach to automate brain image parcellation. We are motivated by models from bi-

ologically inspired artificial intelligence, in particular artificial cortical network models

such as deep convolutional networks [97] (CNs).

5.4 Methods

5.4.1 Preliminaries

Convolutional networks are extensions to classical multi-layer back-propagation neu-

ral networks. CNs involve the use of convolutions and the concept of the multi-layer

back-propagation algorithm. First, consider the one dimensional convolution of two

continuous functions f and g written f ? g
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(f ? g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ (5.4.1)

=

∫ ∞
−∞

f(t− τ)g(τ)dτ.

Here t denotes the time domain, τ a free variable, g(−τ) the reverse of g(τ) centered at

t = 0. The ? operator integrates or sums the product of f and g, where either f or g is

reversed and shifted along τ . The result is a weighted average of f(τ) at time t, where

the weighting coefficients are the values in g(t − τ). The discrete case is analogous

to the above definition except that the integrals are replaced with summation signs.

The two dimensional or n-dimensional case follows the above definition by adding

another integral/summation sign to each dimension.

In standard CNs, the architecture often contains a fully connected layer at the

end of the network hierarchy. The fully connected layer is equivalent to the layer type

found in artificial neural networks (ANNs). Fully connected layers are one dimensional

layers in contrast to CN-specific layer types. In ANNs the classical learning algorithm

performs error back-propagation through the network to learn the parameters of the

model. The parameters of the fully connected layer can be learned by solving the

following optimization problem

min
θ
O := L(X ,y,Hθ) (5.4.2)

=

N∑
i=1

C∑
c=1

(yci −Hθ(X )ci )
2 ,with (5.4.3)

Hθ =


ukp =

(∑
q I

k−1
q ? wkp,q

)
+ bkp

Ikp = f(ukp)

(5.4.4)

where L is a squared error loss, C the number of output label classes, N the number

of input samples, y the output class label vector, X the input sample, and Hθ the
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CN architecture and its model parameters. Standard gradient descent can be used

to solve Equation 5.4.2

∂L
∂wkp,q

=
N∑
i=1

C∑
c=1

∂L
∂
(
ukp
)c
i

∂
(
ukp
)c
i

wkp,q
(5.4.5)

∂L
∂bkp

=
N∑
i=1

C∑
c=1

∂L
∂
(
ukp
)c
i

∂
(
ukp
)c
i

bkp
, (5.4.6)

which leads to

∂L
∂wkp,q

=
N∑
i=1

C∑
c=1

∂L
∂
(
ukp
)c
i

(
Ik−1
q

)c
i

=
(
δkpI

k−1
q

)c
i

(5.4.7)

∂L
∂bkp

=
N∑
i=1

C∑
c=1

(
δkp

)c
i
, (5.4.8)

where

δk=L
p =

∂L
∂uLp

=
∂L
∂ILp

∂ILp
∂uLp

=
(
yp − ILp

)
f ′(uLp ) (5.4.9)

δk=l
p =

∂L
∂ulp

=
∂L
∂I lq

∂I lq
∂ulp

=
∑
q

wl+1
q,p δ

l+1
q f ′(ulp). (5.4.10)

The intuition of the last term is that the error δlp at an inner layer l is a function of

the feature map errors δl+1
q in the proceeding layer l + 1.

5.4.2 Problem formulation

Consider the problem of finding a function f : X → Y that maps an input space to

an output space. Here X refers to the brain image data and Y to a multi-class label

space of a brain parcellation. We are given a dataset D as a collection of N images

{I} = {I1, I2, ..., IN}. The dataset is further partitioned into D = {Dl,Du}, where
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xi ∈ R28×28 ŷi ∈ Z57×1

F O

IC1
q ∈ R24×24

IS1
q ∈ R12×12

IC2
q ∈ R8×8

IS2
q ∈ R4×4

Figure 5.2: Deep learning and inference with a convolutional network model. From

left to right, the deep architecture consists of several layers starting with the input

layer (I). In an alternating manner the CN consists of a hierarchical architecture of

convolutional (C1, C2) and subsampling (S1, S2) layers followed by a full-connection

layer (F), and finally the output layer (O).

Dl = {si, yi}li=1 denotes the labeled training set and Du = {si, ŷi}ni=l+1 the unlabeled

test set. Each pair consists of an image site si (e.g., voxel) and a label yi, which

assumes values in a finite set y = {0, ..., C}. The index n refers to the number of sites

within each image. For each site in the training set we form a d-dimensional patch

xi ∈ Rd. A detailed description of xi can be found in Section 5.5.1. The input-

output pairs in Dl are drawn in an independent and identically distributed manner

from some unknown probability distribution P(X, Y ) defined jointly over X and Y .

Our goal is, given Dl, to predict ŷ for the unlabeled test set Du such that the learned

approximation to f has low probability of error P(f(X) 6= Y ).

5.4.3 The convolutional network architecture

Convolutional networks (CN) belong to the class of artificial cortical network models

and are an extension to the classical multilayer perceptrons (MLPs) model. CNs

consist of a hierarchical multilayer architecture of maps as depicted in Fig. 5.2.

The learned model θ = {W ,b} includes convolutional operators W and bias terms

b, which in combination with a nonlinear activation function γ (e.g. sigmoid or

hyperbolic tangent), form so-called ”activity feature” maps Ikp, where k ∈ [1, ..., K]
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indexes a CN layer and p a particular feature map of layer k. Each layer can have

different numbers of feature maps. CNs enables the sharing of weights between the

nodes of the network.

The layers (S1, S2) are simple subsampling layers (also called max-pooling layers)

to reduce the computational load of the model and to introduce some degree of scale

invariance. The full-connection layer (F) is a hidden layer as in standard MLPs to re-

duce the dimensionality of the last subsampling layer and to aggregate the information

to each output node of the CN. The output nodes of layer (O) represent the individ-

ual class labels of the CN. The O-layer compares the forward propagated class labels

from the network with manual ground truth labels using an application-dependent

loss function.

5.4.4 Deep learning and inference

Given a CN model θ and training data (Xi,yi), the first step is to perform a forward

propagation of an input patch through the CN architecture shown in Fig. 5.2. The

feature maps in each convolutional layer (C1, C2) are computed through a recursive

forward dynamic of the form

Ikq = γ(ukq ) (5.4.11)

ukq = bkq + (
∑
p

wk
q,p ⊗ Ik−1

p ), (5.4.12)

where γ denotes a smooth differentiable nonlinearity to ensure differentiability across

layers, ukq a pre-activation image, Ik−1
p the feature image at layer k−1, wk

q,p a directed

convolution kernel from map p to q, and bkq a bias term for layer k.

The errors are then back-propagated through the network to refine and learn the

CN model in an iterative fashion. By learning θ we basically learn convolutional filters

that represent discriminative object representations of the provided parcellation units.
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Learning the model can be achieved by solving the following optimization problem

min
θ
O(Xi,yi, θ) := θt+1 ← θt − η∇θO(Xi,yi, θ). (5.4.13)

Equation 5.4.13 can be solved with a recursive error back-propagation scheme within

an online learning setting using stochastic gradient descent. We maximize the likeli-

hood model by minimizing the negative log-likelihood

P(Y = c|X , θ) =
eWix+bi∑
j e

Wjx+bj
(5.4.14)

`(θ|X ,y) =
∑
i

= log(P(Y = yi|Xi, θ)) (5.4.15)

min
θ
O(X,y, θ) = −`(θ|X ,y) (5.4.16)

(5.4.17)

Solving the Equation 5.4.14 can be done by following the procedure outlined in

Section 5.4.1. In the O-layer the final output label can be inferred by taking the

class with the maximum probability given the data.

ŷ = max
i

P(Y = i|X, θ). (5.4.18)

5.5 Experiments and results

5.5.1 Context-aware feature learning

We have built two context-aware feature configurations to examine labeling perfor-

mance in relation to varying degrees of available contextual information around a
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particular voxel location. We performed experiments on a single planar slice to assess

the labeling performance of the deep convolutional network architecture. Fig. 5.3

shows examples of feature configuration C1 and C2 that were used to assess labeling

performance of the CN architecture. The white dot denotes a voxel location and

the white rectangle the feature patch. Feature configuration C1 consisted of a sin-

gle patch, whereas feature configuration C2 comprised a cross configuration of four

patches (i.e., north, south, west, east). Both feature configurations were obtained

through randomized sampling to build the training and validation set (xi, yi). Lin-

ear sampling was used to generate the test set. To perform cortical and subcortical

parcellation, we constrained the context area for feature configuration C1 to a 28 x

28 dimensional patch. For C2, the four-element patches had dimensions of 14 x 14

pixels, which were concatenated back to the final 28 x 28 patch dimension as in C1.

Fig. 5.4 shows an example of 5000 randomly selected C1 patches from a pool of

50,000 patch samples.

C1

C2

Figure 5.3: Context-aware feature configurations for the deep learning and inference

scheme. Shown are the orthogonal slices of subject one from the LBPA40 dataset.

The white dot denotes a voxel location and the white rectangle the feature patch. By

adjusting the size of the patch surrounding context information can be incorporated.
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Figure 5.4: 5000 random voxel locations and their associated raw image patches.

Each patch captures local information at a certain voxel position in the brain.

5.5.2 Deep learning performance in resource constraint set-

tings

For our experiments we used 40 brain images and their labels (56 structures + back-

ground) from the LONI Probabilistic Brain Atlas (LPBA40) at the Laboratory of

Neuro Imaging (LONI) at UCLA [?]. We performed two sets of experiments on the

LPBA40 dataset to assess the performance of our approach using feature configu-

ration C1 and C2. The motivation of our experiments was to assess whether deep



85
learning and inference can learn complex discriminative object representations from

human expert-provided labels.

For both configurations we have used the following settings (learning rate η =

0.1, batch size = 25, number of training epochs = 50, number of randomized patches

= 25000, number of feature maps in each layer (C1, S1) = 20, (C2, S2) = 50). We

split the training and validation set with a ratio of 80:20 from a single central slice of

subject 1. The validation set of subject 1 was used to determine the best performing

model during online stochastic gradient descent learning. After the best model was

obtained test performance was assessed on single central slices of all other remaining

LPBA40 subjects. For testing, we performed linear patch sampling in order to learn

a site-wise class probability. Invalid patch samples near the border were ignored.

Parcellation labels were then obtained by choosing the class label with the highest

probability given the patch information and the learned CN model.

For quantitative validation we computed sensitivity, specificity, positive predictive

value, negative predictive value, and the Dice coefficient Dc for the overall cortical

structure and for individual subcortical structures. The Dice coefficient is defined as

Dc = 2|A∩B|
|A|+|B| , where Dc measures the set agreement between the ground truth labels

and the predicted brain parcels. The Dc score ranges from (0-1), where 1 means

perfect agreement.

For experiment C1, the complete cortical structure had a mean Dc of 0.73 (±
0.05), whereas for C2, the same structure had a mean Dc of 0.65 (± 0.04) over all 39

test subjects.

