
Infinite-Dimensional Integration on Weighted Hilbert
Spaces

Michael Gnewuch

Department of Computer Science, Columbia University,

1214 Amsterdam Avenue, New York, NY 10027, USA,

May 21, 2010

Abstract

We study the numerical integration problem for functions with infinitely many
variables. The functions we want to integrate are from a reproducing kernel Hilbert
space which is endowed with a weighted norm. We study the worst case ε-complexity
which is defined as the minimal cost among all algorithms whose worst case error
over the Hilbert space unit ball is at most ε. Here we assume that the cost of
evaluating a function depends polynomially on the number of active variables.

The infinite-dimensional integration problem is (polynomially) tractable if the
ε-complexity is bounded by a constant times a power of 1/ε. The smallest such
power is called the exponent of tractability.

First we study finite-order weights. We provide improved lower bounds for
the exponent of tractability for general finite-order weights and improved upper
bounds for three newly defined classes of finite-order weights. The constructive
upper bounds are obtained by multilevel algorithms that use for each level quasi-
Monte Carlo integration points whose projections onto specific sets of coordinates
exhibit a small discrepancy.

The newly defined finite-intersection weights model the situation where each
group of variables interacts with at most ρ other groups of variables, where ρ is
some fixed number. For these weights we obtain a sharp upper bound. This is the
first class of weights for which the exact exponent of tractability is known for any
possible decay of the weights and for any polynomial degree of the cost function.
For the other two classes of finite-order weights our upper bounds are sharp if, e.g.,
the decay of the weights is fast or slow enough.

We extend our analysis to the case of arbitrary weights. In particular, from
our results for finite-order weights, we conclude a lower bound on the exponent
of tractability for arbitrary weights and a constructive upper bound for product
weights.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Although we confine ourselves for simplicity to explicit upper bounds for four
classes of weights, we stress that our multilevel algorithm together with our default
choice of quasi-Monte Carlo points is applicable to any class of weights.

1 Introduction

Integrals over functions with an infinite number of variables are important in quantum
chemistry and physics, as well as in financial mathematics. In this paper we study the
numerical integration problem for functions defined over the infinite-dimensional unit cube
[0, 1]N. The functions belong to a reproducing kernel Hilbert space Hγ . Its kernel is built
up from weighted sums of products of the 1-dimensional reproducing kernel K(x, y) =
min{x, y}. The role of the weights γ is to moderate the importance of different groups of
variables. In fact, the infinite-dimensional integration problem consists of infinitely many
finite-dimensional integration sub-problems of varying importance, and the importance
of each sub-problem is proportional to the corresponding weight. The finite-dimensional
integration sub-problems are intimately related to L2-star discrepancy.

We assume that the evaluation of functions from Hγ is only possible at points with
finitely many components different from zero. (We call these components “active vari-
ables”.) Furthermore, we assume that the cost of a single evaluation depends polynomially
on the number of components different from zero.

We study the worst case ε-complexity which is defined as the minimal cost among
all algorithms whose worst case error over the Hilbert space unit ball is at most ε. The
infinite-dimensional integration problem is said to be (polynomially) tractable if the ε-
complexity is bounded by a constant times a power of 1/ε. The smallest such power is
called the exponent of tractability.

Tractability of numerical integration for functions with an infinite number of variables
has been studied, e.g., in [2, 16, 18, 20, 22, 26, 27, 31, 36]. Except of [18, 31, 36] all of
these papers consider varying cost of function evaluations.

In this paper we study the setting proposed in [20]. In particular, we improve upper
and lower bounds for the exponent of tractability provided in [20] for finite-order weights,
and improve on the upper bound given in [20] for product weights.

Let us explain our results in more detail. After describing the setting in Section 2,
we study finite-order weights in Section 3. For finite-order weights γ of order ω, each
function from the Hilbert space Hγ can be represented as a (usually infinite) sum of
functions that depend on at most ω variables. Upper and lower bounds on the exponent
of tractability have been provided in [20, Sect. 4]. The upper bound from [20] was achieved
by employing an algorithm that uses only function evaluations at points with at most ω
non-zero components.

In Section 3.1 we prove some lower bounds for the exponent of tractability. In Theorem
3.2 we show that if we restrict the class of admissible algorithms to those that use for fixed
B ≥ ω only function evaluations at points with at most B non-zero components, then
the upper bound on the exponent of tractability provided in [20, Sect. 4] is indeed sharp.
We additionally introduce “cut-off weights” γ(σ) and quantities t∗σ, σ = 1, 2, . . ., which

2

allow us a more careful analysis of the dependence of the infinite-dimensional integration
problem on the given weights γ. This analysis enables us to improve the lower bound
on the tractability exponent for general algorithms from [20, Sect. 4], see Theorem 3.4.
Afterwards we illustrate our lower bounds for three newly defined classes of finite order
weights:

• finite-intersection weights (which, in particular, include finite-diameter weights),

• finite-product weights (which are defined as the product weights introduced by Sloan
and Woźniakowski in [33], except that all weights of sets of variables with cardinality
larger than some fixed ω are set to zero),

• lexicographically-ordered weights (whose properties complement the properties of
the other two classes of weights).

In Section 3.2, we motivate and introduce an algorithm for the infinite-dimensional
integration problem. It is especially useful in the case where the polynomial degree s of the
cost function is less than the order ω of the finite-order weights. As we will explain later,
this case is indeed the most important one. The algorithm combines a multilevel idea with
quasi-Monte Carlo integration using sample points whose projections onto important sets
of coordinates exhibit a small L2-star discrepancy. Multilevel algorithms for numerical
integration have been introduced by Heinrich [13, 14] and Giles [7, 8]. Furthermore,
multilevel algorithms have been used for infinite-dimensional integration in [2, 16, 22, 27].
For further references to multilevel ideas see the literature mentioned in these papers.

We use our algorithm to improve the upper bound on the tractability exponent from
[20] for the three classes of finite-order weights mentioned above.

In the case of finite-intersection weights our upper bound matches our lower bound
for all values of s and any decay of the weights, see Theorem 3.12. This is the first class
of weights for which the exact exponent of tractability is known for any possible decay
of the weights and for any polynomial degree of the cost function. The result relies, in
particular, on the discrepancy result proved in Proposition 3.11.

Our upper bounds for lexicographically-ordered and finite-product weights match the
corresponding lower bounds if, e.g., the decay of the weights is fast or slow enough, see
Theorem 3.14 and 3.16.

In Section 4 we apply our methods and results for finite-order weights to the case
of arbitrary weights. In Section 4.1 we state a new lower bound for the exponent of
tractability for arbitrary weights, which is a direct corollary of Theorem 3.4. In particular,
it generalizes the non-trivial lower bound for product weights that was proved in [20].

As already mentioned, our multilevel algorithm is especially useful for finite-order
weights if s < ω. For weights that are not of finite order, we have formally ω = ∞; we call
such weights “infinite-order weights”. Therefore it is not too surprising that our algorithm
should also lead to good results for infinite-order weights. We illustrate this for product
weights in Theorem 4.2. The upper bound provided there improves significantly on the
bounds provided in [20, Sect. 3]. In particular, we show that the exponent of tractability
p∗ takes the optimal value p∗ = 1 if the decay of the weights is sufficiently fast. In

3

contrast, if s > 0 and the weights do not decay super-polynomially, the upper bound on
p∗ from [20, Sect. 3] is strictly larger than 1. Moreover, our upper bound also matches
the lower bound in the case where s ≤ 1 and the decay of the weights is sufficiently slow.
Independently from our work, the same result has been proved in the recent paper [27] by
a different analysis for an alternative cost model, the so-called variable subspace sampling
model. We will discuss this cost model and the result from [27] in detail in Remark 4.4.

Although we confine ourselves for the sake of clarity to explicit upper bounds for
four classes of weights, we stress that our multilevel algorithm together with our generic
(weight-specific) choice of quasi-Monte Carlo points from Proposition 3.9 is applicable to
any class of weights.

Our results can be extended to more general reproducing kernel Hilbert spaces. Since
this paper is already rather long, we do not discuss these kinds of generalizations in detail.
Natural function space settings to which our analysis and our algorithm can be generalized
are, e.g., considered in [20, Sect. 5] and [27].

2 The Setting

In this paper we consider the setting studied in [20]. Let us recall the basic notions from
[20, Sect. 2] and add some definitions and notation that are helpful to describe our results.

Let us start with some general notation: For d ∈ N we denote by [d] the set {1, 2, . . . , d}.
Furthermore, we denote the cardinality of a finite set A by |A|.

2.1 Weights

Let γ = {γu}u⊂N;|u|<∞ be a given set of non-negative numbers γu that are called weights.
For a given set of weights γ we denote by γ̂ the set of weights defined by

γ̂u := γu3
−|u| for all finite u ⊂ N. (1)

Weights γ are called finite-order weights of order ω if there exists an ω ∈ N such that
γu = 0 for all u ∈ N with |u| > ω. Finite-order weights were introduced by Dick et al. in
[4] for spaces of functions with a finite number of variables.

The weights we introduce in the following definition will be essential for our analysis.

Definition 2.1. For arbitrary weights γ and σ ∈ N let us define the cut-off weights of
order σ

γ(σ) = {γ(σ)
u }u⊂N;|u|<∞ via γ(σ)

u =

{
γu if |u| ≤ σ,

0 otherwise.
(2)

Clearly, cut-off weights of order σ are in particular finite-order weights of order σ.
Note that the set {u ⊂ N | |u| < ∞} is infinite, but still countable. Thus for a set

of bounded weights {γ(σ)
u }u⊂N;|u|<∞, let us denote by u1(σ), u2(σ), . . ., the non-empty sets

u ⊂ N with positive γ
(σ)
u > 0 for which γ̂

(σ)
u1(σ) ≥ γ̂

(σ)
u2(σ) ≥ · · · . Let us put u0(σ) := ∅.

4

We can make the same definitions for σ = ∞; then we have obviously γ(∞) = γ. For
convenience we will usually suppress any reference to σ in the case where σ = ∞.

For a set γ of bounded weights and σ ∈ N ∪ {∞} let us define

tailγ,σ(d) :=
∞∑

j=d+1

γ̂
(σ)
uj(σ) ∈ [0,∞] and decayγ,σ := sup

{
p ∈ R

∣∣∣ lim
j→∞

γ̂
(σ)
uj(σ)j

p = 0

}
.

Next we define quantities that describe for σ ∈ N∪{∞}, roughly speaking, the density
of the set system {u1(σ), u2(σ), . . .} in {v ⊂ N | |v| < ∞}. As we shall see later, these
quantities provide essentially an upper bound on the efficiency of projection, i.e., on the
number of non-trivial finite-dimensional integration sub-problems we can tackle by using
sample points with active variables in coordinate sets v ⊂ N, |v| < ∞.

Definition 2.2. For σ ∈ N ∪ {∞} let t∗σ ∈ [0,∞] be defined as

t∗σ = inf
{
t ≥ 0 | ∃Ct > 0 ∀ v ⊆ N : |v| < ∞ =⇒ |{i ∈ N | ui(σ) ⊆ v}| ≤ Ct|v|t

}
.

Let σ ∈ N. Since |ui(σ)| ≤ σ for all i ∈ N, we have obviously t∗σ ≤ σ. On the other
hand, if we have an infinite sequence {uj(σ)}j∈N, it is easy to see that t∗σ ≥ 1. Indeed,
define Vk = ∪k

i=1ui(σ). Then k ≤ |{i ∈ N | ui(σ) ⊆ Vk}| and |Vk| ≤ kσ. Thus, if there
exist t, Ct > 0 such that |{i ∈ N | ui(σ) ⊆ Vk}| ≤ Ct|Vk|t for all k ∈ N, then necessarily
Ct ≥ k1−tσ−t for all k. Hence t ≥ 1.

2.2 Weighted Hilbert Spaces

In this subsection we define the weighted reproducing kernel Hilbert spaces whose func-
tions serve as our integrands. Our standard reference for basic properties of reproducing
kernel Hilbert spaces and their kernels is [1]. Additional information about the reproduc-
ing kernel Hilbert spaces we consider here can, e.g., be found in [18, 20].

Let
K : [0, 1]× [0, 1] → R be given by K(x, y) := min{x, y}.

K is a reproducing kernel, and the corresponding reproducing kernel Hilbert space H(K)
is the Hilbert space of absolutely continuous functions f : [0, 1] → R with f(0) = 0, whose
distributional derivatives f ′ are in L2([0, 1]), the space of square-integrable functions on
[0, 1]. Its inner product is given by

〈f, g〉H(K) =

∫ 1

0

f ′(x) g′(x) dx,

and the reproducing property reads as

f(x) = 〈f, K(x, ·)〉H(K) for all f ∈ H(K), x ∈ [0, 1].

