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ABSTRACT 

 

Understanding the nervous system as an information processing machine: 

Dense, nonspecific, canonical microcircuit architecture of inhibition in neocortex 

and 

A neural circuit for angular velocity computation 

 

Adam Max Packer 

  

 This thesis is the combination of two separate lines of work linked by one 

common goal: understanding the nervous system as an information-processing machine.   

David Marr (1982) put forth the idea that in order to fully understand an information-

processing machine one must understand it at three separate levels.  The computational 

goal of the system must be understood separately from the algorithm by which it is 

computed and the hardware in which it is computed.  During my time as a graduate 

student I have been fortunate enough to work on two different levels in two very different 

systems.  Chapter 1 focuses on the hardware of neural circuitry, specifically on how 

inhibitory interneurons connect to excitatory neurons.  Chapter 2 focuses on the 

algorithmic problem of how flies could use gyroscopic sensors to calculate angular 

velocity. 
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PREFACE 

  Chapter 1 is a manuscript currently in preparation.  Chapter 2 has been 

previously published as A neural circuit for angular velocity computation in Frontiers in 

Neural Circuits 4: 123 (Snider SB, Yuste R, and Packer AM, 2010).
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CHAPTER 1 

Summary 

 
  

GABAergic interneurons play a major role in the function of the mammalian 

neocortex but their circuit connectivity is still poorly understood. We use two-

photon RuBi-Glutamate uncaging to optically map how the largest population of 

cortical interneurons, the parvalbumin-positive cells (PV+), are connected to 

pyramidal cells (PCs). We find locally dense connectivity from PV+ interneurons 

onto PCs across cortical areas and layers.  In many experiments, all nearby PV+ 

cells are connected to every local PC sampled.  In agreement with this, we find no 

evidence for connection specificity, as PV+ interneurons contact PC pairs similarly 

regardless of whether they are synaptically connected or not. Moreover, using 

anatomical reconstructions of connected neurons, we find that the overlap of PV+ 

axons with PC dendrites (Peters' Rule) accurately predicts the spatial profiles of 

connectivity from PV+ to PCs, without any additional mechanisms.  We conclude 

that the canonical microcircuit architecture for PV+ interneurons, and probably 

inhibition in general, is an unspecific, densely homogenous matrix covering all 

postsynaptic targets nearby. 
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Introduction 

 The mammalian neocortex is a marvel of biological engineering capable of 

impressive computational feats.  This structure appears to be organized in a stereotypical 

and hierarchical manner, presumably to achieve a high level of parallel processing power 

(Mountcastle, 1982).  Unfortunately, the structure of cortical microcircuits appears to be 

an "impenetrable jungle" (Ramon y Cajal, 1923) because of the dense mixing of different 

types of neurons, which makes deducing the way it operates difficult.  Indeed, although 

cortical preparations have been studied anatomically and physiologically for over a 

century, remarkably little has been revealed about the fine-scale organization of these 

neurons into circuits.  It is clear that the cortex is divisible into layers and areas, each 

with distinct connectivity patterns with other layers and areas, presumably resulting in 

specific functions for each element (Douglas and Martin, 2004). It is also known that 

individual neurons belong to particular classes, although there is still no valid 

classification for many neurons (Ascoli et al., 2008), or theoretical framework describing 

how they function in a concerted way to process information.  

 Part of the reason for this ignorance is the experimental difficulty in revealing 

how these neurons are connected to each other to form functional circuits (Crick, 1979).  

In the last decade several new techniques have been developed to reveal synaptically 

connected neurons, including paired whole-cell recordings (Thomson and Lamy, 2007), 

serial EM reconstructions (Bock et al 2010), viral tracing (Wickersham et al., 2007), 

calcium imaging probing (Peterlin et al., 2000), reverse correlation imaging (Aaron and 

Yuste, 2006) and photostimulation with caged glutamate (Callaway and Katz, 1993). We 

have recently introduced a variant of photostimulation that uses two-photon uncaging of 
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glutamate to map connected neurons with single cell resolution (Nikolenko et al., 2007). 

When combined with uncaging of RuBi-Glutamate, a recently developed caged 

glutamate compound (Fino et al., 2009), two-photon photostimulation can be applied to 

map inhibitory connections.  Using Rubi-Glutamate, we recently mapped the synaptic 

circuits of somatostatin-positive interneurons in the upper layers of mouse frontal cortex, 

finding a very dense and unspecific connectivity from these interneurons to neighboring 

pyramidal cells  (Fino and Yuste, 2011).  This dense connectivity has not been reported 

before and we wondered if it was a peculiar feature of the somatostatin-positive 

interneurons or of the frontal cortex. 

 To answer these questions, we have now mapped the connectivity from fast-

spiking parvalbumin-positive (PV+) basket cells — the largest population of interneurons 

in the neocortex — to pyramidal neurons, and compared the synaptic circuits in which 

they are embedded in different cortical layers and areas. We find locally dense and 

unspecific connections from PV+ interneurons on to pyramidal cells (PCs) in two 

different cortical areas (somatosensory and frontal) as well as in two different layers (2/3 

and 5). Although we use brain slices, in which many connections are severed, we often 

find that every local PV+ cell is connected to every PC sampled. We also find that Peters' 

Rule  (i.e., the spatial overlap of axons and dendrites) is sufficient to predict the spatial 

pattern of connectivity of PV+ interneurons, supporting the idea that these circuits are not 

specific.  Our results support the view that the dense architecture of interneuron 

connectivity, whereby a ―blanket of inhibition" is extended on local pyramidal cells, is a 

universal feature in the design of neocortical microcircuits. 
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Results 

 

Two-photon photostimulation of parvalbumin interneurons 

To study the connectivity from a well-defined subset of interneurons onto nearby 

pyramidal cells (PCs), we used the G42 transgenic mouse line in which parvalbumin- 

expressing interneurons are labeled with GFP (Chattopadhyaya et al., 2004). In coronal 

brain slices, we targeted and recorded from 91 GFP-positive cells, and performed 

anatomical and electrophysiological characterizations of these neurons.  Anatomically, all 

targeted PV+ interneurons had basket cells features with promiscuous and densely 

branching axons (n=15 reconstructions; Figure 1-1A).  Electrophysiologically, GFP-

positive neurons were all fast-spiking cells, firing at frequencies greater than 50 Hz (97 ± 

6 Hz, n=42) (Ascoli et al., 2008). They also had high rheobases (312 ± 102 pA, n=42), 

strong fAHP currents, and rectifying I/V curves (Woodruff et al., 2009)(Figure 1-1B-C). 

 To map synaptic connections from PV+ interneurons onto postsynaptic PCs, we 

followed the protocol initially developed by (Nikolenko et al., 2007) and recently refined 

for inhibitory connections by (Fino and Yuste, 2011).  This protocol relies on the ability 

to optically stimulate individual neurons with two-photon uncaging of RuBi-Glutamate 

(Fino et al., 2009).  We achieved single-cell resolution by multiplexing the two-photon 

laser beam across time, focusing it to eight points around the target cell soma (Figure 1-

1D), and across space, by using a diffractive optical element (Nikolenko et al., 2007) to 

split the laser beam into five beamlets (Figure 1-1E).  This strategy preserved the 

integrity of the point-spread function of the two-photon beam (Figure S1-1), thus 

enabling single-cell precision.  When photostimulating a recorded PV+ interneuron with 
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this method, one to several action potentials (APs) were elicited at intermediate laser 

powers (150 mW on sample, Figure 1-1F) while bursts of APs were elicited at greater 

powers (300 mW on sample, Figure 1-1G). Despite the high rheobase of these cells, these 

laser powers (>150mW) never failed to produce APs (APs in 21 out of 21 cells tested).  

APs induced by uncaging displayed the fAHP waveform and high frequency trains 

characteristic of fast-spiking cells.  In addition, when the stimulation of the PV+ 

interneuron was repeated every five seconds, identical responses were produced each 

time (14.22 ± 0.08 millisecond delay to first spike, 11.6 ± 0.2 action potentials per 

stimulation, n=10 photostimulations). Thus, the photostimulation strategy we employed 

was precise and reliable, activating neurons with single-cell resolution. 

   

Mapping monosynaptic connections from PV+ interneurons to pyramidal cells 

We then mapped inputs from interneurons onto PCs, following the strategy 

developed by (Fino and Yuste, 2011). Briefly, a PC was patched while nearby PV+ 

interneurons were sequentially photostimulated (Figure 1-2A). Each PV+ interneuron 

was activated with a range of at least five laser powers, including the maximum of 300 

mW on the sample.  Postsynaptic responses in the PC that were time-locked to the 

stimulus were measured in voltage clamp (Figure 1-2B). The PC was initially held at 

+40mV to increase the driving force on inhibitory currents and then at -40mV to test that 

these postsynaptic currents were indeed inhibitory.  

If the photostimulation of a PV+ cell generated a synaptic response in the PC with 

a GABAergic reversal potential (set to -80mV), we identified them as ―true positive‖, i.e., 

putatively connected neuron, since it was time-locked to the optical stimulation of an 
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inhibitory cell. To test whether interneurons generating these ―true positive‖ responses 

were indeed connected to the postsynaptic PC cell, we patched them with a second 

electrode (Figure 1-2A-D, cell #4-red arrow), stimulated them with intracellular pulses of 

current to produce action potentials, and confirmed the generation of postsynaptic IPSCS 

(Figure 1-2E). Overall, we found that, in 9 out of 10 cases, true-positive PV+ cells 

generated short latencies IPSCs in the PC, indicative of monosynaptic transmission 

(Figure 1-2G-J; 1.12 ± 0.19 milliseconds, n=9 pairs).  These presynaptic PV+ 

interneurons always fired APs when photostimulated (Figure 1-1G) and generated 

inhibitory responses with large outward currents (Figure 1-2D and 2H).  

To explore if interneurons that did not generate a response in the PC could be 

potentially also connected to it, we also patched 8 photostimulated PV+ interneurons for 

which no response was observed ("negatives").  We confirmed that there was no synaptic 

connection in any of these cases (Figure 1-2K-N), concluding that negatives were "true 

negatives".  In other words, we never observed any "false negatives" in which a PV+ 

interneuron which did not appear to be connected optically was in fact connected. Even 

PV+ interneurons that were very close to each other could be disambiguated, as 

evidenced by the complete lack of response (Figure 1-2B, cell #5, inset 2F) from cells 

directly adjacent to true positive, connected cells (Figure 1-2A, grey arrow vs. red arrow). 

Besides true positive and negative responses, we occasionally observed 

unexpected postsynaptic currents that reversed direction at the glutamate reversal 

potential of 0mV (―false positives‖ responses). Most of these ―false positives‖ occurred 

when directly stimulating in the vicinity of the recorded PC, just outside its soma (Figure 

1-2O).  In addition to a different reversal potential, these responses had slower kinetics 
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(Figure 1-2P) than the true positive responses from connected PV+ interneurons (Figure 

1-2H).  We also observed occasional false positive responses that arose from stimulating 

sites far away from the dendritic tree of the recorded neuron (Figure 1-2Q, black circle). 

We presume that these excitatory responses (Figure 1-2R) are due to PCs located nearby 

to the targeted PV+ interneuron, that were accidentally stimulated (Figure S1-2). These 

two types of false positive responses were rare and easily distinguished from true positive 

responses because of their glutamatergic reversal potentials. 

In summary, we classified all stimulated interneurons into three types, based on 

their responses in the PC cell: (i) true positive cells, connected to the PC with 

monosynaptic IPSCs, (ii) negative cells, likely not connected and (iii) false positive cells, 

which generated contaminating EPSCs. For the remaining of the study, we used this 

classification to analyze the maps of input connectivity. 

 

Dense local connectivity from PV+ interneurons onto pyramidal cells in different 

cortical layers and areas 

We assembled a total of 82 input maps from layer 2/3 and 5 of somatosensory 

cortex as well as from layer 2/3 of frontal cortex, arising from recordings from 13 single 

PCs, 12 PC pairs, 11 PC triplets and 3 PC quadruplets. In optimal cases, we could map 

the inputs onto 4 PCs in different focal planes (Figure 1-3).  Using this three dimensional 

strategy with simultaneous whole-cell recordings from multiple PCs, we were able to 

sample the connectivity from 2002 PV+ interneuron to PC pairs.  On average, 24 ± 1 

PV+ interneurons were tested for each map from 5 ± 0.2 focal planes.  
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We found that PCs received connections from most local PV+ interneurons, but 

not from more distantly located ones (Figures 3 and 4A). Overall, we tested a total of 21 

± 1, 29 ± 3, and 25 ± 2 PV+ interneurons in S2/3, S5, and F2/3 respectively (p > 0.05, 

Kruskal-Wallis), observing an average of 3 ± 0.4, 10 ± 1.4, and 7 ± 0.8 connections in 

S2/3, S5, and zF2/3 (p<0.0001 one-way ANOVA; p<0.001 S2/3 vs. S5, p<0.01 S2/3 vs. 

F2/3, p<0.05 S5 vs. F2/3 Tukey multiple comparison test; Figure 1-4B).   

To analyze the dependence of the connectivity versus intersomatic distance, we 

defined the connection probability from PV+ interneurons to a PC as a percentage 

(connected interneurons / connected and unconnected interneurons) and measured it as a 

function of intersomatic distance between interneurons and PCs. We assembled input 

maps from rectangular slabs of cortex measuring 800 μm by 600 μm by 52 ± 3 μm 

(Figure 1-4C) so we were able to calculate intersomatic distance in three dimensions 

(Figure 1-4D, green bars.)  False positives were rare and excluded from subsequent 

analyses (Figure 1-4D, black bars). 

In all areas, the probability of connection was remarkably high in the local range 

and the probability of connection was inversely proportional to intersomatic distance 

between the PV+ interneuron and the PC (Figure 1-4E).  An exponential fit of the 

connection probability versus intersomatic distance revealed spatial decay constants of 

124, 183, and 180 μm for S2/3, S5, and F2/3 respectively (R
2
 = 0.92, 0.91, and 0.86).   

For intersomatic distances of less than 200 μm, the probability of connection from 

a PV+ interneuron to a PC was high, ranging from 43 ± 6% in somatosensory layer 2/3, 

67 ± 6% in somatosensory layer 5, and up to 76 ± 4% in frontal layer 2/3 (p<0.0001 one-

way ANOVA, p<0.05 S2/3 vs. S5, p<0.001 S2/3 vs. F2/3, p>0.05 S5 vs. F2/3 Tukey 
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multiple comparisons post test; n=38, 20, and 23 maps in S2/3, F2/3, and S5; Figure 1-

4F).  In fact, at these close distances we found 13 cases of completely connected local 

maps (n=5 for S2/3; n=4 for S5, n=4 for F2/3; ranging from 1-7 interneurons, average 3.4 

± 0.6 interneurons, n=13 maps).   

Taking into account all distances, the average connection probability (connected 

out of connected and unconnected neurons) was lower in S2/3, 18 ± 3%, than in S5, 36 ± 

4%, or F2/3, 33 ± 3 % (p = 0.001, Kruskal-Wallis, p < 0.01 for S2/3 vs. S5 and S2/3 vs. 

