
NetServ: Early Prototype Experiences

Michael S. Kester Eric Liu Jae Woo Lee Henning Schulzrinne
Department of Computer Science, Columbia University

{msk2117, ewl2113}@columbia.edu {jae, hgs}@cs.columbia.edu

May 2010

Abstract

This paper describes a work-in-progress to demonstrate
the feasibility of integrating services in the Internet
core. The project aims to reduce or eliminate so called
ossification of the Internet. Here we discuss the recent
contributions of two of the team members at Columbia
University. We will describe experiences setting up a
Juniper router, running packet forwarding tests, prepar-
ing for the GENI demo, and starting prototype 2 of Net-
Serv.

1 Introduction

As we close the first year of this multi-year project re-
viving some the concepts first proposed by the active
networking community of the late nineties [1, 9, 10, 11],
we describe here some of the experiences within the
project.

Over the last year we have done performance test-
ing of NetServ prototype 1 using various settings and
configurations and compared it to other similar plat-
forms. We have also begun implementation of proto-
type 2 which lays the groundwork for the next steps
that will become the focus of research over the next
six months. For describing the authors’ contributions,
the remainder of the paper is organized as follows: a
discussion of packet forwarding and measurement; cur-
rent progress on prototype 2; and the next steps in the
project.

2 Packet Forwarding and Mea-
surement

Over the course of the project we have tested and mea-
sured the forwarding performance of various systems
ranging from dated consumer grade equipment to cur-
rent commercial grade hardware [8]. The tests can be

broken down into two categories based on connections
and theoretical speed: a single 100 Mb Ethernet con-
nection vs. 2x 1 Gb Ethernet connections.

2.1 Testing at Higher Speeds

In the summer of 2009, as a proof of concept, we tested
the forwarding performance of user-level Click with and
without NetServ Prototype 1 and compared this to bare
Linux. In the fall, we extended this testing to more mod-
ern hardware and also measured the best performance
Click could offer in kernel-level mode. This was used
to gauge a best-case scenario for what performance we
can hope to achieve porting NetServ into kernel space.
We also added FreeBSD to the mix as it uses polling
without any interrupts. Click performance here topped
out at about 930 Kpps. FreeBSD showed nice potential
at just under 1.3 Mpps.

At this time we also developed a couple of simple
scripts and a parsing program to help collect and trans-
late the raw text generated during testing. As we began
to evaluate the high speed tests we sought to establish
the maximum speed that our endpoints could reliably
perform. We observed strange behavior at the destina-
tion node. We found we could only reliably generate
and count approximately 1.8 Mpps as discussed in Sec-
tion 2.2.1.

2.2 Testing on a Commercial Router

Testing of the commercial router involved two tasks: a
sanity check on the observed 1.8 Mpps generation and
counting limit at node 3 of the testing system, and ob-
taining a maximum loss free forwarding rate (MLFFR)
for a Juniper M7i.

2.2.1 Limit to Packet Counting

We observed an upper limit on the packet rate that can
be reliably counted in Linux; we consistently ran into

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the limit around 1.8 Mpps when directly connecting the
source node to the destination node. While we have
not found a definitive explanation for the cause, we be-
lieve it is related to the SMP two-CPU setup we employ
for testing. SMP Linux kernels try to optimize com-
putational capacity by load balancing work across all
available CPUs. At the same time, an attempt is made
to try to keep individual tasks on the same CPU they
have been running on. This is done for various reasons
that include minimizing memory access latency. If a
task stays running on the same CPU, it is more likely to
have its data warmed in the cache. In contrast, switch-
ing CPU’s will result in a flushing of the cache and hav-
ing to reload data which increases latency.

Tests run by Bolla and Bruschi [2] show that there is
a performance deterioration when going from a one to
two-CPU system. They believe this performance deficit
is due to the additional overhead and computational
power needed to manage concurrency in an SMP sys-
tem. For example, spinlocks in an SMP system could
actually cause a contention for the same code region be-
tween processors resulting in one being stuck waiting.
However, they did manage to come up with some opti-
mizations to improve forwarding performance in SMP
systems. These improvements resulted in better per-
formance than a one-CPU system. Specifically, they
achieved a forwarding rate of 1.8 Mpps which is con-
sistent with the upper limit we mention above.

