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Abstract

We investigate the empirical content of the Nash solution to two-player bar-

gaining games. The bargaining environment is described by a set of variables that

may affect agents’ preferences over the agreement sharing, the status quo outcome,

or both. The outcomes (i.e., whether an agreement is reached, and if so the indi-

vidual shares) and the environment (including the size of the pie) are known, but

neither are the agents’ utilities nor their threat points. We consider both a deter-

ministic version of the model in which the econometrician observes the shares as

deterministic functions of the variables under consideration, and a stochastic one

in which because of latent disturbances only the joint distribution of incomes and

outcomes is recorded. We show that in the most general framework any outcome

can be rationalized as a Nash solution. However, even mild exclusion restrictions

generate strong implications that can be used to test the Nash bargaining assump-

tion. Stronger conditions further allow to recover the underlying structure of the

bargaining, and in particular, the cardinal representation of individual preferences

in the absence of uncertainty. An implication of this finding is that empirical works

entailing Nash bargaining could (and should) use much more general and robust

versions than they usually do.
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I passed by his garden, and marked, with one eye,

How the Owl and the Panter were sharing a pie:

The Panther took pie-crust, and gravy, and meat,

While the Old had the dish as its share of the treat.

When the pie was all finished, the Owl, as a boon,

Was kindly permitted to pocket the spoon:

While the Panther received knife and fork with a growl,

And concluded the banquet by...

Lewis Caroll (Alice’s Adventures in Wonderland, 1866)

1 Introduction

Economic applications of the Nash solution The axiomatic theory of bargaining,

originated in a fundamental paper by John F. Nash (1950), has provided a simple and

elegant framework to resolve the indeterminateness of the terms of bargaining. As such,

it has been widely applied in economics. For instance, several works model the firm’s

decision process as a bargaining game between the management and the workers, repre-

sented by a union. Most of the time, such models assume the original Nash solution (de

Menil, 1971, and Hamermesh, 1973); and several papers have tried to test this assumption

(Bognanno and Dworkin, 1975; Bowlby and Schriver, 1978; Svejnar 1986, for instance).

The modern analysis of employment contracts is another example of application. The

analysis is often based on search models in which, once a meeting results in an employ-

ment contract, the parties bargain over the distribution of the surplus (see for instance

Moscarini 2005 or Postel-Vinay and Robin 2006 for a recent survey). Bargaining theory

has also been used in the analysis of international cooperation for fiscal and trade policies

(Chari and Kehoe, 1990), negotiations in joint venture operations (Svejnar and Smith,

1984) or the sharing of profit in cartels (Harrington, 1991) and oligopoly (Fershtman and

Muller, 1986), just to name a few. Last but not least, bargaining models have played a

prominent role in recent analyses of household behavior. During the last two decades,

several models accounting for the fact that spouses’ goals may differ—and, therefore, that

the decision process at stake has crucial consequences on the outcomes—have emerged.

While the collective approach pioneered by Chiappori (1988a, 1992) relies on the sole as-

sumption that the intrahousehold decision process is efficient, Manser and Brown (1980),

McElroy and Horney (1981), Lundberg and Pollak (1993), who consider couples, and

Kotlikoff, Shoven and Spivak (1986), who concentrate on negotiations between parents

and children, introduce additional structure by explicitly refering to a Nash-bargaining
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equilibrium concept.1 An interesting problem is whether (and under what conditions)

the additional structure provided by Nash-bargaining results in either additional testable

predictions on behavior, or a more accurate identification of individual preferences and

decision processes.2

The Nash solution, or its generalization to situations with asymmetric bargaining

power, is used in the large majority of the contributions just listed, and can be considered

as the main solution concept to the bargaining problem, at least when the latter arises

under a general form. From an empirical perspective, a few contributions consider specific

examples in which players follow an explicit bargaining protocol, the details of which

are moreover known to the econometrician; then non cooperative bargaining theory (and

more precisely a non cooperative bargaining model constructed to exactly mimic the rules

under consideration) is a natural tool to be taken to data. Most of the time, however, the

bargaining environment is not known, or even not properly defined ex ante.3 Then the

Nash solution is regularly employed as the reduced form of a more complicated strategic

bargaining process.

Is Nash Bargaining empirically relevant? While Nash bargaining is an elegant and

convenient tool for approaching an old and important problem, its empirical relevance

has not received the attention it deserves. As a benchmark example, consider a game in

which two players, 1 and 2, bargain about a pie of size y. If the players agree on some

sharing (ρ1, ρ2) with ρ1 > 0, ρ2 > 0 and ρ1 + ρ2 = y, it is implemented. If not, each

agent s (with s = 1, 2) receives some reservation payment xs. The setting of the process

(i.e., the size y and the reservation payments xs), as well as its outcome (whether an

agreement is reached, and if so the individual shares ρs) are typically observable by an

outside econometrician; however, individual utilities are not. Let us now assume that

agents use a Nash bargaining solution. What is the empirical content of this assumption?

Specifically, denoting ρ1 = ρ and ρ2 = y − ρ, a Nash-bargaining agreement exists if and

only if one can find some ρ ∈ [0, y] such that U1 (ρ) > T 1 (x1) and U2 (y − ρ) > T 2 (x2);

then the Nash solution ρ solves a program of the type:

max
ρ

(
U1 (ρ)− T 1 (x1)

)
·
(
U2 (y − ρ)− T 2 (x2)

)
, (1)

1Note that since Nash-bargaining generates efficient outcomes, the Nash-bargaining approach is at

any rate a particular case of the ‘collective’ framework, see Chiappori and Donni (2009) and Browning,

Chiappori and Weiss (forthcoming).
2See Chiappori (1988b, 1991) and McElroy and Horney (1990) for an early exchange on this issue.
3Intrahousehold bargaining is a prime example of this situation; while the idea that spouses bargain

over decisions to be made is natural (and has been used by many contributors), the bargaining game is

mostly informal, and cannot be described by fixed rules.
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for some functions U1, U2, T 1, T 2 where the utility function of s is denoted U s if an agree-

ment is reached, and T s in the opposite case.4 What does this structure imply (if anything)

on the relationship between (y, x1, x2) and ρ?

The traditional approach arbitrarily assumes a specific (usually linear) form for indi-

vidual utilities.5 Under such an assumption, the sharing function solves the program:

max
ρ

(ρ− x1) · (y − ρ− x2) ,

giving the simple, linear form ρ = 1
2

(y + x1 − x2) whenever y > x1 + x2. While this

prediction is indeed testable, it totally relies on the linearity assumption; since the Nash

bargaining outcome depends on the cardinal representation of individual preferences, any

deviation from linear utilities will give a different form for the resulting shares.6 It follows

that any test based on the above program is a joint test of two assumptions, one general

(Nash bargaining), and another very specific (linear utilities). A rejection is likely to be

considered as inconclusive, since the burden of rejection can always be put on the specific

and often ad hoc linearity assumption.

From a methodological perspective, assuming linear forms contradicts the generally

accepted rule in empirical economics, whereby preferences should be recovered from the

data rather than assumed a priori. This remark, in turn, raises two questions. First, is it

possible to test the Nash bargaining assumption without previous knowledge of individual

utilities? And second, can the utility players derive from the consumption of either their

share of the pie or their reservation payment be recovered from the sole observation of

the bargaining outcomes?

In the present paper, we address these two questions—the testability of Nash bargain-

ing models and the identifiability of the underlying structure from observed behavior—in

a general framework. In our setting, the environment is described by a set of variables

that may affect agents’ preferences over the agreement sharing, the status quo outcome,

or both. A key role will be played by the econometrician’s prior information on the struc-

ture of the model at stake. In a non-parametric spirit, this information will be described

by some (broad) classes to which the utility or threat functions are known to belong. We

are mainly interested in situations in which this prior information is limited. We thus do

4Note that we allow in principle these utilities to differ. For instance, in the case of households, indi-

viduals may have different preferences, say, different marginal rates of substitution between consumption

and leisure, when married than when single.
5This approach is explained and discussed by Svejnar (1980). The household literature is an obvious

exception.
6In the example above, for instance, if the utility of agent 1 is U (ρ) =

√
ρ instead of U (ρ) = ρ, the

solution becomes ρ = 1
3y + 2

9x1 −
1
3x2 + 2

9

√
x1 (x1 + 3y − 3x2).
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not assume that the econometrician knows the parametric form of the utility and threat

functions, but simply that these functions satisfy some exclusion restrictions.7 Our basic

question can thus be precisely restated in the following way: is the prior information

sufficient to achieve (i) testability of the Nash bargaining theory, and (ii) identifiability of

the underlying structural model?

Regarding the identifiability issue, an interesting aspect is that Nash solutions are

not invariant to monotonic transformations of utility functions. It follows that one may

in principle retrieve a cardinal representation of preferences. While the identification of

cardinal preferences is a standard problem in economics, the present situation is original

in that it does not involve uncertainty. Whether concavity of utility functions matter in

bargaining because of risk aversion—as suggested both by Nash’s initial article8 and by

(some of) the non cooperative foundations of Nash bargaining—or for unrelated reasons

is an interesting conceptual problem, on which our findings shed a new light. This issue

will be further discussed in the concluding Section.

Deterministic versus stochastic models Economic models are, in general, stochas-

tic. As noted by Marschak (1950), however, important distinct properties of the models

can be brought out even if we assume all the variables to be measured exactly and to con-

form exactly to the predictions of economic theory. In particular, important insights into

the problem of testability and identifiability of Nash bargaining models can be obtained

even if we assume the econometrician has access to ‘ ideal data’ in which she observes

individual shares as deterministic functions of the variables entering the game (in our in-

troductory example, our observer would know ρ1 and ρ2 as functions of (y, x1, x2)). Thus

stated, the problem is the counterpart, in a bargaining context, of well known results in

consumer theory—namely, that a smooth demand function can be derived from utility

maximization under linear budget constraint if and only if it satisfies homogeneity, adding

up and the Slustky conditions, and that the underlying utility can then be recovered up

to an increasing transform. In other words, the first perspective can be summarized as

follows: Find an equivalent, for the Nash bargaining setting, of Slutsky relationships in

consumer theory.

The perspective just sketched, however, is largely hypothetical; it relies on the avail-

ability of ‘ ideal data’, in which a smooth relationship between the fundamentals of the

bargaining process and its outcomes is not affected by any latent disturbances. In prac-

7To put it in a Popperian perspective (Popper, 1959), we do not want the falsifiability of Nash

bargaining to be entirely driven by ad hoc auxiliary hypotheses such as particular functional forms of

individual utility functions.
8We thank an anonymous referee for emphasizing this point.
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tice, unobserved individual heterogeneity is paramount which affects the output of the

game; such feature can only be accommodated in a stochastic version of the bargaining

model. In this case, we typically observe a joint distribution of incomes and outcomes: in

our example, of (y, x1, x2, ρ1, ρ2). Note that the first (deterministic) perspective is but a

statistically degenerate version of the second (stochastic), in the sense that it is relevant

only when the distribution is degenerate (i.e., when its support is born by the graph of

some deterministic function mapping (y, x1, x2) to (ρ1, ρ2)). In the second context, we

may again ask whether the Nash bargaining framework imposes restrictions on the ob-

served distribution, and whether, conversely, the distribution allows one to identify the

underlying structure. The answer, however, now depends not only on the bargaining

framework but also on the stochastic structure attached to it. A key remark, here, is that

identifiability of the deterministic model is a necessary, although not sufficient, condition

for identifiability of its stochastic version; obviously, if two different structural models

generate the same ‘ideal’ demand function, there is no hope whatsoever of empirically

distinguishing them.

Main findings In the present paper, we successively address the two problems. We

first consider the deterministic version of the model. We show that, in its most general

version, Nash bargaining is not testable: any Pareto efficient rule can be rationalized as the

outcome of a Nash bargaining process.9 We then introduce simple exclusion restrictions;

namely, we assume that (i) threat point utilities do not depend on the size of the surplus

over which agents bargain, and (ii) for each agent s, there exists (at least) one variable, say

xs, that only affects this agent’s utility and threat functions (i.e., if s′ 6= s, neither U s′ nor

T s
′

depend on xs). Then the Nash model generates strong testable restrictions that take

the form of a Partial Differential Equation (PDE) in the function ρ; these are reminiscent

of Slutsky conditions. In addition, if either one of the pairs of functions (U s, T s) is known

or if there exists, for each agent, a variable that enters the agent’s threat point but not her

utility when an agreement is reached, then both individual utility and threat functions

can be cardinally identified (i.e., identified up to an affine transform). In particular, in the

benchmark example (1) given above, the conditions are satisfied; therefore both testability

and identifiability are achieved. Note also that the majority of these results remain valid,

mutatis mutandis, in the case of the Generalized Nash solution.10

We then move to a stochastic version of the model, in which each individual surplus

9That Pareto efficiency by itself may generate testable restrictions is a classic finding of the literature

on collective decision making in households; see for instance Chiappori and Donni (2011) and Browning,

Chiappori and Weiss (forthcoming) for a general presentation.
10Some of them are also relevant for other solution concepts of bargaining theory.
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is the sum of a deterministic component (equal, as above, to the difference between the

utility of the share and the reservation utility) and an individual-specific random term.

It follows that the Nash solution now involves two random terms. Coming back to our

benchmark example, the program would now become:

max
ρ

(
U1(ρ)− T 1(x1) + ε1

)
·
(
U2(y − ρ)− T 2(x2) + ε2

)
.

Here, the εs’s can be seen as latent disturbances reflecting some unobserved heterogeneity

between couples. In particular, we want to allow these random terms to be correlated

with each other in an arbitrary way, reflecting the fact that the initial match between

the negotiating partners is typically not random, but reflects some degree of (positive

or negative) assortativeness. What the econometrician observes is the joint distribution

of (y, x1, x2, ρ1, ρ2) over the population under consideration—and we now assume this

distribution is not degenerate.

In this stochastic setting, we can show the following result: under the same exclusion

restrictions as before plus a conditional independence assumption, testable restrictions are

generated, and individual utility and threat functions are cardinally identified. In other

words, the deterministic results do extend to the stochastic framework, even though the

stochastic structure under consideration involves an unknown bivariate error distribution.

