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Abstract

Knot Floer Homology and Categorification

Allison Leigh Gilmore

With the goal of better understanding the connections between knot homology theories arising

from categorification and from Heegaard Floer homology, we present a self-contained construction

of knot Floer homology in the language of HOMFLY-PT homology. Using the cube of resolutions

for knot Floer homology defined by Ozsváth and Szabó [45], we first give a purely algebraic proof

of invariance that does not depend on Heegaard diagrams, holomorphic disks, or grid diagrams.

Then, taking Khovanov’s HOMFLY-PT homology as our model, we define a category of twisted

Soergel bimodules and construct a braid group action on the homotopy category of complexes of

twisted Soergel bimodules. We prove that the category of twisted Soergel bimodules categorifies

H(b, q) ⊕ Z[`, `−1], where H(b, q) is the Hecke algebra. The braid group action, which is defined

via twisted Rouquier complexes, is simultaneously a natural extension of the knot Floer cube of

resolutions and a mild modification of the action by Rouquier complexes used by Khovanov in

defining HOMFLY-PT homology [21]. Finally, we introduce an operation Qu to play the role that

Hochschild homology plays in HOMFLY-PT homology. We conjecture that applying Qu to the

twisted Rouquier complex associated to a braid produces the knot Floer cube of resolutions chain

complex associated to its braid closure. We prove a partial result in this direction.
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Chapter 1 1

Chapter 1

Introduction

In the last decade, a powerful new type of knot invariant has emerged independently from two quite

distinct areas of mathematics. To a knot K in S3, a knot homology theory associates a bigraded

(or sometimes triply-graded) chain complex C(K) =
⊕

i,j Cij whose graded Euler characteristic is

a classical knot polynomial

χgr(C(K)) :=
∑
i,j

(−1)i qj rk(Cij(K)) = pK(q).

Knot Floer homology, developed by Ozsváth and Szabó [38] and Rasmussen [47], bears this rela-

tionship to the Alexander polynomial and has its heritage in gauge theory. Knot homologies for the

Jones polynomial, the sln polynomials, and the HOMFLY-PT polynomial were inspired by work in

representation theory and defined by Khovanov [18] and Khovanov and Rozansky [21, 22, 23].

Knot homologies have had a wide variety of applications in low-dimensional topology. Knot

Floer homology has led to an improved understanding of the knot concordance group [37, 13],

developments in Dehn surgery theory [41, 40, 43, 12], and new invariants of Legendrian and transverse

knots [46, 32, 27]. It fits into a family of three- and four-manifold invariants called Heegaard

Floer homology that have had even more far-reaching applications in low-dimensional topology,

including invariants of contact structures on 3-manifolds [35] and of smooth 4-manifolds [44, 36],

among many others. Applications of the Khovanov and Khovanov-Rozansky knot homologies include

Rasmussen’s definition of a concordance invariant [48], a bound on the Thurston-Bennequin number

of a Legendrian knot [31], and a contact invariant [2].

Knot Floer homology was originally defined as a filtration on the chain complex of Heegaard Floer

homology [39], a three-manifold invariant whose differentials count holomorphic disks in a symmetric

product of a surface. Knots in this theory are represented by decorating a Heegaard diagram for

a three-manifold, so invariance was proved by checking invariance under Heegaard moves. Knot
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Floer homology also has a combinatorial construction, which represents knots using grid diagrams

and interprets these grid diagrams as an especially convenient type of decorated Heegaard diagram

in which holomorphic disks can be enumerated combinatorially [51, 33]. This construction was

independently proved to be a knot invariant under an appropriate set of moves for grid diagrams

[29].

The Khovanov and Khovanov-Rozansky knot homologies were originally defined using a fully

algebraic “cube of resolutions” construction. Given a projection of a knot with m crossings, one con-

siders two ways of resolving each crossing and arranges all possible resolutions into an m-dimensional

cube. To each vertex of the cube, one associates a graded algebraic object (perhaps a graded vec-

tor space, or a graded module over some commutative ring), and to each edge of the cube a map.

With the correct choices of objects and maps, the result is a chain complex whose graded Euler

characteristic is the desired knot polynomial. Khovanov’s original link homology [18], whose graded

Euler characteristic is the Jones polynomial, follows this model. It employs a cube in which the

resolutions are the two possible smoothings of a crossing. A complete resolution is then a collection

of circles, to which one associates certain graded vector spaces. Khovanov and Rozansky’s homology

theories for the sln polynomials [22] and the HOMFLY-PT polynomial [23] (see also Khovanov [21]

and Rasmussen [49]) instead use a cube of resolutions built from singularizations of crossings and

oriented smoothings. The complete resolutions in this case are a particular type of oriented planar

graph. The associated algebraic objects are graded modules over the ring Q[x0, . . . , xn], which has

one indeterminate for each edge of the graph. In each of these theories, the chain complex was

proved to be a knot invariant by directly checking invariance under Reidemeister moves. That is,

one compares the prescribed chain complex before and after a Reidemeister move is performed on

the diagram, and constructs a chain homotopy between the two complexes.

These algebraic knot homologies were motivated by the concept of categorification, which origi-

nally arose in representation theory. In the context of topology, categorification is a process of lifting

algebraic invariants of topological objects to algebraic categories with richer structure, thereby en-

hancing the topological information they are able to encode. In this framework, knot polynomials

should lift to complexes of modules; cobordisms should lift to maps of modules; and braid or tangle

invariants should lift to complexes of bimodules. When one knot polynomial specializes to another,

the corresponding homologies should be related by a spectral sequence. Such spectral sequences have

been described among the knot homologies arising from representation theory: from HOMFLY-PT

homology to each sln homology, including Khovanov’s original link homology [49].

The broad aim of this work is to understand better how knot Floer homology relates to the

categorification knot homologies. Despite their disparate origins, all known knot homologies behave
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similarly on certain classes of knots, give rise to similar (though ultimately distinct [15]) concordance

invariants, and generalize classical knot polynomials in similar ways. The fact that the HOMFLY-

PT polynomial specializes to the Alexander polynomial also strongly suggests that there should be a

spectral sequence from HOMFLY-PT homology to knot Floer homology in analogy with the spectral

sequences from HOMFLY-PT homology to the knot homologies of the Jones and sln polynomials [6,

49].

However, precise relationships between knot Floer homology and the Khovanov or Khovanov-

Rozansky homologies have so far proved elusive. Ozsváth and Szabó [42] found a spectral sequence

from a version of the Khovanov homology of a link to the Heegaard Floer homology of its branched

double cover (see also [26]). This spectral sequence has since been generalized to a spectral sequence

from a sutured variant of the Khovanov homology of a tangle in D2×I to the sutured Floer homology

of its lift in the branched double cover Σ(D2× I) [14]. In certain cases, this sutured Floer homology

can be interpreted as the knot Floer homology of the link’s lift, but none of these spectral sequences

converge directly to the knot Floer homology of the link itself (in S3). These spectral sequences

also depend strongly on the topology of the link’s branched double cover. Moreover, these spectral

sequences all begin with variants of the original Khovanov link homology (which categorifies the

Jones polynomial). They are not the expected lifting of the relationship between the HOMFLY-

PT polynomial and the Alexander polynomial obtained by specializing a variable. The problem of

finding a direct relationship between the categorification knot homologies (especially the HOMFLY-

PT homology) and knot Floer homology is the primary motivation for the work described here.

Therefore, our project is to interpret knot Floer homology in the context of categorification as

thoroughly as possible. Ozsváth and Szabó took the first step in this direction by describing a

cube of resolutions construction for knot Floer homology [45]. As in the constructions of sln and

HOMFLY-PT homology, they use singularizations and oriented smoothings of crossings as the two

possible resolutions, so that the complete resolutions are planar graphs with orientation and valency

restrictions. In 2007, Ozsváth, Szabó and Stipsicz [34] described a version of knot Floer homology

for singular knots that is related to the theory for classical knots by a skein exact sequence. In

general, knot Floer homology for singular knots involves holomorphic disk counts, but it can be

made combinatorial with a suitable choice of twisted coefficients and a particular Heegaard diagram.

Using this version of the theory for singular knots and iterating the skein exact sequence allowed

Ozsváth and Szabó [45] to construct a cube of resolutions chain complex that computes knot Floer

homology.

Chapter 2 gives a direct proof of the invariance of knot Floer homology within the algebraic

setting of the cube of resolutions chain complex, without relying on Heegaard diagrams, holomorphic
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disks, or any of the usual geometric input. We use a small modification of the cube of resolutions

construction described by Ozsváth and Szabó [45]. The construction begins with a projection of a

knot as a closed braid, which we decorate with a basepoint and a number of extra bivalent vertices

to create a layered braid diagram D. Each layer of the diagram contains a single crossing and a

bivalent vertex on each strand not involved in the crossing. This amounts to choosing a braid word

that represents the knot and subdividing some edges. We form a cube of resolutions by singularizing

or smoothing each crossing of the projection. We then assign a graded algebra AI(D) to each

resolution and arrange these into a chain complex C(D). These objects are defined precisely in

(2.1) and (2.2) of Section 2.1. The resolutions to which AI(D) is assigned are planar graphs with

particular orientation conventions. The algebra AI(D) is a quotient of a polynomial ring E(D) with

one indeterminate for each edge in D by two ideals: an ideal LI(D) generated by local relations

depending only on edge data near each vertex in the I-resolution of D and an ideal NI(D) generated

by non-local relations depending on edge data from subsets of vertices. The main result of Chapter 2

is an algebraic proof of

Theorem (Theorem 2.1.1). Let D be a layered braid diagram for a knot K. The chain complex

C(D), up to chain homotopy equivalence and base change, is invariant under the Markov moves and

the addition or removal of layers with only bivalent vertices. Therefore, H∗(C(D)) depends only on

the knot K.

Theorem 2.1.1 holds with coefficients in Z. It is stated in full detail in Section 2.1.4. Changing

to F2 coefficients, we identify H∗(C(D)) with HFK− and a reduced version of C(D) with ĤFK

in Section 2.8. We expect that H∗(C(D)) in fact computes knot Floer homology with integer

coefficients, but do not pursue this point here.

The proof of invariance under braid-like Reidemeister moves II and III is very closely modeled

on Khovanov and Rozansky’s proof for HOMFLY-PT homology in [23]. Specifically, we prove

categorified versions of the braid-like Murakami-Ohtsuki-Yamada (MOY) relations [30], specialized

as appropriate for the Alexander polynomial. These relations arise in Murakami, Ohtsuki, and

Yamada’s [30] definition of a two-variable polynomial invariant of weighted singular tangles. Its

weighted sum over the possible singularizations and smoothings of a knot gives the HOMFLY-PT

polynomial. Khovanov and Rozansky’s HOMFLY-PT homology [23] categorifies the MOY model

for the HOMFLY-PT polynomial; the knot Floer cube of resolutions appears to categorify the same

model, specialized for the Alexander polynomial. This observation, along with the expectation that

HOMFLY-PT homology should be directly related to knot Floer homology via a spectral sequence,

suggests that HOMFLY-PT homology would be the appropriate model for our interpretation of knot

Floer homology in the context of categorification.
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Chapters 3 and 4 undertake the project of building the knot Floer cube of resolutions from

HOMFLY-PT homology’s algebraic materials. Khovanov’s construction of HOMFLY-PT homology

via Soergel bimodules and Hochschild homology [21] turns out to be a more natural choice than

the Khovanov-Rozansky construction via matrix factorizations [23], but the two approaches are

equivalent in any case. HOMFLY-PT homology’s structure as a categorification differs somewhat

from the usual blueprint described above, so we outline it briefly here, first introducing several

relevant categories.

