ONECAhat: Enabling Group Chat and Messaging in
Opportunistic Networks

Heming Cui
Columbia University
1214 Amsterdam Avenue
New York, USA 10027
hc2428@columbia.edu

ABSTRACT

Opportunistic networks, which are wireless network ”islands”
formed when transient and highly mobile nodes meet for a
short period of time, are becoming commonplace as wire-
less devices become more and more popular. It is thus im-
perative to develop communication tools and applications
that work well in opportunistic networks. In particular,
group chat and instant messaging applications are partic-
ularly lacking for such opportunistic networks today.

In this paper, we present ONEChat, a group chat and in-
stant messaging program that works in such opportunistic
networks. ONEChat uses message multicasting on top of
service discovery protocols in order to support group chat
and reduce bandwidth consumption in opportunistic net-
works. ONEChat does not require any pre-configuration, a
fixed network infrastructure or a client-server architecture
in order to operate. In addition, it supports features such
as group chat, private rooms, line-by-line or character-by-
character messaging, file transfer, etc.

We also present our quantitative analysis of ONEChat,
which we believe indicates that the ONEChat architecture
is an efficient group collaboration platform for opportunistic
networks.

Categories and Subject Descriptors

C.2.2 [Computer Systems Organization|: Computer-
Communication Networks— Network Protocols

General Terms

Design,Performance,Reliability

Keywords

opportunistic networks, BonAHA, middleware, library, group
chat, instant messaging, p2p

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Tech Report, Computer Science, Columbia University

Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Suman Srinivasan
Columbia University
1214 Amsterdam Avenue
New York, USA 10027
sumans@cs.columbia.edu

Henning Schulzrinne
Columbia University
1214 Amsterdam Avenue
New York, USA 10027
hgs@cs.columbia.edu

Despite the increasing availability of wireless networks,
many locations still lack Internet connectivity. At the same
time, most mobile devices, from laptops to smart phones,
can participate in local (single-hop) wireless networks. Such
transient local networks, called opportunistic networks, might
be formed by students sitting in a classroom, travelers riding
in a subway car, or a audience at a seminar. Opportunistic
networks allow participants to communicate to each other.

But text-based chat applications can enhance collabora-
tion and augment oral communication in such networks.
Hence, a group chat or instant messaging application for
opportunistic networks would be very useful.

A group chat application is a collaborative software (also
referred to as groupware) which is designed to help peo-
ple communicate with each other in real time. IM (Instant
Messaging) is another tool which allows real-time text-based
communication application among people, either with one
another or in a group.

Unfortunately, most existing group-chat and instant mes-
saging applications today work in a client-server manner.
Most of the popular solutions also rely on the use of pro-
prietary protocols and servers. Hence they cannot be used
in opportunistic networks. Recently, a few IM applications
have been proposed for opportunistic networks, but to the
best of our knowledge, they can not support group chat effi-
ciently. More details about related work will be introduced
in Section II.

We have implemented an efficient group chat application
for opportunistic networks called ONEChat (Opportunistic
NEtwork Chat). ONEChat was built using the Java [26]
programming language. Even though we mostly focus on
single-hop local opportunistic networks, ONEChat works in
any network that supports multicast communication.

ONEChat does not need to be manually configured, nor
is a fixed infrastructure required for it to work properly.
ONEChat works very well even in the presence of transient
nodes that enter and leave the network quickly. The im-
plementation of ONEChat is greatly simplified by building
our program on top of the BonAHA framework [2] and the
real-time text protocol [15], both of which are detailed in
Section III.

In addition to supporting simple group chat, ONEChat
also has several additional and useful features that make
it a fully featured application. For instance, it allows for
users to create their own private groups, where messages
are encrypted and which only users with the knowledge of
a shared key can join. ONEChat also supports exchange of
small files as well as buddy icon updates from other users.

ONEChat leverages the properties of real-time text to al-
low transmission of messages in line-by-line mode, with the
user indicating the completing a message through a signal
such as pressing the Enter key, or in character-by-character
mode, where a character is transmitted as soon as it is en-
tered.