Let γ = {γu}u⊂N;|u|<∞ be a given set of weights. If not explicitly stated otherwise, we
always require that

γ∅ = 1 and
∑

u⊂N ; |u|<∞

γu < ∞, (3)

5

and assume furthermore that for at least one finite, non-empty subset u of N we have
γu > 0. Note that (3) implies that decayγ,σ ≥ 1 for all σ ∈ N ∪ {∞}. For infinite-
dimensional vectors x, y ∈ [0, 1]N, define

Kγ(x, y) :=
∑

u⊂N ; |u|<∞

γu Ku(x, y), (4)

where
Ku(x, y) :=

∏
j∈u

K(xj, yj) =
∏
j∈u

min{xj, yj}.

Here we use the convention that the empty product is 1. Since the function K takes
only values in [0, 1], condition (3) implies that Kγ is pointwise well-defined and bounded.
For each u ⊂ N, |u| < ∞, the function Ku inherits from K the properties of positive
semi-definiteness (due to the Schur product theorem for Hadamard products of positive
semi-definite matrices) and symmetry, and is therefore itself a reproducing kernel, see,
e.g., [1]. Consequently, Kγ inherits these properties and is therefore also a reproducing
kernel. The corresponding reproducing kernel Hilbert space Hγ := H(Kγ) consists of
functions f, g : [0, 1]N → R which are once differentiable with respect to all variables, and
their mixed derivatives are square integrable. Its inner product is given by

〈f, g〉Hγ
= f(0) g(0) +

∑
u⊂N ; 1≤|u|<∞

1

γu

∫
[0,1]|u|

∂|u|

∂xu

f(xu;0)
∂|u|

∂xu

g(xu;0) dxu, (5)

where we use the convention 0/0 = 0. Here, xu = (xj)j∈u is a vector with |u| components,
and (xu;0) denotes the vector y = (y1, y2, . . .) ∈ [0, 1]N with yj = xj if j ∈ u and yj = 0
otherwise. Furthermore, ∂|u|/∂xu is a simplified notation for

∏
j∈u(∂/∂xj). We denote

the norm in Hγ by ‖ · ‖Hγ . If γu = 0, then we have for all f ∈ Hγ

∂|u|

∂xu

f(xu;0) = 0 for almost all xu ∈ [0, 1]|u|.

For a finite subset u ⊂ N, let H(Ku) denote the Hilbert space with reproducing kernel Ku.
For u = ∅ we have H(K∅) = span{1}, where 1 is the constant function taking only the
value 1. For non-empty u, a function in H(Ku) depends only on the variables xj, j ∈ u,
and vanishes whenever xj = 0 for some j ∈ u. For u 6= ∅, the inner product in H(Ku) is

〈f, g〉H(Ku) =

∫
[0,1]|u|

∂|u|

∂xu

f(xu;0)
∂|u|

∂xu

g(xu;0) dxu,

implying
‖fu‖Hγ = γ−1/2

u ‖fu‖H(Ku) for all fu ∈ H(Ku). (6)

For u 6= v the spaces H(Ku) and H(Kv) are orthogonal, i.e., the space Hγ is the direct
orthogonal sum

Hγ =
⊕

u⊂N;|u|<∞

H(Ku).

6

For finite u ⊂ N, let Pu denote the orthogonal projection

Pu : Hγ → H(Ku) , f 7→ fu. (7)

Then any function f ∈ Hγ has the unique orthogonal representation

f =
∑

u⊂N ; |u|<∞

fu with fu = Pu(f) ∈ H(Ku). (8)

This implies

‖f‖2
Hγ

=
∑

u⊂N ; |u|<∞

‖fu‖2
Hγ

=
∑

u⊂N ; |u|<∞

γ−1
u ‖fu‖2

H(Ku).

The decomposition in (8) is a special case of the projection decomposition discussed in
[18] and the infinite-dimensional generalization of the anchored decomposition discussed
in [21], with anchor at the origin. As already said, each function fu depends only on the
variables with indices in u. To stress this fact we write, as in [20],

fu(x) = fu(xu;0) = fu(xu);

here and in the rest of the paper we use the convention to denote for a vector x ∈ [0, 1]N

the |u|-dimensional vector (xj)j∈u by xu.

2.3 Infinite-dimensional Integrals

For f ∈ Hγ we want to approximate the infinite dimensional integral

I∞(f) =

∫
[0,1]N

f(x) dx := lim
d→∞

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

f(x1, x2, . . . , xd;0) dx1dx2 · · · dxd.

Since f(x) = 〈f,Kγ(x, ·)〉Hγ
for all f ∈ Hγ and all x ∈ [0, 1]N, the functional I∞ can be

represented as
I∞(f) = 〈f, h〉Hγ

for all f ∈ Hγ ,

where the representer h ∈ Hγ is given by

h(x) =

∫
[0,1]N

Kγ(x, y) dy =
∑

u⊂N ;|u|<∞

γu

∏
j∈u

(
xj −

1

2
x2

j

)
.

The operator norm of the functional I∞ is given by

‖I∞‖Hγ = ‖h‖Hγ =

(∑
u⊂N ; |u|<∞

γ̂u

)1/2

.

For a finite u ⊂ N and f ∈ Hγ , define Iu := I∞ ◦ Pu , i.e.,

Iu(f) = 〈f, Pu(h)〉Hγ .

7

More concretely, we have

Iu(f) =

∫
[0,1]|u|

fu(xu) dxu,

and the representer hu of Iu is given by

hu(xu) = Pu(h)(xu) = γu

∏
j∈u

(
xj −

1

2
x2

j

)
.

Using this notation, we get

I∞(f) =
∑

u⊂N;|u|<∞

Iu(fu) for all f ∈ Hγ .

2.4 Algorithms

As in [20], we assume that we can compute f(x) only for x ∈ [0, 1]N with finitely many
components different from zero. We further assume that for each f ∈ Hγ , each finite
u ⊂ N, and each vector xu, whose components are all different from zero, the cost of
computing f(xu;0) is equal to $(|u|) for a given non-decreasing cost function

$: N0 → [1,∞), (9)

where N0 := {0} ∪N. For our lower bounds we will usually assume $(k) = Ω(ks), for our
upper bounds $(k) = O(ks) for some non-negative s.

Since the problem of approximating I∞ is linear and we want to study the worst
case error of algorithms over a convex and balanced set, it is known, see, e.g., [35], that
nonlinear algorithms and adaption do not help. Due to this, we consider without loss of
generality linear algorithms of the form

Q(f) =
n∑

i=1

ai f(x
(i)
vi

;0) (10)

for some n ∈ N, finite sets vi ⊂ N, ai ∈ R, and sampling points (x
(i)
vi

,0) for i = 1, 2, . . . , n,

where we assume that all components of x
(i)
vi

are non-zero.
The cost of the algorithm Q is then defined by

cost(Q) :=
n∑

i=1

$(|vi|).

The worst case error of Q is defined by

e(Q;Hγ) := sup
‖f‖Hγ≤1

|I∞(f)−Q(f)| = ‖I∞ −Q‖Hγ .

8

We may express the approximation error as

I∞(f)−Q(f) = 〈f, h− hQ〉Hγ
, where hQ :=

n∑
i=1

aiKγ((x
(i)
vi

;0), ·).

This implies, in particular,

e(Q;Hγ) = ‖I∞ −Q‖Hγ = ‖h− hQ‖Hγ .

For a finite u ⊂ N, define Qu by Qu := Q ◦ Pu , i.e.,

Qu(f) = 〈f, Pu(hQ)〉Hγ . (11)

More concretely, we have

Qu(f) =
n∑

i=1

ai fu(x
(i)
vi∩u;0), (12)

and, due to (4) and the uniqueness of the orthogonal representation (8), the representer
hQ,u of Qu is given by

hQ,u = Pu(hQ) =
n∑

i=1

ai γuKu((x
(i)
vi∩u;0), ·).

Using this notation, we get

Q(f) =
∑

u⊂N;|u|<∞

Qu(fu) (13)

and the useful identity

[e(Q;Hγ)]2 =
∑

u⊂N;|u|<∞

‖Iu −Qu‖2
Hγ

=
∑

u⊂N;|u|<∞

γu‖Iu −Qu‖2
H(Ku), (14)

which follows from

[e(Q;Hγ)]2 = ‖h− hQ‖2
Hγ

=
∑

u⊂N;|u|<∞

‖Pu(h− hQ)‖2
Hγ

=
∑

u⊂N;|u|<∞

‖hu − hQ,u‖2
Hγ

=
∑

u⊂N;|u|<∞

‖Iu −Qu‖2
Hγ

and identity (6).

2.5 Discrepancy

High-dimensional and infinite-dimensional integration on reproducing kernel Hilbert spaces
are intimately related to discrepancy, see, e.g., the papers [15, 33, 18, 28, 9] or the recent

9

monograph [30]. In particular, for finite u ⊂ N the worst case error of multivariate numer-
ical integration on the reproducing kernel Hilbert space H(Ku) is related to the L2-star
discrepancy.

For a point set T = {t(1), . . . , t(n)} ⊂ [0, 1]|u| and coefficients a = {a1, . . . , an} ⊂ R let
us define the L2-star discrepancy of T with respect to a by

disc∗2,|u|(a, T) :=

∫
[0,1]|u|

(∏
j∈u

xj −
n∑

j=1

aj1[0,xu)(t
(j))

)2

dxu

1/2

,

where [0, xu) =
∏

j∈u[0, xj) and 1[0,xu) denotes the characteristic function of the set [0, xu).
In the case where all coefficients are ai = 1/n, we suppress the explicit reference to a.

Let 1 := (1, 1, . . . , 1) ∈ [0, 1]|u| and denote the points 1 − t(j) by t
(j)

and the set

{t(1)
, t

(2)
, . . . , t

(n)} by T . If the linear algorithm Q̃u is given by

Q̃u(fu) =
n∑

i=1

aifu(t
(i)) for fu ∈ H(Ku),

then it is well-known that the worst case error of approximating Iu by Q̃u is

e(Q̃u, H(Ku)) := ‖Iu − Q̃u‖H(Ku) = disc∗2,|u|(a, T), (15)

see, e.g., [30, Ch. 9]. In particular, we have for the zero algorithm, i.e., the algorithm
which approximates Iu(f) for all f by 0,

e(0, H(Ku)) = ‖Iu‖H(Ku) = disc∗2,|u|(a, ∅) = 3−|u|/2. (16)

Using the identities (14) and (15) for an algorithm Q of the form (10), we obtain the
identity

[e(Q;Hγ)]2 =
∑

u⊂N;|u|<∞

γu disc∗2,|u|(a, {x(1)
v1∩u, . . . ,x

(n)
vn∩u})2. (17)

Another important discrepancy measure is the star discrepancy of T with respect to the
set of coefficients a, given by

disc∗∞,|u|(a, T) := sup
xu∈[0,1]|u|

∣∣∣∣∣∏
j∈u

xj −
n∑

j=1

aj1[0,xu)(t
(j))

∣∣∣∣∣ .
Obviously, we have always disc∗2,|u|(a, T) ≤ disc∗∞,|u|(a, T). This is a useful relation, since
the star discrepancy of projections of a point set is always as most as large as the star
discrepancy of the point set itself and the construction of point sets with low star discrep-
ancy has been intensively studied in the past, see, e.g., the papers [12, 34, 6, 23, 25, 19, 5],
the monographs [24, 30], and the literature mentioned therein.

10

2.6 Polynomial Tractability

The worst case ε-complexity is defined as the minimal cost among all algorithms of the
form (10), whose worst case errors are at most ε, i.e.,

comp(ε;Hγ) := inf {cost(Q) | Q is of the form (10) and e(Q;Hγ) ≤ ε} . (18)

The integration problem I∞ is said to be polynomially tractable if there are non-negative
constants Cp and p such that

comp(ε;Hγ) ≤ Cp ε−p for all ε > 0. (19)

The exponent of polynomial tractability p∗ = p∗(γ) is the infimum of all p satisfying (19).
If u 6= ∅, then it is well known that for the space H(Ku) the minimal worst case error of
algorithms using n function values is of order at least n−1. Since we assumed in Sect. 2.1
that at least one γu is positive for some u 6= ∅, we have comp(ε;Hγ) = Ω(ε−1), and
therefore p∗ ≥ 1.

Let us define

eγ(N) := inf{e(Q;Hγ) | Q is of the form (10) and cost(Q) ≤ N}, (20)

the N th minimal worst case error that can be achieved by algorithms of the form (10).
It is easy to see that the exponent of polynomial tractability p∗ is the infimum over all
p ≥ 0 such that there exists a C̃p ≥ 0 satisfying

eγ(N) ≤ C̃pN
−1/p for all N ∈ N.