Let BrCobb denote the category whose objects are braid diagrams on b strands and whose

morphisms are braid cobordisms up to isotopy. A braid cobordism between braids σ and σ′ is a

compact surface S smoothly embedded in R2 × [0, 1]× [0, 1] with boundary conditions

S ∩ (R2 × [0, 1]× {0}) = σ,

S ∩ (R2 × [0, 1]× {1}) = σ′,

S ∩ (R2 × {0} × [0, 1]) = {1, 2, . . . , b} × {0} × [0, 1] and

S ∩ (R2 × {1} × [0, 1]) = {1, 2, . . . , b} × {1} × [0, 1].

Note that isotopic braids are isomorphic, but not equal, as objects of BrCobb.

Let SBrCobb denote the category of singular braids and their cobordisms. For our purposes, a

singular braid will be any diagram that is obtained from a braid diagram by replacing each crossing

with either its oriented resolution or with a double point. However, it is more convenient to use

“webs” for the sake of defining cobordisms (although we draw 4-valent vertices throughout). A web is

a planar weighted trivalent graph with certain incidency and orientation restrictions (see [20] or [28]

for details). We restrict to those webs that arise from braids by replacing crossings with oriented

resolutions or with wide edges as in Figure 1.1. The morphisms in SBrCobb will be “foams,” which

are decorated 2-dimensional CW complexes embedded in R3 with appropriate boundary conditions

to make them a singular analogue of tangle cobordisms [20, 28, 3].

Finally, for a unital, associative algebra R over a fixed field k (which will be Q when not otherwise

specified), let R-grbimod denote the category whose objects are Z-graded bimodules over R that

are finitely generated as both left and right modules. A morphism of Z-graded bimodules is a map

that is simultaneously a left-module homomorphism and a right-module homomorphism and that

preserves the grading. Let Com(C) denote the homotopy category of bounded complexes of objects

in the additive category C. That is, the morphisms Hom(M,N) are morphisms of complexes (chain

maps) between M and N modulo homotopy equivalence.

Khovanov [21] first defined HOMFLY-PT homology via a braid group action on a certain sub-

category of Com(Q[x1, . . . , xb]-grbimod). The braid group action was later extended [25, 9] to
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Figure 1.1: Braid-like diagrams using trivalent vertices and weighted edges (left) are the objects in

the category SBrCob. We draw them with 4-valent vertices (right) instead.

functors

FbHOMFLY-PT : BrCobb → Com(Q[x1, . . . , xb]-grbimod)

for each positive integer b. These are built from functors

F̂bHOMFLY-PT : SBrCobb → Q[x1, . . . , xb]-grbimod

that assign to each singular braid a bimodule in a special class identified by Soergel [52, 53]. Soergel

bimodules categorify the Hecke algebra

H(b, q) = 〈g1, . . . , gb−1 | g2
i = (q + q−1)gi,

gigi+1gi + gi+1 = gi+1gigi+1 + gi,

gigj = gjgi if |i− j| > 1〉.

That is, there is an isomorphism of rings

Φ : H(b, q) −→ K0(Kar(SB))

from the Hecke algebra to the split Grothendieck group of the Karoubi envelope of the category

of Soergel bimodules. Section 3.2 describes this isomorphism and other properties of the Soergel

bimodules category in more detail. The appearance of the Hecke algebra is no surprise: there is

a trace on the Hecke algebra, defined by Ocneanu, that can be normalized to give the HOMFLY-

PT polynomial [10, 16]. Functoriality of the assignment of Soergel bimodules to singular braids is

still work in progress by Blanchet [3], but similar results are known to hold in sln homologies [28].

Finally, the braid invariants FbHOMFLY-PT become invariants of closed braids after the application of

Hochschild homology.

We propose that knot Floer homology should also be related to Soergel bimodules and that it

should have an interpretation as functors

FbHFK : BrCobb → Com(S-grbimod) and

F̂bHFK : SBrCobb → S-grbimod



CHAPTER 1. INTRODUCTION 7

for an appropriate choice of S and some collection of distinguished bimodules related to Soergel

bimodules. There should also be an operation on complexes of bimodules that recovers knot Floer

homology of a braid’s closure from the value of FbHFK on the braid.

We achieve substantial parts of this proposed structure for knot Floer homology in Chapters 3

and 4. Chapter 3 concerns braids and Soergel bimodules while Chapter 4 considers a replacement

for Hochschild homology that allows us to pass to closed braids. We begin the consideration of braid

invariants in Section 3.1 with a näıve generalization of the knot Floer cube of resolutions to braids.

Given a layered diagram Dσ for a braid σ ∈ Brb, we form a cube of resolutions by singularizing

or smoothing each crossing. We assign an algebra AI(Dσ) to each resolution by the same method

as for closed braids in Chapter 2. The algebra is a quotient of a polynomial ring E(Dσ) with one

indeterminate for each edge of the diagram by an ideal of local relations LI(Dσ) and an ideal of

non-local relations NI(Dσ). However, starting with a braid rather than its closure means that we

distinguish between edges incident to the top boundary of the braid and edges incident to the bottom

boundary. The polynomial ring E(Dσ) contains b additional variables compared to the corresponding

polynomial ring for Dbσ, the braid closure of the diagram Dσ, and some relations in LI(Dσ) and

NI(Dσ) differ from their counterparts in the algebra AI(Dbσ). These subtle differences make the

ideal of non-local relations redundant. We prove in Proposition 3.1.1 that NI(Dσ) ⊂ LI(Dσ) as

ideals in E(Dσ). This is certainly not the case for NI(Dbσ) and LI(Dbσ) in EI(Dbσ).

Section 3.2 introduces the language of Soergel bimodules as used in HOMFLY-PT homology and

provides the necessary background to understand Khovanov’s construction in [21]. In Section 3.3,

we define Soergel bimodules over a polynomial ring with an extra parameter, then generalize to

a larger category of bimodules we call twisted Soergel bimodules. The generalization to twisted

Soergel bimodules is designed to recapture the behavior of the näıve knot Floer braid invariant from

Section 3.1, which we prove it does in Proposition 3.3.1. We also prove that our new category is

only a mild generalization of the original Soergel bimodules category. In particular, twisted Soergel

bimodules categorify the Hecke algebra with an additional indeterminate and its inverse adjoined.

Proposition (Proposition 3.3.5). Let SBτ denote the category of twisted Soergel bimodules and

Kar(SBτ ) its Karoubi envelope. Let K0 denote the split Grothendieck group and H(b, q) the Hecke

algebra with b− 1 generators over Z[q−1, q]. Then there is a ring isomorphism

Φτ : H(b, q)⊗Z Z[`, `−1] −→ K0(Kar(SBτ )).

We assign twisted Soergel bimodules to layered singular braid diagrams, which are singular braids

with extra markings. We expect that this assignment would be functorial with respect to a suitably

decorated type of foam, but do not pursue the issue here. Instead, by the same procedure used to
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pass from F̂bHOMFLY-PT to FbHOMFLY-PT, Section 3.4 defines a braid group action on the category

of twisted Soergel bimodules. We expect that this braid group action could be extended to be

functorial with respect to braid cobordisms, but do not pursue the issue here.

In Chapter 4, we attempt to pass from braids to closed braids and recover knot Floer homology

from the braid invariant of Chapter 3. The idea is to define an operation Qu that converts the

twisted Soergel bimodule associated to a layered singular braid to the algebra AI associated to its

braid closure in Chapter 2. The operation Qu takes the place of Hochschild homology, which is the

operation used to pass from braids to their closures in HOMFLY-PT homology. It is defined as a

quotient of the zeroth Hochschild homology. We do not yet have a full understanding of how the

operation Qu relates to Hochschild homology, or whether it could instead be defined in relation to

the full Hochschild complex, but it is clear that Hochschild homology itself is not the appropriate

operation to recover knot Floer homology. One reason is that Hochschild homology would add an

additional grading to the theory, which would be unexpected in the knot Floer case. Perhaps more

importantly, small examples demonstrate that Hochschild homology of Soergel bimodules simply

does not produce the knot Floer algebra for a closed singular braid.

Applying the operation Qu to each homological grading of the chain complex associated to a

layered braid in Chapter 3 produces a bigraded chain complex that is an invariant of the layered

braid’s closure. We conjecture that this chain complex is the cube of resolutions chain complex from

Chapter 2 under the edge-strand correspondence, which is an isomorphism described in Equation 3.2

that converts between twisted Soergel bimodules and the näıve knot Floer braid invariant.

Conjecture (Conjecture 4.1.1). Let σ be a braid, Dσ a layered braid diagram, and Dbσ a layered braid

diagram for its closure. Let BτI (Dσ) be the twisted Soergel bimodule associated to the I-resolution of

Dσ in Chapter 3. Let AI(Dbσ) be the algebra associated to the I-resolution of Dbσ in the knot Floer

cube of resolutions of Chapter 2, defined over R̂ = Z[t−1, t]]. Then

Qu(BτI (Dσ)) ∼= AI(Dbσ)⊗Z Q. (1.1)

For now, we prove a weaker result, passing to a simpler ground ring and putting aside some of

the local relations in the definitions of AI(Dσ) and AI(Dbσ). Let E ′(Dσ) and E ′(Dbσ) be polynomial

rings over Q with one indeterminate for each edge in Dσ or Dbσ respectively. These differ from

E(Dσ) in Chapter 3 and E(Dbσ) in Chapter 2 only because they are defined over a different ground

ring. Define L′I(Dσ) and L′I(Dbσ) to be the ideals of E ′(Dσ) and E ′(Dbσ) obtained by removing the

extra parameter t in the definition of the generating sets of LI(Dσ) and LI(Dbσ). Similarly, define

modified ideals of non-local relations N ′I(Dσ) and N ′I(Dbσ). Finally, let Q′I(Dσ) ⊂ L′I(Dσ) and

Q′I(Dbσ) ⊂ L′I(Dbσ) denote the ideals generated by the linear relations associated to bivalent vertices
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and the quadratic relations associated to 4-valent vertices. Then we prove the following theorem in

Chapter 4.

Theorem (Theorem 4.1.1). Let σ be a braid, Dσ a layered braid diagram, and Dbσ a layered braid

diagram for its closure. Then

Qu
(

E ′(Dσ)
Q′I(Dσ) +N ′I(Dσ)

)
∼=

E ′I(Dbσ)
Q′I(Dbσ) +N ′I(Dbσ)

The proof of Theorem 4.1.1 is algorithmic, making use of convenient generating sets for ideals

called Gröbner bases that are widely used in computational commutative algebra and algebraic

geometry.

In future work, we plan to study the operation Qu in more detail, especially in relation to

Hochschild homology and related functors on bimodules. It would also be interesting to know

how Qu decategorifies, and specifically whether there is a representation theoretic description of

this operation that connects a categorification of the Hecke algebra to a categorification of the

Alexander polynomial. Finally, we hope that our approach to understanding knot Floer homology

in the language of HOMFLY-PT homology will provide insight into the problem of finding a spectral

sequence from HOMFLY-PT homology to knot Floer homology.
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Chapter 2

The Knot Floer Cube of

Resolutions

This chapter introduces the cube of resolutions construction of knot Floer homology and uses it

to give an algebraic proof that knot Floer homology is a knot invariant. Section 2.1 describes the

modified construction of Ozsváth and Szabó’s [45] cube of resolutions that we will use throughout our

work. Section 2.2 examines in detail the non-local relations involved in the definition of the algebra

associated to a resolution. These relations are a key difference between the cube of resolutions

theories for knot Floer homology and HOMFLY-PT homology. Section 2.3 establishes a technical

proposition allowing us to remove sets of bivalent vertices under certain conditions. The next sections

address each of the Markov moves in turn. Section 2.8 verifies that the cube of resolutions defined

here computes knot Floer homology.