The rest of the paper is organized as follows. Section II
introduces related work. Section III covers the implementa-
tion details of ONEChat. In Section IV, we analyze the per-
formance of ONEChat and other similar applications. Our
conclusion is summarized in Section V.

2. RELATED WORK

There are a plethora of IM applications today. ICQ [4],
GTalk [5], MSN [6], AOL [7], Skype [8], and MultiChat
[9] are among the most popular and widely known ones.
However, none of these popular IM programs or their clones
can be used in opportunistic networks because they require
connection to the Internet, in particular, connection to the
servers that are run by the companies that host these IM
programs.

Recently, some chat applications for opportunistic net-
works have appeared. iChat [10], Socialized. NET [11], Op-
portunistic Chat [12], and DTN (Disruption Tolerant Net-
works) Jabber Proxy [13] are representative of these class of
applications. However, they can not support group chat for
opportunistic networks due to the drawbacks listed below.

Both iChat and Socialized. NET work in a P2P manner.
However, neither of them support message multicast, so a
message has to be sent multiple times in order to reach all
users within a group. This would consume a lot of band-
width.

Opportunistic Chat [12] introduces a Bluetooth-TCP/IP
hybrid approach: if two users next to each other want to
talk directly, they can set up a Bluetooth link; if they are
too far away to be able to use Bluetooth, or if they want to
chat within a group, then they should setup a client-server
communication link via a TCP/IP network. Therefore, Op-
portunistic Chat cannot handle group chat for opportunistic
networks either.

DTN Jabber Proxy can work in opportunistic networks,
but it requires a complicated server configuration and the
server proxy needs to be installed and available to the net-
work.

In order to fully support group chat for opportunistic net-
works, we have implemented a pure-Java, lightweight and
configuration-free application called ONEChat. As soon as
ONEChat applications start up, they can discover each other
without querying any central servers, and they can work
without requiring any pre-configuration.

Once a ONEChat application enters or leaves the network,
all the other nodes will be notified automatically. For each
message, there is only one multicast transmission to all the
other group members to save bandwidth. The following sec-
tion will introduce the implementation details of ONEChat.

3. IMPLEMENTATION OF ONECHAT

In this section, we will explain how ONEChat works with
the BonAHA library and the real-time text protocol. We
will also explain how the different types of groups and mes-
sages are defined in an ONEChat application. We will also
detail how some of its essential features of ONEChat, such

2] Kate's ONECHat Applicator o= e |

Settings Help

Message Mode Friends

(@ Line by Line Mode 3 Room 1
() Character by Character Mode Kat
ate

3 Global Group
Create new group Kate

| Global Group | Room 1

Room 1 Messages

Type your message

|

Figure 1: A screenshot of a ONEChat session in
operation.

as creating a group, joining and leaving a group, notifica-
tion of network entry, and notification of leaving a network,
work.

3.1 Introduction to ONEChat

BonAHA [2] is a framework for opportunistic networks
based on the multicast DNS and Zero Configuration [3] net-
working suite of service discovery protocols. The BonAHA
library allows for easy development of applications that work
in link-local, opportunistic networks. BonAHA can work in
local (single-hop) opportunistic networks as well as in regu-
lar wired or wireless connections.

For each user, we define his or her network as all users
within his or her transmission range.

Figure 1 shows a screenshot of ONEChat’s user interface.
The left part of the user interface contains a list of instant
messages between users, while the right side of the UI con-
tains a list of the user’s "friends” who are in the same net-
work.

For example, in this screenshot, the user’s name is Kate,
and there are already two groups, Global Group and Room
1, in Kate’s ONEChat application. (The Global Group is
always present in the ONEChat applications, while other
local rooms can be created as necessary.)

Correspondingly, there are two tabs on the left part of
the Ul with these two group names, and there are two tree
components on the right side which display the groups. The
chat messages in a group are shown in the main window
under a tab, while a tree component on the right side of the
UI lists the users in that group.

3.2 User and message discovery using BonAHA

There are two kinds of messages in ONEChat: system
messages and user messages.