Hence, 1/p∗ is essentially the optimal convergence rate of the Nth minimal worst case
error.

One can, of course, also be interested in studying different notions of tractability. For
multivariate problems such notions have been defined and studied, e.g., in [10, 11, 29].
Here in this paper we focus solely on polynomial tractability. That is why it should not
cause any confusion if we use from now on the short-hand “tractability” for “polynomial
tractability”.

3 Finite-Order Weights

Let us consider finite-order weights γ = {γu}u⊂N;|u|<∞ of order ω. Due to our convention
of notation, we have γ = γ(ω) = γ(∞). Note that for finite-order weights of order ω we
have γ̂u ≤ γu ≤ 3ωγ̂u, i.e., γ̂u = Θ(γu).

The following result for finite-order weights was presented in [20].

Theorem 3.1 ([20, Thm. 5(b)]). Let γ be finite-order weights of order ω. Let $(k) =
Ω(ks) with s > 0. The integration problem I∞ is polynomially tractable if and only if
decayγ,ω > 1. When this holds, then the tractability exponent p∗ satisfies

max

{
1,

2 min{1, s/ω}
decayγ,ω −1

}
≤ p∗ ≤ max

{
1,

2

decayγ,ω −1

}
. (21)

11

In particular, we have p∗ = 1 for decayγ,ω ≥ 3 and

p∗ =
2

min{3, decayγ,ω} − 1
for s ≥ ω.

Thus the exact value of the exponent of tractability is known if decayγ,ω ≥ 3 or if
s ≥ ω. It was left open in [20] what is the exact value of the exponent of tractability if
the cost function satisfies $(k) = Θ(ks) for some s ∈ [0, ω) and if decayγ,ω ∈ (1, 3). We
believe that the case s ∈ [0, ω) is in fact the more important one. Clearly, the dependence
of the cost function $(k) on the numbers of non-zero variables could be very different
in different applications. But it seems reasonable to assume that in most applications
$(k) depends linearly or slightly worse on k. This assumption means, in particular, that
s ∈ [0, ω) for all ω > 1. (The case ω = 1 is not very interesting, since different variables
do not interact. We provide a complete solution for this case in Remark 3.13.) Another
reason for the importance of the case s ∈ [0, ω) are infinite-order weights. We may view
infinite-order weights as limiting case of finite-order weights, whose order ω tends to
infinity. In the limiting process we finally have s ∈ [0, ω) for ω sufficiently large. We will
use this observation in Section 4, where we extend our results for finite-order weights to
infinite-order weights.

In this section we improve the bounds from (21). For general finite-order weights
we improve the lower bound and, with the help of a new multilevel algorithm, for three
newly defined classes of finite-order weights also the upper bound. These lower and upper
bounds match if decayγ,ω is large or small enough. For finite-intersection weights (see
Definition 3.5) we will provide the exact exponent of tractability for all values of s and
decayγ,ω.

3.1 Lower Bounds for Finite-Order Weights

Let us start by making an observation. The upper bound in Theorem 3.1 holds also for
s = 0. Indeed, as pointed out in [20], the special form of the cost function $ does not
play a major role in the upper bound for the exponent of tractability in (21). This is
due to the fact that the proof of the upper bound in [20] relies on a linear algorithm that
only uses function values at points with at most ω non-zero components. If we restrict
ourselves to this class of linear algorithms, it can be shown that the upper bound in (21)
is indeed sharp. More generally, we have the following result:

Theorem 3.2. Let $ be an arbitrary cost function as defined in (9). Let γ be finite-order
weights of order ω that satisfy decayγ,ω > 1. Let B ≥ ω be a natural number. If we restrict
ourselves to linear algorithms that use only function evaluations at points with at most B
non-zero components, i.e., to algorithms Q of the form (10) with maxi∈[n] |vi| ≤ B, then
the corresponding exponent p∗B of polynomial tractability is given by

p∗B = max

{
1,

2

decayγ,ω −1

}
.

12

Proof. We adapt the proof approach of [20, Thm. 5(b)]. Let Q be of the form (10) with
maxi∈[n] |vi| ≤ B. We obtain, see (13) and (12),

Q(f) =
∞∑

j=0

Quj
(fuj

) =
∞∑

j=0

nj∑
`=1

aj`
fuj

(x
(j`)
vj`

∩uj
;0),

where the sets uj = uj(ω) are defined as in Section 2.1, nj = |{vi | uj ⊆ vi}|, and {vi|uj ⊆
vi} = {vj1 , . . . , vjnj

}.
The integration problem over H(Kuj

), uj 6= ∅, is at least as hard as the univariate
case. More precisely, there exist a b > 0 and for each j a function f ∗uj

∈ H(Kuj
) such that

|Iuj
(f ∗uj

)−Quj
(f ∗uj

)| ≥ b(nj + 1)−13−|uj |/2‖f ∗uj
‖H(Kuj) = b(nj + 1)−1γ1/2

uj
3−|uj |/2‖f ∗uj

‖Hγ ,

see (6). Thus we get from identity (14) the bound

[e(Q;Hγ)]2 ≥ b2

∞∑
j=1

γ̂uj

(nj + 1)2
(22)

on the worst-case error of the algorithm Q. Due to $(k) ≥ 1 for all k ∈ N0, we have
n ≤ cost(Q). Put N := cost(Q). Then

∞∑
j=0

nj =
n∑

i=1

|{j ∈ N0 | uj ⊆ vi}| ≤
n∑

i=1

min{|vi|,ω}∑
`=0

(
|vi|
`

)
≤

n∑
i=1

min{|vi|,ω}∑
`=0

Bω

`!

≤
n∑

i=1

eBω = eBωn ≤ eBωN.

(23)

Hence we have
∑∞

j=0 nj ≤ S with S := beBωNc.
Put M := |{nj |nj 6= 0}|. We have M ≤ S. To minimize our lower bound (22) for

[e(Q;Hγ)]2, it is clearly the best to choose those nj ≥ 1 whose corresponding weights γ̂uj

are largest, i.e., to choose n1, . . . , nM ≥ 1. Due to these observations we get

eγ,B(N) ≥ b min
M=1,2,...,S

(
M∑

j=1

γ̂uj

(nj + 1)2
+ tailγ,ω(M)

)1/2

, (24)

where eγ,B(N) is the Nth minimal worst case error that can be achieved by algorithms Q
of the form (10) with maxi∈[n] |vi| ≤ B. Since decayγ,ω > 1, we know from Theorem 3.1
that I∞ is tractable. As already explained, the upper bound in (21) holds for general cost
functions, and the algorithm used to establish it uses only function evaluations at points
with at most ω non-zero components, see [20, Thm. 5]. Hence p∗B < ∞, and we have
eγ,B(N) = O(N−1/p) for any p > p∗B. Due to the monotonicity of the γ̂uj

, j = 1, 2, . . .,
and (24) we get

Sγ̂u2S
≤

2S∑
j=S+1

γ̂uj
≤ tailγ,ω(S) ≤ b−2[eγ,B(N)]2 = O(N−2/p). (25)

13

We get γ̂u2S
= O(S−1−2/p), which implies decayγ,ω ≥ 1 + 2/p∗B. In this case we thus have

p∗B ≥ 2

decayγ,ω −1
.

We also have p∗B ≥ 1, since this even holds in the one-dimensional case. This completes
the proof.

With the help of the quantities t∗σ, σ ≤ ω, introduced in Definition 2.2, and the
following remark we are able to improve the lower bound for general linear algorithms in
(21).

Remark 3.3. If γ̃ is another set of weights satisfying γ̃u ≤ γu for all finite u ⊂ N, then
the corresponding reproducing kernel Hilbert space Hγ̃ has a larger norm than Hγ , i.e.,

‖f‖Hγ̃
≥ ‖f‖Hγ for all f ∈ Hγ̃,

see (5). In particular, Hγ̃ ⊆ Hγ , and the unit ball of Hγ̃ is contained in the unit ball of
Hγ . Hence

e(Q;Hγ̃) ≤ e(Q,Hγ) for any algorithm Q.

This shows that the infinite-dimensional integration problem over Hγ̃ is as most as hard
as the one over Hγ , and consequently, the tractability exponent p∗(γ̃) for the weighted
space Hγ̃ will be at most as large as the exponent p∗(γ) for the weighted space Hγ .

Theorem 3.4. Let $(k) = Ω(ks) for some s ≥ 0. Let γ be finite-order weights of order
ω satisfying decayγ,ω > 1. Then the exponent of tractability satisfies

p∗ ≥ max

{
1, max

σ∈[ω]

2 min{1, s/t∗σ}
decayγ,σ −1

}
. (26)

Proof. The proof follows the lines of the proof of Theorem 3.2. We explain here only the
proof steps that differ. For s = 0 inequality (26) becomes p∗ ≥ 1, which we know to be
true even in the one-dimensional case. So let s > 0 and let Q be of the form (10) (but
this time maxi∈[n] |vi| can be arbitrarily large). Let nj = |{vi | uj ⊆ vi}|. There exist a
b > 0 such that

[e(Q;Hγ)]2 ≥ b2

∞∑
j=1

γ̂uj

(nj + 1)2
.

Due to our assumption $(k) = Ω(ks), there exists a constant c > 0 such that
n∑

i=1

|vi|s ≤ c

n∑
i=1

$(|vi|) = c cost(Q).

Put N := cost(Q). With Jensen’s inequality we get for t > t∗ω and some Ct > 0
∞∑

j=1

nj =
n∑

i=1

|{j ∈ N | uj ⊆ vi}| ≤
n∑

i=1

Ct|vi|t

≤ Ct

(
n∑

i=1

|vi|s
)1/ min{1,s/t}

≤ Ct(cN)1/ min{1,s/t}.

(27)

14

This leads to
∑∞

j=1 nj ≤ S with S := bCt(cN)1/ min{1,s/t}c.
Put M := |{nj |nj 6= 0}|. We have M ≤ S, and get

eγ(N) ≥ b min
M=1,2,...,S

(
M∑

j=1

γ̂uj

(nj + 1)2
+ tailγ,ω(M)

)1/2

.

The exponent of tractability p∗ is finite, since decayγ,ω > 1. For any p > p∗ we have

eγ(N) = O(N−1/p). Therefore we obtain Sγ̂u2S
≤ O(N−2/p). This leads to

γ̂u2S
= O

(
S−1− 2

p
min{1,s/t}

)
,

which implies decayγ,ω ≥ 1 + 2 min{1, s/t∗ω}/p∗. Since we already know that p∗ ≥ 1, we
get

p∗ ≥ max

{
1,

2 min{1, s/t∗ω}
decayγ,ω −1

}
. (28)

Now let σ ∈ [ω], and let p∗σ = p∗σ(γ(σ)) be the exponent of tractability for the infinite-

dimensional integration problem over the space Hγ(σ) . Since γ
(σ)
u ≤ γu for all finite u ⊂ N

and decayγ,σ ≥ decayγ,ω > 1, we have, due to Remark 3.3 and (28) (applied to the cut-off

weights γ(σ)),

p∗ ≥ p∗σ ≥ max

{
1,

2 min{1, s/t∗σ}
decayγ,σ −1

}
.

From this bound (26) follows.

It is straightforward to extend Theorem 3.4 to arbitrary weights, see Corollary 4.1.
Notice that we have on the one hand t∗1 ≤ t∗2 ≤ · · · ≤ t∗ω, and on the other hand

decayγ,1 ≥ decayγ,2 ≥ . . . ≥ decayγ,ω. Thus it is not a priori clear for which σ ∈ [ω] the
maximum in (26) is taken. As we shall see, this actually varies for different classes of
weights.

In the following three subsections we will illustrate our lower bound for three classes
of finite-order weights. For finite-intersection weights we have t∗ω = 1 and the maximum
in (26) is taken for σ = ω. In the case of finite-product weights we have t∗ω = ω and the
maximum is taken for σ = 1. In both cases (26) gives us a lower bound superior to the
lower bound in (21). For lexicographically-ordered weights of order ω we have t∗ω = ω
and the maximum in (26) is taken for σ = ω. In this case (26) does not improve on (21).
Nevertheless, we shall see that this bound is sharp if decayγ,ω is fast or slow enough.