2.1 Definitions: Cube of resolutions for knot Floer homology

We begin with an oriented braid-form projection D of an oriented knot K in S3. Let b refer to

the number of strands in D (which is not necessarily the braid index of K). Subdivide one of the

outermost edges of D by a basepoint ∗. Isotoping D as necessary, fix an ordering on its crossings so

that D is the closure of a braid diagram that is a stack of m+ 1 horizontal layers, each containing

a single crossing and b− 2 vertical strands. Label the horizontal layers s0, . . . , sm. This amounts to

choosing a braid word for D. In each horizontal layer, add a bivalent vertex to each strand that is

not part of the crossing. Finally, label the edges of D by 0, . . . , n such that 0 is the edge coming out

from the basepoint and n is the edge pointing into the basepoint. A braid diagram in this form will
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s0

���������
????

????
•

x0 x1 x2

s1 ����

����
?????????

•

x3 x4 x5

s2

���������
????

????
•

x6 x7 x8

s3 ����

����
?????????

•

x9 x10 x11

x12 x1 x2

∗

��

Figure 2.1: A layered braid diagram for the figure 8 knot.

be called a layered braid diagram for K. See Figure 2.1 for an example of a layered braid diagram

of the figure 8 knot. Although Ozsváth and Szabó [45] use closed braid diagrams with basepoints

in their definition of the knot Floer cube of resolutions, they do not require diagrams to be layered.

This refinement appears to be critical to our proof of Proposition 2.3.1 and necessary for the proof

of Reidemeister III invariance as well.

Each crossing in a knot projection can be singularized or smoothed. To singularize the crossing

in layer si, replace it by a 4-valent vertex and retain all edge labels. To smooth the crossing in layer

si, replace it with two vertical strands with one bivalent vertex on each, and retain all edge labels.

Figure 2.2 illustrates these labeling conventions.

A resolution of a knot projection is a diagram in which each crossing has been singularized

or smoothed. Alternatively, it is a planar graph in which each vertex is either (1) 4-valent with

orientations as in Figure 2.2, or (2) bivalent with one incident edge oriented towards the vertex and

the other oriented away from the vertex. For a positive crossing, declare the singularization to be the

0-resolution and the smoothing to be the 1-resolution. For a negative crossing, reverse these labels.

A resolution of a knot projection can then be specified by a multi-index of 0s and 1s, generically

denoted ε0 . . . εm, or simply I, which we will think of as a vertex of a hypercube. Considering

all possible singularizations and smoothings of all crossings, we obtain a cube of resolutions for the

original knot projection. The homological grading on the cube will be given by collapsing diagonally;

that is, by summing ε0 + · · ·+ εm.

Let R = Z[t−1, t] and x(D) denote a set of formal variables x0, . . . , xn corresponding to the edges
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??�������
???

__???
xa xb

xc xd

+

: •
??�������

__???????

xa xb

xc xd

0

−−−→
OO OOxa xb

xc xd

• •

1

���

??���
__???????

xa xb

xc xd

−

:
OO OOxa xb

xc xd

• •

0

−−−→ •
??�������

__???????

xa xb

xc xd

1

Figure 2.2: Notation for the singularization and smoothing of a positive (respectively negative)

crossing.

of D. Define the edge ring of D to be R[x(D)], which we will abbreviate to R[x] if D is clear from

context. To each vertex of the cube of resolutions, we will associate an R-algebra AI(D), which is a

quotient of the edge ring by an ideal defined by combinatorial data in the I-resolution of D. To each

edge of the cube, we will associate a map. Together with proper choices of gradings, these data define

a chain complex of graded algebras over R[x(D)]. We will sometimes need to complete R or R[x(D)]

with respect to t, meaning that we will allow Laurent series in t with coefficients in Z or Z[x(D)],

respectively. Denote these completions R̂ and R̂[x(D)], respectively. More specifically, the proof of

invariance under stabilization requires extending the base ring to R̂[x(D)] and the identification of

the homology of C(D) with knot Floer homology requires extending to R̂[x(D)] (as well as passing

to F2 coefficients) to bring our construction in line with that of Ozváth and Szabó [45].

2.1.1 Algebra associated to a resolution

The algebra associated to the I-resolution of the knot projection D, which we will denote AI(D), is

the quotient of the edge ring by the ideal generated by the following three types of relations.

1. Linear relations associated to each vertex.

t(xa + xb)− (xc + xd) to •
??�������

__???????

xa xb

xc xd

txi+1 − xi to •

OO xi+1

xi
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2. Quadratic relations associated to each 4-valent vertex.

t2xaxb − xcxd to •
??�������

__???????

xa xb

xc xd

Note that this relation can always be rewritten in four different ways by combining with the

linear relation corresponding to the same vertex:

(txa − xc)(xd − txa) or (txb − xc)(xd − txb) or

(txa − xc)(txb − xc) or (txa − xd)(txb − xd).

3. Non-local relations associated to sets of vertices in the resolved diagram. These have sev-

eral equivalent definitions, which will be explored in detail in Section 2.2. Denote the ideal

generated by non-local relations in I-resolution of D by NI(D) or simply NI .

We refer to the linear and quadratic relations as the local relations. Let L denote the ideal they

generate together, and Li denote the ideal generated by the local relations in layer si. Then we have

defined the algebras that belong at the corners of the cube of resolutions as

AI(D) =
R[x0, . . . , xn]
L+NI

. (2.1)

Throughout this paper, we will use “≡” to indicate that two polynomials in the edge ring are

equivalent up to multiplication by units in R[x(D)]/L. Such polynomials are equivalent in the sense

that they generate the same ideal in R[x(D)]/L. We will represent generating sets for ideals as

single-column matrices. The entries of the matrices are elements of the edge ring. The matrices can

be manipulated using row operations without changing the ideal they generate because the ideal

(a, b) is identical to the ideal (a, b + sa) for any unit s ∈ R and a, b ∈ R[x(D)]. Also, when we see

a row of the form a − b in a matrix, we can replace b by a in all other rows and eliminate b from

the edge ring. This will not change the quotient of the edge ring by the ideal of relations. Although

the matrix manipulations in the following sections look very similar to those in [23] and [49], the

matrices here do not formally represent matrix factorizations.

The algebra AI(D) is a twisted version of the singular knot Floer homology of the I-resolution of

D treated as a singular knot with bivalent vertices. Reverting to F2 coefficients and setting xa = xb

at each 4-valent vertex and x0 to zero, then taking homology, gives the theory called HFS in [34].

Setting all of the edge variables to zero before taking homology gives the theory called H̃FS in

[34]. Both HFS and H̃FS categorify the singular Alexander polynomial (or a multiple thereof).

However, HFS is completely determined by the singular Alexander polynomial, while H̃FS contains

additional information.
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2.1.2 Differential

An edge of the cube of resolutions goes between two resolutions that differ at exactly one crossing.

To an edge that changes the ith crossing, we associate a map Aε0...0...εm(D) −→ Aε0...1...εm(D). If

si was positive in the original knot projection, then the edge goes from a diagram containing the

singularization of si to a diagram containing its smoothing. The ideal of relations associated to

the singularized crossing is contained in the ideal of relations associated to the resolved crossing, so

Aε0...1...εm(D) is a quotient of Aε0...0...εm(D). The corresponding map in this case will be the quotient

map. If si was negative in the original knot projection, then the edge goes from the smoothing to

the singularization of si. The corresponding map in this case will be multiplication by txa − xd, or

equivalently by txb − xc, where the crossing si is labeled as in Figure 2.2.

We have now assembled all of the pieces needed to define the chain complex (C(D), d) that will

compute knot Floer homology. Let

C(D) =
⊕

I∈{0,1}m+1

AI(D) (2.2)

with total differential d the sum of all edge maps and homological grading given by ε0 + · · · + εm.

This is the chain complex that computes HFK− (see Proposition 2.8.1). There is also a reduced

version of this chain complex obtained by setting x0 to zero in each AI(D). Its homology computes

ĤFK.

2.1.3 Gradings

The chain complex C(D) comes equipped with an additional grading called the Alexander grading.

Let R be in grading 0 and each edge variable xi in grading -1. The relations used to form AI(D)

are homogeneous with respect to this grading, so it descends from the edge ring to a grading on

AI(D) (called A0 in [45]). To symmetrize, adjust upwards by a factor of 1
2 (σ − b+ 1), where σ is

the number of singular points in the I-resolution of D and b is the number of strands in D. Call

this the internal grading, AI , on AI(D).

The Alexander grading on AI(D) as a summand of the cube C(D) is further adjusted from the

internal grading by

A = AI +
1
2

(
−N +

m∑
i=0

εi

)
,

where ε0, . . . , εm are the components of the multi-index I and N is the number of negative crossings

in D. This grading A is the final Alexander grading on the complex C(D).
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E1
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Figure 2.3: Singularization of the minimal braid presentation of the figure 8 knot with edges labeled

x0, . . . , x12 and orientations consistent with those in Figure 2.1. The bold line shows a cycle whose

corresponding non-local relation is t8x1x9 − x4x6. Elementary regions are labeled E1, . . . , E4. The

coherent region E1∪E2 produces the same non-local relation as the cycle in bold, as does the subset

consisting of the bivalent vertex in s0, the 4-valent vertex in s1, all vertices in s2, and the 4-valent

vertex in s3.

2.1.4 Invariance

With these definitions in place, we may now state the invariance theorem precisely.

Theorem 2.1.1. Let D be a layered braid diagram with initial edge x0 representing a knot K in

S3. As a complex of graded R̂[x0]-modules up to chain homotopy equivalence and base change,

C(D)⊗R R̂ is invariant under Markov moves on D and the addition or removal of layers containing

only bivalent vertices. Therefore, H∗(C(D))⊗R R̂ is an invariant of the knot K.

Note that the last statement relies on the flatness of R̂ as an R-module.

2.2 Non-local relations

We collect here three equivalent definitions of the non-local relations used in the description of the

algebra AI(D), along with several straightforward observations that will nonetheless be very useful

in later arguments. Figure 2.3 will serve as a source of examples throughout.

First, we may generate NI by associating a relation to each cycle (closed path) in the resolved

diagram that does not pass through the basepoint and that is oriented consistently with D.
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Definition 2.2.1 (Cycles). Let Z be a closed path in the I-resolution of D that does not pass

through the basepoint and is oriented consistently with D. Let RZ be the region it bounds in the

plane, containing the braid axis. The weight w(Z) of Z is twice the number of 4-valent vertices plus

the number of bivalent vertices in the closure of RZ . The non-local relation associated to Z is

tw(Z)wout − win,

where wout (respectively win) is the product of the edges incident to exactly one vertex of Z that lie

outside of RZ and that point out of (respectively into) the region.

Figure 2.3 shows a cycle in the singularized figure 8 knot with associated relation t8x1x9 − x4x6.

A slightly different definition derives a generating set for NI from certain regions in the comple-

ment of the I-resolution of D. First define the elementary regions in the I-resolution of D to be

the connected components of its complement in the plane, except for the two components that are

adjacent to the basepoint. For example, there are four elementary regions in the singularized figure

8 shown in Figure 2.3.

Since D is assumed to be in braid position, the elementary regions can be partially ordered based

on which two strands of D they lie between. Label the strands of D from 1 (innermost, nearest the

braid axis) to b (outermost, nearest the non-compact region). Then Ei < Ej with respect to the

partial order if Ei is closer to the braid axis than Ej ; that is, if Ei lies between lower-numbered

strands than Ej does. Let E1 denote the innermost elementary region, containing the braid axis.

