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ABSTRACT 

Mechanisms of Actomyosin Contractility in Cells 

Matthew R. Stachowiak 

 

Many fundamental cellular processes hinge on the ability of cells to exert contractile 

force. Contractility is used by cells to divide, to migrate, to heal wounds, and to pump the heart 

and move limbs. Contractility is mediated by the actin and myosin cytoskeleton, a dynamic and 

responsive meshwork that assembles into various well-defined structures used by the cell to 

accomplish specific tasks. While muscle contraction is well-characterized, the contraction 

mechanisms of actomyosin structures in nonmuscle cells are relatively obscure. Here we 

elucidate the contraction mechanisms of two prominent and related actomyosin structures: the 

contractile ring, which constricts to divide the cell during cytokinesis, and the stress fiber, which 

is anchored to the extracellular matrix and allows the cell to exert contractile forces on its 

surroundings.  

In the first part of the thesis, we develop a mathematical model to characterize the 

constriction mechanism of contractile rings in the Schizosaccharomyces pombe model organism. 

Our collaborators observed that after digesting the cell wall to create protoplasts, contractile 

rings constricted by sliding along the plasma membrane without cleaving the cell. This novel 

approach allowed direct comparison of our model predictions for the ring constriction rate and 

ring shape to the experimental data, and demonstrated that the contractile ring’s rate of 

constriction is determined by a balance between ring tension and external resistance forces. Our 

results describe a casual relationship between ring organization, actin turnover kinetics, tension, 

and constriction. Ring tension depends on ring organization through the actin and myosin 

concentrations and their statistical correlations. These correlations are established and renewed 



by actin turnover on a timescale much less than the constriction time so that rapid actin turnover 

sets the tension and provides the mechanism for continuous remodeling during constriction. Thus, 

we show that the contractile ring is a tension-producing machine regulated by actin turnover 

whose constriction rate depends on the response of a coupled system to the ring tension. 

In the second part of the thesis we examine the contraction mechanisms of stress fibers, 

which have a sarcomeric structure reminiscent of muscle. We developed mathematical models of 

stress fibers to describe their rapid shortening after severing and to describe how the kinetics of 

sarcomere contraction and expansion depend on actin turnover. To test these models, we 

performed quantitative image analysis of stress fibers that spontaneously severed and recoiled. 

We observed that after spontaneous severing, stress fibers shorten by ~80% over ~15-30 s, 

during which ~50% of the actin initially present was disassembled. Actin disassembly was 

delayed by ~50 s relative to fiber recoil, causing a characteristic increase, peak, and decay in the 

actin density after severing. Model predictions were in excellent agreement with the observations. 

The model predicts that following breakage, fiber shortening due to myosin contractile force 

increases actin filament overlap in the center of the sarcomeres, which in turn causes 

compressive actin-actin elastic stresses. These stresses promote actin disassembly, thereby 

shortening the actin filaments and allowing further contraction. Thus, the model identifies a 

mechanism whereby coupling between actin turnover and mechanical stresses allows stress 

fibers to dynamically adjust actin filament lengths to accommodate contraction.  
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Chapter 1 
 
Introduction 
 

Many fundamental cellular processes hinge on the ability of cells to exert contractile 

force. Examples include contractile force in cytokinesis to constrict the contractile ring and pinch 

the mother cell into two,1 in cell motility to drag the cell forward,2,3 in wound healing to help 

remodel the matrix,4,5 in muscle contraction to pump the heart or move limbs,6,7 and in damaged 

cells to repair the cytoskeleton.8,9   

Contractility is mediated by the actin and myosin cytoskeleton. Actin proteins polymerize 

into double helical actin filaments (Fig. 1.1A). The heads of myosin-II motor proteins bind to 

actin filaments, and hydrolysis of ATP by myosin-II and release of the resulting free phosphate is 

associated with a conformational change in the myosin molecule that translates the myosin head 

and therefore also the bound actin filament.10 By unbinding from the filament, releasing ADP, 

and going through successive hydrolysis cycles, myosin-II can translocate actin filaments. Since 

actin subunits are asymmetric, actin filaments are polar, and myosin-II always moves toward the 

“barbed end” and away from the “pointed end”. Nonmuscle myosin-II proteins assemble into 

bipolar minifilaments (Fig. 1.1B).11,12 Actin filaments, myosin filaments, actin filament 

crosslinking proteins, and other components assemble to form contractile actomyosin structures.  

The “canonical” contractile machine is the myofibril in striated muscle, containing near-

perfect interdigitated lattices of actin filaments and myosin filaments arranged precisely so that 

myosin causes contraction and tension rather than compression and expansion (Fig. 1.1C). The 

myofibril is built from many repeat units, or sarcomeres, arranged in series (Fig. 1.1C). In 
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nonmuscle cells, the actomyosin cytoskeleton forms contractile structures with far less ordered 

organization, and the organization and mechanisms have in most cases not been elucidated.  

The aim of this thesis is to illuminate the mechanisms of contractility for two 

fundamentally important actomyosin structures in nonmuscle cells: (1) the contractile ring, 

which helps divide the cell during cytokinesis, and (2) stress fibers, which are actomyosin 

bundles similar in some respects to striated muscle. 

 

 

Figure 1.1: Actin, myosin, and sarcomeric structure. 
(A) Actin proteins polymerize to form actin filaments.   
(B) Myosin-II dimers assemble into minifilaments.  
(C) Schematic of the basic sarcomeric structure. Vertical black lines: sarcomere boundaries. Myosin 
filaments (called “thick filaments” in muscle) reside in the center of sarcomeres, interacting with actin 
filaments on both sides. The actin filaments have alternating polarity (arrowheads point toward filament 
pointed ends), arranged so that when the myosin heads migrate toward actin filament barbed ends, 
contraction results. Muscle sarcomeres are ~2 µm long, while stress fiber sarcomeres are ~1 µm long. 
Muscle and stress fiber sarcomeres contain many other components, not pictured. 
 

I. Cytokinesis and the Contractile Ring 

 Cytokinesis is the process whereby an actomyosin contractile ring pinches the mother cell 

into two daughters (Fig. 1.2A). It is the final stage of the cell cycle, following interphase (cell 

growth and DNA replication), prophase (chromosome formation), metaphase (chromosome 

alignment), anaphase (chromosome separation), and telophase (formation of two daughter 

nuclei). Constriction of the contractile ring is thought to be powered by actin-myosin interactions. 
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Importance 

As an essential element of cell division, cytokinesis it is crucial to development of the 

embryo and the necessary replacement of cells which die through wear and tear in the adult.1 

Other roles include cell differentiation which can result from asymmetric cell division.13 Failed 

cytokinesis has recently been proposed to play a role in tumorigenesis.14-16 Additionally, 

inducing failure of cytokinesis in cancerous cells may have therapeutic potential since polyploidy 

can cause cell death.17,18  

 

Fission yeast as a model organism for cytokinesis 

Schizosaccharomyces pombe (fission yeast) is a widely used model organism for 

studying cytokinesis. Cytokinesis in fission yeast and animal cells is similar in many respects 

(Fig. 1.2A,B), as both entail formation and constriction of a contractile ring containing actin, 

myosin-II, α-actinin, formin, cofilin, and other conserved proteins.19 The relative ease of 

manipulating the fission yeast organism has led to the measurement of a quantitative inventory of 

many key proteins in cytokinesis by using quantitative fluorescence microscopy,20 offering a 

unique opportunity for quantitative mathematical modeling.  

 

Assembly and constriction of the fission yeast contractile ring  

Ring assembly begins during interphase when the anillin-like protein Mid1p exits from 

the nucleus and condenses into ~75 large membrane-associated protein complexes or “nodes” in 

a broad equatorial band near the nucleus.21,22 After recruitment of myosin-II motor proteins, the 

nodes slowly diffuse in the membrane for ~10 min.22 Then, the actin filament barbed end 

capping protein formin Cdc12p is recruited and nucleates a dense meshwork of actin filaments 
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connecting the nodes. A dynamical transition occurs, and nodes start to move coherently in stop-

start motions, powered by forces from myosin-II, while condensing into a compact contractile 

ring over ~10 min.22  

Following assembly, during anaphase, a ring maturation episode lasting ~25 min occurs 

during which capping protein Acp2p, myosin II isoform Myp2p, septin Spn1p and other proteins 

are recruited.23 At the end of anaphase, the ring constricts over ~20-30 min.23,24 During 

constriction, actin-binding proteins IQGAP Rng2p, formin Cdc12p, Cdc15p and α-actinin Ain1p 

maintain nearly constant concentration, i.e. they are shed in proportion to ring volume, while the 

concentration of myosin-II increases.20 

 

Septation  

 Unlike animal cells, in fungi such as fission yeast the plasma membrane is surrounded by 

a cell wall made of a dense network of polysaccharides that provides mechanical protection, 

opposes turgor pressure and determines cell shape.25 Thus, during cytokinesis in fission yeast the 

daughter cells must each be provided with intact cell walls. This is accomplished by the process 

of septation, the deposition of new cell wall in the wake of the constricting ring (Fig. 1.2B).26,27 

Thus, ring constriction and septation dynamics are directly coupled.  

 When the fission yeast cell wall is digested enzymatically, cells become swollen and 

spherical, and are called “protoplasts”.28-30 In previous work, complete contractile rings were 

observed at various latitudes in fixed protoplasts.29 Thus, protoplasts may be a useful model 

system to study ring constriction in the absence of septation.  
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Figure 1.2: Cytokinesis and stress fibers. 
(A) Cytokinesis in animal cells. The contractile ring pinches the cell into two daughter cells. The initial ring 
circumference is very roughly 20-100 µm.31  
(B) Cytokinesis in fission yeast cells which have a cell wall. As the contractile ring constricts, new cell wall 
grows in the wake of the constricting ring in the process of septation. The initial ring circumference is ~10 
µm. 
(C) Illustration of a stress fiber (alternating green and orange bands indicate sarcomeres) anchored at 
each end by a transmembrane focal adhesion (brown) connected to the extracellular matrix. The stress 
fiber generates tension via myosin-mediated contraction. 
 
 

II. Stress Fibers 

Stress fibers are tensile actomyosin bundles often anchored at each end to the 

extracellular matrix via transmembrane protein complexes called focal adhesions (Fig. 1.2C).32 

Stress fibers mediate adhesion to the basal lamina in vascular endothelial cells under shear 

stress,33,34 generate contractile forces in myofibroblasts during wound healing,4,5 help orient the 

matrix in the developing intervertebral disk,35 may provide tendons stability against stretch36 and 

are associated with hepatic stellate cell activation which has a crucial role in liver fibrosis.37,38 

Considerable evidence suggests that stress fibers in stationary cells have periodic sarcomeric 

structure similar to striated muscle but somewhat less ordered: actin polarity is periodic39 and 

regions of the actin cross-linking protein α-actinin alternate with myosin-rich regions along the 
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fiber axis.40,41 Unlike striated muscle, stress fiber components are highly dynamic, with actin 

turning over on a time scale of several minutes.42-44 

 

III. Outline  

 In Chapter 2 of this thesis, we present a mathematical model of contractile ring 

constriction during fission yeast cytokinesis. Studying ring constriction in fission yeast 

protoplasts that lack cell wall allowed us to investigate constriction in the absence of the 

complicated septation process (Fig. 1.3A). This allowed us to interrogate ring constriction 

mechanisms in a way not possible at present with normal yeast cells. This work was performed 

in collaboration with the laboratory of Dr. Thomas Pollard at Yale University.  

 Chapters 3-5 deal with stress fibers. In Chapter 3, we modeled an experiment in which 

stress fibers in living cells were treated with a drug that increases myosin-II activity, causing 

peripheral sarcomeres in stress fibers to contract and central sarcomeres to expand over ~5 min 

(Fig. 1.3B).41 Since this relaxation time is of the same order as the actin turnover time, we 

hypothesized that contraction and actin turnover may be coupled. Our model therefore outlines a 

general mechanism of force-turnover feedback. In Chapter 4, we model an experiment in which 

severing of a stress fiber in a living cell with a laser was followed by rapid recoil of the stress 

fiber (Fig. 1.3C).44 Our analysis suggested that stress fibers may contract non-uniformly after 

severing because of viscous coupling to the surrounding cytoplasm. Because there was a lack of 

quantitative experimental measurements of stress fiber dynamics, we initiated a collaboration 

with the laboratory of Dr. Mary Beckerle at the University of Utah. Results of this collaboration 

are presented in Chapter 5. We observed that stress fibers spontaneously sever and recoil in 

living cells (Fig. 1.3D). We performed quantitative image analysis and showed that actin 
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disassembly is directly coupled to contraction, as predicted by our model in Chapter 3. Our 

model therefore illuminates the mechanisms of contractility in stress fibers.  

 

Figure 1.3: Outline of the systems studied in this thesis. 
(A) Contractile rings constrict without septation in fission yeast protoplasts that lack cell wall (Chapter 2).  
(B) Stress fibers treated with a myosin-activating drug contract in their peripheral regions and expand in 
their central regions (Chapter 3). 
(C) Stress fibers recoil after being severed by laser ablation (Chapter 4). 
(D) Stress fibers spontaneously sever and recoil (Chapter 5). 
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Chapter 2 

Mechanism of Cytokinetic Ring  
Constriction in Fission Yeast  
 

In this chapter, we describe collaborative work that combines experiments on fission 

yeast protoplasts lacking a cell wall with computer simulations to characterize the mechanism of 

cytokinetic contractile ring constriction. We performed the analysis and mathematical modeling, 

and Dr. Caroline Laplante in Dr. Thomas Pollard’s laboratory at Yale University performed the 

experiments. 

 

I. Introduction 
 

Animal, fungal and amoeboid cells accomplish cytokinesis by constriction of an 

actomyosin contractile ring composed of widely conserved components.19 Myosin-II motor 

proteins generate tension that drives constriction by binding to and pulling upon actin 

filaments.45,46 The fission yeast Schizosaccharomyces pombe offers a unique opportunity to 

model ring constriction mathematically as more than 130 genes involved in cytokinesis have 

been identified and the amounts of many proteins in the ring were measured.20,47 Ring assembly 

in fission yeast is known to occur via coalescence of ~75 membrane-anchored precursor nodes, 

protein assemblies that contain many structural and functional components of the ring.21 

Nevertheless, the biophysical mechanisms underlying ring constriction are poorly understood. 

A critical question is how ring tension emerges from the spatial organization of actin and 

myosin. The highly ordered architecture of skeletal muscle is based on the sarcomere repeat unit 

that contains myosin-II and polarized actin filaments precisely arranged to generate tension. By 
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contrast, optical imaging of fission yeast contractile rings reveals no periodicity24,48,49 and 

electron microscopy (EM) shows bundled actin filaments of mixed polarity at the base of the 

cleavage furrow50 that appear to be randomly positioned51. Tension presumably depends on the 

relative positions and orientations of the actin and myosin, but in non-sarcomeric organizations 

this dependence has not yet been elucidated. 

Anchoring of the ring to the cell membrane is thought to transmit tension and direct 

cytokinesis52. The strength of the anchoring and the anchor identities are unknown, but 

candidates include the membrane binding F-BAR protein Cdc15p, the integral membrane protein 

Chs2p and the glucan synthase Bgs1p that builds cell wall.49,53,54  If the anchors have low 

mobility, other ring components that bind to these anchors would be effectively immobilized. 

Actin barbed ends may be anchored in this manner because the formin Cdc12p, which associates 

processively with growing actin filament barbed ends,55 binds to candidate anchor Cdc15p.56 

Myosin-II may also be anchored as it remained localized to the division site after actin 

disassembly in animal cells57 and fission yeast.58 Whether or not these components are anchored 

is presumably relevant to the ring’s tension-producing capability. 

During constriction the contractile ring continuously remodels as its volume decreases.59 

Actin-binding proteins α-actinin Ain1p, Cdc15p and IQGAP homologue Rng2p are lost from the 

ring in proportion to the decrease in ring length, suggesting that filamentous actin is maintained 

at constant density by disassembly.20 This could be achieved by continuous depolymerization of 

a fixed number of actin filaments as proposed for C. elegans.31 However, high doses of the actin 

monomer sequestering agent latrunculin A (LatA) disintegrated all contractile rings in fission 

yeast in ~1 min, suggesting that polymerization also occurs.24 Indeed, the mechanism of tension 

production may be coupled to polymerization as constriction was slower when actin 
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polymerization was suppressed.24 While the actin remodeling mechanisms have not been 

characterized, normal constriction requires the actin filament nucleator formin Cdc12p and the 

actin severing protein cofilin Adf1p.24,60 

Mathematical models are required to establish the ring constriction mechanism. Recent 

models proposed that constriction is driven by myosin, cortical tension and actin turnover and 

resisted by other factors including cytoplasmic viscosity, cell elasticity and actin crosslinkers.61-

63 However, a detailed model of the ring built from known molecular components is not 

presently available. Such a model is within reach for fission yeast because a quantitative 

inventory of ring proteins has been measured.20 Nevertheless, predicting the constriction rate is 

problematic because constriction in yeast is closely coupled to septation, the poorly understood 

process of cell wall deposition in the wake of the constricting ring.27 The constriction rate could 

be set by the response of the growing septum to ring tension. Alternatively, the ring could be 

dynamically autonomous, as proposed in a model for C. elegans embryos where the ring retained 

memory of permanent structural properties that determined its constriction rate.31 

Here, we combined mathematical modeling and experimental study of the fission yeast 

contractile ring to elucidate constriction mechanisms decoupled from septation. In yeast 

protoplasts that lack cell wall,29 we found that contractile rings constrict without septation by 

sliding along the plasma membrane. By comparing observations to predictions of a computer 

simulation of the ring that incorporated the key molecular components, we could isolate the 

mechanisms of ring constriction. Our results describe a causal relationship between actin 

turnover kinetics, ring organization, tension and constriction rate. Ring tension depends on its 

organization through the actomyosin component densities and their statistical correlations of 

sarcomeric character. The organization is renewed by actin turnover on a timescale much less 



11 
 

than the constriction time. Thus, rapid actin turnover sets the tension and provides the 

mechanism for continuous remodeling during constriction. By deforming protoplasts, we 

demonstrated that ring constriction rates and shapes depend on protoplast surface shape and 

result from tension working against external forces. Thus, the contractile ring is a tension-

producing machine regulated by actin turnover whose constriction rate depends on the response 

of a coupled system to the ring tension. 

 

II. Experimental Results  

Fission yeast protoplasts exhibit nodes and assemble actomyosin contractile rings 

To study the fission yeast contractile ring in the absence of septation, we prepared 

protoplasts by treating cells with lytic and lysing enzymes to digest the cell wall. Protoplasts lose 

the characteristic elongated morphology of fission yeast and adopt a rounded shape (Fig. 2.1A,B). 

In intact cells, actin patches visualized with the calponin homology domain of Rng2p fused to 

GFP (GFP-CHD)64 localize to the poles and are hallmarks of polarized growth (Fig. 2.1C).65 In 

protoplasts actin patches were distributed throughout the entire cortex, consistent with a loss of 

cell polarity (Fig. 2.1D).  

We used time-lapse microscopy to investigate contractile ring assembly in protoplasts 

expressing the myosin-II regulatory light chain fused to three molecules of GFP (Rlc1-3GFP). 

Rlc1-3GFP concentrated in cortical puncta indistinguishable from the nodes that serve as ring 

precursors in intact cells.21 Over the ~1 min time of observation, nodes in protoplasts underwent 

either 2-dimensional diffusion or stochastic, directed, stop-go motions. Diffusing nodes had a 

linear increase in their mean squared displacement (MSD) with time, MSD(t) = MSD(0) + 4Dt 

(Fig. 2.1E). The diffusion constant, D, was 28.2  3.1 nm2/s (mean  SEM, n = 75 nodes, 15 
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Figure 2.1: Fission yeast protoplasts exhibit nodes and assemble contractile rings. 
(A and B) Differential interference contrast (DIC) micrographs of (A) intact fission yeast cells and (B) 
protoplasts.  
(C and D) Actin patches visualized by GFP-CHD localize to intact cell poles (C), but distribute uniformly in 
protoplasts (D).  
(E) MSD of 5 diffusing protoplast nodes.  
(F) Velocity distribution of protoplast nodes undergoing directed motion. Inset: durations of motion. 
(G and H) Rlc1p-3GFP protoplast nodes coalesce into a filament (G), and a ring assembles from an 
Rlc1p-3GFP filament originating from a disassembling ring (H). Time, min.  
Fluorescent micrographs are z-stack projections taken on a spinning disk confocal microscope. All 
micrographs from C. Laplante and T.D. Pollard (Yale University). Scale bars: 10 µm. 

 

cells), corresponding to a node drag coefficient γnode of 150 pN·s/μm using the Einstein relation 

γnode = kBT/D. Nodes undergoing stop-go motions had mean velocity vnode = 27.3  3.5 nm/s in 

bursts lasting ~22 s (n = 54 nodes, 13 cells, Fig. 2.1F). The average force exerted on each node is 

then fmyo = γnode vnode ≈ 4 pN. Thus, in protoplasts the node drag coefficient, velocity, duration of 

motion and force all lie within 25% of the values reported in intact cells.22  

In intact cells, precursors of the contractile ring first appear in nodes forming a band 

around the cell equator. These nodes first undergo diffusion, followed by stop-go motion as they 

condense into a ring during mitosis. By contrast, protoplast nodes are distributed over the entire 

cortex (Fig. 2.1G). While we observed protoplast nodes condense into strands (Fig. 2.1G), we 
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did not directly observe nodes form a continuous ring. Instead, rings formed in various ways 

from long strands marked with Rlc1p-3GFP, including coalescence of separate short strands (n = 

2), emergence of long strands from clusters of Rlc1-3GFP (n = 2) or growth from disassembling 

rings (Fig. 2.1H; n = 2).  

 

Protoplast rings are tensile and constrict without septation in a myosin-dependent 

manner 

The contractile ring in intact cells lies at the leading edge of the septum that grows 

between the two daughter cells, while protoplasts did not form septa nor cleave. Nevertheless, 

rings constricted in protoplasts by sliding against and deforming the plasma membrane, 

suggesting that the rings generated tension (Fig. 2.2A,B). The rings contained both myosin-II 

marked with Rlc1p-tdTomato and actin filaments labeled with the calponin homology domain of 

Rng2p fused to GFP (GFP-CHD) (Fig. 2.2C). The equatorial circumference of protoplasts was 

Lproto = 18.9 ± 1.1 μm (n = 7), almost twice that of intact cells (~11 μm). The ring constriction 

rate in protoplasts (rate of decrease of ring length) increased over time and had a time-averaged 

value of 0.22 ± 0.04 μm/min (n = 7), slightly less than the rate in intact cells, 0.30  0.02 μm/min 

(n = 4, p = 0.09, Fig. 2.2D). Rings in temperature-sensitive myo2-E1 protoplasts, in which a 

mutation in the actin-binding region of Myo2p causes weak binding to actin filaments in vitro,66 

constricted with a mean rate 0.08 μm/min, 2.6 fold slower than wild-type protoplasts (n = 3, p = 

0.04, Fig. 2.2D). Thus, protoplast ring constriction depends on myosin-II.  
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Figure 2.2: Protoplast rings constrict by sliding along the membrane without septation.  
(A) The membrane is deformed where the contractile ring attaches (arrowheads), showing that the ring 
generates tension.  
(B) Constriction of an Rlc1-3GFP protoplast ring (time, min).  
(C) Myosin light chain Rlc1p-tdTomato and actin marker CHD-GFP colocalize in a protoplast ring.  
(D) Ring constriction rates are similar in intact cells (n = 4) and wild-type protoplasts (n = 7) but reduced in 
myo2-E1 mutant protoplasts (n = 3, mean ± SEM). Asterisks: statistical significance of p < 0.05; ns: not 
significant. 
(E) Total myosin in the ring (Rlc1p-3GFP fluorescence, normalized to value at constriction onset) versus 
relative ring length for 4 intact cells. Inset: relative myosin concentration (fluorescence per ring length).  
(F) As (E), but for 6 protoplasts. Each symbol denotes a different protoplast. Thin solid lines: best fit linear 
relations. Myosin amount is relative to value at L = Lproto assuming a linear relation. Solid line: mean of 
best fit lines. Inset: relative concentration, showing mean (solid line) ± SEM (dashed lines).   
Fluorescent micrographs, as for Fig. 2.1 except (A), epifluorescence wide field microscope. Protoplast 
boundary outlined in (A) and (B). All micrographs from C. Laplante and T.D. Pollard (Yale University). 
Scale bars: 10 µm. 

 

During ring constriction the amount of myosin-II decreases but the concentration 

increases  

Quantitative measurements of Rlc1p-3GFP fluorescence in both intact cells and 

protoplasts showed that myosin-II became more concentrated in rings as they shortened, 

although the total amount of myosin-II declined (Fig. 2.2E,F).20 In intact cells, shedding of 
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myosin-II from the ring was faster during the latter half of the process, while the rate was almost 

constant for a given protoplast but more variable between protoplasts. The mean rate of myosin-

II loss was similar in protoplasts (8.3% myosin loss per 10% ring shortening relative to initial 

length) and intact cells (8.6% loss per 10% shortening) and is a key input to our mathematical 

model of the ring.  

 

III. Model of the Contractile Ring and Protoplast Constriction 

Kinetics 

We developed a stochastic computer simulation of the fission yeast ring and applied it to 

constriction in protoplasts. The simulation makes testable predictions and outputs results that we 

directly compare to our experimental observations and those of prior studies. Table 2.1 

summarizes the parameter values and Appendix B provides a detailed description of the model. 

In accordance with the quantitative inventory of ring proteins in fission yeast, formin, myosin, 

and α-actinin have concentrations equal to their directly measured values (see Table 2.1).  

Ring organization. The model (Fig. 2.3A) is based on experiments suggesting that actin 

filaments and myosin-II appear to be randomly organized and anchored directly or indirectly to 

the plasma membrane. Accordingly, clusters of myosin-II oligomers are anchored to the 

membrane at random locations, and the concentration of myosin-II as a function of ring length is 

set by our relative measurements in protoplasts (Fig. 2.2F) after setting the concentration at the 

maximum ring length to the value in intact cells (Table 2.1). Actin filaments are randomly 

nucleated by formin Cdc12p, uncorrelated with the locations of myosin-II oligomers, the 

simplest assumption consistent with experiment. We also examined other possible random 



16 
 

organizations where correlations are present due to biased actin nucleation statistics, including 

the node-like arrangement in which actin barbed ends and myosin-II colocalize (see below).  

Actin and formin turnover. After binding at random locations around the ring, formin 

Cdc12p instantly nucleates and grows actin filaments (Fig. 2.3B). Following the addition of an 

ATP-actin subunit to a filament, S. pombe actin hydrolyzes the bound ATP and dissociates the -

phosphate in <10 s.67 Since we predict below that actin turns over in ~11 s, and since cofilin 

Adf1p binding can accelerate phosphate release >10 fold,68 we assume that most subunits are 

ADP-actin and that cofilin binds and severs with equal probability at any filament location. Thus 

the total severing probability increases with length, consistent with cofilin severing kinetics of 

ADP-actin measured in vitro.69 We assume that segments severed from distal ends exit the ring 

as observed in vitro.70 

In the model formin Cdc12p dissociates from rings with rate constant for
offk  = 0.023 s-1, 

directly measured by fluorescence recovery after photobleaching (FRAP) (Fig. 2.8A).71 The 

associated actin filament is assumed to exit the ring with its formin, since the barbed end 

residence time of formin Cdc12p measured in vitro exceeds 1000 s.55  

We determined the parameters defining actin filament nucleation, growth and severing 

rates by demanding that model predictions matched 3 experimental measurements in intact cells: 

the initial formin concentration, the number of actin filaments in the ring cross-section, and the 

total ring disintegration time after LatA-induced actin polymerization shutdown (see Table 2.1). 