Fig. 5.5 shows the manual ground truth (LPBA40) labels provided by the human

expert for all 40 subjects of the LPBA40 dataset.

Fig. 5.6 shows the computed parcellation results by the convolutional network

using feature configuration C1 for all 40 subjects of the LPBA40 dataset.

Table 5.1 and 5.2 show the quantitative labeling results for all 40 subjects in terms

of the sensitivity, specificity, positive predictive value, and the negative predictive
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value.

Figure 5.5: Ground truth labels provided by the human expert.

Figure 5.6: Predicted parcellations labels by the CN.

5.6 Discussion

Given the limited training set the overall performance for labeling the complete cortex

was surprisingly good in terms of the Dice coefficient and the other four performance

measures outlined in Table 5.1 and 5.2. From the qualitative parcellation results in
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Subject Id Sensitivity Specificity PPV NPV

1 0.9850 0.9223 0.9777 0.9466

2 0.9347 0.6076 0.8804 0.7507

3 0.9443 0.7857 0.9350 0.8120

4 0.9419 0.7638 0.9325 0.7913

5 0.9510 0.6666 0.8967 0.8172

6 0.9560 0.6231 0.8706 0.8423

7 0.9571 0.6863 0.9039 0.8384

8 0.9516 0.6357 0.9002 0.7919

9 0.9492 0.6795 0.9006 0.8140

10 0.9447 0.6249 0.8823 0.7916

11 0.9640 0.7040 0.9228 0.8420

12 0.9383 0.7110 0.9094 0.7883

13 0.9439 0.7815 0.9354 0.8060

14 0.9632 0.7420 0.9321 0.8459

15 0.9445 0.7309 0.9236 0.7925

16 0.9485 0.6623 0.9081 0.7854

17 0.9657 0.7060 0.9110 0.8685

18 0.9458 0.6812 0.9010 0.8039

19 0.9445 0.6798 0.9100 0.7811

20 0.9226 0.4621 0.8269 0.6820

Table 5.1: Quantitative labeling results produced by the convolutional network for

subjects 1-20. PPV stands for Positive Predictive Value and NPV for Negative Pre-

dictive Value.

Fig. 5.6 we can observe that the CN provides better parcellation results for larger

regions than for smaller ones. In general the Dc was low for small brain parcels in

comparison to larger sub-cortical structures. This can be explained by the primitive

training dataset and unbalanced class sample distributions. However, the initial ex-

periments look promising given the limited amount of training data. To improve upon

the current results several options are available. We believe that an affine registra-

tion in combination with location information into the feature vector will improve the

current parcellation performance. Instead of one large CN architecture, training an

ensemble of multiple CNs for each parcellation region would further improve the re-
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Subject Id Sensitivity Specificity PPV NPV

21 0.9458 0.6890 0.9092 0.7941

22 0.9433 0.6114 0.9020 0.7399

23 0.9422 0.5331 0.8409 0.7788

24 0.9493 0.6370 0.8849 0.8102

25 0.9585 0.7374 0.9243 0.8417

26 0.9422 0.7305 0.9212 0.7907

27 0.9443 0.6702 0.9083 0.7768

28 0.9333 0.6259 0.8842 0.7539

29 0.9358 0.6779 0.9042 0.7648

30 0.9352 0.6512 0.9056 0.7376

31 0.9539 0.7155 0.9116 0.8346

32 0.9360 0.6207 0.8873 0.7525

33 0.9517 0.7475 0.9356 0.8008

34 0.9304 0.6046 0.8885 0.7195

35 0.9296 0.6842 0.9026 0.7555

36 0.9420 0.6248 0.8924 0.7654

37 0.9612 0.6953 0.9134 0.8429

38 0.9344 0.6135 0.8940 0.7282

39 0.9543 0.7468 0.9291 0.8246

40 0.9306 0.6078 0.8799 0.7392

Table 5.2: Quantitative labeling results produced by the convolutional network for

subjects 21-40. PPV stands for Positive Predictive Value and NPV for Negative

Predictive Value.

sults. The overall parcellation performance showed high variability and no significant

difference between feature configuration C1 and C2. We have used the convolutional

network implementation provided by Theano [98].

Initial experiments showed that in cases where image quality is poor, i.e. low image

contrast and high noise levels, the learned model failed in producing good labeling

results. Furthermore, bringing the multiple brain image volumes into a common affine

coordinate system could circumvent failure cases where individual brain volumes had

high variability in appearance such as scale and rotation. In general a single CN model

failed in producing robust and accurate labelings for small parcellation regions.
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5.7 Conclusion

In this chapter we have presented a novel application of biologically inspired cortical

network models to automate brain image parcellation using a deep convolutional net-

work architecture. We were able to demonstrate parcellation of the cerebral cortex,

without human intervention to build handcrafted features or to provide other prior

knowledge. The feature configurations were able to correctly reject the detection of

the main white matter regions. We attribute the low parcellation performance and

high inter-subject variability to the very limited training set that we used. Another

factor that affected the performance was the crude registration of the dataset causing

the central slices that were used for training and testing to be misaligned. Misalign-

ment caused by registration errors however can be accounted for by enriching the

training set samples from a slab of slices. In future work we plan to improve upon

the results obtained by these initial experiments and to extend our current approach

to three-dimensional, context-aware feature learning and in-depth validation of the

model in a clinical setting.
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Chapter 6

Learning human intuitive

spatio-temporal event patterns

6.1 Abstract

In this chapter we address the problem of how we can build data-driven analytics for

exploratory analysis in longitudinal event data that are commensurate with human

capabilities and constraints.

We propose human-intuitive analytics that enable the representation and discovery

of interpretable event patterns to ease knowledge absorption and comprehension of the

employed analytics model. We develop a novel temporal event matrix representation

and learning algorithm to perform large-scale temporal pattern mining of longitudinal

heterogeneous event data. The algorithm enables the representation, extraction, and

mining of complex latent event relationships within single and multiple event entities

to perform exploratory group analysis.

We demonstrate the developed analytics within the healthcare domain by ex-

ploring healthcare resource utilization (HRU) in relation to diabetic disease severity.

Experimental results demonstrate that we can learn meaningful interpretable pat-

terns.
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The developed analytics have practical value by leveraging the interplay of syn-

ergistic human-intelligence, enabling medical practitioners to better reason about,

perceive, and understand complex temporal event relationships in longitudinal EHRs.

6.2 Introduction

Temporal event data are ubiquitous in nature and all aspects of our everyday life.

Examples include the 1) neural firing pattern of individual neurons in our brains

[99], 2) business transactions in the financial sector [100], 3) external event stimuli

a robot interacts with [101], 4) event-related data from sensor measurements [102;

103], or 5) the healthcare industry [12].

Finding latent temporal patterns is important in many domains as they encode

temporal concepts such as event trends, episodes, cycles, and abnormalities. For

example, in the healthcare domain latent event patterns facilitate decision support for

patient diagnosis, prognosis, and management. Of particular interest is the temporal

aspect of information hidden in event data that may be used to perform intelligent

reasoning and inference about the latent relationships between event entities over

time. An event entity can be a person, an object, or a location in time. In our case

the entity we refer to is the electronic health record.

Recent efforts towards the implementation of electronic health records show promise

towards better data integration, automated access, and improved care delivery, yet

their full potential is still underutilized. The vast amount of data contained in an

EHR pose challenges not only to medical practitioners, but also to the information

analysis by machines. Mining electronic health records is a difficult task due to data

complexity and scale. More specifically, we face the following challenges:

• Complexity. Medical treatment is a complex multi-faceted endeavor involving

nested hierarchies of temporal event relationships that involve multiple covari-

ates and heterogeneous events composed of a mixture of single events, intervals,
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Event Hierarchy of EHR Claims Temperal Event Matrix Representation (TEMR)
time

C
at

eg
or

yA

time

Claim History
test results

B
specialist care
medical procedures

Claim History

drug treatment

drug treatment
Claim History C

Probabilistic 
Event Space

Geometric 
Image Space

Figure 6.1: The proposed temporal event matrix representation (TEMR). The space-

time dimension of a probabilistic event space R3 × R is mapped onto a measurable

geometric space of R2 by encoding events within a structured sparse image matrix.

Left: The EHR can be abstracted as a nested heterogeneous event hierarchy. Event

realizations can comprise multiple event groups (e.g. A, B, and C). Each event-

group itself consists of an event category hierarchy. Right: In TEMR event types

and groups are represented with a visual symbol system to ease interpretation. The

temporal (time) dimension of events is mapped along the x-dimension and different

event categories are stacked up along the y-dimension. Visual shift-invariant latent

patterns can then be mined.

and sequences. Multivariate nested and heterogeneous event patterns over time

are difficult to make sense of.

• Incompleteness. In reality we often face the missing data problem and data

irregularity, where patients may face sudden death, do not follow recommended

treatment guidelines, or physician dependent differences in care delivery.

• Interpretability. Clinical decision making relies on precise knowledge of the

patient’s medical history in context to group specific patient characteristics. In

order to make optimal use of human and machine knowledge, the employed

analytics should be commensurate with human capabilities and constraints,

while at the same time provide deep insight into the patient record. Thus the
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mined patterns should be interpretable.

• Shift-invariance. Medical histories of patients differ in their absolute time

stamps (i.e. they are not time aligned). Making inferences on common and

individual patient characteristics within populations requires a time (shift)-

invariant representation of the patient.

• Scalability. The patient’s medical history captured within EHRs contains mas-

sive collections of heterogeneous data sources and modalities. Especially for

diabetic patients with chronic diseases these records are long and complex. The

employed analytics should efficiently cope with big data to support deep anal-

ysis.

This chapter proposes human-intuitive analytics that enable the representation and

discovery of interpretable event patterns to ease knowledge absorption and compre-

hension of the employed analytics model. We develop a novel temporal event matrix

representation, which we name TEMR, and learning algorithm to perform large-scale

temporal pattern mining of longitudinal heterogeneous event data. The algorithm

enables the representation, extraction, and mining of complex latent event relation-

ships within single and multiple event entities to perform exploratory group analysis.

We outline the contributions of this chapter at three levels.

• Algorithmic level. We propose 1) a novel stochastic optimization scheme for

large-scale longitudinal event pattern mining of multiple event entities in a group

and 2) a doubly constrained sparse coding framework that learns over-complete,

shift-invariant, and sparse temporal event patterns for improved interpretability.

We show how to cope with the sparsity in the data as well as in the latent

factor model by inducing `1-norm constraints on the latent factors and its basis
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coefficients. We demonstrate that appropriate normalization constraints on the

sparse latent factor model allow for automatic rank determination.