Related works The empirical content of game theory is undoubtedly a topical issue as

illustrated by several recent contributions. For example, Sprumont (2001) considers, from

the revealed preferences viewpoint, a non-cooperative game played by a finite number

of players, each of whom can choose a strategy from a finite set. Ray and Zhou (2001)

adopt a similar set-up but focus on extensive-form games. Other related papers include

Bossert and Sprumont (2002, 2003), Carvajal, Ray and Snyder (2004), Xu and Zhou

(2007). Nonetheless, our contribution differs in many respects from what is generally done.

Firstly, our subject matter—the Nash solution—has never been investigated in spite of

the various applications of bargaining models in economics. Secondly, our methodology is

not based on revealed preferences. The inspiration of the present paper, in fact, is more

closely related to the work of Chiappori (1988, 1992) and its numerous sequels (Chiappori

and Ekeland, 2006 and 2009) on the empirical implications of Pareto efficiency. This

methodology is probably more appropriate for the empirical implementation of theoretical

results. Moreover, our results are extended to the case of a model with unobserved random

terms. Thirdly, the emphasis of this paper is largely on the identification problem, which

is generally ignored by the authors cited above (with the exception of Chiappori and

Ekeland, 2009).
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The organization of the paper is as follows. In the next Section, we develop the

general model and show that neither testability, nor identification obtain without a priori

information on utility and threat functions. In Section 3 we introduce additional structure

into the model, and show that testability obtains under mild assumptions on utility and

threat functions. In Section 4, we note that identification requires stronger assumptions,

of which several examples are given. Section 5 presents the stochastic version of the model

and the main results. In the concluding Section, we discuss the potential applications of

the results.

2 The deterministic model

2.1 The framework

We consider a game of Nash bargaining (denoted by NB hereafter) in which two players,

1 and 2, share a pie of size y. The bargaining environment is described by a vector x

of n variables and we assume that (y, x) vary continuously within some convex, compact

subset S of R+ × Rn with non empty interior. We let N denote the subset of S on

which no agreement is reached (so that agents receive their reservation payment), andM
the subset on which an agreement is reached, with S = M ∪ N . Sharing is observed

over M. For notational convenience, we define the sharing function ρ as the share of

the pie allocated to player 1, i.e., ρ (y, x) = ρ1 (y, x) (then y − ρ (y, x) = ρ2 (y, x)). Let

U s (ρs, x) denote the utility of player s (with s = 1, 2) when an agreement is reached and

the sharing ρ is implemented. Similarly, let T s (y, x) denote the threat function of player

s, i.e., utility when no agreement is reached and the reservation payments are made. The

functions U s (ρs, x) and T s (y, x) may in general be different.

The players’ behavior is then defined as follows: an agreement is reached if and only

if there exists a sharing (ρ1, ρ2) with ρ1 > 0, ρ2 > 0, and ρ1 + ρ2 = y, such that

T s (y, x) 6 U s (ρs, x) , s = 1, 2, (2)

i.e., the allocation (T 1 (y, x) , T 2 (y, x)) lies within the Pareto frontier; in that case, the

observed sharing (ρ1 = ρ, ρ2 = y − ρ) solves:

max
06 ρ6 y

(
U1 (ρ, x)− T 1 (y, x)

)
·
(
U2 (y − ρ, x)− T 2 (y, x)

)
. (3)

The set of all functions U s (ρs, x) (resp. T s (y, x)) that are compatible with the a priori

restrictions is denoted by U s (resp. T s).
The utility functions U s (ρs, x) and the threat functions T s (y, x) are assumed to be

unknown to the econometrician. We assume in this section that the econometrician
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observes the ‘ ideal data’ referred to in the introduction; namely, she observes, for any

value of the variables y and x, whether or not an agreement is reached, and if so, the share

ρs of player s as a function ρs (y, x) of the relevant variables (with ρ1 (y, x)+ρ2 (y, x) = y).

Two questions then arise: are the observables compatible with the model in (2) and (3)?

and second, do they allow the econometrician to uncover the functions U s (ρs, x) and

T s (y, x) that generated them? More formally, we shall use the following definitions.

Definition 1 The observables ({M,N}, ρ) are compatible with NB if and only if there

exist two utility functions U s ∈ U s and two threat functions T s ∈ T s, with s = 1, 2, such

that, for any (y, x) ∈ M, (2) and (3) are satisfied. If the functions (U s, T s) are unique

up to a common affine transform, then the NB model (2)-(3) is said to be identified.

Two remarks are in order. First, what we can recover is, at best, a cardinal rep-

resentation of the functions under consideration: if we replace (U s, T s) with the affine

transforms (αsU
s + βs, αsT

s + βs) program (3) is not modified. Moreover, the αs and

βs can themselves be functions of (some of) the variables at stake—an issue that will

be clarified below. Second, the present framework cannot be used to test Pareto opti-

mality. Indeed, as the pie is supposed to be entirely ‘eaten up’ by players, efficiency is

automatically imposed.

2.2 A negative result

The answers to the two questions raised above, testability and identifiability, obviously

depend on the prior information one is willing to exploit in the framework at stake. Our

first result is that a fully general setting is simply too general. Specifically, if the form of

threat functions is not restricted, then the answer to both testability and identifiability

questions is negative: NB cannot generate testable predictions on observed outcomes,

and the observation of the outcome does not allow to recover preferences. Note that,

interestingly, this claim is valid even if the utilities U1 and U2, relevant when an agreement

is reached, are known. This is stated formally in the following proposition.

Proposition 1 Let ρ (y, x) be some function defined overM, and whose range is included

in [ 0, y ]. Then, for any pair of utility functions (U1, U2) there exist two threat functions

(T 1, T 2) such that the agents’ behavior ({M,N}, ρ) is compatible with NB.

Proof. The proof of Proposition 1 is simple: given any pair of functions (U1, U2) one

can define (T 1, T 2) by:

T s (y, x) = U s (ρs (y, x) , x) if (y, x) ∈M,

T s (y, x) > U s (y, x) if (y, x) ∈ N .
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Then for any (y, x) in N , no agreement can be reached, whereas for any (y, x) inM, the

sharing (ρ1 (y, x) , ρ2 (y, x)) is the only one compatible with individual rationality; thus it

is obviously the NB allocation.

The intuition behind this result is straightforward: it is always possible to chose

the status quo utilities (T 1, T 2) equal to the agents’ respective utilities at the observed

outcome whenever an agreement is reached (so that, in practice, the chosen point is

the only feasible point compatible with individual rationality), while making sure that

(T 1, T 2) is outside the Pareto frontier when agents are observed to disagree. Simple as it

may seem, this argument still conveys two important messages. One is that when threat

points are unknown, NB has no empirical content (beyond Pareto efficiency); any efficient

outcome can be reconciled with NB. Secondly, the observation of the outcome brings

no information on preferences (and in particular the concavity of the utility functions):

any utility function can be made compatible with observed outcomes, using ad hoc threat

points. Finally, it is important to stress that these negative results are by no means specific

to NB. The proof applies to any bargaining concept satisfying individual rationality—a

very mild requirement indeed.

2.3 Bargaining structure

The negative result above does not mean that NB (or, for that matter, bargaining theory

altogether) cannot be tested, but simply that more structure is needed to achieve that

goal. To continue the comparison initiated in the Introduction, consumer theory is not

testable (beyond the trivial property of adding-up) in a general setting where utility is

a function of prices and income in a general way (Pollak, 1977). It is the exclusion of

prices and income from the arguments of the utility function that generates the well-

known Slutsky constraints. Therefore, we first restrict the sets U s of the players’ utility

functions.

Assumption U.1 (a) There exists a partition x = (x1, x2, x̄), with x1 = (x11, . . . , x1n1),

x2 = (x21, . . . , x2n2), x̄ = (x̄1, . . . , x̄n̄) and n1 > 1, n2 > 1, n = n1 + n2 + n̄, such that U s

does not depend on xs′, where s, s′ = 1, 2 and s 6= s′; i.e., U s (ρs, x) = U s (ρs, xs, x̄). (b)

For s = 1, 2, the function U s (ρs, xs, x̄) is three times continuously differentiable, strictly

increasing and concave in ρs, and twice continuously differentiable in xs.

Essentially, U.1 says that some variables are excluded from the arguments of util-

ity functions. For instance, the utility function of one player may depend on her own

characteristics (such as her age and education) but not on those of the other player.

We further restrict the sets T s of the players’ threat functions.
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Assumption T.1 (a) For s = 1, 2, the function T s (y, x) does not depend on either

xs′ , s
′ 6= s, nor the size of the pie y; i.e., T s (y, x) = T s (xs, x̄). (b) For s = 1, 2, the

function T s (xs, x̄) is twice continuously differentiable in xs.

The differentiability of T s is sufficient to obtain some restrictions on the sharing func-

tion. However, our interpretation of testability is more demanding and we introduce, in

addition, some exclusion restrictions. The additional structure given by this assumptions

should a priori increase significantly the empirical content of the bargaining game. The

exclusion of y is standard; it is typical, for instance, of situations where the variables x

fully capture any information the agent has about outside opportunities (e.g. future y)

that determine its threat point. The exclusion of xs′ provides the key structure needed for

testability.11 The smoothness of T s together with that of U s guarantees that the sharing

function is sufficiently differentiable for our purpose.

Finally, for the sake of simplicity, we concentrate on the case for which the solution of

the Nash program is interior. This is formalized by the next assumption.

Assumption S.1 For any (y, x) ∈ M, the sharing (ρ1, ρ2) is interior; i.e., ρs > 0 for

s = 1, 2.

This condition will be automatically satisfied, for instance, if limρs→0 ∂U
s/∂ρs = ∞.

In the benchmark example of the Introduction, if xs > 0 for s = 1, 2, then a sufficient

condition for S.1 is that the utilities be strictly increasing and that the normalization

U s (0) = T s (0) = 0 holds for s = 1, 2.

3 Testability: the deterministic case

In this section we study the properties of the NB model under U.1 and T.1 in the de-

terministic case. It is straightforward to check that the negative result of Proposition 1

continues to hold even if the utility functions satisfy U.1. However, under the additional

restrictions given in T.1, the answer to the testability question is now positive: there exist

strong testable restrictions on ρ generated by the NB approach. For the sake of presen-

tation, we separately consider two cases depending on whether or not disagreements are

observed for some (y, x) ∈ S.

11Indeed testable restrictions can be obtained without the exclusion of y provided that x1 and x2 are

multi-dimensional vectors.
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3.1 The general agreement case

We first leave aside the situations in which the players either disagree or are indifferent

between agreeing and disagreeing, and make the simplifying assumption (which will be

relaxed in the next subsection) that an agreement is always reached. Formally:

Assumption S.2 For any (y, x) ∈ S, there exists a sharing (ρ1, ρ2) such that U s(ρs, x)−
T s(y, x) > 0 for s = 1, 2.

Under U.1, T.1, S.1 and S.2, the sharing function ρ is then defined as a function of

(y, x) over the entire space S and has a range included in ] 0, y [. Assuming NB, this

function solves the problem:

max
06 ρ6 y

ln
(
U1 (ρ, x1, x̄)− T 1 (x1, x̄)

)
+ ln

(
U2 (y − ρ, x2, x̄)− T 2 (x2, x̄)

)
.

Since U1 and U2 are strictly concave in ρ1 and ρ2, respectively, a sharing rule ρ is a

solution to the above program if and only if it solves the first order condition:

R1 (ρ, x1, x̄) = R2 (y − ρ, x2, x̄) , (4)

where we have let

Rs(ρs, xs, x̄) ≡ ∂U s(ρs, xs, x̄)/∂ρs
U s(ρs, xs, x̄)− T s(xs, x̄)

. (5)

The first identification result we shall present can easily be stated in the case of the

Generalized Nash bargaining (GNB) provided the bargaining weights δs do not depend

on the other player’s characteristics, i.e., δs = δs(xs, x̄). The optimization problem then

becomes:

max
06 ρ6 y

δ1 (x1, x̄) ln
(
U1 (ρ, x1, x̄)− T 1 (x1, x̄)

)
+δ2 (x2, x̄) ln

(
U2 (y − ρ, x2, x̄)− T 2 (x2, x̄)

)
If so, the first order conditions remain (4) if the Rs are redefined as:

Rs(ρs, xs, x̄) ≡ δs (xs, x̄)
∂U s(ρs, xs, x̄)/∂ρs

U s(ρs, xs, x̄)− T s(xs, x̄)
.

We now proceed to derive the NB restrictions in this generalized framework. The first

result is the following:

Proposition 2 Suppose Assumptions U.1, T.1, S.1 and S.2 hold, and that the bargain-

ing weights δs(xs, x̄) are twice continuously differentiable in xs. If the agents’ behavior
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({M,N}, ρ) is compatible with GNB, then the function ρ (y, x) is twice continuously dif-

ferentiable and satisfies:

0 <
∂ρ

∂y
(y, x) < 1. (6)

Moreover, for any (y, x) ∈ S,(
1− ∂ρ

∂y
(y, x)

)−1(
∂ρ

∂x1i

(y, x)

)
is a function Φ1

i of (ρ, x1, x̄) alone, (7)(
∂ρ

∂y
(y, x)

)−1(
∂ρ

∂x2j

(y, x)

)
is a function Φ2

j of (y − ρ, x2, x̄) alone, (8)

where the functions (Φ1
1, . . . ,Φ

1
n1

) and (Φ2
1, . . . ,Φ

2
n2

) satisfy (Slutsky) conditions:

∂Φ1
i

∂x1i′
+ Φ1

i′
∂Φ1

i

∂ρ1

=
∂Φ1

i′

∂x1i

+ Φ1
i

∂Φ1
i′

∂ρ1

, (9)

∂Φ2
j

∂x2j′
+ Φ2

j′
∂Φ2

j

∂ρ2

=
∂Φ2

j′

∂x2j

+ Φ2
j

∂Φ2
j′

∂ρ2

, (10)

for every i, i′ = 1, . . . , n1 and j, j′ = 1, . . . , n2.