The latter was determined in the simulation by setting the polymerization rate to zero and 

recording the time when 90% of the initial actin had left the ring (Fig. 2.8B). 

Forces in the ring. At steady state, these dynamic events generate a random organization 

(Fig. 2.3A). Myosin oligomers bind actin filaments that grow within reach and pull with a force  
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Table 2.1: Parameter values in the contractile ring simulation  
Symbol Meaning Value Legend 

Parameter values 

d Ring thickness 0.2 μm (A) 

dα Actin filament lateral spacing: length of α-actinin crosslinks 35 nm (B) 

0
myoc  Initial myosin-II heavy chain concentration 

20 μM (3000 heavy 
chains per 10 μm of 
ring length) 

(A) 

nmyo Number of myosin-II heavy chains per myosin cluster 40 (C) 

noligomer Number of myosin oligomers per cluster 2 (D) 

fmyo Myosin oligomer force when fully overlapped with actin  2.75 pN (E) 

wmyo Myosin oligomer length 0.3 μm (F) 

ζα α-actinin drag coefficient per unit length of actin filament overlap 9.4 pN·s/μm2 (G) 

for
offk  Formin off rate 0.023 s-1 (H) 

rnuc Actin nucleation rate per ring length 20.8 μm-1 min-1 (I)  

rsev Actin severing rate per filament length by cofilin 1.8 μm-1 min-1 (I)  

vpol Formin-mediated barbed end actin polymerization rate 
70 nm/s 

(26 subunits/s) 
(I)  

γring Ring-membrane drag coefficient 289 nN·s/μm (J)  

Experimental measurements to which simulation results were fit to determine rnuc, rsev, and vpol 

 Initial formin Cdc12p concentration 
3 μM (150 formin 
dimers per 10 μm of 
ring length) 

(A) 

 Time for ring disintegration after large dose of LatA 55 s (H) 

 Number of actin filaments in the bundle cross section 20 (K) 

 
Legend:  
(A) From Wu and Pollard, 2005.20 
(B) From Meyer and Aebi, 1990.72 See also Fig. 2.9. 

(C) Assumed the same as the number of heavy chains per node.20 This, combined with the value for 0
myoc , 

results in 75 myosin clusters per 10 µm of ring length.  
(D) Assuming that each myosin oligomer contains 20 heavy chains. Our results are not qualitatively 
affected by nmyo and noligomer, which have not been measured in fission yeast. 
(E) Chosen to give an average force of 4 pN per myosin cluster, which matches our measured value of 
the force between nodes (see Fig. 2.9).  
(F) From Verkhovsky and Borisy, 1993.11 
(G) ζα = ½ρkατoff. ρ = 2.5 μm-1 is the crosslink density in intact cell rings given 250 α-actinin crosslinks and 
150 actin filaments,20 with 20 filaments in cross section50; kα = 25 pN/μm is α-actinin crosslink shear 
stiffness estimated from in vitro actin-α-actinin bundles;73 τoff ≈ 0.3 s is average crosslink lifetime.74 
(H) From Yonetani et al, 2008,71 Fig. 2.8. 
(I) Fit to previous measurements of rings in intact cells. 
(J) Fit to measured protoplast ring constriction curves (Fig. 2.3F). 
(K) Estimated from published electron micrographs.50 Together with the formin concentration, this implies 
a mean actin filament length of ~1.3 µm 
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proportional to the actin-myosin overlap up to a maximum force fmyo inferred from our 

measurements of node motions in protoplasts (Fig. 2.3C and Table 2.1). A second class of force 

is viscous drag due to the dynamic crosslinker Ain1p α-actinin that opposes relative filament 

motion with drag coefficient ζα per unit length (Fig. 2.3C and Table 2.1). Therefore, ring forces 

are stochastic as they depend on random relative positions of actin and myosin and are 

continuously updated due to filament turnover.  

Ring Constriction. We calculated the ring tension at each ring length, T(L), a valid 

procedure as constriction lasts much longer (~30 min) than the time for ring organization to 

attain steady state (~30 s, the formin turnover time). In protoplasts, rings constrict by sliding 

along the membrane (Fig. 2.2B), so we tested a model in which tension-driven ring sliding is 

resisted by drag forces due to anchors that connect the ring to the membrane with drag 

coefficient γring (Fig. 2.3D). Balancing these forces, we calculated the constriction rate and hence 

the constriction profile L(t) (Fig. 2.3F). 

 

 
IV. Model Results and Comparison to Experimental Data 
 
The fission yeast ring tension is tens of pN and increases during constriction due to 

the increasing myosin-II concentration 

Rings in protoplasts slide along and deform the membrane, suggesting that the ring is 

tensile (Fig. 2.2A,B). We used the model to calculate tension during constriction. As expected, 

tension fluctuated considerably in time due to the constantly fluctuating ring organization. 

Initially, when the ring length equaled the protoplast circumference, tension fluctuated about a 

mean value T = 37 pN with standard deviation 5.4 pN on a timescale ~18 s (Fig. 2.6A), similar to  
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Figure 2.3: Model of protoplast constriction reproduces experimental constriction rates and ring shapes 
(A) Computer simulation of the fission yeast contractile ring. Randomly positioned myosin-II oligomers (orange) 
interact with randomly positioned actin filaments of random polarity (red or blue). Myosin and actin are anchored. 
Parameters, as in Table 2.1.  
(B) Actin turnover processes. Formin-mediated nucleation (rnuc per ring length) and growth (polymerization velocity 

vpol), cofilin-mediated severing (rsev per filament length), formin dissociation (
for
offk ).  

(C) Forces that determine ring tension. Anchored myosins pull barbed-end-anchored actin filaments (tensile). 
Frictional drag from dynamic α-actinin crosslinkers (coefficient ζα per length) opposes relative motion of growing 
filaments (compressive).  
(D) Force balance determines protoplast ring constriction dynamics. Ring tension T produces contraction force (red 
arrow) whose tangential component (dashed red arrow) drives ring sliding. Ring anchor drag forces oppose sliding 
(blue arrow).  
(E) Protoplasts were deformed with coverslips and the shape characterized (radius R of flat portion, half protoplast 
height h). Top right: face-on view (maximum projection) of an Rlc1p-3GFP ring in a deformed protoplast. 
(F) Protoplast ring constriction histories. Discrete markers: experiment. Solid lines: model fits of the tension-anchor 
drag model using constant total ring-membrane drag coefficient γring as fitting parameter. Cell circumference shown at 
right. Other parameters, as in Table 2.1.  
(G) Sum of squared residuals for fits to experimental constriction curves of (F) using different models. (I) Constant 
total drag coefficient model (shown in (F)). (II) Total drag proportional to ring length. (III) Constant constriction rate 
proportional to initial ring length. (IV) Constriction rate proportional to myosin concentration. Error values are relative 
to (I). All parameters except the fitting parameter γring, as in Table 2.1. See also Fig. 2.5. 
(H) Observed (left, Rlc1p-3GFP, maximum projection) and predicted (center, blue) shape of a constricting ring in a 
deformed protoplast, viewed from above (corresponds to the orange asterisks in (F) at t = 7 min, having h = 1.6 µm 
and R = 2.3 µm). Dashed white, solid red lines: cell boundary. Dotted red line: boundary of flat portion of cell. All 
parameters in the simulation from Table 2.1. Bar: 5 µm. See also Fig. 2.4.  
All micrographs from C. Laplante and T.D. Pollard (Yale University). 
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the actin turnover time. Tension increased throughout constriction, reaching ~85 ± 27 pN after 

the ring had shortened by 80% (Fig. 2.6B). Tension is dominated by myosin forces that increase 

in direct proportion to the myosin concentration (Fig. 2.2F Inset and 2.6B Inset). A second, 

smaller component from dynamic α-actinin crosslinks contributes a nearly constant compression  

of ~35 pN (Fig. 2.6B) and originates in compressive drag forces produced by crosslinked 

filaments of opposite polarity that slide relative to one another due to actin polymerization at 

their immobilized barbed ends (Fig. 2.3C).  

 

The ring is anchored ~20-fold more strongly than the combined precursor nodes 

and constricts at a rate set by the balance of ring tension against anchor drag forces 

The contractile ring in protoplasts is anchored to the membrane and constricts by sliding 

parallel to it (Fig. 2.2A,B). To test if the constriction rate is set by ring tension working against 

anchor drag forces, we compressed protoplasts with coverslips to deform the cells from their 

spherical shape (Fig. 2.3E) and observed the evolution of ring shape and length during 

constriction (Fig. 2.3F,H). We simulated constriction in deformed protoplasts by inputting the 

measured myosin concentrations of Fig. 2.2F into our ring simulation to calculate ring tension, 

and then using the measured shape of each protoplast (Fig. 2.3H) to calculate the evolution of 

ring shape and length assuming tension is opposed by anchor drag (Fig. 2.3D and Appendix B). 

This model predicts that the ring adopts a bent shape, with the central ring portion lagging 

behind (Fig. 2.3H). The ring shapes we observed in 6 out of 7 protoplasts are in remarkable 

agreement with these predictions (Fig. 2.3H and Fig. 2.4). This is a demanding test of the model, 

as the predicted shapes are independent of the ring tension, drag coefficient and model 

parameters (see Appendix B). We then compared predicted and measured ring length  
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Figure 2.4: Observed and prediction ring shapes in protoplasts. 
Observed (right, Rlc1p-3GFP) and predicted (left, blue) shapes of rings constricting in compressed 
protoplasts viewed from above. Solid red lines indicate the cell boundary, and dotted red lines indicate the 
boundary of the flat portions of the cells. The simulations reproduce the bent shape of the ring. 
Parameters, as in Table 2.1. All micrographs from C. Laplante and T.D. Pollard (Yale University). Bars: 5 
µm. 
 

constriction histories (L(t), Fig. 2.3F) using the total anchor drag coefficient γring as a fitting 

parameter. The model replicated the curvature of the constriction profiles due to the increasing 

steepness of the protoplast surface (Fig. 2.3D-F), and yielded the best fit value γring = 289 ± 9 

nN·s/μm, ~20 times the total drag coefficient of all intact cell precursor nodes.22 Assuming that 

the anchoring drag decreases with ring length, γring ~L, significantly worsened the fit, (Fig. 2.3G 

and Fig. 2.5) suggesting that the number of anchors and the total drag coefficient remain constant. 

Alternatively, the ring could be dynamically autonomous and determine its own 

constriction rate, as proposed for contractile rings in C. elegans embryos.31 However, the 

tension-anchor drag model fit the experimental data significantly better than two dynamically 

autonomous models (Fig. 2.3G and Fig. 2.5). In the first, the ring has a constant constriction rate 

proportional to its initial length as in C. elegans embryos.31 In the second, the constriction rate is 
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proportional to the myosin concentration but independent of protoplast shape and other external 

factors.  

 

 
Figure 2.5: Best fit ring constriction profiles from 4 different models.  
(A) The tension-drag model with constant drag coefficient matches the experimental measurements best. 
(B) The tension-drag model with a drag coefficient that decreases with ring length has constriction curves 
with larger curvature than observed.  
(C and D) Dynamically autonomous rings with constant constriction rates proportional to initial ring length, 
as in Carvalho et al,31 fail to reproduce the observed curvature in the constriction profiles (C), as do 
dynamically autonomous rings whose constriction rate is proportional to the myosin concentration (D).  
All parameters, from Table 2.1. Ring tension as a function of ring length from Fig. 2.6B.  

 

 

These results suggest that the ring is not autonomous and that the constriction rate results 

from ring tension acting on ring-membrane anchors. Further, following assembly the ring 

anchoring to the cortex strengthens ~20 fold in preparation for constriction and remains 

approximately constant during constriction.  
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Figure 2.6: Ring tension fluctuates in time, increases with increasing myosin concentration and is 
maximized for barbed end actin filament anchoring. 
(A) Ring tension fluctuations in the simulation reflect continuous renewal of actin organization (L = Lproto). 
Dashed line: mean. Inset: tension autocorrelation function exhibits memory time 18.2 s (exponential fit).  
(B) Ring tension in simulation has a tensile myosin and a compressive frictional component. Evolution 
during constriction is plotted. Circles: net tension T. Dashed lines: uncertainty range (SEM) from myosin 
concentration measurements, Fig. 2.2F. Squares: myosin component Tmyo. Triangles: α-actinin friction 
component Tα. Solid line: myosin component, analytical prediction (Eq. 2.1). Inset: Myosin component is 
proportional to myosin concentration. 
(C) We tested 4 actin filament anchoring schemes for tension generating capability. 
(D) Only barbed end anchoring produces tension.  
(E) In rings with unanchored actin the compression is greater for larger α-actinin drag coefficient.  
Parameters as in Table 2.1 except where otherwise indicated. Error bars: standard deviation of temporal 
tension fluctuations.  
 

Barbed end actin anchoring is optimal for ring tension 

Our model assumes that actin barbed ends are anchored to the inside of the plasma 

membrane because candidate anchor Cdc15p binds formin Cdc12p56 and barbed ends are 

anchored in precursor nodes.22 However, as other actin anchoring schemes have not been  

definitively excluded we tested their ability to generate tension (Fig. 2.6C-E; see Appendix B for 

details). 
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Our simulations revealed that tension was greatest when each actin filament is anchored 

at its barbed end because pointed ends grow toward myosins, correctly oriented for interactions 

that produce tension (Fig. 2.6C,D). Anchoring pointed ends produces filaments incorrectly 

oriented relative to myosin and results in highly compressive rings. Rings of actin filaments 

anchored along their lengths produce equal tension and compression forces, so the net tension is 

negligible (0.03 pN) (Fig. 2.6C,D). In the absence of actin anchors filaments translated about the 

ring and unanchored barbed ends tended to grow toward myosins, which then pushed the 

filaments away, causing ring compression due to crosslinker drag forces (-10.3 pN, Fig. 2.6D,E). 

This analysis shows that anchoring actin filament barbed ends is the only feasible scheme that 

produces substantial ring tension.  

 

Tension in a randomly organized ring depends on correlations between actin and 

myosin 

Since experiment suggests the ring has significant disorder, our basic model assumed 

completely random organization. However, as the available data does not preclude greater 

organization we simulated other organizations having actomyosin correlations due to bias in the 

actin nucleation statistics (Fig. 2.7A). When formins nucleated filaments oriented toward the 

nearest myosin oligomers, a peak developed in the actin-myosin cross correlation function cma(x) 

that measures the myosin density distance x from an anchored actin barbed end in the direction 

of the pointed end (Fig. 2.7C). Thus, filaments tend to be displaced from and oriented toward 

keys><key app="EN" db-id="r0x9fe20mxw5dcevwpbxwsacervtp525the tension was 

greater (43 ± 5.3 pN versus 37 ± 5.4 pN at constriction onset, Fig. 2.7D). When nucleation 

oriented filaments away from nearby myosin oligomers the correlation showed a trough 
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(antisarcomeric organizational bias) and the tension was less (29 ± 5.8 pN). We also tested the 

nodes-like organization, where formins bind in myosin-II regions only, which generated  slightly 

less tension than the pure random case, T = 33.5 pN.  

 

 
Figure 2.7: Ring tension depends on the spatial organization of actin and myosin 
(A) Disordered ring organizations can be classified according to component correlations. For pure 
randomness, myosin and actin locations and actin polarity are statistically independent. With sarcomeric 
(antisarcomeric) bias actin filaments tend to orient toward (away from) nearby myosins. In the nodes-like 
case myosin and actin barbed ends colocalize (actin and myosin in the same node do not interact). 
(B) For any random organization, the sarcomericity Ψsarc quantifies the degree of sarcomeric bias.   
(C-E) In accordance with Eq. 1, higher sarcomericity organization produces greater tension. 3 examples 
of biased formin-mediated actin nucleation statistics were tested (see main text). For each, the actin-
myosin correlation function cma(x) (C), tension (D), and sarcomericity (E) were compared to unbiased 
(random) nucleation, our basic model.  
Parameters, as in Table 2.1. Error bars: standard deviation of temporal tension fluctuations.  

 

Our simulation results of Figs. 4-6 show that ring tension depends on the organizational 

statistics and myosin concentration cmyo. Thus we sought an exact interrelationship obeyed by 
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our stochastic ring model. In Appendix B we prove that the dominant myosin tension 

contribution is 

                                                      sarc
2

myofilmyomyo lccCfT   ,                                                 (2.1) 

where cfil is the actin filament concentration, C is a constant proportional to the ring cross 

sectional area and <l2> is the mean square actin filament length whose origin is that longer 

filaments interact with more myosins. Ring organization enters through the “sarcomericity”, ψsarc, 

which is directly related to the density correlation function cma(x) (Eq. 2.9 in Appendix B) and 

quantifies the sarcomeric character of a given disordered arrangement (Fig. 2.7B,E). For 

completely random organization ψsarc = ½, while muscle (ψsarc → 1) and polarity-sorted 

organization75 (ψsarc → 0) represent the extremes of sarcomericity and antisarcomericity, 

respectively. The specific nucleation schemes above generate intermediate sarcomericities (Fig. 

2.7E) that closely correlate with tension and obey Eq. 2.1. Thus, ring tension depends 

quantitatively on actomyosin statistics through the sarcomericity.  

 

Ring actin turns over ~3-fold faster than formin 

The turnover time of formin Cdc12p in the ring, t1/2 = 30 s (Fig. 2.8A), was measured 

using FRAP.71 This measurement directly set the formin off rate constant in our ring simulation 

(Table 2.1). However, direct measurement of actin turnover has not been possible as labeled 

actin does not incorporate into the fission yeast ring.20 Thus, we mimicked an actin FRAP assay 

in our simulation by identifying at some instant all the actin subunits in the ring (the ‘bleached’ 

population) and tracking the arrival of new (‘unbleached’) units. Using the model parameters 

from Table 2.1, from the simulated recovery curve we extracted the actin turnover time, t1/2 = 11 

s (Fig. 2.8A). Thus, we predict that actin turns over ~3-fold faster than formin because formin 
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can leave the ring only by dissociation from the membrane, whereas actin is removed both by 

formin dissociation and by cofilin-mediated filament severing (Fig. 2.8C).  

 

Experiments in formin mutant cells are consistent with the model’s turnover 

mechanisms  

We tested whether our model is consistent with previous measurements in cells 

expressing formin mutants with deletions of both profilin binding domains (ΔPBD) from the 

FH1 domain. In these cells, compared to wild type the formin off rate measured by FRAP was 

smaller ( for
offk  = 0.009 s-1 versus 0.023 s-1, Fig. 2.8A) and the mean time for rings to completely 

disintegrate after high doses of LatA was greater (138 s versus 55 s).71 We simulated the ring 

disintegration assay with mutant formin by using the experimentally measured for
offk  value, 

running to steady state and then setting vpol = 0 and recording the time for 90% of the actin to 

disappear. To reproduce the observed disintegration time we used the actin polymerization rate 

of the mutant formin as a fitting parameter and found the best fit value vpol = 12 nm/s (Fig. 2.8B). 

This is much less than our model’s best fit value in wild type cells, 70 nm/s (Table 2.1), 

consistent with bulk assays showing that the mutant formin had dramatically reduced 

polymerization activity.71  Thus, the assumed turnover mechanisms in our simulation (Fig. 2.3B) 

are able to capture the behavior of contractile rings with perturbed actin and formin turnover.  

 

Ring tension and constriction rates depend on actin polymerization rates 

Reducing actin polymerization rates in intact fission yeast cells with a low concentration 

of LatA or expression of a formin mutant slowed ring constriction by ~30% compared to wild-  
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Figure 2.8: Actin and formin turnover. 
(A) In simulated FRAP assays, actin recovered in t1/2 = 11 s (gray solid line; dashed lines, standard 
deviations for 100 simulated rings). In experiments, formin recovered in t1/2 = 30 s in wild-type yeast, 
circles, and t1/2 = 66 s in ΔPBD formin mutants, triangles 71. Solid lines: exponential fits for dissociation 

constant,
for
offk .  

(B) Simulated contractile ring disintegration after treatment with a high concentration of LatA.  
Actin polymerization rate was chosen to match experiment (inset, Yonetani et al., 2008) for wild-type (vpol 

= 70 nm/s) and ΔPBD mutant (vpol = 12 nm/s) using 90% disintegration criterion (dotted line). Dashed 
lines: standard deviation for 100 simulated rings.  
(C) Contributions to actin removal from the ring via cofilin-mediated severing and formin anchor release, 
simulations.  
(D) Actin filament length distributions from simulations. Slower polymerization generates shorter filaments.  
(E and F). Slower polymerization causes lower tension (E) and slower constriction (F), simulations. Insets: 
ring tension at constriction onset (E) and constriction time (time to constrict from 0.95Lproto to 0.2Lproto) (F). 
Red squares: standard vpol value, Table 2.1. 
(G) Comparison of the mechanism of constriction proposed for C. elegans (left) 31 and our proposal for 
fission yeast (right). (Left) Permanent contractile units endow the ring with structural memory. The 
constriction rate is set by the intrinsic contraction velocity of sarcomere-like contractile units. (Right) 
Fission yeast rings have rapid turnover and a short structural memory. The constriction rate is set by a 
balance between ring tension and resistance forces from the septum (ring-membrane anchors in 
protoplasts).    
Parameters as in Table 2.1, except where otherwise indicated. 
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type cells.24 In agreement with these experiments, reducing the actin polymerization rate in 

simulations lowered both ring tension and constriction rates (Fig. 2.8E,F). The tension is lower in 

the simulations because slow polymerization generates shorter filaments (Fig. 2.8D) that couple 

to fewer myosins (Eq. 2.1), and reduced tension drives slower constriction. Thus, our model 

captures a mechanistic link between actin polymerization, ring tension and ring constriction 

kinetics. 

 
V. Discussion 
 
The fission yeast protoplast as a model system to study cytokinesis 

While S. pombe is attractive for mathematical modeling of cytokinesis, constriction rates 

cannot be predicted as ring constriction is closely coupled to the poorly understood septation 

process. Similar issues arise in animal cells, where constriction couples to cortical flow,76 

membrane remodeling,77 and cytoplasm displacement by the ingressing furrow. To overcome 

this obstacle, we studied fission yeast protoplasts in which rings constricted by sliding on the 

membrane without septation (Fig. 2.2B). This simplification allowed us to quantitatively 

compare predictions of our simulation to experimental observations (Fig. 2.3F,H), enabling us to 

interrogate ring constriction mechanisms directly in a way not possible at present with normal 

yeast. 

While only a small fraction of mitotic protoplasts successfully assembled rings (<1% 

observed, Fig. 2.1G,H), node anchoring and myosin activity appeared little affected by the loss 

of cell wall as node drag coefficients and velocities were similar to those in intact cells. 

Compared to normal yeast, protoplast rings were longer (~19 μm versus ~10 μm) but 
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constriction rates and myosin concentration profiles were similar (Fig. 2.2D-F). Thus, our results 

suggest that contractile rings in protoplasts are largely normal. 

 

How does tension emerge from the disordered, non-sarcomeric ring organization? 

We observed ring shapes, ring constriction rates and membrane deformation that 

demonstrated the fission yeast contractile ring is tensile (Figs. 2.2 and 2.3). Generally, a 

contractile structure can produce tension only if components are crosslinked or are immobilized 

by anchoring. Our ring simulations showed that the actin filament crosslinker α-actinin provides 

only short-lived connections that generate compressive frictional forces (Figs. 2.3C and 2.6B), 

consistent with ring constriction in mammalian cells being retarded by over expression of α-

actinin and accelerated by knocking down α-actinin expression.78 Tension production required 

that actin filaments be anchored to the membrane at their barbed ends (Fig 2.6D). Indeed, actin 

barbed ends are anchored in a variety of tension-producing structures including striated 

muscles,79 focal adhesions,43 and contractile rings of newt eggs.80  

The ring generates tension despite its apparently disordered organization, remote from the 

ordered sarcomeric arrangement of striated muscle. Our analysis showed that the tension 

depends on the sarcomericity ψsarc (Eq. 2.1 and Fig. 2.7), a statistical property that quantifies the 

degree to which the positions and polarities of myosin-II and actin have sarcomeric tension-

producing bias. Its value for the S. pombe ring is unknown, but may be measurable by electron or 

super-resolution fluorescence microscopy. We found that completely random organization (ψsarc 

= 0.5) produces approximately one half the tension of sarcomeres (ψsarc = 1) but the tension 

would be greater if sarcomeric bias were present (ψsarc > 0.5). Given that contractile rings form 

from nodes containing both myosin-II and formin Cdc12 that may persist after assembly of rings, 
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we simulated a node-like organization that produced about the same tension (ψsarc = 0.47) as the 

pure random case (Fig. 7). 

 

Ring tension in fission yeast is much smaller than in animal cells 

To our knowledge the only measurements of contractile ring tension are 10-15 nN in 

fertilized sand dollar and sea urchin eggs.81 Our model predicts much smaller tensions of ~40-80 

pN in the fission yeast contractile ring (Fig. 2.6B), as expected given the much smaller cross 

sectional area of the ring. However, the yeast ring is weak even allowing for size differences: the 

stress is 1.3-2.6 nN/μm2 (assuming 0.2 μm diameter, see Table 2.1), compared with ~25 nN/μm2 

in animal cells,81 5 nN/μm2 on focal adhesions,82 and 250 nN/μm2 in striated muscle.83 This may 

reflect differences in actomyosin packing densities or organization (Eq. 2.1). Small tensions of 8 

pN were also predicted to be sufficient to drive cell division in E. coli.84  

 

Ring anchoring transmits and stabilizes ring tension 

Ring-membrane anchors presumably transduce the ring tension into centripetal force that 

could drive constriction. Indeed, defectively anchored rings in Drosophila cells detached 

centripetally from the cortex.52 We found that the ring-membrane drag coefficient was ~20-fold 

larger than the total of all precursor nodes during ring assembly,22 which correlates with the 10-

fold increase of candidate anchor Cdc15p in the ring as the ring matures.20 However, if our 

prediction that anchor strength is approximately constant during constriction (Fig. 2.3F,G) is 

correct, Cdc15p is not the only anchor because the amount of Cdc15p decreases during 

constriction.20  
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The reinforcement of ring anchoring before constriction may both secure the ring to the 

membrane and stabilizing ring organization and tension. Weaker anchoring may be advantageous 

during ring assembly when myosin forces pull nodes into a tight ring with velocities ~30 nm/s.22 

However, were such weak anchoring to persist into constriction, actin and myosin would slide 

~0.9 µm during the ~30 s actin filament lifetime. This displacement is similar to the mean 

filament length and would significantly dissipate ring organization and tension. Thus, anchor 

reinforcement justifies our model assumption that actin and myosin are in effect immobilized in 

the membrane. 