Label the other elementary regions E2, . . . , Em so that whenever i < j, Ei is less than or not

comparable to Ej with respect to the partial order.

Definition 2.2.2 (Coherent Regions). A coherent region in the I-resolution of D is the union of

a set of non-comparable elementary regions, along with all elementary regions less than these under

the partial order described above. The weight w(R) of a coherent region R is twice the number of

4-valent vertices plus the number of bivalent vertices in the closure of R. The non-local relation

associated to R is

tw(R)wout − win,

where wout (respectively win) is the product of the edges outside R, but incident to exactly one vertex

of ∂R and pointing out from (respectively into) R.

There are five coherent regions in the singularized figure 8 example of Figure 2.3, with associated

relations as follows. Notice that, for example, E1∪E2∪E4 is not a coherent region because E3 < E4.
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coherent region non-local relation

E1 t6x1x7 − x4x10

E1 ∪ E2 t8x1x9 − x4x6

E1 ∪ E3 t8x3x7 − x0x10

E1 ∪ E2 ∪ E3 t10x3x9 − x0x6

E1 ∪ E2 ∪ E3 ∪ E4 t11x9 − x0

Finally, we may think of non-local relations as arising from subsets of vertices in the I-resolution

of D.

Definition 2.2.3 (Subsets). Let V be a subset of the vertices in the I-resolution of D. The weight

w(V ) of V is twice the number of 4-valent vertices plus the number of bivalent vertices in V . The

non-local relation associated to V is

tw(V )wout − win,

where wout is the product of edges from V to its complement and win is the product of edges into V

from its complement.

Any of these three definitions gives a generating set for NI(D). We will prove that the three

definitions are equivalent in Proposition 2.2.1. First, we record some observations about the efficiency

of the generating sets prescribed by the different definitions.

A priori, the generating set obtained from subsets is much larger than those obtained from

cycles or coherent regions. However, it actually suffices to consider a smaller collection of subsets

whose associated relations still generate the same ideal in R[x0, . . . , xn]/L. First, we may restrict to

connected subsets of vertices, meaning those whose union with their incident edges is a connected

graph. If a subset V is disconnected as V = V ′
∐
V ′′, then the outgoing (respectively incoming)

edges from V are exactly the union of the outgoing (respectively incoming) edges from V ′ and V ′′.

Therefore, the non-local relation associated to V has the form

tw(V ′)+w(V ′′)w′outw
′′
out − w′inw′′in.

However, this is already contained in the ideal generated by

tw(V ′)w′out − w′in and tw(V ′′)w′′out − w′′in,

which are the non-local relations associated to V ′ and V ′′.
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Second, we may ignore a subset V if the union of V with its incident edges is a graph with no

oriented cycles. In Figure 2.3, the two vertices in layer s0 along with the 4-valent vertex in layer

s1 form such a subset. The non-local relation associated to this subset is t5x3x7x8 − x0x1x2, but

simple substitutions using the local relations associated to the three vertices in the subset show that

this supposedly non-local relation is actually contained in L.

Observation 2.2.1. The ideal of non-local relations NI can be generated by the non-local relations

associated to connected subsets that contain oriented cycles.

We prove this statement inductively, noting as a base case that the non-local relation associated

to a subset with a single vertex is identical to the local relation associated to that vertex. Suppose

V is a connected subset with no oriented cycles, that v is a bivalent vertex, and that V ∪ {v} is

a connected subset with no oriented cycles. Then the non-local relation associated to V ∪ {v} is

already contained in the ideal sum of L with the non-local relation associated to V . Suppose that

xout is the edge from V to v and xv is the edge pointing out from v. If tw(V )woutxout − win is the

non-local relation associated to V , then the relation associated to V ∪ {v} is tw(V )+1woutxv − win.

Using the local relation txv − xout to replace xv recovers the non-local relation associated to V . A

similar argument applies if the edge between V and {v} is oriented in the opposite direction.

Suppose instead that v is a 4-valent vertex with edges xa and xb pointing out and edges xc

and xout pointing in. Suppose that xout connects to a vertex v′ ∈ V and that none of xa, xb, xc

are incident to any vertex in V . The local relation associated to v is then t2xaxb − xcxout, while

the non-local relation associated to V is of the form tw(V )woutxout − win. The non-local relation

associated to V ∪ {v} is

tw(V )+2woutxaxb − winxc ≡ tw(V )woutxcxout − winxc = xc(tw(V )woutxout − win).

Therefore, extending a connected graph with no oriented cycles by an adjacent 4-valent vertex

produces a non-local relation already contained in the ideal sum of L with the non-local relation

associated to V .

The second observation of this section concerns redundancy in the generating sets for NI defined

by cycles and coherent regions arising from certain elementary regions that can be removed from a

coherent region without producing an independent non-local relation. For instance, in Figure 2.3,

the coherent region E1 ∪ E2 ∪ E3 ∪ E4 specifies the non-local relation t11x9 − x0 as a generator for

NI . Then x6(t11x9 − x0) is also in NI . It can be modified to t10x3x9 − x0x6 using the relation

tx6− x3, which is the linear relation associated to the bivalent vertex in layer s1. We have obtained

the non-local relation associated to E1 ∪ E2 ∪ E3, showing that it is redundant once the non-local
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relation for E1 ∪ E2 ∪ E3 ∪ E4 is included in the generating set of NI . More formally, we have the

following observation.

Observation 2.2.2. Suppose a coherent region R has an adjacent elementary region E and that

∂E \∂R∩∂E is a path of edges through bivalent vertices only. Then the non-local relation associated

to R is contained in the ideal sum of L with the non-local relation associated to R ∪ E.

Label the edges in the path in ∂E\∂R∩∂E by xout, x1, . . . , xp, xin consistent with the orientation

of the overall diagram. The linear relations associated to each vertex in this path are tx1 − xout,

txin − xp, and txi+1 − xi for 1 ≤ i ≤ p− 1. The non-local relation associated to R has the form

tw(R)woutxout − winxin,

which can be rewritten using the linear relations above to give

tw(R)+p+1woutxin − winxin =
(
tw(R)+p+1wout − win

)
xin,

which is a multiple of the non-local relation associated to R ∪ E. Therefore, to form a minimal

generating set for NI , we need only consider R ∪ E.

As these observations begin to indicate, the definitions of non-local relations via cycles, coherent

regions, and subsets are equivalent. In the example of Figure 2.3, the cycle shown in bold produces

the same non-local relation as the coherent region E1 ∪ E2 or the subset of vertices contained in

E1 ∪ E2. These correspondences between cycles, coherent regions, and subsets hold in general.

Proposition 2.2.1. Definitions 2.2.1, 2.2.2, and 2.2.3 produce the same ideal in R[x0, . . . , xn]/L,

where L is the ideal generated by local relations associated to each vertex in the I-resolution of D.

Proof. The equivalence between definitions 2.2.1 (cycles) and 2.2.2 (coherent regions) is clear: the

boundaries of coherent regions are exactly the cycles that avoid the basepoint and have orientations

matching that of D. (Consider, for example, the boundary of E1 ∪ E2 ∪ E3 compared to that of

E1∪E2∪E4 in Figure 2.3.) Weights and the edge products wout and win are identical for a coherent

region R and the cycle ∂R, so the associated non-local relations are the same.

Let N denote the ideal generated by non-local relations associated to cycles or coherent regions in

R[x(D)]/L. Let NS denote the ideal generated by non-local relations associated to subsets. Suppose

R is a coherent region and VR the set of vertices in its closure. Then w(R) = w(VR) = w(∂R) and

the words wout and win defined with respect to R, ∂R, or VR are the same. Therefore, we have the

inclusion N ⊂ NS .

For the opposite inclusion, consider a subset V . We appeal first to Observation 2.2.1, which

allows us to assume that the union of V and its incident edges forms a connected graph containing
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an oriented cycle Z. Assume that Z is the outermost cycle contained in V , and let RZ be the

coherent region it bounds. If V contains all of the vertices in the closure of RZ , then the arguments

about connectedness and subsets just after Observation 2.2.1 allow us to remove all vertices from V

that are not contained in the closure of RZ , thereby showing that the non-local relation associated

to V can be constructed from the non-local relation associated to RZ .

Suppose now that V does not contain all of the vertices in RZ . Then the complement of V is

disconnected, with one component inside Z and one component outside. Denote these components

V ′ and V ′′, respectively. Then V ∪ V ′ contains Z and all of the vertices in the closure of RZ , so the

argument above shows that its associated non-local relation is contained in N . The subset V ′ may

not contain any oriented cycles or it may contain an oriented cycle Z ′ and all vertices in the closure

of RZ′ . Therefore, its associated non-local relation is contained in either L or N .

Finally, we show that the non-local relation associated to V is in the ideal generated by the

non-local relations associated to V ′ and V ∪ V ′. The words wout and win defined with respect to V

are products wout = w′inw
′′
in and win = w′outw

′′
out of edges into and out from V ′ and V ′′.

tw(V )w′inw
′′
in − w′outw

′′
out non-local relation from V

≡ tw(V )+w(V ′)w′outw
′′
in − w′outw

′′
out by substituting non-local relation from V ′

= (tw(V )+w(V ′)w′′in − w′′out)w
′
out a multiple of the non-local relation V ∪ V ′

Since the non-local relation associated to V can be constructed from those associated to V ′ and

V ∪ V ′, it is contained in N . Therefore, any non-local relation associated to a subset can be

generated from non-local relations associated to coherent regions, meaning that NS ⊂ N .

Two further observations related to the non-local relations are worth recording for later use.

Observation 2.2.3. The relation tw(D)xn−x0, where xn is the edge entering the basepoint and x0

is the edge leaving it, holds in AI(D) for any I and any D. It is associated to the subset containing

all vertices or the outermost cycle in the diagram that does not pass through the basepoint.

Observation 2.2.4. If I is a disconnected resolution of D, and we choose to work over a completed

ground ring, then the algebra associated to the I-resolution of D will vanish. In a disconnected

resolution, there are cycles that do not contain the basepoint and have no ingoing or outgoing edges.

In this situation, we interpret the products wout and win to be 1, which makes the associated relation

tk−1 for some k. In R̂ or R̂[x], tk−1 is a unit. Therefore, including tk−1 in our ideal of relations

makes AI(D)⊗R R̂ or AI(D)⊗R[x] R̂[x] vanish.
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2.3 Removing bivalent vertices

This section is devoted to a technical result allowing us to remove a horizontal layer of a diagram

with a bivalent vertex on each strand and no 4-valent vertices. Such a layer is obtained each time a

crossing is resolved. Suppose the I-resolution of D is a diagram with m + 1 layers, and that layer

k contains only bivalent vertices. Let D denote the diagram obtained by removing layer k. The

proposition below shows that removing layer k corresponds to tensoring AI(D) with the ground

ring via a non-trivial automorphism. Note that applying this base change to every summand of the

chain complex C(D) does not change the homology of the complex, since R is flat when considered

as an R-module via an automorphism. We refer to the notation in Figure 2.4 throughout.
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Figure 2.4: Diagrams for the proof of Proposition 2.3.1. The maps ϕ on AI(D) and ϕ on AI(D) are

defined to be multiplication by the factor shown in the right-most column of each diagram.

Proposition 2.3.1. Let D and D be defined as above. Let I denote the index I with its kth

component deleted. Then there is an R[x(D)]-module isomorphism AI(D) ∼= AI(D) ⊗(R,ψ) R,

where ψ is the automorphism of R taking 1 to 1 and t to tm/(m+1).