F2/3, p > 0.05 for S5 vs. F2/3, Dunn’s multiple comparison test; Figure 1-4G).  A similar 

result was found when comparing the histograms of connectivity versus distance (Figure 

1-4E) in a bin-by-bin fashion (p < 0.0001, Friedman test).  This difference was not due to 

a difference in the number of targets tested in the different areas and layers, variables 

which were not significantly different (Figure 1-4B). 

 

Confirmation of dense local connectivity with dual whole-cell recordings 

 The previous results indicated that PV+ interneurons can be very densely 

connected to their local PCs, in some case this dense connectivity can exist at the 

physical limit, where every PV+ interneuron is connected to every PC sampled. 

Given that this result was obtained with a new mapping method, we sought to 

confirm the high local connectivity with dual whole cell recordings in non-optical 

experiments, by recording from randomly selected pairs of PV+ interneurons and PCs 

whose cell bodies were within 160 μm of each other (Figure 1-5A).  In 27 of 33 pairs 

recorded in S2/3, the PV+ interneuron was connected to the PC (Figure 1-5C and D). 

These monosynaptic connections had low failure rates and large amplitudes which 
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depressed over the course of an eight action potential train delivered at 50 Hz, but 

recovered one second later (Table 1-1, Figure 1-5B).  Restricting the analysis to 

intersomatic distances of less than 100 μm showed that 24/27 of pairs were synaptically 

connected.  

We also confirmed the dense local connectivity in S5 and L/23 with dual patch-

clamp recordings which revealed that 86% (6 out of 7) of pairs in S5 and 80% (4 out of 

5) of pairs in F2/3 were connected. In two instances in S5, one PV+ interneuron was 

connected to two nearby PCs (at distances of 60 and 84 μm in one experiment, and 77 

and 92 μm in the other.)   

These dual whole-cell recordings confirmed the locally dense connectivity of PV+ 

interneurons to PCs observed with optical stimulation.  For the optical mapping, we 

observed high probabilities of connection within 100 μm from the PC: 71 ± 9% in S2/3 

(n=21 maps), 92 ± 8 % in S5 (n=12 maps), and 80 ± 7% in F2/3 (n=14 maps, Figure 1-

5E).  Results obtained from optical mapping and patch-clamp recordings were not 

significantly different (S2/3, p=0.28; S5, p=0.38; F2/3, p=0.13 Mann-Whitney; Figure 1-

5E).  The probability of connection within 100 μm also did not differ between areas and 

layers (p = 0.15 for mapping, p = 0.86 for patching, Kruskal-Wallis).  This implies that 

the locally dense inhibitory connectivity is similar across the cortical areas and layers 

tested.  

 

Lack of specificity in interneuron- pyramidal cell connectivity  

 A corollary of locally dense connectivity from PV+ interneurons to PCs is that 

these interneurons must contact all, or most, PCs nearby, regardless of their identity or 
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adherence to a particular subcircuit. We tested this prediction by comparing the input 

maps, obtained at the same time, of several PCs from the same slice (Figure 1-3 and 1-6). 

We used these simultaneously acquired maps to examine whether pairs of PCs that were 

connected among themselves had a preferential innervation from nearby interneurons, as 

compared to pairs of PCs that were unconnected between themselves (Figure 1-6A; 

(Yoshimura et al., 2005).  

 We found that the common connection probability for pairs of PCs was similar, 

regardless of whether these PC pairs were connected or not (0.34 ± 0.09 and 0.28 ± 0.07 

for connected or unconnected PC pairs; p = 0.33, n=8 connected PCs, n=26 unconnected 

PCs, S2/3, Mann-Whitney; Figure 1-6B). The common connection probability for all 

pairs of PCs, connected or not, fell as the distance between PCs increased (p < 0.05, n = 

34 S2/3 PC pairs, Figure 1-6B). Given that connected pairs often occur at close distances, 

we were concerned that the common connection probabilities for connected PCs could be 

biased if the distances between those PCs were systematically smaller.  In fact, the 

average distance of connected PCs was significantly closer than that for unconnected PCs 

(44 ± 5 μm vs 65 ± 6 μm p < 0.05, unpaired t-test with Welch correction).  To avoid this 

distance effect, we restricted our analysis to PC pairs within 70 μm of each other. This 

reduced the average distance of unconnected PCs to 45 ± 5 μm, which was not 

significantly different from the average distance of connected PCs (p = 0.9284, n=8 

connected PCs, n=16 unconnected PCs, Mann-Whitney). In this reduced dataset, the 

common connection probability for unconnected or connected PCs was statistically 

indistinguishable (0.35 ± 0.11 for unconnected PCs vs. 0.34 ± 0.09 for connected ones; p 
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= 0.7286, Mann-Whitney).  This analysis indicated that PV+ interneurons do not 

discriminate between PCs that are forming subcircuits or not. 

 

Spatial patterns of connected PV+ interneurons varies between layers 

 The previous analysis of connectivity was performed by taking into account the 

distance of the interneurons to the pyramidal cell. To further examine the spatial structure 

of connections for the three cortical locations examined, we plotted the position of 

connected and unconnected PV+ interneurons within the coordinate plane of the cortical 

circuit and used these plots to explore whether the angular position of connected PV+ 

interneurons relative to PCs displayed any particular geometry (Figure 1-7).  To visualize 

this angular distribution, we computed polar plots in which the PCs were at the center and 

a sector was plotted with a radius proportional to the average connection probability of 

PV+ interneurons from that angular region (Figure 1-7B).  At nearby distances (0-200 

μm), the average connection probability from any given angle was homogenously high 

across areas and layers (Figure 1-7B, top row).  At further distances (200-600 μm), a 

spatial pattern appeared, whereby PCs preferentially received connections from 

interneurons located in vertically oriented positions (Figure 1-7B, middle row). 

Averaging all distances together also revealed a preference for connections from vertical 

orientations and also a difference between layer 2/3 and layer 5 of somatosensory and 

frontal cortices (Figure 1-7B, bottom row).  While layer 2/3 PCs received connections 

from locations closer to the pial surface, layer 5 PCs received connections from locations 

in deeper layers (p = 0.0027, circular ANOVA).  Under the convention of 90 degrees 

being towards the pial surface, the average direction from which PCs received 
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connections from PV+ interneurons was 86 degrees in S2/3, 258 degrees in S5 and 105 

degrees in F2/3, and these angles differed significantly (p < 0.01 between S2/3 and S5, p 

< 0.01 between F2/3 and S5, p = 0.6494 between S2/3 and F2/3, Watson-Williams test). 

We therefore concluded that there were significant differences in the spatial 

pattern of connectivity between upper and lower layer PV+ cells, although in both cases, 

and both cortical areas, there was a preferential vertical arrangement of presynaptic 

neurons.  

 

 Overlap of axons and dendrites predicts spatial connectivity profiles 

 We sought to understand the mechanisms underlying the dense synaptic 

connectivity maps we observed, and for the differences in the spatial connectivity 

patterns observed between layers. For this purpose, we next considered the representative 

anatomy of axons of PV+ interneurons and dendrites of PCs and wondered whether the 

morphologies of those cells alone could have predicted the spatial connectivity profiles 

we measured.  For example, the vertical location of interneuron inputs across layers 

(Figure 1-7B) could be explained by the fact that the axons of PV+ interneurons in layer 

2/3 of both somatosensory and frontal cortex extend vertically down from the cell body, 

whereas axons of PV+ interneurons in layer 5 of somatosensory cortex extend vertically 

up from the cell body (Figure 1-7C).  One could invoke Peter’ s rule, which states that a 

neuron connects with target structures in the same proportion as they exist in the tissue 

(i.e., without any selectivity; Peters and Feldman, 1976), to argue that the axonal patterns 

can explain the vertical connectivity. But are those arborizations sufficient to account for 

the connectivity we observed? 
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 To address this question quantitatively, and test whether Peters' Rule could 

explain our findings, we calculated the average axodendritic overlap between axons of 

PV+ interneurons and dendrites of PCs in S2/3 and S5. We lacked enough morphological 

reconstructions from frontal L2/3 for a meaningful analysis across regions. We used the 

cell bodies and proximal dendritic tree of the PCs (within 100 μm of the soma) because 

PV+ interneurons contact the perisomatic region of their postsynaptic targets (Karube et 

al., 2004; Wang et al., 2002). 

 First, we computed the average morphological structures present in our dataset by 

projecting together the morphologies of eight S2/3 PV+ interneuron axons, 4 S5 PV+ 

interneuron axons, and five PC cell bodies and dendrites within 100 μm (Figure 1-8A). 

Next, we multiplied these calculated morphological densities among themselves to 

generate the density of spatial overlap of axons and dendrites. We then repeated this 

calculation, systematically offsetting the positions of the cell bodies of the PV+ 

interneurons and PCs, by using the coordinates of every interneuron tested from the input 

maps.  This resulted in a series of overlap maps which were then summed to yield a 

amount of axodendritic overlap for each offset of the cell bodies.   

We found that the calculated axodendritic overlap was remarkably similar to the 

observed connectivity patterns of PV+ interneurons and PCs (Figure 1-8 B-E). 

Specifically, the axodendritic overlap calculated at each intersomatic distance was not 

significantly different from the connection probability we had previously measured 

(R=0.95, p<0.0001 for S2/3; R=0.78, p<0.0001 for S5; Figure 1-8B-C).  The result was 

algebraically identical if we calculated the axodendritic overlap for each combination of 

PV+ interneuron axon and PC dendrite and cell body and then averaged the results 
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together.  Apparently, details such as position of axonal boutons or the fine targeting on 

postsynaptic processes are not necessary to accurately recapitulate the correct 

connectivity profile, highlighting the idea that these axons connect in an unspecific 

manner with whatever postsynaptic structure they encounter. 

 In addition, the vertical orientation of the connectivity profile was also 

remarkably similar to the calculated axodendritic overlap profile (Figure 1-8D-E). 

Indeed, not only the vertical orientation but also the bias for S2/3 PCs to receive a higher 

probability of connection from PV+ interneurons more towards the pial surface while S5 

PCs had the opposite tendency (Figure 1-8E) was recapitulated in the axodendritic 

overlap (Figure 1-8D). Moreover, while the correlation between the predicted 

connections and the observed connections was very high within the same layer (R=0.80, 

p<0.0001 for S2/3; R=0.83, p<0.0001 for S5; Figure 1-8F), the correlation across layers 

were both below zero (between S2/3 predictions and S5 observations R= -0.5059; 

between S5 predictions and S2/3 observations, R= -0.1170). This indicates that 

differences in the spatial patterns of connectivity observed between different cortical 

layers can be explained solely by taking into account their differences in the 

morphologies of the PV+ axon and PC dendrites.  

We conclude that anatomical overlap between axonal arborizations of PV+ cells 

and dendritic arborizations of PCs was enough to predict the spatial patterns of 

connectivity, and even the difference observed across different layers, without the need of 

any additional mechanisms. 

 

Estimation of convergence and divergence in PV- PCs circuits 
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 The high density of connection we observe from PV+ interneurons to nearby PCs 

has two implications: 1) Each PC must receive convergent connections from many PV+ 

interneurons and 2) Each PV+ interneuron must contact many PCs. Using the probability 

function that describes connectivity, we calculated these numbers and explore whether 

they are self-consistent.  To do this, we constructed a cube of neocortex, 500 µm per side, 

with one PC located at the origin (Figure 1-9, black triangle), and an average density of 

40,000 neurons/mm
3
 (Knox, 1980) (see Figure 1-9).  We assume that 80% of neurons are 

excitatory and 20% are inhibitory (Beaulieu et al., 1992) and that one-quarter of the 

inhibitory neurons are parvalbumin-positive in S2/3 (Xu et al., 2009).  We then used the 

experimentally determined function describing the probability of connection of the PV+ 

interneurons to the centrally located PC, which is an exponentially decaying function of 

distance with decay constant of 124 µm with no other adjustable parameters (Figure 1-

4E).  We assumed that the probability of connection decayed similarly in every direction 

and chose the central PC as representative of any S2/3 PC in the neocortex.   

 When restricted to a 50 µm thick slab centered on the PC, this model accurately 

replicated our results predicting that there would be 6 PV+ interneurons connected to the 

PC. Although in the maps we only observed 3 connected PV+ interneurons on average in 

S2/3, in this transgenic mouse only half the parvalbumin-positive interneurons are labeled 

(Chattopadhyaya et al., 2004). 

 We then extended the model to answer the two questions posed at the beginning 

of this section, analyzing the full 500 µm cube.  Our model predicted there to be 46 PV+ 

interneurons connected to the PC.  With the estimation of how many PV+ interneurons 

contact each PC, and the ratio of the numbers of PCs to PV+ interneurons, we then 
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calculated how many PCs each PV+ interneuron contacts on average.  For this 

calculation, we define: 

  C  number of PCs 

  V  number of PV+ interneurons 

  R= C/V ratio of PCs to PV+ interneurons  

  N  number of PV+ interneurons that connect to each PC 

  N∙C  total number of PV+ interneuron to PC connections 

  N∙C/V = N∙R number of PCs contacted by one PV+ interneuron 

 Given that the number of PV+ interneurons that connect to each PC (variable N) 

is 46 and that the ratio of PCs to PV+ interneurons (variable R) is 80% to 5% (see above), 

or 16,  the number of PCs contacted by one PV+ interneuron is N∙R=46*16=736.  It is 

known that PV+ interneurons contact other PV+ interneurons as well.  Therefore, the 

total number of outgoing connections made by PV+ interneurons is likely even higher.  If 

we assume the same convergence of 46 PV+ interneurons onto one PV+ as we found for 

PV+ to PC connections, the number of outgoing PV+ interneuron connections changes 

only from N∙C to N(C+V), such that the number of PCs and PV+ interneurons contacted 

by one PV+ interneuron algebraically reduces to N(R+1), which is 46*17=782.  

Therefore, we estimate that the typical PV+ interneuron contacts approximately 800 

postsynaptic neurons, both PCs and other PV+ interneurons. 

 Do PV+ interneurons in somatosensory layer 2/3 have enough boutons to contact 

800 neurons?  FS basket cells in layer 2/3 have approximately 4,000 boutons (Karube et 
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al. 2004; Tamas et al., 1997; Wang et al. 2002).  There are on average 4 boutons from 

PV+ interneurons onto each postsynaptic soma at the age tested here (Chattopadhyaya et 

al., 2003).  Therefore, we might expect approximately 1,000 outgoing connections from 

PV+ interneurons.   