3.1.1 Lower Bound for Finite-Intersection Weights

Definition 3.5. Let ρ ∈ N. The finite-order weights {γui
}i∈N are called finite-intersection

weights with intersection degree at most ρ if we have

|{j ∈ N | ui ∩ uj 6= ∅}| ≤ 1 + ρ for all i ∈ N. (29)

15

Note that for finite-order weights condition (29) is equivalent to the following condi-
tion: There exists an η ∈ N such that

|{i ∈ N | k ∈ ui}| ≤ η for all k ∈ N. (30)

Indeed, if (29) is satisfied, then (30) holds with η ≤ 1 + ρ, and if (30) is satisfied, then
(29) holds with ρ ≤ (η − 1)ω.

A subclass of the finite-intersection weights are the finite-diameter weights proposed
by Creutzig, see, e.g., [29]. The weights γ = {γu}u⊂N;|u|<∞ are called finite-diameter
weights if there exists an integer q ≥ 1 such that

γu = 0 for all finite u ⊂ N with diam(u) ≥ q, (31)

where diam(u) := maxk,`∈u |k− `|. By convention, diam(∅) = 0. If finite-diameter weights
satisfy (31) for some q ∈ N, then they are obviously finite-order weights of order at most q
and finite-intersection weights of intersection degree upper-bounded, e.g., by

∑q
`=1

(
3q−2

`

)
.

Note that finite-intersection weights are not necessarily finite-diameter weights.
Let now γ be finite-intersection weights with intersection degree at most ρ. For a

given finite set v ⊂ N we have

|{i ∈ N | ui ⊆ v}| ≤ (1 + ρ)|v|.

Hence t∗ω ≤ 1. On the other hand, in the case where decayγ,ω < ∞, we have necessarily
an infinite sequence {uj}j∈N, implying t∗ω ≥ 1. In this case t∗ω = 1. In any case, (26) leads
for finite-intersection weights to the lower bound

p∗ ≥ max

{
1,

2 min{1, s}
decayγ,ω −1

}
, (32)

which improves on the lower bound in (21), and is for ω > max{1, s} and decayγ,ω ∈
(1, 1 + 2 min{1, s}) strictly better than (21). In Section 3.2 we will show that our lower
bound for finite-intersection weights is actually sharp, i.e., the right hand side of (32)
turns out to be already the exact exponent of tractability.

3.1.2 Lower Bound for Lexicographically-Ordered Weights

To each set u ⊂ N with |u| = ` we assign the word ϕ(u) := i1i2 . . . i`, where for j ∈ [`] the
number ij is the jth-largest element of u. On the set of all finite words over the alphabet
N we have the natural lexicographical order ≺lex, where by convention the empty word
should be the first (or “smallest”) word.

Definition 3.6. We call weights γ lexicographically-ordered weights of order ω if γ∅ = 1,
γu > 0 for all u ⊂ N with |u| ≤ ω, and

ϕ(ui) ≺lex ϕ(uj) for all i, j ∈ N satisfying i < j.

16

This definition implies, e.g., that for all lexicographically-ordered weights γ of order
ω = 3 the ordered set system ui = ui(ω), i ∈ N0, is given by u0 = ∅, u1 = {1}, u2 = {2},
u3 = {2, 1}, u4 = {3}, u5 = {3, 1}, u6 = {3, 2}, u7 = {3, 2, 1}, u8 = {4}, u9 = {4, 1},
u10 = {4, 2}, u11 = {4, 2, 1}, u12 = {4, 3}, u13 = {4, 3, 1}, u14 = {4, 3, 2}, u15 = {5},. . ..

For lexicographically ordered weights γ of order ω each finite v ⊂ N contains Θ(|v|ω)
subsets, thus we have t∗ω = ω. Furthermore, the corresponding cut-off weights γ(σ) are
lexicographically-ordered weights of order σ for each σ ∈ [ω]. Due to (26), we get

p∗ ≥ max

{
1,

2 min{1, s/ω}
decayγ,ω −1

}
(33)

if $(k) = Ω(ks). This bound is the same as the lower bound in (21). We will prove in
Section 3.2 an upper bound for lexicographically-ordered weights that improves on the
upper bound in (21) and that demonstrates that the lower bound (33) is sharp if decayγ,ω

is large or small enough.

3.1.3 Lower Bound for Finite-Product Weights

Definition 3.7. Let {γj}j∈N be a sequence of non-negative real numbers satisfying γ1 ≥
γ2 ≥ With the help of this sequence we define for ω ∈ N finite-order weights γ =
{γu}u⊂N;|u|<∞ of order (at most) ω by

γu =

{∏
j∈u γj if |u| ≤ ω,

0 otherwise,
(34)

where we again use the convention that the empty product is 1. Such weights we want to
call finite-product weights of order (at most) ω.

We may also be interested in the case of ω = ∞, which corresponds to product weights,
which were introduced by Sloan and Woźniakowski in [33]. Weights γ are called product
weights if there exists a sequence of non-negative real numbers γ1 ≥ γ2 ≥ . . . such that
γu =

∏
j∈u γj for all finite u ⊂ N.

The next lemma shows that the maximum over all σ ∈ [ω] that appears in our lower
bound (26) is this time taken for σ = 1.

Lemma 3.8. Let γ = {γu}u⊂N;|u|<∞ be a set of bounded finite-product weights of order
ω or of bounded product weights (which, in both cases, do not necessarily have to satisfy
condition (3)). Then

decayγ,1 = decayγ,σ for all σ ∈ N. (35)

Proof. Let σ ∈ N. Since decayγ,1 ≥ decayγ,σ ≥ 0, it remains to show that decayγ,1 ≤
decayγ,σ. Since in the case decayγ,1 = 0 we have nothing to show, let us assume that

17

decayγ,1 > 0. Let p ∈ (0, decayγ,1). This implies
∑

j∈N γ
1/p
j < ∞. Thus we get

∑
j∈N

γ̂
1/p
uj(σ) ≤

∏
j∈N

(
1 +

(γj

3

)1/p
)

= exp

(∑
j∈N

ln

(
1 +

(γj

3

)1/p
))

≤ exp

(∑
j∈N

(γj

3

)1/p
)

< ∞,

where we used the estimate ln(1 + x) ≤ x, which holds for all non-negative x. This
implies γ̂uj(σ) = o(j−p), since the sequence γ̂uj(σ), j ∈ N, is monotonic decreasing. Hence
p ≤ decayγ,σ. Since we can choose p arbitrarily close to decayγ,1 (which means, in the
case decayγ,1 = ∞, arbitrarily large), we obtain decayγ,1 ≤ decayγ,σ.

Recall that in the case where decayγ,ω = ∞ we already know from (21) that p∗ = 1.
So let us assume that decayγ,ω < ∞, which, in particular, implies that all γj are positive.

Then we obtain for all σ ∈ [ω] that t∗σ = σ. Let $(k) = Ω(ks) for some s ≥ 0. Due to
Lemma 3.8 and Theorem 3.4 we have for finite-product weights with decayγ,ω > 1 that
the exponent of tractability satisfies

p∗ ≥ max

{
1,

2 min{1, s}
decayγ,1−1

}
. (36)

Note that (36) improves on the lower bound in (21) and is for ω > max{1, s} and
decayγ,ω ∈ (1, 1 + 2 min{1, s}) strictly better than (21).

3.2 Upper Bounds for Finite-Order Weights

To find an algorithm that gives us good upper bounds for finite-product weights, it is
helpful to study the proof of the lower bound in Theorem 3.4 more closely.

So let us assume that we want to find an algorithm Q of the form (10) to match
the lower bound (28), which is, e.g., a reasonable attempt in the cases where we have
finite-intersection or lexicographically-ordered weights, see (32) and (33). We can write

Q(f) =
∞∑

j=1

nj∑
`=1

aj`
fuj

(x
(j`)
vj`

∩uj
; 0),

where nj = |{vi | uj ⊆ vi}|. Let N := cost(Q). For decayγ,ω ∈ (1, 1 + 2 min{1, s/t∗ω}) we
only have a chance to match the lower bound (28), if inequality (27) is essentially sharp
for our algorithm. That is, we have to be able to choose our algorithm Q in such a way
that for every t > t∗ω the term

∑
j∈N nj reaches the order O(N1/ min{1,s/t}). This means

that we need Jensen’s inequality

n∑
i=1

|vi|t ≤

(
n∑

i=1

|vi|s
)1/ min{1,s/t}

18

to be essentially sharp for our algorithm Q. Since we can choose t arbitrarily close to t∗ω,
let us study more closely the inequality

n∑
i=1

|vi|t
∗
ω ≤

(
n∑

i=1

|vi|s
)1/ min{1,s/t∗ω}

. (37)

If s = t∗ω, then (37) is obviously sharp, regardless of how we choose the coordinate sets
vi.

If s > t∗ω, then (37) reads as
∑n

i=1 |vi|t
∗
ω ≤

∑n
i=1 |vi|s. Due to (28) we know that in this

case the upper bound in (21) is sharp. And indeed, if we take only sets vi, i = 1, . . . , n,
of size at most B ≥ ω, as Kuo et al. did for B = ω to prove the upper bound in (21), see
[20, Thm. 5(a)], then

n∑
i=1

|vi|s ≤ Bs−t∗ω

n∑
i=1

|vi|t
∗
ω = O

(
n∑

i=1

|vi|t
∗
ω

)
.

If s < t∗ω (which is the case where we have no matching upper bound so far), (37)
reads as

n∑
i=1

|vi|t
∗
ω ≤

(
n∑

i=1

|vi|s
)t∗ω/s

.

If all vi have at most size B, then

n∑
i=1

|vi|t
∗
ω ≤ nBt∗ω and

(
n∑

i=1

|vi|s
)t∗ω/s

≥ nt∗ω/s.

To achieve arbitrarily good accuracy, n has to be arbitrarily large, implying that we
cannot get (

n∑
i=1

|vi|s
)t∗ω/s

= Θ

(
n∑

i=1

|vi|t
∗
ω

)
.

That is why the algorithm used to prove [20, Thm. 5(a)] cannot match the lower bound
(28); this is essentially what we already showed in the proof of Theorem 3.2, see (23).

One also can see easily that an algorithm satisfying v1 = v2 = . . . = vn cannot match
the lower bound (28) either. This is, e.g., the case if we use a direct Monte Carlo or
quasi-Monte Carlo approach, see, e.g., [26] or the “Fixed Dimension Algorithm” in [20,
Sect. 3.1]. Indeed, if d := |v1| = |v2| = . . ., then

n∑
i=1

|vi|t
∗
ω = ndt∗ω and

(
n∑

i=1

|vi|s
)t∗ω/s

= nt∗ω/sdt∗ω .

But we can achieve (
n∑

i=1

|vi|s
)t∗ω/s

= Θ

(
n∑

i=1

|vi|t
∗
ω

)

19

if we have
n∑

i=1

|vi|r = Θ
(

n
max
i=1

|vi|r
)

for r = s, t∗ω.

This may be realized by choosing coordinate sets v1, . . . , vm whose sizes grow exponen-
tially, i.e., |vk| = Θ(ak) for some a > 1, and putting

Q(f) =
m∑

k=1

nk∑
j=1

ak,jf(t
(k,j)
vk

;0)

for some suitable sample points t
(k,j)
vk

. Here nm = Θ(1) and the size of the numbers ni,
i < m, is inversely related to the size of their indices.

3.2.1 Description of the Multilevel Algorithm

Let us describe the general form of the algorithm we want to use more precisely:
Let L0 := 0, and let L1 < L2 < L3 < . . . be natural numbers, and let

v
(1)
k := ∪j∈[Lk]uj and v

(2)
k := [Lk] for k ∈ N. (38)

In the general case we will use the sets v
(1)
k , k = 1, . . . ,m. In the special cases of

lexicographically-ordered weights and finite- or infinite-product weights, it is more conve-
nient to make use of the simple ordering of the corresponding set system uj, j ∈ N, (as

defined in Section 2.1) and choose the sets v
(2)
k for k = 1, . . . ,m. In all definitions and

results that hold for both choices of the v
(i)
k , i = 1, 2, we simply write vk. We will choose

the numbers L1, L2, . . . in general such that |vk| = Θ(ak−1) for some a ∈ (1,∞). Let

V1 := {j ∈ N | uj ⊆ v1} and Vk := {j ∈ N | uj ⊆ vk and uj 6⊆ vk−1} for k ≥ 2.

Let us furthermore define
U(m) := ∪m

k=1Vk ∪ {0}.

We put

Qk(f) :=
1

nk

nk∑
j=1

fk(t
(j,k)
vk

;0),

where

fk(t
(j,k)
vk

;0) :=

{
f(t

(j,1)
v1

;0) for k = 1,

f(t
(j,k)
vk

;0)− f((t
(j,k)
vk

)vk−1
;0) for k ≥ 2,

and the numbers n1 ≥ n2 ≥ . . . ≥ nm and the points t
(1,k)
vk

, . . . , t
(nk,k)
vk

∈ [0, 1]|vk| will be
chosen later, depending on the weights γ. Define the algorithm Am via

Am(f) :=
m∑

k=1

Qk(f) =
m∑

k=1

1

nk

nk∑
j=1

fk(t
(k,j)
vk

;0).