Proof. We first define automorphisms ϕ of AI(D) and ϕ of AI(D) that transform our original

presentations of these algebras into presentations in which t appears very rarely. That ψ is the

necessary automorphism of R will then be apparent.

Define ϕ to be multiplication by t−(j−1) on edges x(k+j)b+i for 0 ≤ j ≤ m and 1 ≤ i ≤ b

(treating the k + j portion of the subscript modulo m+ 1), and multiplication by t−(m−k) on edge
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x(m+1)b+1 = xn. That is, ϕ is the identity on the edges connecting layer k to layer k + 1 (edges

x(k+1)b+1, . . . , x(k+2)b), multiplication by t−1 on the edges connecting layer k + 1 to layer k + 2

(edges x(k+2)b+1, . . . , x(k+3)b), multiplication by t−2 on the edges connecting layer k + 2 to layer

k + 3, and so on, until it is multiplication by t−m on the edges connecting layer k − 1 to layer k

(edges xkb+1, . . . , x(k+1)b).

We may continue to use x0, . . . , xn as generators of ϕ(AI(D)), but must examine carefully the

effect of ϕ on the generating sets of L and NI(D). Consider first the generators of Lk+j for any

j 6= 0. These have one of the following forms, where 1 ≤ i ≤ b.

tx(k+j+1)b+i + tx(k+j+1)b+i+1 − x(k+j)b+i − x(k+j)b+i+1 (2.3)

t2x(k+j+1)b+ix(k+j+1)b+i+1 − x(k+j)b+ix(k+j)b+i+1 (2.4)

tx(k+j+1)b+i − x(k+j)b+i (2.5)

After applying ϕ, they become

t−j+1x(k+j+1)b+i + t−j+1x(k+j+1)b+i+1 − t−(j−1)x(k+j)b+i − t−(j−1)x(k+j)b+i+1

≡ x(k+j+1)b+i + x(k+j+1)b+i+1 − x(k+j)b+i − x(k+j)b+i+1 (2.6)

t−2j+2x(k+j+1)b+ix(k+j+1)b+i+1 − t−2(j−1)x(k+j)b+ix(k+j)b+i+1

≡ x(k+j+1)b+ix(k+j+1)b+i+1 − x(k+j)b+ix(k+j)b+i+1 (2.7)

t−j+1x(k+j+1)b+i − t−(j−1)x(k+j)b+i

≡ x(k+j+1)b+i − x(k+j)b+i. (2.8)

The price of eliminating powers of t from most local relations is that t appears with higher powers

in relations that do involve layer k. Since layer k has only bivalent vertices, its associated relations

are all of the form tx(k+1)b+i − xkb+i. Applying ϕ, we obtain

tx(k+1)b+i − t−mxkb+i ≡ tm+1x(k+1)b+i − xkb+i.

Non-local relations are similarly affected. Consider the generating set forNI(D) given by coherent

regions. We will show that ϕ applied to any relation in this generating set produces a relation of the

form tp(m+1)wout−win for some integer p. Begin with the innermost elementary region E1. Suppose

it has v 4-valent vertices along its boundary in layers k + j1, . . . , k + jv. Then w(E1) = m+ 1 + v.

Each 4-valent vertex contributes one edge to the product wout and an edge one layer lower to win.
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If ji 6= 0 for 1 ≤ i ≤ v, then

ϕ (wout) = t−j1−···−jvwout and

ϕ (win) = t−(j1−1)−···−(jv−1)win = t−j1−···−jv+vwin, so

ϕ
(
tm+1+vwout − win

)
≡ tm+1wout − win.

Suppose instead (without loss of generality) that j1 = 0. Then ϕ is the identity when applied to

the outgoing edge of the vertex in layer k + j1, but multiplication by t−m on the incoming edge.

Therefore,

ϕ (wout) = t−j2−···−jvwout and

ϕ (win) = t−m−(j2−1)−···−(jv−1)win = t−m−j2−···−jv+v−1win, so

ϕ
(
tm+1+vwout − win

)
≡ t2(m+1)wout − win.

So ϕ has the claimed effect on the non-local relation associated to the innermost coherent region.

Next consider an elementary region E 6= E1 with bottom-most vertex in layer k+j and top-most

vertex in layer k+j+s. Suppose ∂E meets v′ additional 4-valent vertices in layers k+j1, . . . , k+jv′ .

Assume for now that E does not meet layer k. Then w(E) = 2(s+ 1) + v′. Let t2(s+1)+v′eout − ein

denote the non-local relation associated to E. The top-most vertex of E contributes two outgoing

edges to eout and the bottom-most vertex contributes two incoming edges to ein. The other v′

4-valent vertices contribute one edge each to eout and ein. Therefore,

ϕ (eout) = t−2(j+s)−j1−···−jv′ eout = t−2j−j1−···−jv′−2seout and

ϕ (ein) = t−2(j−1)−(j1−1)−···−(jv′−1)ein = t−2j−j1−···−jv′+v
′+2ein, so

ϕ
(
t2(s+1)+v′eout − ein

)
≡ eout − ein.

If E does meet layer k, a then modification of the calculation above (similar to that used for E1)

verifies the claim that ϕ
(
t2(s+1)+v′eout − ein

)
has the form tp(m+1)eout − ein for some integer p.

Finally, consider a coherent region R′ that is not elementary. We can write R′ as R ∪ E, where

R is a coherent region and E is an elementary region. Suppose the non-local relations associated to

R and E are tw(R)wout − win and tw(E)eout − ein, respectively. Let y be the product of edges that

connect vertices in R to vertices in E. The non-local relation associated to R′ can be obtained by

combining the non-local relations associated to R and E, then factoring out y as follows.

tw(R)+w(E)wouteout − winein = y
(
tw(R)+w(E)w′oute

′
out − w′ine′in

)
The non-local relation associated to R′ is tw(R)+w(E)w′oute

′
out − w′ine′in. We will assume inductively

that ϕ applied to the non-local relations for R and E produces tp(m+1)wout−win and tq(m+1)eout−ein,
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respectively for some integers p and q. Then

ϕ
(
tw(R)+w(E)wouteout − winein

)
≡ t(p+q)(m+1)wouteout − winein

= y
(
t(p+q)(m+1)w′oute

′
out − w′ine′in

)
and on the other hand

ϕ
(
tw(R)+w(E)wouteout − winein

)
≡ϕ(y)ϕ

(
tw(R)+w(E)w′oute

′
out − w′ine′in

)
≡ y ϕ

(
tw(R)+w(E)w′oute

′
out − w′ine′in

)
.

We have verified that applying ϕ to the non-local relation associated to R′ produces a relation in

which the power of t is an integer multiple of m+ 1.

So far, we have relations of the following forms in our presentation of ϕ(AI(D)).

x(k+j+1)b+i + x(k+j+1)b+i+1 − x(k+j)b+i − x(k+j)b+i+1

x(k+j+1)b+ix(k+j+1)b+i+1 − x(k+j)b+ix(k+j)b+i+1

x(k+j+1)b+i − x(k+j)b+i

tm+1x(k+1)b+i − xkb+1 (2.9)

tp(m+1)wout − win

It will be convenient to make one final modification: use the relations in (2.9) to eliminate the

variables for edges connecting layer k− 1 to layer k. The result is a presentation in which t appears

only in the following types of relations.

tm+1x(k+1)b+i + tm+1x(k+1)b+i+1 − x(k−1)b+i − x(k−1)b+i+1 (2.10)

t2(m+1)x(k+1)b+ix(k+1)b+i+1 − x(k−1)b+ix(k−1)b+i+1 (2.11)

tm+1x(k+1)b+i − x(k−1)b+i (2.12)

tp(m+1)wout − win (2.13)

The second map, ϕ, allows us to present AI(D) in a similar way, with powers of t appearing

only in certain relations, and only as tpm for various integers p. Define ϕ in exactly the same way

as ϕ on edges x(k+j)b+i for 1 ≤ j ≤ m and 0 ≤ i ≤ b and for edge x(m+1)b+1. Diagram D has no

kth layer, so ϕ is the identity on the edges connecting layer k − 1 to layer k + 1, multiplication by
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t−1 on the edges connecting layer k+ 1 to layer k+ 2, multiplication by t−2 on the edges connecting

layer k + 2 to k + 3, and so on, until it is multiplication by t−(m−1) on the edges connecting layer

k − 2 to layer k − 1.

Again, for most relations, ϕ eliminates all powers of t. Similar calculations to those above show

that ϕ removes t from the generating set for Lk+j for j 6= 0, leaving relations identical to those in

(2.6) to (2.8) above.

All powers of t end up in generators of Lk−1 and NI , but this time with multiples of m instead

of m+ 1. The relations that involve t have one of the following forms.

tmx(k+1)b+i + tmx(k+1)b+i+1 − x(k−1)b+i − x(k−1)b+i+1 (2.14)

t2mx(k+1)b+ix(k+1)b+i+1 − x(k−1)b+ix(k−1)b+i+1 (2.15)

tmx(k+1)b+i − x(k−1)b+i (2.16)

tpmwout − win (2.17)

We now have presentations of AI(D) and AI(D), both over the smaller edge ring R[x(D)], that

differ only by whether t appears with a power of m+ 1 or with m. The map needed to relate these

two presentations is an automorphism of R. Define ψ : R → R to take 1 to 1 and t to tm/(m+1).

Applying ψ to the relations in (2.10)-(2.13) produces exactly the relations in (2.14)-(2.17). Since

no other relations in our presentation of AI(D) involve t, ψ has no effect on them. Therefore,

ϕ(AI(D))⊗(R,ψ) R and ϕ(AI(D)) have identical presentations as R[x(D)]-modules.

2.4 Braid-like Reidemeister move II

Suppose D and D are two knot projections that differ by a Reidemeister II move with labels as in

Figure 2.5. The edge rings of D and D are related by R[x(D)] = R[x(D)][x3, x4, x5, x6]. We will

show that C(D) and C(D) are chain homotopy equivalent as complexes of R[x(D)]-algebras, but

will work over the larger edge ring R[x(D)] for as long as possible. Throughout this section, we will

abbreviate indices of resolutions to two entries, showing only the states of the crossings in layers si

and si+1.

There are two oriented Reidemeister II moves, depending on which crossing in D is positive and

which is negative, but the arguments are very similar in the two cases. The relevant portion of C(D)

is shown in Figure 2.6. The two variants of the Reidemeister II move exchange A00(D) with A11(D)

and A01(D) with A10(D).

The key step in proving that the chain homotopy type of C(D) is unchanged by a Reidemeister II

move is to show the equivalence of the two complexes in Figure 2.6. It suffices to prove the statement
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in Lemma 2.4.1, which asserts that (after a change of basis) A00(D)
f−→ A10(D)

g−→ A11(D) is an

acyclic subcomplex. Removing that subcomplex leaves the bottom complex of Figure 2.6. Removing

the bivalent vertices in layers si and si+1 (applying Proposition 2.3.1 and reverting to the edge ring

R[x(D)]) leaves the corresponding portion of C(D).

OO OO

si

si+1

1 2

3 4

5 6

D

OO OO

1 2

D

Figure 2.5: Projection D layers si and si+1 and the corresponding portion of D, which has no

vertices. Technically, D does not have layers corresponding to si and si+1; it is identical to D in all

other layers. Assume that the braid axis is to the right of each diagram.

Lemma 2.4.1. As R[x(D)][x3, x4]-modules, A10(D) ∼= A00(D)⊕A11(D), f is an isomorphism onto

the first summand, and g is an isomorphism when restricted to the second summand.