 A similar calculation was performed for the S5 and F2/3 datasets.  We constructed 

a similar cube of neocortex for somatosensory layer 5, in which the proportion of 

interneurons which are PV+ is around 60% (Xu et al., 2009) and our experimentally 

determined spatial decay constant for connectivity was 183 µm, resulted in 184 PV+ 

interneurons contacting each PC.  As there are more PV+ interneurons overall, the 

number of neurons contacted by each PV+ interneuron was still around 1,000: N(R+1)= 

184 * (80/12 + 1) = 1,410.  For frontal cortex layer 2/3, the proportion of interneurons 

which are PV+ is around 40% (Xu et al., 2009) and the decay constant was 180 μm, 

resulting in 121 PV+ interneurons contacting each PC.  The number of neurons contacted 

by each PV+ interneuron was 121 * (80/8 +1) = 1,331. 

 In summary, using a model we estimate that the typical PV+ interneuron in 

neocortex contacts several hundred to one thousand postsynaptic targets locally.  At the 

same time, each PC is contacted by a large number of PV+ interneurons, ranging from 50 

to almost 200.  Therefore, this PV+ interneuron—PC circuit has a high degree of local 

divergence and convergence. 
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Discussion 

 In summary, we find locally dense connectivity from PV+ interneurons onto PCs 

across cortical areas and layers, approaching in some experiments a completely 

connected circuit.  We find no evidence for target specificity since PV+ interneurons 

equally contact PC pairs which are synaptically connected or not.  Although the location 

of presynaptic PV+ interneurons varies between layer 2/3 and layer 5, Peters' Rule is 

sufficient to predict the spatial features of these inputs maps and account for differences 

observed across layers.  Thus, the canonical microcircuit architecture for PV+ 

interneurons, and perhaps inhibition in general (Fino and Yuste, 2011), may be a densely 

homogenous matrix innervating all PCs nearby. 

 

Methodological consideration 

  We are using a novel method to map synaptic connections, so it is pertinent to 

discuss its advantages and potential limitations. This method relies on two-photon 

uncaging of glutamate to activate individual neurons, while recording synaptic currents in 

other neurons, whose inputs we are attempting to map.  Two-photon activation is critical 

to the spatial resolution of the technique as the small point spread function produced by 

the two-photon process (Figure S1-1) allows for an accuracy down to the level of a single 

cell. 

 Two potential problems with this optical technique could arise: 1) failure to 

activate a targeted neuron and 2) inadvertent activation of a neuron which was not 

optically targeted.  To ensure that the targeted neuron actually fired, we always used 

different laser power levels when photostimulating neurons, including a high power 
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(300mW on sample), which, when calibrating the technique, always fired PV+ cells.  At 

the same time, we cannot guarantee that every optically targeted neuron actually fired.  In 

addition, these experiments were performed in brain slices that have many severed inputs, 

so we think that it is reasonable to assume that our input mapping strategy yields an 

underestimate of the true connectivity, which would imply the density of connections is 

even higher than we observe.   

 To address the issue of inadvertently activating neurons we did not intend to 

stimulate, we tested whether a neuron fired when the photostimulation was not centered 

on the soma.  We rarely observe activation of a neuron when it was not photostimulated 

or when we targeted the laser outside its soma (Figure S1-2), even if we purposefully 

choose a PC with a lower rheobase than the PV+ interneurons for this calibration 

experiment.  In addition, we used the "switching" test (Figure 1-2B) to confirm the 

inhibitory identity of the photostimulated cell.  Given the lower incidence of inhibitory 

interneurons relative to excitatory neurons in neocortex, it seems unlikely that another 

interneuron would be close enough to give rise to the inhibitory event observed. 

 But the direct confirmation that the maps are correct arises from two independent 

sets of experiments with dual whole-cell recordings, which not only validate the method 

but also confirm the main results.  First, predicted connections were confirmed by 

patching the targeted presynaptic interneuron during the experiment.  We found that 9 out 

of 10 putatively connected pairs were indeed connected, while 8 out of 8 putatively 

unconnected pairs were unconnected.  Second, the results we observe with the optical 

mapping matched those observed with dual whole-cell recordings from randomly 

selected PV+ and PC pairs (Figure 1-5). 



21 

 
 

 This technique therefore provides a robust and accurate measure of the 

connectivity from a defined set of neurons onto any recorded neuron of interest.  One key 

advantage of two-photon photostimulation is its single-cell resolution.  Other techniques, 

such as one photon laser scanning photostimulation (Callaway and Katz, 1993) or similar 

approaches relying on optogenetics (Katzel et al., 2011), do not yet have sufficient 

resolution to distinguish among inputs from different cells, since they activate groups of 

neurons, or axons from many cells together. At the same time, inhibitory inputs coming 

from all interneuron subtypes measured by these other techniques has been shown to 

come from predominantly local sources (Dantzker and Callaway, 2000; Yoshimura et al., 

2005) and have similar intralaminar patterns across areas (Katzel et al., 2011); these 

results are consistent with our analysis yet they also fall short of providing the actual 

detailed account of the cell-to-cell connectivity diagram. 

 A second advantage of our two-photon technique is that it provides a 

measurement of what proportion of cells are connected out of the total population of 

presynaptic neurons, a critical number to assess the specificity of the connectivity.  In 

contrast to whole-cell recordings, in which the entire population of cells cannot be easily 

sampled, our method allows for an estimate of the true connectivity in each experiment.  

This not only avoids the possible introduction of statistical artifacts as the results from 

averaging different experiments together, but also provides an important absolute count 

of the nearby connected neurons. 

 One caveat with our experiments, however, is that there could be different 

subtypes of parvalbumin-positive interneurons labeled in the transgenic mouse we used 

(Chattopadhyaya et al., 2004). In the neurons sampled in this study, however, we have 
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only observed basket –like morphologies in our biocytin-filled reconstructions, and have 

not observed other morphologies, such as chandelier cells.  Lacking any evidence for a 

heterogeneity in the population of PV cells tested, we treat these PV+ cells as equivalent 

for the purposes of this study.   

 

Dense connectivity of PV+ interneurons 

 Our main result is the finding of a strikingly high density of connectivity from 

PV+ interneurons onto nearby pyramidal cells in somatosensory cortex layer 2/3 and 5 

and frontal cortex layer 2/3 (Figure 1-4).  This result is confirmed by dual whole-cell 

recordings (Figure 1-5) and can approach in some experiments the limit of having every 

interneuron being connected to every local PC sampled. 

 The reported connectivity rates between interneurons identified as PV+, fast-

spiking (FS), or basket cells, and nearby PCs vary greatly (review by Thomson and 

Lamy, 2007; Holmgren et al., 2003; Kapfer et al., 2007; Oswald et al., 2009; Reyes et al., 

1998; Tamas et al., 1997; Thomson et al., 1996; Thomson et al., 2002; Wang et al., 2002; 

Yoshimura and Callaway, 2005).  Consistent with the high density that we observed, 

connectivity rates of 67% have been reported for fast-spiking cells to PCs within 50 μm 

in layer 2/3 of rat somatosensory cortex (Kapfer et al., 2007). However, rates as low as 

16% have been reported in layer 3 of rat cortex (Thomson et al. 2002). Intermediate 

values of 50-60% have also been observed (Holmgren et al. 2003). In addition, a small 

decrease in FS to PC connectivity with intersomatic distance has been reported for layer 

2/3 of visual or somatosensory (Holmgren et al., 2003) and auditory cortex (Oswald et 

al., 2009)).  
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 In the present study, we found 468 PV+ interneuron to PC connected pairs among 

1,747 pairs tested, a significant increase in the number of connections probed, as 

compared with past studies.  The increase in the numbers of pairs we could quickly test 

allowed us not only to draw conclusions about the basic rates of connectivity, but also to 

directly assess the true rates for each slice.  As this study shows, knowledge of the 

number of cells tested and the exact distances over which a given probability of 

connection is observed are important factors to understanding connectivity among 

neurons.  Moreover, with a more significant statistical sample, we can also begin to probe 

the mechanisms by which that connectivity is achieved. 

 Using our large dataset, we calculated the function describing how the probability 

of connection varies with intersomatic distance.  This allowed us to estimate the degree 

of divergence from PV+ interneurons and the degree of convergence onto PCs, finding a 

high divergence from PV+ interneurons outputs, which goes hand in hand with the 

convergence of many PV+ interneurons onto one PC we observed in our highly dense 

maps. We estimate a higher density of converging connections onto PCs than previously 

calculated, even though our data may in fact underestimate the true probability of 

connection.  Previous studies in neocortex (Tamas et al. 1997) and hippocampus (Buhl et 

al. 1994) estimated approximately 25 PV+ interneurons converge onto one PC.  This 

estimate is lower than what we found but it also predicts only N(R+1) = 25*17 = 425 

connections from PV+ interneurons to PCs, which is a low number when one considers 

the large number of boutons present in a single PV+ axon (~4,000, (Karube et al., 2004; 

Wang et al., 2002). Therefore, the high density of connections we estimate from PV+ 

interneurons to PCs appears more consistent with the observed high number of boutons.  
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 Finally, we have recently described how somatostatin-positive (SOM+) 

interneurons also make locally dense connections onto nearby PCs (Fino and Yuste, 

2011) and our current data on PV+ interneurons are in good agreement with the SOM+ 

interneuron data.  The average probability of connection from a SOM+ interneuron onto a 

PC in layer 2/3 of frontal cortex of P11-P16 mice was 43%, somewhat higher than the 

average probability of connection we observed for PV+ interneurons in any layer or area.  

But the probability of connection for SOM+ interneurons within 200 μm of a PC was 

71%, similar to the probabilities of connection we observed within 100 μm.  The 

similarly dense matrix of local connections from these two distinct subpopulations of 

interneurons onto PCs implies that inhibitory connections may be built according to the 

same basic plan. 

 

Unspecific innervation of PC cells 

 Our second main result is the finding that the probability of 2 PCs receiving 

connections from the same PV+ interneurons does not depend on whether the 2 PCs are 

synaptically connected (Figure 1-6). This result is consistent with the high density of 

connections we observe as there is no room for specificity within such a high probability 

— in other words, there are no neurons to specifically avoid contacting. 

 In a past study, considering a pair of PCs which are synaptically connected as part 

of the same 'subcircuit', revealed no difference in the inhibition received by the pair of 

PCs (Yoshimura et al., 2005).  However, FS cells which were reciprocally connected to 

PCs shared more common input from excitatory sources than those which were not 

reciprocally connected (Yoshimura and Callaway, 2005). In addition, FS cells 



25 

 
 

preferentially targeted PCs which provided reciprocal excitatory connections (Yoshimura 

and Callaway, 2005).  Our method, with single cell resolution, allowed us to directly 

determine whether PV+ interneuron connections to nearby PCs were specific.  We found 

no evidence that PV+ interneurons preferentially contact PC pairs in the same subcircuit 

(Figure 1-6A).  Our results therefore differ from those of (Yoshimura and Callaway, 

2005) which showed preferential connections from FS cells to PCs providing reciprocal 

excitation.  But, at the same time, we did not test the same hypothesis as our optical 

strategy did not allow us to detect the response of the PV+ interneurons to PC 

stimulation.  In addition, the previous study assessed connectivity in the visual cortex of 

rats aged P21-P26, i.e. a different cortical area, age, and species than we used. 

 It is still possible that there could be specificity in the PV+ interneuron-PC 

connections which we were unable to test.  For example, the postsynaptic target of the 

PCs may influence from which PV+ interneurons they receive connections, as has been 

shown for some excitatory circuits (Brown and Hestrin, 2009; Morishima and 

Kawaguchi, 2006).  It is also possible that this locally dense architecture is pruned during 

development, although this was not found in the similarly dense connections made by 

somatostatin interneurons (Fino and Yuste, 2011), and fast-spiking cell connections onto 

pyramids have been reported to be dense in mature animals (Oswald et al., 2009). 

 

Mechanisms of interneuronal connectivity  

 The third goal of our study focused on understanding how the lack of specific 

connectivity emerges and we conclude that the spatial pattern of connectivity between 

PV+ interneurons and PC can be explained by Peters' Rule (Peters and Feldman, 1976). 
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This rule states that neurons connect to each other based solely on the overlap of their 

axonal and dendritic arborizations, without any additional specificity. We find that a 

simple application of this rule is sufficient to predict the spatial connectivity profiles we 

observe and their differences between layers.  This is surprising because Peters' Rule is 

often, but not always (Shepherd et al., 2005), violated for excitatory circuits (Brown and 

Hestrin, 2009; Petreanu et al., 2009).  Also, ultrastructural analyses often show failures of 

Peters' Rule (Mishchenko et al., 2010; Stepanyants et al., 2002).  

 Our finding that Peters' Rule is sufficient to explain the spatial distribution of 

connectivity from PV+ interneurons does not mean that other aspects of their 

connectivity are unspecific. For example, it is well know that different interneurons 

subtypes have subcellular specificy in their targeting (Somogyi et al., 1998). Indeed, PV+ 

interneurons preferentially contact perisomatic regions of PCs, and this violates Peter’s 

rule because PV+ interneuron axons must course through areas in which non-perisomatic 

dendrites of PCs reside. Also, at the macroscopic level, there are clear specific patterns of 

interlaminar projections in the axons of PV interneurons, as can be observed in some of 

our reconstructions, where certain layers are specifically targeted (Figure 1-8). We 

therefore view the interneuron innervation pattern as resulting from several layers of 

mechanisms, some of which could be specific, like the interlaminar and subcellular 

targeting, but  also unspecific ones, such as the intralaminar spatial connectivity pattern 

with PCs that we observe. 

 

A canonical microcircuit for inhibition 
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 Our results demonsatrate that inhibitory connections lack specificity in terms of 

contacting PCs.  Consistent with this idea, interneurons in layer 2/3 of visual cortex are 

broadly tuned to the orientation of a stimulus (Kerlin et al., 2010; Ma et al., 2010; Niell et 

al., 2008; Sohya et al., 2007; Zariwala et al., 2011), although some PV+ interneurons in 

the more superficial part of layer 2/3 appear to be sharply tuned (Runyan et al., 2010).  

The difference between these studies may be due to methodological reasons or 

differences in PV+ interneuron subtypes (Hasenstaub and Callaway, 2010).  But 

interneurons also receive input from neurons tuned to different orientations (Bock et al., 

2010), providing an anatomical basis for the observation of broad tuning in interneurons. 

If PV+ interneurons are indeed broadly tuned functionally, it would make sense that their 

anatomical outputs are also "broadly tuned" in the sense that they do not discriminate 

between postsynaptic targets. 

 In addition, the broad inhibition provided by PV+ interneurons (present study) 

and SOM+ interneurons (Fino and Yuste, 2011) is consistent with previous findings 

showing inhibition is very strong in a local region.  Indeed, individual neurogliaform 

cells, for instance, release enough GABA to mediate volume transmission to nearby 

neurons, in a completely unspecific fashion (Olah et al., 2009).  Given that interneurons 

act as ―foreign invaders‖ during development (Anderson et al., 1997), migrating 

tangentially into the layers which develop in a radial fashion, it is parsimonious that their 

wiring program may be relatively simple, without the need for specific mechanisms to 

connect the neural circuit in the appropriate functional manner. Extending this "blanket of 

inhibition" unspecifically over all local PCs could represent the key canonical circuit 

design for all inhibitory connections in the neocortex. 
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Experimental Procedures 

Slice preparation and electrophysiology 

 All animal handling and experimentation was done according to the National 

Institutes of Health and local Institutional Animal Care and Use Committee guidelines. 