 

Actin and formin turnover 

While actin FRAP assays of the ring have not been possible, should this be achieved in 

the future it would be possible to test our prediction that actin turns over ~3-fold faster than 

formin (t1/2 = 11 s, Fig. 2.8A) because in addition to filaments leaving the ring when their formin 

anchors dissociate, actin is also removed by cofilin-mediated severing (Fig. 2.8C). Our 

simulations also revealed that the time for complete ring disintegration after inhibiting 

polymerization with LatA, which has been used as an indirect measure of actin filament 

turnover,24 overestimates the actin turnover time by a factor ~5 (1 min versus 11 s). 

We used our model to fit for the values of key turnover parameters which have not been 

measured in the ring (Table 2.1). The formin-mediated actin polymerization rate was 70 nm/s, ~3 

times less than the rate of filament extension from the precursor nodes,22 while the actin filament 

severing rate per unit filament length was 1.8 min-1μm-1, ~6 fold faster than the rate at which the 

optimal concentration of cofilin Adf1p severs muscle actin filaments in vitro.69 Other reactions in 
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fission yeast were also predicted to be underestimated by in vitro assays using purified 

proteins.85  

 

Mechanism of constriction 

Our results describe the fission yeast contractile ring as a dynamically coupled tension-

producing machine regulated by actin turnover that determines the organization (Fig. 8G). Actin 

turnover kinetics set the ring tension since tension depends on ring components and their 

organization: the rates of filamentous actin nucleation, polymerization and depolymerization and 

the bias in these processes set the density, length distribution and sarcomeric correlations on 

which tension depends (Eq. 2.1 and Fig. 7). Thus, constriction can be regulated by actin turnover 

since tension drives constriction. For example, constriction rates would be lowered were the 

formin-mediated actin polymerization rate reduced, since actin filaments would then be shorter 

and the tension lowered as shorter filaments couple to fewer myosins (Eq. 2.1). This prediction is 

in qualitative agreement with published data.24  

An essential feature of the ring mechanism is that turnover is much faster than 

constriction. As the actin organization is renewed every ~30 s, the tension is constantly refreshed 

on a similar timescale as is manifest in the simulated tension fluctuations with memory times of 

~18 s (Fig. 6A). This could prevent dissipation of tension that would otherwise occur due to 

motion of anchored ring components which are known to have finite mobility in the membrane 

given that rings can slide. Rapid turnover may also endow rings with robustness in the face of 

perturbations, since structural defects could be healed in <1 min. On the long timescales of 

constriction (~30 min, Fig 3F), in effect the ring is being continuously remodeled. Thus rapid 

turnover provides the mechanism for ring remodeling: as the ring shortens it quasi-statically 
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presents fewer and fewer binding sites for formins that nucleate actin. Hence, the number of 

filaments decreases in proportion to ring length but local organizational statistics and actin 

density are constant, consistent with the reported constant actin density and decrease in formin 

numbers during constriction.20 

This picture of the contractile ring contrasts with that proposed for C. elegans.31 To 

explain the proportionality between constriction rate and initial ring length during early embryo 

divisions, it was proposed that the ring never loses memory of its initial structure and is 

dynamically autonomous, i.e. constriction rates depend only on intrinsic properties of the ring. 

We find the S. pombe ring has a short structural memory time and the constriction dynamics are 

not autonomous: by studying deformable protoplasts we could show that the ring produces 

tension, but its constriction rate depends on conditions external to the ring. Experimentally, ring 

shapes and constriction rates depended on the shape of the protoplast surfaces on which they 

moved. On flattened protoplasts, constricting rings adopted curved shapes matching those 

predicted by a model assuming tension works against ring-membrane drag forces (Fig. 3H). This 

was a stringent test, as the predicted shapes are independent of the values of the tension, drag 

forces and model parameters. Thus, our analysis suggests the primary function of the ring is to 

generate tension and the constriction rate in intact yeast is set by the response of the septation 

system to the ring’s tension output (Fig. 8G). 

 

Appendix A: Experimental Procedures 
 

Strains and protoplast preparation. Cells expressed fusion protein Rlc1p-3GFP under 

the control of their native promoters and from their endogenous locus. S. pombe cells were 

grown to OD595 of 0.2 and 8-10 ml of cells were harvested by centrifugation in tabletop 
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Beckman for 5 minutes at 2000 rpm. The cell pellet was resuspended in the yeast Lytic/Lysis 

enzyme cocktail (2.5 mg/mL Lytic enzyme (MP Biometicals), 2.5 mg/mL Lysis enzyme (Sigma-

Aldrich) dissolved in E-buffer (50 mM Sodium Citrate, 100mM phosphate buffer pH 6.0) with 

0.6 M sorbitol) and incubated for 1 hour at 30ºC. The protoplasts were washed twice with E 

buffer + 0.6 M sorbitol. The pellet was resuspended in 50 µl mounting medium (50% EMM5S in 

E buffer with 1.2 M sorbitol, 100 µl NPG 10X and 2.5 mg/mL of each Lytic and Lysing enzyme). 

The protoplasts in suspension were mounted onto a glass slide, covered with a coverslip, sealed 

with VALAP, and immediately imaged. 

Microscopy. Cells were imaged by fluorescence and DIC microscopy using either a 

spinning disk confocal microscope or a conventional wide field microscope.  

Node measurements. A single focal plane of protoplasts expressing Rlc1-3GFP was 

imaged for 100-550 seconds with a 1 s time interval. Node MSDs were measured by tracking the 

position of the maximum intensity pixel in each node and following the procedure described 

previously.22 Velocities of nodes undergoing stop-go motion were calculated by dividing the 

node displacement in a burst of motion by the duration of the motion. The brightest pixel of the 

node was tracked.  

Measurement of ring length and cell circumference. The Reslice function in ImageJ 

software (http://rsb.info.nih.gov/ij/) was used to view the ring face-on, and then ring length L 

was measured by tracing the ring in a maximum intensity projection. The protoplast 

circumference Lproto was measured by tracing the perimeter of the cell in a maximum intensity 

projection after viewing it from the same angle as the ring.  

Quantitative fluorescent microscopy. Stacks of Rlc1p-3GFP fluorescent images were 

obtained spanning the entire cell spaced 0.336 μm apart, and then combined using a sum 
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projection in ImageJ. Ring intensity was measured by measuring the fluorescence intensity 

inside a polygon drawn around the ring, and then subtracting background measured in a nearby 

region within the cell. A photobleaching correction curve was obtained by measuring the 

fluorescence intensity of the entire cell. 

 
 

Appendix B: Detailed Description of the Contractile Ring 

Simulation 

Ring geometry 

The simulated contractile ring is a torus with length L and cross sectional diameter d (Fig. 

2.3A and Fig. 2.9). The x-axis follows the ring in the counterclockwise direction. Formin-capped 

actin filaments reside in a hexagonal lattice of Ntube = 31 ≈ d2/ dα
2 tubes aligned with the x-axis, 

where dα is the lateral spacing between tubes (Fig. 2.9). Each actin filament remains in one tube 

for its entire lifetime. Anchored and immobilized myosin clusters have random positions in a 

complementary lattice of myosin tubes, each of which is surrounded by three actin tubes (Fig. 

2.9). Each cluster comprises two myosin oligomers of length wmyo in adjacent myosin tubes. 

 

Actin and formin turnover 

(i) Nucleation. New formin proteins enter the ring in randomly chosen actin tubes. The 

number entering during a time step Δt follows a Poisson distribution with mean rnucLΔt, where 

rnuc is the nucleation rate per ring length. Each new formin immediately nucleates an actin 

filament which has barbed end to the -x (polarity p = +1) or +x (p = -1) direction. We tested 4 

types of actin nucleation statistics: completely random (random x and p), sarcomeric (random x,  
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Figure 2.9: Cross section of the simulated 
fission yeast contractile ring. 
Actin filaments in the simulated ring occupy a 
hexagonal lattice of actin tubes (blue circles), with 
neighboring tubes separated by distance dα. Myosin 
clusters composed of two adjacent myosin-II 
oligomers (example shown in orange) reside in a 
complementary lattice of myosin tubes (red 
squares), each of which borders three actin tubes. 
Myosin oligomers only interact with overlapping 
actin filaments in bordering actin tubes. Myosin 
clusters are assumed to contain nmyo = 40 myosin-II 
heavy chains, the number measured in nodes in 
intact cells (Table 2.1). Each myosin cluster borders 
four actin filament tubes; two of these actin tubes 
border both myosin oligomers, and the other two 
border only one of the oligomers. Therefore a force 
per oligomer of fmyo = 2.75 pN results in an average 
force of 4 pN on a neighboring actin filament, as in 
our measurements of protoplast nodes (Table 2.1). 

oriented toward nearest myosin), antisarcomeric (random x, oriented away from nearest myosin), 

and nodes (nucleation only in myosin regions, random p). (ii) Growth. Actin filaments grow at 

their barbed ends length vpolΔt each time step, where vpol is the polymerization rate. (iii) 

Severing.Each actin filament is severed by cofilin with probability rsevlΔt each time step, where l 

is the filament length and rsev the severing rate. Severing is equally likely everywhere along the 

filaments, and the resulting free portion of a severed filament is deleted from the simulation. (iv) 

Removal. Each formin unbinds from the ring with probability for
offk Δt in each time step, where 

for
offk is the formin off rate. Both the dissociated formin and its associated actin filament are 

deleted from the simulation.  

Balancing formin binding and unbinding rates gives a steady state formin concentration 

of 4rnuc/(πd2 for
offk ). Comparing to the measured formin concentration allowed us to set the value of 

rnuc because d and for
offk  have been measured (see Table 2.1). The values of rsev and v+ were 
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determined simultaneously by fitting to data from two other experiments, as described in Table 

2.1. 

 

Forces, velocities, and tension 

Forces. (i) Myosin oligomers pull on overlapping actin filaments in neighboring tubes 

with force pifmyowik/wmyo, where wik is the length of overlap between actin i and myosin k. (ii) 

Dynamic actin crosslinker α-actinin Ain1p offers viscous resistance to relative motion of 

overlapping filaments in neighboring actin tubes with force -ζαΔlijΔvij, where ζα is the drag 

coefficient per length of overlap, Δlij is the length of the overlap between neighboring actin 

filaments i and j, and Δvij is their relative velocity.  

Actin filament velocities. We tested 4 types of actin filament anchoring. When barbed 

ends are anchored, polymerization pushes the pointed end away from the immobilized anchor, 

resulting in actin filament velocity vi = pivpol. When pointed ends are anchored, or when 

filaments are anchored along their entire length, new actin subunits elongate the filament at the 

barbed end without causing filament motion, vi = 0, and there are no dynamic crosslinking forces. 

When actin filaments are unanchored, actin filament velocities are determined by requiring the 

sum of forces on each filament to vanish: 

                                      0/)/( 0
myomyomyo  

j
ijij

k
iiik vlvvpwwf   .                           (2.2) 

The first term is the total myosin force on actin filament i, where 0
myov = 0.4 µm/s is the unloaded 

working velocity of myosin.66 For simplicity we assumed a linear myosin force-velocity relation. 

The second term is the total dynamic crosslinking force on filament i. At each simulation 

timestep, Eq. 2.2 is solved for all filament velocities allowing update of filament positions.       
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Ring tension. The tension averaged over the ring length is given by         

                                                              


N

i ii LlTT
1

fil / ,                                                          (2.3) 

where Ti
fil is the tension of actin filament i averaged over its length, and the sum is over all N 

actin filaments. With anchored actin filaments the tensions can be expressed as sums of 

independent contributions from myosin forces and crosslinking forces: T = Tmyo + Tα, and Ti
fil = 

Ti
myo + Ti

α.  At each simulation timestep, Ti
fil was calculated for each filament from viscous and 

myosin forces and then Eq. 2.3 was used to calculate the ring tension. For simplicity we only 

calculated the tension in the actin filaments and neglected the tension within the myosin 

oligomers themselves, which is valid if the myosin oligomer is more compliant than the 

membrane to which it is anchored. Even if this condition is not satisfied, this is a small 

correction to the tension because while myosin oligomers and actin filaments are equally 

abundant (150 of each per 10 µm of ring length, see Table 2.1), the myosin clusters are much 

shorter (0.3 µm versus 1.3 µm average actin filament length, see Table 2.1) and therefore 

contribute less to the tension (Eq. 2.3).  

Each simulation was performed at fixed L because constriction lasts much longer than 

actin and formin turnover. Reported tensions are averaged over many simulations with different 

random myosin positions, and each simulation was run for >250 times the formin turnover time. 

 

Analytical calculation of the myosin-generated tension 

Here we derive Eq. 2.1, an expression for Tmyo (the ring tension contributed by myosin 

forces when actin filaments are anchored at their barbed ends). The tension generated by 

myosins in one actin filament averaged over its length is  
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where ρmyo(x|0) is the number density of myosin oligomers in neighboring myosin tubes distance 

x from the filament’s barbed end in the direction of the pointed end, assuming the barbed end is 

at x = 0. The integral is therefore taken from the filament’s barbed end to its pointed end. The 

myosin density contributed by each oligomer is equal to 1/wmyo within the width of the oligomer 

and zero elsewhere. Using Eq. 2.3 to calculate the total myosin tension and converting the sum to 

an average over all actin filaments yields   
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where N is the number of actin filaments (formins). Next we normalize the myosin density by its 

mean value ρmyo = (Nmyo/Ntube)/L, where Nmyo is the number of myosin oligomers in the ring:     
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Finally, we define the myosin heavy chain concentration cmyo = nmyoNmyo/(LA) and the actin 

filament concentration N/(LA), where A is the cross sectional area and nmyo the number of myosin 

heavy chains per oligomer. We now obtain Eq. 2.1,  

                                                           sarc
2

myofilmyomyo lccCfT   ,                                           (2.7) 

where the constant C is given by 

                                                                      
myo

tube

n

AA
C  .                                                          (2.8) 

The geometric factor Atube = A/Ntube is the cross-sectional area per actin tube, which is on the 

order of 2
d . In our simulation’s hexagonal lattice (Fig. 2.9), Atube ≈ 0.78 2

d . The sarcomericity 

ψsarc is   
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where the integral is ensemble averaged over the actin filament length distribution. The 

actomyosin correlation function cma(x) is the average normalized myosin density position x away 

from a barbed end, in the direction of the pointed end, written as 
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where ρfil is the linear actin barbed end density in one actin tube. Here, we used the fact that 

<ρmyo(x|0)>ρfil = <ρmyo(x)ρfil(0)>. For a completely random organization, Eq. 2.10 gives cma(x) = 

1 and Eq. 2.9 gives ψsarc = ½.  

This approach can be extended to pointed end and whole filament anchoring. Consider 

actin filaments anchored to the membrane at fraction α of the filament length away from the 

barbed end. Thus for barbed end anchoring α = 0, and for pointed end anchoring α = 1. Forces 

between the anchor and the barbed end cause compression, and myosin forces between the 

anchor and the pointed end create tension. The ring tension is still given by Eq. 2.7, but with a 

modified sarcomericity, 
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Therefore, with random actomyosin organization (cma = 1), the sarcomericity is ψsarc = α – ½. 

Pointed end anchoring (ψsarc = -1/2) creates compression in the ring with the same magnitude as 

the tension generated by myosin with barbed end anchoring. It is simple to show that whole-

filament anchoring is equivalent to anchoring at the center of the filament (α = ½) so that ψsarc = 

0 and Tmyo = 0. 
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Application of the simulation to constriction in protoplasts   

The ring simulation outputs the ring tension as a function of ring length, T(L). We used 

this to calculate the constriction profiles of protoplast rings sliding along the membrane. The 

sliding velocity is determined by balancing two forces: (i) the component of ring tension T 

tangential to the membrane, and (ii) drag forces opposing the sliding arising from ring-membrane 

anchors (Fig. 2.3C). For a spherical protoplast, it is simple to show that the ring length obeys 

                                                     )/1)((4
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   ,                                    (2.12) 

where Lproto is the protoplast circumference.  

We observed ring constriction in compressed protoplasts (Fig. 2.3E,H) whose shape is 

described by the following function, where z is the direction normal to the substrate: 
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where R is the radius of the flat circles capping the protoplast and h is half the total protoplast 

height. The substrate is at z = -h. The ring is described by the vector r(s) = <x(s), y(s), z(s)>, 

parameterized by the initial arc length along the ring, s.  The force balance per unit length of ring 

is 

                                                         nNNn
r

  TL
td

d
ring  ,                                            (2.14) 

where κ is the local ring curvature, n is the unit vector normal to the ring, and N is the unit 

inward normal vector to the protoplast surface (Eq. 2.13). Note that according to Eq. 2.14, for a 

given initial condition the values of T and γring only scale the rate of the evolution of the ring and 

do not affect the shape of the ring.  
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Procedure for obtaining simulated ring constriction curves. For each of the 7 compressed 

protoplasts that we observed with constricting rings, we measured the protoplast shape 

parameters R and h. The maximum possible ring length is then Lproto = 4R + 2πh. Then for each 

protoplast, we evolved the shape of the contractile ring by numerically solving Eq. 2.14 from an 

initial condition in which the ring was confined to the plane x = 0.1 µm. After a brief transient, 

ring shapes were independent of the initial condition and the values of γring and T only affected 

the rate of ring sliding. Ring tensions T(L) were taken directly from the corresponding 

measurement of relative myosin concentration (Fig. 2.2F). Ring lengths at each time were 

calculated from the ring shape to give L(t). One value of γring was used to fit all 7 measured 

protoplast constriction curves simultaneously. 
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Chapter 3 

 
Kinetics of Stress Fibers 
 
 In this chapter, we switch from the contractile ring to another prominent actomyosin 

cytoskeletal structure, the stress fiber. We present a model of the stress fiber in which actin 

turnover is coupled to mechanical stresses, motivated by an experiment that showed that the 

stress fiber sarcomere relaxation time is of the same order as the actin turnover time. The model 

predicts that the rate of sarcomere length changes is limited by the turnover rate, and model 

results are in agreement with the experiment. This work was published in 2008.86 The model is 

extended and its predictions directly tested against a larger dataset in Chapter 5. 

 

I. Introduction     

The cytoskeleton is a highly dynamic network of semi-flexible protein filaments and 

other components. Two prominent elements are myosin-II motor proteins and actin filaments 

having the important property of polarity with two distinct ends, the ‘barbed’ and the ‘pointed’ 

end. Since the motor domains of myosins bind to actin filaments and tend to move towards the 

filament barbed ends, myosins can exert contractile force when appropriately constrained. Actin 

structures often exhibit continuous turnover in which actin subunits exchange with cytosolic 

actin. Many of the cytoskeleton’s dynamical functions hinge on these two closely related 

properties: contractility and renewal. Cytoskeletal structures assembled from actin, myosin and 

other components exert contractile forces, often closely coordinated with filament assembly and 

disassembly. Contractile structures enable the exertion and sensing of forces, cytoskeleton 

remodeling, regulation of local cellular rigidity and shape and many other functions.87 
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In this chapter, we aim to elucidate mechanisms underlying the behavior of a basic 

cytoskeletal contractile structure: the stress fiber. We seek to understand how actin filament 

turnover and contractile forces may work together to generate the measured characteristics. We 

are particularly motivated by a recent experimental study of stress fibers where surprisingly 

nonuniform contractility was observed after stimulation, some fiber regions being contractile and 

others expansive.41 

Stress fibers are tensile actomyosin bundles anchored at each end to the extracellular 

matrix via transmembrane protein complexes called focal adhesions. They are both force 

producers and force sensors44,88 and can endow the cell with anisotropic dynamically adjustable 

rigidity as required.89 In vivo, stress fibers arise in vascular endothelial cells under shear 

stress33,34 where they mediate adhesion to the underlying extracellular matrix (the basal lamina) 

and in contractile cells (myofibroblasts) involved in wound healing4 which exert forces to close 

the wound5. Beyond its intrinsic importance, the stress fiber is possibly the simplest and most 

accessible cellular actomyosin contractile machine and establishing its organization and 

mechanisms may illuminate general cortical contractility and presumably more complex 

structures such as the contractile ring in cytokinesis.1,90 

Along the stress fiber axis regions containing the actin cross-linking protein α-actinin 

alternate with regions containing myosin-II40 and the polarity of the actin is periodic.39 In 

addition, a nonmuscle form of the giant spring-like protein titin, c-titin, localizes to stress fibers 

in a periodic pattern91 These observations are consistent with a sarcomeric structure similar to 

that of muscle fibrils,92 albeit one that may be somewhat less ordered. This is shown 

schematically in Fig. 3.1: the myosin-containing regions (analogous to the A-bands in muscle) 

lie in the middle of each sarcomere which is symmetric about its center plane; two oppositely-
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oriented actin filaments of equal length lie on either side of the center plane, their pointed ends in 

the myosin region and their barbed ends near the sarcomere boundaries in the α-actinin-

containing regions (analogous to the Z-line regions in muscle). One sarcomere consists of many 

such filament pairs plus myosin arranged in parallel into an approximately cylindrical bundle, 

while the stress fiber is built from many such sarcomeres connected in series. 

The contractile force in stress fibers is produced by nonmuscle myosin-II molecular 

motors, likely in the form of bipolar minifilaments, aggregates of 10–30 myosin molecules 

approximately 0.3 μm in length.11,12,93 Similar to thick filaments in striated muscle, 

minifilaments are symmetric with myosin motor domains located at both ends and separated by a 

bare zone. Thus, similarly to muscle, according to the scheme of Fig. 3.1 minifilaments exert 

inward contractile force since myosins move towards actin barbed ends. Motor activity is 

regulated biochemically by phosphorylation of the myosin regulatory light chain94: when 

phosphorylated (unphosphorylated) a given myosin molecule is active (inactive). Each 

sarcomere has multiple minifilaments which may be aggregated as observed previously in 

fibroblast lamellipodia.11 

Because stress fibers in stationary cells usually exert isometric tension and changes are 

slow, it has been difficult to observe their dynamics and hence identify mechanisms. However, a 

recent experimental study has provided the first measurements of the kinetics of intact stress 

fibers in living cells. Using agents that increase myosin phosphorylation, Peterson et al 

stimulated the myosin in stress fibers of living fibroblasts.41 Tagging myosin II regulatory light 

chain and α-actinin with green fluorescent protein, time-dependent sarcomere lengths were 

tracked, providing detailed kinetic information previously unavailable. Interestingly, the effect of 

stimulation was dramatically spatially nonuniform: myosin in the peripheral regions became 
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more phosphorylated than myosin in the center and then, over the course of ~10 min, peripheral 

sarcomeres contracted while those close to the fiber center expanded. While the overall length of 

the fiber decreased little, individual sarcomeres changed lengths considerably. Under normal 

conditions all sarcomeres were approximately 1 μm in length, while sarcomeres contracted or 

expanded by as much as 0.5 μm after stimulation. 

Here, we develop a quantitative model of stress fibers and apply the model to describe the 

experiments of Peterson et al. Previous theoretical work on actomyosin fibers95,96 addressed 

nonpolar bundles motivated in part by experiments in which disordered bundles of actin and 

myosin fragments in the absence of passive crosslinkers contracted in vitro.97 These bundles are 

very different from stress fibers, which have a more ordered structure, passive crosslinkers, and 

actin turnover (discussed below). The formation and alignment of many stress fibers in a cell has 

been theoretically studied98-100, but these works addressed collective behavior and did not 

attempt detailed descriptions of individual stress fibers. Denoth et al modeled muscle fibrils and 

studied how sarcomeres having different properties influence each other, which is related to our 

interest here.101 However, no model exists which relates stress fiber mechanisms to physical 

structure.  

In addition to myosin’s active contractile force, our model includes a passive elastic force 

due to cellular titin. The recent discovery that c-titin is associated with stress fibers in a periodic 

spatial pattern91 strongly suggests the role of a template, similar to that in muscle, which 

maintains the periodic α-actinin–myosin arrangement and provides passive elasticity in response 

to sarcomere length changes tending to undo the templated arrangement. Single molecules of 

titin from muscle cells have elastic constants kt ≈ 3.75 pN/μm at lengths relevant for stress 

fibers.102 In fact, we find that stress fibers cannot reach steady state without the inclusion of such 
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passive elasticity; within our model’s general framework, we are forced to introduce a titin-like 

presence to explain the experiments of Peterson et al.41  

The final element in our model is actin turnover, which plays a central role. Several 

experimental studies have shown that actin in stress fibers turns over on a timescale of minutes42-

44, similar to the sarcomere expansion/contraction timescales observed by Peterson et al41 and 

suggesting a possible role in the kinetics. Thus actin polymerization/depolymerization processes 

occur along the fibers, possibly localized to specific centers of activity. Actin has been observed 

to preferentially incorporate into the Z-line-like α-actinin regions,103 where the barbed ends are 

located. This suggests growth at the barbed ends, possibly assisted and/or regulated by protein 

machinery. It is natural to speculate that formin may assume such a role,104 since it is known to 

nucleate and regulate growth of unbranched actin filaments of the type stress fibers contain. 

However, while formin is involved in the creation of stress fibers,43,105 no evidence exists to date 

for their presence in mature fibers. Turning to depolymerization, this may occur at the relatively 

unstable pointed ends. Another possibility is that the actin severing protein cofilin is involved; 

stress fibers thicken and become more prominent in cofilin knockdown cells.106  

Given the poor current understanding of turnover, we adopt the simplest possible model, 

assuming growth at the barbed ends at rate v+ (filament length per second), and depolymerization 

rate v− at the pointed ends. A key point is that in steady state these are equal, v+ = v−, and hence 

one or both must presumably be regulated: when a filament becomes too long or short, 

polymerization and/or depolymerization rates will adjust accordingly. That is, filament length 

and polymerization/depolymerization rates are presumably coupled. (A proposed mechanism 

whereby v+ and v− adjust independently of filament length suffers from the difficulty that even 

when v+ = v− growth rate fluctuations, characterized by a ‘length diffusivity’, would lead to 
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uncontrolled growth or attrition.107) This coupling may be mechanical or biochemical. Here for 

simplicity we take v+ fixed and allow v− to be regulated via the following mechanical mechanism. 

For a given sarcomere length, the longer the filaments the greater the overlap of the oppositely 

oriented filaments at their pointed ends in the A-band-like myosin regions; this overlap will 

eventually build up a resistance force, if only because only so much actin filament can fit into the 

limited space and specific geometry. This force is the feedback, increasing v− and allowing a 

steady state overlap where v+ = v−. The two essential ingredients are: (i) resistance force 

dependence on overlap and (ii) depolymerization rate dependence on resistance force. Our 

picture is motivated in part by the observation that the pointed ends of actin in stress fiber 

sarcomeres almost always overlap108 and that overlap forces arise in striated muscle, often 

described with a length-dependent tension.109 

A key parameter in our model is p*, the characteristic overlap force which must be 

attained before depolymerization is significantly increased. Though we invoke a specific 

feedback mechanism here, we propose that regardless of the details of the actual 

depolymerization-length coupling mechanism certain basic features identified by this model have 

generality. An example is p*, the characteristic force where polymerization/depolymerization 

rates become modified. 

What forces does turnover generate? This is simplest to see in steady state, where actin 

filaments treadmill at rate v+. It follows that the myosins are effectively walking along their actin 

tracks with velocity v+ (see Fig. 3.1) and the force they exert is reduced from the stall force by 

λv+ where -λ is the slope of the myosin force–velocity relation near stall (assuming a small force 

reduction). Equivalently, one can think of myosins as always pulling with the stall force and λ as 

an effective internal drag coefficient provided by the myosin system; λv+ is then the viscous drag 
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force due to treadmilling, which will contribute to the stress fiber tension. This illustrates how 

the tension in general depends on turnover rates.  