Conversely, suppose the observed agents’ behavior ({M,N}, ρ) satisfies Assumptions

S.1 and S.2 with a sharing rule that satisfies conditions (6) through (10). Then, ({M,N}, ρ)

can be rationalized as the NB solution of a model in which the utilities and threat functions

satisfy Assumptions U.1 and T.1, respectively.

A proof of Proposition 2 is in Appendix. Put in words, this proposition establishes

three properties:

1. When the information about the structure of the game is described by U.1 and T.1,

the GNB solution can be falsified (in Popper’s, 1959, terms) by observable behavior.

Specifically, condition (6) states that any increase in the size of the pie must benefit

both agents; it is a direct consequence of the exclusion of the size of the pie from

the arguments of threat functions. Moreover, conditions (7) and (8) translate the

particular separable structure of the first order condition (4) into a property of the

sharing rule. Indeed, the function R1 has (ρ1, x1, x̄) as arguments but not of y and

x2 while the function R2 has (ρ2, x2, x̄) as arguments but not of y and x1. Precisely,

the variables (x2, y) will affect the left-hand side of the first order condition (4) only

in so far as the share of player 1 is modified. Therefore, any simultaneous change in

(x2, y) that leaves unchanged the share of player 1 must keep constant R1(ρ1, x1, x̄)

as well. Since R1(ρ1, x1, x̄) coincides with R2(ρ2, x2, x̄) for the (Generalized) Nash

solution, the change in (x2, y) must be such that R2(ρ2, x2, x̄) is constant. Hence

it depends on (ρ2, x2, x̄) alone. This is the intuition of condition (8). The same

argument applies, mutatis mutandis, to condition (7).

13



2. Conversely, these conditions are sufficient. If they are satisfied, then there exists

a bargaining model for which the solution coincides with the sharing rule under

consideration. Specifically, one can construct utilities Ū s and threat functions T̄ s,

s = 1, 2, that satisfy Assumptions U.1 and T.1, respectively, and such that the

corresponding R̄1 and R̄2 defined in (5) solve the first order condition (4) of the NB

program.

3. Interestingly, the previous statement is true for both NB and GNB: the necessary

conditions for GNB appear to be sufficient for NB. In particular, in the structure

just presented, NB and GNB are empirically indistinguishable: any function that

is compatible with GNB is also compatible with NB, possibly for different utility

functions.

Additional remarks Two additional remarks can be made at this point. Firstly, con-

ditions (7) and (8) can equivalently be stated in terms of second order partial derivatives

of ρ. Indeed, differentiating again the expressions in (7) and (8), respectively, with respect

to y and x2j, and y and x1i, gives:

∂ρ

∂x1i

(
∂2ρ

∂x2j∂y

∂ρ

∂y
− ∂2ρ

∂y2

∂ρ

∂x2j

)
+

(
1− ∂ρ

∂y

)(
∂2ρ

∂x1i∂x2j

∂ρ

∂y
− ∂2ρ

∂x1i∂y

∂ρ

∂x2j

)
= 0,

for every i = 1, . . . , n1 and j = 1, . . . , n2. This condition is equivalent to both (7) and (8).

Secondly, our result can be generalized, in the following sense. Conditions (6)-(10) are not

specific to the (Generalized) NB solution: other solutions to the bargaining problem may

satisfy these conditions. Indeed, from the proof of Proposition 2, one can see that any

sharing function which can be rationalized by the maximization of an additively separable

index such as
∑

s f
s (ρs, xs, x̄) , for some functions f s that are smooth, increasing and

concave in ρs, will satisfy conditions (6) to (10). If a solution concept can be described by

such a maximization, then it satisfies the Independence of Irrelevant Alternatives (IIA)

but the converse is not true (Peters and Wakker, 1991). For this reason, the conditions

stated in the proposition above are related to IIA although they cannot be interpreted as

a formal test of this axiom.12 The set of solution concepts that can be described by such

a maximization include not only the Generalized Nash solution, but also the Egalitarian

12For a precise definitions of the axioms and a taxonomy of the solutions, the reader is referred to

Thomson (1994). Lensberg (1987) characterizes the axioms that are necessary and sufficient to describe

all the bargaining solutions that can be represented by the maximization of such an additively separable

index. This characterization, unfortunately, requests a variable number of players, which limits the

applicability of this result here.
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solution and, as a limit case, the Utilitarian solution, although it excludes the Kalai-

Smorodinsky solution. Technically, a convenient family of functions f s can summarize the

main solution concepts compatible with (6) to (10) and deserves a particular attention.

It is defined as follows:

f s =

{
δs ((U s − T s)γ /γ) if γ 6= 0

δs ln (U s − T s) if γ = 0
, (11)

with γ 6 1 and δs > 0. This family of functions generates, if γ = 0, the Generalized

Nash solution with constant weight (and if, in addition, δ1 = δ2, the (symmetric) Nash

solution). The (symmetric or asymmetric) Utilitarian solution is obtained if γ = 1 and

the (symmetric or asymmetric) Egalitarian solution if γ → −∞.13 All these forms are

empirically indistinguishable, in the sense that any sharing rule ρ that is compatible with

one of them is also compatible with any other, possibly for different utilities.

Parametric example 1. The previous result can be exploited to test whether players

make use of the Nash solution (or any alternative solution in the family just described).

The simplest way is to translate conditions (6)-(10) into constraints on the parameters of

a functional form.

As an illustration, consider the following specification for the sharing function (where,

for the sake of notational simplicity, we omit x̄ and assume that the variables xs are one

dimensional):

ρ = y · L
(
a00 + a01x1 + a02x2 + a11x

2
1 + a22x

2
2 + a12x1x2

)
,

where L(x) = 1/(1 + exp(x)) is the logistic distribution function. In words, the respective

shares ρ/y are taken to be independent of y and logistic transformations of a general

second order approximation in (x1, x2). Therefore, ρ (y, x1, x2) is necessarily between 0

and y. Moreover, condition (6) is globally satisfied. Conditions (7)-(10) require that

a12 = 0; indeed, we have that:(
1− ∂ρ

∂y
(y, x1, x2)

)−1(
∂ρ

∂x1

(y, x1, x2)

)
= −ρ (a01 + 2x1a11 + x2a12)(

∂ρ

∂y
(y, x1, x2)

)−1(
∂ρ

∂x2

(y, x1, x2)

)
= − (y − ρ) (a02 + x1a12 + 2x2a22) ,

and the first (resp. second) right-hand term is a function of ρ and x1 (resp. y − ρ and

x2) alone if and only if a12 = 0. Hence an econometric test of the Nash solution, under

U.1–T.1, boils down to testing that a12 = 0.

13The first order condition in the Egalitarian case is simply given by U1 − T1 = U2 − T2.
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We now show how utility and threat functions can be constructed. If the restriction

a12 = 0 is satisfied, then ρg1(x1) = (y−ρ)g2(x2), where g1 (x1) ≡ k exp (a00 + a01x1 + a11x
2
1),

g2(x2) ≡ k exp (− (a2x02 + a22x
2
2)), and the constant k > 0 is chosen so that g1(x1) > 1

and g2(x2) > 1. Next, for s = 1, 2, let

R̄s(ρs, xs, x̄) ≡ 1

ρsgs(xs)
so R̄1(ρ, x1) = R̄2(y − ρ, x2),

and R̄s > 0 and ∂R̄s/∂ρs < 0. One can then construct the utility functions Ū s for

arbitrary choices of the threat points T̄ s by solving a differential equation; for Ū1, for

example:
∂Ū1 (ρ1, x1) /∂ρ1

Ū1 (ρ1, x1)− T̄ 1 (x1)
=

1

ρ1g1(x1)
.

Thus:

Ū1 (ρ1, x1) = K (x1) ρ
1/g1(x1)
1 + T̄ 1(x1),

for some function K(x1) > 0. The utility Ū1 is of the CRRA form, with a coefficient of

relative risk aversion 1− 1/g1(x1) that varies with x1. Since g1(x1) > 1, Ū1 satisfies U.1.

Note that this example can be generalized to an approximation of any order.

3.2 Outside and along the agreement frontier

In the previous subsection, it is assumed that cooperation always generates a positive

surplus that can be shared between the players. From now on, we consider a more

general case : M⊆ S so that the possibility of a disagreement between the players, or

an agreement along the boundary of M, can no longer be excluded. To begin with, it is

worth noting that, when (y, x) ∈ N , i.e., the players do not agree about the sharing of

the pie, the outside observer can learn next to nothing about the underlying structure of

the bargaining. One can only infer from the observation of a disagreement that the status

quo point must lie outside the Pareto frontier.

The study of the agreement frontier—the locus where the players are indifferent

whether the agreement is reached or not—is much more interesting. Formally, the agree-

ment frontier F is defined by the points that belong to the intersection of the closure of the

agreement setM and the closure of the non-agreement setN , that is, F = cl(M)∩cl (N ).

In what follows, we assume that F 6= ∅. Along this frontier, one observes the sharing of

the pie, as a function of the size of the pie and the set of environmental variables, and

knows that, by definition, the bargaining surplus is exactly equal to zero. If (y, x) ∈ F ,

then each agent is indifferent between her share of the pie and her reservation payment,

i.e.,

(y, x) ∈ F =⇒ U1 (ρ, x) = T 1 (x) and U2 (y − ρ, x) = T 2 (x) ,
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for some ρ, with 0 6 ρ 6 y.14 The agreement frontier F , if non-empty, is observable

by construction. It should have some features that can be tested. Indeed, the following

proposition presents a set of testable restrictions which are based on the observation of

the sole agreement frontier.

Proposition 3 Suppose Assumptions U.1 and T.1 hold. If {M,N} is compatible with

NB, then there exists a subset B in Rn, and a twice continuously differentiable function

σ(x) defined over B, such that y = σ(x) if and only if (y, x) ∈ F , and

(i) if (y, x) ∈M and x ∈ B, then y > σ(x),

(ii) if (y, x) ∈ N and x ∈ B, then y 6 σ(x).

Moreover, the function σ(x) is additive in the sense that σ(x) = σ1(x1, x̄) + σ2(x2, x̄) for

some functions σ1(x1, x̄) and σ2(x2, x̄).

A proof of Proposition 3 is in Appendix. The first part of the proposition states that

the equation characterizing the agreement frontier can be written as: y = σ(x), whereby

players agree about the sharing of a pie if and only if its size exceeds some reservation

value σ(x). The second part of the proposition yields a strong testable restriction on the

form of the agreement frontier.

The conditions at stake here involve only the agreement frontier. This implies that

when F 6= ∅, NB can be tested even without observing the sharing of the pie. Unsurpris-

ingly, stronger conditions obtain when the sharing of the pie is actually observed. This is

formally stated as follows:

Proposition 4 Suppose Assumptions U.1, T.1 and S.1 hold. If the agents’ behavior

({M,N}, ρ) is compatible with NB, then for any (y, x) in F ,

∂σ

∂x1i

=
∂ρ/∂x1i

1− ∂ρ/∂y
and

∂σ

∂x2j

= −∂ρ/∂x2j

∂ρ/∂y
,

for every i = 1, . . . , n1 and j = 1, . . . , n2.

4 Identifiability: the deterministic case

4.1 A non identifiability result

We now consider the identification problem; i.e., we ask whether the utility and threat

functions can be retrieved from the observation of the sharing function. We put the em-

phasis on what happens inside the agreement frontier (outside this frontier, identification

14Technically, the converse is not necessarily true. Indeed, it is possible that, for some (y, x) that do

not belong to F , the surplus of the players is exactly equal to zero. This will be the case if these points

belong to N but are not in the neighborhood of M.

17



cannot be reached). It is clear from the form of the problem that NB is invariant by

affine transformation of individual utilities. Moreover, the affine transformation of U s

may actually depend on the common variables (xs, x̄) in an arbitrary way. Therefore,

we say that utility functions U s and Ū s (resp. threat functions T s and T̄ s) are differ-

ent if and only if there does not exist functions α (xs, x̄) > 0 and β (xs, x̄) such that

U s = α (xs, x̄) Ū s + β (xs, x̄) (resp. T s = α (xs, x̄) T̄ s + β (xs, x̄)).

The main conclusion then is that the model is not identified. Formally, we have the

following result:

Proposition 5 Suppose the observed agents’ behavior ({M,N}, ρ) satisfies Assumptions

S.1 and S.2 with a sharing rule that satisfies conditions (6) through (10). Then there exists

a continuum of different utility and threat functions satisfying Assumptions U.1 and T.1,

respectively, for which the agents’ behavior is compatible with NB.

Specifically, let (Ū1, Ū2, T̄ 1, T̄ 2) be one such solution (with corresponding R̄1 and R̄2

defined in (5)). Then, (U1, U2, T 1, T 2) is a solution if and only if the corresponding R1

and R2 in (5) satisfy:

Rs(ρs, xs, x̄) = G
(
R̄s(ρs, xs, x̄), x̄

)
, s = 1, 2,

with G(·, x̄) positive, strictly increasing and differentiable on the range of R̄s, and such

that
[
∂R̄s/∂ρs

]
Gr(R̄

s, x̄) +
[
G(R̄s, x̄)

]2
< 0, where Gr denotes the derivative of G(·, x̄).

For any choice of G, the utilities U s and threat functions T s are determined up to an

affine increasing transform that may depend on (xs, x̄).

A proof of Proposition 5 is in Appendix. A consequence of this result, incidentally, is

that along the agreement frontier, the conditions in Propositions 3 and 4 are not sufficient.

Indeed the functions Rs(ρs, xs, x̄) for s = 1, 2 are defined up to some positive increasing

function G(·, x̄), i.e. Rs(ρs, xs, x̄) = G
(
R̄s(ρs, xs, x̄), x̄

)
where R̄s(ρs, xs, x̄) is a known

particular solution to (4) that satisfies Rs > 0 and ∂R̄s/∂ρs < 0. Remember now that

Rs(ρs, xs, x̄) =
∂U s(ρs, xs, x̄)/∂ρs

U s(ρs, xs, x̄)− T s(xs, x̄)
.