Somatosensory or frontal coronal slices 350 μm thick were prepared from P12-17 

(14.4±0.18) day-old G42 mice (Chattopadhyaya et al., 2004) using a Leica VT1000S or 

VT1200S vibratome with ice-cold sucrose solution containing (in mM): 27 NaHCO3, 1.5 

NaH2PO4, 222 sucrose, 2.5 KCl, 3 MgSO4, and 1 CaCl2.  Slices were incubated at 36°C 

for 30 minutes in ACSF containing (in mM): 126 NaCl, 26 NaHCO3, 1.1 NaH2PO4, 10 

glucose, 3 KCl, 3 MgSO4, and 1 CaCl2.  During recordings made at room temperature or 

32°C, ACSF was similar except for the following (in mM): 2 MgSO4 and 2 CaCl2.  All 

sucrose and ACSF solutions were saturated with 95% O2 and 5% CO2. 

 Whole-cell recordings were made using the Multiclamp 700B amplifier 

(Molecular Devices, Sunnyvale, CA), digitized with National Instruments 6259 

multichannel cards, and recorded using custom software written using the LabView 

platform (National Instruments, Austin, TX).  Current-clamp recordings were performed 

with intracellular solution (pH 7.2) containing (in mM): 135 K-methylsulfate, 8 NaCl, 10 

HEPES, 2 Mg-ATP, 0.3 Na-GTP, 7 phosphocreatine, 0.02 Alexa Fluor 594, and 10.7 

biocytin.  Voltage-clamp recordings were performed with intracellular solution (pH 7.3) 

containing (in mM): 128 CH3CsO3S, 10 HEPES, 10 Na-phosphocreatine, 2 MgCl2, 3 

MgSO4, 4 Mg-ATP, 0.4 Na-GTP, 0.02 Alexa Fluor 594, and 10.7 biocytin.   

Imaging and RuBi-Glutamate uncaging 
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 Imaging and uncaging were performed as described in (Fino and Yuste, 2011).  

Briefly, images were acquired using a custom-made two-photon laser scanning 

microscope based on the Olympus FV-200 system (side-mounted to a BX50WI 

microscope with a 40X 0.8NA or 20X 0.5NA water immersion objective) and a 

Ti:sapphire laser (Chameleon Ultra II, Coherent, >3 W, 140 fs pulses, 80 MHz repetition 

rate).  Images were acquired at 850 or 900nm for GFP and 800 nm for Alexa 594 with 

minimal power to avoid uncaging Rubi-Glutamate. 

 300 μM Rubi-Glutamate (Tocris, Ellisville, MO) was added to the oxygenated 

ACSF during mapping experiments and was recirculated with a peristaltic pump (RP-1, 

Rainin Instruments, Oakland, CA).  All mapping experiments were conducted using the 

20X 0.5NA objective. 

 We used custom software (Nikolenko et al., 2007) to create the complex targets 

around cell bodies shown in Figure 1-1D.  Each complex target, which consisted of five 

beamlets due to the diffractive optical element we used (Figure S1-1, (Nikolenko et al., 

2007)), was illuminated for eight milliseconds, resulting in a stimulation duration of 72 

milliseconds given an additional millisecond to move between each target.  A Pockels 

cell (Conoptics, Danbury, CT) allowed us to control power precisely over these short 

durations.   The power at the sample ranged from 150 to 330 milliwatts for mapping 

experiments.  We used multiple different power levels in each mapping experiment, 

always testing the maximum level to be sure not to miss connections from any PV+ 

interneurons with particularly high rheobases. 

 In order to confirm that our photostimulation did not inadvertently activate nearby 

neurons, we patched PCs with a low rheobase (40pA) and photostimulated the entire area 
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surrounding the cell in a grid fashion using the same parameters as we did to stimulate 

interneurons (Figure S1-2).  First, we confirmed that this cell could be photostimulated 

by eliciting action potentials via uncaging over the soma directly ten out of ten times 

(Figure S1-2A).  Next, we checked 180 locations in the field of view (Figure S1-2B) 

three times each and found that the cell only produced action potentials twice: one out of 

three times when one of the targets was just slightly offset from the soma (Figure S1-2D) 

and two out of three times in one other location (Figure S1-2C).  Thus, it is very rare that 

action potentials are elicited unless stimulating a cell soma directly.  This makes it 

extraordinarily unlikely that neurons could be led to produce action potentials by 

inadvertent photostimulation, especially for interneurons which have higher rheobases, 

again confirming the high resolution of this technique. 

 We were concerned that the depth of the patched PC may have affected the 

connection probability we observed.  However, the correlation between the connection 

probability and the depth of the patched PC is small (R
2
 = 0.08, n=82 maps, Figure S1-3). 

 

Biocytin histochemistry and reconstructions 

 At the end of an experiment, slices were fixed and kept overnight in 4% 

paraformaldehyde in 0.1M phosphate buffer (PB) at 4ºC.  The slices were then rinsed 

three times for five minutes per rinse on a shaker in 0.1M PB.  They were placed in 30% 

sucrose mixture (30g sucrose dissolved in 50ml ddH20 and 50 ml 0.24M PB) for 2 hours 

and then frozen on dry ice in tissue freezing medium.  The slices were kept overnight in a 

-80ºC freezer.  The slices were defrosted and the tissue freezing medium was removed by 

three 20 minute rinses in 0.1M PB while on a shaker.  The slices were kept in 1% 
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hydrogen peroxide in 0.1M PB for thirty minutes on the shaker to pretreat the tissue, then 

were rinsed twice in 0.02M potassium phosphate saline (KPBS) for twenty minutes on 

the shaker.  The slices were then kept overnight on the shaker in Avidin-Biotin-

Peroxidase Complex.  The slices were then rinsed three times in 0.02M KPBS for 20 

minutes each on the shaker.  Each slice was then placed in DAB (0.7 mg/ml 3,3‖-

diaminobenzidine, 0.2 mg/ml urea hydrogen peroxide, 0.06M Tris buffer in 0.02M 

KPBS) until the slice turned light brown, then immediately transferred to 0.02M KPBS, 

and finally transferred again to fresh 0.02M KPBS after a few minutes.  The stained 

slices were rinsed a final time in 0.02M KPBS for 20 minutes on a shaker.  Each slice 

was observed under a light microscope and then mounted onto a slide using crystal 

mount. 

 Successfully filled and stained neurons were then reconstructed using 

Neurolucida software (MicroBrightField, Williston, VT).  The neurons were viewed with 

a 100x oil objective on an Olympus IX71 inverted light microscope or an Olympus BX51 

upright light microscope.  The Neurolucida program projected the microscope image onto 

a computer drawing tablet.  The neuron’s processes were traced manually while the 

program recorded the coordinates of the tracing to create a digital, three-dimensional 

reconstruction.  The x- and y-axes form the horizontal plane of the slice, while the z-axis 

is the depth.  The user defined an initial reference point for each tracing.  The z-

coordinate was then determined by adjustment of the focus.  In addition to the neuron, the 

pia and white matter were drawn.  Axon and dendrite densities were calculated from the 

Neurolucida reconstruction using the TREES toolbox (Cuntz et al., 2010).  The densities 

were calculated with voxels 5 μm on each side. 



32 

 
 

 The number of neurons contacted within 400 μm was estimated with the 

following MATLAB commands: 

dx=.0000001;  

integral=cumtrapz(exp(-(0:dx:0.4)/0.124).*4.*pi.*100000.*(0:dx:0.4).^2); 

integral(end)*dx 

Data analysis 

 Off-line analysis was conducted using MATLAB (Mathworks, Natick, MA), 

InStat (GraphPad, La Jolla, CA), MiniAnalysis (Synaptosoft, Decatur, GA), and Oriana 

(Kovach Computing Services, Wales, U.K.).  Additional circular statistics tests were 

performed with the MATLAB CircStat Toolbox (Berens, 2009).  All results are 

expressed as mean ± SEM. 

 Monosynaptic connections were characterized by evoking single action potentials 

in the PV+ interneuron and recording the IPSC evoked in the PC to measure the latency, 

amplitude, rise time, decay time, rate of rise, and failure rate.  These values were 

recorded at +40mV with a chloride reversal potential of -80mV.  Trains of eight action 

potentials delivered at 50 Hz followed by a single action potential one second after the 

last action potential in the train were evoked in the PV+ interneuron to measure the 

paired pulse ratio, summation, train depression, and recovery (Markram et al., 1998).  

Paired pulse ratio is the amplitude of the second IPSC divided by the amplitude of the 

first IPSC.  Summation is the amplitude of the second IPSC relative to the baseline of the 

first IPSC divided by the amplitude of the first IPSC.  Train depression is the amplitude 

of the last IPSC in the train divided by the amplitude of the first IPSC in the train.  
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Recovery is the amplitude of the IPSC evoked by the action potential one second after the 

train divided by the amplitude of the first IPSC in the train. 
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Figure Legends 

 

Figure 1-1: Characterization and photostimulation of parvalbumin-positive fast-

spiking basket cells 

A: Reconstruction of a GFP-positive interneuron in somatosensory cortex layer 2/3 from 

the G42 transgenic mouse line (axons in blue, dendrites in red).  B: Electrophysiological 

recordings revealed the classic high rheobase and fAHP current (top panel).  A fast-

spiking response was elicited upon injecting the interneuron with 1nA of current (bottom 

panel).  C: This subtype of interneuron is characterized by a rectifying IV curve 

(Woodruff et al, 2010).  D, E: A two-photon laser beam was multiplexed across both 

time, by sequentially stimulating multiple targets around a cell body (D), and space, by 

engaging a diffractive optical element to split the laser beam into five beamlets (E), to 

uncage Rubi-Glutamate around a cell body  (laser spots are drawn at actual size, see 

Figure S1-1).  F: Single action potentials were elicited via illumination with 150mW of 

800nm light on the sample using a 20X 0.5NA objective (black bar shows duration of 

illumination).  G: At a higher power, 300 mW, multiple action potentials were elicited 

with the characteristic fast-spiking waveform. 

 

 

Figure 1-2: Mapping inhibitory inputs of pyramidal cells 

A: Mapping potential connections from 5 interneurons (numbered 1 to 5) to one PC (blue 

arrow) in somatosensory layer 2/3. Unconnected interneurons in gray, connected in red 

circles..  B: Electrophysiological recordings obtained from the PC at holding potentials of 

+40mV (top trace) and -40mV (bottom trace) during the photostimulation of the 
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interneurons shown in A.  Note the synaptic response from one interneuron (red arrow in 

A, inset in D) while an interneuron directly nearby (gray arrow in A, inset in F) showed 

no response.  C, E: The red PV+ interneuron neuron was patched and confirmed to be 

synaptically connected while no response was recorded for the gray neuron (F), which 

was determined to be unconnected by photostimulation. G: True positive response. A 

pyramidal cell (PC) patched in a field of view showing many GFP-positive PV+ 

interneurons nearby, one of which (circled in red) was determined to be putatively 

connected by optical stimulation.  H: While holding the PC at +40mV (top trace) or -

40mV (bottom trace), we photostimulated the cell circled in red in G, eliciting IPSCs.  

The reversal potential for GABA was set at -80mV in the internal solution so that EPSCs, 

but not IPSCs, would change directions between +40 and -40mV.  I, J: The 

photostimulated cell was patched, confirming electrophysiologically that it was indeed 

synaptically connected.  K: Negative responses. A PV+ interneuron (circled in gray) was 

targeted for photostimulation during whole-cell recording of two nearby PCs.   L: The 

recordings from the PCs in K show no evidence of a synaptic connection during 

photostimulation of the PV+ interneuron.  M, N: The photostimulated cell was patched, 

confirming electrophysiologically the lack of synaptic connections from the PV+ 

interneuron onto either PC.  O: False positive response. A PV+ interneuron (circled in 

black) directly next to the recorded PC was targeted for photostimulation.  P: A slow 

response which was outward at +40mV but flipped at -40mV was distinguished from the 

synaptic event shown in H as a direct stimulation of the patched neuron.  Q: A PV+ 

interneuron (circled in black), located distal to the recorded PC (blue arrow), was targeted 

for photostimulation.  R: An excitatory cell connected to the recorded PC was stimulated 
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resulting in a false positive distinguished by the presence of excitatory postsynaptic 

currents.   

 

Figure 1-3: Simultaneous mapping of PV+ inputs to four PCs.  

Four PCs in somatosensory cortex layer 2/3 were patched and the surrounding PV+ 

interneurons in four different focal planes were optically stimulated.  Each column shows 

the result of mapping the GFP-labeled PV+ interneurons for each of the four PCs.  Each 

row shows the result from a different focal plane, with the projection of all the focal 

planes in the top row.  Connected PV+ interneurons are circled in red, unconnected PV+ 

interneurons are circled in gray, and PV+ interneurons at which a direct stimulation of the 

patched PC occurred are circled in black. 

 

Figure 1-4: Dense PV+ interneuron inputs to PCs  

A: Representative map from S2/3 showing inputs from PV+ interneurons to PCs (red - 

connected, unconnected - gray, false positive - black).  B: Number of PV+ interneurons 

tested (no significant differences) and how many were connected in each cortical area 

and layer sampled.  C: Schematic of the cube of tissue we sampled in our maps. D: 

Histogram showing all the intersomatic distances of the PV+ interneurons from the PCs 

whose connectivity was tested (green bars) in the different cortical layers and areas (left, 

middle, right panels).  False positive responses (black bars) are few in number.  E: 

Histogram of the connection probability depending on the intersomatic distance between 

interneurons and PCs. The connection probability of PV+ interneurons to PCs in all areas 

and layers was very high when the PV+ interneurons were close to the PC, and fell off 
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with distance.  F: The probability of observing a connection from a PV+ interneuron to a 

PC within 200 μm in S2/3, S5, and F2/3.  G: Connection probability for different cortical 

areas and layers.  The probability was lower in somatosensory layer 2/3 than in 

somatosensory layer 5 and frontal layer 2/3. 

 

Figure 1-5: Confirmation of dense PV+ innervation of PCs 

A: Anatomical reconstruction of a connected pair with a PV+ interneuron connected to a 

PC. PV+ axon in blue, PV+ dendrites in red, PC axon in green, PC dendrite in black.  B: 

Electrophysiological recording of this PV+ interneuron to PC connection showing IPSCs 

in the PC in response to a train of 8 action potentials evoked at 50Hz in the PV+ 

interneuron.  The IPSCs depress over the course of the action potential train.  C: 

Intersomatic distances of the tested pairs from dual whole-cell recording experiments  

(red - connected, gray - unconnected). D: Probability of connection observed at different 

intersomatic distances.  E: Connection probability within 100 μm did not differ whether 

observed with mapping or patching in all tested cortical areas and layers.  Within this 

nearby range, there was no difference in connection probability between the layers and 

areas. 