• Representation level. TEMR supports 1) the representation of hierarchical event

data composed of single events, event intervals, and higher-order event struc-

ture, 2) the combination of semantically invariant shape and probabilistic met-

rics to facilitate knowledge reasoning and inference, 3) the joint representation

of continuous and discrete categorical event data, and 4) the application of

our representation to the challenging task of mining heterogeneous longitudinal

event data from electronic health records. TEMR maps the space-time dimen-

sionality of a probabilistic event space onto a measurable geometric space of

R2 by encoding events as a structured spatial-temporal shape or point process.

This projective mapping is achieved by using a rich geometric visual symbol

system forming a structured two-dimensional sparse matrix. We address the

missing data problem by representing the probabilistic event space with a geo-

metric temporal event matrix representation, where missing events are handled

implicitly as empty elements in the matrix.

• Experimental level. We validated our approach with extensive large-scale exper-

iments on synthetic data and on a real-world electronic health records (EHRs)

dataset. In total over 70,000 latent factor models were computed. We employ a

special case of the β-divergence and show that this parameterization optimally

copes with binary sparse data. The β-divergence is a parameterized family of

cost functions that measures the difference between two probability distribu-

tions [104]. The β-divergence has been mainly used for continuous, non-binary,

and non-sparse music spectrogram data within a nonnegative matrix factoriza-

tion framework by considering special cases of β, (e.g. β = 0, 1, and 2) [105].

We report on optimal model parameters (β, rank, window size, sparsity), con-

vergence behavior, and the reconstruction accuracy. We link temporal patient
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encounter patterns against a diabetic complications severity index to explore

the relationship between HRU and diabetic disease severity.

6.3 Prior art

This section is divided into two parts. The first part provides related work on the

topic of knowledge representations for temporal data mining. We address time series

knowledge representations as the continuous counterpart to our proposed geometric

event matrix representation for discrete temporal event data. The second part outlines

related work on nonnegative matrix factorization and its various extensions. In each

section we contrast our contributions with the state of the art.

6.3.1 Time series knowledge representations

Most of the relevant prior research in temporal data mining transforms multivariate

continuous time series into discrete symbolic representations (string, nominal, cate-

gorical, and item sets). Keogh et al. summarized existing time series representations

as data adaptive and non-data adaptive representations such as the standard discrete

Fourier transform (DFT), the Wavelet transform (DWT), piecewise linear approxima-

tion (PLA), adaptive piecewise constant approximation (APCA), the singular value

decomposition (SVD), and symbolic aggregate approximation (SAX) [106].

A multitude of temporal knowledge representations in the form of symbolic lan-

guages and grammars have been formulated as a means to perform intelligent rea-

soning and inference from time-dependent data. Mörchen et al. (2006 [107], 2007

[108], 2010 [109]) proposed a novel Time Series Knowledge Representation (TSKR)

as a pattern language (grammar) for temporal knowledge discovery from multivariate

time series and symbolic interval data. A main drawback is that symbolic languages

and temporal grammars specify time-dependent structure explicitly. They assume a

fixed event structure such as event intervals, which limits the flexibility of learning
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unknown patterns that are not part of the specified language or grammar model.

In contrast to [106; 107; 108; 109] our knowledge representation does not use a

symbolic language or grammar to represent knowledge, but rather uses a geometric

approach to visually encode event data. In our approach, single events, event inter-

vals, and high-order event structure (trends, episodes, cycles, etc.) can be represented

jointly. Whereas other languages address the missing value problem by modeling

event intervals instead of single events our representation can jointly encode both

types of event structure. Another advantage is that our knowledge representation

condenses complex multivariate temporal event relationships into an intuitive, inter-

pretable, simple visual form that can be easily absorbed and understood by humans

for synergistic human-machine intelligence. Moreover our representation supports rich

analysis by employing methods from the image processing community in combination

with standard probabilistic models for statistical event analysis.

6.3.2 Nonnegative matrix factorization and extensions

Early nonnegative matrix factorization (NMF) algorithms include the work from

Paatero (1994) [110] and Lee and Seung (1997, 1999, 2001) [111], [112], [113]. Since

then, many extensions have been proposed. Hoyer (2002) [114] and Eggert (2004)

[115] introduced sparse NMF by adding a sparsity inducing regularizer to the stan-

dard NMF objective. The concept of sparsity is important for model interpretability,

improved algorithm performance, and efficient data representation. To address the

dynamic nature of the data, convolutional NMF models have been proposed by Eg-

gert (2004) [116], Smaragdis (2004) [117], and O’Grady and Pearlmutter (2007) [105].

Recently, several forms of online NMF have been proposed as in Cao et al. (2007)

[118], Mairal et al. (2010) [119], and Wang et al. (2011) [120].

0In what follows we will adopt the notation from the standard matrix factorization literature. The

literature uses several notations for the bases and coefficient matrix e.g. {(W,H), (F,G), (A,S)}.
We will follow Lee and Seung’s notation.
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Our contributions differ with the work in [105],[117],[118],[119], and [120] in sev-

eral ways. We perform a stochastic optimization scheme within a doubly constrained

convolutional sparse coding framework to support: 1) large-scale factorization of sin-

gle and multiple spatial-temporal point processes in a group and 2) an over-complete

sparse latent factor model for solving the rank selection problem to learn common

and individual temporal patterns within a group. In [114],[105],[117],[116] it was

mentioned that W requires having unit norm bases. However, basis-wise normaliza-

tion in conjunction with a sparsity constraint on W leads to a latent factor model

that is non-sparse with respect to the bases set. In contrast, an element-wise nor-

malization enables a sparse over-complete latent factor model, where the majority

of basis atoms are zero. Whereas [105] used the β-divergence for continuous music

spectrogram analysis with the standard setting of β = 1, we employ a special case

(β = 0.5) of the parameterized β-divergence and show that it outperforms the gener-

alized Kullback-Liebler divergence for β = 1. Our update rules for W and H differ

as does the normalization constraint on W to allow for an over-complete sparse bases

representation accounting for sparsity in the latent factor model W as well as in H.

For H we use a true convolutional update rule that does not average the weighting

coefficients across multiple shifted windows. The update equations of our stochastic

optimization scheme employ multiplicative update rules, which lead to simplified im-

plementations without the need to optimize the learning rate of the gradient descent

step.

6.4 Methods

6.4.1 The temporal event matrix representation

The proposed temporal event matrix representation is composed of a rich set of ge-

ometric shape primitives that symbolize multivariate event data. TEMR maps the

space-time dimensionality of a probabilistic event space R3 × R onto a measurable
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Figure 6.2: TEMR as a matrix and tensor for single and multiple spatial-temporal

point processes. (a) Multiple event sequences Ep,q of a group Gp (rows within a colored

block) are vertically stacked together. At a second level, multiple event sequence

groups Gp (red, green, blue) are vertically stacked on top of each other. The shown

spatial-temporal process ξ on the left consists of three groups G1 (red), G2 (green),

and G3 (blue). Black dots denote active events. (b) Multiple such STPPs in a group

form a three-way tensor Gξ. (c) A tensor unfolded view of Gξ is shown on the right,

where n denotes the sample size, c the number of categories, t the number of time

points, and w the temporal window size. Note the different temporal dimensions each

STPP can have.

geometric space of R2 by encoding events with a rich visual symbol system. The

visual symbol system can use color, shape, texture, position, value, and orientation

to encode information. This mapping produces a structured sparse image matrix (see

Fig. 6.1), which is flexible in terms of visually representing different event data types

in a form intuitive to humans.

TEMR can be used to represent single or multiple event entities, where an event

entity would correspond to all the events that are captured within a patient’s EHR.

Multiple event entities would thus correspond to multiple TEMR matrices forming

a 3-order tensor or alternatively an unfolded 2-order tensor. Each event belongs

to a labeled event-type (ET) and an event-group (EG) category (red, green, blue

boxes). Multiple event sequences can be encoded with TEMR forming a multivariate

representation, where the rows of TEMR encode ET/EG categories and the columns

encode the time domain. These concepts are illustrated in Fig. 6.2.
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TEMR can also be used to build a rich patient signature, which is composed of

multiple temporal pattern windows of different lengths (e.g., week, month, quarter).

Each pattern window captures specific latent aspects of the patient’s medical history.

This visual patient representation is efficient, intuitive, and is commensurate with

human capabilities and constraints. Fig. 6.3 shows an example of a TEMR patient

signature composed of multiple weekly, monthly, and quarterly temporal event pattern

windows. The fundamental unit of analysis is a single event (a black square) from

which a pair of events (two black squares) can be used to define an event interval or

a set of ordered events to define an event sequence (a multiple black squares).

Patient Signature

Week Month Quarter Event

PS

Figure 6.3: The TEMR patient signature. PS is composed of multiple temporal

pattern windows of different lengths (e.g. week, month, and quarter). One could also

imagine a more generic hierarchical structure of the temporal pattern windows, where

weekly windows could be extracted from monthly windows.

TEMR enables the encoding of the temporal concepts of order, duration, coincidence,

concurrency, synchronicity, periodicity, and trends of time patterns. Temporal oper-

ators for qualitative temporal reasoning have quantitative meaning in the measurable

geometric space. For example, temporal operators such as before, meets, overlaps,
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Figure 6.4: Temporal operators, constraints, and concepts. Left: The temporal op-

erators describe common temporal event interval operators as proposed by Allen’s

interval logic. Middle: TEMR can represent qualitative temporal reasoning of tem-

poral constraints such as shortly after, soon after. In addition, TEMR also enables the

representation of event trends, intervals as well as heterogeneous and nested events.

Right: The list of temporal concepts describe the event interval concepts as proposed

by Mörchen et al. [109; 107; 108]. The red and green colors were chosen for improved

visualization purposes and do not have a particular meaning.

starts, during, finishes, after, close, equals, or in combination with time constraints

shortly after and soon after can be expressed in terms of geometric shape distances.

We refer to a mixture of single events, event pairs, and event sequences as high-order

heterogeneous temporal events. These concepts are illustrated in Fig. 6.4.

By using shape invariant metrics semantic invariances can be modeled and in-

cluded into the mining framework. We note that the chosen geometric represen-

tational space offers a wide set of tools to be applied from the signal and image

processing community.
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6.4.2 Preliminaries

Suppose we have a TEMR matrix X ∈ Rc×t, where c is the number of event categories

and t the length of the patient’s medical history. In order to learn a shift-invariant

representation of X we consider the following convolutional latent factor model

X =W ?H+ N (6.4.1)

where W = {W(d)}rd=1 ∈ Ru×v×r and H = {H(d)}rd=1 ∈ Rr×c×t are 3-order tensors,

? a shift-invariant convolutional operator, and N a noise model. Here u and v refer

to the dimensions of a single basis element and r to the size of the basis set. The ?

operator in equation 6.4.1 can be expanded into

(W ?H)ij =
∑
d

∑
m,n

W(d)(i−m, j − n)H(d)(m,n), (6.4.2)

where m,n denote the shift indices and d a basis index. In the case of (m = 0 and

n > 0) we obtain a horizontal shift-invariant latent factor model in which case H
reduces to H ∈ Rr×t. Similarly, for (m > 0 and n = 0) we obtain vertical shift

invariance. Equation 6.4.2 consists of a linear superposition of a basis set convolved

with its coefficient matrix.