We will see that the magnitude of the turnover rate is naturally measured by an important 

parameter, 

                                                             r ≡ λv+/p*.                                                                      (3.1) 

For the experiments of Peterson et al,41 we estimate r ≈ 0.1. In this slow turnover limit, r << 1, 

the dissipative turnover force is small but we find that turnover governs the sarcomere relaxation 

kinetics: one of our principal predictions is that the sarcomere relaxation time is τsarc = p*/(ktv+). 

Applied to the system of Peterson et al,41 this yields a relaxation time of order minutes, in 

agreement with the observed kinetics.  

The plan of this chapter is as follows. In section II, we detail the various components of a 

stress fiber and assemble our model equations. In section III, isotonic boundary conditions are 

considered, the simplest case where sarcomeres are independent which nonetheless reveals most 

of the physics of stress fiber kinetics. We find that the overlap force and depolymerization rate 

are fast variables, relaxing very rapidly to a quasi-steady state and subsequently following the 

slow sarcomere length variables. Two possible limiting cases emerge, large turnover rate (r >> 

1) and small turnover rate (r << 1), exhibiting qualitatively different behavior. We argue that 

typical stress fiber systems, in particular those of Peterson et al,41 belong to the r << 1 case. 

Isometric boundary conditions are treated in section IV, in which coupling between sarcomeres 

is necessary to enforce constant length. In section V, we apply our model to the experiments of 

Peterson et al41 and demonstrate that the predicted dynamics are in good agreement with the 

experiment. We conclude with a discussion in section VI.  
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II. Model of Stress Fibers 

Each end of the stress fiber of N sarcomeres, n = 1, 2, . . . , N, is connected to a focal 

adhesion, a transmembrane protein complex adhered to the extracellular matrix. Fig. 3.1 shows a 

schematic of the structure of one sarcomere and the forces involved. The total contractile force 

exerted by a myosin minifilament is  

                                                 fmyo = fs −λvmyo,                                                              (3.2)  

where fs is the stall force per minifilament and vmyo/2 the myosin velocity relative to its actin 

track. Thus vmyo is defined for convenience to be the sum of the myosin working speeds at each 

end of the minifilament. -λ is the slope of the myosin force–velocity relation at the stall force. 

Fig. 3.2 shows schematically such a relation with a form similar to that measured for muscle.92 

To our knowledge, no such measurements exist for nonmuscle myosin minifilaments. For our 

main purpose here, analysis of the experiments of Peterson et al,41 Eq. 3.2 is an accurate 

description since the observed velocities were very small, vmyo/2 << 0
myov , where 0

myov is the zero-

load myosin working velocity (see Fig. 3.2). The only relevant feature of the force-velocity 

relation is the magnitude of λ. 

Stress fibers contain a form of titin arranged periodically along the fiber axis.91 Its 

sequence is very similar to that of striated muscle titin,91 which passively resists stretching of the 

sarcomere.110 Cellular titin is likely to have a similar role in stress fibers, so we assume an elastic 

restoring force. Assuming similar properties to muscle titin,102 for the range of experimentally 

observed sarcomere lengths (~1 μm) a relation linear in sarcomere length x is valid:  

                                                    ftitin = ktx,                                                                     (3.3)  

where kt is the titin force constant whose value in muscle is kt ≈ 3.75 pN/μm.102 In vitro, titin 

assembles with myosin into stress-fiber-like structures in a one-to-one ratio.111 Thus we assume 
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Figure 3.1: Schematic of the stress fiber model.  
(A) Along the stress fiber axis, regions containing myosin (orange) alternate with regions containing α-
actinin (blue). Each end of the fiber connects to a focal adhesion, a transmembrane protein complex that 
is anchored to the extracellular matrix.  
(B) Considerable evidence indicates stress fibers have a sarcomeric structure built from actin (gray), 
myosin (orange), and titin (green). Our model incorporates a contractile force fmyo from the motor activity 
of nonmuscle myosin II minifilaments depending on the relative myosin-actin velocity vmyo and a passive 
elastic force ftitin, proportional to sarcomere length x, from the giant protein c-titin. The fiber tension T is 
transmitted from neighboring sarcomeres and is expansive. Also acting to expand the sarcomere is the 
force p resisting overlap of actin filaments at their pointed ends (shown schematically as if resulting from 
bending of overlapped filaments). The overlap force is a function of the amount of overlap z and tends to 
augment the pointed end depolymerization rate v−. Actin polymerization occurs at constant rate v+ at 
barbed ends. The barbed ends lie in the α-actinin-containing regions (shown blue in part (A)) somewhat 
analogous to the Z-lines in striated muscle. Note v+ and v− are defined per sarcomere so each is the sum 
of identical contributions from the two oppositely oriented actins defining the sarcomere.  
 

one titin molecule per minifilament, and Eq. 3.3 represents the force per minifilament.  

Evidence suggests that opposing actin filaments in stress fibers are normally overlapped 

at the pointed ends in the central A-band-like zone,108 unlike striated muscle where there is no 

overlap over much of the range of operating sarcomere lengths.112 Here we assume overlap 

above a certain threshold generates a resistance force p per minifilament which for simplicity 

follows a linear law,  

                                                 p = kz ,     (z > 0) ,                                                          (3.4)  

where k is the force constant and z is the amount of overlap above the threshold value. The force 

vanishes for z < 0. Its precise origin is unknown but contributions may include simple excluded 
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Figure 3.2: Proposed force-velocity relation for a nonmuscle myosin minifilament.  
The net force generated by the myosins, fmyo, is shown as a function of twice the actin filament–
minifilament relative velocity, vmyo. (Thus vmyo would be the sarcomere shrinkage rate in the absence of 

polymerization.) Principal features include the zero-load myosin working velocity, 0
myov , the stall force fs 

and the slope at the stall force, −λ, which can be interpreted as a myosin internal drag coefficient. Only 
0
myov  has been measured directly for nonmuscle myosin II, found to be 0

myov  ≈ 300 nm/s in gliding 

assays.113,114 We assume that the stall force per myosin molecule and the shape of the force-velocity 

relation are as for muscle myosin II. The internal myosin drag coefficient is λ = βfs/(2
0
myov ) where fs/(2

0
myov ) would be the coefficient for a linear force-velocity relation and β accounts for curvature. We set β = 

5, the value for striated muscle.92,115 
 

volume, among opposing actin filaments or actin filaments and myosin, and actin filament 

bending.  

As discussed in the introduction we account for actin turnover by assuming simple 

treadmilling of actin monomers, adding at constant rate v+ at the barbed ends and dissociating at 

regulatable rate v- at the pointed ends (see Fig. 3.1). Note that these rates are defined per 

sarcomere, and thus are the sum of identical contributions from actin filaments of both polarities. 

At one or both ends cappers or other polymerization machinery may be involved, but this is 

unknown. Since the pointed end overlap force p is caused by filament growth, it is assumed to 

influence pointed end depolymerization according to  
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                                                    v- = 0
-v ep/p* ,                                                               (3.5)  

where p* is a characteristic force level at which this feedback becomes substantial. Here 0
-v  is 

the force-free depolymerization velocity. From general considerations one expects a linear 

dependence at small p and a strong possibly exponential form at large p.116 The particular form 

of Eq. 3.5 is simply a convenient interpolation between these two limits and does not 

qualitatively affect our results. The only important feature is that depolymerization is amplified 

at some characteristic force, p*. 

Let us now assemble the sarcomere dynamics from the above forces according to the 

scheme of Fig. 3.1. Consider a given sarcomere of length x in a fiber at tension T per myosin 

minifilament. The force balance on this sarcomere reads  

                                                           T = fmyo + ftitin – p  ,                                                          (3.6) 

and the myosin working velocity is 

                                                           vmyo = v+ - x  ,                                                                  (3.7) 

where the dot denotes differentiation with respect to time.  

Thus, combining Eqs. 3.2–3.4, 3.6 and 3.7, the length kinetics are 

                                                  λ x  = −ktx + kz − fs + λv+ + T ,                                                  (3.8) 

together with the length constraint 

                                                    x  + z  = v+ − 0
-v ekz/p*                                                             (3.9) 

Equations 3.8 and 3.9, plus appropriate boundary conditions (for example, isotonic or isometric) 

and initial conditions on length x and overlap z are a closed system. 

In the following, we have in mind experiments where initially a fiber is far from steady 

state. In Peterson et al41 this is induced by a position-dependent phosphorylation stimulus, such 

that stall force fs and internal drag coefficient λ are different in different sarcomeres. Thus x(0) 
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and z(0) deviate from their t→∞ values for the given sarcomere. It is understood that x, z, fs and λ 

are in general different in different sarcomeres.  

Steady state values will be denoted by subscript ∞. We will often deal with the deviations 

from steady state, 

                                       y ≡ x −x∞,     δz ≡ z −z∞,     δT ≡ T −T∞.                                             (3.10) 

 

III. Stress Fiber at Constant Tension 

Under isotonic conditions the stress fiber is held at constant tension while the total length, 

L =  

N

n
x

1 n , can vary. Thus sarcomeres are independent of each other, a considerable 

simplification. This will help us to understand the more complex and probably more 

physiologically important isometric kinetics (section 4) which are realized in the experiments of 

Peterson et al.41 Moreover, an intriguing possibility would be to create isotonic conditions in 

experiments involving controlled deformable substrates.  

In what follows, we assume that at t = 0 the fiber is perturbed from steady state, for 

example, by a sudden change in applied tension or myosin phosphorylation profile. First, let us 

establish what the steady state will be under these new conditions. Then we analyze the process 

of relaxation to this new steady state. 

 

Steady state  

In steady state, the polymerization and depolymerization rates are equal. This can only be 

achieved by the overlap z adjusting to the value z∞ such that v− = v+. Thus, from Eq. 3.9,   

                                       z∞ = z*ln(v+/ 0
-v ) ,     z* ≡ p*/k .                                             (3.11)  
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z* is the characteristic overlap where depolymerization is substantially promoted. Clearly, the 

condition v+ > 0
-v  must be satisfied for this mechanism of turnover regulation. Since 

depolymerization responds with exponential strength, even away from steady state the overlap z 

will normally be of order z* or less. From Eq. 3.8, the steady state sarcomere length x∞ is given 

by  

                                                         ktx∞ = T − fs + λv+ + kz∞  .                                                (3.12)  

Note the effect of turnover: both the polymerization term, λv+, and that associated with 

depolymerization, kz∞, tend to lengthen the sarcomere for a given tension. The former is the 

dissipative work done by myosin against internal viscosity to maintain the steady state 

treadmilling rate v+; the latter is the compressive overlap force needed to equalize the actin on 

and off rates.  

 

Relaxation kinetics: two timescales 

A striking and simplifying feature of the kinetics now emerges: it turns out that the 

overlap z is a fast variable, enslaved to the slow sarcomere length variable x. Our procedure will 

be to first assume the two relevant timescales separate, and then after solving the dynamics 

perform a self-consistency check which yields a necessary condition for this to be true; we will 

see that for realistic parameter values this condition is indeed satisfied. Typically, overlap and 

polymerization rate relax in order seconds, while length relaxation requires minutes.  

It is convenient to deal with the sarcomere length and overlap relative to their ultimate 

steady state values, y and δz. Strong sarcomeres (y > 0) will contract, whereas weak sarcomeres 

(y < 0) will expand. In this language, Eqs. 3.8 and 3.9 become  

                                           λ y  = −kty + k δz  ,                                                             (3.13)  
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and  

                                                   y  + z  = v+ − 0
-v ez/z*  .                                                          (3.14) 

Eliminating y  from Eqs. 3.13 and 3.14 yields the overlap dynamics:  

                                              λ z  = λv+(1−e δz/z*) − k δz + kty,                                                  (3.15)  

after using Eq. 3.11. Near steady state the overlap z is of order z*, so the two z-dependent terms 

have characteristic values λv+ and p*, respectively. The dimensionless turnover parameter r ≡ 

λv+/p*, introduced in Eq. 3.1, measures the relative magnitude of this pair. This is a key 

parameter: the physics of relaxation are qualitatively different in the two cases of small and large 

r, respectively. 

 

Fast turnover, r >>1 

In this case the myosin-associated drag force is much larger than the overlap force, so the 

overlap dynamics, Eq. 3.15, simplify to 

                                                 λ z  ≈ λv+(1−e δz/z*) + kty  .                                                       (3.16) 

Assume y is slowly varying and can be treated as approximately constant in Eq. 3.16. Then in a 

timescale ~τolap the overlap relaxes to a value obeying 

                                            λv+(1−e δz/z*) ≈ −kty  ,   τolap = z*/v+.                                             (3.17) 

This is the quasi-steady state relation, rapidly established in time ~τolap. It describes the 

subsequent enslavement of the overlap variable z to the slow sarcomere length variable y. 

To better understand the nature of this early relaxation process, note that for large enough 

r we can expand the exponential in Eqs. 3.16 and 3.17 so the short time dynamics and quasi-

steady state approximate  
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                         z  ≈ 


 yk

z

zv t

*
     ,    k δz = kty/r        (t > τolap).                               (3.18)  

Provided r > kty/p*, expanding the exponentials is valid. It follows that the kδz term can be 

neglected in Eq. 3.13 and hence the relative change in y by the time τolap is order kt/(rk) << 1. 

Thus, during the fast phase sarcomere length is essentially constant, y = y0 ≡ y(t = 0), as is the 

sarcomere velocity y  ≈ −kty0/λ. Noting that the rate of increase in the filament length lfil is equal 

to v+ − v−, the overlap dynamics (Eq. 3.18) can be rewritten as z  = dlfil/dt − y . This articulates 

the physical process during the fast phase as follows. Considering a contractile sarcomere as an 

example, initially the overlap increases as the sarcomere shrinks at constant filament length, z  =  

- y  (since initially dlfil/dt = 0); but this increase in overlap increases the depolymerization rate, so 

now dlfil/dt < 0. This continues until in quasi-steady state the rate of decrease of filament length 

just matches the constant sarcomere shrinking rate. Since y  is a constant, the fast timescale for 

z  to relax is the polymerization relaxation time in Eq. 3.18, z*/v+. When quasi-steady state is 

reached the overlap is fixed (or more precisely, it is changing very slowly) and the filament 

length is decreasing as it ‘melts’ into the overlap region. Overall, during the early fast phase 

overlap is tuned until the filament grows or shrinks together with, and at the same rate as, the 

shrinking or growing sarcomere.  

For longer times, t >> τolap, sarcomere lengths change slowly with overlap enslaved 

according to Eq. 3.18, k δz = kty/r. Note that the deviation of the overlap from its steady state 

value is very small. The overlap and hence filament shrinkage rate decrease in proportion to the 

sarcomere excess length y. The slow y dynamics are obtained by using the quasi-steady state 

relationship for z, Eq. 3.17, in Eq. 3.14:  

                                          λ y  ≈ −kty  ,     y = y0 sarc/-e t    ,   τsarc = λ /kt,                                   (3.19) 
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where y0 is the initial value of y. Note that for these times the overlap is relaxed and the z  term 

negligible. Thus, sarcomere length has simple exponential relaxation kinetics. The relaxation 

time τsarc is identified as the time required for the sarcomere to change length so the force 

imbalance caused by the initial perturbation is corrected by a suitable stretch or contraction of 

titin, the titin forces working against the myosin-derived internal drag coefficient λ. The 

timescale is independent of v+, reflecting the fact that the filament length is continuously and 

very rapidly readjusted to the current conditions and actin growth/shrinkage is not rate limiting. 

Interestingly, under all conditions in this model, the presence of titin is required for the fiber to 

reach a new steady state. 

The self-consistency condition for timescale separation is 

                                                      τolap/τsarc = kt/(kr) << 1.                                                       (3.20) 

Now we will see later that the overlap spring constant k typically exceeds that of the weak titin 

spring, kt ≈ 3.75 pN/µm.102 Thus, the timescales are well separated and the above procedure is 

validated for large r. 

 

Slow turnover, r << 1 

We will argue in below that for real stress fibers the turnover parameter r is normally 

very small. Then the overlap resistance is much larger than the internal drag term in the short 

time z dynamics (Eq. 3.15), which are now  

                                                             λ z  ≈ −k δz + kty.                                                         (3.21)  

Treating the slow y variable as constant, it follows that the overlap relaxes (δz ~ 1 − olap/-e t ) after 

time τolap to a quasi-steady state value obeying  

                                                       k δz = kty  ,    τolap = λ/k.                                                     (3.22) 
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Whereas for large r the overlap relaxation time derived from turnover, in the present case 

of slow turnover the filament length is approximately fixed and the quasi force balance, Eq. 3.22, 

is achieved by translating the entire filament by adjusting the overlap. Since y is assumed to 

change little in τolap, only the overlap force p changes substantially during this process. It thus 

sets the timescale, τolap = λ/k, working against the weak myosin internal drag. For instance, if the 

tension was reduced at t = 0, the overlap force would quickly increase to balance the now 

effectively stronger myosin. From Eq. 3.14 with the small turnover terms discarded, the changes 

during τolap obey Δy ≈ −Δz. Thus in order that the relative change in y be small, it is required that 

k >> kt be satisfied. This condition is expected to be satisfied for actual stress fibers (see below). 

Using this quasi-steady state z value in Eq. 3.14 with z  neglected, the slow y dynamics 

are 

                                             y  = v+(1− */te pyk ).                                                          (3.23) 

Thus, 

                     y = −(p*/kt)ln[1 + ( */t0e pky  − 1) sarc/e t ]    ,   τsarc = p*/(ktv+) .               (3.24) 

If the initial value y0 exceeds p*/kt, then Eq. 3.24 describes an initial rapid phase where y drops 

from y0 to ~p*/kt, followed by the late behavior 

                                         y ≈ (p*/kt) sarc/e t   ,     t >> τsarc.                                           (3.25) 

During this relaxation, the titin spring force must adjust for the sarcomere length to reach a new 

steady state. Since the overlap changes very little during quasi-steady state (Δz/Δy = kt/k << 1 

from Eq. 3.22), the actin filaments must change length if the sarcomere is to change length. This 

length change depends on the slow turnover processes which are rate limiting. Hence the 

turnover ‘viscous drag’, p*/v+, sets the relaxation time τsarc. 

The condition for timescale separation is 
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                                                     τolap/τsarc = (kt/k)r << 1,                                                        (3.26) 

which is always satisfied for this slow turnover case. 

 

Connection between the r parameter and timescales 

It is illuminating to note that the turnover parameter r can be written as the ratio of the 

overlap relaxation timescales in the two cases, 

                                                                r =
vz

k

/*

/
  .                                                             (3.27) 

These timescales originate in the two different mechanisms for changing the overlap: turnover 

and overlap force. The fastest process sets the overlap relaxation time. 

Similarly, r can be written as the ratio of the two sarcomere relaxation timescales: 

                                                            r =  vkp

k

t

t

/*

/
 .                                                            (3.28) 

In contrast to the short time overlap dynamics, the slowest mechanism sets the timescale for long 

time sarcomere relaxation. 

 

IV. Stress Fiber at Constant Length 

Under isometric conditions the total length of the stress fiber, L = 

N

n
x

1 n , is constant. 

This is probably the more physiologically relevant condition because stress fiber ends are often 

connected to immobile focal adhesions. Our particular interest in the present paper is to model 

the experiments of Peterson et al,41 where conditions were approximately isometric: though focal 

adhesions slowly moved centripetally as the stress fiber contracted, the relative change in the 
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entire fiber length was significantly less than the relative length changes of individual 

sarcomeres. 

We consider an initially uniform fiber, every sarcomere having length l = L/N. Note the 

mean length will equal l at all times. At t = 0, a perturbation is imposed such that the myosin 

activity profile is nonuniform along the fiber. We assume the myosin heads of a sarcomere work 

independently in parallel, so changing the number of active heads changes the maximum force 

that can be generated but not the maximum velocity. Thus the slope λ increases in proportion to 

the stall force fs. The activity of a given sarcomere is characterized by the relative deviation of its 

stall force and slope from the mean values:  

                                              ε ≡ 
s

ss

f

ff 
 = 


 

  .                                                   (3.29)  

Angular brackets and overbar will be used interchangeably to denote averages over all 

sarcomeres, e.g.   . A sarcomere with ε > 0 (ε < 0) is relatively strong (weak). Average 

values such as 2  represent the variation in sarcomere activities across the entire fiber. 

In the experiments of Peterson et al41 the variation in measured phosphorylation levels 

was small, |ε| << 1. In this case one can obtain explicit analytical expressions which clearly 

articulate the basic mechanisms. We specialize to this case at the end of this section. 

 

Steady state 

In steady state the overlap must adjust to equalize the actin on and off rates, so z∞ is 

unchanged from the expression for the isotonic case, Eq. 3.11. Averaging Eq. 3.8 in steady state 

over all sarcomeres gives the steady state tension, 
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                                                         T∞ = sf − v+  + ktl −kz∞.                                                (3.30) 

Note that if a perturbation changes the average level of myosin activation then the steady state 

tension will change by an amount ΔT∞ = Δ sf  − v+ . 

Subtracting Eq. 3.8 from its average, both at steady state, gives the steady state sarcomere 

length 

                                                        ktx∞ = ktl − ε sf  + v+ ε .                                                  (3.31) 

Stronger sarcomeres (ε > 0) will end up shorter than weaker ones (ε < 0). 

 

Relaxation kinetics 

In terms of the relative variables, the sarcomere dynamics (Eqs. 3.8 and 3.9) are  

                                λ y  = −kty + k δz  + δT(t) ,   y  + z  = v+(1 − eδz/z*)   .                  (3.32)  

These are as for isotonic conditions except for the new time-dependent tension term. Just before 

the t = 0 perturbation the fiber was uniform and at steady state, so using Eq. 3.31 the initial 

conditions (t = 0+) are  

                                               kty0 = ε ( sf  − v+ )  ,       z(0) = z∞.                                           (3.33)  

The tension is determined by the isometric constraint. Dividing the first expression of Eq. 3.32 

by λ and averaging,  

                                                    δT = 



/1

//t zkyk 
   .                                                 (3.34)  

It follows that the initial tension is lower than T∞  

                                  δT(0) = 
 
     




 



vfvf s

2
s1/1

1/
  ,    (|ε| << 1),            (3.35)  
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after using λ = (1 + ε) . Interestingly, for small ε this deviation is second order, proportional to 

the squared sarcomere strength fluctuation. 

Eliminating y  from Eq. 3.32 gives the isometric overlap dynamics 

                                                λ z  = λv+(1−e δz/z*) − k δz + kty – δT  .                                      (3.36) 

 

Fast turnover, r >> 1 

Discarding the overlap force term in Eq. 3.36, the overlap relaxation kinetics are  

                                       λ z  ≈ λv+(1−e δz/z*) + kty – δT  .                                             (3.37)  

The overlap relaxes after time τolap to the following quasi-steady state relation  

                        λv+(1− eδz/z*) ≈ −kty + δT ,  
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Thus the long time slow dynamics (Eq. 3.32) are  

                                                           λ( y  + z ) ≈ −kty + δT  .                                                 (3.39)  

Now, from Eq. 3.38  

                                                    z  = 
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  .                                    (3.40)  

Inserting this into Eq. 3.39, the first term ~kt y /(kr) is negligible while the second term ~ T /(kr) 

relaxes to essentially zero after the short timescale τolap. It follows that z  can be discarded in the 

slow dynamics:  

                                                      




Tyk

y  t  , 




/1

/t yk
T    ,                                       (3.41)  

where the slow tension dynamics were obtained by averaging the sarcomere length dynamics 

whose relaxation time is of order  
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                                                                        τsarc =  /kt  .                                                     (3.42)  

Note that the ratio of timescales is very small, τolap/τsarc ≈ kt/(kr), justifying the separation of the 

fast and slow dynamical episodes when the polymerization parameter r is large. 

Solving the length dynamics (Eq. 3.41) analytically is difficult in general. However, 

when the variation among sarcomeres is small, ε << 1, the leading order solution is easily 

obtained as follows. Using λ = (1 + ε)  we have  

                                    δT = − yk t  , y  + kty/λ = 0 , (ε << 1) ,                                  (3.43)  

having solution  

                            kty(t) = ε( sf  − v+ ) sarc/e t  ,      δT = − 2 ( sf  − v+ ) sarc/e t  ,                (3.44)  

where we used the initial condition (Eq. 3.33) and the fact that y changes very little during the 

fast episode. Thus while sarcomere length deviations are first order, tension deviations are very 

small and second order, proportional to the squared fluctuation in phosphorylation levels across 

the fiber. 

 

Slow turnover, r << 1 

Discarding the turnover term in Eq. 3.36, the overlap dynamics approximate 

             λ z  ≈ −k δz + kty – δT  , δT ≈ 



/1

//0t zkyk 
.                           (3.45) 

The expression for the tension was obtained as follows. In this small polymerization limit the 

filament length is approximately unchanged on the overlap relaxation timescale τolap, i.e. the 

turnover terms in Eq. 3.32 effectively vanish whence z  = − y  = 0. Thus the mean relative 

overlap z , initially zero, remains approximately zero throughout this early episode. Dividing 
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the overlap dynamics in Eq. 3.45 by λ and averaging then gives the expression for δT after 

assuming y changes negligibly during τolap. Note that the same result is available directly from Eq. 

3.34. 

In solving the fast dynamics system (Eq. 3.45) the length variable y is treated as constant; 

self-consistently, therefore, its relative change must be small. This is a closed system for the N 

overlaps and the tension, having N eigenvalues of order  /k. Thus after a timescale of order τolap 

it will relax to the quasi-steady state relation  

                                        kδz ≈ kty –δT ,   (t > τolap =  /k) .                                        (3.46)  

Our starting point for the slow y dynamics is the length constraint (Eq. 3.32)  

                                       y  = v+(1−ekδz/p*) − z  ≈ v+(1−   */-te pδTyk ) + kT /      ,                      (3.47)  

where we used the quasi-steady state expression (Eq. 3.46) to eliminate the overlap and kt y /k 

was discarded since the overlap spring constant typically greatly exceeds that of titin. Averaging 

and using the isometric constraint yields the tension dynamics  

                                                        T  = −kv+
*)( te1 /pδTyk       .                                            (3.48)  

Note that to determine the tension it is important to include the contribution from z , namely the 

T  term. Indeed the average value, z , is the mean rate of increase in the filament length and 

omission of this term would miss an important intermediate time behavior in the tension, as will 

become clear. 

The closed system, Eqs. 3.47 and 3.48, is solved to yield y and δT time profiles. In 

general this is difficult. Fortunately we can execute this procedure exactly to leading order for 

the experimentally relevant case of small ε. This is done in the next section. 
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Slow turnover: small sarcomere variation, ε << 1. 

This subsection treats the situation relevant to the experiments of Peterson et al41: slow 

turnover (r << 1) and small variation across the fiber, ε << 1.We now solve the equations 

established in the previous section to leading order in ε. 

It will be shown that for all times y ~ ε is first order, whereas δT ~ ε2 is second. Now in 

Eq. 3.45 y = y0 is essentially constant, and from Eq. 3.33 kty0 ≈ ε sf , neglecting the small turnover 

term. Thus the tension term can be discarded in the overlap dynamics, Eq. 3.45, giving simple 

exponential behavior  

                                     kδz = ε sf (1 – olap/e t ) ,    τolap =  /k.                                     (3.49)  

Using this result for the tension in Eq. 3.45 one gets to leading order  

                                                   δT = − olap/
s

2 e  tf      olapt .                                             (3.50)  

This confirms that the tension deviation is second order during the fast relaxation episode. 