We use BonAHA to send and receive system messages
in order to perform the "behind the scenes” work to allow
ONEChat applications and users to signal each other, as
well as entry and exit in the network. We use the real-time
text protocol to send and receive user messages.

In addition to chat, ONEChat also supports file transfer
and the buddy icon update features, which are also imple-
mented as user messages. These features will be introduced
later in this section.

The message publishing and signalling mechanism for ONEChat

is built on top of BonAHA, which uses mDNS (multicast
DNS) service discovery protocol [3].

ONEChat is meant to work in opportunistic networks
which are highly transient. So it is necessary to keep track of
the state of users in the network, such as users entering and
leaving the network. ONEChat recognizes these events as
system events and uses BonAHA to publish them as system
messages.

ONEChat uses two functions from the BonAHA frame-
work to be notified when users enter and leave the network
- serviceUpdated(BNode n) and service Exited(BNode n).

ONEChat uses the set(String key, String text) function
call in the BonAHA framework to publish a system mes-
sage. This sets the global properties of the user’s key, and
all the other users within its transmission range receive this
message.

Table 1 summarizes how ONEChat uses the BonAHA
functions to handle the low-level network events in the op-
portunistic network.

Table 1: Usage of the four BonAHA functions in
ONEChat

Function Usage

serviceUpdated Triggered when a new ONEChat user
enters the network.

service Exited Triggered when a ONEChat user leaves
the network.

set Called when ONEChat publishes a sys-
tem message.

get Called when ONEChat retrieves the in-

formation published on the network.

3.3 Messaging using RTP and RTT

The user message publishing mechanism in ONEChat is
built on top of the real-time text (RTT) protocol, and im-
plemented using the T140 library [24].

The real-time text protocol uses RTP (Real-time Trans-
port Protocol) and defines an RTP payload type [15] for
text conversation. In the real-time text protocol, as soon as
a character is typed, it is sent and displayed immediately
to the recipient. This allows text to be used in the same
conversational mode as voice and video.

In ONEChat, we use the real-time text protocol to provide
two transmission modes for user messages: line-by-line mode
and character-by-character mode. In line-by-line mode, we
buffer a group of characters that a user has typed and then
transmit them; in character-by-character mode, text is sent
and received character by character in a real-time manner.

As shown in Figure 1, users can choose a message mode

in the Message Mode field. Once they choose the character-
by-character mode, the Send button is disabled since they
do not need it (they just need to type the message and the
typed characters will automatically be sent). After the user
switches back to the line-by-line mode, this button is en-
abled.

3.4 Private and secure messaging using ONEChat

Groups

We provide a primitive security feature for ONEChat.
There are two kinds of groups in ONEChat: the Global
Group and protected groups. All public messages published
within one’s network are displayed in his or her Global Group,
which is always present in any ONEChat session and avail-
able to all users currently on that opportunistic network.

By default, each ONEChat user always stays in the Global
Group. All the other groups created by users are protected
groups. A protected group must be created with a pass-
word, and others who want to join this group must know
this password. We assume that this password is distributed
using some out-of-band method. ONEChat does not send
any password to the network.

All messages published within a protected group will be
encrypted with its group password using AES in Counter
Mode.

Currently, we do not consider malicious users bent on dis-
rupting service. In multicast scenarios where keys are shared
between members, it is easy to authenticate the source and
prove that a member of the group has sent a message, but
difficult to prevent one member from impersonating another.

This problem is called DOA (Data Origin Authentica-
tion). There are already some promising proposals in this
area [16] [17] [18] [19].

We have not implemented DOA for this current version of
our application, but we will quickly summarize its features.
DOA can be done using signatures. There are two kinds of
approaches. The first approach involves signing each RTP
packet [16] [17]. This approach provides good source au-
thentication but suffers from high computation overhead in
signing and verifying the signature for each packet. The
second approach involves amortizing a single signature over
multiple packets or sessions [18] [19]. This reduces the over-
head but it is not satisfactory when transmission is lossy.
However, in some scenarios like small group chat through
wireless links, the computation overhead is not a bottleneck,
and the first approach is more acceptable.