The horizontal shift-invariant latent factor model takes the form

X ≈ X̃ =
∑
n

∑
d

W(d)(n)h(d)(j − n) + N, (6.4.3)

where h(d) ∈ R1×t corresponds to the weighting coefficients of a single basis atom

W(d), n the shift index, and r the number of basis atoms (i.e., the rank of the latent

factor model). In matrix form we can write

X ≈ X̃ = (W ?H)ij =
T∑
τ=1

(W)i,j=τ,k(H)i,j−τ . (6.4.4)
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where we assume N = 0. Here W ∈ Rc×w×r is a three order tensor and H ∈ Rc×t the

basis coefficient matrix. One can see that the convolutional form also returns a c× t
matrix.

Next, we define the matrix β-divergence dβ(X|X̃) [121],[104]1between the original

matrix X and the approximated matrix X̃ as a general divergence measure

dβ(X|X̃) =
1

β(β − 1)

∑
ij

(Xβ
ij + (β − 1)X̃β

ij − βXijX̃
β−1
ij ), (6.4.5)

where β ≥ 0 is a nonnegative constant. Taking the limit of equation 6.4.5 by

letting β approach 0, 1, and 2 gives the Itakura-Saito divergence (DIS), generalized

Kullback-Liebler divergence (DKL), and the Euclidean distance (DE) respectively.

lim
β→0

dβ(X|X̃) = dDIS
β=0(X|X̃) =

∑
ij

Xij

X̃ij

− log
Xij

X̃ij

− 1 (6.4.6)

lim
β→1

dβ(X|X̃) = dDKL
β=1 (X|X̃) =

∑
ij

Xij log
Xij

X̃ij

+ X̃ij −Xij (6.4.7)

lim
β→2

dβ(X|X̃) = dDE
β=2(X|X̃) =

∑
ij

1

2
(Xij − X̃ij)

2 (6.4.8)

Finally, we introduce a shifting matrix S. S is a n× n matrix of the form

Sτ=1 =



0

1
. . . 0

. . .
. . .

0
. . .

. . .

1 0


=

 0 0

In−1 0

 , (6.4.9)

1Besides the β-divergence one could also use the α-divergence [121] or γ-divergence [?].
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which when multiplied with a matrix Xij causes xj to shift by j = τ columns.

Shifting matrices are zero-one matrices that have useful properties for the analysis of

time series models. Here Sτ=1 is the first associated shifting matrix out of n shifting

matrices. Sτ=1 has off-diagonal entries of value one and zero elsewhere. The pre-

or post-multiplication of a matrix X with τ=1 shifts the entries of X by one row or

column respectively. The operator fills up the empty space that is created due to the

shift with zero values. Shifting can be performed in a bidirectional manner. To right

and left-shift X by n shifts we can use Xn→ = XSTn and X←n = XSn.

6.4.3 Learning a single spatial-temporal point process

We are interested in two aspects. First, to learn a human-intuitive horizontal shift-

invariant sparse bases (i.e., a double sparse dictionary) W and the associated sparse

weighting coefficients (sparse code) H ofW . The emphasis is on learning an efficient,

minimalistic, and interpretable representation Rθ, with θ = {W ,H}. Learning Rθ

can be achieved by coupling an approximation error objective with a sparsity con-

straint on W and H

Given a sparse data matrix X ∈ Rc×t we learn a horizontal shift-invariant latent

factor model by minimizing the following constrained optimization problem

min
W,H
O(X,W,H) := dβ

(
X,

T∑
τ=1

(W)i,j=τ,k(H)i,j−τ

)
(6.4.10)

s.t.∀τ := 1, 2, ..., T,W ≥ 0,H ≥ 0,

Taking the partial derivate of 6.4.10 with respect to the latent factor model we have

∂O
∂Wjk

=

t∑
τ=1

r∑
d=1

(
X̃β−1 −X� X̃β−2

) (
HSTτ

)T
i

(6.4.11)
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and

∂O
∂H

=
t∑

τ=1

(
X̃β−1 −X� X̃β−2

)
WT
j , (6.4.12)

where � and / are element-wise operations. From equation 6.4.11 and 6.4.12 we

can obtain multiplicative update rules by diagonally rescaling the gradient to cancel

out the learning rate

Wjk ←
t∑

τ=1

r∑
d=1

Wjk �
(X� X̃β−2)

(
HSTτ

)T
i

+ ε

(X̃β−1) (HSTτ )Ti + ε
, (6.4.13)

H←
t∑

τ=1

H�
WT
j

(
X� X̃β−2Sτ

)
+ ε

WT
j

(
X̃β−1Sτ

)
+ ε

. (6.4.14)

To account for double sparsity, i.e. the sparsity in the data as well as in the latent

factor model, we regularize the β-divergence by inducing a double sparsity constraint

on W and H. The double sparsity constraint requires a different normalization con-

straint to support an over-complete bases set, where the factorization rank r can be

defined such that r is larger than the actual bases elements in the data. The over-

complete bases representation addresses the rank selection problem, where irrelevant

basis elements are squashed to be zero and only a few basis elements that are sup-

ported in the data are retained. The regularized β-divergence with the double sparsity

constraint can be formulated by the following constraint optimization problem

min
W,H
O1,where

O1(X,W,H) := dβ

(
X,

T∑
τ=1

(W)i,j=τ,k(H)i,j−τ

)
+ λ1

∑
|Wi,j,k|+ λ2

∑
|Hi,j | , (6.4.15)

s.t.∀τ := 1, 2, ..., T,W ≥ 0,H ≥ 0.
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The joint objective of equation 6.4.15 is non-convex, but convex with respect to

W and H individually. The problem can be solved with an alternative optimization

(block coordinate descent), where each factor is optimized in an alternate fashion. By

inducing a `1-norm constraint on the β-divergence, sparsity can be enforced in a trade-

off with the approximation error of the factorization. As in equation 6.4.11- 6.4.14

we obtain the multiplicative update rules by following the same procedure

∂O1

∂Wjk
=

t∑
τ=1

r∑
d=1

(
X̃β−1 −X� X̃β−2

) (
HSTτ

)T
i

+ λ1 (6.4.16)

∂O1

∂H
=

t∑
τ=1

(
X̃β−1 −X� X̃β−2

)
WT
j + λ2, (6.4.17)

Wjk ←
t∑

τ=1

r∑
d=1

Wjk �
(X� X̃β−2)

(
HSTτ

)T
i

+ ε

(X̃β−1) (HSTτ )Ti + λ1 + ε
, (6.4.18)

H←
t∑

τ=1

H�
WT
j

(
X� X̃β−2Sτ

)
+ ε

WT
j

(
X̃β−1Sτ

)
+ λ2 + ε

. (6.4.19)

Considering normalization-invariant update rules the optimization problem from equa-

tion 6.4.15 becomes

min
Ŵ,H
O2,where

O2(X, Ŵ,H) := dβ

(
X,

T∑
τ=1

(
Ŵ
)
i,j=τ,k

(H)i,j−τ

)
+ λ1

∑∣∣∣Ŵi,j,k

∣∣∣+ λ2

∑
|Hi,j | ,

(6.4.20)

s.t.∀τ := 1, 2, ..., T, Ŵ ≥ 0,H ≥ 0,

where different types of normalization constraints can be employed. Here we consider

total normalization and individual normalization of W
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ŴT =
W
‖W‖F

=
W√∑

ijk |Wijk|2
, or (6.4.21)

ŴI =
r∑

d=1

W(d)

‖W(d)‖F
=

r∑
d=1

W(d)√∑
ij |W(d)

ij |2
. (6.4.22)

For total normalization we normalize the complete tensor (each element) Wijk by its

`2-norm. By inserting equation 6.4.21 or 6.4.22 into equation 6.4.20 we can solve

the partial derivatives of the latent factor model and its multiplicative update rules

by using the quotient rule

∂O2

∂Ŵij

=
t∑

τ=1

r∑
d=1

(
X̃β−1 −X� X̃β−2

) ∂X̃

∂Ŵij

+ λ1 (6.4.23)

=
t∑

τ=1

r∑
d=1

(
X̃β−1 −X� X̃β−2

) ‖W‖F −WjkŴT
jk

‖W‖2F
(
HSTτ

)T
i

+ λ1 (6.4.24)

∂O2

∂H
=

t∑
τ=1

(
X̃β−1 −X� X̃β−2

) WT
j

‖W‖F
+ λ2, (6.4.25)

which then results in

W̃jk ←
t∑

τ=1

r∑
d=1

Wjk �

(
X +WjkW̃T

jkX̃
)
� X̃β−2

(
HSTτ

)T
i

+ ε(
X̃ +WjkW̃T

jkX
)
� X̃β−2 (HSTτ )Ti + λ1 + ε

, (6.4.26)

H←
t∑

τ=1

H�
W̃T

j

(
X� X̃(β−2)Sτ

)
+ ε

W̃T
j

(
X̃β−1Sτ

)
+ λ2 + ε

. (6.4.27)

where the indices for W̃jk and Hi run over j = τ, k = d, i = d. This factorization

allows us to learn an over-complete minimalistic and interpretable representation that

is intuitive to humans.

The general algorithm for learning an over-complete sparse latent factor model of

a single spatial-temporal point processes can be implemented as outlined in algorithm

6.1.
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Algorithm 6.1 Learning a single spatial-temporal point process

Require: X,W ,H, r, T, β, λ, iter

Ensure: W ≥ 0,H ≥ 0

Initialize W ,H

Normalize W via equation 6.4.21

for i = 1 to iter do

Update H via equation 6.4.27

Update W via equation 6.4.26

Normalize W via equation 6.4.21

Compute dβ(X|X̃) via equation 6.4.5

if (converged) then

break

end if

end for

return RΘ = {W ,H}

6.4.4 Learning multiple spatial-temporal point processes in

a group

Whereas one could now use the learned latent factor model to perform group-based

analysis using a clustering scheme, the non-convex and non-unique objective pose

problems regarding the reproducibility of the learned representation (i.e., its latent

bases). Each individual factorization will result in arbitrary orderings of the latent

basis atoms. Thus any clustering based on the individual latent basis atoms will give

meaningless results. In this regard our goal is to learn a hidden group structure for

multiple spatial-temporal point processes in a joint fashion.

Multiple spatial-temporal point processes form a 3-way tensor X = [X1, ...,Xn]

where individual TEMR’s are stacked up on top of each other along the 3rd dimen-

sion. To learn a group structure of multiple spatial-temporal point processes several

strategies can be employed.

A straightforward way is to adopt the learning process from the previous section

on an unfolded zero-padded two-way tensor of size Rc×(t∗n+(n+1)∗w) (see Fig. 6.2).
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For small n, factorizing the unfolded tensor enables to learn a minimalistic and in-

terpretable group representation that jointly learns the common temporal patterns.