Tensions change relatively little due to cancellation of the effects of sarcomeres which are, 

respectively, contractile and expansive relative to the mean.  

Note: (i) for t > τolap, since to first order kty = kδz from Eq. 3.46, and from Eq. 3.49 kδz = 

kty0, it follows that y retains its initial value to this order. This confirms that its relative changes 

in the early fast phase are small (second order or higher), a requirement for the slow-fast 

separation. (ii) Equation 3.50 is invalid for times beyond τolap, when the effects of the neglected 

(de)polymerization terms become important. 

Turning to the long time behavior, let us obtain the sarcomere length evolution to leading 

order from Eq. 3.47. Discarding the second-order tension terms, expanding to order ε and using 

the initial condition kty0 = ε sf  one has  
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                 y  = −
*

t

p

vk  y  ,      kty = kty0
sarc/e t  = ε sf sarc/e t

  ,    τsarc = 
vk

p

t

*
 .            (3.51)  

This is one of our principal conclusions. Since relaxation requires actin filament lengths to attain 

their equilibrium value, the sarcomere length relaxation time τsarc is set by the slow rate-limiting 

turnover processes. This confirms that the timescale ratio is small, τolap/τsarc = ktr/k << 1, 

justifying the fast–slow separation. Note that in fact our expansion in (47) presumed ε < p*/ sf  a 

slightly more stringent condition on ε. For example, we estimate p*/ sf  ≈ 0.25 for the 

experiments of Peterson et al.41  

Finally, let us derive the tension to leading order. Using our result for y (Eq. 3.51) in the 

tension dynamics (Eq. 3.48), expanding the exponential and noting the average of all O(ε) terms 

vanishes one finds the tension obeys a first-order differential equation  

                                       δT  = sarc2t/-

olap

2
s

2

olap

e
*2








 r

p

fTr
   ,                                       (3.52)  

after retaining the leading O(ε2) terms only. This phase begins at t ≥ τolap when δT is close to zero, 

see Eq. 3.50. Thus we take as initial condition δT(0) = 0, since τolap is a much smaller timescale 

than those featuring in Eq. 3.52. After assuming τolap/(rτsarc) = kt/k << 1, the solution is the 

difference of two exponentials  

                                                       olapsarc
/-/2-s

2

s

ee
*2


 rtt

p

f

f

T
    ,                                    (3.53)  

confirming that the tension deviation is O(ε2). The time evolution of the tension is interesting: in 

addition to the expected sarcomere relaxation time τsarc, a second much shorter timescale τolap/r 

features, intermediate between the short (τolap) and long (τsarc) scales. For example, in the 

experiments of Peterson et al41 we estimate τolap ≈ 1 s, τolap/r ≈ 10 s and τsarc ≈ 6 min. The tension 



69 
 

is initially a rising exponential involving the shorter timescale, δT ~ 1 − olap/e rt . A peak value 

δTmax is then reached after time  

                                              tmax = 










olap

sarcolap

2
ln


 r

r
  ,   

*2

s
2

s

max

p

f

f

T 
       .                          (3.54)  

For the experiments of Peterson et al,41 we predict tmax ≈ 29 s. The late stages, comprising most 

of the decay, entail exponential fall off ~ sarc/2e t  with time constant one half of the long 

sarcomere relaxation timescale. 

 

V. Application to Stress Fiber Relaxation Experiments 

Our model identifies two qualitatively distinct classes of kinetics, depending on the value 

of the dimensionless turnover rate parameter, r. To which class do actual stress fibers belong? 

We estimate the overlap force where depolymerization is first amplified as p* = mkBT/δ ≈ 4 pN, 

where δ = 2.7 nm is the effective actin monomer size.116 Here m = 3 is the number of actin 

filaments per minifilament, which we take to be the same as that in muscle.117 The 

polymerization velocity is available from turnover experiments in which an actin renewal 

timescale of ~5 min was measured.44 For the end-to-end treadmilling turnover mechanism 

employed in our model, this translates into a barbed end polymerization rate that is the sarcomere 

length, ~1 μm,41 divided by the turnover time, or v+ ≈ 3 nm/s. Next, we estimate roughly the 

slope of the myosin force-velocity relation  0
myos 2/ vf  , where 0

myov  is the zero-load myosin 

velocity and the factor β accounts for curvature in the relation (see Fig. 3.2). Although β is 

unknown for nonmuscle myosin, we use β = 5, the value for striated muscle.92,115 Each myosin 

molecule can exert ~1.7 pN of force at stall83 and each myosin minifilament contains 10–30 
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myosin molecules.11 Assuming ten molecules on each side of the minifilament gives sf  ≈ 17 pN. 

We also take 0
myov  ≈ 300 nm/s from gliding assays.113,114 Thus we estimate  

                                                           r ≈ 
0
myo

s

*2 vp

vf 
 ≈ 0.1  .                                                     (3.55)  

This suggests that real stress fibers will normally follow slow turnover kinetics, the r << 1 case 

treated in the previous section. 

We now apply our framework to the approximately isometric studies by Peterson et al.41 

This type of experiment is schematized in Fig. 3.3. Initially the fiber was in nearly uniform 

steady state, all sarcomeres of approximately equal length and having the same level of 

phosphorylation. At time t = 0, the addition of a myosin activator apparently caused an 

imbalance in the number of myosins phosphorylated in different sarcomeres: sarcomeres near the 

fiber ends became more activated than those near the center. The peripheral sarcomeres then 

contracted while those in the center expanded. After some minutes the fiber reached a new 

steady state. 

The data of Peterson et al41 indicate that |ε| is small because the apparent ratio of myosin 

activation in end sarcomeres to those in the center was ~1.15. Our model thus predicts that the 

fast overlap dynamics will be those of Eq. 3.49, kδz = ε sf (1 − olap/-e t
) where the overlap 

relaxation time is τolap =  /k. From the discussion above,   ≈ 1.4×10−4 N·s/m. The value of the 

overlap force constant k is unknown. Assuming overlap builds up a substantial force over some 

fraction of the full sarcomere length ~1 μm, we crudely estimate the critical overlap z* = 50 nm, 

giving k = 0.1 pN/nm. The overlap relaxation timescale is then τolap ≈ 1 s. Note that provided k is 

much larger than the titin force constant kt (required for the relative sarcomere length change to 
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Figure 3.3: Schematic of sequence of events during stress fiber relaxation.  
Blue regions containing myosin alternate with white regions containing α-actinin and T(t) denotes the 
tension at time t.  
(A) Before t = 0, the stress fiber is at steady state with all sarcomeres of approximately equal length and 
having equal myosin activities.  
(B) At t = 0 a perturbation is applied causing variable numbers of active myosin heads in different 
sarcomeres. Stronger sarcomeres are represented as darker than weaker ones, with strength relative to 
the mean characterized by the parameter ε. The tension immediately changes to some new value, T(0). 
(C) Nonuniform myosin strength causes the sarcomeres to start changing length until a new steady state 
is reached in (D) where the stronger sarcomeres are now shorter than the weaker ones. The tension 
evolves throughout to enforce a constant stress fiber length. 

 

be small during the fast overlap adjustment phase) the sarcomere length dynamics are insensitive 

to the value of k. 

Turning to the long time relaxation, since it is likely that the condition ε < p*/fs ≈ 0.24 is 

satisfied (see Fig. 3.5) for the sarcomeres in Peterson et al41 it follows that the relevant model 

prediction is given in Eq. 3.51: y = y0
sarc/-e t  with τsarc = p*/(ktv+). For initially uniform stress 

fibers, y0 = εfs/kt from Eq. 3.33. Taking kt ≈ 3.75×10−3 pN/nm,102 the sarcomere length relaxation 

timescale is τsarc ≈ 6 min. 

In Fig. 3.4, model predictions for sarcomere length versus time are directly compared to 

experiment. Experimental data is reproduced from Fig. 3.4 of Peterson et al.41 Peterson et al  

measured the kinetics of central sarcomeres (defined to be within a 10 μm region about the stress 

fiber midpoint) and peripheral sarcomeres (defined to be within 7 μm of a focal adhesion) under
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Figure 3.4: Comparison of model predictions 
for sarcomere length evolution to experimental 
data.  
Experimental data reproduced from figure 4 of 
Peterson et al.41 Plus signs: experimental data 
from cells stimulated by calyculin A. Diamonds: 
experimental data from cells stimulated by LPA. 
Shrinking sarcomeres are from peripheral regions 
of stress fibers and expanding sarcomeres from 
the central region. Solid lines are analytical 

solutions from Eq. 3.51, y = y0
sarc/e t , where τsarc = 

p*/(ktv+) ≈ 6 min and initial sarcomere length was 
chosen to match the experimental data. ε was 
used as a fitting parameter. All other parameter 
values are as estimated in section 5: the 

minifilament stall force sf  = 17 pN, the myosin 

internal drag coefficient   = 1.4×10−4 N·s/m, the 
barbed end polymerization velocity v+ = 3 nm/s, the 
characteristic overlap force p* = 4 pN, and the titin 
spring constant kt = 3.75×10−3 pN/nm. 

 

the influence of two different myosin activators. These data are compared to our analytical 

solutions from Eq. 3.51 using ε as a fitting parameter since the full ε profile was unknown in the 

experiment. All other parameter values were chosen as estimated above. The predicted relaxation 

kinetics are in good agreement with the experimental data. The differences in the magnitude of 

expansion may be attributable to differences in how the two myosin activators affect the ε profile 

or the average amount of myosin in each sarcomere. 

To make predictions pertaining to all sections of the fiber, a full ε profile is needed, 

which can be roughly estimated from the data of Peterson et al.41 The apparent ratio of myosin 

activation in end sarcomeres to those in the center was ~1.15. Assuming a continuous symmetric 

profile, the simplest possibility is a quadratic profile as shown in Fig. 3.5 for a fiber of 50 

sarcomeres, a typical stress fiber length. The fluctuations in ε are then 2  ≈ 0.002 and 2 1/2 

≈ 0.04. 
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Figure 3.5: Profile of sarcomere strengths for 
a stress fiber with 50 sarcomeres.  
In Peterson et al,41 the degree of 
phosphorylation in peripheral sarcomeres was 
~1.15-fold greater than that in central 
sarcomeres, but the full spatial distribution was 
unknown. Assuming a smooth and symmetric 
profile, for small enough variation ε the profile 

will be quadratic. Using the condition  

N

n 1 n  = 

0 results in the quadratic ε profile shown. ε 
ranges from −0.05 to 0.1 under these conditions. 
This ε profile is used in Figs. 3.6 and 3.7.   

 

Figure 3.6 presents numerical solutions for the length dynamics of all 50 sarcomeres in a 

stress fiber with the ε profile of Fig. 3.5 and using all other parameters as defined above. For 

simplicity we have assumed that all sarcomeres have initial length 1 μm. Analytical solutions are 

also presented for the most peripheral sarcomere, n = 1, and the central sarcomere, n = 25. The 

numerical solutions were obtained by solving the 2N coupled ordinary differential equations for 

sarcomere length and overlap obtained by substituting the expression for the tension, Eq. 3.34, 

into the y and z dynamics, the first part of Eq. 3.32 and Eq. 3.36, respectively. Note that for the 

parameter values estimated above, the analytical prediction is very close to the exact numerical 

solution. Sarcomeres with ε > 0 contract, those with ε < 0 expand and those with very small ε 

remain approximately unchanged in length throughout the entire episode, as observed in 

Peterson et al.41 This is rephrased in Fig. 3.7 as a sarcomere length profile evolving in time. Note 

that under these conditions of small ε, our model predicts the sarcomere length profile has at all 

times the same shape as the ε profile (quadratic here) with only the amplitude changing in time. 

It would be of great interest to experimentally measure the full sarcomere length profile.  
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Figure 3.6: Model predictions for the length 
evolution of all sarcomeres in a 50-sarcomere 
stress fiber.  
Solid lines are exact numerical solutions and 
dashed lines are analytical solutions for 
sarcomeres n = 1 and 25 only. Analytical solutions 

are from Eq. 3.51, y = εfs sarc/e t , where τsarc ≈ 6 
min. Analytical and numerical solutions are in close 
agreement. All parameters values are as for Fig. 
3.4 and the ε profile is that of Fig. 3.5. Weak 
sarcomeres expand (ε < 0, upper curves) while 
strong sarcomeres contract (ε > 0, lower curves). 
Sarcomeres with myosin activity near the mean 
value remain approximately unchanged in length.

 

 

 
Figure 3.7: Sarcomere length profiles.  
Model predictions for sarcomere length profile at 
t = 0, 2, 4, 6, 10 and 20 min for the 50-
sarcomere stress fiber of Fig. 3.6. At all times 
the profile has the same shape as the ε profile, 
in this case quadratic; only the amplitude 
changes. Note that initially all sarcomeres have 
equal length, l = 1 μm. With time the weak 
central sarcomeres expand while the strong 
peripheral sarcomeres shorten. By t = 20 min, 
the fiber reaches steady state. For a quadratic ε 
profile, the crossovers between shortening and 
lengthening sarcomeres are at n ≈ 12 and 38.   

 

VI. Discussion 

Model. We developed a model of stress fibers, basic cytoskeletal contractile machines. 

Based on currently available experimental information, the model assumes a sarcomeric structure. 

The essential ingredients are myosin contractility, passive elasticity from c-titin, internal 

resistance forces due to actin filament overlap and actin turnover. The last two are intimately 

connected by a feedback mechanism in our model: when interference between opposing actin 

filaments becomes substantial and the overlap force large, depolymerization rates are augmented. 

Within this broad framework, such a mechanism is inescapable: in its absence, unlimited 
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quantities of actin filament could grow and accumulate in the overlap region in a completely 

unphysical fashion.  

Model parameters. These physical elements were measured by a set of key model 

parameters: (i) fs and λ, the stall force and internal drag coefficient of a myosin minifilament; (ii) 

the titin spring constant kt; (iii) the overlap force constant, k; (iv) v+, the actin barbed end 

polymerization rate and (v) p*, the overlap force above which actin depolymerization is 

enhanced. Of these, fs, λ, kt and v+ are directly measurable and we have estimated p*. 

Fast turnover-overlap relaxation, slow sarcomere relaxation. Each of the many 

sarcomeres comprising the fiber contains oppositely-oriented actin filaments which at some 

instant have a certain growth rate and degree of overlap. An important feature emerging from the 

model is that the overlap and filament growth or shrinkage rate relax very rapidly in seconds, 

while sarcomere lengths relax on a much longer timescale of minutes. During this slow 

relaxation episode filament growth rates adjust very slowly, determined only by the current value 

of the slowly changing sarcomere lengths. Thus, the fast polymerization-overlap system is 

enslaved to the slow sarcomere length system.  

Fast turnover kinetics. We find that two qualitatively different classes of stress fiber 

kinetics are possible, depending on whether turnover is rapid or slow. The class a given system 

belongs to is determined by the dimensionless turnover rate r ≡ λv+/p*. For systems where 

turnover is fast, r >> 1, filament growth rates can adjust rapidly and are compliant to contractile 

and elastic forces. Sarcomere kinetics evolve as they would if one simply ignored turnover and 

filament crowding: sarcomere length change results from contractile myosin and elastic titin 

forces working against internal myosin viscosity, with the actin filaments compliantly growing 

or shrinking as the sarcomere grows or shrinks. Hence, the sarcomere relaxation time is  
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τsarc =  /kt. The filament growth process offers negligible resistance and does not affect the 

force balance. During the initial fast phase the actin growth rate is rapidly tuned to match that of 

the sarcomere by adjusting the overlap, and thereafter the growth rates are maintained equal by 

continuous slow overlap adjustment in tune with the evolving sarcomere growth rate. The recipe 

for the overlap to achieve this tuning is the quasi-steady state relation, Eq. 3.38, which for small 

overlap deviations is kδz = (kty −δT)/r . Using Eq. 3.41 and noting filament growth rate equals 

−v+δz/z*, the quasi-steady state relation translates to an explicit equality of filament and 

sarcomere growth rates, v+ − v− = − y . 

Real stress fibers: slow turnover kinetics. We estimate that real stress fiber systems which 

have been studied experimentally belong to the slow turnover class, r << 1. The behavior is very 

different since polymerization kinetics are now sluggish and adjustment of actin growth rate 

requires substantial forces. Myosin and titin forces now determine the filament growth rate not 

via the sarcomere growth rate, but by a direct force balance: the overlap force matches the 

myosin and titin forces. There is sufficient time to establish this force balance before filament 

growth or shrinkage since turnover is slow. Once the overlap force is determined, this determines 

the filament growth rate which depends only on overlap. The sarcomere can then only change 

length as fast as the filaments themselves can change length; hence the sarcomere growth rate is 

equal to this slow rate-limiting filament growth rate. The early fast relaxation episode consists in 

the filament rapidly translating at fixed length until the overlap matches the myosin and titin 

forces. Thereafter the overlap maintains this force balance by slow adjustments; this is the quasi-

steady state relation kδz = kty −δT , Eq. 3.46, which determines the filament and sarcomere 

growth rate y  = −v+δz/z* ≈ −v+(kty −δT)/p* taking small overlap as an example. This result 

shows how the sarcomere relaxation time results from titin elastic forces acting on the 
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polymerization-overlap system to determine filament growth or shrinkage. The polymerization-

overlap system has an effective internal ‘drag coefficient’ equal to p*/v+, since an imposed force 

p* generates a response in filament growth rate of order v+. Thus the relaxation time is  

                                                 τsarc = 
vk

p

t

*
   .                                                              (3.56)  

This is one of the model’s principal predictions. 

Experimental stress fiber systems. We applied our model to the experiments of Peterson 

et al41 in which sarcomere expansion and contraction was observed after myosin stimulation. For 

such stress fiber systems we estimate the dimensionless turnover parameter r ≈ 0.1, squarely in 

the slow turnover class. We estimate p* = 4 pN and used the muscle titin value kt ≈ 3.75×10−3 

pN/nm,102 while v+ ≈ 3 nm/s is available from experimental actin turnover measurements.44 

Using these in Eq. 3.56 gives τsarc ≈ 6 min, close to the observed relaxation time. Note that even 

though several model parameter values ( fs, β and kt) were estimated from striated muscle, τsarc 

differs from muscle sarcomere relaxation times which are typically on the order of seconds.118,119 

This is as expected since the stress fiber mechanisms articulated by the present model are quite 

different to those believed to govern muscle. Whereas we predict that actin filament length 

change is the rate-limiting process in stress fibers, it has been proposed that in striated muscle 

actin filament length is maintained constant by the molecular ruler nebulin120 or by the activity of 

the pointed end capping protein tropomodulin.121 Moreover, in striated muscle actin does not 

undergo treadmilling121 in contrast to stress fibers.103 

Effect of sarcomere variation amplitude. An important aspect of the relaxation kinetics is 

the extent of myosin activity variation along the fiber from differential stimulation. The relative 

variation is named ε in our model. For the experiments of Peterson et al41 this was apparently 
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small, with |ε| likely to be considerably less than unity for all sarcomeres. For this case we find 

that sarcomere length changes during relaxation are O(ε) whereas tension changes are much 

smaller, ~O(ε2). Our model as phrased here is geared for relatively small ε; we note that for 

larger variations, ε > 0.2, it generates unphysical negative sarcomere lengths. In reality, when a 

sarcomere becomes as short as the length of a myosin minifilament, ~0.3 μm, minifilaments from 

adjacent sarcomeres would abut and prevent further contraction.   

Role of cellular titin. We find that a force that responds to sarcomere length is necessary 

in order for a stable steady state sarcomere length profile to be possible. The discovery of c-titin 

in stress fibers91 strongly suggests titin fulfills this role, and further emphasizes the similarity 

between the well-known sarcomeric structure of muscle and that of stress fibers. It is possible 

that titin has additional and more complex roles. A kinase domain that may actively respond to 

force in muscle is present in c-titin.91  

Actin turnover mechanism and its regulation. Turnover regulation is necessary in order 

that a steady state be accessible but the precise mode of turnover and the mechanisms regulating 

it are unknown. Our model invokes a simple feedback mechanism whereby pointed end overlap 

promotes pointed end dissociation. Other possible mechanisms include regulation of the severing 

protein cofilin which may play an important role in actin disassembly as suggested by recent 

experiments using cofilin knockdown cells.106 It has been suggested that cofilin’s actin binding 

mechanism122 could make its activity force-dependent.123 Another possibility is that the pointed 

end depolymerization rate is fixed and regulation occurs instead through force-sensitivity of 

nucleators at the polymerizing barbed end, possibly formins.123-125 The detailed behavior depends 

on structural details near the barbed end and is beyond the scope of the present paper. For 

example, if one assumes the titin connects to a Z-line-like region but not directly to actin 
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filaments, as in Fig. 3.1, we find a timescale τsarc = p*/(kt
0
v ) where p* now denotes the threshold 

value of the force tending to pull the nucleator away from the barbed end above which the actin 

association rate is strongly augmented. Whatever particular mechanisms may turn out to be 

operative, our model has attempted to articulate certain quite general features. For example, the 

relaxation time of Eq. 3.56 may have broad significance provided the characteristic turnover rate 

v+ and threshold force p* are appropriately reinterpreted. Future and more detailed experimental 

studies of stress fiber kinetics promise to shed light on these important questions.  
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Chapter 4 

Recoil after Severing Reveals Stress  
Fiber Contraction Mechanisms 
 

In this chapter, we develop a mathematical model of stress fibers motivated by an 

experiment in which stress fibers in living cells were severed with laser nanoscissors. The 

severed fibers recoiled rapidly over ~5 s. The dramatic recoil allowed us to use our model to 

determine the balance of internal and external forces on the fiber, and to make predictions of 

fiber behavior in the presence of viscous connections between the stress fiber and its 

surroundings. This model was published in 2009.126 

 

I. Introduction 

In many processes, cells assemble force-producing contractile machines from myosin 

motor proteins, actin filaments, and other structural and regulatory components. Examples 

include the muscle myofibril whose contraction pumps the heart or moves limbs, the contractile 

ring that pinches the cell into two daughters during cytokinesis, and the stress fiber. Stress fibers 

are tension-generating actomyosin bundles terminating at one or both ends in transmembrane 

focal adhesions anchored to the extracellular matrix (see Fig. 4.1). By coupling to the 

extracellular matrix and exerting force, they enable cells to mechanically influence their 

environment and sense its mechanical properties. Stress fibers contribute to adhesion of vascular 

endothelial cells to the basal lamina,34 generate contraction in myofibroblasts which provokes 

tissue reorganization during wound healing,5 and may assist cells in migration.39 
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What are the working parts of stress fibers and how do they coordinate to generate force? 

Stress fibers are similar in some respects to the thoroughly studied myofibrils of striated muscle.6 

A myofibril is built from many contractile repeat units (i.e., sarcomeres) arranged in series, each 

comprising an array of parallel bipolar myosin aggregates (i.e., thick filaments) interdigitated 

with two oppositely oriented actin filament arrays, one on either side. Sarcomeres contract when 

thick filament myosins pull inward on the actin arrays whose pointed ends lie in the central 

myosin zone. The actin barbed ends and the actin cross-linker α-actinin reside at the sarcomere 

boundaries (i.e., Z disks) which are connected to the thick filament centers by the giant spring-

like protein titin.  

Stress fibers in stationary cells appear to be organized in a sarcomeric myofibril-like 

fashion. Along the fiber axis, zones of α-actinin alternate with zones of nonmuscle myosin-II41 

and actin polarity alternates periodically.39 Moreover, a nonmuscle isoform of titin, c-titin, 

localizes periodically to stress fibers.91 Thus, it is natural to ask whether the operating principles 

are similar to those of myofibrils. Striated muscle sarcomere kinetics depends on two 

fundamental relations: the isometric sarcomere force-length relation109 (see Fig. 4.2) and the 

force-velocity relation giving myosin-generated force versus sarcomere contraction velocity.92 

The analogous relations for stress fibers, if they exist, are unknown.  

Establishing a representative model of stress fibers is challenging because in stationary 

cultured cells they normally exert isometric tension with little kinetic activity that could reveal 

contraction mechanisms. Laser ablation is a powerful method that can reveal otherwise hidden 

internal forces in such situations. Recently Kumar et al. severed single stress fibers in living 

endothelial cells using femtosecond laser ablation and measured rapid fiber recoil (~1 µm/s) over 

~5 s (see Fig. 4.1).44 Although contractility of isolated stress fibers was previously 
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demonstrated,127 the quantitative nature of the in vivo data of Kumar et al.44 provides the 

opportunity for quantitative modeling of stress fiber mechanisms. We will argue that because 

such large velocities are realized, recoil kinetics reveal information not only about the internal 

fiber machinery but also about its coupling to the cellular environment.  

Several models of stress fibers have been developed. In the tensegrity model of Luo et 

al.,128 tension from viscoelastic cables is resisted by elastic struts under compression. This is a 

general framework successfully reproducing observed recoil kinetics and other features such as 

widening of the severed ends.44 However, the model’s relationship to the measured sarcomeric 

organization and actin filament polarity distribution of stress fibers is not direct. Other models 

aimed to explain the relaxation kinetics after chemical stimulation observed by Peterson et al.41 

Stachowiak and O’Shaughnessy investigated the role of actin turnover in stress fiber relaxation 

(Chapter 3),86 while Besser and Schwarz proposed a feedback loop between focal adhesion-

based signaling and fiber contraction.129  

Here, we develop a systematic quantitative model of the stress fiber based on known 

components and existing experimental findings. The model consists of a balance of forces in a 

sarcomeric organization: (1) Contractile forces, exerted by nonmuscle myosin II, characterized 

by a force-velocity relation. (2) Elastic forces, characterized by a force-length relation that we 

infer from experimental data. (3) Viscous forces, both internal and external to the fiber. Applied 

to the kinetics revealed by the fiber-severing assay, the model predicts a stress fiber force-length 

relation similar to that of muscle. We find that the internal viscosity is relatively small but 

substantial external drag forces act on the retracting fiber, corresponding to an effective cytosolic 

viscosity ~104 times that of water. In addition to nonspecific interactions, this may reflect 
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specific interactions with cytoskeletal or membrane proteins. Thus, the severed stress fiber can 

be viewed as a natural internal probe of the cell’s effective viscosity.  

 

 

 
 
Figure 4.1: Recoil of severed stress fibers.  
(A) Kumar et al. tracked EYFP-actin stress fiber 
recoil after severing with a femtosecond laser 
nanoscissor.44 (Arrowhead) Incision position.  
(B) Schematic of a severed stress fiber. Regions 
of myosin (dark) alternate with α-actinin (light). 
Each fiber end connects to a focal adhesion 
(FA) anchored to the extracellular matrix (ECM) 
through the plasma membrane (PM). Our model 
predicts that sarcomeres near the severed end 
contract first, resulting in a growing cap of Ncap 
collapsed sarcomeres. 