3.5 Messages in ONEChat

As mentioned in Section II1.A, there are two kinds of mes-
sages in ONEChat, system messages and user messages.

The first kind is system message, which is sent and re-
ceived by the set and get functions provided by the BonAHA
framework. Table 2 illustrates the usage of all the five kinds
of ONEChat system messages.

The other kind is user message, which is published by
users. In addition, the file transfer and buddy icon update
mechanisms also work on top of user message transmissions.

The user message transmission mechanism is based on the
real-time text protocol, and this protocol works on top of
UDP multicast.

Due to the use of UDP multicast, we have one current
limitation in our file transfer implementation. Sending a
large file over UDP multicast causes fragmentation because

Table 2: Usage of the five ONEChat system mes-
sages

Type Usage

sys_create Notify others that a new group was created.

sys_join Notify group members that I joined this
group.

sys_reject Notify someone that the password he typed

was wrong.

sys_enter Notify others that I entered the network.

sys_exit Notify others that I left the network.

of the 1,500 byte MTU limit on Ethernet packets. In order
to alleviate the fragmentation problem in our current imple-
mentation, we only allow files that are of a certain size to be
sent over ONEChat, which we enforce by using a file filter.
We find that file transfer and buddy icon updates (which de-
pend on the file transfer mechanism) work without problems
in our current implementation.

Retransmission of lost packets may result in re-sending a
complete file several times. It is necessary to look into RTP-
compatible retransmission mechanisms to mitigate packet
loss. RFC 2354 [20] proposes several techniques, such as
FEC (Forward Error Correction), retransmission, and in-
terleaving, which may be considered to increase packet loss
resiliency. In addition, RFC 4588 [21] proposes a compre-
hensive RTP retransmission payload format for both unicast
and small multicast groups. This format is defined in the
AVPF profile (RFC 4585 [22]), and is used by receivers to
send retransmission requests. There are already some open
source multicast file transfer program like UFTP [23], but
they are not based on RTP. Thus, the RTP-compatible re-
transmission mechanism mentioned in RFC 4588 may be
more appropriate to mitigate the UDP fragmentation prob-
lem.

Both system and user messages have three fields: message
type, destination group and message content. The value of
the message type field can be any one of the values in the first
column in Table 2, or user_lbl, (a user message under line-
by-line mode), or user_cbe, (a user message under character-
by-character mode).

Since ONEChat is a local chat application, there is only
one multicast RTP group for all user messages among dif-
ferent chat groups, so we need a destination group field to
indicate which group a message belongs to. A message would
only be displayed in a group whose name is the same as that
of the destination group. The message content field stores
the real content of a message.

3.6 Creating, Joining and Leaving a Group

When a user creates a new group, he or she is required to
enter a password (the group key), and others who want to
join the group need to get this password information from
the group creator.

Take an interaction between two users, Kate and Tom, as
an example. As shown in Figure 1, suppose Kate creates a
group named Room 2. This event will be encapsulated into
a sys_create (Table 2) message and broadcast automatically
to all users within Kate’s network. Tom receives this mes-
sage and a message is displayed on his ONEChat UI, as

shown in Figure 2.

If Tom is interested in joining Room 2, he double-clicks
this and attempts to join the group. This results in a popup
window which asks Tom to enter a password. After Tom
enters a password, the new group Room 2 will appear in
Tom’s ONEChat window, and a sys_join (Table 2) message
will be sent to all users in Group Room 2 notifying them
that Tom has joined this group.

After Kate receives this message, she uses the group key
(her password) to decrypt the message and tries to get the
tag. If this succeeds, then Kate knows that Tom has typed
the correct password, otherwise a sys_reject message will be
sent to Tom to expel him from the session. Tom’s ONEChat
window will then close the Room 2 tab.

If Tom is able to successfully authenticate and join Room 2,
he can talk to Kate and others who are members of this
group. Figure 3 shows a screenshot of a established connec-
tion and group chat.

|2 Tom's ONEChat Applicatio e

Settings Help

Message Mode é Friends

® [Line by Line Mode! | Room 2

() Character by Character Mode :
= :| = Global Group

Kate

Tom

| Global Group |

Global Group Messages

@ Kate: created group Room 2. Double click me to join. at 12: ;

Figure 2: Tom is informed that Kate created group
Room 2.