20

We assume in this section that $(k) = O(ks) for some s ≥ 0. Hence the cost of Am is
bounded by

cost(Am) =
m∑

k=1

nk$(|vk|) ≤ O

(
m∑

k=1

nk|vk|s
)

. (39)

We obtain from (14) and (15)

[e(Am;Hγ)]2 =
∑
j∈N0

γuj
[e(Am,uj

; H(Kuj
))]2, (40)

where Am,uj
= Am ◦ Puj

=
∑m

k=1Qk,uj
. Note that

e(Am,u0 ; H(Ku0)) = e(Am,u0 ; span{1}) = 0,

since Am is exact on constant functions. Note furthermore that for all j ∈ N we have

Qk,uj
(f) = 0 whenever j 6∈ Vk.

Thus we get, using (15) and (16),

[e(Am;Hγ)]2 =
m∑

k=1

∑
j∈Vk

γuj
[e(Qk,uj

; H(Kuj
))]2 +

∑
uj 6∈U(m)

γuj
[e(0; H(Kuj

))]2

=
m∑

k=1

∑
j∈Vk

γuj
[disc∗2,|uj |({t

(1,k)
vk∩uj

, . . . , t
(nk,k)
vk∩uj

})]2 +
∑

uj 6∈U(m)

γuj
3−|u|.

(41)

To get a good error bound for our approximation of I∞ by Am, we consequently need to

find for each k ∈ [m] point sets {t (1,k)
vk

, . . . , t
(nk,k)
vk

} whose projections onto the sets uj with

j ∈ Vk exhibit a small L2-star discrepancy disc∗2,|uj |({t
(1,k)
vk∩uj

, . . . , t
(nk,k)
vk∩uj

}). The problem of
finding such point sets depends heavily on the weights we consider.

A reasonably good choice of point sets is provided by the next result. It follows from
[32, Thm. 3(A)], which relies on constructive results for weighted Korobov spaces from
[3]. We emphasize that Proposition 3.9 holds not only for finite-order, but in fact for
general weights (which do not necessarily have to satisfy condition (3)). We will come
back to this in Section 4.

Proposition 3.9. Let γ be arbitrary weights. Let k ∈ N, and let nk be a prime number.
Then there exists a point set {t (1,k)

vk
, . . . , t

(nk,k)
vk

} ⊂ [0, 1]|vk| such that for all τ ∈ [1, 2)∑
j∈Vk

γuj
[disc∗2,|uj |({t

(1,k)
vk∩uj

, . . . , t
(nk,k)
vk∩uj

})]2 ≤ Fk,τ,γ(nk − 1)−τ , (42)

where

Fk,τ,γ :=

(∑
j∈Vk

γ1/τ
uj

(3−1/τ + Wτ)
|uj |

)τ

and Wτ := (2π2)−1/τ (2ζ(2/τ)), (43)

with ζ denoting the Riemann zeta function.

21

Proof. Let us consider the space Hγ∗ , where the cut-off weights γ∗ are defined by

γ∗u =

{
γu if u = uj for some j ∈ Vk,

0 otherwise.
(44)

The space Hγ∗ can be identified with the weighted Sobolev space of |vk|-variate functions
anchored in zero and endowed with the weights {γ∗u}u⊆vk

, described, e.g., in [32, Sect. 2].

Now [32, Thm. 3(A)] ensures the existence of a point set {t (1,k)
vk

, . . . , t
(nk,k)
vk

} ⊂ [0, 1]|vk|

such that
[e(Qk;Hγ∗)]

2 ≤ F̃k,τ,γ(nk − 1)−τ ,

where

F̃k,τ,γ =

∑
u⊆vk

W |u|
τ

 ∑
j∈Vk;u⊆uj

γuj
3|u|−|uj |

1/τ

τ

.

Due to (41) we have∑
j∈Vk

γuj
[disc∗2,|uj |({t

(1,k)
vk∩uj

, . . . , t
(nk,k)
vk∩uj

})]2 = [e(Qk;Hγ∗)]
2.

Using Jensen’s inequality, we obtain

F̃k,τ,γ ≤

∑
u⊆vk

W |u|
τ

∑
j∈Vk;u⊆uj

γ1/τ
uj

3(|u|−|uj |)/τ

τ

=

∑
j∈Vk

γ1/τ
uj

3−|uj |/τ
∑
u⊆uj

W |u|
τ 3|u|/τ

τ

.

Now we have ∑
u⊆uj

W |u|
τ 3|u|/τ = (1 + 31/τWτ)

|uj |,

which concludes the proof.

As demonstrated in [32], shifted rank-1 lattice rules, whose generators can be cal-
culated efficiently by using the component-by-component (CBC) algorithm, satisfy (42).
Unfortunately, these point sets are not fully constructive, since it is not known how to
calculate a suitable shift ∆ ∈ [0, 1)|vk| efficiently.

We will use Proposition 3.9 for lexicographically-ordered weights, and for finite and
infinite-product weights. For finite-intersection weights, however, we construct point sets
explicitly, whose projections exhibit a discrepancy significantly smaller than the discrep-
ancy guarantee in Proposition 3.9.

22

3.2.2 Upper Bounds for Finite-Intersection Weights

Let γ be finite-intersection weights of finite order ω. In this case we can construct point
sets or sequences of sample points that enable our algorithm Am to provide a sharp upper
bound for the exponent of tractability. Here, we take vk = v

(1)
k and Lk := Ldak−1e for

k = 1, . . . ,m, where L ∈ N and a ∈ (1,∞) are fixed.
Our construction of optimal point sets is based on the following result.

Lemma 3.10. Let γ be finite-intersection weights of finite order ω. Let η ∈ N be such
that the set system uj = uj(ω), j ∈ N, satisfies (30). Then there exists a mapping
φ : N → [η(ω − 1) + 1] such that for all j ∈ N the restriction φ|uj

is injective.

Proof. We will define φ inductively: Put φ(1) = 1. Let now k ≥ 2 and let us assume that
we have defined φ(`) for ` = 1, . . . , k − 1 such that φ|uj∩[k−1] is injective for all j ∈ N and
takes only values in [η(ω − 1) + 1]. For k define

Uk := {` ∈ [k − 1] | ∃j ∈ N : {`, k} ⊆ uj}.

Since k is contained in at most η sets uj, and since |uj| ≤ ω for all j ∈ N, we see that
|Uk| ≤ η(ω − 1). Thus

φ(k) := min([η(ω − 1) + 1] \ φ(Uk))

is a well-defined number in [η(ω − 1) + 1]. Hence we have defined φ on [k], and it is easy
to see that φ|uj∩[k] is injective for every j ∈ N:

If k 6∈ uj, then φ|uj∩[k] = φ|uj∩[k−1] is injective due to our induction hypothesis.
If k ∈ uj, then φ|uj∩[k−1] is injective due to our induction hypothesis. Furthermore,

φ(k) 6∈ φ(Uk), which in particular implies that

φ(k) 6∈ φ(uj ∩ [k − 1]) ⊆ φ(Uk).

This shows that we can define φ inductively in such a way that φ|uj∩[`] is injective for all
` ∈ N. This concludes the proof of the lemma.

Proposition 3.11. Let γ be finite-intersection weights with finite order ω. Let η ∈ N be
such that the set system uj = uj(ω), j ∈ N, satisfies (30). Then there exists a sequence

Z∞ = (z
(i)
∞)i∈N in [0, 1]N and a positive constant Cη,ω such that

disc∗2,|uj |({z
(1)
∞,uj

, . . . ,z(n)
∞,uj

}) ≤ Cη,ωn−1 ln(n)η(ω−1)+1 for all j, n ∈ N.

Proof. In dimension η(ω− 1) + 1 we find some suitable constant Cη,ω > 0 such that there
exists a sequence Z = (z(i))i∈N in [0, 1]η(ω−1)+1 satisfying

disc∗∞,η(ω−1)+1({z(1), . . . ,z(n)}) ≤ Cη,ωn−1 ln(n)η(ω−1)+1 for all n ∈ N. (45)

Indeed, efficiently computable low-discrepancy sequences often used in applications such
as, e.g., the Faure, Halton, Niederreiter, Niederreiter-Xing or Sobol sequence, achieve the
convergence rate in (45), see, e.g., the papers [6, 12, 23, 25, 34] or the monograph [24].

23

From Z we obtain an infinite-dimensional sequence Z∞ = (z
(i)
∞)i∈N by defining the νth

component of z
(i)
∞ via z

(i)
∞,ν = z

(i)
φ(ν) for all i, ν ∈ N, where the mapping φ is as in Lemma

3.10. For this infinite-dimensional sequence we have for all j, n ∈ N

disc∗2,|uj |({z
(1)
∞,uj

, . . . ,z(n)
∞,uj

}) ≤ disc∗∞,|uj |({z
(1)
∞,uj

, . . . ,z(n)
∞,uj

})

= disc∗∞,|uj |({z
(1)
φ(uj)

, . . . ,z
(n)
φ(uj)

}) ≤ disc∗∞,η(ω−1)+1({z(1), . . . ,z(n)}) ≤ Cη,ωn−1 ln(n)η(ω−1)+1.

For any nk, k = 1, 2, . . ., we can construct points t
(1,k)
vk

, . . . , t
(nk,k)
vk

explicitly such that

disc∗2,|uj |({t
(1,k)
vk∩uj

, . . . , t
(nk,k)
vk∩uj

}) ≤ Cη,ωn−1
k ln(nk)

η(ω−1)+1 for all j ∈ Vk (46)

by simply choosing n = nk, Z∞ a sequence as in Proposition 3.11 and t
(i,k)
vk

:= (z
(i)
∞)vk

,
i = 1, . . . , nk. Note that we can use the same sequence Z∞ for all values m and k,
regardless of the special value of nk, k = 1, . . . ,m.

With this choice of sample points we get from (41) the error estimate

[e(Am;Hγ)]2 ≤ Cη,ω,δ

m∑
k=1

Lk∑
j=Lk−1+1

γuj
n

2(δ−1)
k + tailγ,ω(Lm) (47)

for arbitrarily small δ ∈ (0, 1) with a suitable constant Cδ, depending only on δ and, of
course, on η and ω. Notice that we implicitly used n1 ≥ n2 ≥ . . . ≥ nm to deduce (47),
since it might be that for Lk−1 < j ≤ Lk we have uj ∈ v` for some ` < k.

Now let us try to find values of nk, k = 1, . . . ,m, which for given cost (essentially)
minimize the right hand side of (47). Note that here η−1Lk ≤ |vk| ≤ ωLk, i.e., |vk| =
Θ(Lk). Therefore (39) gives us

cost(Am) ≤ O

(
m∑

k=1

nkL
s
k

)
.

Put

σk :=

Lk∑
j=Lk−1+1

γuj
and M :=

m∑
k=1

Ls
k.

For a given S > Ls let m be such that S ≥ M . We want to find the minimum x∗ =
(x∗1, . . . , x

∗
m) of the function

F (x) =
m∑

k=1

σkx
2(δ−1)
k subject to the constraint

m∑
k=1

xkL
s
k = S.

Due to Lagrange’s multiplier theorem there exists a λ ∈ R such that grad F (x∗) =
λ(Ls

1, . . . , L
s
m). This relation and the constraint imply that the minimum x∗ is given by

x∗k = Cσ
1

3−2δ

k L
− s

3−2δ

k , where C = S

(
m∑

k=1

σ
1

3−2δ

k L
2(1−δ)s
3−2δ

k

)−1

.

24

We now choose for k = 1, 2, . . . ,m

nk := dx∗ke =

⌈
C σ

1
3−2δ

k L
− s

3−2δ

k

⌉
.

This leads to

cost(Am) ≤ O

(
m∑

k=1

nkL
s
k

)
= O(S + M) = O(S).

Now we can estimate the different error terms that bound [e(Am;Hγ)]2 in (47): First we
obtain

m∑
k=1

σkn
2(δ−1)
k ≤ S2(δ−1)

(
m∑

k=1

σ
1

3−2δ

k L
2(1−δ)s
3−2δ

k

)3−2δ

. (48)

For p ∈ (1, decayγ,ω) we have γuj
≤ O(j−p) for all j, and consequently

σk ≤ O

 Lk∑
j=Lk−1+1

j−p

 ≤

{
O(L1−p

k) if k ≥ 2,

O(1) if k = 1.