 

II. Stress Fiber Forces 

Contractile force  

Stress fiber contraction depends on nonmuscle myosin-II motor proteins,44,127 which 

aggregate into ~0.3 µm long bipolar minifilaments, each containing 10–30 molecules.11,93 Both 

minifilament formation and force generation are promoted by phosphorylation of the myosin 

regulatory light chain,94 which is regulated by both myosin light chain kinase (MLCK) and Rho-

kinase (ROCK).130 In a sarcomeric arrangement, motor activity is characterized by a force-

velocity relation by analogy with striated muscle.92 Although this relation has not been measured 

for nonmuscle myosin II, several principal features can be estimated (see Table 4.1): (1) From 

gliding assays, the maximum rate at which bipolar minifilaments can contract a sarcomere (at 

zero load) is 0
myov  ≈ 0.6 µm/s.113 (2) The stall force of a minifilament (at zero velocity) is 
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estimated to be fs ≈ 17 pN, using measurements of muscle myosin-II since nonmuscle myosin-II 

forces have not been directly measured to the best of our knowledge. (3) The slope of the force-

velocity relation at stall, γmyo (same meaning as λ in Chapter 3).  

 

Elastic forces: force-length relation  

The striated muscle force-length relation is well established109 and is typically 

represented as isometric tension versus sarcomere length as in Fig. 4.2A. On the ascending limb, 

tension decreases with decreasing sarcomere length where actin pointed ends first overlap in the 

myosin region. Tension decreases more rapidly in the steepest portion at the onset of 

compressive stresses when thick filaments are forced against Z disks.109,131 Although the stress 

fiber force-length relation has not been directly measured in living cells, two experiments 

suggest a similar form with two distinct regions on the ascending limb (see Fig. 4.2B): 

(Experiment 1) Peterson et al. treated fibroblasts with the phosphatase inhibitor calyculin A,41 

inducing small spatial variations in myosin phosphorylation level about the mean value along 

stress fibers. This caused peripheral (central) sarcomeres to contract (expand). Now a sarcomere 

whose myosin stall force is δfs per minifilament above the mean will contract distance Δx ≈ δfs/k, 

where k is the stress fiber force constant per minifilament. Stachowiak and O’Shaughnessy86 

estimated that δfs = 0.06fs for those sarcomeres which contracted by amount δx = 0.3 µm,41 

implying k ≈ 3.4 pN/µm. This is a small value, close to that of muscle titin.102 (Experiment 2) 

Other evidence suggests that a much larger value onsets at smaller lengths: sarcomeres shrank an 

estimated amount dsarc ≈ 0.28 µm after severing44 (see Table 4.1), reaching a collapsed state 

where enough compressive force developed to balance the tensile myosin stall force. The force 

constant required to stall myosin after a contraction of dsarc is >>3.4 pN/µm.  
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Thus, taken together, Experiments 1 and 2 suggest a force-length relation with two 

distinct portions in its ascending limb as in Fig. 4.2B. One portion reflects tensile forces, perhaps 

from c-titin, which are much smaller than the myosin contractile forces (elastic constant k2); the 

other reflects strong compressive forces at short sarcomere lengths (elastic constant k1). The 

latter stalls contraction after severing at sarcomere length coll
sarcx  = 0

sarcx  - dsarc, where 0
sarcx  is the 

initial sarcomere length.  

 

 

 

 
Figure 4.2:  Force-length relations.  
(A) Striated muscle sarcomere force-length 
relation measured by Gordon et al.109 The 
ascending limb spans lengths ~1.3–2 µm.  
(B) Proposed stress fiber force-length relation: a 
shallow, tensile leg with elastic constant k2 = 4 
pN/µm and a steep, compressive leg with elastic 

constant k1 = 500 pN/µm intersect at length *
sarcx  

= [fs + k1(
0
sarcx  – dsarc)](k1 – k2)

-1 ≈ 0.66 µm. At 

the minimum length coll
sarcx

 
= 0

sarcx  - dsarc ≈ 0.62 

µm (collapsed sarcomere) the elastic resistance 
stalls the myosin. Hard core limit in gray. 

 

 

Viscous forces  

Two classes of viscous drag forces may be present. Internal drag depends on the 

sarcomere contraction velocity whereas external drag depends on the relative velocity between 

the stress fiber and its surroundings. We will find that the existing experimental data cannot be 

explained without invoking external viscous forces.  
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III. Model of Severed Stress Fibers  

The model  

In this section, a model is built incorporating the forces discussed in the previous section. 

The model, depicted in Fig. 4.3, describes one of the two stress fiber pieces after severing, 

comprising Ntot sarcomeres in series. The severed end is free (n = 1), whereas the other end is 

anchored to a focal adhesion (n = Ntot). Fiber kinetics results from the balance of contractile, 

elastic, and viscous forces acting on each sarcomere of length xsarc and contraction velocity vsarc.  

 
Figure 4.3: Model of severed stress fibers.  
External drag acts on bipolar actin bundle n, proportional to its velocity vn. Other forces are internal drag, 
elastic, and myosin forces from sarcomeres to its left and right (see Eq. 4.1). 

 

The contractile myosin force in each sarcomere obeys force-velocity relation Fmyo(vsarc) 

per minifilament. Since this has not been measured for stress fibers, we consider two forms: (1) 

Linear, Fmyo = fs - γmyovsarc. (2) The well-known hyperbolic Hill relation for muscle,92 Fmyo/fs = 

α(vsarc/
0
myov  + β)-1 – β, where α and β are dimensionless parameters.  

In each sarcomere, the elastic force per minifilament at longer sarcomere lengths is 

Felast(xsarc) = k2xsarc, which reflects weak tensile force, possibly from titin. Below a threshold 

sarcomere length *
sarcx  strong compressive forces onset, Felast(xsarc) = k1(xsarc - coll

sarcx ) - fs; which 

balance the stall force at the collapsed sarcomere length coll
sarcx . Thus the maximum possible 
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sarcomere shrinkage is dsarc ≡ 0
sarcx - coll

sarcx . The elastic force is presented in Fig. 4.2B is an 

isometric force-length relation (summed with the myosin contribution) to aid comparison with 

the analogous relation for muscle of Fig. 4.2A.  

The internal and external drag forces per minifilament are determined by the 

corresponding friction coefficients γint and γext: 
int

dragF (vsarc) = γintvsarc and ext
dragF (v) = γextv, where v 

is actin velocity relative to the cytoplasm.  

It is convenient to apply the force balance to the nth bipolar actin bundle at xn moving 

with velocity vn, pulled by two minifilaments to either side (see Fig. 4.3). Thus, sarcomere n has 

length xsarc = xn+1 - xn and contraction velocity vsarc = vn – vn+1. The force balance reads  
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.                                  (4.1)  

The severed-end boundary condition (n = 1) is ext
dragF (v) = Fmyo(vsarc) + Felast(xsarc) - 

)( sarc
int

drag vF , since internal forces act on one side of the bundle only, whereas v = 0 at the fixed 

adhesion (n = Ntot + 1). Thus, we neglect possible alterations in severed-end sarcomere properties 

due to laser ablation; for example, the widening of severed ends observed by Kumar et al.44 

Since vn ≡ dxn/dt, Eq. 4.1 is a closed system solvable for the time-dependent velocities 

and locations of all actin bundles (and hence sarcomeres). 

 

Parameters 

The parameter values used in our model are listed in Table 4.1. Since stress fiber elastic 

constants have not been directly measured, we use the muscle value in the steep region (k1) and 
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the value for muscle titin in the shallow region (k2). Note that the internal and external drag 

coefficients are key parameters that are not known. A major objective of this work is to use our 

model to infer their values using the measured post-severing recoil data. 

 

 
Table 4.1: Parameter values in the model of severed stress fibers.  

Symbol Meaning Value Legend 

Fixed parameter values 

0
sarcx  Initial sarcomere length 0.9 μm (A) 

Ntot Number of sarcomeres 12 (B) 

dsarc Sarcomere collapse distance 0.28 μm (B) 

fs Myosin-II minifilament stall force 17 pN (C) 

0
myov  No-load myosin velocity 0.6 μm/s (D) 

γmyo Force-velocity relation slope  28 pN·s/µm (E) 

k1 Compressive elasticity 500 pN/µm (F) 

k2 Tensile elasticity 4 pN/µm (G) 

γext External drag coefficient 5.3 pN·s/µm (H) 

γint Internal drag coefficient 5.0 pN·s/µm (H) 

nmini Number of minifilaments per sarcomere 50 (I) 

w Stress fiber diameter 0.5 µm (J) 

 
Legend: 
(A) From Sanger et al.108 
(B) Images from Kumar et al. indicate relative shortening ~1/3 after severing; total recoil distance was 
~3.35 µm.44 Thus, Ntot ≈ 12 sarcomeres each shrank by dsarc ≈ 0.28 µm. 
(C) Assumes 10 myosins on each side of a minifilament,11 each with the muscle myosin stall force, 1.7 
pN83. 
(D) Bipolar minifilaments can contract actin at twice the velocity measured in gliding assays.113 

(E) For a linear force-velocity relation, γmyo = fs/
0
myov . Same meaning as λ in Chapter 3. 

(F) Value for steep region in striated muscle relation.109 
(G) From muscle titin.102 
(H) Fit to experimental data. 
(I) Assumes two actin filaments per minifilament117 and 100 actin filaments in parallel, consistent with 
electron micrographs showing stress fibers ~10 filaments across.39 
(J) From Kumar et al.44  
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Dynamics of the collapsed cap 

As will become clear, Eq. 4.1 reveals a sequential collapse of sarcomeres propagating 

inward from the free severed end. After severing, the end sarcomere finds itself in an 

extraordinarily asymmetrical situation: myosin pulling forces on one side are unopposed by 

myosins on the other (severed) side. The large imbalance is resisted by weak drag forces only. 

Thus, the end sarcomere swiftly contracts to its minimum length. This collapsed sarcomere is 

inactive, its myosin contractility exactly negated by elastic resistance. Hence, the second 

sarcomere finds itself in the same asymmetrical situation and subsequently collapses, and so on: 

a collapse front propagates inward, leaving in its wake a growing cap of Ncap collapsed 

sarcomeres at the severed end (Fig. 4.1B). 

What equations govern the cap growth in time, Ncap(t)? Cap dynamics are most clearly 

phrased in the hard-core model, defined as (1) In the force-length relation, k1→∞ and k2→0, 

excellent approximations since there is one very shallow and one very steep region (Fig. 4.2B). 

(2) The continuous limit is taken (vn+1 - vn → ∂v/∂n, etc.), which accurately describes many 

sarcomere behavior. (3) A linear force-velocity relation is assumed. Equation 4.1 then simplifies 

to (see Appendix A for derivation) 

                                           totcap
ext

intmyo2
2

2
2              , NnN

n

v
v 











                       (4.2) 

where the velocity penetration depth ξ plays a crucial role in the severed fiber’s evolution. The 

first Ncap sarcomeres are collapsed (1 ≤ n < Ncap) whereas this equation describes the uncollapsed 

portion of the fiber. It is to be solved for the fiber velocity profile v(n) subject to boundary 

condition v = ξ2( 0
sarcv  + ∂v/∂n)/Ncap at the collapse front n = Ncap, where 0

sarcv  ≡ s

~
f /(γmyo + γint) and 

s

~
f  is the effective stall force at t = 0 including the elastic contribution (see Appendix A). In 
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Appendix B, we show that the collapsed cap length Ncap and sarcomere length profile xsarc obey 

the equations 
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IV. Solutions of Model Equations  

For a given cap length Ncap, Eq. 4.2 is solved for the stress fiber velocity profile v(n). This 

gives the severed-end recoil velocity vrecoil = v(Ncap) and the sarcomere contraction velocity 

profile vsarc = -∂v/∂n: 
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Short time recoil 

Immediately after severing (Ncap = 1), the first sarcomere contracts with velocity  

0
sarcv /(1 + 1/ξ) (Eq. 4.4) and collapses in time τcoll = 0

coll (1 + 1/ξ) where 0
coll  = dsarc/

0
sarcv  and 0

sarcv
 

are, respectively, the collapse time and velocity in the absence of external drag (ξ→∞). From Eq. 

4.4, the length profile at the instant of the first sarcomere collapse is xsarc(n) = 0
sarcx

 
- dsarce

-(n - 1)/ξ. 
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Steady state 

Equation 4.3 is solved for the sarcomere length profile as a function of cap length in 

Appendix B. After the first collapse (t = τcoll), a steady-state profile is established relative to the 

moving collapse front at n = Ncap: 

                                       capcoll
/

sarc
0
sarcsarc   ,           cap Nntedxnx Nn                              (4.5) 

Note this matches the profile at the instant of the first collapse. With θ = dsarc/ξ, Eq. 4.3 is then 

solved for cap length as a function of time, 

                                               
      coll

2/10
collcap            1/2   tCttN                              (4.6) 

where C = 1 – ξ-2 was determined by the initial condition Ncap = 1 at t = τcoll. 

Initially, the severed end recoils at constant velocity (Eq. 4.4 with Ncap = 1). Using Ncap(t) 

from Eq. 4.6 in Eq. 4.4 gives the recoil velocity at later times when the steady-state sarcomere 

profile is established. Thus, 
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These results apply until all sarcomeres have collapsed and the stress fiber has length Ntot
coll
sarcx . 

This occurs after time Tcoll ≈ ( 0
coll /2)(Ntot/ξ)

2, obtained by setting Ncap = Ntot + 1 in Eq. 4.6. 

 

V. Model Results and Comparison to Experimental Data 

Comparison of Model Results to the Experimental Recoil Curve  

In the experiments of Kumar et al.44 (Fig. 4.1), severed end displacement xrecoil(t) was 

followed in time. The measured recoil is plotted in Fig. 4.4 together with the hard core model 

predictions, Eq. 4.7 (dashed line), using Table 4.1 parameter values. Also shown are numerical 
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solutions to the exact discrete model equations (Eq. 4.1), using both the linear (thick solid line) 

and Hill (dotted line) force-velocity relations. We fitted the numerical solutions to the 

experimental data44 using only the drag force coefficients as fitting parameters. For internal drag, 

the best fit values γint = 5.0 pN·s/µm (linear) and γint = 0 (Hill) were considerably less than the 

effective drag due to myosin, γmyo = 28 pN·s/µm. Best fit external drag coefficients were γext = 

5.3 pN·s/µm (linear) and γext = 4.3 pN·s/µm (Hill). 

 

 
 
 

Figure 4.4: Recoil kinetics: model predictions 
compared to experimental results.  
(Solid circles) Experimental data from Kumar et 
al.44 (Thick solid line) Numerical solution of Eq. 
4.1 using the linear force-velocity relation with 
best-fit values γext = 5.3 pN·s/µm and γint = 5 
pN·s/µm. (Dotted line) Numerical solution using 
the Hill force-velocity relation with best-fit values 
γext = 4.3 pN·s/µm and γint = 0. All other 
parameters as in Table 4.1. (Dashed line) Hard 
core model, Eq. 4.7, truncated at xrecoil = Ntotdsarc. 
(Thin solid line) Recoil curve with γext = 0, fit for 
best corresponding internal drag, γint = 338 
pN·s/µm. (Inset) Log-log plot showing 
experimental recoil distance44 (solid circles) and 
predicted t1/2 law (solid line).  

 

The results in Fig. 4.4 demonstrate the following: (1) With the parameters of Table 4.1, 

model predictions are in excellent agreement with experiment. (2) Results for the hard core and 

exact discrete models are almost indistinguishable, showing that the continuous limit and hard 

core approximation to the force-length relation accurately describe stress fiber severing. (3) 

Linear and nonlinear force-velocity relations yield similar results, both indicating that myosin 

dominates internal dissipation. Thus, hereafter we consider only the linear force-velocity relation.  

An important prediction of the hard-core model is that for intermediate times (before 

complete fiber collapse), severed end displacement follows a one-half power law, xrecoil ~ t1/2 (see 
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Eq. 4.7 for t >> 0
coll ). The measured recoil profile is in rather close agreement with this 

prediction (Fig. 4.4, inset). In the next section, we will show that this power law results directly 

from external drag. 

 

External Drag Results in Nonuniform Sarcomere Length Profile and a Collapsed 

Cap  

The state of the severed stress fiber at any instant is specified by the lengths of all 

sarcomeres. Model predictions were presented above. Using Table 4.1 parameter values, their 

main features can be summarized as (1) Immediately after severing, the sarcomere at the severed 

end contracts at rate vsarc = 0.45 µm/s and collapses after τcoll ≈ 0.62 s. (2) Thereafter a cap of 

Ncap(t) collapsed sarcomeres grows at the severed end as successive sarcomeres collapse (Fig. 

4.5). The cap growth law predicted by the hard-core model (Eq. 4.6) agrees closely with that of 

the exact discrete model (Fig. 4.5, inset). (3) After collapse of the first sarcomere, noncollapsed 

sarcomeres attain a steady-state exponential length profile of width ξ ≈ 2.5 (Eq. 4.5). This is 

evident in Fig. 4.6, where a collapsed cap grows, ahead of which only ~ξ sarcomeres have 

significantly contracted at any instant. Continuous hard-core and discrete model profiles are in 

good agreement. (4) Complete fiber collapse occurs after Tcoll ≈ 5.2 s (cap engulfs entire fiber). 

(5) Before total fiber collapse, cap growth follows a one-half power law, Ncap ~ t1/2. 

In summary, the severed stress fiber comprises three zones (see Fig. 4.6): a collapsed 

portion near the severed end; a contracting zone of ~ξ partially collapsed sarcomeres; and an 

undisturbed portion near the adhesion. The origin of this highly nonuniform profile is drag force 

exerted on the recoiling fiber by its surroundings, which causes nonuniform sarcomere 

contraction velocities (Eq. 4.4). Were drag force absent, every sarcomere would experience the
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Figure 4.5: Sequential sarcomere collapse.  
Numerical (solid lines, Eq. 4.1) and hard core 
model (dotted lines, Eq. 4.4) solutions for 
sarcomere length evolution using parameters 
from Table 4.1. (Inset) Numerical (solid line, Eq. 
4.1) and hard core model (dashed line, Eq. 4.6) 
solutions for collapsed cap growth. For 
numerical solution, a sarcomere was defined as 

collapsed when xsarc < *
sarcx . 

same forces: the myosin contractile force fs would be resisted only by internal friction (γint + 

γmyo)
0
sarcv , where the effective myosin drag coefficient γmyo is the slope of the myosin force-

velocity relation. Equating forces, all sarcomeres would contract with the same velocity 0
sarcv  ≈ 

fs/(γmyo + γint) and collapse in the same time 0
coll  = dsarc/

0
sarcv . The sarcomere profile would be 

uniform at all times. We find that this zero external drag scenario is inconsistent with the 

measured recoil profile: setting γext = 0, the model predicts almost constant recoil velocity (see 

Fig. 4.4, thin solid line) in clear contradiction to the pronounced curvature of the observed profile. 

 
Figure 4.6: Evolution of the sarcomere length profile. 
Evolution of sarcomere length profile according to numerical solutions (Eq. 4.1, symbols) and hard core 
model (Eq. 4.5, solid lines) for fibers of Ntot = 12 (A) and Ntot = 30 (B) sarcomeres. Other parameters from 
Table 4.1. Three regions of differing sarcomere contractile activity are indicated for the Ntot = 30 fiber 4.5 s 
after severing (red). 
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Effect of external drag: scaling arguments 

How does external drag modify the drag-free scenario? What is the origin of the 

predicted t1/2 laws for recoil and cap length at intermediate times (Eqs. 4.7 and 4.6)? Consider the 

following simple scaling arguments. Central to the discussion is the velocity penetration length ξ 

(Eq. 4.4), the width of the contracting zone: only these ~ξ sarcomeres have substantial 

contraction velocity vsarc. Note that the larger the external drag, the smaller this penetration depth. 

(1) Early transient. Consider the sarcomere at the severed end. Immediately after severing, it 

feels the forces discussed previously, but now an additional external drag γextv resists contraction. 

Its velocity relative to the surroundings is v ≈ ξvsarc since ~ξ sarcomeres are contracting. 

Balancing forces now gives contraction velocity vsarc = 0
sarcv /(1 + 1/ξ) and collapse time τcoll = 

0
coll (1 + 1/ξ). External drag prolongs collapse by the factor 1 + 1/ξ ≈ 1.4. (2) Steady state. At 

large times, resistance to contraction of the first uncollapsed sarcomere is dominated by the large 

drag force ≈ Ncapγextvrecoil acting on the cap moving with velocity vrecoil = dxrecoil/dt. Note its total 

drag is proportional to cap size Ncap. Equating this to the myosin contraction force fs yields vrecoil 

≈ 0
sarcv ξ2/Ncap. Now the cap growth rate dNcap/dt ≈ vsarc/δxsarc is proportional to vsarc ≈ vrecoil/ξ, the 

sarcomere shrinkage rate in the contracting zone across which velocity falls to zero from the 

value vrecoil at the cap. Here δxsarc ≈ dsarc/ξ is the length of the first uncollapsed sarcomere relative 

to the collapsed length (the remaining slack). Across the contracting zone, the slack changes 

from zero at the cap to dsarc at the edge of the unaffected zone. Hence, the cap dynamics are 

dNcap/dt ≈ ξ2/( 0
coll Ncap) with solution 

                               
   0

collsarccaprecoil

2/10
collcap                , /2   tdNxtN                             (4.8) 
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These are precisely the results predicted by the hard core model for large times (Eqs. 4.6 

and 4.7). The arguments reveal that for such times the experimentally observed recoil distance is 

simply the total cap length. Thus, recoil distance and cap size are fundamentally related. The 

experimental data are consistent with this t1/2 recoil law (Fig. 4.4, inset). 

 

External Drag Prolongs Relaxation of Force on Focal Adhesions 

Focal adhesions play important roles in a cell’s mechanical communication with its 

environment and can respond to applied force.82,132 Immediately after severing, the tension 

vanishes at the severed stress fiber ends and thus the force exerted by the severed fiber on its 

anchoring adhesions will eventually decay to zero. We used our model to calculate this decay 

(Fig. 4.7). The predicted decay time equals the end recoil relaxation time (Tcoll ≈ 5.2 s) since the 

total external drag on the retracting fiber is communicated to the adhesion. Finite decay time of 

the force is entirely due to external drag: without drag, decay would be instantaneous, since the 

vanishing tension is the same throughout the fiber. 

Kumar et al. used traction force microscopy to measure total cellular traction reduction 

after severing a stress fiber. This includes contributions from all focal adhesions.44 Although 

focal adhesions were not visualized and single adhesion forces not measured, consistent with our 

model’s predictions, substrate relaxation near the intact stress fiber end (where an adhesion is 

expected to reside) appeared to occur on a timescale similar to that of fiber recoil. 
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Figure 4.7: Force exerted by a severed stress 
fiber on its anchoring adhesion  
Model predictions for fibers of three lengths as 
indicated. All other parameters from Table 4.1. 
Force profiles are numerical solutions of Eq. 4.1 for 
force exerted on the actin bundle connected to the 
adhesion (n = Ntot + 1). Note that the total force on 
the adhesion may have contributions from other 
attached stress fibers. 

 

VI. Discussion 

We developed a model of stress fibers starting from the experimentally established 

organization of actin, myosin, and other components. The model was applied to fiber kinetics 

after severing. Comparing model predictions to a recent experimental severing study enabled us 

to test contraction mechanisms and to quantitatively infer fundamental stress fiber properties. 

 

Force-length relation 

As for muscle, a fundamental property is the single sarcomere force-length relation. We 

find the profile is similar to that of muscle (Fig. 4.2A) in that there are two distinct regions on the 

ascending limb (Fig. 4.2B): (1) Shallow region. At normal operating lengths, resistance to length 

change is weak. The long sarcomere relaxation times observed in Peterson et al.41 imply a small 

force constant similar to that of muscle titin,102 k2 = 4.0 pN/µm per minifilament. This suggests 

the shallow region originates in tensile stress due to c-titin,91 consistent with evidence of elastic 

contribution to stress fiber stress,133,134 although apparently inconsistent with other 

observations.44 This remains an important question to resolve by future experiment. (2) Steep 

region. In the severing experiments of Kumar et al.,44 after sarcomeres contracted, total 
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estimated distance dsarc = 0.28 µm compressive elastic forces suddenly built up and stalled the 

myosin contractile force, fs = 17 pN per minifilament. We found that the corresponding force 

constant at these small lengths is much greater than in the shallow region, and we used the value 

from muscle, k1 = 500 pN/µm. These forces presumably originate from interference of 

overlapping actin filaments within myosin regions and from myosin-myosin interference 

between adjacent sarcomeres. Note the steep ascending region in muscle (Fig. 4.2A) likely also 

has its origin in compressive elastic forces.109 

The experimental data currently available is not consistent with a simple constant slope 

relation. Severing experiments dictate that the single force constant value would be k ≈ fs/dsarc ≈ 

60 pN/µm per minifilament. Although this model can fit the severing data well (it is 

mathematically equivalent to a viscoelastic cable44), it cannot explain the slow relaxation seen in 

Peterson et al.41 

Assuming each sarcomere contains nmini = 50 minifilaments in parallel and is w = 0.5 µm 

wide (see Table 4.1), the total sarcomere force constant is nminik2 = 200 pN/µm at normal 

operating lengths. This implies an effective modulus ~103 pN/µm2, considerably less than the 

value ~105-106 pN/µm2 reported by Deguchi et al. for isolated stress fibers.134 The mechanical 

properties of these latter fibers may have been altered by isolation and the absence of ATP. 

Future mechanical studies in living cells may resolve this discrepancy. 

 

External drag force 

We find that substantial external drag forces must be invoked to explain the curvature in 

the experimental recoil profile (see Fig. 4.4). Our model leads to drag coefficient γext ≈ 5.3 

pN·s/µm per minifilament. Now the total drag coefficient of a cylindrical sarcomere of length 
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0
sarcx = 0.9 µm in a medium with viscosity ηcyt is nminiγext = 2πηcyt

0
sarcx /(ln 0

sarcx /w + 0.25).135 Our 

model then implies effective cytosolic viscosity ηcyt ≈ 39 Pa·s, or ~104 times the viscosity of 

water. Thus, severed fiber recoil kinetics contain information about how the stress fiber interacts 

with its surroundings in the cell. Indeed, the recoiling stress fiber is an internal probe of effective 

cellular viscosity. Our result is similar in magnitude to that from the microrheological study of 

fibroblasts by Tseng et al., who measured an effective cytosolic viscosity of 10 Pa·s at frequency 

0.16 s-1.136 Other studies of macrophages have reported apparent viscosities in the range 102-103 

Pa·s.137,138 Variations in reported values are expected, since viscosity depends on the time- and 

length-scale probed, reflecting structural heterogeneity and the complex nonlinear viscoelastic 

response of living cells. 

The effective cytosolic viscous drag may originate not only from nonspecific interactions 

with the cytosol but also from breaking of dynamic cross links between the stress fiber and its 

surroundings. Extracellular matrix proteins are concentrated along stress fibers, indicating 

possible interactions between stress fibers and transmembrane proteins,139 and electron 

microscopy reveals connections between stress fibers and the surrounding cytoskeleton.140 

Indeed, buckled stress fibers exhibit 2 µm wavelength undulations, possibly suggesting lateral 

connections.133 

 

Internal drag force 

From the model, we conclude that most internal dissipation is due to myosin: fitting to 

the experimental recoil data, we found internal drag coefficient γint = 5.0 pN·s/µm, smaller than 

the myosin force-velocity slope at stall, γmyo, which represents an effective myosin internal drag 

coefficient. The nonmyosin component may derive from friction between overlapping F-actin in 
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the myosin zones at sarcomere centers or displacement of dynamic α-actinin cross links by 

myosin which, unlike striated muscle, must accompany sarcomere shrinkage. Another possibility, 

investigated by Stachowiak and O’Shaughnessy (Chapter 3),86 is that when sarcomeres change 

length, actin filaments adjust via polymerization or depolymerization. Applying this framework 

to severing kinetics, filaments would shrink during recoil (as in contractile ring constriction) and 

γint would represent an effective polymerization-derived value.86 Following a perturbation, this 

model (Chapter 3)86 identified an additional early transient with a smaller γint value; this picture 

could thus explain curvature in the end recoil profile, and would then lead to an external drag 

coefficient smaller than the value implied by the present model assuming fixed actin lengths. 