In Figure 3, Tom uses an icon (a monkey) and Kate an-
other icon (a girl). The icons in the two users’ applications
are synchronized with the buddy icon update mechanism:
once a user updates his icon, this icon image will be trans-
mitted through multicast to all users within the network,
and the other users can view this updated buddy icon. The
buddy icon update mechanism is encapsulated as a public
user message.

] Tom's ONEChat Application = ® |

Settings Help

L
|| Kate's ONEChat Application A Py [

Message Mode:

® Line by Line Mode
© Character by Character Mode

| settings Help

Global Group | Room 2 | Room 1 | | [“Message Mode Friends

Room 2 Messages ® Line by Line Mode = Room 1
© Character by Character Mode

|| Tom
Tom: Hello~ at 12:37:53 AM Global Group ’/ Room 2 ’/ Room 1 Kate
[CIReom2

Room 2 Messages

Tom

[‘%r\ ekt A Tom: Hello~ at 12:37:54 Al Tom Tom 22 clobal Group

Tom
Tom: How are you? at 12:3

m Kate

1l Kate: Hi~~ at 12:37:56 AM

[.‘& et soo, thenkstal O Tom: How are you? at 12:38:04 Al Tom Tom
[é Kate: good, thanks! at 12:38:15 AM

Figure 3: Tom and Kate chat within group Room 2.

A user can leave a group at any time. Suppose Tom wants
to leave Room 2, he closes the tab named Room 2 in his
application. A sys_leave (Table 2) message will be auto-
matically multicast to all users within this group.

This message will appear on the message window in Kate’s
Room 2, and Kate knows that Tom has left. Figure 4 depicts

the interactive sequence of the creating, joining and leaving
group procedures between two users.

Kate Tom

Create Koom 2 with passwordl.
A sys _create message is sent to
users in Global Group. T

Room 2 = |Kate}. Enter password2 and join

_ Room 2. A sys_join message

With-g specific tag is
encrypted with password2

~=""and sent to users in Room Z

sys_create

Kate uese passwordl to decypt sys_join Roow 2 = {Kate, Tom}.
this message verify the tag. [f--~ -
fails, then Kate sendg--~~
sys_reject message, otherwise .
Roow 2 ={Kate, Tom}. "'_gy_r;_r(.,-;‘gcf If Tom receives a sys _reject
T ~--message, then the group in
his apblication is forced to
closed, otherwise Tom can
join the group.
T T —user message_ _ _
ZIz=m
AAAA user message” "~
[P—
Tom closes the Room 2 tab,
and a dys Jeave message is
_sent 10 users in Room 2
=" Room 2 = {Kate}.
ars leave

Kate knows that Tom has/l,eft—."/'
Room 2 = {Kate}. .

Figure 4: The sequence of the creating, joining and
leaving a group.

3.7 Enter-Network Notification

Once a user enters the network, all the other users in his or
her network will be notified by BonAHA’s serviceUpdated
mechanism. Figure 5 shows how a enter-network notification
works.

Take Tom and Kate as an example. Once Tom launches
a ONEChat application, a sys_enter message (Table 2) is
generated automatically and published by the set (Table 1)
function provided by BonAHA. All the other users in Tom’s
network receive this message immediately. Kate’s ONEChat
makes sure that this is a sys_enter message and displays it
on the message list of her Global Group, and Tom is listed
in Kate’s friend list.

Tom Kate

Tom starts ONEChat, which registers
a BonAHA Bservice:
service = new BService {"one_chat",
"ecp");
S —

Message "Tom entered the
network.” is displayed on Kate's
OMEChat

System message

A 4

Tom's ONEChat automatically
generates a new chat entry: "Tom
entered the network,”

Message = n.get{"one_chat");

System message

A sys_enter message is published: The serviceUpdated{BNode n}
service.set{"one_chat", function in Kate's ONEChat is
“'sys_enter|Global Group |Tom"); triggiered.