This implies
m∑

k=1

σkn
2(δ−1)
k ≤ O

(
S2(δ−1)

(
1 + L2(1−δ)s+1−p

m

))
.

Secondly, we obtain
tailγ,ω(Lm) ≤ O(L1−p

m).

Thus we have altogether

[e(Am;Hγ)]2 ≤ O
(
S2(δ−1)

(
1 + L2(1−δ)s+1−p

m

)
+ L1−p

m

)
.

Let N := cost(Am). Note that M = Θ(Ls
m), and that S ≥ M implies S = Ω(Ls

m).
Case 1: decayγ,ω −1 ≥ 2s. Then we have 2(1− δ)s + 1− p ≤ 0 for p close enough to

decayγ,ω. Choosing m in such a way that S = Θ(L
p−1

2(1−δ)
m), we get

eγ(N) ≤ e(Am;Hγ) ≤ O(L
1−p
2

m) = O(S−(1−δ)) = O(N−(1−δ)).

Since δ can be chosen arbitrarily small, we see that the tractability exponent p∗ is at most
1.

Case 2: decayγ,ω −1 < 2s. Then we may choose δ small enough to obtain 2(1− δ)s +
1− p ≥ 0. Choosing m in such a way that S = Θ(Ls

m), we get

eγ(N) ≤ e(Am;Hγ) ≤ O(L
1−p
2

m) = O(S−
p−1
2s) = O(N− p−1

2s).

Since p can be arbitrarily close to decayγ,ω, we get in this case

p∗ ≤ 2s

decayγ,ω −1
.

25

If we have s > t∗ω = 1 in case 2, our specific choice of L1, L2, . . . implies that inequality
(27) is not sharp for our algorithm. We therefore cannot expect the upper bound on p∗

induced by our algorithm to match the lower bound. But in this case the algorithm from
[20, Thm. 5(a)], which uses only sample points with at most ω coordinates different from
zero, proves

p∗ ≤ max

{
1,

2

decayγ,ω −1

}
, (49)

see also Theorem 3.1.
Altogether we proved the following theorem.

Theorem 3.12. Let $(k) = O(ks) for some s ≥ 0. Let the finite-intersection weights γ
of order ω satisfy decayγ,ω > 1. Then the tractability exponent satisfies

p∗ ≤ max

{
1,

2 min{1, s}
decayγ,ω −1

}
. (50)

In particular, if $(k) = Θ(ks), we have

p∗ = max

{
1,

2 min{1, s}
decayγ,ω −1

}
. (51)

Remark 3.13. Note that finite-order weights of order ω = 1 are (obviously) finite-
intersection weights with intersection degree ρ = 0. For them condition (30) holds for
η = 1. In this case we may use our multilevel algorithm together with a sequence Z∞ in
[0, 1]N, as described in Proposition 3.11. If we do not insist (on the practically very useful
feature) that the quasi-Monte Carlo points we use for our multilevel algorithm stem from
a sequence, we may simply use the point sets

{t (1,k)
vk

, . . . , t
(nk,k)
vk

} ⊂ [0, 1]|vk|, where t
(`,k)
vk,j =

2`− 1

2nk

for j ∈ Vk, ` = 1, . . . , nk,

which leads to

disc∗2,|uj |({t
(1,k)
vk∩uj

, . . . , t
(nk,k)
vk∩uj

}) =
1√
12

n−1
k for all j ∈ Vk and all k ∈ [m].

(Notice that |uj| = 1 for all j ∈ N.) In the case $(k) = Θ(ks) we know the exact exponent
of finite-order weights γ of order ω = 1 and it is given by (51).

3.2.3 Upper Bounds for Lexicographically-Ordered Weights

Let γ be lexicographically-ordered weights of finite order ω. Let Lk := Ldak−1e for k ∈ N,
where L ∈ N and a ∈ (1,∞) are fixed. Here we use our algorithm Am with prime numbers

n1 ≥ n2 ≥ . . . ≥ nm and the corresponding sample points t
(1,k)
vk

, . . . , t
(nk,k)
vk

, k = 1, . . . ,m,

from Proposition 3.9, where vk = v
(2)
k = [Lk]. We define

R0 := 0 and Rk :=
ω∑

σ=1

(
Lk

σ

)
for k = 1, . . . ,m.

26

We have Vk = {Rk−1 + 1, Rk−1 + 2, . . . , Rk} for all k ≥ 1. Due to (41) and (42) we get for
arbitrary τ ∈ [1, min{2, decayγ,ω}) the error estimate

[e(Am;Hγ)]2 ≤
m∑

k=1

(∑
j∈Vk

γ1/τ
uj

(3−1/τ + Wτ)
|uj |

)τ

(nk − 1)−τ + tailγ,ω (Rm) .

Furthermore,(∑
j∈Vk

γ1/τ
uj

(3−1/τ + Wτ)
|uj |

)τ

≤ max
{
1, (3−1/τ + Wτ)

ωτ
}(∑

j∈Vk

γ1/τ
uj

)τ

=: σ̂k.

As done in the case of finite-intersection weights, let us try to find for given cost numbers
nk, k = 1, . . . ,m, which essentially minimize our error estimate. Let again M :=

∑m
k=1 Ls

k.
For a given S > 2Ls let m be such that S ≥ 2M . Then the minimum x∗ = (x∗1, . . . , x

∗
m)

of the function

F (x) =
m∑

k=1

σ̂k(xk − 1)−τ subject to the constraint
m∑

k=1

xkL
s
k = S

is given by

x∗k = Cσ̂
1

τ+1

k L
− s

τ+1

k + 1, where C = (S −M)

(
m∑

k=1

σ̂
1

τ+1

k L
sτ

τ+1

k

)−1

.

We now choose for k = 1, 2, . . . ,m the number nk to be the smallest prime greater or
equal than

dx∗ke =

⌈
Cσ̂

1
τ+1

k L
− s

τ+1

k + 1

⌉
.

It is well-known that for any n ∈ N there exists a prime number p satisfying n ≤ p ≤ 2n.
Thus our choice of nk gives us dx∗ke ≤ nk ≤ 2dx∗ke. This leads to

cost(Am) ≤ O

(
m∑

k=1

nkL
s
k

)
= O(2(S + M)) = O(S).

Now let us estimate the different error terms in the bound of [e(Am;Hγ)]2: First we obtain

m∑
k=1

σ̂k(nk − 1)−τ ≤ (S −M)−τ

(
m∑

k=1

σ̂
1

τ+1

k L
sτ

τ+1

k

)τ+1

.

For p ∈ (τ, decayγ,ω) we have γuj
≤ O(j−p) for all j. Since Rk = Θ(Lω

k) for all k, we get

σ̂k ≤ O

 Rk∑
j=Rk−1+1

j−p/τ

τ

≤

{
O(L

ω(τ−p)
k) if k ≥ 2,

O(1) if k = 1.

27

This implies
m∑

k=1

σ̂k(nk − 1)−τ ≤ O
(
S−τ

(
1 + Lω(τ−p)+sτ

m

))
.

Secondly, we obtain
tailγ,ω (Rm) ≤ O(Lω(1−p)

m).

Thus we have altogether

[e(Am;Hγ)]2 ≤ O
(
S−τ

(
1 + Lτ(ω+s)−pω

m

)
+ Lω(1−p)

m

)
.

Let N := cost(Am).
Case 1: decayγ,ω > 2(1+s/ω). Choose p large enough to ensure p ≥ 2(1+s/ω). Then

we get for all τ ∈ [1, 2)
[e(Am;Hγ)]2 ≤ O(S−τ + Lω(1−p)

m).

Since ω(p− 1)/τ > s, we can choose m in such a way that S = Θ(L
ω(p−1)/τ
m), implying

eγ(N) ≤ e(Am;Hγ) ≤ O(S−τ/2) ≤ O(N−τ/2).

By taking τ arbitrarily close to 2, we get for the exponent of tractability the best possible
result p∗ = 1.

Case 2: decayγ,ω ≤ 2(1 + s/ω). Hence p ∈ (1, 2(1 + s/ω)). Let r ≥ s, and let m be
such that S = Θ(Lr

m). Then

[e(Am;Hγ)]2 ≤ O(S−µ), where µ := min

{
ω(p− 1)

r
, τ, τ +

pω − τ(ω + s)

r

}
.

Choosing r ≥ ω+s leads to µ ≤ (p−1)/(1+s/ω), and, for p tending to decayγ,ω, we cannot
get an estimate for the exponent of tractability better than p∗ ≤ 2(1+s/ω)/(decayγ,ω −1).
As we will see, we can do better if we assume r ∈ [s, s + ω).

The value of τ that maximizes µ for r ∈ [s, s + ω) is τ = pω/(ω + s). Here we
have pω/(ω + s) < 2, so for s > 0 the optimal choice of τ satisfying the constraint
τ ∈ [1, min{2, p}) is given by

τ = max

{
1,

pω

ω + s

}
,

and for s = 0 we may choose τ arbitrarily close to p.
Subcase a: decayγ,ω ≤ 1 + s/ω. Then we have p < 1 + s/ω and consequently τ = 1.

Hence

µ = min

{
ω(p− 1)

r
, 1 +

pω − (ω + s)

r

}
.

The choice r = s maximizes µ and leads to S = Θ(Ls
m) and

eγ(N) ≤ e(Am;Hγ) ≤ O(S−
ω(p−1)

2s) ≤ O(N−ω(p−1)
2s).

28

Choosing p arbitrarily close to decayγ,ω leads to

p∗ ≤ 2s/ω

decayγ,ω −1
.

Subcase b: decayγ,ω > 1+ s/ω. Then we may choose p ≥ 1+ s/ω and τ = pω/(ω + s).
(Only in the case s = 0 we have to choose τ = p− ε, ε > 0 arbitrarily small. But we do
not discuss this case in detail, since it is obvious how the following argument has to be
modified.) Hence

µ = min

{
ω(p− 1)

r
,

pω

ω + s

}
.

The choice r ∈ [s, (ω + s)(p− 1)/p] leads to µ = pω/(ω + s) and

eγ(N) ≤ e(Am;Hγ) ≤ O(S−
pω

2(ω+s)) ≤ O(N− pω
2(ω+s)).

Choosing p arbitrarily close to decayγ,ω leads to

p∗ ≤ 2(1 + s/ω)

decayγ,ω

.

Since the algorithm used in [20, Thm. 5(a)] proves

p∗ ≤ max

{
1,

2

decayγ,ω −1

}
, (52)

we established altogether the following theorem.

Theorem 3.14. Let $(k) = O(ks) for some s ≥ 0. Let the lexicographically-ordered
weights γ of finite order ω satisfy decayγ,ω > 1. Then the tractability exponent satisfies

p∗ ≤ max

{
1, 2 min

{
max

{
s/ω

decayγ,ω −1
,

1 + s/ω

decayγ,ω

}
,

1

decayγ,ω −1

}}
. (53)

In particular, we have for 1 < decayγ,ω ≤ 1 + s/ω

p∗ ≤ max

{
1,

2 min{1, s/ω}
decayγ,ω −1

}
,

for 1 + s/ω < decayγ,ω < 2(1 + s/ω)

p∗ ≤ max

{
1, 2 min

{
1

decayγ,ω −1
,

1 + s/ω

decayγ,ω

}}
,

and for 2(1 + s/ω) ≤ decayγ,ω

p∗ ≤ 1.

If $(k) = Θ(ks) the lower bound (33) always matches the upper bound (53), except when
s < ω and 1 + s/ω < decayγ,ω < min{3, 2(1 + s/ω)}.

29

3.2.4 Upper Bounds for Finite-Product Weights

Let γ be finite-product weights of finite order ω. Let Lk := Ldak−1e for k ∈ N, where
L ∈ N and a ∈ (1,∞) are fixed. Again we use our algorithm Am endowed with the sample

points t
(1,k)
vk

, . . . , t
(nk,k)
vk

from Proposition 3.9, where vk = v
(2)
k = [Lk] for k = 1, . . . ,m. Due

to (41) and (42) we get for arbitrary τ ∈ [1, min{2, decayγ,1}) the error estimate

[e(Am;Hγ)]2 ≤
m∑

k=1

Fk,τ,γ(nk − 1)−τ +
∑

j 6∈U(m)

γuj
3−|uj |,

where

Fk,τ,γ =

(∑
j∈Vk

γ1/τ
uj

(W ∗
τ)|uj |

)τ

and W ∗
τ := 3−1/τ + Wτ .

In the next lemma we present an estimate for Fk,τ,γ , which does not only hold for
finite-product weights, but also for (infinite-)product weights.