 

Figure 1-6: Lack of specificity in PV+ interneuron connectivity 

A: The common connection probability, calculated as the number of PV+ interneurons 

which connect to two PCs out of the number of PV+ interneurons which connect to either 

PC, does not differ depending on whether the postsynaptic PCs are connected to each 
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other.  B: The common connection probability is inversely proportional to the distance 

between the PCs. 

 

Figure 1-7: Spatial pattern of connected PV+ interneurons varies between layers 

A: Position of the connected (red) and unconnected (gray) PV+ interneurons plotted 

relative to the recorded PC (center of each plot).  B: Polar plots show the probability of 

connection from a given angular region with the pial surface at the top of the circle.  The 

probability of connection at the outer edge of a circle is 1 and 0.5 for the middle dotted 

circle.  Polar plots in each column represent different cortical areas and layers.  Rows 

show the angular distribution of connection counting only interneurons at certain 

distances (within 200 μm, from 200-600 μm, or all distances).  C: Anatomical 

reconstructions of PV+ interneurons from each cortical area/layer (axons - blue, dendrites 

- red).  Note the striking vertical organization at greater distances and the fact that layer 

2/3 receives from interneurons more towards the pial surface while layer 5 is the 

opposite. 

 

Figure 1-8: Axodendritic overlap can predict spatial patterns of PV+ connectivity 

A: Average density of eight somatosensory layer 2/3 PV+ interneuron axons (left), 5 PC 

cell bodies and dendrites within 100 μm (middle), and the average density of five 

somatosensory layer 5 PV+ interneuron axons (right) were multiplied to produce a 

measure of axodendritic overlap between axons of PV+ interneurons and soma and 

dendrites of PCs.  This value was calculated using the intersomatic distances of the PV+ 

interneurons and PCs tested in the maps.  B-E: The amount of overlap between the axons 
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of the PV+ interneurons and the dendrites and cell bodies of the PCs predict the observed 

connectivity profiles with regard to both distance (B,C) and angular distribution (D,E) in 

both S2/3 and S5 (left and right columns). 

 

Figure 1-9: Model showing convergence of PV+ interneurons onto one PC 

A cube of neocortex 500 µm on each side from somatosensory layer 2/3 with 5,000 

neurons.   The cube has been constructed with PV+ interneurons and PCs using the 

connectivity profile we observed experimentally in S2/3, with one representative PC in 

black at the center.  Other PCs are in blue, connected PV+ interneurons in red, and 

unconnected PV+ interneurons in gray.  The density of connected PV+ interneurons 

converging on this one PC can be visualized in three dimensions. 

 

Supplemental Figure 1-1: Point spread function of DOE beamlets 

The point spread function of the DOE beamlets was measured with the 20X 0.5 NA 

objective we used for mapping and 0.17 μm fluorescent beads. A: The lateral size of each 

DOE beamlet is approximately 1 μm (inset, raw image).  B: The axial resolution of each 

beamlet is 6 μm (FWHM, full width at half maximum). 

 

Supplemental Figure 1-2: 

A: The PC indicated by the yellow arrow in B was photostimulated directly to produce 

action potentials 10 times. B: The locations of the 180 stimulation targets which were 

stimulated during the recording of the pyramidal cell (PC) indicated by the yellow arrow.  

C: Photostimulation of this target (lower red circle in B) caused the patched PC to fire an 
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action potential two out of three times.  D: This target (upper red circle in A), which was 

just slightly offset from the center of the patched PC, caused the cell to fire only once. 

 

Supplemental Figure 1-3: 

Correlation between the connection probability and the depth of the patched PC is small ( 

R
2
 = 0.08, n = 82 maps).  
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Latency (ms) 

Amplitude (pA) 

Rise time (ms)  

Decay time (ms) 

Rate of rise (pA/ms) 

Failure rate 

Paired pulse ratio  (%) 

Summation (%) 

Train depression (%) 

Recovery (%) 

0.87±0.05 

222±88 

3.33±0.42 

12.21±1.45 

76.44±27.66 

0.10±0.06 

0.91±0.12 

1.34±0.17 

0.64±0.11 

0.90±0.09 

 

Table 1-1: Characteristics of the synaptic connections from PV+ interneurons to PCs 

(n=10 from S2/3, S5, and F2/3).  Note that during the recordings the postsynaptic PC was 

held at +40mV with the chloride reversal set to -80mV. 
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Figure 1-1

 



52 

 
 

Figure 1-2
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Figure 1-3
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Figure 1-4
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Figure 1-5

 



56 

 
 

Figure 1-6 
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Figure 1-7
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Figure 1-8
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Figure 1-9
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Supplemental Figure 1-1
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Supplemental Figure 1-2
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Supplemental Figure 1-3
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CHAPTER 2 

Summary 

 

 In one of the most remarkable feats of motor control in the animal world, 

some Diptera, such as the housefly, can accurately execute corrective flight 

maneuvers in tens of milliseconds. These reflexive movements are achieved by the 

halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering 

muscles. Specifically, the mechanosensory campaniform sensilla located at the base 

of the halteres transduce and transform rotation-induced gyroscopic forces into 

information about the angular velocity of the fly's body. But how exactly does the 

fly's neural architecture generate the angular velocity from the lateral strain forces 

on the left and right halteres? To explore potential algorithms, we built a neuro-

mechanical model of the rotation detection circuit. We propose a neurobiologically 

plausible method by which the fly could accurately separate and measure the three-

dimensional components of an imposed angular velocity.  Our model assumes a 

single sign-inverting synapse and formally resembles some models of directional 

selectivity by the retina. Using multidimensional error analysis, we demonstrate the 

robustness of our model under a variety of input conditions. Our analysis reveals 

the maximum information available to the fly given its physical architecture and the 

mathematics governing the rotation-induced forces at the haltere's end knob. 
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Introduction 

 The true flies, insects of the order Diptera, are capable of astounding aerobatic 

feats of agility with only a single pair of wings.  A male housefly can make corrective 

course changes to track a female fly within 30 msec (Land, 1974).  This complex task 

requires substantial information processing but is performed in an organism whose brain 

contains only 100,000 neurons.  As such, flies need an accurate circuit capable of 

detecting changes in body rotation.  A highly specialized mechanical apparatus is used to 

provide appropriate information to these local circuits and enable flight stabilization with 

incredibly short response latencies.  Mechanosensation of rotational stimuli is generated 

by the halteres, barbell-shaped appendages that evolved from hind wings.  They function 

as gyroscopic sensors of rotational force by virtue of their constant oscillatory motion 

anti-phase to the wing (Nalbach, 1993; Pringle, 1948). 

The halteres are positioned behind the forewings and are sheltered from many 

aerodynamic forces during flight (Dickinson, 1999; Nalbach, 1993).  During a rotation, 

however, the halteres' motion occurs in a non-inertial reference frame and the halteres are 

accordingly subjected to various forces and pseudoforces.  Acceleratory rotations about 

the axes of the fly's body generate centrifugal, Euler's (due to angular acceleration), and 

Coriolis forces, among others, which put lateral strain on the moving haltere (with the 

lateral direction defined as perpendicular to the beating plane of the haltere.)  The haltere 

oscillates approximately harmonically, generating forces in a sinusoidal fashion (see 

Nalbach 1993).  During a rotation, the forces described above are thought to be detected 

by mechanoreceptor strain gauges called campaniform sensilla in the base of the halteres.  

Detection of these forces generates the input necessary to calculate the angular velocity 
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of the fly's body.  The output of the halteres impinges on the steering muscles of the 

wing, causing them to stiffen or relax, changing the course of the wing and thus a change 

in the trajectory of the fly. 

The flies only sense the lateral components of force acting on the halteres, as has 

been shown in  experiments in which flies do not show any corrective responses to 

rotations around the axes of the halteres.  Such rotations only generate forces in the radial 

direction, or along the axis of the haltere, with apparently no component projecting 

laterally from the haltere beat plane (Dickinson, 1999; Nalbach, 1993).  In addition, 

haltere afferents likely evolved to detect only the lateral forces due to the massive, 

continuous presence of primary inertial forces in the radial and tangential directions, 

which outweigh the Coriolis forces in those directions by orders of magnitude. There are 

several anatomically distinct groups of campaniform sensilla; it is not clear whether all 

groups sense lateral force or only a subset (Fayyazuddin and Dickinson, 1996).  These 

sensors are located at the haltere's hinge, endowing them with maximal strain detection 

(Wu, 2002).   

 In this study, we sought to better understand the computations underlying these 

aspects of the fly’s motor control and modeled how the halteres could be transducing 

Coriolis forces into accurate measurements of angular velocity.  The only angular 

variable correlated with wing beat amplitude that directly modulates the flight trajectory 

is angular velocity, implying that flies have access to this information (Dickinson, 1999).  

The complete aerodynamic system of the fly has been modeled previously (Dickson, 

2008), but the neural architecture and computation that could produce reliable estimates 

of angular velocity from the lateral forces on the haltere during a body rotation have yet 
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to be explored sufficiently.  More recently, Thompson and colleagues also modeled how 

such a calculation could be performed (Thompson et al., 2009), but it is unclear how their 

algorithm could be implemented neurobiologically. 

 The understanding of a complex information processing system such as this one 

requires multiple layers of analysis.  In this system, the layer of analysis that has received 

the least attention is the algorithmic one (Marr, 1982): how does the hardware of the fly 

allow for the software to perform the necessary calculations?  The question in this 

specific context is diagrammed in Figure 2-1.  How does the fly's neural architecture 

(Figure 2-1C) algorithmically produce the desired output, angular velocity, from the 

given input, i.e. the waveform of total lateral force on the left and right halteres (Figure 2-

1B middle)?  The neuromechanical model we propose in this paper not only explains 

observations of haltere structure and function but also yields novel and readily testable 

predictions.  Our analytical approach underscores the power of incorporating the 

biomechanics of a physical system into a model of its function (Briggman and Kristan, 

2008).   
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Materials and Methods 

Haltere motion 

 Parameterization of the equation for simple harmonic motion
1
,      

          , leads to the following expressions for the position of the left and right 

halteres.  We define the x (pitch) axis to be the transverse axis of the fly, the y (roll) axis 

to be the longitudinal axis of the fly, and the z (yaw) axis to point orthogonally away 

from the other two axes.  The following equations describe the position of the haltere in 

this coordinate system: 

 

                  

                   

                  

                  

              

              

 

where Φ(t) is the function describing the angle the haltere makes with the xy axis, a is the 

amplitude of the angular oscillation of the haltere, ω is the frequency of the haltere's 

angular oscillation, φ is the phase shift of the oscillation, A is the length of the haltere, 

and θ is the angle the haltere makes with the transverse axis, in the xy plane. 

 

                                                           
1  The oscillation of the haltere is more like a square wave than a sinusoid (Nalbach, 1993).  

However, for the purposes of this model simple harmonic motion produces sufficient detail. 
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 We now proceed to describe the forces which impinge on the haltere in a lateral 

direction. (Note: In this section we discuss only lateral forces, where the lateral direction 

is defined as orthogonal to the beat plane of the haltere.  Positive and negative lateral 

directions are arbitrarily determined to be pointing towards and away from the fly’s 

thorax, respectively.  The radial direction is along the stalk of the haltere, and the 

tangential direction is the direction of the tangential velocity of the haltere.) 

 

The Coriolis force on the haltere in the lateral direction 

 Coriolis forces act on the mass of the moving haltere in a rotating reference 

frame.  The Coriolis forces are the only forces which directly contain information about 

the angular velocity, so we focus on them in our algorithm to recover this value so critical 

to flight stabilization. 

Notation: bold denotes a three dimensional vector, e.g.    
 
 
 

   

a dot on top of a variable denotes a time derivate, e.g.    
  

  
  

 

The velocities of the left and right halteres are: 

    

                  

                  

             

  

    

                 

                  

             

  

 

Given an angular rotation, , defined as: 
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And the equation for the Coriolis force: 

                   

 

We can solve for the Coriolis force on the left haltere: 

           
   

  

                                        

                                          

                                               

  

 

To obtain the lateral component of the Coriolis force on the left haltere, project the force 

onto the vector defining the lateral projection of the haltere (-sin, cos, 0): 

                    
           
   

  
     
    
 

 

                                                

                                                  

 

Grouping like terms: 
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Note that the yaw term      reduces due to the trigonometric identity:       

        

 

Leaving the following expression for the Coriolis force on the left haltere in the lateral 

direction only: 

                   

                                   

                          

 

The calculation for the right haltere is similar except for minor changes in sign: 
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Other forces on the haltere in the lateral direction 

 During a rotation, three other forces — angular acceleration, centrifugal, and 

gravitational —  have components which project laterally.  These forces can be derived 

using the same trigonometric identity as in the derivation for the Coriolis force. 

 

Angular Acceleration:                                                                                 

The lateral components of the angular acceleration force generated by pitch, roll, and yaw 

rotations are equal to: 
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where m is the mass of the haltere,    is the angular acceleration of the fly's body, and r is 

the position of the haltere within the rotating reference frame.   

 

Centrifugal:                  

The lateral components of the centrifugal force generated from roll and pitch rotations are 

equal to: 

                    
                 

                    
                 

                   
                 

                   
                 

 

Gravitational:           

The gravitational force depends on ψ, the angle the lateral direction with respect to the 

haltere makes with the gravitational force.  g is the acceleration due to gravity.  Because 

ψ  depends on the lateral direction of the haltere, it is affected only by the angular 

position of the fly's body with respect to the ground, not by the position of the haltere 

with respect to the fly's body.  We use quaternions to calculate the lateral direction of the 

haltere.   From the initial angular velocities and angular accelerations, an axis in space 

and an angle Θ are computed through which the fly rotates about during the time until the 

required measurement is taken.  The vector indicating the lateral direction with respect to 

the haltere’s beat plane is derived with quaternion multiplication: 
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where   is a vector representing the three-dimensional Euclidian direction of the axis 

around which the fly rotates,  is the angle through which the fly rotates, 0  is the 

initial, three-dimensional Euclidian direction of the lateral direction with respect to the 

haltere beat plane, and 2p  is a quaternion equal to  p,0 , a vector indicating the final 3 

dimensional direction of the lateral direction with respect to the haltere beat plane.  Note: 

During our simulations, the fly often begins from a pitched and rolled position in space, 

so the pitch, roll, and yaw axes must be recalculated with respect to the fly's body, not to 

the ground.  The pitch, roll, and yaw axes must be rotated to maintain their definition 

with respect to the fly's body.  This is calculated via quaternion multiplication as well.   

 

 At any point during a rotation, a haltere is exposed to a sum of these forces.  