Proof. The following matrix is a generating set for Li + Li+1 in the 10-resolution of D.
t(x1 + x2)− (x5 + x6)

(tx1 − x6)(tx2 − x6)

t(x5 + x6)− (x3 + x4)

(tx6 − x4)(x3 − tx6)


Use row I to eliminate x5, then rewrite to limit the appearance of x6 to a single row.

(tx1 − x6)(tx2 − x6)

t2(x1 + x2)− (x3 + x4)

(tx6 − x4)(x3 − tx6)

 III+t2I+tx6II−−−−−−−−−→


(tx1 − x6)(tx2 − x6)

t2(x1 + x2)− (x3 + x4)

t4x1x2 − x3x4


Let L denote the ideal generated by the last two rows of the matrix above and L denote the ideal

generated by local relations in layers other than i and i+ 1. Note that x5 and x6 do not appear in

the generating set for L. By Observation 2.2.2, they need not appear in a generating set for N10

either. Therefore, these ideals survive the manipulations above unchanged. Define

S =
R[x0, . . . , x4, x7, . . . , xn]

L+ L+N10

.
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Figure 2.6: The top chain complex is a portion of C(D). Lemma 2.4.1 shows that it is chain

homotopy equivalent to the bottom chain complex. Assume that the braid axis is to the right of

each diagram.
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We have simplified the presentation of A10 so that x6 appears only in one relation, which is quadratic

in x6. Using that relation, we may split A10 as follows.

A10(D) ∼=
S[x6]

(tx1 − x6)(tx2 − x6)
∼= S(1)⊕ S(tx1 − x6)

It remains to show that these two summands correspond to A11(D) and A00(D).

In the 11-resolution, the linear relations tx5 − x3 and tx6 − x4 may be used to replace x5 and

x6 throughout the presentation. The resulting local relations in layers i and i + 1 exactly match

those in L. The definition by coherent regions and Observation 2.2.2 give matching generating sets

for N10 and N11. Therefore, A11(D) has a presentation identical to that of S given above. Since

g is defined to be the quotient map, it is an isomorphism when restricted to the first summand of

A10(D) above.

Similarly, in the 00-resolution, the linear relations tx1 − x5 and tx2 − x6 can be used to replace

x5 and x6 throughout the presentation of A00(D). For local relations in layers i and i + 1, the

resulting ideal is exactly L. For non-local relations, the definition by coherent regions along with

Observation 2.2.2 again gives the same generating set for N00 as for N10. Therefore, A00(D) has a

presentation identical to S. Since f is defined to be multiplication by tx1−x6, it is an isomorphism

onto the second summand of A10(D) above.

2.5 Conjugation: Moving the basepoint

In this section we demonstrate that AI(D) is invariant under conjugation of the braid diagram D.

Since conjugation is a planar isotopy of a braid diagram, it does not change the edge ring or the

local relations. However, our construction in Section 2.1 does rely on the choice of a basepoint, the

special marking ∗, which has a role in determining which cycles, subsets, or regions are used to define

non-local relations. Proving that the algebra AI(D) is invariant under conjugation is equivalent to

proving that it is invariant under moving the basepoint from one edge to another. Of course, it

suffices to simply move the basepoint to an adjacent outermost edge, either past a bivalent vertex

or past a singular crossing. Figures 2.7 and 2.8 show the two moves we must check.

Lemma 2.5.1. Let D be the layered braid diagram for a braid word of the form σiσ, where i 6= 1

and σ is any braid word. Let D′ be the layered braid diagram for σσi. Fix edge labels as in Figure 2.7

with p > n. Then for any index I, AI(D) ∼= AI(D′) as R[x]-algebras, where x acts as the variable

associated to the vertex outgoing from the basepoint in each diagram.

Proof. Whether σi is resolved or singularized in the I-resolution of D, the isotopy shown on the

right indicates that it suffices to prove that we can move the basepoint across a bivalent vertex on
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Figure 2.7: Diagram for Lemma 2.5.1: moving the basepoint across a bivalent vertex is equivalent

to conjugating σiσ to σσi for i 6= 1.

the left-most strand. Let x0, . . . , xn, xp denote the variables in the edge ring for D and y0, . . . , yn, yp

denote the variables in the edge ring for D′. We will view AI(D) and AI(D′) as R[x]-modules by

equating x with x0 and with yp, respectively. Define an R[x]-module map ϕ : AI(D)→ AI(D′) by

x0 7→ yp, xi 7→ tyi for 1 ≤ i ≤ n, and xp 7→ yn. To see that it is well-defined and an isomorphism,

first notice that ϕ maps the linear relation txp − xn (coming from the bivalent vertex nearest the

basepoint in D) to 0 in AI(D′). Now use the relation txp − xn to find a presentation of AI(D) in

which xp does not appear. Suppose that f(x0, . . . , xn) is one of the relations in this presentation.

Then ϕ(f(x0, . . . , xn)) = f(yp, ty1, . . . , tyn) ≡ f(ty0, ty1, . . . , tyn) ≡ f(y0, y1, . . . , yn), where “≡”

here means “generates the same ideal in R[y0, . . . , yn, yp]/(ty0 − yp).” Since ty0 − yp is a relation

in AI(D′) (associated to the bivalent vertex nearest the basepoint), this calculation says that ϕ

identifies each relation in the chosen presentation of AI(D) with a relation in AI(D′). The map

defined by yi 7→ t−1xi for (0 ≤ i ≤ n) and yp 7→ x0 is an inverse for ϕ, which one can check is

well-defined by a similar argument.

Lemma 2.5.2. Let D be the layered braid diagram for a braid word of the form σ1σ, where σ is

any braid word. Let D′ be the layered braid diagram for σσ1. Fix edge labels as in Figure 2.8 and let

x(Bσ) denote the edges in Bσ, including those adjacent to the box labeled Bσ. Then C(D) and C(D′)

are equivalent complexes of R[x(Bσ)]-modules up to chain homotopy equivalence and base change.

Proof. Figure 2.8 shows a sequence of moves that transforms D on the upper left to D′ on the

lower left via diagrams D1, D2, D3, D4 moving clockwise around the figure. Each move changes the

corresponding chain complex by a base change (Proposition 2.3.1) or a chain homotopy equivalence

(Lemma 2.4.1).

Let ` be the number of layers in D, which is also the number of layers in D′. By Proposition 2.3.1,
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Figure 2.8: Diagrams for Lemma 2.5.2: conjugating σ1σ to σσ1 is equivalent to moving the basepoint

across σ1.

C(D1) ∼= C(D)⊗(R,ψ) R, where ψ is the automorphism of R that takes t to t(`+2)/`. The next two

diagrams are obtained by Reidemeister II moves. Lemma 2.4.1 shows that C(D2) is chain homotopy

equivalent to C(D1).

The Reidemeister II move from D2 to D3 occurs across the basepoint, but Lemma 2.4.1 can

be modified to apply in this situation. The key step in the modification is to use the relation

tw(D)xn−x0, where xn is the edge leaving the basepoint, and x0 is the edge entering the basepoint.

As noted in Observation 2.2.3, this relation is associated to the outermost cycle, and it holds in any

resolution. After using this relation to eliminate xn from all presentations, the proof of Lemma 2.4.1

goes through with only small modifications.

To go from D3 to D4, we remove two layers of bivalent vertices. Proposition 2.3.1 implies that

C(D4) ∼= C(D3)⊗(R,ψ−1)R. Finally, D′ is obtained by an isotopy, which does not change the chain

complex. All together, we have that C(D′) is homotopy equivalent to C(D)⊗(R,ψ)R⊗(R,ψ−1)R ∼=

C(D).

Although Lemma 2.5.2 is stated with an R[x(Bσ)]-module isomorphism, its proof can be modified to

give an R[x0]-module isomorphism instead (as needed for the proof of Theorem 2.1.1) by preserving

the edges nearest the basepoint when removing layers of bivalent vertices.
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2.6 Braid-like Reidemeister move III

In this section, we will consider projections D1 and D2 that differ by a Reidemeister III move with

all positive crossings and labeling as in Figure 2.9. Invariance under the other braid-like versions

of Reidmeister III follows because all such moves are compositions of the positive Reidemeister III

move and Reidemeister II moves.
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Figure 2.9: Diagrams D1 and D2 in layers s1, s2, and s3.

Figure 2.10 shows the relevant portion of the cube of resolutions associated to D1. Throughout

this section, we will abbreviate indices to three places, conjugating the diagrams as necessary so

that the Reidemeister III move occurs in layers s1, s2, and s3, and using the index to indicate the

states of the crossings in those layers only.

The goal is to prove that the chain complexes C(D1) and C(D2) are chain homotopy equivalent.

The strategy will be to prove that they are each chain homotopy equivalent to the following complex,

which will be denoted C(Υ).

A100(Di) //

$$HHHHHHHHHHHH
A101(Di)

))TTTTTT

B

77nnnnnnn

((PPPPPPP A111(Di)

A001(Di)

::vvvvvvvvvvvv
// A011(Di)

55jjjjjj

The module B is a direct summand common to A000(D1) and A000(D2). The other modules in this

simplified complex correspond to resolutions of D1 and D2 that are identical after removing extra

layers of bivalent vertices. Specifically, notice that the 100-resolution of D1 is isotopic to the 001-

resolution of D2 and vice versa; the 101-resolution of D1 is isotopic to the 011-resolution of D2 and

vice versa; and the 111-resolutions of D1 and D2 are identical. After removing acyclic subcomplexes,

we will find that the complex C(Υ) is common to both C(D1) and C(D2).

Only the argument that C(D1) is chain homotopy equivalent to C(Υ) will be given here in full

detail since the computations needed to establish the same fact about D2 are very similar. The
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Figure 2.10: Portion of the cube of resolutions for D1 in layers s1, s2, and s3.

main results of this section are Lemmas 2.6.1 and 2.6.2, which show that C(D1) and C(D2) both

have the following form.

A100
//

%%JJJJJJJJJ A110

""DDDDDDDD

B ⊕ B011

88qqqqqqqqqq
//

&&MMMMMMMMMM C110 ⊕ C011

99ttttttttt

%%JJJJJJJJJ A101
// A111

A001

99ttttttttt
// A011

==zzzzzzzz

Moreover, these lemmas show that (after a suitable change of basis) there are acyclic subcomplexes

B011
1−→ C011 and C110

1−→ A110. After these are removed, only the simplified complex C(Υ)

remains.

Lemma 2.6.1. The algebras associated to the 010-resolutions of D1 and D2 split as direct sums

of R[x0, . . . , x6, x13, . . . , xn]-modules A010(Di) ∼= C110(Di) ⊕ C011(Di), where C110(Di) ∼= A110(Di).

The edge map A010(Di) → A110(Di) is an isomorphism when restricted to the first summand of

A010(Di).

Lemma 2.6.2. The algebras associated to the 000-resolutions of D1 and D2 split as direct sums of

R[x0, . . . , x6, x13, . . . , xn]-modules A000(Di) ∼= B ⊕ B011(Di), where B011(Di) ∼= C011(Di). The edge

map A000 → A010 restricted to B011(Di) is an isomorphism onto C011(Di), the second summand of

A010 in Lemma 2.6.1.

Proof of Lemma 2.6.1. We know from Lemma 2.4.1 that A010 splits as a direct sum of modules

isomorphic to A110 and A011. However, it will be useful to establish a particular splitting so that

we may see directly the isomorphisms C110
∼= A110 and (in the proof of Lemma 2.6.2) C011

∼= B011.
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The computations are similar to those used to prove Lemma 2.4.1. We first manipulate the

local relations from the vertices in Di to a convenient form, then obtain direct sum splittings by

eliminating all quadratic and higher-order appearances of one variable, and keep track throughout

of how these manipulations affect the non-local relations.