1

A 4

(BonAHA for isti)
(multicast DNS-based service discavery in Bonjour (Zeroconf) j

Figure 5: The enter-network notification procedure.

3.8 Leave-Network Notification

ONEChat can capture a leave-network event as well as an
enter-network event. We have developed the procedure of
leave-network notification by implementing the service Exited
(Table 1) interface function provided by BonAHA. Figure 6
depicts the implementation of this notification procedure.

Take Tom and Kate as an example. Suppose Tom closes
his ONEChat application. This action triggers a sys_exit
event down to his BonAHA framework, and this event is
multicast to all the others in Tom’s network. At Kate’s end,
a system message with the message Tom left the network is
displayed on the message list of her Global Group and the
name Tom is deleted from her friend list.

Tom Kate

Message “Tom exited the network.”
is displayed on Kate's ONEChat.

T

[Kate's ONEChat gets Tom's name by

the function {provided by BanAHA) as below:
user_name = n.getHostName(};

(Tom closes his ONEChat. J
l The serviceExited(BNode n) function
(A sys_exit event is triggered.) in Kate's ONEChat is triggered.

T

BonAHA Framework for opportunistic networks
(multicast DN5S-based service discovery in Bonjour (Zeroconf)

QA

Figure 6: The leave-network notification procedure.

4. PERFORMANCE EVALUATION

We compare the performance evaluation of ONEChat’s
messaging system in opportunistic networks by comparing
it to peer-to-peer chat and instant messaging clients, since
we were not able to find similar IM clients that operate in
a manner similar to ONEChat. We also believe that this
evaluation validates our design of the ONEChat messaging
system as efficient in the opportunistic network scenario.

The performance metric is the total amount of bytes sent
to the network (bandwidth consumption) in the below sce-
nario.

Assume that we have a group Go with m users: {N1, ..., N }.
Each user N; is within the single-hop communication range
of all other users, and he or she is going to send k; messages
to all the others within this group. Each message has a size
of L bytes. Let BonEchat denote the total amount of bytes
sent by ONEChat and Bpap by P2P.

In P2P applications, each message has to be sent to ev-
eryone else within the group once (message retransmission
is ignored), so the total amount of bytes sent to the network
is: P

Bpap= 2, Lxkix(m—1)

In BonAHA, a multicast message will be sent a few times
using the redundant transmission mechanism defined by Ze-
roconf [3].

Using Wireshark [14], we found that each system message
is transmitted at most three times, and each user message
is transmitted once. Therefore, the average transmission
times (in short, avt), which is defined as the total number
of transmitted messages divided by the total number of dis-
tinct transmitted messages. We will consider the worst case
scenario for the avt value, which is three.

Since ONEChat applications perform message multicas-
ting for group chat, the total amount of bytes sent in the
network is:

Bonpchat = [, L X avt X ks

From the two equations above, we can see that when (m —
1) > avt, the amount of bytes sent to the network in P2P
applications is more than that in ONEChat. Given avt <
3, if there are more than four users in a group, ONEChat
consumes less bandwidth than P2P.

Hence, we can confirm that ONEChat’s operation for op-
portunistic networks is more efficient than regular P2P clients
which use unicast for messaging.

S. FUTURE WORK

Our future work for this project includes improving its se-
curity against malicious users, and solving the packet frag-
mentation problem in large file transfers.

6. CONCLUSION

This paper describes a group chat application, ONEChat,
for opportunistic networks. There are two main contribu-
tions. First, ONEChat eliminates configuration and the
necessity of a fixed network infrastructure, making it eas-
ily deployable in opportunistic networks. Second, it uses
multicast techniques to reduce bandwidth consumption in
group chat scenarios. Quantitative performance analysis
shows that ONEChat outperforms P2P-based applications
like iChat and Socialized.NET in bandwidth consumption
as long as there are more than four members in a group.

ONEChat also has several interesting and useful features,
such as private groups which are secure and require a shared
key to join, as well as line-by-line and character-by-character
modes of communication using Real-Time Text (RTT), that
make it quite useful and usable as a full-featured application
in real opportunistic networks today.