Forces due to angular acceleration, or Euler's forces, are orders of magnitude smaller than 

Coriolis forces except at low angular velocities.  The gravitational force, Fg, only has a 

lateral component when the fly's body is angled relative to flat ground.  The lateral 

component of the gravitational force, however, is not constant during a rotation as has 

been claimed previously (Nalbach, 1993; Wu, 2002) but rather changes depending on the 

angular position of the fly's body in space.   
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The total lateral component of the forces on the left and right halteres during a rotation is 

the sum of the lateral components of each of the four forces described above: 
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Results 

 
Algorithm 

 If pitch, roll, and yaw rotations generate forces with lateral components, and the 

campaniform sensilla are sensitive only to forces in the lateral direction, how can the 

different rotations be distinguished from one another? In effect, how can the fly generate 

labeled lines for the pitch, roll, and yaw angular velocity components of a rotation when 

none are inherent to the haltere?  The answer to these questions requires extracting 

meaningful measurements of the magnitude and direction of the body's rotation from the 

complex waveforms of the total lateral forces on each haltere, described by the equations 

above. 

 To recover the pitch component of the angular velocity, Ωpitch, the total lateral 

forces on each haltere are added.  This removes the contributions of the roll and yaw 

Coriolis and angular acceleration forces to the signal, as they are out of phase between 

the left and right halteres. This results in twice the lateral force due to pitch rotation, as 

well as other, smaller-magnitude terms, whose contribution may be removed via means 

mentioned in the Discussion. 

                                   
                               

                                 
       

                   

                                                                     

 

 

This expression has a sinusoid time dependence at the wing beat frequency, ω/2π.  The 

information about the pitch component of angular velocity is conveyed in the changing 

amplitude of this waveform, as can be seen in Figure 2-2a.  Ωpitch can be recovered by 

taking 
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amplitude measurements of this signal at specific times (equivalent to convolving the 

summed force signal with a delta function, see Chapter 2 appendix for details) and 

division by a constant, k: 

           
             

 
 

             

where          
 

  
  for all positive integers n and tp,0  is the first time at which the 

force due to pitch rotation reaches an extremum value.  This time corresponds to a 

particular angular position of the haltere, Φp, for the pitch component (Figure 2-2a). k is 

the constant of proportionality between the angular velocity and the Coriolis force.  See 

Chapter 2 appendix for details about Φp.  This constant of proportionality must be built-

in, arising through evolutionary selection (producing flies with increasingly accurate 

velocity readings) and/or tuned by some learning mechanism, not treated here.  This 

constant may also include additional constants of proportionality relating to the strain 

detection by which the campaniform sensilla mechanically transduce the Coriolis forces. 

 

 The lateral component of the gravitational force changes during a pitch, roll, or 

yaw rotation, is sinusoidal with respect to the body's pitch angle, and remains a somewhat 

significant source of error in measuring the pitch angular velocity.  Because the 

remaining pitch angular acceleration term is multiplied by        , sampling at a Φp  

near zero radians effectively removes the angular acceleration pitch term.  Though the 

lateral centrifugal force term is not removed, it is significantly smaller than the Coriolis 

force at most velocities.  In addition, during a rotation with similar roll and pitch velocity 

components, this term will be effectively zero.  
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 To recover the roll and yaw components of an applied angular velocity, the total 

lateral forces on the right haltere are subtracted from the left.  Though it is more difficult 

to envision a neural manifestation of the subtraction operation, it is certainly not 

impossible.  For example, ON/OFF cells in the visual system perform an algorithmically 

similar operation by employing inhibition and signed labeled lines (Ballard, 2008).  

Subtraction of total lateral force on the right haltere from that induced on the left haltere 

yields the following equation:  

                  
                                          

+2mA                                 

             
 

 The roll and yaw angular acceleration forces are not removed from the 

subtraction, as they are out of phase between the left and right halteres.  They are, 

however, an order of magnitude smaller than the Coriolis force, and because they are not 

proportional to angular velocity, they only cause significant error in rotation detection at 

very low angular velocities.   

 

 This subtraction removes the Coriolis force due to pitch as well as the centrifugal 

force, as these forces are in phase between the halteres.  This expression has a more 

complex time dependence, as is seen in Figure 2-2b and 2-2c.  Though difficult to discern 

by eye, the resulting waveform has two frequency components, including the forces 

generated by both roll and yaw rotations.  The roll component yields an oscillation at the 

wingbeat frequency, ω/(2π), while the yaw component yields an oscillation at twice the 
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wingbeat frequency, ω/π.  Again, amplitude measurements of this signal at appropriate 

intervals, as shown in Figure 2-2b and 2-2c, followed by divisions with separate 

constants approximate Ωroll and Ωyaw.  The sample points were chosen to minimize the 

effects of the angular velocity component not being detected. 

  

          
             

  
 

             

         
             

   
 

           

  To detect roll, the force signal is sampled at Φr = 0 radians, and to detect yaw the 

signal is sampled at Φy = 11
5

 radians, so for roll detection only yaw angular acceleration 

terms will be nonzero, and for yaw detection, only roll angular acceleration terms will be 

nonzero.  These cause significant error in roll and yaw detection respectively only at very 

low angular velocities and nonzero angular accelerations.  See Chapter 2 appendix for 

further description of the motivations for choosing these sample points and constants. 

 

Neural Circuit 

 We can now posit a reasonable model for the circuitry in the black box in Figure 

2-1.  The algorithm we have proposed can be implemented in neural hardware 

conforming to the already known nervous system organization of the fly.  The series of 

amplitude measurements can be taken assuming a neuron that fires in a phase locked 

pattern with respect to the haltere's angular position (Figure 2-3).  This signal may be 
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simply an efferent copy from the central pattern generator (CPG) setting the rhythmic 

motion of the haltere or wing.  The CPG may be driven or modulated by the opposing 

stretch-activated muscles that power the haltere.  The signal from the CPG biases the 

intermediate cells performing the measurement, called Npitch, Nroll, and Nyaw.  These cells 

then drive the mnb1 motor neurons which act directly on the wing steering muscle, b1.  

At different stages in this diagram, inherent biophysical properties of neurons could 

easily provide the necessary subtractions and divisions required by the computational 

model.  Certainly, the number of synapses here is small enough such that the required 

computation could be performed within the time restrictions imposed by the fly's quick 

reaction time. 

 Some of the anatomical connections between the haltere afferents and the steering 

muscles that would be necessary to implement this neural model have already been 

delineated in the fly. Contralaterally projecting haltere afferents, which would be 

necessary for addition and subtraction of the lateral force on each haltere, are provided by 

the contralaterally projecting haltere interneurons, or cHINs, identified by dye injections 

into haltere afferents (Strausfeld, 1985; Trimarchi and Murphey, 1997). 

 

Error Analysis 

 This model mathematically produces accurate estimates of angular velocity for 

many types of physiologically relevant angular acceleratory and angular velocity inputs 

in all directions, but also yields systematic errors in conditions that have yet to be tested 

experimentally.  We determined eight parameters which most affect the fly's ability to 

recover angular velocity.  These parameters are the initial angular velocity and 
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acceleration in three dimensions as well as the initial pitch and roll angles of the fly with 

respect to ground.  We systematically tested ten different values for each of these eight 

parameters.  This required running our model with 10
8
 different initial conditions.  We 

tested initial angular velocities from -16.1 to 19.9 radians/sec as well as initial angular 

accelerations from -50 to 62.5 radians/sec
2
 in the three orthogonal directions 

corresponding to pitch, roll, and yaw.  We also tested initial pitch and roll angles of the 

fly's body relative to the ground from -50 to 60 degrees.  After allowing the position and 

velocity of the fly to change from their initial values and calculating the relevant forces, 

we recovered angular velocities with our proposed model at the first available sample 

points (Φp, Φr, Φy). 

 For each combination of conditions, we calculated the absolute and relative errors 

of the recovered angular velocity.  For each of the pitch, roll, and yaw components of the 

recovered angular velocity, we generated 10
8
 absolute error values in radians and 10

8
 

relative error values in percentage of actual velocity at that particular sample point.  

Visualizing this data is inherently difficult, as the error values we generated depend on 

eight independent variables, which would require nine spatial dimensions to represent 

graphically.  To solve this issue, we use the same graphing technique for visualizing data 

in high-dimensional spaces used by Taylor et. al (2006.)  This method, based on clutter-

based dimension reordering (Peng 2004; Peng 2005) and dimensional stacking, produces 

a figure in which the dimensions containing the least variability are compressed within 

the other dimensions.  The dimensions are arranged such that salient trends in the data 

can be most clearly seen.  The basics of this method are explained graphically in Figure 

2-4.  Akin to visualizing a three-dimensional stack as a set of two-dimensional slices, the 
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method yields a "montage of montages" such that each of the eight axes are embedded 

inside each other.  The color of the pixel corresponds to the error at that particular set of 

conditions.    

 Figure 2-5a shows that the proposed model is worst at recovering roll velocities 

near zero, as indicated by the red horizontal stripe.  Here, the center square of the figure 

is not entirely red, and further inspection shows that roll velocities near zero can be 

recovered more accurately if imposed alongside initial roll angles and pitch angles near 

zero (which are respectively defined by the center of the largest horizontal axis and 

second-largest vertical axis.)  This makes sense: the fly's mechanical apparatus is best at 

encoding roll when it is flying straight and level, the condition in which it is most often 

found.  The largest horizontal axis, (βr), indicates that a large absolute initial roll angle 

can cause significant error in roll velocity detection; this can be seen by noting the 

warmer colors of the left- and right-most columns of the figure. Additionally, all of the 

variables on the smallest axes – yaw velocity, roll acceleration, pitch acceleration,  and 

pitch velocity -- do not contribute significantly to error in recovering roll velocity.  As 

was shown by equation (13) and the sample phase delay, Φr , the angular acceleration 

force from the yaw component of an angular acceleration remains when recovering roll 

angular velocity.  Looking at the grid defined by the set of second largest horizontal and 

vertical axes, it is clear the error resulting from the magnitude of the yaw component of 

the imposed acceleration and the initial pitch angle is derived from a non-linear 

relationship between the two terms, and that the polarity of this relationship is defined by 

the sign of the initial roll angle (the position to the left or the right of the largest vertical 



82 

 

 

axis).  Figure 2-5a makes clear that the lowest relative errors (indicated by the cooler 

colors) occur for large absolute roll angular velocities and low absolute initial roll angles. 

 The relative error results for recovering pitch are displayed in Figure 2-5b.  The 

red horizontal stripe in the center shows the conditions in which pitch detection is worst 

(greater than 36.94% error).  This shows that the fly makes the worst assessment of its 

angular velocity in the pitch direction when the angular velocity in that direction is near 

zero, regardless of whatever other initial conditions may be present. 

 Continuing to analyze Figure 2-5b shows that as for large absolute values of pitch 

angle (βp), error in pitch rotation detection increases, due to the increased lateral 

gravitational force in these conditions.  This can be deduced from the figure by noting the 

warmer colors in the left- and right-most columns of Figure 2-5b.  Some of the boxes that 

checker the figure have a change in color that depends on the second largest horizontal  

and vertical axis, corresponding to initial roll angle, βr, and initial yaw velocity 

respectively.  The error appears to depend on whether the values of initial roll angles and 

yaw velocities fall along a line of a certain slope.  The magnitude of the slope of this line 

appears to increase with the magnitude of the initial pitch angle, and the slope switches 

from positive to negative as the initial pitch angle switches from negative to positive.  

One example of a testable prediction that can be gleaned from such a detailed 

investigation of this figure is that for negative initial pitch angles, the error is generally 

higher when initial roll angles and yaw velocities are positively correlated.  As the 

magnitude of the initial pitch angle increases, the recovery error is generally lower as the 

magnitude of the initial roll angle increases. 
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     Finally, Figure 2-5c, similar to 2-5a and 2-b, with the red horizontal stripe running 

across the middle, reveals that recovering yaw velocity is worst at initial yaw velocities 

near zero, regardless of the other conditions.  The trend of warmer colors in the left-and 

right-most columns reveals that yaw recovery is more error prone as the magnitude of the 

initial roll angle increases.  There is also a large dependence on the values of the second 

largest vertical axes, the initial imposed roll velocity. The polarity of the relationship of 

initial roll velocity to error is defined by the magnitude of the initial roll angle.  The areas 

of lowest error in yaw recovery are low magnitude initial roll angles and high magnitude 

initial yaw velocities.    

 

Predictions 

 There are a number of testable predictions resulting from our algorithm and error 

analysis.  For one, the fly should also have different response latencies (on the order of 

milliseconds) to applied angular velocities depending on the angular position of the 

haltere when the velocity is imposed.  Additionally, flies with increasing pitch angle, but 

lower pitch angular velocities, should significantly over-estimate pitch velocity.  The 

same is true for roll, with increasing body roll angle, but lower roll angular velocities.  

With increasing body roll angle and low yaw angular velocities, yaw angular velocity 

will be significantly under-estimated by the fly.  If the haltere input is not down-weighted 

at low angular velocities, these could lead to excessive or insufficient corrective rotations, 

because a larger lateral gravitational force component will partially obscure an accurate 

force measurement.  A similar phenomenon is observed in the desert ant Cataglyphis 

Fortis, whose error in their ability to calculate their home-direction vector increases with 



84 

 

 

experimentally-imposed large-angle turns at their feeding site (Muller and Wehner, 

1988).   

 One general trend in the error graphs is the poor performance of this model at 

angular velocities below four radians/sec.  Current experimental data suggests that at low 

angular velocities, mechanosensory input is relied upon less than with visual input.  At 

low angular velocities (around 200 degrees/sec, or ~3.5 radians/sec), providing 

mechanosensory stimulation alone triggers a minimal corrective response in the fly, while 

providing visual input alone yields an appropriate corrective response (Sherman and 

Dickinson, 2004).  This trend is reversed at larger-magnitude angular velocities, for 

example above 500 degrees/sec or 8.7 radians/sec in the pitch direction.  Sherman and 

Dickinson have experimentally determined that the haltere’s mechanosensory apparatus 

only responds to angular velocities within a certain range.  This analysis offers a potential 

reason for their observation.  At low angular velocities of the fly's body, other lateral 

forces on the haltere overwhelm Coriolis forces, preventing accurate angular velocity 

measurements.  Though our model predicts why haltere output may not be accurate for 

low angular velocities, it does not treat how the gain of this input is differentially reduced 

in favor of visual inputs in such conditions. The mechanism could incorporate two non-

mutually exclusive means: (1) the biomechanical properties of the campaniform sensilla, 

which could set an appropriately high threshold for lateral strain detection, or (2) top-

down neural architecture which combines visual and haltere input. 
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Discussion 

 We have proposed a neurobiologically plausible model of how the fly can have 

accurate readings of pitch, roll, and yaw angular velocities with only information about 

the total lateral forces on the left and right halteres.  Following the work of Dickinson 

explaining how the fly can integrate different types of signals to generate a flight 

correction pattern, we now seek to identify and delineate the elements inside their ―black 

box‖ that are used to compute the angular velocity. Specifically, our model assumes a 

simple scenario that can be implemented in agreement with the already known nervous 

system organization of the fly.  One assumption is that a neuron fires in a phase locked 

pattern with respect to the haltere's angular position and that this signal biases the 

intermediate cells performing the measurement.  These cells would then directly drive the 

motor neurons of the wing steering muscle.   