We begin with the presentation of A010 as

A010
∼=
R[x0, . . . , xn]
L123 + L+N010

,

where L123 is generated by local relations from layers s1, s2, and s3, L is generated by the local

relations associated to other layers, and N010 is generated by non-local relations. Note that L is

generated by relations that do not use any of x7, . . . , x12. It will not be affected by any of the

calculations below. Thinking of non-local relations as coming from coherent regions, notice that

x7, . . . , x12 need not ever appear in a generating set for N010 because any coherent region containing

the elementary region to the right of x7 and x9 can be assumed to include the bigon bounded by

edges x7, x8, x9, and x10. The manipulations below will not affect such a generating set for N010.

The following matrix is a generating set for L123, with x11 and x12 already eliminated using

linear relations tx3 − x11 and tx12 − x6.

t(x1 + x2)− (x7 + x8)

t2x1x2 − x7x8

t3x3 − x6

tx7 − x9

t(x9 + x10)− (x4 + x5)

(tx9 − x5)(x4 − tx9)

tx8 − x10


Use row IV to eliminate x7, row VII to eliminate x8, and row V to eliminate x10, then rearrange.

t(x1 + x2)− t−2(x4 + x5)

t2x1x2 + t−2x2
9 − t−3x9(x4 + x5)

t3x3 − x6

(tx9 − x5)(x4 − tx9)


I+t−2III and II+t−4IV

��
t(x1 + x2 + x3)− t−2(x4 + x5 + x6)

t2x1x2 − t−4x4x5

t3x3 − x6

(tx9 − x5)(x4 − tx9)
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Clear negative powers of t from all rows and symmetrize the presentation as follows.
t3(x1 + x2 + x3)− (x4 + x5 + x6)

t6x1x2 − x4x5

t3x3 − x6

(tx9 − x5)(x4 − tx9)


II+t3(x1+x2)III+x6I−x6III

��
t3(x1 + x2 + x3)− (x4 + x5 + x6)

t6σ2(x1, x2, x3)− σ2(x4, x5, x6)

t3x3 − x6

(tx9 − x5)(x4 − tx9)


where σ2 is the second elementary symmetric polynomial.

Let L123 denote the ideal generated by the first two rows above and q = (tx9 − x5)(x4 − tx9).

Notice that L123 is generated by relations that do not use any of x7, . . . , x12. Define

T =
R[x0, . . . , x6, x13, . . . , xn]

L+ L123

.

So far, we have established that

A010
∼=

T [x9]
(q) + (t3x3 − x6) +N010

and that x9 appears only in q. Since q is quadratic in x9, we could use it to replace any appearance

of xk9 for k ≥ 2 in a presentation of A010 with some polynomial that was linear in x9. However, we

have already eliminated all appearances of x9 from the rest of the presentation. Therefore, we may

forget the relation q, and split A010 into a summand generated by 1 and a summand generated by

a polynomial that is linear in x9.

A010
∼=

T (1)
(t3x3 − x6) +N010

⊕ T (tx9 − x5)
(t3x3 − x6) +N010

.

With the first summand as C110 and the second as C011, this is the splitting asserted in the statement

of the lemma.

We now check that A110
∼= C110 = T (1)

(t3x3−x6)+N010
by simplifying the presentation of A110. First

note that x7, . . . , x12 do not appear in any local relations associated to layers si for i > 3. They also

need not appear in a minimal generating set for N110. If a subset had one of these as an outgoing or

incoming edge, we use the relations associated to bivalent vertices in layers s1 and s2 to eliminate

them from the associated relation. Turning to L123, eliminate x11 and x12 immediately using the
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linear relations on the rightmost strand, then remove x7, . . . , x10 as follows.

tx1 − x8

tx2 − x7

t3x3 − x6

tx7 − x9

tx8 − x10

t(x9 + x10)− (x4 + x5)

(tx9 − x4)(x5 − tx9)


I+II+t−2III+t−1IV+t−1V+t−2VI

��

t(x1 + x2 + x3)− t−2(x4 + x5 + x6)

tx2 − x7

t3x3 − x6

tx7 − x9

tx8 − x10

t(x9 + x10)− (x4 + x5)

(tx9 − x4)(x5 − tx9)


Simplify by multiplying the first row by t2, using row II to eliminate x7, using row V to eliminate

x8 and using row VI to eliminate x10.
t3(x1 + x2 + x3)− (x4 + x5 + x6)

t3x3 − x6

t2x2 − x9

(tx9 − x4)(x5 − tx9)


Now use row III to eliminate x9.

t3(x1 + x2 + x3)− (x4 + x5 + x6)

t3x3 − x6

(t3x2 − x4)(x5 − t3x2)


III+t3(x2+x3)I+(x4+x5−t3(x2+x3))II

��
t3(x1 + x2 + x3)− (x4 + x5 + x6)

t3x3 − x6

t6σ2(x1, x2, x3)− σ2(x4, x5, x6)
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The top and bottom rows are the generators of L123. Therefore, we have

A110
∼=

T
(t3x3 − x6) +N110

.

It remains to check that N110 = N010. Figure 2.11 shows how the cycles that pass through the

010-resolution of D1 pair up with the cycles that pass through the 110-resolution of D1 to give

equivalent non-local relations. Any cycle that does not pass through this region certainly has the

same associated non-local relation in N010 and N110. We have identified identical generating sets

for N010 and N110. Therefore, A110 and C110 have identical presentations. Since the edge map from

A010 to A110 is defined to be the quotient map, it is an isomorphism when restricted to C110.
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Figure 2.11: Pairing of cycles that pass through the 010-resolution (top row) and the 110-resolution

(bottom row) of D1. In each local picture, w is the weight, w1 is the product of outgoing edges, and

w2 is the product of incoming edges for the portion of the cycle away from the portion of D1 that

is shown here.

The proof of Lemma 2.6.2 is similar, except that more work is required to keep track of the

non-local relations. As before, we use local relations associated to layers s1, s2, and s3 in A000 to

eliminate several edge variables, then use a quadratic relation to split A000 as a direct sum, and

finally check that one of the direct summands is in fact isomorphic to C011.

Proof of Lemma 2.6.2. Let L123 denote the ideal generated by local relations associated to layers

s1, s2, and s3, while L denotes the ideal generated by local relations associated to all other layers.

As before, N000 will denote the ideal generated by non-local relations in the 000-resolution. So we

begin with

A000
∼=
R[x0, . . . , xn]
L+ L123 +N000

.
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The general strategy will be to eliminate x7, . . . , x12 from the presentation of A000 and limit use

of x9 as much as possible. We will then rewrite A000 in the form T [x9]/I for an appropriate ideal I,

where T is the same algebra defined in the proof of Lemma 2.6.2. Finally, we will use the quadratic

relation associated to layer s3, which is (tx9 − x4)(x5 − tx9), to split A000 into direct summands

generated by 1 and t2x3 − x9.

Notice first that no part of this strategy will affect the ideal L. Edges x7, . . . , x12 connect layer

s1 to layer s2 or layer s2 to layer s3, so they do not appear in local relations associated to any other

layers.

For the relations in L123, first use the relations tx3 − x11 and tx12 − x6 to replace x11 and

x12. Then the following matrix is a generating set for L123 in the 000-resolution of D1, which we

transform via I + t−1III + t−2V + t−1VII.

t(x1 + x2)− (x7 + x8)

(tx2 − x7)(x8 − tx2)

t(tx3 + x7)− (t−1x6 + x9)

(t3x3 − x6)(t−1x9 − tx3)

t(x9 + x10)− (x4 + x5)

(tx9 − x5)(tx9 − x4)

tx8 − x10


//



t(x1 + x2 + x3)− t−2(x4 + x5 + x6)

(tx2 − x7)(x8 − tx2)

t(tx3 + x7)− (t−1x6 + x9)

(t3x3 − x6)(t−1x9 − tx3)

t(x9 + x10)− (x4 + x5)

(tx9 − x5)(tx9 − x4)

tx8 − x10


Next, multiply row I by t2, use row III to eliminate x7, use row V to eliminate x10, and use row

VII to eliminate x8, then multiply row II by t4.
t3(x1 + x2 + x3)− (x4 + x5 + x6)

(t3(x2 + x3)− x6 − tx9)(x4 + x5 − tx9 − t3x2)

(t3x3 − x6)(t−1x9 − tx3)

(tx9 − x5)(tx9 − x4)


Use row IV to replace t2x2

9 in row II, then add t2III and t3(x2 + x3)I to row II, and then multiply

row III by t to obtain 
t3(x1 + x2 + x3)− (x4 + x5 + x6)

t6σ2(x1, x2, x3)− σ2(x4, x5, x6)

(t3x3 − x6)(x9 − t2x3)

(tx9 − x5)(tx9 − x4)


where σ2 is the second elementary symmetric polynomial. As in the proof of Lemma 2.6.1, let L123

denote the ideal generated by the relations in rows I and II, and recall that L123 is generated by

relations that do not use x9. Let p = (t3x3 − x6)(x9 − t2x3) and q = (tx9 − x5)(tx9 − x4). Then we
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have reduced the original generating set for L123 to a generating set that does not involve x9, the

quadratic relation q that will be used to split A000 as a direct sum, and the relation p, which we will

have to follow up carefully. So far, we have

A000
∼=
T [x7, . . . , x12]

(p) + (q) +N000
.

Using the coherent regions definition for the generators of N000, we can split N000 into a sum of

five ideals based on types of coherent regions. Label the elementary regions in the vicinity of the

Reidemeister III move as in Figure 2.12. As usual, assume that the braid axis is to the right of the

diagram. Let N be the ideal generated by the relations from coherent regions that do not use any of

E1,E2,E3, or E4. None of these relations use edge variables x7, . . . , x12, so they will carry through

all of our calculations unchanged.
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Figure 2.12: Elementary regions in the vicinity of the Reidemeister III move in the 000-resolution

of D1.

Let E1234 be generated by relations from coherent regions that use all of E1,E2,E3, and E4.

These relations use x1 and x4, but not any of x7, . . . , x12, so they carry through our calculations

unchanged. The ideal E1234 also accounts for relations associated to coherent regions that contain

E1,E2, and E3. Adding E4 to such a region would add only the bivalent vertex between edges 8 and

10, which is exactly the situation described in Observation 2.2.2. Therefore, we need not consider

coherent regions that contain E1,E2, and E3 without E4 in a minimal generating set for N000.

Let E12 (respectively E13) be generated by non-local relations from coherent regions that use E1

and E2, but not E3 or E4 (respectively E1 and E3 but not E2 or E4). Some of the edge variables

x7, . . . , x12 do appear in the relations associated to such regions, but can be easily eliminated us-

ing the quadratic relations from layers s1 or s3 as appropriate. Figure 2.13 shows the necessary

calculations in each case.

Finally, let E1 be generated by relations from coherent regions that use E1 but none of E2, E3,

or E4, as shown in Figure 2.14. These relations have the form t4+wwoutx7 − winx9, where w, wout,

and win come from pieces of the coherent region not shown in Figure 2.14. We will not be able to
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Figure 2.13: Relations that generate E12 and E13, along with modifications to avoid the use of

x7, . . . , x12. In each diagram, w, wout, and win come from the portions of the cycle not shown in

these local pictures. Assume the braid axis is to the right in each diagram.

simultaneously eliminate x7, . . . , x12 from these relations, but we can eliminate all but x9 using the

linear relations from the crossing in layer s2 and linear relations associated to bivalent vertices. In

fact, we can write any generator of E1 in the form t2+wwout(x6− t3x3) + x9(t3+wwout−win), where

wout and win are words in x0, . . . , x6, x13, . . . , xn only.
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Figure 2.14: Removing x7 from relations that generate E1.