However, this approach has several limitations. If c, t, or n is large, the individ-

ual learning scheme quickly becomes computationally expensive and intractable. For

large w zero-padding individual slices of the original three-way tensor is wasteful.

Another alternative is to keep the three-way tensor structure and employ a stochas-

tic optimization scheme. This prevents the storage of zero-padded elements as well

as computationally efficient optimization. Within the stochastic optimization scheme

large values of w and n do not incur an overhead in space complexity. Large values of

c and t could be efficiently treated with parallel optimizations. Within the stochastic

optimization scheme data samples arrive in a sequential manner and RΘ is adaptively

learned in an online fashion allowing to learn the latent group structure for large n.

We consider single group and multiple group structure learning. Given Xc =

[Xc1, ...,Xcn] and assuming c ∈ C = {1} learning the group structure of Xc amounts

to solving the following constrained optimization problem

min
Ŵ
O3,where

O3

(
Xc, Ŵc,Hc

)
:=

n∑
l=1

dβ

(
Xl,

T∑
τ=1

(
Ŵ
)
i,j=τ,k

(Hl)i,j−τ

)
+ λ1

∑∣∣∣Ŵi,j,k

∣∣∣+ λ2

∑∣∣∣(Hl)i,j

∣∣∣ ,
(6.4.28)

s.t.∀τ := 1, 2, ..., T ; l = 1, ..., n; Ŵ ≥ 0,Hl ≥ 0,

where Hc := {Hl}nl=1, Xl ∈ Rc×t,W ∈ Ru×v×r, and Hl ∈ Rr×t. Following the same

approach as in equation 6.4.16 and 6.4.25- 6.4.27 we obtain
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Ŵjk ←
n∑
l=1

t∑
τ=1

r∑
d=1

Wjk �

(
Xl +WjkŴT

jkX̃l

)
� X̃β−2

l

(
HlS

T
τ

)Ti + ε(
X̃l +WjkŴT

jkXl

)
� X̃β−2

l (HlSTτ )Ti + λ1 + ε
, (6.4.29)

Hl ←
t∑

τ=1

Hl �
ŴT

j

(
Xl � X̃β−2

l Sτ

)
+ ε

ŴT
j

(
X̃β−1
l Sτ

)
+ λ2 + ε

. (6.4.30)

Note that Hl does not have any meaning after the stochastic optimization pass. To

obtain individual basis coefficients a second pass through Xc is required.

In case of c ∈ C = {1, ..., C} we have

min
Ŵ
O4, where

O4

(
Xc, Ŵc,Hc

)
:=

C∑
c=1

[
n∑
l=1

dβ

(
Xl,

T∑
τ=1

(
Ŵ
)
i,j=τ,k

(Hl)i,j−τ

)]
(6.4.31)

+ λ1

∑∣∣∣Ŵi,j,k

∣∣∣+ λ2

∑∣∣∣(Hl)i,j

∣∣∣ , (6.4.32)

s.t.∀τ := 1, 2, ..., T ; l = 1, ..., n; c = 1, ..., C Ŵ ≥ 0,Hl ≥ 0,

where

Ŵ =
[
ŴS ŴIc=1 , ..., ŴIc=C

]
(6.4.33)

ŴS
jk ←

C∑
c=1

n∑
l=1

t∑
τ=1

r∑
d=1

WS
jk �

(
Xcl +WS

jkŴTS

jk X̃cl

)
� X̃β−2

cl

(
HclS

T
τ

)Ti + ε(
X̃cl +WS

jkŴTS

jk Xcl

)
� X̃β−2

cl (HclSTτ )Ti + λ1 + ε
, (6.4.34)

ŴI
jk ←

n∑
l=1

t∑
τ=1

r∑
d=1

WI
jk �

(
Xcl +WI

jkŴT I

jk X̃cl

)
� X̃β−2

cl

(
HclS

T
τ

)T
i

+ ε(
X̃cl +WI

jkŴT I

jk Xcl

)
� X̃β−2

cl (HclSTτ )Ti + λ1 + ε
, (6.4.35)

Hcl ←
t∑

τ=1

Hcl �
ŴT
j

(
Xcl � X̃β−2

cl Sτ

)
+ ε

ŴT
j

(
X̃β−1
cl Sτ

)
+ λ2 + ε

. (6.4.36)
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6.5 Experiments and results

6.5.1 Datasets

6.5.1.1 Real-world data

The real-world dataset consisted of an EHR data model. In conjunction with medical

experts we have selected a diabetic patient pool (n=21,384) that was stratified into

three groups A, B, and C. Group A consisted of patients (n=16,205) with no disease

complications, group B consisted of patients (n=4,925) with chronic disease complica-

tions, and group C of patients (n=254) with acute complications. For all three groups

we generated temporal event matrix representations (TEMRs) for each patient using

event-group and event-type level criteria that defined general out-patient encounters

specific to diabetes care (see 8.1 and 8.2 in the Appendix for a detailed list). The

chosen criteria consisted of 30 different conditions that were grouped into four groups

over a time period of 365 days: medical procedures (G1 = CPTs), lab results (G2 =

LABS), primary care physician visits (G3 = PCP), and specialty visits (G4 = SPEC).

Fig. 6.5 shows an example of a temporal event matrix from a patient in the diabetic

patient pool.

6.5.1.2 Synthetic data

We have created four sets of synthetic datasets. The synthetic data matrices for all

four sets encoded events as binary activation units in the form of a single 1-or-0 valued

pixel, where a value of 1 (black) denoted an event realization and 0 (white) no event

activity. Each row of the matrix referred to a particular event-type-level category and

each column to a single time unit scale (e.g. days).

• Set 1. We created three TEMR data matrices X = [X1,X2,X3] to simulate a

variety of different temporal event patterns.
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PCP

Week                    Month                                                    Quarter

Figure 6.5: Example of a real-world TEMR extracted from a EHR data model. A

real-world dataset that contains repeating and non-repeating event patterns.

According to Fig. 6.8, X1 and X2 consisted of Mörchens’s time series knowl-

edge representation’s (TSKR) event interval test pattern [107],[108],[109]. The

pattern comprises a trivariate interval event sequence (e.g., A, B, C), where

so called Tones represent different event interval durations, Chords represent

coincidences of Tones, and Phrases represent a partial ordering of the Chords.

The red box corresponds to the partially ordered Phrase (AB-ABC-AC) and

the green box to (AB-BC-AC) accordingly. An example of this TSKR pattern

can be seen in Fig. 6.6 together with an equivalent TEMR representation.

Subsequently, X3 consisted of various temporal concepts and operators as intro-

duced in Fig. 6.4. The red box corresponds to synchronicity, the green boxes

to a trend of decreasing coincidences and a trend of increasing coincidences, and

the blue box to concurrency. The four temporal concepts implicitly included

the temporal operators: order, duration, close, far, before, meets, overlaps,

equals, during. The remaining temporal operators: starts and finishes were not

considered as they can be easily represented within TEMR. All synthetic data

matrices in X had dimensions of 30 rows x 120 columns.
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• Set 2. We have created two TEMR data matrices X = [X1,X2] to simulate

heterogeneous and nested event patterns. X1 comprised a synthetic example of

heterogeneous event patterns. X2 consisted of a synthetic example that simu-

lated nested event patterns. All synthetic data matrices had dimensions of 10

rows x 60 columns. Examples can be seen in Fig. 6.9.

• Set 3. In Fig. 6.10 we created three TEMR data matrices X = [X1,X2,X3]

to simulate common and individual group patterns for a single group. The red

and green box shows a hypothetical temporal event pattern, which occurs in

X1,X2,X3 with the difference that the green box has multiple occurrences. The

blue box shows a temporal event pattern, which only occurs in X1 and X2. The

orange box shows a temporal event pattern, which only occurs in X1. All event

patterns span a time window of seven days. All synthetic data matrices had

dimensions of 30 rows x 120 columns.

• Set 4. We created nine TEMR data matrices X = {Xc1,Xc2,Xc3}3
c=1 to sim-

ulate common and individual group patterns for three groups. Each group has

associated three TEMR data matrices. The red box indicates the shared event

pattern that occurs in all three groups and their individual matrices. The green,

blue, and olive colored boxes indicate group specific event patterns for group

c = 1, 2, 3 accordingly. All synthetic data matrices had dimensions of 10 rows

x 60 columns. Examples can be seen in Fig. 6.11.

6.5.2 Performance metrics

To assess the quantitative performance of our framework we have chosen multiple

validation metrics, as each of them has practical implications. The metrics consist

of the average number of iterations until convergence Iconv, the mean reconstruction

error Rerr, and the mean Dice coefficient Dc over T trials
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Phrases

A
B
C

TEMRTSKR

Chords 2Chords 1 Chords 2Chords 1

Figure 6.6: TSKR and TEMR examples of Mörchen’s event interval test pattern. Left:

TSKR enables one to distinguish between the partial ordering of so-called Chords.

Such partial orderings form Phrases. Two Chord configurations are contained (i.e.,

AB-ABC-AC and AB-BC-AC). Right: TEMR can be used to emulate the same test

pattern by representing an event interval with two consecutive events. The dotted

arrows indicate the event interval that is marked by the colored solid squares, which

denote the start and end of the interval.

Iconv =
1

T

T∑
t=1

It (6.5.1)

Rerr =
1

T

T∑
t=1

||Xt −Rt||2F (6.5.2)

Dc =
1

T

T∑
t=1

Dc(Xt,Rt) (6.5.3)

The Dice coefficient is defined as Dc = 2|A∩B|
|A|+|B| , where Dc measures the set agree-

ment between the original temporal event matrix and the reconstruction. The Dc

score ranges from [0, 1], where 1 means perfect agreement. For all three metrics

we computed 95% confidence intervals to assess the true mean of each performance

measure.

6.5.3 Cross-validation of the proposed model

We validated the model on real-world data. We analyzed the reconstruction perfor-

mance and convergence behavior of the learned representation for a single TEMR

data matrix by performing a permutation test to cross-validate for the optimal model
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parameters. A representative dataset was selected from the patient pool that in-

cluded multiple repeating patterns and non repeating patterns. The cross-validation

involved 1,225 factorizations over 25 trials. In total 30,625 factorizations were com-

puted. We examined the approximation error of the factorization as a function of

different parameterizations of the

• β-divergence β = {0, 0.1, 0.25, 0.5, 1, 1.5, 2}

• degree of sparsity λ = {0, 0.5, 1, 2, 10}

• temporal window size w = {7, 14, 30, 60, 90}

• rank of the factorization r = {1, 5, 10, 15, 20, 25, 50}

From this pool we examined the optimal model with respect to β, λ, w, r by computing

Iconv, Rerr, and Dc and their 95% confidence intervals. Fig. 6.7 shows the cross

validation results and table 6.1 summarizes the optimal model parameters.