 Our model does not assume labeled lines for pitch, roll, and yaw at the level of the 

campaniform sensilla.  Indeed, we feel that this is a gross over-simplification of the 

mechanism of the haltere’s action. The directional components of the forces generated by 

the different rotations overlap significantly.  There is no direction in which any physical 

sensor could be oriented to set up a line only sensitive to a particular rotational direction 

at this level of the architecture.  As our circuit shows, these forces must be discriminated 

downstream of the campaniform sensilla.  It is important to note that while we chose a 

three-dimensional orthogonal system to complete the analysis, it is possible the fly's axes 

are not orthogonal and thus somewhat redundant.  In fact, previous work has shown that 

flies are least sensitive to yaw rotations, perhaps indicating that the reference system used 

by the flies encodes variability in yaw the least (Sherman and Dickinson, 2003).  We 
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could have chosen any coordinate system -- for example, spherical or cylindrical -- to 

complete this physical analysis. 

 As we show using error analysis, the model appears robust. Moreover, our model 

not only fits a majority of the data about fly flight mechanosensation, but also points to 

future experiments that may further elucidate this highly complex information processing 

system.  The general computational framework proposed in this paper has broader 

implications for any system that relies on accurate estimates of a complex time-varying 

signal. For example, the asymmetric crossed inhibition resembles the crossed interaction 

of the ―correlation model‖ proposed for fly motion detection (Egelhaaf et al, 1989). In 

fact, one could abstract the actual input and appreciate the similarities between the 

computation of an angular velocity signal and the directional selectivity signals in the two 

systems. 

 

Relation to past work 

 As mentioned in the introduction, Thompson and colleagues recently proposed a 

model that attempted to tackle this problem  (Thompson 2008).  This work represents a 

very salient contribution to the problem and nicely complements our approach, where we 

further elaborate on its potential solution. In their algorithm, the halteres could obtain 

accurate measurements of the pitch, roll, and yaw components of an imposed, constant 

angular velocity.  In modeling haltere motion in response to an imposed angular velocity, 

they lifted the assumption of infinite lateral rigidity, and modeled the lateral motion of 

the haltere as a point mass ―on a rigid massless structure with a torsional spring and 

damper at the base‖ (Thompson 2008).  Though they model the out-of-plane 
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displacement of the haltere with a system of nonlinear (with respect to imposed angular 

velocity and acceleration) differential equations, it is assumed that the halteres’ out-of-

plane displacements are linearly related to strain generated in the campaniform sensilla 

field.  We did not model strain directly, but if it is linearly related to the displacement, 

our model is sufficient.  Thompson et. al. claim that accurate measurements of the pitch, 

roll, and yaw components of the angular velocity of the fly’s body can be obtained by 

haltere position-specific average strain and average strain-rate measurements.   

 The authors do not discuss exactly how many haltere oscillations it takes for the 

out of plane displacement to reach a steady state.  Out of 40 oscillations of the haltere, 

only the last 20 are used to produce the out-of-plane displacement versus haltere position 

plots.  This suggests that the out-of-plane displacement of the halteres is not the same for 

the first 20 oscillations, and the motion has not reached steady state.  Since their proposed 

method of velocity decoupling relies on averaged out-of-plane motion (strain) 

measurements, if the phase plot does not converge on a single loop within a few haltere 

oscillations, the fly will recover erroneous readings of angular velocity.  How is the 

haltere capable of delaying strain measurement until the phase-plane trajectory has 

stabilized, meaning the out-of-plane motion has reached a repeating pattern with respect 

to in-plane oscillation?  What would prevent the haltere from taking a measurement at the 

appropriate point in the stroke as soon as any out-of-plane motion is experienced? 

 In addition, it is difficult to determine a neurobiologically feasible way to measure 

average strain and average strain rate between two points in a stroke cycle.  Taking an 

average displacement value is potentially feasible, if one measurement were stored until 

the next measurement were taken, or with an afferent campaniform sensillae acting as a 
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low-pass filter, as they suggest, but encoding an instantaneous derivative of displacement 

is more difficult to imagine in the physiology of the campaniform sensillae.  They list 

several methods which are common in engineering but have no known neural correlates.  

Interestingly, they mention the ―feasibility of encoding and reconstructing the full body 

rate vector using only discreet (sic) compressive strain magnitude measurements to 

describe the symmetric and asymmetric aspects of the haltere trajectory.‖  This is indeed 

similar to our proposed method. 

 Finally, Thompson et al. test their model with constant angular velocities, but 

including only two different roll velocity components, zero and five radians per second.  

They also exclude gravitational acceleration in their equation for out-of-plane 

displacement.  In contrast, we show that the gravitational force has a significant effect on 

the accuracy of angular velocity recovery, and test 10
8
 different parameters. 

  

Future Directions 

 Our model could be tested by further anatomical and functional measurements of 

neurons in the haltere circuitry, to determine if there are units that behave as we predict. 

While the exact neuronal components and circuits are still mysterious, paradoxically, 

there is an electrical synapse between certain haltere afferents and the b1 steering muscle 

(Fayyazuddin and Dickinson, 1996; Trimarchi and Murphey, 1997).  However, it is 

difficult to fathom an algorithm by which the haltere afferents could be electrically 

coupled via these gap junctions directly to the steering muscles and produce accurate 

reflexes to imposed angular velocities.  But both of the above studies also found a slower, 

chemical, poly-synaptic pathway to b1 from the haltere afferents.  It is not clear which 
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single pathway, if not both, campaniform sensilla use to convey information.   The gap 

junctions may simply function to set the phase of the wingbeat relative to the halteres.  

To alter the flight trajectory, a wingbeat phase advance or recession could come through 

the chemical, poly-synaptic pathway.  The computation that would enable a correct 

alteration to the flight path does not seem possible without slightly more complex 

circuitry than direct electrical coupling.   

 Recently, the output of the haltere nerve has been recorded directly.  It has been 

shown to be directionally selective and fire with sub-millisecond jitter (Fox and Daniel, 

2008)  Additionally, recordings from neck motor neurons have been shown to receive 

phase-locked output from the halteres at physiological frequencies up to 105 Hz (Huston 

and Krapp, 2009)  These experimental data confirm that our model, which requires 

precise timing and phase-locking, is plausible.  One important future step will be to add 

random noise modeled on the known jitter of the haltere output to our analysis, which has 

so far only revealed the systematic errors due to the physical nature of the system. 

 More complex analyses could make use of two genetic mutants that affect the 

sensors or the neural circuit directly.  The Ultrabithorax mutant yields anomalous 

campaniform sensilla structures in the halteres (Roch and Akam, 2000).  The shaking-B
2
 

mutant disrupts electrical synapses from haltere afferents (Trimarchi and Murphey, 

1997).  One could test, for example, whether Ultrabithorax or shaking-B
2
 mutant flies 

show corrective responses to mechanically imposed angular velocities.  While these flies 

have proven unable to fly, (not surprising given their absolute lack of electrical 

synapses), one wonders if their haltere-mediated reflex system is at least partially intact.  

This would implicate the haltere/b1 chemical-synapse pathway in angular velocity 
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detection.  The ability to discriminate between sensory deficits versus neural circuitry 

deficits will certainly aid further elucidation of the engineering principles at work.  

One last remaining question is how the fly can distinguish externally generated 

rotations from internally generated rotations.  If the fly initiates a rotation, it must also 

inhibit the reflexive correction automatically calculated by the haltere circuitry.  In 

addition, when reflexively responding to a stimulus, the fly should not respond to angular 

velocity information generated by the haltere during the corrective rotation.  It seems 

unlikely inhibition of this counter-reflexive action would be a regulatory property of the 

flight control system given the speed of the reflex.  If a top-down ―stop steering‖ 

command were given (perhaps via inhibition of mnb1), it would have to be timed with 

extraordinary precision.  Alternatively, the counter-reflexive action could simply be an 

inherent property of the reflex.  Perhaps the biophysical properties of the b1 muscle 

driver neurons are simply unresponsive to haltere input during a short (few ms) refractory 

period after performing a corrective maneuver.   

Our model assumes a train of delta functions at the specific phase-delayed times 

is convolved with the summed and subtracted force signals.  One improvement to our 

model would be to actually deconvolve the summed and subtracted force signals and find 

the best filters for extracting the different signals. 

Finally, it is known the visual system can impact the motion of the haltere directly 

in order to transform visual-mediated corrections into rotation corrections.  It may also be 

possible that a horizontal indicator signal is sent from the visual system to the haltere in 

order to allow for a correction of gravity.  Our scheme allows for both modifications -- 

inhibition of self-initiated movements and gravity correction --  by simply allowing for 
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another incoming signal to subtract from the force estimates before that are fed back to 

the wing. 
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CHAPTER 2 APPENDIX 
 

The general form for extracting angular velocities from the complex waveforms 

shown in Figure 2-2 are a series of amplitude measurements at different times.  A form of 

this algorithm has been presented for detecting wing deformations (Dickinson, 1990).  

The measurements are taken at a constant frequency, but they have differing time lags, or 

phase shifts, from when the first measurement is taken.  The phase shift for extracting 

pitch, roll, and yaw, depends not on the time of force onset, but on the angular position, 

Φ, of the haltere.  The pitch, roll, and yaw signals are each measured at a different value 

of Φ, henceforth known as Φp  , Φr  , Φy respectively.  The Fpitch signal can be measured at 

the Φp which indicates the extremum of the FL + FR waveform.  The Froll can also be 

discriminated from yaw by setting Φr to correspond to a point on the FL - FR waveform at 

which the Froll is at a local extremum, because the yaw signal, at twice the frequency, will 

be zero.  (Note: this does not mean that the FL - FR waveform will necessarily be at a 

maximum).  To distinguish yaw from roll Φy must correspond not to an extremum, but to 

a point on the FL - FR waveform where the Froll contribution is approximately equal to 

zero, but the Fyaw contribution is nonzero.  The value can then be divided by an additional 

constant constant, l (included in k"), representing the inverse of the ratio of the sample 

point's y position on the Fyaw signal to the y position of the extremum of the Fyaw signal. 

Measurement begins in a pitch, roll, or yaw sampling neuron when the angular 

position of the haltere reaches Φp  , Φr  , or Φy respectively (See Figure 2-2.)  Given the 

known wing beat frequency, the resulting time delay for sampling will always be between 

about one and eight milliseconds.  The exact phase shift will depend on the initial angular 
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position of the haltere when the rotation is induced.  These time bounds are strict, as they 

allow determination of the rotation’s sign. 
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CHAPTER 2 Figure Legends 
 

Figure 2-1: Force diagram and experimental goal.   

(A) Force diagrams and (B) plots are shown for a situation in which the fly is rotated in 

the pitch direction.  (C) The location of the circuit which this study seeks to uncover 

situated within the known anatomy of the fly's flight system.  Modified from (Dickson, 

2008). 

 

Figure 2-2: Analysis of variables 

(A) The sample points for pitch, roll, and yaw (Φp , Φr  and Φy) are plotted against time 

on the graph of the haltere's position (Φ)  given an initial haltere angle of zero degrees. 

(B-C) Φp, Φr , and Φy are plotted against time on the graphs of the equations for FL - FR 

and FL + FR given a constant applied angular velocity with pitch, roll, and yaw 

components of 30 radians/sec
2
 each. 

 

Figure 2-3: Neural circuit for angular velocity computation.   

Squares - anatomical structures; circles - neurons; smaller open circles - excitatory 

connections; smaller filled circle - inhibitory connection.  The haltere CPG drives the left 

and right halteres which sense lateral forces.  These force signals are summated at the 

neuron labeled N+ and subtracted at the neuron labeled N-.  The signals from these 

neurons are then transmitted to three intermediate neurons: Npitch, Nroll, and Nyaw.  These 

cells are biased by the time delays taupitch, tauroll, and tauyaw via delay lines from the 

haltere's phase-locked CPG.  These delays must be set by the angular position of the 

halteres such that the three intermediate neurons take measurements at the appropriate 
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times.  The results of this computation are fed to each wing via the mnb1 cells which 

control the b1 steering muscles.  

 

Figure 2-4: Visualization of the dimensional stacking technique.   

A standard rectangular coordinate system has two axes defining a plane on which a point 

is uniquely specified by two values equal to the distance of the point from each axis.  A 

three dimensional coordinate system has three axes defining a cube but can only be 

drawn on a two dimensional surface by making use of perspective.  An eight dimensional 

coordinate system is impossible to visualize in three dimensions but would function the 

same as any other coordinate system by specifying eight unique values for a given point 

in space.  Here, in order to visualize such a coordinate system in two dimensions, we 

have "collapsed" the dimensions beyond the first two inside the  other dimensions in a 

recursive fashion.  This so-called "dimensional stacking" technique allows one to 

visualize trends in a high-dimensional space.  The dimensions are collapsed in a specific 

order such that similar output values from the given multi-dimensional inputs are 

clustered together.  In the example shown here, the red square defines a coordinate 

system over which the first through fourth dimensions vary for given values of 

dimensions five through eight.  (Specifically, those values are the last value of dimension 

eight, the sixth value of dimension seven, the fourth value of dimension six, and the fifth 

value of dimension five.) 

 

Figure 2-5: Error analysis 
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(A-C) Dimensional stacks and histograms of the relative error in pitch, roll, and yaw 

recovery.  10 values of each parameter were used: initial velocities ( Vr, Vp, Vy) from -

16.1 to 19.9 radians/sec, angular accelerations (Ar, Ap, Ay) from -50 to 62.5 radians/sec
2
, 

initial body pitch angle (βp) and initial body roll angle (βr), from -50 to 60 degrees. 



101 
 

 
 

FIGURE 2-1 
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Figure 2-2 
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Figure 2-3 
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Figure 2-4 
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Figure 2-5 

A. ROLL 
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B. PITCH 
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C. YAW 
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APPENDIX A: PackIO electrophysiology suite 

 What follows is a description of the electrophysiology suite of computer programs 

I developed during my time as a graduate student.  I present here a guide to its operation 

because I used it to make all of the recordings in this dissertation. 

 While making electrophysiological recordings and trying to synchronize various 

pieces of equipment (cameras, lasers, galvanometers, etc.), I found no software that was 

up to the task.  So, I began a project to develop an uber-system capable of performing any 

data acquisition or generation operation that could be completed with the National 

Instruments DAQ hardware in use in the lab at the time.  I originally referred (somewhat 

in jest) to the project as "PackIO", a combination of my name and IO, as in input/output, 

since the software is supposed to be extensible in its ability to record any input or 

generate any output in any synchronized fashion.  Unfortunately, the name stuck. 

 Now, PackIO is in use by a majority of the members of the Yuste laboratory, and 

by Jason Maclean at the University of Chicago, whose laboratory has made 

improvements not treated here.   

 The current version number of the software is 264 and it is 1.6 MB in size.  A 

Professional installation of LabView 2009 with the associated DAQmx drivers is 

required. 