These issues apply to both hard and soft interrupt
handlers relating to network cards. We tried to get
around the issue in our testing by pinning interrupt han-
dling for each NIC to a specific CPU. This keeps the
hard and soft interrupts local to the pinned CPU. We
also ran our tests using polling drivers which should by-
pass a majority of the interrupt problem. The fact that
we still run into problems on the receiving computer
at around 1.8 Mpps suggests we are likely not getting
around the problem completely. We think there are two
possible explanations. The first is that such a heavy pro-
cessing load with polling is interfering indirectly with
interrupts of other events. These could be unrelated
events just having to do with background processes or
they could be interrupt events having to deal with other
elements of Click. The latter seems more likely since
the problems manifest in nondeterministic behavior of
Click at speeds near the threshold. The second possibil-
ity is that interrupts are not completely eliminated even
with the use of polling drivers in Linux. Salah, et. al. [7]
present new analysis and models for studying polling
schemes and interrupt disabling and enabling for NIC’s.
Their work describes different types of polling in detail:
pure polling and New API (“NAPI”) polling. FreeBSD

Figure 1:Juniper performance (MLFFR) using 64 byte packets.

uses a pure polling mode that completely eliminates in-
terrupts while Linux’s NAPI polling is a hybrid interrupt
with polling approach. NAPI does not eliminate inter-
rupts completely and instead only disables them when
the incoming rate of packets is high. It is highly likely
that even with polling drivers installed and using Click,
we are still using some interrupts on the system and,
thus, interfering with other aspects of operation.

In either event, we are satisfied that our results are
reasonable based on the published results of other re-
searchers.

2.2.2 Juniper Packet Forwarding

The Juniper forwarding was a natural extension of our
previous work speed testing various configurations of
Click routers and the Linux kernel. Having recently re-
ceived a model M7i Juniper router, it made sense to per-
form our packet forwarding tests on this commercial-
grade hardware and see how it compared to our previous
tests. We somewhat expected the router to easily handle
the load of 1.8 Mpps. However, the M7i’s performance
leveled off at approximately 1.3 Mpps.

The M7i is an entry level commercial grade edge
router providing “ATM, channelized, Ethernet, IP ser-
vices, and SONET/SDH interfaces for large networks
and network applications, such as those supported by
Internet service providers.”[5] We suspect that it has
been designed to target a reasonable throughput rather
than optimized for maximum header processing. In
other words, usage assumes average size packets rather
than minimum size. The documentation published by
the company provides conflicting throughput ratings.
The “M7i Internet Router Quick Start” manual indicates
“3.2 Gbps full duplex” while the M series products page
on the website lists “10 Gbps of throughput” aggregate

2



and half duplex. Another source, the datasheet on the
product line describes throughput as ranging “from over
7 Gbps up to 320 Gbps” for which the 7 Gb/s figure
corresponds to the M7i. The description in the techni-
cal documentation suggests a total of 5 Gbps, 4 Gb/s
across one or more Physical Interface Cards (PIC) plus
a 1 Gb/s connection on the Fixed Interface Card (FIC).
Multiple sources confirm that the device can be con-
figured such that the throughput is higher than 5 Gb/s
but the machine is then considered oversubscribed. For
rough calculation of throughput ability we can make
some assumptions about traffic and performance to ra-
tionalize our observations. First we note that, assum-
ing the CPU of a system is the observed limiter to
speed, throughput scales linearly with packet size leav-
ing MLFFR unchanged by packet length. Next we esti-
mate the average packet size on an edge router at 404.5
bytes per packet [6]. We use a 1.3 Mpps forwarding rate
as observed in testing (Fig. 1). Given these assumptions
we can estimate the throughput of our M7i at approxi-
mately 4.2 Gb/s which matches closely with suggested
use listed by the company. We note that throughput
changes significantly if you assume minimum or max-
imum (on Ethernet) sized packets. The same calcula-
tions result in 665.6 Mb/s using 64 byte packets and
15.6 Gb/s assuming 1500 byte packets. While we ini-
tially expected the M7i to perform much closer to the
1.8 Mpps we observed without any forwarding node,
the performance it does achieve does not seem too un-
reasonable when considering that FreeBSD, which ap-
pears to have the best polling implementation we have
encountered, performs similarly.

3 Netserv Prototype 2

3.1 Purpose

Prototype 2 is a significantly more robust implementa-
tion compared to its predecessor. Development is on
an aggressive timeline motivated by the deadlines in
place for demonstrations at The Eighth GENI Engineer-
ing Conference (GEC8) in July, and GEC9 in November
[3]. We have taken an active role in two aspects of the
prototype 2 development. We have attended the orga-
nizational meetings and contributed where appropriate,
gaining greater insight into the needs, goals, and details
of the project; and we have begun development of pro-
totype 2 itself.

