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Abstract

The hardware industry’s rapid development of multi-
core and many core hardware has outpaced the soft-
ware industry’s transition from sequential to parallel
programs. Most applications are still sequential, and
many cores on parallel machines remain unused. We
propose a tool that uses data-dependence profiling and
binary rewriting to parallelize executables without ac-
cess to source code. Our technique uses Bernstein’s con-
ditions to identify independent sets of basic blocks that
can be executed in parallel, introducing a level of granu-
larity between fine-grained instruction level and coarse-
grained task level parallelism. We analyze dynamically
generated control and data dependence graphs to find
independent sets of basic blocks which can be paral-
lelized. We then propose to parallelize these candidates
using binary rewriting techniques. Our technique aims
to demonstrate the parallelism that remains in serial ap-
plication by exposing concrete opportunities for paral-
lelism.

1 Introduction

The proliferation of multi-core architectures over the last
10 years offers a significant performance incentive for
parallel software. Unfortunately, such software is sub-
stantially more complicated than serial code to develop,
debug and test, resulting in a large number of applica-
tions that cannot exploit today’s abundant hardware re-
sources. There has thus been significant research inter-
est in auto-parallelization - techniques that automatically
transform serial code into a parallel equivalent [2].

Auto-parallelization approaches can broadly be di-
vided into two categories, each with its own drawbacks.
Static auto-parallelization techniques are applied when
the program is not running, simply by examining a pro-
gram’s code or a disassembled binary. These techniques
add little to no overhead during execution, but suffer
from the usual drawbacks of static alias analysis [5], a
well known and unresolved problem within the compil-
ers community. Thus, in practice, static analysis tech-

niques are limited to structured DO-ACROSS and DO-
ALL style parallelizations [2, 4, 15].

There have also been a few attempts at purely dy-
namic auto-parallelization. These approaches are typi-
cally rooted in Bernstein’s conditions, which allow two
statements to run in parallel if they do not produce a read-
write or write-write data conflict [3]. Dynamic paral-
lelization [7, 17] occurs while a program is running and
can provide more opportunities to parallelize, but comes
at a cost of run-time overhead.

In this paper we present POWER: Parallel optimiza-
tions with executable rewriting, a tool that transforms
sequential binary executables into parallel ones, using a
hybrid of static and dynamic analysis techniques. The
POWER tool chain captures run-time profiles over test
executions of the code and then analyzes them offline
to determine potential parallelizations of basic blocks.
POWER is designed to make some parallelization easily
exploitable, without requiring additional development
time to understand and parallelize the code.

POWER is designed with three principle goals::
Generality: The parallelized binary should run on all

operating systems and architectures on which the origi-
nal serial binary ran.

Transparency: In many situations, the application
source code will not be available. POWER must not re-
quire source code or any changes in underlying execution
environment like OS or hardware.

Performance: POWER must exploit more parallelisms
than other tools, to give improved performance for the
application.

We believe that POWER offers a significant improve-
ment over current auto-parallelization techniques, as fol-
lows:

• Exploitation of basic block level parallelism using
dynamic profiles
• Profile driven auto-parallelization using a hybrid

technique (static/dynamic)
• A source-free, binary only approach to parallelism

One of our key innovations is to explore parallelism at
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Figure 1: POWER Architecture Overview: POWER takes in an unmodified serial binary, profiles it, analyzes the
static program structure in conjunction with the dynamic profile information, then rewrites the binary to expose basic
block-level parallelism

the basic block level, based on profiles collected during
program execution. The intuition behind parallelism at
the basic block granularity is that most parallelism hot
spots occur in loops, recursions, and similar structures.
A basic block representation provides natural boundaries
for detecting parallelism candidates, as loop/function re-
cursions all start with a jump instruction to the head of
a basic block. Basic block level parallelism, introduces
a new level of granularity between instruction level and
task-level parallelism.

During program execution, POWER collects both data
and control flow profiles. By generating data dependency
profiles, we are able to observe actual data-dependence
as the program executes. Static parallelizers, however,
are limited in their applicability because of pointer alias-
ing problems. Using these profiles simplifies aliasing
concerns and provides us with additional candidates for
parallelism.

Operating purely at the binary level allows us to
present a generic solution that can be applied irrespec-
tive of the language/compiler of the target application.
Our approach can optimize applications regardless of the
availability of their source code, a potentially valuable
feature when supporting legacy systems.