Hence, any particular solution R̄s(ρs, xs, x̄) has to satisfy a boundary condition, i.e.,

limy→σ(x) R̄
s(ρs(y, x), xs, x̄) =∞.

The intuition of Proposition 5 is that, at best, the functions R1 and R2 in expression

(4) are defined up to some (common) mapping G. This is illustrated below.
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Parametric example 2. Coming back to our numerical example, with the logistic-

quadratic specification for the sharing function:

ρ = y · L
(
a00 + a01x1 + a02x2 + a11x

2
1 + a22x

2
2

)
,

one can see that for s = 1, 2, the functions Rs are given by:

Rs (ρs, xs) = G

(
1

ρsgs(xs)

)
,

where G is an arbitrary function that is positive and strictly increasing on the range of

R̄s(ρs, xs) = 1/[ρsgs(xs)], and gs are the functions defined previously. For any choice of G,

one can recover the utility functions for arbitrary choices of the threat points by solving

a differential equation. Whenever G is such that (∂R̄s/∂ρs)Gr(R̄
s) + [G(R̄s)]2 < 0, the

corresponding utilities are strictly concave. For example, consider the following family of

transformations:

G(u) ≡ α · cα−1 · uα, α > 1,

where the constant c > 0 is chosen such that ρs > c, s = 1, 2. For U1, we have:

U1 (ρ, x1) = K (x1) exp

[
− α

α− 1

(
1

g1(x1)

)α(
c

ρ1

)α−1
]

+ T 1(x1), if α > 1,

and U1(ρ, x1) = Ū1(ρ, x1) if α = 1, with Ū1 as defined previously, and K(x1) > 0.

The utility U1 exhibits decreasing relative risk aversion with a coefficient of relative risk

aversion equal to α [1− (c/ρ1)α−1/(g1(x1))α].

4.2 Identifying assumptions

We now provide two examples of additional assumptions that enable to recover the un-

derlying structural model from observed behavior. The argument is presented for the NB

case; the GNB case is discussed at the end of the subsection.

4.2.1 Case 1: one known utility function

If the utility and threat functions of one player are known from other sources, stronger

identifiability results can be derived. Let us assume that the functions (U2, T 2) are known.

Keeping in mind that ∂ρ/∂y > 0, the function ρ can be globally inverted in y on S giving

y as some function θ (ρ, x1, x2, x̄). The first order condition (4) then becomes:

R1 (ρ, x1, x̄) = R2 (θ (ρ, x1, x2, x̄)− ρ, x2, x̄) , (12)
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where both R2 and θ are known functions. This can then be integrated as:

U1 (ρ1, x1, x̄)− T 1 (x1, x̄) = K (x1, x2, x̄) · exp

(∫ ρ1

ρ01

R2 (θ (r, x1, x2, x̄)− r, x2, x̄) dr

)
,

for some ρ0
1 ∈]0, y[ and some function K(x1, x2, x̄) > 0. Since the right-hand side of the

above equation does not depend on x2, we necessarily have:

1

K

∂K

∂xj2
+

∫ ρ1

ρ01

[
∂θ

∂xj2
· ∂R

2

∂ρ2

+
∂R2

∂xj2

]
dr = 0, (13)

for all j = 1, . . . , n2. Differentiating again with respect to ρ1 yields additional restrictions

that the sharing function must satisfy for all j = 1, . . . , n2,

∂θ (ρ, x1, x2, x̄)

∂xj2
= −∂R

2 (θ (ρ, x1, x2, x̄)− ρ, x2, x̄) /∂xj2
∂R2 (θ (ρ, x1, x2, x̄)− ρ, x2, x̄) /∂ρ2

. (14)

Combining (13) and (14) then shows that K does not depend on x2, so

U1 (ρ1, x1, x̄)− T 1 (x1, x̄) = K (x1, x̄) · exp

(∫ ρ1

ρ01

R2 (θ (r, x1, x2, x̄)− r, x2, x̄) dr

)
.

We conclude that the difference U1 − T 1 is identified up to a multiplicative function of

(x1, x̄); in particular, the corresponding index of risk aversion is identified exactly.

Consider, in particular, the case of an affine (‘risk neutral’) utility function:

U2 (ρ2, x2, x̄) = α (x2, x̄) + β (x2, x̄) · ρ2.

This may be the case, for instance, if agent 2 represents a risk-neutral employer who

bargains with a risk averse worker (or trade union). If so, the R2 function in (12) equals

R2(ρ2, x2, x̄) = 1/(ρ2 − γ(x2, x̄)), where γ ≡ (T 2 − α) /β. A first consequence of the

linearity assumption is that only the ratio γ is relevant in the maximization program.

A second consequence is that γ is exactly identified even if only U2 is known. Indeed,

we know from previous results that the R2 function is known to be identified up to an

increasing transform G. Then using the assumption on U2 pins down G, which in turn

identifies γ. Moreover, under linearity the additional restrictions in (14) become

∂θ (ρ, x1, x2, x̄)

∂x2j

=
∂γ (x2, x̄)

∂x2j

,

which in turn implies that

∂2θ (ρ, x1, x2, x̄)

∂x1i∂x2j

=
∂2θ (ρ, x1, x2, x̄)

∂ρ∂x2j

= 0,

for all i = 1, . . . , n1 and all j = 1, . . . , n2. Finally, we then also have

U1 (ρ1, x1, x̄)− T 1 (x1, x̄) = K (x1, x̄) · exp

∫ ρ1

ρ01

dr

θ (r, x1, x2, x̄)− r − γ (x2, x̄)

where θ and γ are known functions, and ρ0
1 ∈]0, y[ and K(x1, x̄) > 0 are arbitrary.
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4.2.2 Case 2: xs–independent utility functions

An alternative identifying assumption is that x1 and x2 are only relevant for the threat

points; they have no direct impact on utilities. Typically, it will be the case if x1 and x2

represent the payment made to players in the case of disagreement. We now proceed to

show that in this context, not only additional restrictions are generated on the shape of

the sharing function, but both individual utilities and threat points are uniquely recovered

(up to the same affine transform). For the sake of notational simplicity, we hereafter take

x1 and x2 to be one dimensional; the extension to the general case is straightforward

(although it requires tedious notations) and is left to the reader.

Formally, we introduce the following assumptions:

Assumption U.2 For s = 1, 2, the individual utilities U s are independent of xs; i.e.,

U s(ρs, xs, x̄) = U s(ρs, x̄).

Assumption T.2 For s = 1, 2, the individual threat functions are not constant functions

of xs; i.e., there exists at least one value of (xs, x̄) such that ∂T s(xs, x̄)/∂xs 6= 0.

Assumptions U.2 and T.2 are akin to an exclusion restriction: while the variable xs

is excluded from U s, it still affects the threat function T s. In this sense, the requirement

is similar to the standard exclusion restrictions used in simultaneous equations systems

where identification is driven by the fact that certain variables enter some of the equations

in the system while being excluded from the others.15

Under U.1, U.2 and T.1, the sharing function ρ (y, x) solves the problem:

max
06 ρ6 y

(
U1 (ρ, x̄)− T 1 (x1, x̄)

)
·
(
U2 (y − ρ, x̄)− T 2 (x2, x̄)

)
,

and, as previously, the first order condition is of the form (4), where the functions Rs now

exhibit an additional separability property, namely

Rs (ρs, xs, x̄) =
∂U s (ρs, x̄) /∂ρs

U s (ρs, x̄)− T s (xs, x̄)
. (15)

Our main result is then as follows:

Proposition 6 Suppose Assumptions U.1, U.2, T.1, T.2, S.1, and S.2 hold, and that xs

is one-dimensional, s = 1, 2. Then, the utilities U s and threat functions T s are identified

up to an affine, increasing transform that may depend on x̄.

15Note that in the case of Assumption T.1 where y was excluded from T s, the requirement that Us

was not a constant function of y was automatically satisfied under the strict concavity assumption U.1.
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Moreover, the sharing function must satisfy additional testable restrictions. Assume ρ

is four times continuously differentiable in (y, x1, x2), and let Φ1 (ρ, x1, x̄) = −(∂ρ/∂x1)/(1−
∂ρ/∂y), and Φ2 (y − ρ, x2, x̄) = (∂ρ/∂x2)/(∂ρ/∂y) be the functions in Proposition 2. For

any x such that ∂ρ(y, x)/∂xs 6= 0, two cases are possible:

(a) either ∂2 ln |Φs|
∂ρs∂xs

6= 0 for some ρs. Then, necessarily(
∂3 ln |Φs|/∂ρs∂x2

s

∂2 ln |Φs|/∂ρs∂xs

)
is a function of (xs, x̄) alone; (16)

(b) or ∂2 ln |Φs|
∂ρs∂xs

= 0 for all ρs. Then, necessarily

Φs is a function of (xs, x̄) alone. (17)

The complete proof of Proposition 6 is in Appendix. The proposition shows two

results. First is an identification result. To give its intuition, let us recall that from

Proposition 5, the functions Rs are known to be identified up to an unknown transform

G(·, x̄). Now, Assumption U.2 implies that the functions Rs must be of the separable

form (15). This generates additional restrictions on admissible transformations G(·, x̄);

specifically, only transformations of the form G(r, x̄) = r are possible. This in turn leads

to the identification of U s and T s (up to an affine, increasing transform that may depend

on x̄). The result continues to hold for the GNB model with weights δs(x̄) that do not

depend on xs.

The second result of Proposition 6 is that further testable restrictions are generated

under U.2 and T.2. The restrictions take different forms depending on whether or not the

functions (∂ρ/∂x1)/(1− ∂ρ/∂y) and (∂ρ/∂x2)/(∂ρ/∂y) are of the form ϕ(ρ, x̄) · θ(xs, x̄),

i.e., their logarithms are additively separable in ρ and xs. In both cases, their intuition

is relatively simple. Conditions (16) and (17) are a direct consequence of the exclusion

restrictions in U.2. The latter imply that any particular solution for the utility function Ū s

must be independent of xs for ρ fixed, that is, ∂Ū s/∂xs = 0, which implies the restrictions

on the sharing function under the form given above.

Parametric example 3. These conditions significantly limit the form of the sharing

functions that derive from xs-independent utilities and are compatible with GNB. Namely,

any function of the form

ρ = y · g (x) with 0 < g(x) < 1 and
∂

∂xs′

(
∂g(x)/∂xs

g(x) (1− g(x))

)
= 0,

is incompatible with assumption U.2 unless g is a constant function of x1 and x2. In

particular, the logistic-quadratic form used in the parametric examples 1 and 2 is not
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compatible with this setting. This follows directly from (17), since under the specification

above ∂2 ln |Φs|/∂ρs∂xs = 0 and yet

∂Φ1(ρ1, x1)

∂ρ1

= − ∂g(x)/∂x1

g(x) (1− g(x))
and

∂Φ2(ρ2, x2)

∂ρ2

=
∂g(x)/∂x1

g(x) (1− g(x))
.

In other words, an empirical model of bargaining that is using either the logistic-

quadratic specification (or actually any version in which each member’s fraction of the

surplus does not depend on the surplus’s size) must assume (at least implicitly) that

individual utilities in case of an agreement depend on the threat point payments—a strong

assumption indeed. This remark illustrates the relevance of a preliminary, theoretical

investigation. An empirical specification based on the logistic-quadratic form may be

quite appealing (and fit the data); but it is internally inconsistent with the model at

stake, at least if one assumes (as it seems natural) that agents care about their threat

point utility only insofar as it affects the bargaining outcome.

5 Identifiability: the stochastic case

Finally, let us consider the stochastic version of the model. We now assume that not

all of the variables entering the model are observed by the econometrician. Specifically,

the model also depends on variables ε that are unobservable (to the econometrician) in

addition to the observed preference and payoff variables x. In the presence of latent

disturbances ε (such as unobserved individual heterogeneity) the knowledge of the size of

the pie to be shared y and of the observed preference and status quo payoff variables x no

longer fully determines the agreement event m and the agreed sharing rule ρ. Instead, the

unobservables induce a nondegenerate distribution of (m, ρ) given (y, x). The question

of identification then is whether upon observing this distribution, it is possible for the

econometrician to uniquely recover the agents’ utility and threat functions.

Specifically, we now consider the situation in which the players always reach an agree-

ment and the agreed sharing function solves:

max
06ρ6y

(
U1(ρ, x̄)− T 1(x1, x̄) + ε1

)
·
(
U2(y − ρ, x̄)− T 2(x2, x̄) + ε2

)
. (18)

Here, the econometrician observes the joint distribution of the variables y ∈ R+, x =

(x1, x2, x̄) ∈ Rn, and the resulting share ρ ∈] 0, y [, while (ε1, ε2) ∈ R2
+ remain latent.

We shall maintain the following assumptions on the distribution of (ε1, ε2):

Assumption D.1 (ε1, ε2) ⊥ (x1, x2) | (y, x̄).
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Assumption D.2 The conditional distribution Fε1,ε2| y,x̄ of (ε1, ε2) given (y, x̄) is abso-

lutely continuous and has full support on R2
+.

We shall also reinforce the structure on the threat functions:

Assumption T.3 The threat functions T s are strictly monotonic in xs1, i.e., for every

(xs, x̄), ∂T s(xs, x̄)/∂xs1 6= 0. Moreover, T s is proper in xs1, i.e., lim|xs1|→∞ |T s(x1, x̄)| =∞.

In words, D.1 states that the model unobservables (ε1, ε2) are conditionally indepen-

dent of the agent specific variables (x1, x2) given the size of the pie y and the common

variables x̄. This conditional independence property takes the form of exclusion restric-

tions which will be shown to drive our identification results. D.2 is a support restriction;

we use it to guarantee that the conditional distribution of the share ρ given the observ-

ables (y, x) is nondegenerate. Since under T.1, the threat functions T s are continuously

differentiable, the requirement in T.3 says that the partial derivatives ∂T s/∂xs1 are either

everywhere (strictly) positive or everywhere (strictly) negative.16 However, no assump-

tions are placed on the signs of these derivatives, which as we shall proceed to show,

are identifiable from the distribution of the observables. Finally, if one is interested in

identifying the agents’ utilities U s and threat functions T s alone then T.3 can be omitted;

it only plays a role in the identification of the conditional distribution Fε1,ε2| y,x̄ of the

unobservables.