 Recorded data files can be viewed with the EphysViewer software package 

written in MATLAB by Brendon Watson and modified by me.  It is available from the 

Yuste CVS repository in the PaqTools module (http://yustecvs.biology.columbia.edu/cgi-

bin/cvsweb/). 

http://yustecvs.biology.columbia.edu/cgi-bin/cvsweb/
http://yustecvs.biology.columbia.edu/cgi-bin/cvsweb/
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 When first run, PackIO will create the following directories in the directory the 

main program library is in (if they do not already exist): 

 TempData: where temporary data files produced by the Go back feature 

(see Figure A1-1) are stored. 

 Configurations: contains four subdirectories 

o Epoch: individual epoch files should be stored here for use in the 

Epoch Loader 

o Input: input configurations should be stored here for use in the 

Master Setup input tab (see Figure A1-2) 

o Output: output configurations should be stored here for use in the 

Master Setup output tab (see Figure A1-3) 

o Seal: configurations for Seal Test (see Figure A1-5) should be 

stored here 
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Figure A1-1: The main window of PackIO. 

 The main window of PackIO (Figure A1-1) is where all the major features of the 

program can be accessed.  On the left side are the seven numbered main displays which 

show incoming data.  The controls on the right are described below: 

 Tabs on the upper right 

o "Display options" 

 "Plot update mode" controls the manner in which data is updated 

to the main displays at the left. 

 "Samples to acquire per loop" is the number of samples the card 

attempts to read from every channel of an acquisition during each 
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loop of the main program's operation.  The default of -1 will 

acquire as many samples as are available. 

 "Sync time axes" locks the x-axes of the main display windows to 

the x-axis shown in the "To display" box. 

 "Seconds of data to view" indicates how much time to display in 

the main displays. 

o "Statistics" displays information regarding the condition of PackIO.  These 

statistics are useful when diagnosing issues with slower computers. 

o "Counting" implements certain functions of the counters which most DAQ 

cards have.  As of this writing, the count is merely displayed, and can be 

divided by a user-set value. 

o "Advanced" allows the user to set a value to which an output channel will 

be set after completion of a task.  Normally, this value is zero, but there 

are instances, for example when controlling certain pieces of equipment 

such as laser controllers, in which a negative value may be desired. 

 Gain controls 

o The gain of an "input channel" can be adjusted during a recording to the 

value in "New gain" by clicking the "Adjust" button. 

 Recording controls 

o If the button on the upper left is not lit, it will read "Monitor" which 

indicates no data will be recorded to a file selected by the user (but data 

may still be recorded if the "Go back" feature is enabled, see below.)  If 

the "Monitor" button is clicked, it will become lit and read "Record" in 
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which case the user will be prompted for a file name when START is 

clicked and recording commences. 

o The button on the far right enables the "Go back" feature.  This feature 

records all data, even when the user does not explicitly specify to record.  

The user can click "Go Back" if the user decides he or she actually wants 

the data just displayed.  The file name of where the data has been stored is 

then displayed in a dialog box. 

 Electrophysiology controls 

o "Seal test" opens the seal test window, see Figure A1-5. 

o "Pack Ephys" opens the PackEphys software module, see Figure A1-6. 

o "Main display" controls whether the main displays are plotted or not.  

Turning off the main displays can be useful during episodic recordings, 

especially when using a slow computer, as it decreases the computational 

load of the program. 

o "Episodic display" opens the episodic window, see Figure A1-7. 

 Output controls 

o "Fire output" commences the generation of the output sequence selected in 

Master Setup (see Figure A1-3) when that sequence's generation time is 

set by the user, not a trigger or acquisition event. 

o "Unfired" is lit and reads "Fired" when an output sequence was 

successfully generated. 

o "Times to run output" is enabled when the Master Setup Experimental 

type is set to "Acquire immediately and output specified number of times" 
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(See Figure A1-2).  Then the output is generated the number of times 

specified.  This option is useful when the same output needs to be run 

repeatedly, but note that this option is not hardware-timed, so the delay 

between repetitions is variable.  (If precise timing is required, the output 

desired should be completely specified, however many times it is repeated, 

in the Master Setup output tab.) 

o The chart shows which outputs are currently set to be generated.  The 

"Formatted epochs" tab shows the outputs in the scale set in the Master 

Setup output tab whereas the "Voltage output" tab shows the outputs as 

the raw voltage that will be produced by the DAQ card. 

 Setup/Start/Stop/Close/Quit Labview controls 

o SETUP opens the Master Setup window (see Figures A1-2 through A1-4) 

o START begins the input/output operation, which disables accessibility of 

certain features in the main window until STOP is pressed. 

o STOP ceases the current input/output operation. 

o CLOSE closes the PackIO program 

o If "Quit Labview?" is checked, pressing the CLOSE button will also quit 

Labview completely. 
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Figure A1-2: The input tab of the Master Setup window. 

 The Master Setup window controls which channels are recorded, what outputs are 

generated, and how digital lines are set when the START and STOP buttons are pressed 

in the main window.  It also controls how and which channels are displayed on each of 

the seven main displays.  This window automatically opens when PackIO is initially run.  

While this window is open, no other Labview windows can be accessed. 

 At the top of the Master Setup window is a critical dropdown box labeled 

"Experimental type" which controls what type of acquisition, generation, or both is 

performed as described below: 

 "Acquire immediately": Acquire the specified channels when START is pressed. 
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 "Acquire upon external trigger": Acquire the specified channels after START is 

pressed and when the trigger condition, as specified by the controls to the right, 

are met. 

 "Start acquisition and output immediately": Acquire the specified channels and 

generate the specified outputs when START is pressed. 

 "Synchronize acquisition and output on external trigger": Acquire the specified 

channels and generate the specified outputs after START is pressed and when the 

trigger condition, as specified by the controls to the right, are met. 

 "Acquire immediately and output upon user input": Acquire the specified 

channels when START is pressed.  Generate the specified outputs when the user 

presses the "Fire output" button in the main window. 

 "Acquire immediately and output upon external trigger": Acquire the specified 

channels when START is pressed.  Generate the specified outputs when the 

trigger condition, as specified by the controls to the right, are met. 

 "Acquire immediately and output specified number of times": Acquire the 

specified channels and generate the specified outputs the number of times 

specified in the main window output section when START is pressed. 

 

 Note that acquisition and generation operations which are synchronized between 

two separate cards, for example between a PCI-6052E and a PCI-6733, require that a 

RTSI cable be physically installed to connect the two cards inside the computer and 

appropriately indicated in the NI-MAX configuration software. 



116 
 

 
 

 The "Analog Input" tab of the Master Setup window controls how many channels 

are acquired at which frame rate and within what range (upper left.)  Those channels can 

be turned on and off quickly by clicking the green buttons in the column by each channel.  

The options in this window are self explanatory, except for the gains, which are 

multiplied by the raw voltage recorded by the DAQ card.  Further details and examples 

are given in the lower left corner of this window.  Configurations (left) can be saved and 

loaded at a later date so that these options need not be specified each time a similar 

recording configuration is used. 
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Figure A1-3: The output tab of the Master Setup window. 

 The display in the top of the output tab of the Master Setup window shows which 

outputs will be generated.  It has two tabs which show the output either in the scale 

("Formatted epochs") set by the Epoch Loader (described below), if used, or as raw 

voltage outputs ("Voltage output"). 

 Selecting an "Output device" on the lower left will automatically update the 

available channels.  Each channel's output can be specified by a MATLAB file, an epoch, 

or a set voltage: 

 MATLAB: Use the following commands in MATLAB to write the vector 

TestRamp to a file TestRamp.dat which can then be loaded into PackIO on a 

given channel by clicking the LOAD button in the Load MATLAB column: 

fid=fopen('TestRamp.dat','w','l');fwrite(fid,TestRamp,'double');fclose(fid); 
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 Epoch: Clicking LOAD in the "Load epoch?" column will open a program written 

by Volodymyr Nikolenko, based on pClamp from Axon Instruments, to set 

various types of stimulation protocols such as steps, ramps, and trains.  Gains can 

be set here so that the user does not have to keep track of voltage to amplitude 

transformations.  Multiple sweeps of a given epoch can also be produced.  

Individual epochs can be saved for later use. 

 Set voltage: A constant voltage can be set for a specified amount of time after 

which that channel will be set to a given "post set value" after the output is 

generated. 

 Configurations can be saved and loaded so that the user does not have to set the 

appropriate output for each channel every time the same output paradigm is desired. 
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Figure A1-4: The digital output tab of the Master Setup window. 

 Digital output lines can be updated when the START and STOP buttons are 

pressed in the main window of PackIO.  These are useful for sending TTL pulses to 

various pieces of equipment which need to be toggled before or after an acquisition or 

generation operation.  Note that these lines are not hardware timed, so the time delays 

before the lines are updated are variable.  
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Figure A1-5: The seal test window of PackIO. 

 The seal test window allows the user to test the access and input resistance of a 

recorded cell by calculating the response current to square pulse voltage commands.  It 

can be operated in two modes: "Internal" or "External".  Internal mode, selected by 

clicking the "Internal Seal Test" button near the top left of the window, produces pulses 

of the specified parameters to the selected "Output Channel".  This should be connected 

to the command of the electrophysiological amplifier to drive the cell.  If internal mode is 

not selected, external mode (so called because the seal test pulses are provided by the 

amplifier) is used.  The sync channel from the electrophysiological amplifier should be 

connected to the selected "Sync Channel (external output)". 

 The voltage and current channels for the recorded cell need to be appropriately set 

with the correct gains. 
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 The number of samples acquired per run loop of the seal test subroutine can be 

set, as well as the sample clock rate at which to acquire samples.  The pulses per 

acquisition and actual clock rate are then displayed above the graph on the right. 

 The seal resistance is displayed by the needle and the large grey box directly to 

the left of the START and STOP buttons (which commence and cease acquisition and, if 

in internal mode, generation of the seal test pulses).  The displayed access and input 

resistances are correct after the appropriate recording configuration is obtained. 

 The graph on the right shows the response to the seal test pulses.  The voltage 

pulses can also be displayed by toggling the "Voltage On/Off?" button on the upper left 

of the graph. 

 Configurations can be saved for later use and loaded by selection from the 

dropdown box. 

  



122 
 

 
 

 

Figure A1-6: The PackEphys window of PackIO. 

 PackEphys is a program that can automatically probe the electrophysiological 

characteristics of cells.  After setting the correct channels and gains, the user should 

select the "Threshold" protocol and a low value for the scale factor (which will depend on 

the cell type) and then click START.  After prompting for a file name, the program will 

output a square pulse of the scaled amplitude.  The user should increase the scale until the 

recorded cell produces at least one action potential.  Then the user can select other 

protocols to apply to the cell at the same scale.  A file produced by "All parameters" can 

be automatically analyzed by PackEphys.m, a MATLAB script available from the Yuste 

CVS repository in the PaqTools module (http://yustecvs.biology.columbia.edu/cgi-

bin/cvsweb/).  The electrophysiological characteristics that can be obtained are based on 

those used in the Markram lab (see Table 3 of Toledo-Rodriguez et. al., Cerebral Cortex, 

December 2004;14:1310–1327; doi:10.1093/cercor/bhh092):  

  

http://yustecvs.biology.columbia.edu/cgi-bin/cvsweb/
http://yustecvs.biology.columbia.edu/cgi-bin/cvsweb/


123 
 

 
 

Markram PackEphys Markram PackEphys 

e1 Ephys.RestingPotential e32 Ephys.Sag 

e2 Ephys.InitAPDrop e33 Ephys.DeltaTau 

e3 Ephys.AP1ToSteadyDrop e34 Ephys.RampThresh 

e4 Ephys.AP2ToSteadyDrop e35 Ephys.RampfAHP 

e5 Ephys.MaxRateAPChange e36 Ephys.PostBurstMaxAHP 

e6 Ephys.AP1Amp e37 Ephys.PostBurst100msAHP 

e7 Ephys.AP1Duration e38 Ephys.PostBurstTimeToMaxAHP 

e8 Ephys.AP1HalfWidth e39 Ephys.NumSpikesPerPicoAmp 

e9 Ephys.AP1RiseTime e40 Ephys.AveDelayToFirstSpike 

e10 Ephys.AP1FallTime e41 Ephys.StdDelayToFirstSpike 

e11 Ephys.AP1RiseRate e42 Ephys.AveDelayToSecondSpike 

e12 Ephys.AP1FallRate e43 Ephys.StdDelayToSecondSpike 

e13 Ephys.AP1fAHP e44 Ephys.AveFirstThreeApISIs 

e14 Ephys.AP2Amp e45 Ephys.SDFirstThreeApISIs 

e15 Ephys.AP2Duration e46 Ephys.AveInitFiringRateAccom 

e16 Ephys.AP2HalfWidth e47 Ephys.AveSteadyFiringRateAccom 

e17 Ephys.AP2RiseTime e48 NOT INCLUDED 

e18 Ephys.AP2FallTime e49 NOT INCLUDED 

e19 Ephys.AP2RiseRate e50 NOT INCLUDED 

e20 Ephys.AP2FallRate e51 Ephys.ISI_CV 

e21 Ephys.AP2fAHP e52 Ephys.ISIMedian 

e22 Ephys.AP12AmpPercChng e53 Ephys.aveMaxDerivMinusAveDerivISIs 

e23 Ephys.AP12DurationPercChng e54 NOT INCLUDED 

e24 Ephys.AP12HalfWidthPercChng e55 NOT INCLUDED 

e25 Ephys.AP12RiseRatePercChng e56 NOT INCLUDED 

e26 Ephys.AP12FallRatePercChng e57 NOT INCLUDED 

e27 Ephys.AP12fAHPPercChng e58 NOT INCLUDED 

e28 Ephys.InputRPeak e59 NOT INCLUDED 

e29 Ephys.InputRSteady e60 NOT INCLUDED 

e30 Ephys.RectificationPeak e61 NOT INCLUDED 

e31 Ephys.RectificationSteady 
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Figure A1-7: The episodic window of PackIO. 

 Data being acquired can be displayed in an episodic fashion by clicking the 

"Episodic display" button on the main window of PackIO to bring up the Episodic 

window. 

 Available channels will be automatically listed based on the channels that have 

been set for acquisition in the Master Setup window.  Channels the user wishes to view in 

an episodic fashion should be selected by clicking the episodic button to the left of the 

name of that channel.  An average can be accumulated across sweeps for a given channel 

by clicking the appropriate button in the "Average?" column.  Individual sweeps are 
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displayed in the two graphs at the top right while accumulated averages are displayed in 

the two graphs at the lower right. 

 Episodes can be defined either by a set window or a trigger.  If no channels are 

selected as a trigger by clicking one of the buttons in the "Trigger" column, the episodes 

will default to occur at the intervals specified by the "sweep length" at the top left of the 

window.  If a trigger is selected, when the trigger level is met on the selected trigger, an 

episode will start.  The length of an episode is set by the "sweep length" (in seconds) and 

the length of the data displayed is set by the "view window" (in seconds).  A "View 

offset" (in seconds) can be set to control the time the view window begins within a given 

episodic sweep. 

 The total time elapsed and episodic sweep number are displayed at the top of the 

window. 