2 POWER: A profile-guided auto-
parallelization system for executables

Our approach is a hybrid of static and profile guided ap-
proaches, and is presented in Figure 1. POWER utilizes
information gathered by running the target program sev-
eral times on representative inputs, generating a number
of profiles. After generating profiles, we use a novel
combination of the apriori algorithm [1] and Djikstra’s
shortest path algorithm to identify sets of basic blocks
that can be parallelized. Next, we analyze potential par-
allel schedules based on hot spots and load balancing
constraints. Finally, we propose to apply the paralleliza-
tions determined above to the binary and verify the cor-
rectness of the rewritten binary. Unlike classical com-

piler approaches, where transforms must to be correct
under all conditions, our transforms are somewhat op-
timistic, and they fallback to the original code in case the
actual execution doesn’t match the profile. This is similar
to optimistic optimization approaches where code seg-
ments are executed out of order on an otherwise idle pro-
cessor and the results are flushed if a dependency arises
later. This section gives a detailed view of the work flow
of POWER. Later in sec. 3, we explain the working of
the tool-chain using an example.

2.1 Serial Executable Input

POWER takes a sequential binary as input, which is then
used for profile generation in the subsequent steps. The
system requires no source code information or special
compilers. This allows us to employ POWER to any
sequential application, irrespective of original program-
ming language or the compiler that produced it, includ-
ing, importantly, legacy applications.

2.2 Profile Generation

The first phase of our approach generates a cumulative
profile of control flow and data dependencies over sev-
eral runs of the program. The goal of profiling is to get
a realistic idea of the control flows in the application bi-
nary. By observing executions of the target application
at the binary level, we create a disambiguated control
and data dependence flow of the program. We instru-
ment each basic block and variable access with the PIN
Instrumentation Tool [16]. The PIN instrumentation tool
framework provides an opportunity to dynamically in-
sert code anywhere necessary, including before specific
instructions and functions.

Since the profile is dependent on the input set provided
by the user, the quality of the profile depends entirely
on the coverage and representativeness of the profiled
inputs. Regressive test-suites and benchmarks are of-
ten provided with applications for testing with real-world
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loads, and these can be used to generate profiles for our
tool.

2.2.1 Control Flow Analysis

The control flow is simply a trace of instructions exe-
cuted, represented as a set of basic blocks, addressed by
their address offset from the image load address. Instruc-
tions are identified by image names and offsets rather
than instruction pointers to control for different image
load addresses across different profile runs. We annotate
each basic block with the number of times it was exe-
cuted and the number of instructions of the block.

One of the advantages of control flow analysis is de-
tecting hot-spots. Hot-spot’s are region of the code that
is executed frequently. This helps us to focus our efforts
only on hot-spot regions in the binaries which are rela-
tively smaller in size, but offer significant performance
benefits if parallelized.

2.2.2 Data Flow Analysis

During profiling we collect a complete data dependence
graph [2] by instrumenting the instructions that have
been executed. Using basic block boundaries (i.e.heads
and tail pointers) we analyze the data dependence trace
to identify data sharing between basic blocks. For the
purpose of this paper, we say that two basic blocks are in
conflict if either block has instructions dependent upon
the other. This also includes self conflicts between the
same basic block.

Hence, if instruction L in basic block Bi has a depen-
dency on instruction M in basic block Bj , we define Bi

and Bj to be in conflict. We aggregate these dependen-
cies across several runs with different input sets to find
other data dependencies that may arise Coalescing data-
dependencies at instruction level to basic block level re-
duces the size of the dependency graph, reducing the size
of the input to our analysis algorithms when compared to
at the instruction level.

2.3 Profile Analysis: Conflicting Blocks

Our goal in this section is to generate parallel sets of ba-
sic blocks. A parallel set is a set of basic blocks which
may be executed together in sequence, however, can be
executed in parallel with other parallel sets. We hypothe-
size that (1) all basic blocks with potential data conflicts
can be put into the same parallel set, and (2) all basic
blocks having no data conflicts can be parallelized with
any other blocks. Blocks that have no data dependen-
cies can trivially be parallelized - given the control flow
of basic blocks A → B → C where none of A, B, or
C conflict, A, B, and C can run at the same time. The

problem becomes somewhat more complicated when ba-
sic blocks have data dependencies, and even more so as
those dependencies become more complex.

We view parallelization of basic blocks as a subset
problem. For each basic block Bi in the program, we col-
lect a set of conflicts Si. Our goal is to build the maximal
subset of blocks such that we can run the most blocks in
parallel, given the conflict sets and control dependencies.