Lemma 3.15. Let γ be finite-product weights of order ω or product weights with decayγ,1 >
1. Then

Fk,τ,γ ≤ O(σ̃k), where σ̃k :=

 Lk∑
j=Lk−1+1

γ
1/τ
j

τ

.

Proof.

Fk,τ,γ ≤

[
Lk∏
j=1

(
1 + γ

1/τ
j W ∗

τ

)
−

Lk−1∏
j=1

(
1 + γ

1/τ
j W ∗

τ

)]τ

=

Lk−1∏
j=1

(
1 + γ

1/τ
j W ∗

τ

) Lk∏
j=Lk−1+1

(
1 + γ

1/τ
j W ∗

τ

)
− 1

τ

.

Now

Lk∏
j=Lk−1+1

(
1 + γ

1/τ
j W ∗

τ

)
= exp

 Lk∑
j=Lk−1+1

ln(1 + γ
1/τ
j W ∗

τ)

 ≤ exp

W ∗
τ

Lk∑
j=Lk−1+1

γ
1/τ
j

 ,

implying

Lk∏
j=Lk−1+1

(
1 + γ

1/τ
j W ∗

τ

)
− 1

≤W ∗
τ

 Lk∑
j=Lk−1+1

γ
1/τ
j

1 +
W ∗

τ

2

 ∞∑
j=Lk−1+1

γ
1/τ
j

 exp

W ∗
τ

∞∑
j=Lk−1+1

γ
1/τ
j

≤W ∗

τ

 Lk∑
j=Lk−1+1

γ
1/τ
j

 (1 + o(1)) as k →∞.

(54)

30

Since τ < decayγ,1, we have

Lk−1∏
j=1

(
1 + γ

1/τ
j W ∗

τ

)
≤

∞∏
j=1

(
1 + γ

1/τ
j W ∗

τ

)
< ∞,

The estimate in Lemma 3.15 for Fk,τ,γ gives us

[e(Am;Hγ)]2 ≤ O

 m∑
k=1

σ̃k(nk − 1)−τ +
∑

j 6∈U(m)

γuj
3−|uj |

 .

Let again M :=
∑m

k=1 Ls
k. Again, as in the case of finite-intersection and lexicographically-

ordered weights, it is easy to see that for given cost of order O(S), S ≥ 2M , the numbers
n1 ≥ n2 ≥ . . . ≥ nm, chosen as the smallest prime numbers equal or greater than

x∗k = Cσ̃
1

τ+1

k L
− s

τ+1

k + 1, where C = (S −M)

(
m∑

k=1

σ̃
1

τ+1

k L
sτ

τ+1

k

)−1

,

essentially minimize our bound on [e(Am;Hγ)]2. We have dx∗ke ≤ nk ≤ 2dx∗ke.
Let us estimate the different error terms in the bound of [e(Am;Hγ)]2: First we obtain

m∑
k=1

σ̃k(nk − 1)−τ ≤ (S −M)−τ

(
m∑

k=1

σ̃
1

τ+1

k L
sτ

τ+1

k

)τ+1

. (55)

For p ∈ (τ, decayγ,1) we have γj ≤ O(j−p) for all j, and consequently

σ̃k ≤ O

 Lk∑
j=Lk−1+1

j−p/τ

τ

≤

{
O(Lτ−p

k) if k ≥ 2,

O(1) if k = 1.

This implies
m∑

k=1

σ̃k(nk − 1)−τ ≤ O
(
S−τ

(
1 + L(1+s)τ−p

m

))
.

31

Secondly, by using a similar estimate as (54), we obtain

∑
j 6∈U(m)

γuj
3−|u| ≤

∞∏
j=1

(
1 +

γj

3

)
−

Lm∏
j=1

(
1 +

γj

3

)

=
Lm∏
j=1

(
1 +

γj

3

)(∞∏
j=Lm+1

(
1 +

γj

3

)
− 1

)

≤

(
(1 + o(1))

Lm∏
j=1

(
1 +

γj

3

))(∞∑
j=Lm+1

γj

3

)

≤

(
(1 + o(1))

∞∏
j=1

(
1 +

γj

3

))(∞∑
j=Lm+1

γj

3

)
≤ O(tailγ,1(Lm)) ≤ O(L1−p

m).

Thus we have altogether

[e(Am;Hγ)]2 ≤ O
(
S−τ

(
1 + L(1+s)τ−p

m

)
+ L1−p

m

)
.

Let N := cost(Am). Analogously, as in the case of lexicographically-ordered weights,
we can systematically optimize our choice of m in different cases. This results in three
different cases and choices of m:

Case 1: decayγ,1 > 2(1 + s). Choose p large enough to ensure p ≥ 2(1 + s). Then

[e(Am;Hγ)]2 ≤ O(S−τ + L1−p
m).

Since (p− 1)/τ > s, we can choose m in such a way that S = Θ(L
(p−1)/τ
m), implying

eγ(N) ≤ e(Am;Hγ) ≤ O(S−τ/2) ≤ O(N−τ/2).

By taking τ arbitrarily close to 2, we get

p∗ ≤ 1. (56)

Case 2: 2(1 + s) ≥ decayγ,1 > 1 + s. We may choose p ≥ 1 + s and τ = p/(1 + s). (In
the case s = 0 we may only choose τ = p−ε for ε > 0 arbitrarily small, but the argument
that follows remains in this case essentially the same.) Thus

[e(Am;Hγ)]2 ≤ O(S−τ + L1−p
m).

If we choose, e.g., m in such a way that S = Θ(Ls
m), then L1−p

m = Θ(S−(p−1)/s) and

eγ(N) ≤ e(Am;Hγ) ≤ O(S−
τ
2) ≤ O(S−

p
2(1+s)) ≤ O(N− p

2(1+s)).

Choosing p arbitrarily close to decayγ,1 leads to

p∗ ≤ 2(1 + s)

decayγ,1

. (57)

32

Case 3: 1 + s ≥ decayγ,1 > 1. Choose τ = 1.

[e(Am;Hγ)]2 ≤ O(S−1L(1+s)−p
m + L1−p

m).

If we choose m such that S = Θ(Ls
m) we get

eγ(N) ≤ e(Am;Hγ) ≤ O(S−
p−1
2s) ≤ O(N− p−1

2s).

Choosing p arbitrarily close to decayγ,1 leads to

p∗ ≤ 2s

decayγ,1−1
. (58)

Since the algorithm from [20, Thm. 5(a)] proves

p∗ ≤ max

{
1,

2

decayγ,1−1

}
, (59)

we get altogether the following result.

Theorem 3.16. Let $(k) = O(ks) for some s ≥ 0. Let the finite-product weights γ of
finite order ω satisfy decayγ,1 > 1. Then the tractability exponent satisfies

p∗ ≤ max

{
1, 2 min

{
max

{
s

decayγ,1−1
,

1 + s

decayγ,1

}
,

1

decayγ,1−1

}}
. (60)

In particular, we have for 1 < decayγ,1 ≤ 1 + s

p∗ ≤ max

{
1,

2 min{1, s}
decayγ,1−1

}
,

for 1 + s < decayγ,1 < 2(1 + s)

p∗ ≤ max

{
1, 2 min

{
1

decayγ,1−1
,

1 + s

decayγ,1

}}
,

and for 2(1 + s) ≤ decayγ,1

p∗ ≤ 1.

If $(k) = Θ(ks) the lower bound (36) always matches the upper bound (60), except when
s < 1 and 1 + s < decayγ,1 < min{3, 2(1 + s)}.

4 From Finite-Order Weights to Arbitrary Weights

In this section we apply the results and methods we provided in the case of finite-order
weights to obtain results for arbitrary weights, in particular for infinite-order weights. As
in the previous sections, we always assume that the weights γ satisfy (3) and that there
exists at least one finite, non-empty set u ⊂ N with γu > 0.

33

4.1 Lower Bounds for Arbitrary Weights

Let γ be an arbitrary set of weights, and let σ ∈ N. As explained in Remark 3.3, the
infinite-dimensional integration problem is not harder for the cut-off weights γ(σ) than for
the original weights γ. Thus any lower bound on the exponent of tractability p∗σ = p∗(γ(σ))
corresponding to the cut-off weights γ(σ) holds also for the exponent of tractability p∗ =
p∗(γ) for the original weights γ. Since cut-off weights γ(σ) are in particular finite-order
weights of order at most σ, we get from Theorem 3.4 immediately the following result.

Corollary 4.1. Let γ be arbitrary weights, and let $(k) = Ω(ks) for some s ≥ 0. Let the
integration problem I∞ be tractable.

A lower bound for the exponent of tractability p∗ is then given by

p∗ ≥ max

{
1, sup

σ∈N

2 min{1, s/t∗σ}
decayγ,σ −1

}
. (61)

4.1.1 Lower Bound for Product Weights

Product weights are probably the most extensively studied type of weights in the literature
of multivariate problems. If γ are product weights, then the cut-off weights γ(σ), σ ∈ N,
are obviously finite-product weights of order at most σ.

Let us assume decayγ,1 < ∞, which in particular means that all γj are positive. This
implies t∗σ = σ for all σ ∈ N. Now let $(k) = Ω(ks) for some s ≥ 0. Then we get from
Lemma 3.8 and Corollary 4.1 the following lower bound for the exponent of tractability
p∗ for product weights γ:

p∗ ≥ max

{
1,

2 min{1, s}
decayγ,1−1

}
. (62)

(Note that in the case decayγ,1 = ∞ the bound (62) reads simply p∗ ≥ 1, which is, of
course, also true.) This lower bound for product weights was provided in [20, Sect. 3.3]
for the case where γj = j−β for arbitrary β > 1. The point we want to make here, is that
this non-trivial result already follows from our results in the easier setting of finite-order
weights. Note that in contrast the lower bound (62) for (infinite-)product weights does
not imply our bound (36) for finite-product weights.

4.2 Upper Bounds for Arbitrary Weights

Our algorithm Am can in general be used for arbitrary weights to provide upper bounds
for the exponent of tractability or, equivalently, lower bounds for the optimal convergence
rate of the Nth minimal worst case error. For arbitrary weights γ we may use the sets
vk = v

(1)
k = ∪j∈[Lk]uj in (38). If s is not too large, the numbers L1, L2, L3, . . . should

be chosen in such a way that |vk| grows exponentially, i.e., |vk| = Θ(ak−1) for some

a ∈ (1,∞). For k = 1, 2, . . . ,m the points {t(1,k)
vk

, . . . , t
(nk,k)
vk

} can always be chosen as
in Proposition 3.9, which holds not only for finite-order weights, but also for arbitrary
weights.

34

Here we confine ourselves to provide an explicit error bound in the case of product
weights.

4.2.1 Upper Bound for Product Weights

Here we want to get an upper bound for the exponent of tractability p∗ for the integration
problem I∞ corresponding to product weights. Indeed, we can use almost directly our
results from the case of finite-product weights. The observation we have to make is the
following:

In the whole derivation of Theorem 3.16 the only occasion where we benefited from
the fact that we were working with finite-product weights was that we used the bound

p∗ ≤ max

{
1,

2

decayγ,1−1

}
, (63)

from [20, Thm. 5(a)] (see also Theorem 3.1). The algorithm used there to establish (63)
relies crucially on the fact that the weights under consideration are finite-order weights.
Thus we cannot expect (63) to hold.

But our algorithm with the numbers Lk = Ldak−1e for some L ∈ N and a ∈ (1,∞), the

sets of coordinates vk = v
(2)
k = [Lk], and the point sets {t(1,k)

vk
, . . . , t

(nk,k)
vk

} from Proposition
3.9 leads also in the case of (infinite-)product weights to the estimates (56), (57), and (58).
Our derivation of these estimates holds word by word also in the case of infinite-product
weights. (This can be seen as a strength of Proposition 3.9, but also as a weakness: It
does not allow us to exploit the advantage that the problem is easier for finite-product
weights.)

Altogether, we get the following result.

Theorem 4.2. Let $(k) = O(ks) for some s ≥ 0. Let the product weights γ satisfy
decayγ,1 > 1. Then the tractability exponent satisfies

p∗ ≤ max

{
1,

2s

decayγ,1−1
,
2(1 + s)

decayγ,1

}
. (64)

In particular, we have for 1 < decayγ,1 ≤ 1 + s

p∗ ≤ 2s

decayγ,1−1
,

for 1 + s < decayγ,1 < 2(1 + s)

p∗ ≤ 2(1 + s)

decayγ,1

,

and for 2(1 + s) ≤ decayγ,1

p∗ ≤ 1.

If $(k) = Θ(ks) the lower bound (62) matches the upper bound (64) in the case where
decayγ,1 ≥ 2(1 + s), and in the case where s ≤ 1 and 1 + s ≥ decayγ,1.