Before proceeding, we recall several useful definitions. Following the related litera-

ture (Koopmans and Reiersøl, 1950; Brown, 1983; Roehrig, 1988; Matzkin, 2003), we

call structure a particular value of the quintuplet (U1, U2, T 1, T 2, Fε1,ε2| y,x̄). Note that

the model (18) simply corresponds to the set of all structures (U1, U2, T 1, T 2, Fε1,ε2| y,x̄)

that satisfy the a priori restrictions given by U.1, T.1, T.3, D.1 and D.2. Each structure

in the model induces a conditional distribution Fρ| y,x of the observables, and two struc-

tures (Ũ1, Ũ2, T̃ 1, T̃ 2, F̃ε̃1 ,̃ε2| y,x̄) and (U1, U2, T 1, T 2, Fε1,ε2| y,x̄) are observationally equiva-

lent if they generate the same Fρ| y,x. The model (18) said to be identified, if the set

of structures that are observationally equivalent to (U1, U2, T 1, T 2, Fε1,ε2| y,x̄) reduces to a

singleton. More formally, the structure (U1, U2, T 1, T 2, Fε1,ε2| y,x̄) is globally identified if

any observationally equivalent structure (Ũ1, Ũ2, T̃ 1, T̃ 2, F̃ε̃1 ,̃ε2| y,x̄) satisfies:

Ũ s(ρs, x̄) = U s(ρs, x̄), T̃ s(xs, x̄) = T s(xs, x̄), and

F̃ε̃1 ,̃ε2| y,x̄(t|y, x̄) = Fε1,ε2| y,x̄(t|y, x̄),

for every (ρ1, ρ2, x1, x2, t), a.e. (y, x̄), and s = 1, 2.

16Note that this is a strengthening of T.2, which was used to achieve identification in Proposition 6.
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Note that equality in conditional distribution given (y, x) is denoted by ∼
|(y,x)

. Then

our main result is as follows:

Proposition 7 Suppose Assumptions U.1, U.2, T.1, T.3, S.1, S.2, D.1 and D.2 hold.

Then the structures (U1, U2, T 1, T 2, Fε1,ε2| y,x̄) and (Ũ1, Ũ2, T̃ 1, T̃ 2, F̃ε̃1 ,̃ε2| y,x̄) are observa-

tionally equivalent if and only if there exist functions A1(x̄) > 0, A2(x̄) > 0, B1(x̄) > 0

and α1(x̄), α2(x̄), β1(x̄), β2(x̄), such that for every (r, y, x) the agents’ utilities and threat

functions satisfy:

Ũ1(ρ1, x̄) = A1(x̄) · U1(ρ1, x̄) + α1(x̄),

Ũ2(ρ2, x̄) = A2(x̄) · U2(ρ2, x̄) + α2(x̄),

T̃ 1(x1, x̄) = B1(x̄) · T 1(x1, x̄) + β1(x̄),

T̃ 2(x2, x̄) = A2(x̄)(A1(x̄))−1B1(x̄) · T 2(x2, x̄) + β2(x̄), (19)

and the conditional distributions of the unobservables Fε1,ε2| y,x̄ and F̃ε̃1 ,̃ε2| y,x̄ are such that

for every t ∈ R, every r ∈ ]0 , y [, and almost every (y, x),

∂Ũ2(y − r, x̄)

∂ρ2

[
Ũ1(r, x̄) + ε̃1

]
− ∂Ũ1(r, x̄)

∂ρ1

[
Ũ2(y − r, x̄) + ε̃2

]
∼
|(y,x)

A2(x̄)B1(x̄)

{
∂U2(y − r, x̄)

∂ρ2

[
U1(r, x̄) + ε1 +

β1(x̄)

B1(x̄)

]
(20)

−∂U
1(r, x̄)

∂ρ1

[
U2(y − r, x̄) + ε2 +

A1(x̄)

A2(x̄)

β2(x̄)

B1(x̄)

]}
.

A proof of Proposition 7 is in Appendix. This proposition is essentially an identifica-

tion result. Its main implication is that the joint distribution of the observable variables

determines individual preferences and threat points (the U s and T s) up to affine trans-

forms (which, obviously, can depend on x̄). More precisely, in any two observationally

equivalent structures, agents’ utilities and treat functions need to be related by simple

strictly increasing affine transformations involving unknown functions of x̄ (those trans-

formations are then “undone” at the level of the conditional distributions of the distur-

bances). Moreover, there exists a relationship between the affine transforms (see the form

of (19)). The fact that even the unknown threat functions are also related through strictly

increasing transformations is surprising at first view given that no restrictions were placed

on the direction of monotonicity in T.3; it turns out, however, that the observables iden-

tify the signs of ∂T s/∂x1s (see Equation (50) in the Appendix) which in turn implies that

B1(x̄) > 0. Lastly, the conditional distribution of the random terms is not identified, but

if two models are observationally equivalent their respective distributions are related by

condition (20).
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The previous result can be clarified if we first discuss the normalizations that are

needed in our framework. Clearly, if we let Ũ1(ρ1, x̄) = U1(ρ1, x̄) + µ1(x̄), T̃ 1(x1, x̄) =

T 1(x1, x̄) + ν1(x̄) and ε̃1 = ε1−µ1(x̄)− ν1(x̄), then the structure (Ũ1, U2, T̃ 1, T 2, Fε̃1,ε2| y,x̄)

is observationally equivalent to (U1, U2, T 1, T 2, Fε1,ε2| y,x̄) for any choice of functions µ1(x̄)

and ν1(x̄). Analogous result obtains if instead of modifying the utility and threat function

of player 1 we do so with player 2. Similarly, if for any λ1(x̄) > 0 we let Ū1(ρ1, x̄) =

U1(ρ1, x̄)λ1(x̄), T̄ 1(x1, x̄) = T 1(x1, x̄)1λ(x̄), ε̄1 = ε1λ
1(x̄), then (Ū1, U2, T̄ 1, T 2, F̄ε̄1,ε2| y,x̄)

is again observationally equivalent to (U1, U2, T 1, T 2, Fε1,ε2| y,x̄); the same holds for player

2. We therefore impose that any U s, T s, and εs (s = 1, 2) in (18) satisfy the following

normalization conditions:

(i) for known ρ0
s and ks(x̄), U s(ρ0

s, x̄) = ks(x̄),

(ii) for known x0
s and cs(x̄), T s(x0

s, x̄) = cs(x̄), (21)

(iii) for known ρ∗s and Ks(x̄) > 0, ∂U s(ρ∗s, x̄)/∂ρs = Ks(x̄).

Note that, here, the values ρ0
s, x

0
s and the functions ks(x̄), cs(x̄) and Ks(x̄) can be arbi-

trarily chosen. Under the six normalization conditions in (21), we obtain the following

Corollary to Proposition 7.

Corollary 1 Let the assumptions of Proposition 7 hold and assume in addition that the

normalization conditions (21) are satisfied. Then the structures (U1, U2, T 1, T 2, Fε1,ε2| y,x̄)

and (Ũ1, Ũ2, T̃ 1, T̃ 2, F̃ε̃1 ,̃ε2| y,x̄) are observationally equivalent if and only if for every (ρs, x̄):

Ũ s(ρs, x̄) = U s(ρs, x̄),

and there exists a function B(x̄) > 0, such that for every (xs, x̄),

T̃ s(xs, x̄)− cs(x̄) = B(x̄) · [T s(xs, x̄)− cs(x̄)] ,

and for every t ∈ R, every r ∈ ]0 , y [ and almost every (r, y, xs, x̄),

∂U2(y − r, x̄)

∂ρ2

[
U1(r, x̄)− c1(x̄) + ε̃1

]
− ∂U1(r, x̄)

∂ρ1

[
U2(y − r, x̄)− c2(x̄) + ε̃2

]
∼
|(y,x)

B(x̄)

{
∂U2(y − r, x̄)

∂ρ2

[
U1(r, x̄)− c1(x̄) + ε1

]
− ∂U1(r, x̄)

∂ρ1

[
U2(y − r, x̄)− c2(x̄) + ε2

]}
.

It is clear from Corollary 1 that under normalization (21) alone, it is not possible to

nonparametrically identify the NB model (18). To achieve identification we still need one

more restriction to pin down the function B(x̄). For instance, we can impose an additional

restriction on the disturbances ε1 and ε2 which would require that for s = 1, 2:

E[εs| y, x̄] = 0. (22)
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Letting

ε(r, y, x̄) ≡ ∂U2(y − r, x̄)/∂ρ2 ·
[
U1(r, x̄)− c1(x̄) + ε1

]
−∂U1(r, x̄)/∂ρ1 ·

[
U2(y − r, x̄)− c2(x̄) + ε2

]
,

it then follows that

E[ε(r, y, x̄)| y, x̄] =
∂U2(y − r, x̄)

∂ρ2

[
U1(r, x̄)− c1(x̄)

]
− ∂U1(r, x̄)

∂ρ1

[
U2(y − r, x̄)− c2(x̄)

]
,

which is a known quantity. Now consider ε̃(r, y, x̄) = B(x̄) · ε(r, y, x̄). Provided there

exists a value of (r, y) for which the right hand side in the above equation is non-zero for

all x̄, it then follows that E[ε(r, y, x̄)| y, x̄] = E [̃ε(r, y, x̄)| y, x̄], only if B(x̄) = 1. Thus we

have another Corollary to Proposition 7:

Corollary 2 Let the assumptions of Corollary 1 hold and assume in addition that the

moment condition (22) is satisfied. Then, (U1, U2, T 1, T 2) and the conditional distribution

of ε(r, y, x̄) given (y, x) are identified.

It remains to be shown when the knowledge of the conditional distribution of ε(r, y, x̄)

given (y, x) is sufficient to uniquely determine the joint distribution of ε1 and ε2. Note that

when (r, y, x) is fixed, then ε(r, y, x̄) is simply a linear combination of ε1 and ε2, in which all

the coefficients are known. When ε1 and ε2 are conditionally independent, ε1 ⊥ ε2 | (y, x̄),

the problem of identifying Fε1| y,x̄ and Fε2| y,x̄ from the conditional distribution of ε(r, y, x̄)

becomes the well-known deconvolution problem. If in addition there exists a component

z of (y, x̄) with at least 2 points in the support such that ε1 and ε2 are conditionally

independent of z, (ε1, ε2) ⊥ z | (y, x̄), then observations on multiple linear combinations

of ε1 and ε2 are available which permit their distributions to be identified (see, e.g.,

Bonhomme and Robin, 2010). We thus obtain a final Corollary to Proposition 7:

Corollary 3 Let the assumptions of Corollary 2 hold and assume in addition that ε1 ⊥
ε2 | (y, x̄) and (ε1, ε2) ⊥ z | (y, x̄) where z is a component of (y, x̄) with at least 2 points in

the support. Then, (U1, U2, T 1, T 2, Fε1,ε2| y,x) is identified.

We conclude this section with a brief discussion of identification in an alternative

stochastic specification of the NB model. Say that instead of (18) we consider the following

specification:

max
06ρ6y

(
U1(ρ, x̄)− T 1(x1, x̄, ε)

)
·
(
U2(y − ρ, x̄)− T 2(x2, x̄,−ε)

)
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in which (y, x1, x2, x̄) are observed by the econometrician, while ε remains unobservable.

The idea here is that only one of the variables entering the problem nonseparably is latent.

This variable ε has opposite effects on the threat functions of the two agents. Assume in

addition that the threat functions are strictly increasing in the unobservable component,

and that ε ⊥ (y, x1, x2, x̄). Then, using arguments similar to those in Matzkin (2003),

it is straightforward to show that the normalization condition ε ∼ U(0, 1) suffices to

nonparametrically identify ε as a function of (ρ, y, x1, x2, x̄). Hence, we are back in the

case where all the variables are observed and the results of Section 4 apply.

6 Conclusion

Our main results leads to a significant qualification of the widely accepted views that

“bargaining theory contains very few interesting propositions that can be tested empiri-

cally,” to quote Hamermesh (1973, p.1146). Admittedly, testability and identifiability do

not obtain in the most general model. If the econometrician knows nothing about the

form of utility and threat functions, any (efficient) sharing of the pie is compatible with

NB. Nevertheless, whenever utility and threat functions satisfy specific exclusion proper-

ties, NB generates strong restrictions on observed behavior. Clearly, the relevance of the

exclusion conditions cannot be assessed a priori but depends on the bargaining context.

Our results have potentially important consequences for basically all applications listed

in the Introduction. Considering for instance the negotiations between a firm and its em-

ployees (or a trade union representing them), the case in which one utility function is

known to be linear (as analyzed in Subsection 4.2) seems quite relevant, because the lin-

earity assumption makes often sense on the firm’s side. Profit maximization is a standard

theoretical axiom, and the firm’s risk neutrality can be derived from specific assumptions

on, say, complete financial markets. On the contrary, workers’ risk aversion is often viewed

as a driving force in the design of employment contracts, so a risk neutrality assumption

on the worker’s side would be quite debatable. Our results suggest that such an assump-

tion is by no means needed. Not only can NB be tested without this assumption, but the

worker’s preferences (and in particular her risk aversion) can in general be identified from

the outcome of the negotiation.

Similarly, regarding household decision making, our results imply that the NB as-

sumption, per se, implies very little beyond efficiency—a conclusion already conjectured

by Chiappori (1991). More surprisingly, however, Proposition 2 suggests that mild ex-

clusion restrictions may be sufficient to reverse this conclusion. For instance, in a model

with purely private consumption, the form of the intrahousehold sharing rule may indeed
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be constrained by the NB context, even when the threat points are not explicitly speci-

fied, provided that some exclusion restrictions can be assumed to hold.17 The notion of

distribution factor, as defined in the collective literature, corresponds exactly to such re-

strictions. It has been known for some time that distribution factors significantly increase

the scope of non parametric identification in a collective framework; our results suggests

that they are also crucial in deriving additional predictions and tests stemming from a

NB framework. This will be the topic of future research.