Client PC

N tC t

Kernel Space – User Space Division

User Program

/dev/FromClick0 /dev/ToClick0

Click Router

ToUserDevice FromUserDevice

Base Section of NetServ Router

NetCat FromDevice ToDevice

Figure 2:Packet path of a round trip from a client through the Click
and user space portion of the prototype 2 base.

3.2 Demo Development

Because we had been given an invitation to the GENI
demo to demonstrate NetServ’s capabilities, a signifi-
cant portion of our project work after the midterm pre-
sentation involved meetings with the NetServ team. It is
difficult to quantify our contributions on this aspect of
the project; however, our participation here was valu-
able for the team and especially for ourselves in seeing
the bigger picture behind what can be done with Net-
Serv. These were long and intense meetings in which
we were active participants. Our work here included
reading up on the background and purpose of GENI,
understanding what would be expected of the NetServ
team with respect to GENI, posing questions to other
team members to help clarify the presentation of our
storyboard, and giving input into how the demo should
be presented.

A quick summary of the result is that there are two
demos planned for GENI. The first is a VoIP satel-
lite agent (VSA). A NetServ module can be used to
help reduce traffic load for an SIP service when dealing
with clients behind NAT’s by both redirecting traffic it-
self and helping with keep-alive messages. The second
demo will demonstrate how NetServ can be used in the
context of a content distribution network (CDN). A Net-
Serv module closer to a client’s location can be used to
cache content to reduce traffic load as well as for adver-
tising or watermarking purposes.

3.3 Implementation

The base of Prototype 2 is being developed in two paths
concurrently. One of the paths uses Click for filtering
which packets to send to the module, actually passing
the packets to user space, and then injecting them back
into the packet stream (Fig. 4). The other path fol-
lows this same pattern but will rely on current Linux
tools. We have begun work on the Click path and im-
plemented the first layer of the model [4] which con-
nects kernel level Click and an arbitrary user space pro-

3



gram. We use Click-supplied elements, ToUserDevice
and FromUserDevice, to move packets from Click into
user space and back via Linux device files. ToUserDe-
vice can write a packet from Click into the device file.
At this point, it can be read by a user-level program.
FromUserDevice is the opposite. It reads from a device
file and injects a packet into Click’s packet stream.

In order to test the basic functionalities of these two
elements, we started with a basic IP-router Click con-
figuration and added the above mentioned elements. It
was modified, specifically, to send UDP packets des-
tined for the host’s IP address and port 44444 to ToU-
serDevice. Our initial goal was to understand how to
read the packet in a user-level application. Thus, we
started with lower-level C code that could read from the
device file in Linux. In order to make sure we were get-
ting data out of the packet we expected, we used netcat
to send ASCII to UDP port 44444 so that it would be
redirected by the Click IP-router to the device file. We
verified that the payload was what we expected.

With that accomplished, we extended the IP-router’s
functionality to then read a packet from the device file
using FromUserDevice and send it back to the original
sender using the IPMirror element. We modified the C
code to write the same packet into the device file that
Click reads from. The end effect is that any text a re-
mote machine sends to UDP port 44444 using netcat is
sent back by Click facilitated by the user-level C code.

After creating working C code, we were able to port
this functionality to Java to allow for greatest flexibil-
ity of the upper level layers. Now that we can read and
write whole packets, we will need to account for partial
packets. A situation could potentially arise where only
part of a packet is read into the user-level application.
This will occur, for example, when the last packet read
into the buffer of a user space program fills the buffer
before reaching the end of the packet. The next step is
allowing the user-level program to piece together pack-
ets from the device file using multiple read operations.
This is not strictly necessary for the specific program
we have described above since it is only sending ASCII
text using netcat. However, our goal is to use this as
the framework for the rest of prototype 2; thus, we want
it to be able to handle a large number of packets under
high traffic loads.

In order to better understand how to build the more
general framework for prototype 2, we added code to
lay out the bit structure of the packet we read. This will
also allow us to understand how we might modify arbi-
trary bits of any packet. Fig. 3 shows a sample of the
output generated by this bit parsing. This information
will help us understand the structure of the packet in

Version: 0100
Header length: 0101
Diff services: 00000000
Total length: 0000000000100001
ID: 0010101011011110
Flags: 010
Fragment offset: 0000000000000
TTL: 01000000
Protocol: 00010001
Header checksum: 1110011101001101
Source addr: 10000000001110110001010001011100
Dest addr: 10000000001110110001001111001110
Data: test

Figure 3:User space packet header parsing output.