Performance Measures Optimal λ Optimal w Optimal β Optimal r

Mean convergence 2.0 7 0.5 1

Mean Dice coefficient 0.5 30 0.5 50

Mean `2-norm 0.5 30 0.5 50

Table 6.1: Permutation test for cross-validation on a real-world dataset. Cross-

validation results with respect to mean convergence (number of iterations), the re-

construction error (`2)-norm, and the Dice coefficient.

6.5.4 Learning complex event patterns

The second set of experiments was performed on synthetic data. We examined the ef-

ficacy of the regularized β-divergence with the double sparsity constraint. We demon-

strate that our proposed framework is able to 1) learn shift-invariant, interpretable,

and high-order latent temporal patterns, 2) cope with the double sparsity problem,
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Rank Optimal betaWindow size and sparsity level

Rank (r) Window Size (w) Sparsity (lambda) Loss Function (beta)
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Figure 6.7: Permutation test for cross-validation on a real-world dataset. Shown are

mean performance measures with 95% confidence intervals. Row 1: Mean convergence

vs. the model parameters (rank, window size, sparsity, and different loss functions of

the β-divergence). Row 2: Mean Dice coefficient vs. the model parameters. Row 3:

Mean Frobenius norm vs. the model parameters.

and 3) estimate the rank of the latent factor model through the induced double spar-

sity constraint on the β-divergence.

Our motivation for the experiments was to examine three questions. First, can

our geometric learning framework learn shift-invariant interpretable latent temporal

patterns that are sparse in the data and in the latent factor model? Second, is the

model sensitive to an optimally chosen rank? And third, does the framework handle

binary data entries in the data matrix as well as complex high-order event structure?

In Fig. 6.8 we show that the algorithm can learn Tones, Chords, and Phrases

and a diverse set of temporal concepts and operators.

For all factorizations we have used the following parameter settings: λ = 0.5, β =

0.5 as determined by our cross-validation study outlined in Section 6.5.3. The number

of iterations were set to iter = 100 and the convergence threshold to 1e-9 to ensure
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that the algorithm converges. For the X1 and X2 we have used a w = 35 and a

rank of r = 2 and r = 10 to account for the number of true patterns in the data and

their pattern duration. For X3 we have used a window size of w = 3 and a rank of

r = 4 and r = 11 accordingly, where r = 11 is an over-complete specified rank. For

each case, the first rank (i.e., r = 2, r = 4) was chosen based on the known number

of distinct temporal patterns in the data. The second rank (i.e., r = 10, r = 11) was

chosen as an over-complete rank, where the pre-specified number of basis elements

exceeds the number of true latent factors in the data. We ran 25 trials to assess the

mean performance, standard error, and 95% confidence intervals. Fig. 6.8 shows the

results for the second set of experiments.

In Fig. 6.9 we show how to learn heterogeneous event patterns and nested event

patterns. For each set of patterns we demonstrate the effect on using different normal-

ization schemes during the learning procedure. The left box shows the results when

using the total normalization scheme and the right box shows the learned bases for

the individual normalization scheme. The colored boxes indicate the temporal event

patterns in the data and the learned latent factor model W .

6.5.5 Learning event patterns within groups

We tested the stochastic optimization scheme on synthetic (i.e., set 3 and 4) and

real-world data to assess the efficacy of the algorithm to learn latent event structures

within single and multiple groups.

We examined the performance for incremental group learning on two different

synthetic datasets as shown in Fig. 6.10 and Fig. 6.11. For the synthetic experiments

the motivation was to assess whether we can learn common and individual latent event

patterns from multiple data matrices in single or multiple groups. Another objective

was to assess the convergence behavior and the sensitivity to a pre-defined rank (see

Fig. 6.10 and 6.11).

Real-world data experiments were performed on the electronic health record dataset
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Chords 2

Chords 1

Activation

Chords 2 Chords 1

X3X1 X2

W W W

H H H

Temporal Concepts and OperatorsTones, Chords, and Phrases

Figure 6.8: Learning Chords, Tones, Phrases and temporal concepts/operators. The

first row shows the original dataset, the second row shows the sparse bases W , and

the last row the sparse code H. The weighting coefficients in H were colored based

on an arbitrary random color map. They do not have an explicit meaning. The

event patterns of interest one should pay attention to are color coded in the original

datasets and the learned bases.

outlined in Section 6.5.1.1. The motivation for the real-world data experiments were

two-fold. First, to investigate whether we can learn meaningful latent event patterns

within multiple groups (see Fig. 6.12). Second, to examine the approximation error,

in terms of the mean Dice coefficient, as a function of r and w for two variations of the

stochastic optimization scheme. We have studied two cases. In algorithm type I we

set the maximum update iterations for both latent factors to 1, whereas in algorithm

type II (green) we set let the H update converge in each iteration of the stochastic

gradient descent walk (see Fig. 6.13).

We have used the following parameter settings
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Nested Event PatternsHeterogeneous Event Patterns

W W W W

X1 X2

Figure 6.9: Learning heterogeneous and nested event patterns. The left and right

box show examples of learning heterogeneous and nested event patterns. The bottom

part of the left and right box show the learned latent patterns W . We show two

cases where the left bottom box shows the result of our over-complete latent factor

model employing total normalization, and the right bottom box the case of individual

normalization.

• β = 0.5 and λ = 0.5

• the random sampling parameter iter = 100

• convergence threshold of 1e-9

• the number of H updates were set to iterH = {1, 50}

• the number of W updates was iterW = 1

• r = {1, 5, 10, 50, 100, 200, 500, 1000, 5000, 10000}

• w = {3, 7, 14, 30}

6.5.6 Diabetic Complication Severity Index (DCSI)

The DCSI is a discrete 13-point scale scored from automated diagnostic, pharmacy,

and laboratory data to quantify the severity of complications and to potentially bet-
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Figure 6.10: Stochastic optimization scheme for learning single group patterns on

synthetic data.
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Figure 6.11: Stochastic optimization scheme for learning multiple group patterns on

synthetic data.

ter predict the risk of adverse outcomes. Since number of diabetic complications and

its severity are associated with greater risk of mortality and hospitalizations, DCSI

can be used as a tool for adjusting for baseline severity of disease in populations
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Figure 6.12: Stochastic optimization scheme for learning multiple group patterns on

real-world data.

with diabetes. Young et al. (2008) [122] proposed DCSI as a better predictor for

mortality and risk of hospitalization. The objective was to determine whether the

number and severity of diabetes complications are associated with increased risk of

mortality and hospitalizations. DCSI was developed from automated clinical baseline

data of a primary care diabetes cohort and compared with a simple count of complica-

tions to predict mortality and hospitalizations. Cox proportional hazard and Poisson

regression models were used to predict mortality and hospitalizations, respectively.

Replacing a simple disease complications count index with the DCSI showed a similar

mortality risk. Each level of the DCSI was associated with a 1.34-fold (95% CI =

1.28, 1.41) greater risk of death. Similar results were obtained for the association of

the DCSI with risk of hospitalization. Comparison of receiver operating characteristic

curves verified that the DCSI was a slightly better predictor of mortality than a count

of complications. Compared with DCCI, DCSI performed slightly better and appears

to be a useful tool for prediction of mortality and risk of hospitalization.
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Figure 6.13: Algorithm comparison of the stochastic optimization scheme. Mean

reconstruction performance and 95% confidence intervals for algorithm I (red) and II

(green). Row 1: Mean Dice coefficient vs. different window sizes for group A. Row

2: Mean Dice coefficient vs. different window sizes for group B. Row 3: Mean Dice

coefficient vs. different window sizes for group C.

We use the DCSI to stratify the three groups of our diabetic patient pool outlined

in Section 6.5.1.1 and to use the obtained severity score as group labels to correlate

against HRU patterns.

6.5.7 Linking HRU patterns to diabetic disease severity

We performed an exploratory analysis of the diabetic patient pool outlined in Section

6.5.1.1 to assess how patterns of healthcare resource utilization (HRU) relate to the
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severity of diabetic complications. We started by learning the latent event structure

of each patient in the diabetic patient pool using our framework outlined in Section

6.4. We learned 30 weekly, bi-weekly, monthly, and quarterly temporal patterns

for all patients. Then we performed pairwise feature matching within the latent

temporal event pattern pool to identify the closest pattern matches between each pair

of patients. We computed pairwise distances that were then weighted by the difference

of their associated convolution coefficients to account for the different number of

pattern occurrences within TEMR. Then, we computed a KNN-graph to examine

the latent cluster structure of the mined latent patterns by looking at the Fiedler

vector. Different cluster groups were computed together with the DSCI score for each

patient. Finally, we generated a histogram that captured the patient distribution in

each cluster. We performed visual examination of the patient distribution based on

their severity level to look for group specific differences. In Fig. 6.14 we show four

computed clusters and their patient distribution based on the DCSI severity index.
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Figure 6.14: HRU pattern groups vs diabetic disease severity level. Histograms that

show the number of patients within each computed cluster vs. their DCSI severity

score.

6.6 Discussion

In Fig. 6.7 one can observe that the algorithm converges within 50 iterations for all

different model parameters. The approximation error measured in terms of the Dice

coefficient and the Frobenius norm exponentially increased and decreased as the rank
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was increased. For k > 10, different rank sizes had an overall approximation error

above Dc > 0.9 and || · ||F < 2.5. The reconstruction performance showed that the

algorithm is robust against varying window sizes and the sparsity parameter for λ > 0.

The effect on different sparsity constraints showed that the mean convergence is not

indicative of a low approximation error. The best model was achieved with a sparsity

constraint of λ = 0.5 and a β = 0.5. Setting the sparsity constraint to λ = 0 led to a

very low Dice coefficient. Also setting β = 2 gave the lowest Dice coefficient showing

that the Frobenius loss is not able to cope with double sparsity. We summarize

the optimal model parameters with respect to the computed performance metrics in

Table 1. One can see that the convergence criterion should not be considered as a

cross-validation measure. The optimal mean Dice coefficient and mean `2-norm both

gave the same optimal model parameters, whereas the parameters for the convergence

criterion disagreed. In general, the framework shows robustness with respect to the

chosen window size and the sparsity parameter. This is encouraging, since learning

patterns of different window sizes is important for extracting a rich event structure

within TEMR. Also the optimal parameterization of the β-divergence with β = 0.5

shows that it outperforms the Itakura-Saito and generalized KL divergence.

Fig. 6.8 shows the results for the second set of experiments. One can observe that

the algorithm successfully learned the correct bases set even though the rank was spec-

ified to be over-complete. The sparse code (H) and the sparse bases (W) that were

learned from synthetic datasets showed interpretable shift-invariant sparse activation

patterns. By looking at the activation codes one exactly knows when a particular la-

tent temporal pattern occurred in the data. Also the induced sparsity constraints on

the latent factor model in conjunction with the non-negativity constraints enable easy

interpretation of the model. The experimental results demonstrate that our frame-

work is able to learn shift-invariant latent event patterns of different complexity. Note

that the patterns implicitly encode missing event values as no event activity is sim-

ply encoded with zeros within TEMR. Where as other languages address the missing
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value problem by modeling event intervals instead of single events our representation

can jointly encode both types of event structure. In general complex high-order event

structure can be represented and learned within our framework. One can simply

imagine to add additional rows to TEMR that encode single events, event intervals,

and event sequences.