Perhaps one of the most promising directions of research opened by these results

regards experimental economics. The investigation of bargaining theory in experimental

economics dates back to the seminal works by Siegel and Fouraker (1960). A standard

problem with experiments of this type is that the observer does not know the players’

preferences. As we said in the Introduction, assuming linear preferences may unduly

restrict the scope of the test: a joint test of NB and linear preferences is likely to be

rejected just because preferences fail to be linear—and then the rejection tells very little

about the status of the NB hypothesis. A possible solution, introduced by Roth and

Malouf (1979), is to consider players who bargain about probabilities of a lottery. The

idea, here, is that linearity immediately follows from the expected utility hypothesis.

Note, however, that once again one jointly tests NB and expected utility. Given that

expected utility tends to be rejected in experiments, the status of the test (as a test of

NB) remains ambiguous at best.

From this point of view, the methodology developed in this paper opens new and in-

teresting directions for future research in this area. Consider again the simple experiment

discussed in the Introduction. Our main conclusion is that a cardinal representation of

each agent’s utility function can be identified from it. This identification does not require

any form of uncertainty; in particular, it does not rely on the assumption that preferences

under uncertainty are of von Neumann-Morgenstern type. Moreover, the NB structure

generates strong testable properties for the sharing function. In principle, this can lead

to experimental tests. Indeed, one could first face individuals of a given sample with

menus of lotteries, in order to assess their level of risk aversion from their choices; then

match the agents by pairs and let them play a two-sided bargaining problem identical

to the one discussed in the Introduction, which, from our result, allow to recover their

bargaining-relevant utility functions. A comparison—and even a formal test—is then

possible. Experiments of this kind will be the topic of future work.

17As an example of natural exclusion restrictions, one may consider the assumption that a spouse’s

threat point does not depend on the spouse’s wage (or does so only through some specific function - say,

the form of the divorce settlement).
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A Appendix

Proof of Proposition 2. The proof of Proposition 2 is in two steps. The first establishes

the necessity and the second shows the sufficiency of conditions (6)-(10).

Step 1. Necessity: If the first order condition (4) is differentiated with respect to y and

x1i, i = 1, . . . , n1, after rearrangement, one gets:(
∂R1

∂ρ1

+
∂R2

∂ρ2

)(
1− ∂ρ

∂y

)
=

∂R1

∂ρ1

, (23)(
∂R1

∂ρ1

+
∂R2

∂ρ2

)
∂ρ

∂x1i

= −∂R
1

∂x1i

. (24)

Firstly, it is easily shown that ∂Rs/∂ρs < 0 for s = 1, 2 since the functions U s are strictly

increasing and concave in ρs. Hence, from (23),

∂ρ

∂y
=

∂R2/∂ρ2

∂R1/∂ρ1 + ∂R2/∂ρ2

∈ ]0, 1[,

which demonstrates the necessity of the condition (6). Secondly, from (23) and (24)

together, one also gets:
∂ρ/∂x1i

1− ∂ρ/∂y
= −∂R

1/∂x1i

∂R1/∂ρ1

,

where the right-hand side is a function Φ1
i of (ρ, x1, x̄) alone. This shows that the condition

(7) is necessary as well. Moreover, differentiating Φ1
i (ρ, x1, x̄) with respect to x1i and x1i′ ,

with i 6= i′, using cross derivative restrictions, i.e., ∂2ρ/∂x1i∂x1i′ = ∂2ρ/∂x1i′∂x1i, and

re-arranging gives condition (9).

Similarly, differentiating the first order condition (4) with respect to y and x2j, j =

1, . . . , n2, then taking ratios, one gets:

∂ρ/∂x2j

∂ρ/∂y
=
∂R2/∂x2j

∂R2/∂ρ2

,

where the right-hand side is now a function Φ2
j of (y − ρ, x2, x̄) alone. This demonstrates

that condition (8) is also necessary. Again, working out cross derivative restrictions gives

condition (10).

Step 2. Sufficiency: Consider first the case of agent 1. If condition (7) is fulfilled, each

ratio (∂ρ/∂x1i) / (1− ∂ρ/∂y), for every i = 1, . . . , n1, can be written as some function Φ1
i

of (ρ, x1, x̄). Then define a function R̄1 (ρ1, x1, x̄) as a particular solution to the system of

PDEs:
∂R1/∂x1i

∂R1/∂ρ1

= −Φ1
i (ρ, x1, x̄) , (25)
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for i = 1, . . . , n1, with ∂R1/∂ρ1 < 0. If condition (9) is satisfied, then any solution to

the system of equations (25) is an increasing transform G(·, x̄) of R̄1(ρ1, x1, x̄). One can

always choose R̄1 to be positive over the domain at stake (it suffices to consider exp R̄1)

so

R̄1(ρ1, x1, x̄) > 0. (26)

Now, by construction, R̄1 (and therefore any transform of R̄1) can be written as a function

of (ρ2, x2, x̄)—say, R̄2 (ρ2, x2, x̄)—that is, R̄1(ρ1, x1, x̄) = R̄2(ρ2, x2, x̄). Hence R̄1 and R̄2

are solutions to (4). Now, consider the equation:

R̄s(ρs, xs, x̄) ≡ δs (xs, x̄)
∂Ū s(ρs, xs, x̄)/∂ρs

Ū s (ρs, xs, x̄)− T̄ s (xs, x̄)
,

(where δs = 1 in the NB case) as a PDE in U s − T s. It can readily be integrated into:

Ū s (ρs, xs, x̄)− T̄ s (xs, x̄) = Ks(xs, x̄) exp

(∫ ρs

ρ0s

R̄s(r, xs, x̄)dr

)
,

where ρ0
s ∈] 0, y [ and Ks(xs, x̄) > 0 are arbitrary. One can pick up an arbitrary T̄ s (xs, x̄)

satisfying Assumption T.1, then Ū s (ρs, xs, x̄) is defined by the previous equation. The

function Ks(xs, x̄) does not affect the concavity of utility with respect to income, i.e., the

condition above identifies a cardinal representation of the utility function (as a function

of the share). Now, note that

∂Ū s (ρs, xs, x̄)

∂ρs
= Ks(xs, x̄)R̄s (ρs, xs, x̄) exp

(∫ ρs

ρ0s

R̄s(r, xs, x̄)dr

)
,

so by (26) the expression above is positive. Finally,

∂2Ū s (ρs, xs, x̄)

∂ρ2
s

= Ks(xs, x̄)

[
∂R̄s

∂ρs
+
(
R̄s
)2
]

exp

(∫ ρs

ρ0s

R̄s(r, xs, x̄)dr

)
,

so the particular solution must be such that the term into brackets is negative. Since S
is bounded, that can be obtained by the transform k exp R̄s where k > 0 is an arbitrary

small constant. Hence, Ū s is a strictly increasing and concave function of ρs. Provided

Ks is chosen to be twice continuously differentiable in xs, the required smoothness of Ū s

follows from the assumed smoothness of ρs and δs, and Ū s satisfies Assumption U.1.

Proof of Proposition 3. Consider the system of equations, which is satisfied for any

(y, x) ∈ F ,

U1 (ρ, x1, x̄)− T 1 (x1, x̄) = 0, (27)

U2 (y − ρ, x2, x̄)− T 2 (x2, x̄) = 0, (28)
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which implicitly defines ρ and y as a function of x. Inverting (27) with respect to ρ yields:

ρ = σ1 (x1, x̄) . (29)

Hence, the sharing function is independent of x2 and y along the agreement frontier.

Similarly, inverting (28) with respect to y − ρ yields:

y − ρ = σ2 (x2, x̄) . (30)

Then, substituting (29) into equation (30) proves that σ (x) is additive in the sense of the

proposition.

Proof of Proposition 4. The proof of Proposition 4 is a direct consequence of equations

(29) and (30). We have σ1(x1, x) = ρ(σ1(x1, x̄)+σ2(x2, x̄), x1, x2, x̄) so differentiating this

expression with respect to x1i and x2j immediately gives the desired conditions.

Proof of Proposition 5. The proof directly follows from that of Proposition 2. Indeed,

we have seen that any solution Rs, s = 1, 2, to the system of PDEs (25) can be written

as:

Rs(ρs, xs, x̄) = G
(
R̄s(ρs, xs, x̄), x̄

)
,

where R̄s is the particular solution constructed in the proof of Proposition 2 and G(·, x̄)

is an arbitrary strictly increasing function. The utilities U s and threat functions T s are

then obtained as solutions to:

∂U s(ρs, xs, x̄)/∂ρs
U s(ρs, xs, x̄)− T s(xs, x̄)

= G
(
R̄s(ρs, xs, x̄), x̄

)
,

i.e.

U s (ρs, xs, x̄)− T s (xs, x̄) = Ks(xs, x̄) exp

(∫ ρs

ρ0s

G
(
R̄s(r, xs, x̄), x̄

)
dr

)
, (31)

where ρ0
s ∈] 0, y [ and Ks(xs, x̄) > 0 are arbitrary. One can pick up an arbitrary T̄ s (xs, x̄)

satisfying Assumption T.1, then Ū s (ρs, xs, x̄) is defined by (31). Differentiating (31) with

respect to ρs gives:

∂U s (ρs, xs, x̄)

∂ρs
= Ks(xs, x̄)G

(
R̄s (ρs, xs, x̄) , x̄

)
exp

(∫ ρs

ρ0s

G
(
R̄s(r, xs, x̄), x̄

)
dr

)
,

so to preserve the positivity of Rs (and hence the positivity of ∂U s/∂ρs), the function

G(·, x̄) should be positive over the range of R̄s. In addition

∂2Ū s (ρs, xs, x̄)

∂ρ2
s

= Ks(xs, x̄)

[
∂R̄s

∂ρs
Gr(R̄

s) +
(
G(R̄s)

)2
]

exp

(∫ ρs

ρ0s

G
(
R̄s(r, xs, x̄), x̄

)
dr

)
,
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where Gr denotes the partial derivative of G with respect to its first argument, i.e.

Gr(R̄
s) = ∂G(R̄s(ρs, x1, x̄), x̄)/∂r. Hence G(·, x̄) should be differentiable and such that

∂R̄s

∂ρs
Gr(R̄

s) +
(
G(R̄s)

)2
< 0,

in order to ensure the strict concavity of U s.

Proof of Proposition 6. The proof is in two steps. The first shows identifiability and

the second derives the testable implications.

Step 1: Identification. Consider first agent 1. From the proof of Proposition 5, we

know that R1(ρ1, x1, x̄) is of the form:

R1(ρ1, x1, x̄) = G
(
R̄1(ρ1, x1, x̄), x̄

)
, (32)

where G is strictly positive and strictly increasing in its first argument on the range of

R̄1, and R̄1 is a known function that solves the system of PDEs in (25). We now show

that under the additional exclusion restriction U.2-T.2, G(·, x̄) is necessarily of the form

G(u, x̄) = u. Let Ū1(ρ1, x̄) and T̄ (x1, x̄) be the utility and threat functions that are

obtained from R̄1 by solving:

R̄1(ρ1, x1, x̄) =
∂Ū1(ρ1, x̄)/∂ρ1

Ū1(ρ1, x̄)− T̄ 1(x1, x̄)
=

∂

∂ρ1

ln
(
Ū1(ρ1, x̄)− T̄ 1(x1, x̄)

)
, (33)

by using the same integration steps as in the proof of Proposition 2, i.e.

Ū1(ρ1, x̄)− T̄ 1(x1, x̄) = K(x̄) exp

(∫ ρ1

ρ01

R̄1(r, x1, x̄)dr

)
, (34)

where ρ0
1 ∈]0, y[ and K(x̄) > 0 are arbitrary. Since the left-hand side of (34) is additively

separable in ρ1 and x1, the same must hold for the right-hand side of (34). Using the fact

that for any function f(a, b) we have:

exp (f(a, b)) = g(a) + h(b) if and only if
∂2f

∂a∂b
+
∂f

∂a
· ∂f
∂b

= 0,

we get the following restrictions on R̄1:

∂R̄1(ρ1, x1, x̄)

∂x1

+ R̄(ρ1, x1, x̄) ·
∫ ρ1 ∂R̄1(r, x1, x̄)

∂x1

dr = 0. (35)

We now show that R1 in (32) satisfies the same restriction (35) only if G(r, x̄) = r. Letting

Gr(r, x̄) ≡ ∂G(r, x̄)/∂r and writing (35) for R1(ρ1, x1, x̄) = G
(
R̄1(ρ1, x1, x̄), x̄

)
gives

∂R̄1(ρ1, x1, x̄)

∂x1

·Gr

(
R̄1(ρ1, x1, x̄), x̄

)
+

G
(
R̄1(ρ1, x1, x̄), x̄

)
·
∫ ρ1 ∂R̄1(r, x1, x̄)

∂x1

·Gr

(
R̄1(r, x1, x̄), x̄

)
dr = 0. (36)
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Combining (35) and (36) and using the fact that G(·, x̄) > 0 over the range of R̄1, gives:∫ ρ1 ∂R̄1(r, x1, x̄)

∂x1

· Gr

(
R̄1(r, x1, x̄), x̄

)
dr =

R̄1(ρ1, x1, x̄) ·Gr

(
R̄1(ρ1, x1, x̄), x̄

)
G
(
R̄1(ρ1, x1, x̄), x̄

) ∫ ρ1 ∂R̄1(r, x1, x̄)

∂x1

dr. (37)

Differentiating (37) with respect to ρ1 and using again (35) then gives:

∂R̄1

∂x1

[
Gr(R̄

1) +
1

R̄1
· ∂

∂ρ1

(R̄1 ·Gr(R̄
1)

G(R̄1)

)
− R̄1 ·Gr(R̄

1)

G(R̄1)

]
= 0. (38)

Two cases are then possible. Either it is the case that ∂R̄1(ρ1, x1, x̄)/∂x1 = 0 everywhere.