Future severing experiments studying stress fibers of different lengths can distinguish between 

these two pictures, since the two models predict very different length-dependencies. 

 

Effect of myosin inhibition 

Kumar et al. severed stress fibers after reducing myosin phosphorylation levels by 

treatment with inhibitors of the kinases ROCK and MLCK.44 Recoil was diminished by 60% 17 s 

after severing (ROCK inhibition) and by 92% 8.5 s after severing (MLCK inhibition). To model 

these experiments, we set myosin stall force to zero (fs = 0). We found that the recoil rate was 

retarded, with 60% recoil loss after 8.5 s and 34% loss after 17 s, but the eventual total recoil 

distance was virtually unchanged due to weak passive elastic forces (see Fig. 4.8). This agrees 

with previous studies indicating a passive elastic contribution to contraction in the absence of 

ATP.134 However, the predicted recoil rate exceeds that measured by Kumar et al.,44 which may 

be explained by disruption of stress fiber structure due to compromised minifilament formation 
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when myosin phosphorylation is inhibited.94 It would be interesting to sever stress fibers treated 

with blebbistatin, which inhibits myosin force-generation but not phosphorylation.141 

 

 
 

 
Figure 4.8: Effect of inhibition of myosin 
phosphorylation on stress fiber recoil.  
Circles: ROCK inhibition, from Kumar et al.44 
Squares: MLCK inhibition, from Kumar et al.44 
Solid line: Model prediction with myosin stall force 
fs = 0. Numerical solution of Eq. 4.1, all other 
parameters from Table 4.1. 
 

Relaxation of cellular traction 

Our model predicts that after severing, the force exerted by the severed stress fiber on its 

adhesion decays to zero over the recoil timescale, Tcoll = 5.2 s (Fig. 4.7). Using traction force 

microscopy, Kumar et al. measured a loss of >50% of the cell’s total traction over 30 s after 

severing a single stress fiber.44 This large drop suggests tension loss in one fiber precipitates on 

longer timescales tension loss elsewhere in the cytoskeletal network by physical or biochemical 

mechanisms beyond the scope of our single fiber model. Over yet longer timescales of minutes, 

loss of force applied on focal adhesions causes adhesion disassembly82,132 by increasing the off-

rate of a mechanosensitive component.132 

 

Experimentally testable predictions  

The model makes numerous quantitative predictions that can be tested by future 
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experiments: (1) Sarcomere length profiles. External drag leads to dramatically inhomogeneous 

stress fiber collapse kinetics after severing, since contraction of a given sarcomere is opposed by 

the net drag on the entire fiber section between it and the severed end. Thus, more interior 

sarcomeres contract more slowly. We predict a sarcomere profile with three zones (see Fig. 4.6) 

including a cap of collapsed sarcomeres at the severed end. The predicted sarcomere length 

profiles (Eq. 4.5 and Fig. 4.6) could be directly measured by labeling a periodic stress fiber 

component (e.g., myosin-II or α-actinin). (2) Fiber length dependence. We compared our model 

to a single experimental recoil profile for a severed fiber containing Ntot = 12 sarcomeres. 

Experiments following severed stress fibers of different lengths could test our prediction that 

total fiber collapse time-scales as 2
totN , another consequence of external drag. Were external drag 

absent, collapse time would be independent of fiber length. (3) Sarcomere length dependence. 

Assuming a sarcomere’s external drag coefficient is proportional to its length (for example, there 

may be a constant number of connections with the surroundings per unit length), our model 

predicts that stress fibers with initially longer sarcomeres recoil more slowly and total collapse 

time-scales linearly with sarcomere length, Tcoll ~ 0
sarcx  (see Fig. 4.9). (4) End recoil and 

collapsed cap: power law time dependencies. We predict that end recoil distance and collapsed 

cap length grow as power laws in time: xrecoil ~ Ncap ~ t1/2 (see Eq. 4.8), consistent with current 

end recoil data (Fig. 4.4, inset). Severing longer stress fibers, where the power law window is 

larger, would more stringently test the end recoil law. (5) Forces on focal adhesions. The 

predicted adhesion force decay after severing (Fig. 4.7) could be directly measured using 

techniques measuring forces on focal adhesions.82 For adhesions attached to just a single stress 

fiber, we predict the decay time increases with stress fiber length as ~ 2
totN . This may also 

describe the short time decay for adhesions attached to multiple stress fibers. (6) Modifying 
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fiber-cell coupling. An interesting possibility is to sever stress fibers in cells where candidate 

linker proteins between stress fibers and their surroundings are interfered with. In our model this 

would modify the external drag coefficient γext. Comparing with model predictions may thus help 

identify such proteins. 

 

 
 
Figure 4.9: Predicted recoil of severed stress 
fibers with different initial sarcomere lengths.  

Initial sarcomere lengths 0
sarcx  = 0.6 µm (black), 

0.9 µm (red), 1.2 µm (green), 1.5 µm (blue) and 
1.8 µm (brown). The external drag coefficient 
was assumed proportional to sarcomere length 

(γext ~ 0
sarcx ), with γext = 5:3 pN·s/µm when 0

sarcx = 

0.9 µm. All other parameters from Table 4.1. 
Numerical solutions of Eq. 4.1. 

 

Appendix A: Equation for the Velocity Profile 

The hard core model assumes a linear myosin force-velocity relation and approximates 

the shallow (steep) portion of the force-length relation (Fig. 4.2B), as flat (infinitely steep). Thus 

contraction is stalled in collapsed sarcomeres (n < Ncap), whereas for active sarcomeres, 

Felast(xsarc)→0. The myosin force terms are expressed as Fmyo(vsarc) = s

~
f  - γmyovsarc, where s

~
f  = fs 

+ k2
0
sarcx  is the effective stall force including the elastic contribution at the initial sarcomere 

length (see Fig. 4.2B). Thus, the fiber dynamics (Eq. 4.1) for active sarcomeres (n   Ncap) 

simplify to  

                                   
     1nnintmyon1nintmyonext   vvvvv 

                           
(4.9) 
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Note that the slope of the force-velocity relation γmyo emerges as a contribution to the 

total internal drag coefficient. The continuous limit then yields Eq. 4.2. Strictly, this limit is valid 

provided ξ>>1. In practice, we find that even for our best-fit value ξ ≈ 2.5, it provides an 

excellent approximation. 

 

Appendix B: Equations and Solutions for the Sarcomere Profile and 

Collapsed Cap Length 

It is convenient to express the sarcomere lengths as functions of Ncap in favor of time, 

xsarc(n,t)→xsarc(n,Ncap) (time-dependence is recovered later using the cap solution Ncap(t)). Then 

the sarcomere shrinkage velocity can be written vsarc(n) = -(∂xsarc/∂Ncap)(dNcap/dt). Meanwhile, in 

the continuous limit, the cap growth rate is the product of the sarcomere contraction velocity and 

length gradient at the cap front, dNcap/dt = θ-1vsarc(Ncap), where θ ≡ ∂xsarc=∂n|n = Ncap. These 

expressions give the cap and sarcomere dynamics (Eq. 4.3). 

Using the explicit solution for the sarcomere velocity profile (Eq. 4.4) and changing 

variables xsarc(n, Ncap)→
 

sarc
~x (w,Ncap), where w = n - Ncap is the sarcomere location relative to the 

collapsed cap, the sarcomere length dynamics in Eq. 4.3 become 
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(4.10)

 

The boundary conditions are (1) The sarcomere at the cap boundary (w = 0) is collapsed, xsarc = 

coll
sarcx  ≡ 0

sarcx  - dsarc; and (2) Far from the severed end, sarcomeres are undisturbed, xsarc = 0
sarcx  for 

w→∞. The steady state solution, ∂ sarc
~x /∂Ncap = 0, is the exponential profile of Eq. 4.5. The 
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profile, depending only on w, has constant shape and propagates inward at the same speed as the 

collapsed cap front. 
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Chapter 5 

 

Coupling of Contraction and Actin Disassembly 
in Spontaneously Severing Stress Fibers  
 
 In Chapter 3, we developed a model of stress fibers including coupling between actin 

turnover and contractile forces. In Chapter 4, we developed a model of severed stress fiber recoil. 

In both cases, only a single experimental measurement was available for comparison with the 

models. In order to more accurately estimate parameters and compare alternative models a much 

larger dataset was needed. To this end, we collaborated with Dr. Mary Beckerle’s laboratory at 

the University of Utah. Using time-lapse confocal imaging of living cells, the Beckerle lab 

observed spontaneous severing and recoil of stress fibers. Dr. Mark Smith, Elizabeth Blankman, 

and Laura Luettjohann of the University of Utah performed the imaging, while we performed the 

quantitative image analysis and mathematical modeling. We used quantitative image analysis to 

simultaneously measure the fiber length and the relative amount of fluorescently labeled actin 

and other components during recoil of spontaneously severed stress fibers. In this chapter, we 

present the results of this analysis and extend the model of Chapter 3 to the case of stress fiber 

severing. Our results show that actin turnover and contraction are coupled, as predicted by the 

model.  

 

I. Introduction 

Actomyosin structures in nonmuscle cells undergo continuous turnover while 

simultaneously generating tension and changing shape. To coordinate these processes, the 
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assembly and disassembly kinetics of cytoskeletal filaments are coupled to mechanical force. For 

example, increasing myosin-II activity in epithelial cells increases the actin turnover rate in the 

cytokinetic ring,142 consistent with myosin-induced actin disassembly observed in vitro.143 

Indeed, actin and microtubule subunit on and off rates are directly related to the forces exerted 

on cytoskeletal filament ends116,144 This principle is used during cell migration when actin 

polymerization at actin filament barbed ends generates forces to push plasma membrane at the 

leading edge forward,145,146 and during mitosis when polymerization and depolymerization of 

microtubules generate forces to move chromosomes.147 Consequently, understanding how the 

cytoskeleton behaves in mechanically dynamic environments requires understanding how 

turnover and mechanical forces are coupled. 

Stress fibers are linear, tensile bundles composed of actin filaments and nonmuscle 

myosin-II minifilaments93 that terminate in transmembrane focal adhesions, allowing 

transmission of contractile forces to the extracellular matrix.148 In vivo, stress fibers generate 

contractile forces in myofibroblasts to provoke tissue reorganization during wound healing5 and 

resist shear forces from blood flow in vascular endothelial cells.34 Many stress fibers have a 

sarcomeric structure similar to striated muscle, albeit more disordered, with alternating actin 

filament polarity,149 alternating localization of myosin-II and the actin filament crosslinking 

protein α-actinin,41 and a nonmuscle isoform of the giant elastic protein titin.91 Fluorescence 

recovery after photobleaching (FRAP) experiments showed that unlike striated muscle, stress 

fibers are highly dynamic, with α-actinin turning over in t1/2 = 15 s, myosin light chain in 1 min, 

and actin in 3 min.43 Actin turnover may occur by a treadmilling mechanism, as microinjected 

fluorescent actin subunits incorporated into the α-actinin puncta103 where actin filament barbed 

ends are expected to reside in a sarcomeric structure.  
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Stress fibers sense and respond to mechanical signals. Polymerization of actin at stress 

fiber ends anchored in focal adhesions requires tension generated by myosin-II induced 

contraction.150 Another pathway for mechanosensing involves the LIM protein zyxin. Cyclic 

stretching of stress fibers caused fiber thickening that depends on recruitment of zyxin.88 

Moreover, elevated stress fiber tension causes acute elongation and thinning events which are 

repaired after the recruitment of zyxin, α-actinin, and VASP, which restore the fiber’s 

mechanical integrity by promoting actin assembly.151 However, the mechanisms of coupling 

between mechanical force and actin turnover have not been elucidated.  

Severing of stress fibers using laser ablation or mechanical means and observing the 

recoil has been a useful tool to study stress fibers.44,152-155 Mathematical models of stress fiber 

recoil after severing have illuminated various aspects of stress fiber mechanics, such as the 

presence of elastic or viscous forces between the stress fiber and its surroundings (see Chapter 

4),126,152 or the influence of fluctuating sarcomere lengths.153 However, these models did not take 

into account actin turnover. Another technique used to investigate stress fibers was treatment 

with the phosphatase inhibitor calyculin A, which caused peripheral stress fiber sarcomeres to 

contract while central sarcomeres elongated.41 Since the sarcomere relaxation time was similar to 

the actin turnover time (~5 min), a mathematical model proposed a coupling between actin 

turnover and mechanics (see Chapter 3).86 Sarcomere contraction was proposed to cause 

compressive stresses to build up between actin filaments as their overlap and density increase in 

the center of the sarcomere. These stresses were proposed to increase the actin disassembly rate, 

providing a means to regulate actin filament length. However, actin remodeling has never been 

directly measured during stress fiber contraction.  
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Here, we combine quantitative time-lapse imaging and image analysis with mathematical 

modeling to show that contraction and actin disassembly are coupled in stress fibers. We observe 

that stress fibers spontaneously sever and recoil, allowing analysis of stress fiber contraction 

without perturbation by laser severing or drug treatment. During recoil, stress fibers shorten by 

~80% while shedding ~50% of their actin. The actin disassembly is delayed relative to recoil, 

causing the actin density to initially increase during recoil, then peak and decay when recoil is 

complete. We applied a version of our previous mathematical model of stress fibers that includes 

mechanosensitive actin disassembly (Chapter 3) to the case of spontaneous severing and recoil.86 

The model predictions agree with our experimental data, and show that actin disassembly is 

caused by depolymerization induced by myosin contractile forces. Actin filaments are predicted 

to shorten or lengthen in response to sarcomere contraction and expansion, respectively, 

endowing stress fiber sarcomeres with a wide range of stable operating lengths. Thus, we 

identify a mechanism by which coupling between mechanical forces and actin turnover allows 

stress fibers to dynamically respond to changing conditions in the cell.  

 

II. Experimental Results 

Failure of the stress fiber repair mechanism leads to spontaneous severing and recoil 

To investigate the mechanisms of stress fiber contraction and remodeling, we performed 

time lapse imaging of mouse fibroblasts expressing actin-mCherry or actin-Apple. This revealed 

spontaneous, catastrophic breakage of stress fibers occurring at frequency 0.03 ± 0.01 

events/min/cell (n = 83 cells, 1100 min of observation), as reported previously (Fig. 5.1A).151 

Following breakage, the newly severed ends retract and the two resulting stress fiber segments 

shorten until they reach a final steady length (Fig. 5.1B). These spontaneous severing events  
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Figure 5.1: Stress fibers spontaneously fracture and recoil a constant fraction of their original 
length 
(A) Time lapse confocal images of a spontaneously severing stress fiber in a mouse fibroblast expressing 
actin-mCherry. Arrow: location of the break in the fiber; arrowhead: severed end after the completion of 
recoil. t = 0 corresponds to the time of severing.  
(B) Actin-mCherry kymograph of the spontaneously severing stress fiber highlighted in (A), indicating the 
initial fiber length (L0) and the retraction length (ΔL). Dotted lines indicate the intact end of the fiber (top) 
and the position of the break (bottom).  
(C) Kymographs showing spontaneous stress fiber severing in the absence and presence of repair 
protein recruitment. (Top) No α-actinin-GFP is recruited to the elongation site of this severing fiber, 
indicating a lack of recruitment of repair proteins. (Bottom) A stress fiber breaks and recoils after 
recruitment of zyxin-GFP to the site of elongation, indicating a failure of the stress fiber repair process. 
Arrows indicate the severed ends (bottom).  
(D) Actin-mCherry intensity profile along a recoiling stress fiber. The dotted line indicates the severed end 
position, defined to be the location of the minimum of ∂I/∂x, where I is the actin signal. 
(E) Retraction length as a function of initial stress fiber length (n = 18). Solid line: best fit line, ΔL = 0.8L0. 
Dotted line: ΔL = L0. 
All micrographs from the Beckerle lab (University of Utah). 
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allowed us to study stress fiber contraction and remodeling without artificial perturbations such 

as drug treatment or laser ablation.41,44  

Spontaneous severing is preceded by elongation and thinning of a localized region of the 

stress fiber, lasting 10-60 s.151 82% of elongating sites are stabilized and repaired after 

recruitment of the LIM protein zyxin, actin filament crosslinking protein α-actinin, and actin 

barbed end binding protein VASP to the elongation site, while 18% proceed to breakage.151 Time 

lapse imaging of cells expressing zyxin-GFP or α-actinin-GFP revealed that in some severing 

stress fibers no repair proteins are recruited to the elongation site (n = 4) while in others zyxin 

and α-actinin are recruited before breakage (n = 8, Fig. 5.1C). Thus, spontaneous severing occurs 

both without recruitment of repair proteins and after the failure of repair proteins to stabilize an 

elongating stress fiber.  

 

Spontaneously severed stress fibers contract uniformly and lack significant 

mechanical coupling to the surrounding cytoskeleton 

Analysis of severed stress fiber recoil can reveal whether stress fibers are mechanically 

coupled to the surrounding cytoskeleton via elastic or viscous crosslinks.126,152 To characterize 

spontaneously severed stress fibers, we tracked the length of spontaneously severed stress fibers 

as a function of time by measuring from the intact end (anchored to a focal adhesion or another 

stress fiber) to the severed end, whose position was defined as the position of the maximum fall-

off of actin signal along the fiber axis (Fig. 5.1D). Plotting the retraction length (ΔL) as a 

function of initial stress fiber length (L0) revealed a direct proportionality, with fibers of lengths 

up to ~25 μm all shortening by 80 ± 3% during recoil (mean ± SEM, n = 18, Fig. 5.1B,E). This 

result contrasts with previous measurements of laser-severed stress fibers, whose retraction 
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length plateaued at ~6 μm and ~8 μm in epithelial cells and fibroblasts, respectively.152 This 

plateau was proposed to be caused by elastic coupling between the stress fiber and its 

surroundings,152 the compliance of which defines a maximum severed end displacement that can 

be induced by the fiber’s tension. Thus, our analysis shows that spontaneously severed stress 

fibers are not elastically coupled to their surroundings. 

We measured the duration of recoil by fitting a decaying exponential function to each 

stress fiber’s length evolution curve and extracting the time scale (Fig. 5.2A). The recoil duration 

clustered between 15 and 30 s and was independent of the initial stress fiber length, although 4 

observed fibers took significantly longer giving a mean duration of τ = 48 ± 13 s (n = 18, Fig. 

5.2B). We also tested whether shortening occurs uniformly along the stress fibers by measuring 

the initial contraction rates of fiber segments located between fiduciary marks identified in cells 

expressing α-actinin-GFP or zyxin-GFP (Fig. 5.2C). This revealed a nearly uniform rate of 

contraction along the stress fiber (Fig. 5.2D). A constant recoil duration and uniform contraction 

are hallmarks of contraction in the absence of drag forces between the stress fiber and its 

surroundings. Such drag forces would cause the recoil duration to increase with the square of the 

initial fiber length because longer fibers experience more drag forces (see Chapter 4).126 

Moreover, the contraction velocity would decay exponentially from the severed inward because 

myosins further into the fiber work against a larger total drag force (see Chapter 4).126 Thus, 

spontaneously severed stress fibers are mechanically isolated from the surrounding cytoskeleton. 
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Figure 5.2: Recoil duration is independent of stress fiber length and contraction occurs uniformly 
along the fiber  
(A) Stress fiber length as a function of time for three spontaneously severed stress fibers. Recoil duration 
τ was defined as the time scale of the best fit decaying exponential function, L(t) = (L0 – ΔL) + ΔLe-t/τ 
(dashed lines).  
(B) Recoil duration as a function of initial stress fiber length (n = 18). Most stress fibers recoil in 15-30 s 
regardless of their initial length (gray band). 
(C) Zyxin-GFP kymograph of a stress fiber undergoing recoil. Fiduciary marks (red lines) define the 
boundaries of stress fiber segments. Micrographs from the Beckerle lab (University of Utah). 
(D) Initial contraction rate of stress fiber segments bounded by fiduciary marks as a function of distance 
from the severed end (n = 17). Contraction rates are expressed as strain rates after normalizing by the 
initial segment length. Different symbols indicate different stress fibers. The best fit line to all data points 
(solid line) has a slope that is not significantly different from 0 (p = 0.35). 
 

Stress fibers lose half of their actin during recoil, but the linear actin density 

doubles 

Because actin in stress fibers is dynamic and turns over in 3-5 min,43,44 we hypothesized 

that actin remodeling could accompany the dramatic shortening of stress fibers that we observed 

after spontaneous severing (Fig. 5.1B,E). To test this, we compared the total intensity of 

fluorescently labeled actin in stress fibers at the time of severing and after recoil. This revealed 

that actin was shed during recoil as 51 ± 5% (n = 16) of the actin in the stress fiber was lost (Fig. 
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5.3A). Nevertheless, because the fraction of actin lost was less than the fractional shortening of 

the fiber (0.8, Fig. 5.1D), the linear actin density (total actin fluorescence divided by fiber length) 

increased by a factor of 1.9 ± 0.2 (n = 16) during recoil (Fig. 5.3B). Similar behavior was 

exhibited by the actin filament binding protein α-actinin and zyxin, which binds to α-actinin.  42 

± 7% (n = 10) and 66 ± 8% (n = 6) of the α-actinin and zyxin were lost during recoil, and their 

linear densities increased by factors of 2.0 ± 0.2 and 1.6 ± 0.3, respectively. 

Striated muscles becomes thicker when their linear actin density increases during 

sarcomere shortening.156 We hypothesized that stress fibers would also thicken during recoil 

because the linear actin density doubles. To measure the apparent stress fiber width, we 

calculated the full-width half-maximum of the best fit Gaussian functions to actin intensity 

profiles taken perpendicular to the stress fiber axis (Fig. 5.3D). This revealed that the apparent 

stress fiber width increases by 17 ± 5% (n = 12) during recoil (Fig. 5.3C,E), corresponding to an 

apparent increase in the fiber cross sectional area of ~35%. This is a lower bound for the increase 

in thickness because the point spread function makes fibers appear thicker than they actually are. 

Therefore, we conclude that actin and actin-associated proteins are shed from the stress fiber 

during contraction but their linear density increases, causing an increase in the fiber thickness.  

 

Actin depolymerization is delayed relative to recoil, causing the actin density to rise, 

peak, and decay 

We next sought to determine whether actin disassembly causes contraction or whether 

contraction causes actin disassembly. Comparisons of the time evolution of stress fiber 

shortening and actin fluorescence in the fiber revealed that actin disassembly lags recoil (Fig. 

5.4A). We defined the delay of depolymerization to be the difference between the  
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Figure 5.3: During recoil actin, α-actinin and zyxin are shed from the stress fiber while their 
densities increase  
(A) Total fluorescence intensity of actin (n = 16), zyxin (n = 6), and α-actinin (n = 10) in stress fibers 
before and after recoil, normalized by the initial value.   
(B) Linear density of actin (n = 16), zyxin (n = 6), and α-actinin (n = 10) in the stress fiber before and after 
recoil, normalized by the initial value. 
(C) An actin-mCherry stress fiber just after severing and after recoil, with the stress fiber width indicated. 
Micrographs from the Beckerle lab (University of Utah). 
(D) The apparent stress fiber width was determined by fitting Gaussian functions (solid lines) to measured 
actin intensity profiles perpendicular to the fiber axis (filled circles). The width was defined to be the full 
width at half max. 
(E) The apparent stress fiber width increases by 17 ± 5% during recoil (n = 12).  
(F) Schematic illustration of actin loss from a recoiling stress fiber. 
Bar graphs show mean ± SEM. 

 

depolymerization time scale (the time scale of the best fit decaying exponential function to the 

actin fluorescence curve) and the recoil duration (Fig. 5.2A), which revealed a depolymerization 

delay of 53 ± 23 s (n = 16) relative to recoil (Fig. 5.4B). This delay was evident in plots of the 

total actin fluorescence as a function of stress fiber length, which displayed a concave down  
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Figure 5.4: Actin depolymerization lags behind recoil, causing the actin density to peak and then 
decay  
(A) Kinetics of recoil (blue) and the amount of actin (green) during the recoil of one stress fiber. Circles: 
measurements. Dashed lines: decaying exponential fits to extract the time scales. The depolymerization 
delay is defined as the difference between the actin depolymerization and recoil time scales. 
(B) Histogram of depolymerization delay times (n = 16). 
(C-E) Measured and model-predicted stress fiber length (C), total actin signal (D), and actin density (E) 
during recoil for 3 different stress fibers. Model curves were fit for the actin-actin elastic constant k, the 
sarcomere drag coefficient γint, and the minimum sarcomere length lmin. Blue diamonds: k = 17.8 pN/µm, 
γint = 463 pN·s/ µm, and lmin = 0.18 µm. Red circles: k = 29.5 pN/µm, γint = 587 pN·s/ µm, and lmin = 0.13 
µm. Green triangles: k = 21.7 pN/µm, γint = 703 pN·s/ µm, and lmin = 0.3 µm. All other parameters, as in 
Table 5.1. In (D), the dashed line indicates the trajectory that would be followed if actin disassembled in 
proportion to recoil.  
 

shape indicating that much of the actin depolymerization occurs after the stress fiber has stopped 

shortening (Fig. 5.4D).  As a result, the actin density typically increases and reaches a peak value 

during recoil, followed by decay as depolymerization occurs at constant fiber length (Fig. 5.4E). 

The density then reaches a steady value higher than the original value (Fig. 5.3B and 5.4E). Thus, 

recoil of spontaneously severed fibers occurs faster than actin disassembly, causing the actin 

density to overshoot its final value, strongly suggesting that contraction drives actin disassembly. 
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Zyxin has no effect on actin disassembly during recoil 

Zyxin is the key protein involved in stress fiber repair.151 To test whether zyxin has a role 

in the remodeling of stress fibers after spontaneous severing, we observed stress fibers in 

fibroblasts derived from zyxin-/- mice157 (Fig. 5.6C). The lack of zyxin did not significantly 

change the fractional shortening after severing, the recoil duration, nor the amount of actin 

disassembly compared to wild-type (Fig. 5.6F-H). Therefore, while zyxin has a key role in the 

repair process it does not appear to play a role in the recoil or actin remodeling of spontaneously 

severed stress fibers.  

 

III. Model of Stress Fibers 

To understand the mechanisms of stress fiber recoil and actin remodeling, we extended a 

previous model of stress fibers to allow for severing (Fig. 5.5A, see Chapter 3).86 The model 

includes a mechanical force balance and actin turnover and therefore can be tested against our 

measurements of both recoil and actin remodeling. Parameter values are listed in Table 5.1. 