In Fig. 6.9 we can observe that our framework can successfully learn the hetero-

geneous event structure of the synthetic dataset. The top box shows the synthetic

dataset, the bottom left(right) box the learned heterogeneous temporal event patterns

of our algorithm with total(individual) normalization respectively. In this synthetic

example, the patient received three types of diabetic treatments A (red), B (blue),

and C (green), where treatment A consisted of single patient encounters, treatment B

of two consecutive encounters separated by a time interval, and treatment C of a more

complicated structure. We have used an over-complete specified rank (r=6) to sim-

ulate the situation where the known latent event structure is not known in advance.

The bottom left box shows that our framework is able to learn the true heteroge-

neous event structure, whereas the bottom right box contained small artifacts and

a hard-to-interpret pattern structure. As in the first synthetic example the bottom

left/right boxes show the learned nested event patterns. We show results on learning

nested event patterns. The pattern consists of a two level nested structure, where the

green area is the first level, and the red area the second level. The top box shows the

synthetic dataset that simulates the following scenario. The patient received two con-

secutive types of treatment A (first green box) and treatment B (second green box).

Within each treatment another treatment type C (red boxes) happened outside (first

red box) and within (red boxes encapsulated by the green boxes) treatment A and B.

In Fig. 6.10 we show that the stochastic optimization scheme is able to learn an

over-complete sparse latent factor model from a group of multiple synthetic spatial-

temporal point processes. Different factorization ranks (r=5,10) resulted in the same

learned latent basis elements demonstrating that the framework can learn inter-
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pretable shift-invariant latent temporal patterns even though the true latent event

structure is not known in advance. This property is particular advantageous for real

data as one does not know how many true latent patterns exist in the data. The

convergence plot shows that our algorithm converges.

In Fig. 6.11 we show that we can learn the synthetic multi group patterns. The

upper three blocks show the synthetic datasets for the three groups. The lower blocks

show the learned group patterns for three different parameter settings. The left block

shows empty event group patterns, which shows that the Euclidean norm without

sparsity constraints is not able to learn meaningful event group patterns. The middle

block shows the learned group patterns when using the beta-divergence with β = 0.5

and an individual normalization scheme. One can see that the learned patterns con-

tain noise artifacts. The right block shows the learned group patterns when using the

total normalization scheme. One can observe that the algorithm successfully learned

the shared group pattern, which is marked with a red translucent box. Accordingly

the other three group specific event patterns marked with green, blue, and olive boxes,

could also be discovered by the algorithm. Learning the group event structure is im-

portant for doing patient group analysis to assess patient similarity and to perform

automated patient group stratification.

In Fig. 6.12 we show that we can also learn meaningful multi group pattern

in real-world data. The top boxes show examples of true real-world event patterns.

In total three groups were considered as explained in Section 6.5.1.1. The bottom

boxes from left to right show the discovered patterns by our algorithm. The parameter

settings are the same as previously described Fig. 6.11. Note the red box indicating

the shared event pattern that exists in all three groups. The green, blue, and olive

box show individual group specific event patterns. One can also observe that a single

run did not discover all latent event patterns, which is expected as the solution to

our algorithm is local. To circumvent this, one could perform multiple runs of the

algorithm to search for shared and individual event group patterns.
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In Fig. 6.13 we show the reconstruction behavior of the stochastic optimization

scheme for two different algorithmic configurations. For all three groups A, B, and

C, algorithm type II (in green) outperformed algorithm type I (in red). Algorithm

type I showed a linear increase of the mean Dice coefficient whereas algorithm type

II an exponential increase as the rank was increased. This observation also holds for

different window sizes showing that the reconstruction performance is robust against

the window size and the number of basis elements (rank). For all three groups the

stochastic optimization scheme could learn a latent factor model that led to a mean

Dice coefficient close to 1. The 95% confidence interval showed that the computed

means were representative of the three population groups. Visual examination of the

learned patterns also confirmed that the algorithm could learn interpretable latent

event patterns for all three groups.

Fig. 6.14 shows an example of a four-cluster partitioning of a random subset of

our diabetic patient population. One can infer that the identified patterns in cluster

IV mostly occur in groups of patients with a high DCSI score. Taking a closer look

to cluster IV one can see the low number of patients with a low severity score (i.e.,

1) in contrast to the overall histogram shape. The majority of patients in cluster IV

exhibit a higher DCSI score and thus have higher risk of hospitalization and mortality.

Cluster II and III show similar shapes of the overall histogram indicating that the

learned patterns within these patient groups mainly consist of common HRU patterns

that are not indicative of disease severity. The longer right tail of the histogram can

be explained by the rarity of patients who have a very high DCSI score. We note

that one can go back to the individual patterns to investigate what kind of care the

patients received.

One drawback of our approach is the problem of permutation invariance across the

rows of TEMR. Permuting the rows of TEMR may lead to different latent event pat-

terns and thus different event relationships. Though we note that we can circumvent

the problem by using a temporal pattern window that spans all the rows of the TEMR
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matrix as shown in the experiments section. In this case learning latent temporal pat-

terns on different row permutations would visually result in different patterns, but

the shift-invariant model would still be able to learn their latent relationships.

We note that the chosen temporal pattern window is an important factor in obtain-

ing semantically meaningful latent event patterns. In cases where the event pattern

window length was incorrectly chosen the true latent event patterns could not be

recovered though the learned latent factor model was able to reconstruct the original

data matrix. Also the double sparsity constraint is important for obtaining mean-

ingful and interpretable latent event patterns. When using the sparsity constraint

in combination with the standard Euclidean norm our model failed in learning the

latent event structure of the data matrix. In some cases it was necessary to repeat the

learning process to obtain meaningful patterns due to the non-convex optimization

problem.

6.7 Conclusion

In this chapter we have presented a novel temporal event matrix representation and

learning framework in conjunction with an in-depth validation of over 40,000 learned

latent factor models.

We have demonstrated that our proposed framework is able to cope with the

double sparsity problem and that the induced double sparsity constraint on the β-

divergence enables automatic relevance determination for solving the optimal rank

selection problem via an over-complete sparse latent factor model. Further, the frame-

work is able to learn shift-invariant high-order latent event patterns in large-scale data

such as latent temporal event operators, concepts, and time constraints, individual and

common event group structure, as well as heterogeneous and nested temporal event

patterns. We empirically showed that our stochastic optimization scheme converges

to a fixed point. We applied our framework to build patient-specific signatures that
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capture individual characteristics of the patient and a fingerprint of the medical care

history they received.

Our representation and learning framework is commensurate with human capabil-

ities and constraints, since the latent temporal patterns are interpretable and easy to

comprehend. The developed analytics have wide applicability to a variety of data and

application domains that involve large-scale longitudinal event data. Future work will

be devoted to a thorough clinical assessment for visual interactive knowledge discovery

in large electronic health record databases.
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Part III

Summary and conclusion
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Chapter 7

Summary

7.1 Significance

The goal of this work is to improve the capabilities of medical practitioners to effi-

ciently cope with large, complex, and heterogeneous data sources–a diverse and chal-

lenging problem. To this end, the dissertation proposes a diverse analytical framework

that leverages synergistic human-machine intelligence to maximize a human’s abil-

ity to better 1) reason about, 2) learn, and 3) understand biomedical imaging and

healthcare specific event data within the patient’s EHR. Within this scope we have

targeted a range of specific application scenarios where the analysis by machines or

humans alone is difficult, time-consuming, and error-prone. By combining human and

machine intelligence the developed analytics in this dissertation focus and exploit the

synergistic aspect of combined human-machine intelligence to better 1) visualize, 2)

label, and 3) discover knowledge from large, complex, and heterogeneous data.

Chapter 2 presents analytics for human-assisted visualization of complex latent

tree structures within large volumetric images. We develop a novel algorithm that

enables the intuitive exploration of complete vascular trees and their internal vol-

ume structure. Comparative validation of our algorithm with the state-of-the-art

demonstrates superior performance in terms of visualization quality and preservation
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of anatomical shape appearance. The ability to visualize complex vascular networks

within the human body not only enables us to better reason about large complex

images and their sparse information content, but is also important for a variety of

diagnostic procedures that involve the examination of the vascular network. Branch-

ing tree-like networks are found throughout the human body at multiple scales and

locations ranging from the micro-to-macro scale. The developed analytics could be

transferred and applied to such data and problem domains. Diseases with complex

co-morbidities might be related to the health condition of the vascular system. Not

to mention diseases that directly affect the vascular system, such as diabetes, require

efficient tools to access and visualize diagnostic relevant information for correct data

interpretation. Whereas visualization enables the subjective assessment to better in-

terpret and reason about complex data we also need quantitative information that

help us to better learn about the hidden relationships of diagnostic relevant patterns.

In this regard, we describe a variety of interactive analytics for human-assisted au-

tomated labeling of object boundaries in unimodal, multimodal, and spatio-temporal

image data. Our methods described in Chapter 3 enable the labeling of objects that

exhibit high variability in shape, intensity, and texture–a scenario where fully auto-

matic methods fail to perform in a robust and accurate manner. We show as part of

a large evaluation study to quantify geographic atrophy, that our algorithm improves

upon a state-of-the-art graph-based interactive labeling algorithm. In Chapter 4

we propose extensions to the naive Bayes algorithm within a transductive learning

and inference paradigm. We introduce a novel semi-parametric form of the naive

Bayes algorithm in combination with a Markov random field model. The algorithm

enables automated object and multi-object labeling with minimal human interven-

tion. In numerous experiments we show the performance of the algorithm on uni-

modal, multimodal, and spatio-temporal data comprising images and volumes. We

also demonstrate that the algorithm generalizes to different data sources and appli-

cation domains. In Chapter 5 we present our initial investigations to employ deep
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learning and inference algorithms to automate anatomical labeling of human brain

image volumes based on manually labeled data provided by a human expert.

The developed analytics in Chapter 3 - 5 aim to address two possible scenarios

that arise in clinical practice. The first case where label information is scarce and

the second case where we have rich human expert provided labels to exploit. In the

former case, our developed analytics based on Bayesian transduction provide a prac-

tical solution to quickly generate ground truth label information to build annotated

medical image databases for a variety of disease phenotypes with minimal human in-

tervention while exploiting human-expert knowledge for a variety of different disease

phenotypes. In the latter case our preliminary studies on deep learning and inference

explore technical avenues that allow us to go one step further in developing truly

automatic labeling analytics that better generalize to different data sources and ex-

isting label information. Moreover, the integration of our visual analytics described

in Chapter 2 with the labeling analytics described in Chapter 3 - 5 provide an

analytical framework that is commensurate to humans. Though we demonstrate our

framework on specific applications the general nature of the developed analytics and

their hybrid combination can be easily extended or adopted to different application

scenarios. This provides a rich set of tools to visualize and label a diverse set of data

sources within the electronic health record.