Using (33) this can only hold if ∂T̄ 1(x1, x̄)/∂x1 = 0 everywhere which we assumed away

in T.2. This means that necessarily:

R̄1

[
Gr

(
R̄1
)
−
R̄1 ·Gr

(
R̄1
)

G
(
R̄1
) ]

= − ∂

∂ρ1

(R̄1 ·Gr(R̄
1)

G(R̄1)

)
. (39)

Now, holding x̄ fixed, note that the left-hand side of (39) is a function of R̄1 only, so

the same must hold for the right-hand side. Two cases are possible. Either ∂R̄1/∂ρ1 is a

function of R̄1 only; since from (33),

∂R̄1

∂ρ1

=
∂2Ū1/∂ρ2

1

Ū1 − T̄ 1
−
(
∂Ū1/∂ρ1

)2

(Ū1 − T̄ 1)2
=

(
∂Ū1/∂ρ1

∂2Ū1/∂ρ2
1

)
· R̄1 − (R̄1)2,

this would imply that
(
∂Ū1/∂ρ1

)
/
(
∂2Ū1/∂ρ2

1

)
is a function of R̄1 only; under U.2, the

latter can hold only if ∂R̄1/∂x1 = 0 everywhere, i.e. ∂T̄ 1/∂x1 = 0 everywhere, which we

excluded in T.2. Thus, it is necessarily the case that the right-hand side of (39) is zero,

and since ∂R̄1/∂ρ1 < 0, this is only possible if

∂

∂R̄1

(R̄1 ·Gr(R̄
1)

G(R̄1)

)
= 0 i.e. R̄1 ·Gr(R̄

1) = a0 ·G(R̄1), (40)

where a0 is some positive constant (that is a function of x̄). The only solution to (40)

is G(r, x̄) = C(x̄) · ra0(x̄) with a0(x̄) > 0 and C(x̄) > 0. Plugging back into (39) and

using a0(x̄) > 0 then implies C(x̄) · ra0(x̄)−1 = 1. Thus a(x̄) = 1, C(x̄) = 1 and the only

functions G that satisfy (39) are of the form: G(r, x̄) = r, and U1 and T 1 are identified

(up to an increasing affine transform whose coefficients depend on x̄). In the GNB case

with weights δs(x̄) that do not depend on xs we have:

U1(ρ1, x̄)− T 1(x1, x̄) = K(x̄) exp

(∫ ρ1

ρ01

G
(
R̄1(r, x1, x̄), x̄

)
δ1(x̄)

dr

)
,
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where as before ρ0 ∈]0, y[ and K(x̄) > 0 are arbitrary. Using the same reasoning as

before shows that (39) now holds with G(·, x̄)/δ1(x̄) instead of G(·, x̄). Then necessarily

G(r, x̄) = δ1(x̄) · r, which shows that U1 and T 1 are identified as before.

Step 2: Testable Implications. We now derive the testable implications on ρ. Consider

agent 1 and let

Φ1(ρ, x1, x̄) ≡ − ∂ρ(y, x)/∂x1

1− ∂ρ(y, x)/∂y
,

as in the proof of Proposition 2; then Φ1 = (∂R̄1/∂x1)/(∂R̄1/∂ρ1) so

Φ1(ρ1, x1, x̄) =

(
∂T̄ 1(x1, x̄)/∂x1

) (
∂Ū1(ρ1, x̄)/∂ρ1

)(
∂Ū1(ρ1, x̄)/∂ρ1

)2 −
(
∂2Ū1(ρ1, x̄)/∂ρ2

1

) (
Ū1(ρ1, x̄)− T̄ 1(x1, x̄)

) . (41)

Under T.2, we know there exists at least one (x1, x̄) such that for every ρ1 we have

Φ1(ρ1, x1, x̄) 6= 0. We can then take logarithms of the above expression and differentiate

with respect to x1 to get, for all ρ1:

Φ1
x

Φ1
=

∂

∂x1

ln

∣∣∣∣∂T̄ 1

∂x1

∣∣∣∣− [ ∂

∂ρ1

ln

(
∂Ū1

∂ρ1

)]
· Φ1, (42)

where Φ1
x ≡ ∂Φ1(ρ1, x1, x̄)/∂x1. First, we express the term ∂ ln(∂Ū1/∂ρ1)/∂ρ1 as a func-

tion of Φ1 and its derivatives. For this, we differentiate (42) with respect to ρ1 and then

again with respect to x1 to obtain:

− ∂

∂ρ1

Φ1
x

Φ1
=

[
∂2

∂ρ2
1

ln

(
∂Ū1

∂ρ1

)]
· Φ1 +

[
∂

∂ρ1

ln

(
∂Ū1

∂ρ1

)]
· Φ1

ρ

− ∂2

∂ρ1∂x1

Φ1
x

Φ1
=

[
∂2

∂ρ2
1

ln

(
∂Ū1

∂ρ1

)]
· Φ1

x +

[
∂

∂ρ1

ln

(
∂Ū1

∂ρ1

)]
· Φ1

ρx.

Two cases are then possible. Either it is the case that for some ρ1, ∂2 ln |Φ1|/∂ρ1∂x1 6= 0,

so a unique solution to this system exists and we have:

∂

∂ρ1

ln

(
∂Ū1

∂ρ1

)
= −

Φ1
x · ∂

∂ρ1

(
Φ1

x

Φ1

)
− Φ1 · ∂2

∂ρ1∂x1

(
Φ1

x

Φ1

)
Φ1
x · Φ1

ρ − Φ1 · Φ1
ρx

= −
Φ1 · ∂2

∂ρ1∂x1

(
Φ1

x

Φ1

)
− Φ1

x · ∂
∂ρ1

(
Φ1

x

Φ1

)
Φ12 · ∂

∂ρ1

(
Φ1

x

Φ1

) .

Combining the above with (42) then gives:

∂

∂x1

ln

∣∣∣∣∂T̄ 1

∂x1

∣∣∣∣ =
Φ1
x

Φ1
+ Φ1 ·

Φ1 · ∂2

∂ρ1∂x1

(
Φ1

x

Φ1

)
− Φ1

x · ∂
∂ρ1

(
Φ1

x

Φ1

)
Φ12 · ∂

∂ρ1

(
Φ1

x

Φ1

) =

∂3 ln |Φ1|
∂ρ1∂x

2
1

∂2 ln |Φ1|
∂ρ1∂x1

,

which is a function of (x1, x̄) alone. Analogous result follows by considering agent 2, so

(16) holds. Or it is the case that for all ρ1, ∂2 ln |Φ1|/∂ρ1∂x1 = 0. By (42), this implies
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that ∂[
(
∂ ln(∂Ū1/∂ρ1)/∂ρ1

)
· Φ1]/∂ρ1 = 0, so ∂[

((
∂ ln(∂Ū1/∂ρ1)/∂ρ1

)
· Φ1

)−1
]/∂ρ1 = 0,

which by (41) implies
∂

∂ρ1

[
(∂Ū1/∂ρ1)2

(∂2Ū1/∂ρ2
1)
− Ū1

]
= 0, (43)

for all ρ1. Integrating (43) three times and using U.2 and U.1 then implies that there

exist α(x̄) > 0, β(x̄), and µ(x̄) > 0 such that:

Ū1(ρ1, x̄) = −α(x̄) exp (−µ(x̄) · ρ1) + β(x̄). (44)

Finally, plugging (44) back into (41) shows that

Φ1(ρ1, x1, x̄) =
∂T̄ 1(x1, x̄)/∂x1

µ(x̄) ·
[
β(x̄)− T̄ 1(x1, x̄)

] , so
∂Φ1(ρ1, x1, x̄)

∂ρ1

= 0.

Analogous result follows by considering agent 2, which shows (17).

Proof of Proposition 7. A sharing rule ρ(y, x) is a solution to (18) if and only if it

satisfies the first order condition:

R1(ρ, x1, ε1, x̄) = R2(y − ρ, x2, ε2, x̄), (45)

where

Rs(ρs, xs, εs, x̄) ≡ ∂U s(ρs, x̄)/∂ρs
U s(ρs, x̄)− T s(xs, x̄) + εs

.

Since ∂Rs/∂ρs < 0, (45) implicitly defines a unique solution ρ = ρ(y, x1, x2, ε1, ε2, x̄).

Consider any r ∈ ] 0, y [ and note that we have ρ(y, x1, x2, ε1, ε2, x̄) 6 r if and only if

R1(r, x1, ε1, x̄)−R2(y − r, x2, ε2, x̄) > 0, that is

∂U2(y − r, x̄)

∂ρ2

[
U1(r, x̄) + ε1

]
− ∂U1(r, x̄)

∂ρ1

[
U2(y − r, x̄) + ε2

]
6

−∂U
1(r, x̄)

∂ρ1

T 2(x2, x̄) +
∂U2(y − r, x̄)

∂ρ2

T 1(x1, x̄). (46)

Now let Θ(r, y, x1, x2, x̄) ≡ Pr
{
ρ 6 r

∣∣ y, x1, x2, x̄
}

be the conditional distribution of the

shares ρ, observed for given (y, x1, x2, x̄). Moreover, let

G(r, y, x1, x2, x̄) ≡ −∂U
1(r, x̄)

∂ρ1

T 2(x2, x̄) +
∂U2(y − r, x̄)

∂ρ2

T 1(x1, x̄) (47)

F (t, r, y, x̄) ≡ Pr

{
∂U2(y − r, x̄)

∂ρ2

[
U1(r, x̄) + ε1

]
− ∂U1(r, x̄)

∂ρ1

[
U2(y − r, x̄) + ε2

]
6 t

∣∣∣∣ y, x1, x2, x̄

}
. (48)
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Note that the probability F (, r, y, x̄) does not depend on (x1, x2) because (i) (x1, x2) do

not enter U1 nor U2, and (ii) (ε1, ε2) is conditionally independent of (x1, x2) (D.1). Then,

we have that:

Θ(r, y, x1, x2, x̄) = F
(
G(r, y, x1, x2, x̄), r, y, x̄

)
. (49)

In particular, if x1 = (x11, . . . , x1n1), then for every 1 6 s 6 n1, we have:

∂Θ(r, y, x1, x2, x̄)

∂x1i

=
∂T 1(x1, x̄)

∂x1i

∂U2(y − r, x̄)

∂ρ2

∂F
(
G(r, y, x1, x2, x̄), r, y, x̄

)
∂t

. (50)

Similarly, if x2 = (x21, . . . , x2n2), then for every 1 6 j 6 n2, we have:

∂Θ(r, y, x1, x2, x̄)

∂x2j

= −∂T
2(x2, x̄)

∂x2j

∂U1(r, x̄)

∂ρ1

∂F
(
G(r, y, x1, x2, x̄), r, y, x̄

)
∂t

. (51)

In particular, we focus on (50) when i = 1 and on (51) when j = 1. Note that under T.3

we have
∂T 1(x1, x̄)

∂x11

6= 0 and
∂T 2(x2, x̄)

∂x21

6= 0 for all x = (x1, x2, x̄),

while D.2 ensures that ∂F (t, r, y, x̄)/∂t > 0 for every t ∈ R. Taking ratios of (50) and

(51) obtained for i = j = 1 we then have:

∂Θ(r, y, x1, x2, x̄)/∂x11

∂Θ(r, y, x1, x2, x̄)/∂x21

= −∂T
1(x1, x̄)/∂x11

∂T 2(x2, x̄)/∂x21

∂U2(y − r, x̄)/∂ρ2

∂U1(r, x̄)/∂ρ1

so

ln

∣∣∣∣∂Θ(r, y, x1, x2, x̄)/∂x11

∂Θ(r, y, x1, x2, x̄)/∂x21

∣∣∣∣ =

ln

∣∣∣∣∂T 1(x1, x̄)

∂x11

∣∣∣∣− ln

∣∣∣∣∂T 2(x2, x̄)

∂x21

∣∣∣∣+ ln
∂U2(y − r, x̄)

∂ρ2

− ln
∂U1(r, x̄)

∂ρ1

for every (y, r) and every x = (x1, x2, x̄). Now consider the change of variables ρ1 ≡ r

and ρ2 ≡ y − r. We then obtain that for every (ρ1, ρ2) and every x = (x1, x2, x̄),

h(ρ1, ρ2, x1, x2, x̄) = (52)

ln

∣∣∣∣∂T 1(x1, x̄)

∂x11

∣∣∣∣− ln

∣∣∣∣∂T 2(x2, x̄)

∂x21

∣∣∣∣+ ln
∂U2(ρ2, x̄)

∂ρ2

− ln
∂U1(ρ1, x̄)

∂ρ1

where we have let

h(ρ1, ρ2, x1, x2, x̄) ≡ ln

∣∣∣∣∂Θ(ρ1, ρ1 + ρ2, x1, x2, x̄)/∂x11

∂Θ(ρ1, ρ1 + ρ2, x1, x2, x̄)/∂x21

∣∣∣∣ .
Step 1: Identification of U1. Differentiating (52) with respect to ρ1 gives:

∂h(ρ1, ρ2, x1, x2, x̄)

∂ρ1

= − ∂

∂ρ1

ln
∂U1(ρ1, x̄)

∂ρ1

.
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Integrating from some ρ∗1 ∈ ]0, y[ we then obtain:

∂U1(ρ1, x̄)

∂ρ1

= K1(x̄) exp

[
−
∫ ρ1

ρ∗1

∂h(u, ρ2, x1, x2, x̄)

∂ρ1

du

]
,

where K1(x̄) ≡ ∂U1(ρ∗1, x̄)/∂ρ1 > 0 is an unknown function. We can again integrate from

some ρ0
1 ∈ ]0, y[ which gives:

U1(ρ1, x̄) = K1(x̄)

∫ ρ1

ρ01

exp

[
−
∫ v

ρ∗1

∂h(u, ρ2, x1, x2, x̄)

∂ρ1

du

]
dv + k1(x̄)

where k1(x̄) ≡ U1(ρ0
1, x̄) is unknown. Hence, the utility of agent 1 is determined up to a

strictly increasing affine transformation (in x̄) of a known utility function Ū1(ρ1, x̄):

U1(ρ1, x̄) = K1(x̄) · Ū1(ρ1, x̄) + k1(x̄), K1(x̄) > 0, (53)

where we have let

Ū1(ρ1, x̄) ≡
∫ ρ1

ρ01

exp

[
−
∫ v

ρ∗1

∂h(u, ρ2, x1, x2, x̄)

∂ρ1

du

]
dv.