Our implementation of ONEChat (including additional
documentation and details of data transfer protocols and
RTP) is available for download at [25].

7. ACKNOWLEDGMENT

This work was supported by NSF Grant No. 04-54288
and No. 04-12025.

8. REFERENCES

[1] Suman Srinivasan, Arezu Moghadam, Henning
Schulzrinne, BonAHA: Service Discovery Framework
for Mobile Ad-Hoc Applications. IEEE Consumer
Communications & Networking Conference 2009
(CCNC’09), Las Vegas, USA, January 2009.

[2] Suman Srinivasan, Arezu Moghadam, Se Gi Hong,
Henning G Schulzrinne, 7DS - Node Cooperation and
Information Exchange in Mostly Disconnected
Networks. IEEE International Conference on
Communications (ICC), Glasgow, Scotland, Jun 2007.

[3] Zero-Configuration Networking protocols,
http://www.zeroconf.org/

[4] ICQ, http://www.icq.com/

[6] Google Talk, http://www.google.com/talk/

[6] MSN Messenger, http://messenger.msn.com/

[7] AOL Instant Messenger, http://www.AIM.com/

[8] Skype, http://www.Skype.com/

[9] J Schull, M Axelrod, L Quinsland, Multichat:
Persistent, Text-As-You-Type Messaging in a Web
Browser for Fluid Multi-Person Interaction and
Collaboration. Proceedings of the 39th Annual Hawaii
International Conference on System Sciences, Hawaii,
USA, 2006.

[10] Apple iChat,
http://www.apple.com/macosx/features/ichat.html

[11] Socialized.NET, http://www.socialized.net/

[12] Salvatore Sorce, Francesco Cinquegrani, Salvatore
Anzalone, Dario Caccl,ﬁm Antonio Gentile, A Dynamic
System for Personal Communications: the
Opportunistic Chat. International Conference on
Intelligent Pervasive Computing, Jeju City, South
Korea, 2007.

[13] Ryan Metzger, Mooi Choo Chuah, Opportunistic
information distribution in challenged networks.
Proceedings of the Third ACM Workshop on
Challenged Networks, San Francisco, California, USA,
2008.

[14] Wireshark, http://www.wireshark.org/

[15] "RTP Payload for Text Conversation.” [Online].
Available: http://tools.ietf.org/html/rfc4103

[16] Perrig, A., Canetti, R., Tygar, D. and D. Song,
Efficient Authentication and Signing of Multicast
Streams over Lossy Channels. in Proc. of IEEE
Security and Privacy Symposium S&P 2000, pp. 56-73,
2000.

[17] Istemi Ekin Akkus, Oznur Ozkasap, and M. Reha
Civanlar, Secure Transmission of Video on an End
System Multicast Using Public Key Cryptography.
Lecture Notes in Computer Science, pp. 603-610,
Volume 4105, 2006.

[18] Namhi Kang, and Christoph Ruland, MDS:
Multiplexed Digital Signature for Real-Time Streaming
over Multi-sessions. Lecture Notes in Computer
Science, pp. 824-834, Volume 3391, 2005.

[19] C. K. Wong and S. S. Lam, Digital signatures for
flows and multicasts. In Proc. IEEE ICNP’98, 1998.

[20] "Options for Repair of Streaming Media.” [Online].
Available: http://tools.ietf.org/html/rfc2354

[21] "RTP Retransmission Payload Format.” [Online].
Available: http://tools.ietf.org/html/rfc4588

[22] 7Extended RTP Profile for Real-time Transport
Control Protocol (RTCP)-Based Feedback
(RTP/AVPF).” [Online]. Available:
http://tools.ietf.org/html/rfc4585

[23] http://www.tcnj.edu/~bush/uftp.html

[24] T140 library,
http://sourceforge.net/projects/rtp-text-t140/

[25] ONEChat home page,
http://bonaha.sourceforge.net/web/projects/one_chat/

[26] The Java programming language.
http://java.sun.com/