Unfortunately, analyzing dynamic traces generated at
binary level brings about it’s own sets of problems. One
of the largest difficulties is dealing with very big trace
files, creating an intractably large search space. In or-
der to attack this subset problem, we use the apriori al-
gorithm, ranking each possible set by total number of
instructions parallelized [1]. The apriori algorithm is a
well known algorithm used in data mining to create as-
sociation rules between data sets. We create associations
based upon conflicts, and then generate sets of conflicts,
maximizing the number of supporting basic blocks. We
also filter out blocks that share the same conflict set but
are not reachable using a depth-limited Dijkstra’s algo-
rithm.

Another important task is detecting false dependen-
cies. There are often false negatives in dependencies for
some registers which are independent across blocks. For
example, stack pointers often have dependencies carry-
ing over which realistically can be parallelized. These
dependencies need to be handled as special cases, to re-
alize truly independent basic blocks.

2.4 Hot Spot Analysis and Load Balancing

Thanks to the annotated profiles generated in the previ-
ous step, POWER is able to perform an effective cost-
benefit analysis of each potential parallelism. By cap-
turing both the number of times that each basic block is
executed and the number of instructions in each block,
we can detect hot spots: parts of the program that may
benefit most from parallelism. We plan to use this in-
formation to guide our search to determine if the cost of
adding the parallelism (from potential overhead) is worth
the gain.

Additionally, if there is more than one possible parallel
workflow, we can use different heuristics to balance allo-
cation of basic blocks to parallel sets. One such heuristic,
for example, can be the number of instructions in each
thread. Load balancing is useful to avoid any skew in as-
signing basic blocks to parallel sets. For example if in the
first workflow, parallel set 1 has 20 blocks, and parallel
set 2 has 1, and in workflow 2, parallel set 1 is assigned
10 blocks and parallel set 2 is assigned 11, the second
workflow will be chosen as it is more balanced and will
give better performance benefit.
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2.5 Binary Rewriting
Binary rewriting transforms an executable into a differ-
ent but functionally equal program. Binary rewriting has
been applied to various fields, including computer secu-
rity [21] and code compaction [6] optimization.

After discovering candidates for parallelization, the
next step is to apply these in the binary. We propose to
utilize binary rewriting to parallelize the selected control
flows. We are currently exploring static binary analysis
tools including IDA Pro [11], Diablo [8], the SOLAR
Project [20], ETCH [9], and hex binary editors to rewrite
and parallelize the binaries.

3 An Example: How is parallelism discov-
ered?

In this section we show how potential parallelism can be
found using our technique for a simple control and data
flow example. Figure 2 shows a small portion of the basic
blocks from a sample control flow trace. A typical exe-
cution may yield hundreds or thousands of basic blocks.
We focus our efforts on hot-spots: regions that are heav-
ily executed. We present one such hot spot below:

A: 20

100

B: 30

300

C: 30

300

E: 50

300

200

F: 3

100

Figure 2: A Simple Profile

Basic blocks are labeled with an identifying letter, fol-
lowed by the number of instructions in the block. Solid
edges are labeled with the number of times that it is
traversed, and dotted edges indicate data dependencies.
Hence, the edge A-B with annotation 300 means that

there has been 300 jumps from A to B. In this profiled
execution, we can always run blocks B, C, and E at the
same time (or B and C followed by E and A). The con-
trol flow is simple enough that we can intuitively tell that
we can always run our parallel schedule without inter-
fering with program correctness, thanks to Bernstein’s
conditions.

Consider, a somewhat more complex control flow,
such as the one represented in Figure 3. In this case,
we can again run B, C, and E concurrently. However,
we cannot assume that block C will be executed after B,
as D may also be executed afterwards. In this case we
must be more conservative in our parallelization strategy.
However, if the system supports speculative paralleliza-
tion such parallelizations are still useful.

A: 5

200

B: 30

100

D: 40

400

C: 30

90 10

E: 50

90

400

10

Figure 3: A Complex Profile

4 Related Work

The past few years have seen renewed interest in par-
allelizing applications. There are a wide range of ap-
proaches towards parallelization, including speculative,
automatic and programming language oriented paral-
lelization. To the best of our knowledge, the nearest
work similar to our approach has been done by Yardimci
and Franz who explored a dynamic recompilation ap-
proach (recompiling the binary to a parallel version at
run-time) towards parallelizing binaries [23], whereas
our approach focuses on a static binary re-writing hence
avoiding the overhead of dynamic recompilation of the
binary.