Step 2: Identification of U2. Differentiating (52) with respect to ρ2 gives:

∂h(ρ1, ρ2, x1, x2, x̄)

∂ρ2

=
∂

∂ρ2

ln
∂U2(ρ2, x̄)

∂ρ2

.

Following the same reasoning as above and integrating twice from some (ρ∗2, ρ
0
2) ∈ ]0 , y [2,

we have:

U2(ρ2, x̄) = K2(x̄)

∫ ρ1

ρ02

exp

[∫ v

ρ∗2

∂h(ρ1, u, x1, x2, x̄)

∂ρ2

du

]
dv + k2(x̄)

where the functions k2(x̄) ≡ U2(ρ0
2, x̄) and K2(x̄) ≡ ∂U2(ρ∗2, x̄)/∂ρ2 > 0 are unknown.

Hence, the utility of agent 2 is also determined up to a strictly increasing affine transfor-

mation (in x̄) of a known utility function Ū2,

U2(ρ2, x̄) = K2(x̄) · Ū2(ρ2, x̄) + k2(x̄), K2(x̄) > 0, (54)

where we have let

Ū2(ρ2, x̄) ≡
∫ ρ1

ρ02

exp

[∫ v

ρ∗2

∂h(ρ1, u, x1, x2, x̄)

∂ρ2

du

]
dv.
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Step 3: Identification of T 1. Differentiating (52) with respect to x1k (1 6 k 6 n1), we

get that:
∂h(ρ1, ρ2, x1, x2, x̄)

∂x1k

=
∂

∂x1k

ln

∣∣∣∣∂T 1(x1, x̄)

∂x11

∣∣∣∣ .
In particular, consider the partial derivative with respect to x11, i.e. k = 1. For some c11

define:

t1(x̄, x1) ≡
∫ x11

c11

∂h(ρ1, ρ2, u, x12, . . . , x1n1 , x2, x̄)

∂x11

du.

Then, we have that:

ln

∣∣∣∣∂T 1(x1, x̄)

∂x11

∣∣∣∣ = t1(x1, x̄) + g1(x12, . . . , x1n1 , x̄), (55)

where g1(x12, . . . , x1n1 , x̄) is an unknown function. Differentiating with respect to x12

gives:
∂

∂x12

ln

∣∣∣∣∂T 1(x̄, x1)

∂x11

∣∣∣∣− ∂t1(x̄, x1)

∂x12

=
∂

∂x12

g1(x12, . . . , x1n1 , x̄),

that is

∂

∂x12

g1(x12, . . . , x1n1 , x̄) =
∂h(ρ1, ρ2, x1, x2, x̄)

∂x12

−
∫ x11

c11

∂2h(ρ1, ρ2, u, x12, . . . , x1n1 , x2, x̄)

∂x11∂x12

du

≡ σ2(x12, . . . , x1n1 , x̄).

Note that the function σ2(x12, . . . , x1n1 , x̄) on the right hand side of the above equality is

known; hence, we can integrate with respect to x12 to get:

g1(x12, . . . , x1n1 , x̄) =

∫ x12

c12

σ2(u, x13, . . . , x1n1 , x̄)du+ g2(x13, . . . , x1n1 , x̄)

≡ t2(x12, . . . , x1n1 , x̄) + g2(x13, . . . , x1n1 , x̄).

Plugging back into (55) we get that:

ln

∣∣∣∣∂T 1(x1, x̄)

∂x11

∣∣∣∣ = t1(x11, . . . , x1n1 , x̄) + t2(x12, . . . , x1n1 , x̄) + g2(x13, . . . , x1n1 , x̄).

Repeating the same reasoning as above for x13 etc all the way to x1n1 we get that:

ln

∣∣∣∣∂T 1(x1, x̄)

∂x11

∣∣∣∣ = t1(x1, x̄) + g1(x̄),

where the known function t1(x1, x̄) is defined as the sum of the recursively computed func-

tions tk(x1k, . . . , x1n1 , x̄), and g1(x̄) is the unknown residual function. Since from (50) we
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know that the sign of ∂T 1(x1, x̄)/∂x11 is the same as that of ∂Θ(ρ1, ρ1 +ρ2, x1, x2, x̄)/∂x11,

the above implies:

∂T 1(x1, x̄)

∂x11

= C1(x̄) · sgn

(
Θ(ρ1, ρ1 + ρ2, x1, x2, x̄)

∂x11

)
· exp

[
t1(x1, x̄)

]
,

where C1(x̄) = exp[g1(x̄)] > 0 is an unknown function. This gives that:

∂T 1(x1, x̄)

∂x11

= C1(x̄) · τ(x1, x̄) (56)

where

τ(x1, x̄) ≡ sgn

(
Θ(ρ1, ρ1 + ρ2, x1, x2, x̄)

∂x11

)
· exp

[
t1(x1, x̄)

]
.

Integrating (56) with respect to x11 from some constant d11 then gives:

T 1(x1, x̄) = C1(x̄) ·
∫ x11

d11

τ(u, x12, . . . , x1n1 , x̄)du+D1(x12, . . . , x1n1 , x̄),

for some unknown function D1(x12, . . . , x1n1 , x̄). Differentiating the above with respect to

x12 then gives that:

∂

∂x12

D1(x12, . . . , x1n1 , x̄) = (57)

∂T 1(x1, x̄)

∂x12

− C1(x̄) ·
∫ x11

d11

∂τ(u, x12, . . . , x1n1 , x̄)

∂x12

du.

Now consider again (50); taking the ratio of the expression obtained for i = 2 and i = 1

gives:
∂T 1(x1, x̄)

∂x12

=
∂T 1(x1, x̄)

∂x11

· ∂Θ(ρ1, ρ1 + ρ2, x1, x2, x̄)/∂x12

∂Θ(ρ1, ρ1 + ρ2, x1, x2, x̄)/∂x11

. (58)

Combining (58) with (56) then shows that ∂T 1(x1, x̄)/∂x12 is known up to a multiplication

by the same function C1(x̄); this means that the right hand side of (57) is known up to

a multiplication by the unknown function C1(x̄) > 0. We can then integrate with respect

to x12. Following the same recursive reasoning as before, it follows that:

T 1(x1, x̄) = C1(x̄) · T̄ 1(x1, x̄) + c1(x̄), C1(x̄) > 0, (59)

where the function T̄ 1(x1, x̄) is known (and defined recursively), while C1(x̄) > 0 and

c1(x̄) are unknown. This means that agent 1’s threat function T 1 is determined up to an

increasing affine transformation in x̄.

Step 4. Identification of T 2. Now, consider again (52) and combine it with the

expressions for T 1, U1 and U2 obtained in (59), (54), (53), respectively. It follows that

for some known function t2(x2, x̄), we have:∣∣∣∣∂T 2(x2, x̄)

∂x21

∣∣∣∣ =
C1(x̄)K2(x̄)

K1(x̄)
· exp

[
t2(x2, x̄)

]
,
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so using again (51) we get,

∂T 2(x2, x̄)

∂x21

=
C1(x̄)K2(x̄)

K1(x̄)
· sgn

(
−Θ(ρ1, ρ1 + ρ2, x1, x2, x̄)

∂x21

)
· exp

[
t2(x2, x̄)

]
Following the same steps as in Step 3 it then follows that:

T 2(x2, x̄) =
C1(x̄)K2(x̄)

K1(x̄)
T̄ 2(x2, x̄) + c2(x̄), (60)

in which the function T̄ 2(x2, x̄) is known, the function c2(x̄) is unknown, and C1(x̄) > 0,

K1(x̄) > 0 and K2(x̄) > 0 are the same unknown functions obtained in (59), (54), (53),

respectively. In particular, this means that agent 2’s threat function is determined up to

an unknown increasing affine transformation (in x̄) whose slope depends on those obtained

for T 1, U1, and U2.

Step 5. Identification of F . Combining the inequality in (46) with the expres-

sions for T 2, T 1, U2, U1 obtained in (60), (59), (53) and (54), respectively, we get that

ρ(y, x1, x2, ε1, ε2, x̄) 6 r if and only if:

K1(x̄)

C1(x̄)

{
∂Ū2(y − r, x̄)

∂ρ2

[
Ū1(r, x̄) +

k1(x̄)− c1(x̄) + ε1
K1(x̄)

]
−∂Ū

1(r, x̄)

∂ρ1

[
Ū2(y − r, x̄) +

k2(x̄)− c2(x̄) + ε2
K2(x̄)

]}
6

− ∂Ū1(r, x̄)

∂ρ1

T̄ 2(x2, x̄) +
∂Ū2(y − r, x̄)

∂ρ2

T̄ 1(x1, x̄).

Let then

Ḡ(y, r, x1, x2, x̄) ≡ −∂Ū
1(r, x̄)

∂ρ1

T̄ 2(x2, x̄) +
∂Ū2(y − r, x̄)

∂ρ2

T̄ 1(x1, x̄)

be the quantity on the right hand side of the above inequality; note that the function

Ḡ(y, r, x1, x2, x̄) is known. Similar to previously, let also

F̄ (t, r, y, x̄) ≡ Pr

{
K1(x̄)

C1(x̄)

(
∂Ū2(y − r, x̄)

∂ρ2

[
Ū1(r, x̄) +

k1(x̄)− c1(x̄) + ε1
K1(x̄)

]
(61)

−∂Ū
1(r, x̄)

∂ρ1

[
Ū2(y − r, x̄) +

k2(x̄)− c2(x̄) + ε2
K2(x̄)

])
6 t

∣∣∣∣ y, x1, x2, x̄

}
.

Then, we have that for every r ∈ ]0 , y [ and every (y, x):

Θ(r, y, x1, x2, x̄) = F̄
(
Ḡ(y, r, x1, x2, x̄), r, y, x̄

)
, (62)

where Θ(r, y, x1, x2, x̄) = Pr{ρ 6 r| y, x1, x2, x̄} as before. We now show that the above

equality determines F̄ (t, r, y, x̄) for all t ∈ R. For this, fix (r, y, x12, . . . , x1n1 , x2, x̄) and
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note that under T.3 Ḡ is strictly increasing in x11. Moreover, lim|x11|→∞ |Ḡ(y, r, x1, x2, x̄)| =
∞. This means that for any t ∈ R, we have Ḡ(y, r, x1, x2, x̄) = t if and only if

x11 =
(
T̄ 1
)−1

([
∂Ū2(y − r, x̄)

∂ρ2

]−1 [
t+

∂Ū1(r, x̄)

∂ρ1

T̄ 2(x2, x̄)

]
, x12, . . . , x1n1 , x̄

)
≡ x11(t).

Now, we can invert (62) to show that for any t ∈ R,

F̄ (t, r, y, x̄) = Θ(r, y, x11(t), x12, . . . , x1n1 , x2, x̄), (63)

which is a known function.

Step 6. Observational Equivalence. We now use the results obtained in (54), (53),

(59), (60) and (63) to characterize any two observationally equivalent structures. We start

with agent 1’s utilities: from (54) two observationally equivalent utilities U1 and Ũ1 must

satisfy

U1(ρ1, x̄) = K1(x̄) · Ū1(ρ1, x̄) + k1(x̄), K1(x̄) > 0,

Ũ1(ρ1, x̄) = K̃1(x̄) · Ū1(ρ1, x̄) + k̃1(x̄), K̃1(x̄) > 0.

Let then

A1(x̄) ≡ K̃1(x̄)

K1(x̄)
> 0, α1(x̄) ≡ k̃1(x̄)− A1(x̄) · k1(x̄).

It follows that

Ũ1(ρ1, x̄) = A1(x̄) · U1(ρ1, x̄) + α1(x̄), A1(x̄) > 0,

where the functions A1(x̄) > 0 and α1(x̄) are unknown. Analogously, using (53) (resp.

(59)), any two observationally equivalent utilities for agent 2 (resp. threat functions for

agent 1) must satisfy:

Ũ2(ρ2, x̄) = A2(x̄) · U2(ρ2, x̄) + α2(x̄), A2(x̄) > 0, (64)

T̃ 1(x1, x̄) = B1(x̄) · T 1(x1, x̄) + β1(x̄), B1(x̄) > 0, (65)

where

A2(x̄) ≡ K̃2(x̄)

K2(x̄)
> 0, α2(x̄) ≡ k̃2(x̄)− A2(x̄) · k2(x̄),

B1(x̄) ≡ C̃1(x̄)

C1(x̄)
> 0, β1(x̄) ≡ c̃1(x̄)−B1(x̄) · c1(x̄).

Now, for agent 2’s threat functions, using (60) we have

T̃ 2(x2, x̄) = B1(x̄)
A2(x̄)

A1(x̄)
· T 2(x2, x̄) + β2(x̄),
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where

β2(x̄) ≡ c̃2(x̄)−B1(x̄)
A2(x̄)

A1(x̄)
· c2(x̄).

Finally, combining all of the above with (63), we have that conditional on (y, x) the

unobservables (ε1, ε2) and (ε̃1, ε̃2) must satisfy:

∂Ũ2(y − r, x̄)

∂ρ2

[
Ũ1(r, x̄) + ε̃1

]
− ∂Ũ1(r, x̄)

∂ρ1

[
Ũ2(y − r, x̄) + ε̃2

]
∼
|(y,x)

A2(x̄)B1(x̄)

{
∂U2(y − r, x̄)

∂ρ2

[
U1(r, x̄) + ε1 +

β1(x̄)

B1(x̄)

]
−∂U

1(r, x̄)

∂ρ1

[
U2(y − r, x̄) + ε2 +

A1(x̄)

A2(x̄)

β2(x̄)

B1(x̄)

]}
,

where ∼
|(y,x)

denotes equality in conditional distribution given (y, x).
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