NetServ Filter Element

NetServ control command:

‘Add path 10.0.0.3:443’

NetServ Filter Element

10.0.0.1:80

10.0.0.6:22

10.0.0.19:161

10.0.0.8:1293

10.0.0.3:443

Incoming Packet Flow

To Module/Host/etc.

Figure 4:Custom click element dynamically adds a path to a newly
installed NetServ module.

order to make any necessary modifications for redirect-
ing a packet to the correct user-level service or NetServ
module as proposed in the second prototype.

4 Future Work

As noted in Section 3.3, we are implementing the
kernel-to-user transition between Click and user-level
service containers. We will now be writing the code
that will dynamically modify the Click path to pass ar-
bitrary packets to the NetServ module. Once NetServ
has dynamically downloaded and installed the code for
a new NetServ module, it needs to tell the router it is
running, what address and port it has, and how the path
of packets through the router needs to change in order to
accommodate the new module. We are continuing with
Click as the routing platform and are coding a new el-
ement that will fulfill the role of filtering packets along

4



the correct paths. We will base our design largely on an
existing Click element. Many elements deal with clas-
sification and selection of packets so we should easily
find a starting point. Classifier, IPClassifier, and IPFilter
are the most likely candidates. These elements typically
receive packets from one input and can send them out
any number of different outputs (paths) based on dif-
ferent criteria. Another promising category of elements
are routing elements such as StaticIPLookup. These can
also send out different outputs based on a set of speci-
fied rules. We will likely want to add handlers to the
element we create so that there is more flexibility and
control in router behavior. The above existing Click ele-
ments currently have few useful handlers for modifying
their behavior.

As previously stated, Linux also provides methods to
redirect packets to user-space. For example, IPTables
also allows filtering of packets based on certain rules
that are then redirected to a QUEUE that is user acces-
sible.

References

[1] D. S. Alexander, W. A. Arbaugh, M. W. Hicks,
P. Kakkar, A. D. Keromytis, J. T. Moore, C. A.
Gunter, S. M. Nettles, and J. M. Smith. The
SwitchWare Active Network Architecture, 1998.

[2] R. Bolla and R. Bruschi. An effective forwarding
architecture for SMP Linux routers. InTelecom-
munication Networking Workshop on QoS in Mul-
tiservice IP Networks, 2008. IT-NEWS 2008. 4th
International, pages 210 –216, 2008.

[3] Geni exploring networks of the future.http:
//www.geni.net/, May 2010. BBN Tech-
nologies.

[4] J. W. Lee. Netserv demo at GEC9, synopsis v1.0.
NetServ team, Columbia University, April 2010.

[5] M series multiservice edge routers.
http://www.juniper.net/techpubs/
en_US/release-independent/
junos/information-products/
pathway-pages/m-series/, May 2010.
Juniper Networks, Inc. Technical Documentation.

[6] Mixed packet size throughput. http:
//advanced.comms.agilent.com/n2x/
docs/insight/2001-08/TestingTips/
1MxdPktSzThroughput.pdf, 2001. Agilent
Technologies Technical Documentation.

[7] K. Salah, K. El-Badawi, and F. Haidari. Per-
formance analysis and comparison of interrupt-
handling schemes in gigabit networks.Computer
Communications, 30(17):3425 – 3441, 2007. Spe-
cial Issue Concurrent Multipath Transport.

[8] S. R. Srinivasan, J. W. Lee, E. Liu, M. Kester,
H. Schulzrinne, V. Hilt, S. Seetharaman, and
A. Khan. Netserv: dynamically deploying in-
network services. InReArch ’09: Proceedings
of the 2009 workshop on Re-architecting the in-
ternet, pages 37–42, New York, NY, USA, 2009.
ACM.

[9] P. Tullmann, M. Hibler, and J. Lepreau. Janos: A
Java-oriented OS for active network nodes.IEEE
JOURNAL ON SELECTED AREAS IN COMMU-
NICATIONS, 19:501–510, 2001.

[10] D. J. Wetherall, J. V. Guttag, and D. L. Tennen-
house. ANTS: a toolkit for building and dynam-
ically deploying network protocols. Inin IEEE
OPENARCH, 1998.

[11] Y. Yemini and S. D. Silva. Towards programmable
networks. Inin IFIP/IEEE International Work-
shop on Distributed Systems: Operations and
Management, 1996.

5