Sarcomeric structure and actin turnover. The stress fiber has sarcomeric structure, with 

actin filament barbed ends residing at the sarcomere boundaries and pointed ends interacting 

with nonmuscle myosin-II  minifilaments in sarcomere centers (Fig. 5.5A). We assume that actin 

turns over via a treadmilling-like mechanism, with actin subunits incorporating at actin barbed 

ends with rate v+ and disassembly occurring in the sarcomere centers at rate v-, consistent with 

observations of preferential incorporation of microinjected actin monomers into α-actinin 

regions.103 To maintain a steady state actin filament length and to avoid unconstrained 

fluctuations,107 the turnover rates must be regulated. We assume that the overlap of actin pointed 

ends39 causes compressive elastic forces that mechanically regulate the disassembly rate  
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Figure 5.5: Mathematical model of stress fibers 
(A) Mathematical model of stress fibers. Myosin contractile forces, fmyo, and elastic forces from titin, ktx, 
tend to shorten the sarcomere, whereas the tension T, actin overlap force kz, and sarcomeric viscous 
forces –γint x  resist contraction. The minimum sarcomere length is determined by sarcomeric elastic 
forces with elastic constant ksarc. Actin turnover occurs by a treadmiling-like mechanism, with barbed end 

assembly at rate v+ and disassembly near the pointed end at rate 0
v  that increases with increasing actin 

overlap forces.    
(B) Model predictions for stress fiber shortening, amount of actin in the sarcomere, and actin filament 
length over time during recoil of a spontaneously severed stress fiber. The actin signal is proportional to 
the actin filament length. All parameters as in Table 5.1.  
(C) Model predictions for actin-actin overlap, depolymerization rate, and actin density. The overlap and 
depolymerization rate increase until recoil is finished and then decay. All parameters as in Table 5.1.  
(D) Model predictions for the resistance forces to contraction. The myosin contractile forces work against 
both sarcomeric viscosity and  actin-actin compression. At the completion of recoil, sarcomeric elasticity 
becomes dominant. All parameters as in Table 5.1.  
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according to v- = */0e pkzv , where 0
v  is the disassembly rate in the absence of force, k is the 

elastic constant of pointed end overlap, z is the length of overlap between actin pointed ends, and 

p* is the characteristic force that promotes disassembly. Equating the actin assembly and 

disassembly rates, at steady state the actin filament overlap is zss = (p*/k)ln(v+/ 0
v ).  

Actin assembly and disassembly can change either the sarcomere length or the actin 

filament overlap, resulting in the length balance equation, 

                                                        */0e pkzvvzx    ,                                                            (5.1) 

where dots denote time derivatives, and x is the sarcomere length.  

Forces in the stress fiber. Each myosin-II minifilament exerts contractile force fmyo = fs + 

γmyo( x  - v+), where fs is the stall force and γmyo is the slope of the force-velocity relation at stall 

(see Table 5.1; γmyo is the same as λ in Chapter 3). Note that even when the sarcomere length is 

not changing, the myosin is working at the actin polymerization velocity. Cellular titin91 exerts a 

contractile force with elastic constant kt. Contraction is resisted by internal viscous drag with 

coefficient γint and compressive elastic forces from pointed end overlap, kz. Since spontaneously 

severed stress fibers are not mechanically coupled to their surroundings (Fig. 5.1E and 5.2), the 

tension is uniform and all sarcomeres therefore have identical behavior. Thus, the force balance 

in each sarcomere is  

                                                 kzxkxxvfT   tintmyos  
   

,                                     (5.2) 

where T is the stress fiber tension per minifilament. Finally, each sarcomere has minimum length 

lmin which is approached with spring constant ksarc. 

Solving the model. To solve for the fiber length and amount of actin in stress fibers after 

severing, we set T = 0 in Eq. 5.2 and take initial conditions x(t = 0) = l0 and z(t = 0) = zss. Eqs. 5.1  
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Table 5.1: Parameter values used in the model of spontaneously severed stress fibers.  

Symbol Meaning Value Legend 

Fixed parameter values 

l0 Initial sarcomere length 1 μm (A) 

fs Myosin-II minifilament stall force 20 pN (B) 

γmyo Myosin-II minifilament drag coefficient 167 pN·s/μm (C) 

kt Titin spring constant per minifilament 4 pN/μm (D) 

ksarc Sarcomere brick wall spring constant 75 pN/μm (E) 

p* Characteristic compression to induce actin depolymerization 4.5 pN (F) 

v+ Actin barbed end polymerization rate 4 nm/s (G) 

0
-v  Actin pointed end depolymerization rate 1.5 nm/s (H) 

Fitting parameters 

k Elastic constant of actin filament overlap 27.5 ± 6.4 pN/μm (I) 

γint Internal sarcomere drag coefficient 1007 ± 276 pN·s/μm (I) 

lmin Minimum sarcomere length after recoil 0.26 ± 0.03 μm (I) 

 
Legend:  
(A) Measured by Sanger and Sanger108 and Peterson et al.41. 
(B) Assumes 1.5 pN per myosin head as in striated muscle83 and ~13 myosin-II molecules per 
minifilament.11,158  
(C) γmyo measures the reduction in myosin force as the sliding velocity increases, and is the slope of the 

myosin force-velocity relation near the stall force. γmyo = βfs/(2 0
myov ), where 0

myov = 0.3 μm/s is the actin 

gliding velocity of nonmuscle myosin-II heads.113  This velocity is doubled to account for the bipolar nature 
of the minifilament. The factor β = 5 is the value measured for striated muscle.115 We take the value of 
γmyo near the stall force because the stress fiber recoil time (15 – 30 s, Fig. 5.2B) is much larger than the 

time it would take for myosin to contract a sarcomere in the absence of any resistance (l0/2
0
myov  = 1.7 s). 

This parameter is the same as λ in Chapter 3. 
(D) From Tskhovrebova et al.102 at length <1 µm, assuming there is one titin molecule per myosin-II 
minifilament as observed in assemblies in vitro.111 
(E) Has not been measured. Because the sarcomeres are less ordered than striated muscle, we assume 
the collapse spring constant is an order of magnitude smaller than the stiffness of the ascending limb of 
the muscle force-length curve, ~750 pN/µm.109 
(F) p* ≈ mkBT/δ. Here, m = 3 is the number of actin filaments per myosin filament, taken to be similar to 
striated muscle,117 and δ = 2.7 nm is the effective actin monomer size.116  
(G) Assumed to be the sarcomere length (~1 µm) divided by the actin turnover time as measured by 
fluorescence recovery after photobleaching (FRAP, t1/2 = 3-5 min).43,44 Includes the contributions from 
both sets of filaments in the sarcomere.  
(H) Twice the value measured in vitro for a single pointed end,159 to account for both filaments in the 
sarcomere. 
(I) Determined by fitting to the measured sarcomere length and actin density curves (Fig. 5.4C-E).  
Displayed as mean ± standard error of the mean (SEM) for n = 16 spontaneously severed stress fibers. 
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and 5.2 are then simultaneously solved numerically for the sarcomere length x and overlap length 

z over time.  The actin filament lengths are (x + z)/2, the relative amount of actin in a sarcomere 

is (x + z)/(l0 + zss), and the relative actin density is proportional to (x + z)/x.  

 

IV. Model Results and Comparison to Experimental Data 

Model predictions are in agreement with experimental measurements 

Three model parameters have unknown values: the minimum sarcomere length lmin, the 

sarcomere drag coefficient γint, and the actin overlap elastic constant k. To determine their values, 

we fit the model to the measured sarcomere length and actin density curves for each stress fiber 

(n = 16, Fig. 5.4C-E, and Table 5.1). The fitting parameter space was directly searched to 

minimize the sum of squared errors between model and experiment, and the parameters were 

determinable because the mean cross correlations between parameters were -0.10, 0.28, and -

0.79 for γint and lmin, γint and k, and lmin and k, respectively. The model was in excellent agreement 

with the experimental measurements, reproducing both the recoil curves (Fig. 5.4C) and the actin 

density over time (Fig. 5.4E). The actin density initially increases, then peaks and decays just as 

in the experiments (Fig. 5.4C). 

  

The steady-state actin overlap is constant, explaining why the actin density is higher 

after recoil 

 We used the model to understand why the actin density after recoil is ~2-fold larger than 

before severing (Fig. 5.3B). The actin filament overlap at steady state is zss = (p*/k)ln(v+/ 0
v ) (see 

above). This actin overlap is independent of the sarcomere length, and has value zss ≈ 0.3 µm 
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using the parameters from Table 5.1. Therefore, the actin density after recoil is larger than the 

initial actin density (Fig. 5.3B) simply because the steady state actin overlap region is a larger 

fraction of the total sarcomere length in shorter sarcomeres. 

 

Actin filament shortening accompanies recoil due to disassembly caused by 

compressive stresses 

The actin filament length in stress fibers has not been measured, so we tracked it during 

recoil using our simulation. Immediately after severing, stress fiber sarcomeres begin shortening 

while the actin filament length remains roughly constant (Fig. 5.5B). During this initial period, 

the sarcomere shortening causes the actin overlap to increase (Fig. 5.5C), increasing the actin 

compression force (Fig. 5.5D) and the actin disassembly rate (Fig. 5.5C). This delay period 

during which the actin overlap builds up corresponds to the depolymerization delay measured in 

Fig. 5.4B. After the delay, the actin filament length decreases due to the elevated disassembly 

rate (Fig. 5.5B). Therefore, the model predicts that actin filament shortening accompanies recoil. 

 

Both viscous and elastic forces resist sarcomere shortening during recoil 

In Chapter 3, we estimated that changing the actin filament length is the rate limiting step 

in sarcomere length relaxation (i.e., that the actin overlap force is much larger than viscous 

resistance to contraction). This was quantified by the parameter r = γmyo/(p*/v+), which is the 

ratio of the myosin drag coefficient γmyo and the ‘actin disassembly drag coefficient’, p*/v+, and 

which we estimated as r ≈ 0.1. Here, using the parameters from Table 5.1, we estimate  

                                                     04.1
/*

myoint 



vp

r


   ,                                             (5.3) 
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where the internal sarcomere drag γint now also contributes to the viscous resistance. This 

parameter was needed in the present model to account for the fact that spontaneously severed 

stress fibers recoil far more slowly than they would if the myosin drag were the only viscous 

contribution. Thus, viscous resistance and resistance from actin filament overlap are equally 

important in determining stress fiber dynamics (Fig. 5.5D).  

 

Effects of actin turnover on stress fiber recoil  

 We next investigated the effects of altered actin assembly and disassembly rates on stress 

fiber recoil. Holding all other parameters constant, we varied the actin assembly (v+) and 

disassembly ( 0
v ) rates in the model. Since the minimum sarcomere length lmin is independent of 

the turnover rates, the total amount of shortening during recoil is independent of v+ and 0
v .  

 However, the actin turnover rates are predicted to influence both the recoil duration and 

the amount of actin disassembly (Fig. 5.6A,B). The model predicts that inhibiting actin assembly 

(disassembly) decreases (increases) the recoil duration (Fig. 5.6A,B). This effect arises because 

the steady state actin overlap, zss = (p*/k)ln(v+/ 0
v ), decreases when assembly is inhibited and 

increases when disassembly is inhibited. A larger overlap increases the recoil duration because 

the elastic actin-actin forces resist constriction, while a smaller overlap decreases the recoil 

duration by reducing the resistance to contraction. 

 The model also predicts that the relative amount of actin remaining in the stress fiber 

after recoil decreases (increases) when actin assembly (disassembly) is inhibited (Fig. 5.6A,B). 

This effect also arises because of the effect of turnover on the steady state overlap zss. A 

reduction in the actin assembly rate v+ decreases the overlap, and therefore a larger fraction of 
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actin is shed when the sarcomere shrinks, while the opposite occurs for a reduction in the 

disassembly rate. 

 To test these predictions, we altered the ability of actin filaments to assemble and 

disassemble by treating cells with 0.2-1 μM jasplakinolide, which stabilizes actin filaments by 

decreasing their depolymerization rate,160 or 50 nM of the actin polymerization inhibitor 

cytochalasin D161 (Fig. 5.6D,E). Both drugs caused a large increase in the rate of spontaneous 

stress fiber severing (Fig. 5.6D,E). In particular, cytochalasin D treatment often caused the entire 

network of stress fibers to rupture and contract.  

 As predicted by the model, neither drug affected the fractional shortening of severed 

stress fibers (Fig. 5.6F). Jasplakinolide treatment caused a diminished loss of actin during recoil, 

and cytochalasin D treatment caused an enhanced loss of actin during recoil (Fig. 5.6G), 

although the latter was not statistically significant (p = 0.12). These results are in agreement with 

the model predictions assuming that main effect of the drugs is to alter v+ and 0
v  (Fig. 5.6A,B). 

However, the recoil duration was not affected by either drug (Fig. 5.6H), which is not consistent 

with the model predictions (Fig. 5.6A,B) if the drugs’ main effect is to alter v+ and 0
v . It is 

possible that the drugs have other effects that complicate the interpretation of the experiments.    

 

V. Discussion 

By analyzing the recoil kinetics and actin dynamics of spontaneously severed stress fibers, 

we have identified a mechanism of coupling between contractility and actin turnover. We 

observed that stress fibers shed ~50% of their actin as thy shorten after severing, while their  

linear actin density increases, peaks, and then decays to a new value 2-fold larger than the initial 
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Figure 5.6. Effect of actin polymerization and depolymerization rates on recoil 
(A) The model predicts that reducing the actin assembly rate v+ decreases the recoil duration and the 
amount of actin remaining in the fiber after recoil.  

(B) The model predicts that reducing the actin disassembly rate 0
v  increases the recoil duration and the 

amount of actin remaining in the fiber after recoil. 
(C) Time lapse confocal images of a spontaneously severing stress fiber in a zyxin-/- cell (arrows).  
(D) Time lapse confocal images of a spontaneously severing stress fibers in a cell treated with 0.3 µM of 
jasplakinolide. Asterisks indicate severed ends. Time is measured after drug treatment.  
(E) Time lapse confocal images of spontaneously severing stress fibers in a cell treated with cytochalasin 
D. Asterisks indicate severed ends. Time is measured after drug treatment. 
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(F) Fractional shortening of spontaneously severed stress fibers. A lack of zyxin (n=8), treatment with 
jasplakinolide (n = 15), and treatment with cytochalasin D (n = 12) do not alter the value from wild-type 
cells (n = 16).   
(G) Relative amount of actin remaining in spontaneously severed stress fibers after recoil. The lack of 
zyxin has no effect (n = 8). However, treatment with jasplakinolide significantly decreased the amount of 
actin disassembly (n = 15) and treatment with cytochalasin D enhanced actin disassembly, although the 
difference was not statistically significant (n = 12, p = 0.12).  
(H) Recoil duration of spontaneously severed stress fibers. A lack of zyxin (n=8), treatment with 
jasplakinolide (n = 15), and treatment with cytochalasin D (n = 12) do not alter the value from wild-type 
cells (n = 16).   
Bar graphs show mean ± SEM. All micrographs from the Beckerle lab (University of Utah). 
 

density. Our model explains this observation by positing that increasing actin density in the 

sarcomere causes compressive elastic forces that promote actin disassembly. During recoil, the 

actin density initially increases because the sarcomeres shrink faster than the actin filaments 

shorten. The increasing actin filament overlap force slows constriction and increases the actin 

disassembly rate. Eventually, the sarcomere reaches its minimum length and the density 

decreases as the disassembly continues. Therefore, the actin turnover in stress fibers is used to 

adjust the actin filament length in response to changes in the sarcomere length. 

A key ingredient of our model is that compressive elastic forces resist the overlap of actin 

filaments in the centers of stress fiber sarcomeres. Such a force has not been measured in stress 

fibers, but when actin pointed ends overlap in striated muscle sarcomeres, the contractile force is 

reduced suggesting that a resistance force may be present.109,131 Additionally, compression forces 

build up in vitro when surfaces with barbed-end tethered actin filaments are brought in close 

proximity.162 From this study we estimate an elastic constant of ~2-5 pN/µm per actin filament, 

which is very close to the mean best fit value of ~9 pN/µm from our model (Table 5.1). The 

stiffness may be lower in vitro because of the lack of crosslinking proteins such as α-actinin that 

are present in stress fibers. The origin of the actin compression force is not clear.  The situation is 

probably complex because the actin filaments are crosslinked and have a disordered organization 

compared to muscle, but the force may arise from bending or buckling of the actin filaments.  
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Another key model ingredient is the sensitivity of the actin disassembly rate to 

compressive forces in the actin filaments. This may occur by stresses on actin filament ends 

increasing the actin subunit off rate.116 Alternatively, the activity of actin filament severing 

proteins such as cofilin may be sensitive to stress in the actin filament. In growth cones, it was 

shown that the presence of myosin contractility promotes the bending and breakage of actin 

filaments.163 Our model is general and does not depend on any particular mechanism of stress-

sensitivity. This will be an interesting subject for future studies. 

What is the purpose of coupling of contraction and actin turnover in stress fiber 

sarcomeres? The ability to adjust actin filament lengths in response to changes in stress fiber 

length may allow the stress fiber to efficiently generate tension over a wide range of sarcomere 

lengths, appropriate for the dynamic mechanical conditions in nonmuscle cells. By contrast, actin 

filaments in striated muscle have stable lengths with little actin turnover, and muscle sarcomeres 

typically work over a relatively small range of lengths.112  

 

Appendix A: Experimental Procedures 

Materials  

Cell lines. Production and immortalization of fibroblasts derived from wild-type and 

zyxin null mice was described previously.157 Fibroblasts derived from zyxin-/- mice were stably 

rescued with N-terminally tagged zyxin by viral infection followed by FACS sorting to select 

cells expressing fluorescently tagged zyxin.157 

Cell culture and transfection. Cells were cultured in DMEM supplemented with L-

glutamine, penicillin/streptomycin, sodium pyruvate, and 10% fetal bovine serum (Hyclone) and 
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grown on coverslips coated with fibronectin (10 mg/ml). Transient transfections of DNA 

constructs for expression of fluorescently tagged proteins were performed using FuGENE HD 

transfection reagent (Roche). Time-lapse imaging of cells was performed 3–6 days after 

transfection.  

DNA constructs. pmCherry-actin- The mCherry coding sequence was amplified from 

pRSET-B-mCherry, digested with AgeI and BglII and ligated in place of GFP in pEGFP-actin 

(Clontech, cat# PT3265-5). Other plasmids were generous gifts from Dr. Michael Davidson 

(Florida State University): pActin:mApple; Dr. Carol Otey (University of North Carolina, 

Chapel Hill): α-actinin-GFP. 

 

Live-cell imaging for protein dynamic studies 

Coverslips were mounted in a closed chamber (LIS), with DMEM/F12 media (Invitrogen) 

supplemented with 10% fetal bovine serum. Cells were maintained at 37°C using a microscope 

temperature control system (LIS). Imaging was performed on an Andor spinning disk confocal 

on an inverted Nikon TE300 microscope with a 603 1.4NA Nikon Plan Apochromat lens. 

Illumination was from solid state 488 and 568 nm lasers (Melles Griot), switched by an acousto-

optic tunable filter based laser combiner (Andor Technology), and delivered by optical fiber to 

the Yokogawa CSU-10 scanhead. The emission light path was equipped with a dual bandpass 

filter (Semrock Inc). Timelapse image sequences were captured at 2 or 10 s intervals using either 

Andor DV887 1024X1024 EMCCD camera, or Andor DV885 512X512 EMCCD camera 

(Andor Technology). Stage motions were controlled in XY with a Ludl XY stage (Ludl 

Electronic Products) and in Z with a Piezo stage insert (Mad City Labs). Image acquisition was 
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performed using Andor IQ imaging software (Andor Technologies) on a PC workstation (Dell 

Computers). 

 

Image analysis 

Analysis of stress fiber recoil. At each time frame, a line was drawn along the stress fiber 

using ImageJ software (http://rsb.info.nih.gov/ij/). The line width was chosen to be slightly larger 

than the fiber width, typically 8-15 pixels. The actin fluorescence intensity profile along the line 

averaged over its width, I(y), was measured and smoothed, where y increases in the direction of 

the severed end. The fiber length L is the distance between the position of the intact end and the 

position of the severed end, defined as the position where ∂I/∂y is minimum. Each fiber’s L(t) 

curve was fit with an exponential function, Lf + ΔLexp(-t/τ) to determine the recoil duration τ. In 

kymographs of α-actinin or zyxin fluorescence, fiduciary marks were identified as minima of 

∂I/∂y. 

Quantitation of fluorescence in stress fibers. Using ImageJ software, for each time 

frame the total intensity of a labeled component was measured in a box drawn around the stress 

fiber, from the intact end to the position of the severed end. Background correction was made by 

subtracting the ctyoplasmic intensity immediately adjacent to the fiber. The photobleaching 

correction curve was taken as the mean of the decay of fluorescence intensity in 3 nearby 

quiescent stress fibers in the same cell. Severing events were discarded if these 3 photobleaching 

curves were not nearly identical. The optical sections of the confocal microscope were ~1.2 μm 

thick, >2 times thicker than a typical stress fiber. Therefore it was assumed that the entire stress 

fiber resides in a single section. This was confirmed by verifying that the intensity where two 

stress fibers intersect is equal to the sum of the individual fiber intensities near their intersection 
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(n = 5). Some severing events were rejected because of excessive photobleaching, movement out 

of the field of view, or lifting out of the focal plane.  

Analysis of stress fiber width. ImageJ software was used to draw 5-pixel-wide lines 

across the stress fiber in the y direction, perpendicular to its axis. A Gaussian function was fit to 

the actin intensity profile along the line, I(y) = [σ(2π)1/2]-1exp[-(y-μ)2/(2σ2)] + I0, and the width 

was defined as the full width half max, 2σ(2ln2)1/2. Each width measurement is the average of 

the width at the three locations: near the intact fiber end, in the center of the fiber, and near the 

severed end. Widths were measured either immediately after breakage or after recoil was 

complete.  

Statistical analysis. Statistical significance for the recoil fraction, recoil duration, 

fluorescence intensity, and linear density were determined using unpaired, two-tailed t tests. 

Statistical significance for fiber width was determined using a paired, two-tailed t test. 

Differences were considered significant at the 95% confidence level. Statistical significance 

denoted as follows: *** p < 0.001; ** p = 0.001–0.01; * p = 0.01–0.05; ns, p > 0.05. 
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Chapter 6 

 

Conclusion 
 

 In this thesis, we have made strides toward a mechanistic understanding of actomyosin 

contractility, a process fundamental to life. We developed detailed mathematical models of the 

actomyosin cytoskeleton in close collaboration with experimentalists, focusing on two prominent 

cytoskeletal structures: the contractile ring and stress fibers.   

 

Cytokinesis and the contractile ring 

While the protein composition and formation mechanism of the contractile ring have 

been studied in great detail, relatively little progress has been made in understanding ring 

constriction during cytokinesis. Unlike striated muscle, which has a sarcomeric structure 

specifically geared toward tension production, the ring appears to have a random organization 

and its mechanism of constriction is unknown. In this thesis, we presented a detailed model of 

how the ring works as a contractile machine to constrict and divide the cell into two daughter 

cells. This work is the result of a close collaboration with the laboratory of Thomas Pollard at 

Yale University, using the fission yeast model organism whose cytokinesis process is similar to, 

yet much simpler to study than that of animal cells. Our model is the first model to incorporate 

the measured concentrations of key ring components, and the first model to explicitly include 

ring anchoring and turnover.  

To have useful predictive value any model of the ring must be able to predict the ring 

constriction rate, which is the most obvious and most easily measurable aspect of cytokinesis. 
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However, predicting the ring constriction rate in normal fission yeast cells is not possible given 

the current limited understanding of the septation process that is closely coupled to ring 

constriction. To overcome this obstacle, we studied ring constriction in fission yeast protoplasts 

whose cell wall had been digested, preventing septation and cell cleavage. The ring then 

constricted by sliding along the cell membrane, allowing direct comparison between model and 

experiment. 

 We concluded from our experimental and theoretical analysis that the ring is a tension-

generating contractile machine. Our work indicates that to ensure optimum generation of tension, 

myosin oligomers bind and pull on actin filaments that are anchored at their barbed ends. The 

ring is strongly anchored to the membrane, ~20-fold more strongly than the precursor nodes that 

form the ring. Rapid formin and actin turnover refresh the ring organization so that the tension 

does not run down and allow for remodeling of the ring over a longer timescale, ensuring that 

actin maintains a constant concentration during constriction.  

The model makes specific, novel predictions that can be tested experimentally: (1) Actin 

filament barbed ends are anchored to the membrane so that the ring can generate tension. This 

could be tested using electron microscopy. (2) Actin turns over ~3-fold faster than formin in the 

ring. This could be directly tested if a fluorescent label for actin could be developed that does not 

prevent its incorporation in to the ring. (3) The magnitude of the ring tension is ~40-80 pN and 

the tension fluctuates on a time scale of ~20 s. (4) The magnitude of the ring tension depends on 

the statistical correlations between actin filament and myosin oligomer positions (Eq. 2.1). This 

finding provides a framework for a novel set of measurements on contractile rings. 

Simultaneously measuring the spatial distribution of fluorescently labeled actin and myosin in 



133 
 

the ring could allow characterization of the ring structure by calculating the sarcomericity ψsarc 

(Eq. 2.1).  

The work in this thesis is also the first demonstration of the force balance on the 

contractile ring during constriction. To our knowledge, the only direct measurements of ring 

tension were performed by Rappaport in 1967.81 However, in that work the contractile ring was 

stalled during constriction using a needle so that the maximum ring tension was measured rather 

than the actual tension during constriction. By predicting and measuring the shape of the 

contractile ring in protoplasts, we showed that rings generate tension and work against external 

forces even when not stalled by an external probe. Since rings in protoplast constricted at the 

same rate as rings in intact cells, rings in intact cells would generate the same tension as the 

protoplast rings.  While our work has begun to reveal the mechanisms of the contractile ring, it 

also shows that understanding the resistance forces to constriction is critical for understanding 

the dynamics of constriction. Thus, future work should investigate septation dynamics and how 

septum growth is coupled to the ring tension.  

 

Stress fibers 

While the structure of stress fibers appears to be related to the sarcomeric structure of 

muscle, stress fibers are more disordered and their mechanism of contraction is not fully 

characterized. As in muscle, myosin filaments in sarcomere centers interact with actin filaments 

to produce tension and contraction. However, whether the turnover of actin in stress fibers 

(which is not present in muscle) is involved in contraction and whether stress fibers are coupled 

to their surroundings is unknown.   
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In this thesis, we presented the first measurements and mathematical modeling of actin 

turnover and remodeling during stress fiber contraction. Analysis of the recoil of spontaneously 

severed fibers led us to conclude that stress fibers are not mechanically coupled to their 

surroundings and that actin turnover is coupled to contractile forces. Our work suggests that the 

overlap of actin filaments in the center of stress fiber sarcomeres causes a compressive elastic 

force that increases the rate of actin disassembly rate. This feedback between elastic stress and 

actin disassembly allows actin filaments to shorten and lengthen in response to contraction and 

extension, respectively, thereby endowing stress fiber sarcomeres with a large range of stable 

operating lengths. Thus, the mechanosensitivity gives the cell flexibility by allowing stress fibers 

to maintain structural integrity while undergoing large changes in length. It will be interesting to 

test whether this may be a general mechanism employed by other cytoskeletal structures in cells 

that must rapidly adjust and respond to mechanically dynamic environments.  

Our conclusion that actin disassembly and compressive mechanical stress are coupled 

suggests several experiments. The mechanism of mechanosensitivity is unknown; in vitro 

methods could be used determine whether the activity of cofilin or other factors involved in actin 

filament disassembly are sensitive to compressive stress in actin filaments. In vitro experiments 

could also be designed to characterize the compressive force of that builds up when arrays of 

actin filaments overlap.  
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