35

Remark 4.3. Let us compare the result of our algorithm to the results of the algorithms
used in [20]. The first algorithm studied there in Section 3.1 is a direct quasi-Monte Carlo
approach called fixed dimension algorithm. Our algorithm reduces to the fixed dimension
algorithm if for a required error guarantee ε we choose m = 1 and put L1 = d(ε), where
d(ε) tends to infinity as ε approaches zero, see [20, Sect. 3.1] for details.

If decayγ,1 > 1, the fixed dimension algorithm leads for product weights to the follow-
ing bound on the exponent of tractability:

p∗ ≤ max

{
1,

2

decayγ,1

}
+

2s

decayγ,1−1
. (65)

If s = 0 or if decayγ,1 = ∞ this is the same bound as provided by our algorithm. If s > 0
and decayγ,1 < ∞, then (64) is strictly smaller than (65).

The second algorithm studied in [20, Sect. 3.2] is called changing dimension algorithm.
If decayγ,1 > 1, the changing dimension algorithm leads for product weights to the

following bound on the exponent of tractability:

p∗ ≤ 1 +
2

decayγ,1−1
. (66)

In the case where decayγ,1 ≥ 2(1 + s) our algorithm leads to the best possible exponent
1, while the changing dimension algorithm does only in the case decayγ,1 = ∞.

In the case 2(1 + s) > decayγ,1 > 1 + s our algorithm leads to a better result than
the changing dimension algorithm if 2 ≥ s. If 2 < s our algorithm is better as long as
decayγ,1 > δ(s), where

δ(s) :=
1

2
+ s +

√
1

4
+ (s− 2)(1 + s).

If 1 + s < decayγ,1 < δ(s), then the changing dimension algorithm is better (which can,
as already mentioned, only happen if s > 2).

In the case 1 + s ≥ decayγ,1 > 1, our algorithm leads to a better result than the
changing dimension algorithm for decayγ,1 > 2s − 1, while the changing algorithm leads
to a better result if decayγ,1 < 2s− 1, which can only occur if s > 1.

This means in particular, that for s ≤ 1 our algorithm leads in any case to a better or
equal result than the changing dimension algorithm.

Remark 4.4. More restrictive models of varying costs of function evaluations, called fixed
subspace and variable subspace sampling, are studied in [2, 16, 22, 26, 27]. A discussion
of both cost models can be found, e.g., in [22, Sect. 2]. We restate the variable subspace
sampling model, which is similar to the (more generous) cost model from [20]. If we define
subspaces

X1:d := {x ∈ [0, 1]N |xd+1 = xd+2 = . . . = 0}
of [0, 1]N, then the cost of an algorithm Q of the form (10) in the variable subspace model
is given by

costvar(Q) :=
n∑

i=1

[
min{d ∈ N | (x(i)

vi
; 0) ∈ X1:d}

]s
36

for some s ∈ [0,∞). Let us assume that our cost function $ satisfies $(k) = Θ(ks). Then
obviously

cost(Q) ≤ O(costvar(Q)). (67)

In the variable subspace sampling model, we define the ε-complexity compvar(ε,Hγ) and
the Nth minimal worst case error evar

γ (N) by (18) and (20), where we simply substitute
cost(Q) by costvar(Q). Analogously, we define (polynomial) tractability and the exponent
of tractability pvar in the variable subspace model. Due to (67) we have

p∗ ≤ pvar. (68)

Thus our lower bounds for the exponent of tractability in the cost model from [20] are also
valid in the variable subspace sampling cost model. On the other hand, upper bounds
for the exponent of tractability in the variable subspace sampling cost model are valid in
the cost model from [20]. But it is a priori not clear whether an upper bound in the cost
model from [20] stays valid in the variable subspace sampling cost model.

This is indeed the case for our upper bounds achieved with the help of the multilevel
algorithm . This is easy to see for lexicographically-ordered weights, finite-product and
product weights. There we use the coordinate sets v

(2)
k = [Lk], k = 1, 2, . . . for our

multilevel algorithm Am and therefore the cost of Am is of the same order in both models,
see also (39).

For finite-intersection weights, this is not obvious and indeed an a-priori re-ordering
of the coordinates might be necessary. So if we use a bijection ζ : N → N satisfying
ζ(u1) = {1, . . . , |u1|} and

ζ
(
uj \ ∪j−1

i=1ui

)
=
{∣∣∪j−1

i=1ui

∣∣+ 1, . . . ,
∣∣∪j

i=1ui

∣∣} for j = 2, 3, . . .,

and permute the coordinates by using ζ, then our algorithm Am with coordinate sets
ṽ

(1)
k := ζ(v

(1)
k) = ∪j∈[Lk]ζ(uj), k = 1, 2, . . ., has also cost of the same order in both cost

models (since ζ(v
(1)
k) = [|v(1)

k |]). Observe that we can do the same a-priori re-ordering
of coordinates for arbitrary weights and use then our algorithm Am with the coordinate
sets ṽ

(1)
k , k = 1, 2, . . ., defined as above. In this sense all upper bounds for the exponent

of tractability achieved by our multilevel algorithm for the cost model from [20] will also
hold for the variable subspace sampling cost model.

But the cost of the algorithm from [20, Thm. 5(a)] will, in general, differ reasonably in
both models. Therefore we cannot claim that the bounds (49), (52), and (59) hold also in
the variable subspace sampling cost model. Thus, to hold in the variable subspace sam-
pling model, the results in Theorem 3.12, 3.14, and 3.16 have to be modified accordingly,
while the results from Theorem 4.2 hold without modification.

As already mentioned, the upper bound in Theorem 4.2 has been proved independently
from our work in the recent paper [27] for the varying subspace sampling cost model (and
thus, in particular, for the cost model from [20]). In [27] the authors consider a more
general reproducing kernel Hilbert space setting than we consider in this paper, but study
solely product weights. The multilevel algorithm proposed in [27] for infinite-dimensional
integration over Hγ with product weights γ is very similar to our multilevel algorithm;

37

the main difference is that their algorithm uses quasi-Monte Carlo points proposed in
[17], while our algorithm uses the points from Proposition 3.9. Although the multilevel
approaches are very similar, the analysis which establishes the upper bounds for pvar in
[27] is different from ours and relies on auxiliary weights γ ′ with γ′u ≥ γu for all finite
u ⊂ N.

In [27] a lower bound for pvar is also provided for product weights in the more general
reproducing kernel Hilbert space setting. In the Hilbert space setting studied in this
paper the bound (62) for product weights yields a stronger lower bound on pvar, see [27,
Corollary 1].

Acknowledgment

The author thanks Henryk Woźniakowski for motivating and helpful discussions. Further-
more, he acknowledges support from the German Science Foundation DFG under grant
GN 91/3-1 and GN 91/4-1.

References

[1] N. Aroszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.

[2] J. Creutzig, S. Dereich, T. Müller-Gronbach, K. Ritter, Infinite-dimensional quadrature and
approximation of distributions, Found. Comput. Math. 9 (2009), 391–429.

[3] J. Dick, I. H. Sloan, X. Wang, H. Woźniakowski, Liberating the weights, J. Complexity 20 (2004),
593–623.

[4] J. Dick, I. H. Sloan, X. Wang, H. Woźniakowski, Good lattice rules in weighted Korobov spaces
with general weights, Numer. Math. 103 (2006), 63–97.

[5] B. Doerr, M. Gnewuch, M. Wahlström, Algorithmic construction of low-discrepancy point sets
via dependent randomized rounding, J. Complexity Journal (2010), doi:10.1016/j.jco.2010.03.004

[6] H. Faure, Discrépance de suites associées à un système de numèration (en dimension s), Acta
Arith. 41 (1982), 337-351.

[7] M. B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56 (2008), 607-617.

[8] M. B. Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme, in: A.
Keller, S. Heinrich, H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2006,
343-358, Springer, Berlin Heidelberg, 2008.

[9] M. Gnewuch, Weighted L2 B discrepancy and approximation of integrals over reproducing kernel
Hilbert spaces, Dagstuhl Seminar Proceedings 09391, 2009.

[10] M. Gnewuch, H. Woźniakowski, Generalized tractability for multivariate problems, Part I: Linear
tensor product problems and linear information, J. Complexity 23 (2007), 262-295.

[11] M. Gnewuch, H. Woźniakowski, Generalized Tractability for Linear Functionals, in: A. Keller,
S. Heinrich, H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2006, 359-381,
Springer, Berlin Heidelberg, 2008.

38

[12] J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-
dimensional integrals, Numer. Math. 2 (1960), 84-90.

[13] S. Heinrich, Monte Carlo complexity of global solution of integral equations, J. Complexity 14
(1998), 151-175.

[14] S. Heinrich, Multilevel Monte Carlo methods, in: S. Margenov, J. Wasniewski, P. Yalamov
(Eds.), Large Scale Scientific Computing, Lect. Notes in Comp. Sci. 2179, 58-67, Springer,
Berlin, 2001.

[15] F. J. Hickernell, A generalized discrepancy and quadrature error bound, Math. Comp. 67 (1998),
299-322.

[16] F. J. Hickernell, T. Müller-Gronbach, B. Niu, K. Ritter, Multi-level Monte Carlo algorithms for
infinite-dimensional integration on RN, J. Complexity (2010).

[17] F. J. Hickernell, I. H. Sloan, G. W. Wasilkowski, The strong tractability of multivariate integra-
tion using lattice rules, in: H. Niederreiter (Ed.), Monte Carlo and quasi-Monte Carlo methods
2002, Springer, Berlin, 2004.

[18] F. J. Hickernell, X. Wang, The error bounds and tractability of quasi-Monte Carlo algorithms
in infinite dimension, Math. Comp. 71 (2002), 1641-1661.

[19] S. Joe, Component by component construction of rank-1 lattice rules having O(n−1(lnn)d) star
discrepancy, in: H. Niederreiter (Ed.), Monte Carlo and Quasi-Monte Carlo Methods 2002,
293–298, Springer, Berlin Heidelberg, 2004.

[20] F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, H. Woźniakowski, Liberating the dimension, J. Com-
plexity 2010. (doi: 10.1016/j.jco.2009.12.003)

[21] F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, H. Woźniakowski, On decompositions of multivariate
functions, Math. Comput. 79 (2010), 953–966.

[22] T. Müller-Gronbach, K. Ritter, Variable subspace sampling and multi-level algorithms, in:
P. L’Ecuyer, A. B. Owen (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008, 131–156,
Springer, Heidelberg, 2009.

[23] H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988),
51-70.

[24] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadel-
phia, 1992.

[25] H. Niederreiter, C. Xing, Low-discrepancy sequences and global function fields with many ratio-
nal places, Finite Field Appl. 2 (1996), 241-273.

[26] B. Niu, F. J. Hickernell, Monte Carlo simulation of stochastic integrals when the cost of function
evaluations is dimension dependent, in: P. L’Ecuyer, A. B. Owen (Eds.), Monte Carlo and Quasi-
Monte Carlo Methods 2008, 545–560, Springer, Heidelberg, 2009.

[27] B. Niu, F. J. Hickernell, T. Müller-Gronbach, K. Ritter, Deterministic multi-level algorithms for
infinite-dimensional integration on RN, Preprint Series DFG-SPP 1324, Preprint 40, 2010.

[28] E. Novak, H. Woźniakowski, L2 discrepancy and multivariate integration, in: Analytic Num-
ber Theory: Essays in Honour of Klaus Roth, W. W. Chen, W. T. Gowers, H. Halberstam,
W. M. Schmidt, R. C. Vaughan (Eds.), Cambridge University Press, 359-388, 2008.

39

[29] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume I, European Math-
ematical Society, Zürich, 2008.

[30] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume II, European Math-
ematical Society, Zürich, to appear.

[31] L. Plaskota, G. W. Wasilkowski, H. Woźniakowski, A new algorithm and worst case complexity
for Feynman-Kac path integration, J. of Computational Physics 164 (2000), 335–353.

[32] I. H. Sloan, X. Wang, H. Woźniakowski, Finite-order weights imply tractability of multivariate
integration, J. Complexity 20 (2004), 46–74.

[33] I. H. Sloan, H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high dimen-
sional integrals?, J. Complexity 14 (1998), 1–33.

[34] I. M. Sobol, The distribution of points in a cube and the approximate evaluation of integrals,
Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 748-802.(Russian)

[35] J. F. Traub, G. W. Wasilkowski, H. Woźniakowski, Information-Based Complexity, Academic
Press, New York, 1988.

[36] G. W. Wasilkowski and H. Woźniakowski, On tractability of path integration, J. Math. Physics
37 (1996), 2071–2088.

40