Finally, to integrate the previously described image analytics with exploratory

analytics that make use of ancillary healthcare specific data sources we propose

extensions to the nonnegative matrix factorization algorithm in Chapter 6. We

present a novel temporal event matrix representation and learning scheme to perform

event pattern mining in longitudinal heterogeneous EHRs. Specifically, we propose a

double-constrained convolutional sparse coding framework to learn latent event pat-

terns within a single and group data setting. This work is one of its first kind and

enables the straightforward representation and mining of event data that could be de-

rived from image data and heterogeneous healthcare specific data sources for groups
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of patients to perform mining at a population level.

Analyzing the EHR and its diverse data sources within and across patients ulti-

mately requires a holistic approach. Holistic analysis integrates analytics for visualiz-

ing, labeling, and mining EHR data, which enables the discovery of hidden patterns

at a scale and depth not possible when taking an individualistic approach. Especially

complex disease that result in multiple co-morbidities would benefit from holistic

analysis. This dissertation provides a diverse analytical framework that would allow

the such analysis by addressing challenging data analysis issues that involve large,

complex, and heterogeneous data sources.

7.2 Limitations

We would like to make some general remarks regarding the limitations of our re-

search in a wider context, which was not discussed in the individual chapters. The

contributions of this dissertation along with the developed software tools by no means

represent a generic solution to the problem of making better use of the diverse hetero-

geneous data sources within the electronic health record. The scope of this problem

is beyond this dissertation. In this work we have just scratched the surface of this

problem. Also the topic of synergistic human-machine intelligence was studied from

a practical point of view within specific clinical applications and from the perspective

of single human-machine intelligence. While our methods are applicable and trans-

ferrable to other clinical problems and application domains, they do not provide an

all-in-one solution. Our focus was to build data-driven analytics that are intuitive

to humans while leveraging human intelligence, which in the medical domain is of

utmost importance.

Another limitation of our work is the partially limited validation in terms of clin-

ically relevant performance measures. The validation of algorithms in the medical

domain is a time and resource intensive challenging endeavor. In the ideal scenario
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each component of our diverse analytical framework could have been validated in a

more rigorous manner. The human-intuitive analytics for visualization of complex

vascular tree structures could have been validated in a real clinical scenario in con-

junction with user studies involving multiple experts to assess the efficacy of our

methods. However, such studies are costly to perform. An alternative strategy to

further validate our visualization methods is the combination with successive label-

ing tasks. Due to the complex shape topology of vascular networks in volumetric

space the proposed visualization methods serve as an ideal interface to enable medi-

cal practitioners to quickly identify and mark regions of interest. One could use our

developed system in combination with interactive labeling analytics to compare the

efficacy of interactive human-assisted labeling of vascular networks based on usability

performance measures. However, given the many possibilities to improve upon more

rigorous validation procedures one should not forget that our initial validation results

shown in Chapter 2 directly show the advantages of our method. Also our interactive

labeling pipeline described in Chapter 3 could have been validated with respect to

multiple graders using multi ROC studies as well as comparative performance ex-

periments on non-medical data. While we have investigated such applications with

positive results we kept the focus of our validation study to the medical domain. An-

other extension of our validation study could have been a more detailed comparative

analysis with respect to different object types, noise levels, and other data ambigui-

ties. The quantitative validation in Chapter 4 showed impressive labeling results on

a variety of image modalities and application problems. As in Chapter 3, a more de-

tailed account on label prediction with respect to the feature dimensionality, the effect

on cross-modality dependences, and the comparison to existing inductive approaches

would provide useful information about the limitations of our proposed labeling an-

alytics. Due to the preliminary nature of Chapter 5 we skip our commentary on

how a more rigorous validation strategy may look like. The discovery analytics in

Chapter 6 were validated with extensive experiments. To further validate the effi-
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cacy and usefulness of our analytics one could implement a visual analytic prototype

that allows medical practitioners to slice and dice the individual discrete event ma-

trices to search for clinically relevant event patterns. As mentioned in the previous

Chapters more rigorous user studies involving multiple experts with different levels

of expertise would provide a more detailed account of the benefits of our proposed

analytics. Ideally patient relevant validation studies should be designed right at the

point of care to measure and assess the efficacy with respect to improved patient care,

reduction of costs, and the minimization of mortality and the risk of hospitalization.

On a more holistic perspective our proposed diverse analytic framework as a whole

would be interesting. Yet, under the given resource constraints this aim was out of

the scope of this dissertation work.

7.3 Remarks

Over the course of this research I have learned important lessons that I would like to

share. First of all, through collaborations with medical practitioners I came to realize

the importance of closely working with physicians and medical domain experts in

order to work on problems that have true clinical significance and value for the patient.

This collaborative exchange has taught me that any developed method should be an

aid to the physician and should intuitively fit into the current workflows of clinical

practice. When devising a novel visualization technique such as the one outlined in

Chapter 2 close interaction with medical practitioners is required to ensure that the

developed techniques will be positively received by the physician. At the end what

matters is the practicality and usefulness of the developed tools in clinical practice.

Second of all, the task of automatic labeling is a tremendous challenge and I came

to realize that in a practical clinical setting fully automatic analyses are dangerous

to perform and require careful quality and testing. Especially in the medical do-

main and in situations where data characteristics change over time. In degenerative
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disease often times the disease process is not fully understood and the disease phe-

notype progresses in non-deterministic ways, which makes the generalization task of

automatic methods difficult. Instead of tweaking the parameters of a fixed algorithm

to perform labeling of objects contained in image data I realized that interactive

human-intuitive approaches provide a robust and attractive alternative. Until true

artificial intelligence reaches a performance that closely resembles human intelligence

the combination of human-machine intelligence seems to be the right approach to

address the challenges we have outlined in the introduction of this dissertation.
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Chapter 8

Conclusion

This dissertation explores the question how human-machine intelligence can be lever-

aged for optimal protocols of visualization, labeling, and knowledge discovery in large,

complex, and heterogeneous electronic health record data. We propose a diverse an-

alytical framework to maximize a human’s ability to better 1) reason about, 2) learn,

and 3) understand biomedical imaging and healthcare data within the patient’s elec-

tronic health record. By combining human and machine intelligence in a synergistic

form we develop analytics that are commensurate to humans. This synergism im-

proves the capabilities of medical practitioners to efficiently cope with the EHR and

its large, complex, and heterogeneous data sources.

Potential future work can take on different venues. We are most intrigued by

taking the proposed work to the next level. Instead of just looking at individual

synergistic human-machine intelligence a more interesting challenge is the aspect of

synergistic human-machine intelligence within a collective crowd setting. What we

mean by that is instead of considering an individual human and his/her intelligence it

is more interesting to exploit the synergism of collective intelligence from a group of

people or groups of people and a cluster of machines. Such an approach would require

interdisciplinary research that bridges and integrates concepts from research that

studies collective social intelligence with distributed parallel computational learning
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machinery. Within this realm, designing and developing analytics that are commen-

surate to a group of people is a non-trivial problem both in terms of how to exploit

social intelligence analytically and how to actually compute and communicate syn-

thetic knowledge generated from a cluster of machines in a collective human-intuitive

form. How can one communicate effectively collective human-machine intelligence to

individuals and groups of people? What computational mechanisms can address the

scale and complexity of such knowledge? How can one adapt the intelligence of the

model to account for knowledge bias within the crowd? Before one can leverage the

potential of social intelligence married with large-scale parallel distributed machine

intelligence much ground work has to be performed both in terms of research and

development. Novel ways of visualizing, labeling, and mining are required that sup-

port the paradigm of collective synergistic human-machine intelligence. In return,

the possibilities of collective synergistic human-machine intelligence are endless and

will impact our lives in ways we can hardly imagine today.
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CPT Code G1 Description

11 Diagnostic Endorine Procedures

15 Lens and Cataract Procedures

17 Destruction of Lesion of Retina and Choroid

18 Diagnostic Procedures on Eye

20 Other Intraocular Therapeutic Procedures

47 Diagnostic Cardiac Catheterization, Coronary Arteriography

54 Other Vascular Catheterization, Not Heart

70 Upper Gastrointerstinal Endoscopy, Biopsy

76 Colonoscopy and Biopsy

77 Proctoscopy and Anorectal Biopsy

168 Incision and Drainage, Skin nd Subcutaneous Tissue

169 Debridementof Wound, Infectionor Burn

190 Contrast Arteriogram of Femoral and LowerExtremity Arteries

199 Electroencephalogram (EEG)

201 Cardiac Stress Tests

202 Electrocardiogram

214 Traction,Splints, and Other Wound Care

220 Ophthalmologic and Ontologic Diagnosis and Treatment

233 Laboratory -Chemistry and Hematology

240 Medications (Injections, Infusion and Other Forms)

Table 8.1: Clinical conditions for diabetic patient encounters of event group G1. The

table shows one of the four event-group level categories G1 and their respective event-

type levels.

We have developed a novel image analytics environment that consists of an interactive

graphical user interface. The software tool supports the loading and saving of DI-

COM and other medical image formats. A custom multimodal longitudinal DICOM

browser enables a holistic access to the complete image record. The tool supports the

integration of all major image analysis softwares for labeling, tracking, visualization,

and registration. Large collections of volumetric image data can be assessed within a

multi-monitor setting. The following screenshots exemplify the main functionality of

our tool. The tool was implemented within the MeVisLab framework [123].
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LABS G2 Description

GLYCO and HEMOGLOBIN A1C/HEMOGLOBIN.TOTA

LDL, CHOLESTEROL.IN LDL, and TOTAL LDL-C DIRECT

PCP G3 Description

General Primary Care Physician Visits

SPECIALTY G4 Description

NEPHROLOGY

OPHTHALMOLOGY

CARDIOLOGY

NEUROLOGY

PODIATRY

ENDOCRINOLOGY

PULMONOLOGY

Table 8.2: Clinical conditions for diabetic patient encounters of event group G2−G4.

The table shows the last three out of four event-group level categories G2, G3, and G4

and their respective event-type levels.

Figure 8.1: Unimodal image viewer.



159

Figure 8.2: Multimodal registration environment.

Figure 8.3: Multimodal longitudinal image viewer.
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Figure 8.4: Multimodal longitudinal registration environment with holistic view to

the complete patient dataset.

Figure 8.5: Unimodal brain labeling viewer with volume rendering, surface view, and

multi-planar reformation views with mask overlays.
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Figure 8.6: Multimodal longitudinal interactive timeline viewer.

Figure 8.7: Multimodal longitudinal labeling environment with holistic view of com-

plete dataset.

Figure 8.8: Brain parcellation viewer with multi-cross-sectional parcellation overlays.
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Figure 8.9: Brain parcellation viewer with volume rendering, surface view, and multi-

planar reformation views with colored mask overlays.