Programming language based approaches to assist in
parallelization range from parallelization primitives such
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as Intel TBB’s [13], X10 [18], Cilk-5 [10], ATOM
or parallelizations provided in FORTRAN, and parallel
function libraries extremely restrict practical usage (for
example restricting the use of pointers, or in case of a
previous existing implementation of sort/search which
cannot easily be modified/applied etc.).

Parallel programming paradigms such as Open MP
etc. are slowly being adopted, but require a large amount
of expertise. Additionally these techniques cannot help
to port legacy sequential applications. On the other hand
auto-parallelization techniques(such as our own) can be
more easily adopted and applied to legacy sequential ap-
plications.

Pure compiler solutions to auto-parallelization employ
static analysis [2, 15] techniques to recognize and exe-
cute independent regions of code in parallel, but are ex-
tremely limited due to the challenge of scaling pointer
analysis in large and complex applications. These issues
are further compounded by the inability of compilers to
recognize complex control flows and irregular flow pat-
terns, or to properly judge costs and benefits of paralleliz-
ing different portions of code. Profile information, how-
ever, provides the clues that compilers are missing - ex-
act number of times that blocks are executed, what they
conflict with, etc. Dynamic auto-parallelization [7, 17]
techniques are also used in some places, but their use
cases are extremely limited as they delay the paralleliza-
tion work to the run-time of the program, hence adding
run-time overhead. In contrast our approach avoids this
by analyzing and transforming the binary offline, result-
ing in minimal run-time overhead.

In the last few years there have been other profile-
driven approaches. Tournavatis et al. [22] identified po-
tential parallelisms using machine learning to analyze
cumulative profiles. Another profile driven approach was
proposed by Kim et al. [14], as an extension to existing
Intel Parallel Studio [12]. Both of these approaches do
not actually parallelize programs, but provide assistance
to programmers in optimizing their applications by hand.
Additionally, the profiles are generated at an intermedi-
ate level and require special compiler infrastructures. In
contrast we focus on the binary, and do not require the
source code.

Finally, there have been several attempts to use user
feedback to help programmers parallelize their applica-
tions. These approaches do not necessarily ensure cor-
rectness of proposed transformations, as that is left as
an exercise to the programmer. The most noteworthy
amongst these is the Intel Parallel Studio [12] Suite, an
IDE provided by Intel to help programmers analyze tar-
get applications by suggesting potential candidates for
parallelism. The authors have also worked on COM-
PASS, a collaborative and interactive IDE to assist pro-
grammers in parallelizing applications [19]. COMPASS

is an ongoing research project which uses a wisdom of
the crowd approach to gather parallelizations for legacy
sequential software.

5 Ongoing and Future work

We have tested our approach on small examples and are
implementing a tool to apply our parallelizations to ap-
plication binaries and are investigating tools such as IDA
Pro [11](a static binary disassembler and analyzer) to as-
sist in the development of such a prototype.

Our approach relies on generating cumulative profile
information. This has a possibly significant drawback,
that we may classify a code segment wrongly as paral-
lelizable. There can always exist a data input for which
our parallelization transform fails. We are currently ex-
ploring techniques, to ensure the correctness and verifi-
cation of the parallel transforms that POWER will apply.

We also plan to explore how transformations that are
typically used by compilers, can be used in POWER. For
example, typical loop splitting (ie, placing half of the ex-
ecutions of a loop in one thread and half in another) re-
quires directly modifying instructions, and not just paral-
lelizing blocks. As we have defined it, POWER can not
make these optimizations, but we are working to adapt it
to support these transformations. A lot of work has been
done in auto-parallelization techniques in compilers, we
wish to explore how these algorithms/techniques can be
applied to the executable

6 Conclusion

In this paper, we have presented POWER a generic,
executable-only, profile-driven solution for finding can-
didates of parallelism. We proposed basic block level
parallelism, whereby we parallelize basic block’s within
an executable. This technique allows us to maintain the
integrity and structure of code segments of programs,
while introducing parallelism. Our profile-driven ap-
proach counters well known aliasing problems faced
by auto-parallelizing compilers. Moreover, POWER is
generic and is programming language independent. We
believe our tool will provide a new enhancement to the
auto-parallelization techniques currently available to de-
velopers. The work presented is part of an ongoing
project at the PSL lab at Columbia University.
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