We have exhausted the possible combinations of elementary regions E1, . . . , E4 that can appear
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in a coherent region, so we may now express N000 as

N000 = N + E1234 + E12 + E13 + E1.

Moreover, we have eliminated all appearances of x7, . . . , x12 from the generating sets of N , E1234,

E12, and E13. Defining T ′ by
T

E12 + E13 + E1234 +N
we then have a presentation of A000 as

A000
∼=

T ′[x9]
(p) + (q) + E1

.

The next step will be to use q to split A000 as a direct sum of R-modules, one of which is generated

by 1 and one of which is generated by t2x3 − x9. In other words, we would like to find ideals

P1,Px, E1
1 , and Ex1 in T ′ such that

T ′[x9]
(p) + (q) + E1

∼=
T ′(1)
P1 + E1

1

⊕ T
′(t2x3 − x9)
Px + Ex1

as R-modules.

As in the proof of Lemma 2.6.1, we may use q to replace any appearance of xk9 for k ≥ 2 with a

polynomial that is linear in x9. This procedure has no effect on the ideals from which x9 has been

eliminated, but it does affect (p) and E1. To analyze how, think of the ideal that p generates in

T ′[x9]/(q) as the sum of the ideals generated by p and x9p. If we use q to eliminate any appearances

of x2
9 in these generating sets, then we can find appropriate generators for P1 and Px by writing p

and x9p in terms of 1 and t2x3 − x9. Actually, p = (t3x3 − x6)(x9 − t2x3) is already in the correct

format, so let t3x3 − x6 be one of the generators of Px. For x9p, we first calculate x9(x9 − t2x3),

replacing x9 using q, then eliminating a term using p.

x9(x9 − t2x3)

= t−1x9x4 + t−1x9x5 − t−2x4x5 − t2x3x9

= (x9 − t2x3)(t−1x4 + t−1x5 − t2x3)− t−2x4x5 − t4x2
3 + tx3x4 + tx3x5

≡ t3x3x4 + t3x3x5 − t6x2
3 − x4x5

= (t3x3 − x4)(x5 − t3x3) (2.18)

Therefore, the ideal generated by x9p in S[x9]/(q) is equal to the ideal generated by (t3x3−x4)(x5−

t3x3)(t3x3−x6), which no longer uses x9. Let P1 be the ideal generated by this relation in T ′. Adding

this generator to Px would not change the ideal, since Px already has t3x3 − x6 as a generator.

We use the same strategy to find appropriate generators for E1
1 and Ex1 . Generators of E1 have

the form f = tw+4woutx7 − winx9. We would like to write f and x9f in terms of 1 and t2x3 − x9.
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We have already seen that

f ≡ t2+wwout

(
x6 − t3x3

)
+ x9

(
t3+wwout − win

)
,

where wout and win are words in x0, . . . , x6, x13, . . . , xn only. Factoring out x9 − t2x3 yields

f ≡ (x9 − t2x3)(t3+wwout − win) + t2(twwoutx6 − winx3).

Conveniently, the second term is a multiple of a generator of N obtained as follows. Suppose

f came from a coherent region R. Let VR be the set of vertices contained in the closure of R, so

that f is the relation associated to VR under the subset interpretation of the non-local relations.

Delete from VR the 4-valent vertex in layer s2, the bivalent vertex between edges 3 and 11, and the

bivalent vertex between edges 12 and 6. These deletions drop the weight of VR by 4. The resulting

set of vertices has the same incoming and outgoing edges as VR except that x7 has been replaced

by x6 and x9 has been replaced by x3. Therefore, the relation associated to this subset, which must

appear in N , is exactly twwoutx6 − winx3. The above expression for f then simplifies to

(x9 − t2x3)(t3+wwout − win). (2.19)

We conclude that a generating set for Ex1 should include t3+wwout − win.

Next consider x9f , using the final expression for f obtained in Equation 2.19 and the expression

for x9(x9 − t2x3) obtained in Equation 2.18.

x9f =x9(x9 − t2x3)(t3+wwout − win)

≡ (t3x3 − x4)(x5 − t3x3)(t3+wwout − win) (2.20)

These calculations eliminate all appearances of x7, . . . , x12 from x9f . Since we have already put

t3+wwout − win in the generating set of Ex1 , Equation 2.20 is automatically included. Let E1
1 be the

ideal generated in T by (t3x3 − x4)(x5 − t3x3)(t3+wwout − win).

We have now split A000 as a direct sum of R-modules:

A000
∼=
T ′(1)
P1 + E1

1

⊕ T
′(t2x3 − x9)
Px + Ex1

.

Define B to be the first summand and B011 to be the second.

It remains only to check that B011
∼= C011. So far, we have a presentation of B011 as

B011
∼=

T
E12 + E13 + E1234 +N + Px1 + Ex1

.

The proof of Lemma 2.6.1 gave a presentation of C011 as

C011
∼=

T
(t3x3 − x6) +N010

.
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By definition, Px = (t3x3 − x6), so the work is entirely in checking that the non-local relations in

the 010-resolution are the same as those in B011.

Use the coherent regions definition of the non-local relations with elementary regions labeled as

in Figure 2.15 to classify the generators of N010. Coherent regions that do not use any of F1, F2, or

F3 match one to one with coherent regions in the 000-resolution that do not use any of E1, E2, E3,

or E4 and give the same non-local relations. By Observation 2.2.2, coherent regions that use F1 and

F2 may as well use F3. These match one to one with the regions that define E1234 and give the same

relations. Finally, the coherent regions that use only F1 give generators for N010 with exactly the

form of generators for Ex1 . Therefore, N010 = E1234 +N + Ex1 .

���

BB���
OO

:::

\\:::

���

���:::

:::
• •

•

•

•

F1

F2

F3

Figure 2.15: Elementary regions in the 010-resolution of D1.

The remaining ideals E12 and E13 were necessary to generate N000 but are in fact redundant in

the summand B011. The relations from Figure 2.13 used to define E12 and E13 correspond to subsets

in the 010-resolution as follows. Suppose R∪E1∪Ei is a coherent region for a generator of E12 or E13.

Let VR∪E1∪Ei be the corresponding subset in the 000-resolution. Let V ′R∪E1∪Ei be the same subset

of vertices in the 010-resolution, but with the 4-valent vertex in layer s2 replaced by the two bivalent

vertices created by resolving it. Then V ′R∪E1∪Ei yields the same relation in N010 as R∪E1 ∪Ei did

in N000. Figure 2.16 shows what these subsets look like in the vicinity of the Reidemeister move

and how they correspond to the appropriate relations.

Having completed the verification that N010 = E1234 +N + Ex1 + E12 + E13, we have now showed

that C011 and B011 have identical presentations. Since the edge map A000 → A010 is by definition

the quotient map, it is an isomorphism when restricted to B011 → C011.

2.7 Stabilization / Reidemeister move I

Let D and D+ (respectively D−) be knot projections that differ by a positive (respectively negative)

stabilization with labels as shown in Figure 2.17. In this section, we prove that C(D+) and C(D−)

are chain homotopy equivalent to C(D) as complexes of R̂[x(D)]-modules. The proof presented here
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Figure 2.16: Subsets (shown with open circles) in the 010-resolution of D1 that yield the relations

corresponding to coherent regions in the 000-resolution that generate E12 (left) and E13 (right). As

usual, w, win, and wout refer to the portion of the subset not shown in these local diagrams.

requires the completion of the ground ring because we invert an element of the form 1 − tk, but it

is interesting to note that invariance under all of the other Markov moves holds over R.

Since we have already established invariance under conjugation, we may assume that the stabi-

lization occurs in layer s0. By Section 2.6, we may assume it occurs on the outermost strand. As

shown in Figure 2.18, any resolution in which the crossing in layer s0 is smoothed is disconnected, so

by Observation 2.2.4, the associated algebra will vanish. Therefore, it suffices to show that the alge-

bra associated to the I-resolution of D is isomorphic to the algebra associated to the corresponding

resolution of D+ or D− in which s0 is singular.

D

· · ·

∗

B

∗
· · ·

D+

· · ·

∗

�����
??

??
• •

B

∗
· · ·

D−

· · ·

∗

��

��
????? • •

B

∗
· · ·

Figure 2.17: Diagrams D, D+, and D−. Assume the braid axis is to the right of each picture and

all strands are oriented upwards.

We proceed via an intermediary diagram D• shown on the right in Figure 2.18. To go from D•

back to D, first remove the layer of bivalent vertices just above the basepoint. By Proposition 2.3.1,

this transforms AJ(D•) to AJ(D•) ⊗(R,ψ) R. Use the linear relation txn − x1 to remove x1 from

the presentation of AJ(D•) ⊗(R,ψ) R without changing its isomorphism type. This process leaves

exactly diagram D.
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Figure 2.18: From left to right: the smoothed resolution of layer s0 in D+ or D−; the singular

resolution of crossing s0 in D+ or D−; the diagram D•. Assume the braid axis is to the right of

each diagram and all strands are oriented upwards.

Lemma 2.7.1. Let D+ and D− be the diagrams shown in Figure 2.17 and D• be the diagram on

the right in Figure 2.18. Then for any multi-index J , there are isomorphisms of R̂[x(D•)]-modules

(equivalently R̂[x(D+)]- or R̂[x(D−)]-modules)

AJ(D•) ∼= A0J(D+) and

AJ(D•) ∼= A1J(D−).

Proof. Since the 0J-resolution of D+ and the 1J-resolution of D− are identical as diagrams, we

will refer to D+ throughout without loss of generality. The following matrix contains a generating

set for L0, the non-local relation associated to the outermost cycle (see Observation 2.2.3), and

the non-local relation associated to the set of all vertices except the 4-valent vertex in layer s0 in

A0J(D+). 
t(xn + x2)− (x0 + x1)

t2xnx2 − x0x1

tw(D)+b+1xn − x0

tw(D)+b−1x1 − x2


I−III+tIV−−−−−−−→
II+t2xnIV


(1− tw(D)+b)(txn − x1)

x1(tw(d)+b+1xn − x0)

tw(D)+b+1xn − x0

tw(D)+b−1x1 − x2


Since 1 − tw(D)+b is a unit in R̂, we can eliminate that factor from the top row. We can eliminate

row II because it is a multiple of row III. A bit more simplification leaves exactly the linear relations

associated with the arrangement of bivalent vertices and the basepoint on the outermost strand of

D•. 
txn − x1

tw(D)+b+1xn − x0

tw(D)+b−1x1 − x2

 III+tw(D)+b−1I−t−1II−−−−−−−−−−−−−−→
mult. III by −t


txn − x1

tw(D)+b+1xn − x0

tx2 − x0


All other local relations in diagram D• are exactly the same as those in the 0J-resolution of D+.

For any subset in the 0J-resolution of D+ that does not include the 4-valent vertex in layer s0,
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the corresponding subset in the J-resolution of D• has the same associated non-local relation. Any

subset in the 0J-resolution of D+ that does include the 4-valent vertex in layer s0 has a corresponding

subset in the J-resolution of D• given by the two bivalent vertices nearest to the basepoint and an

appropriate subset in the rest of the diagram. These also give the same non-local relation. Therefore,

N0J ⊂ NJ . By Observation 2.2.1, adjacent bivalent vertices can always be added or removed from

a subset without changing the associated non-local relation, so NJ ⊂ N0J . This completes the

verification that A0J(D+) and AJ(D•) have identical presentations over the completed edge ring

R̂[x(D•)].

2.8 Identification with knot Floer homology

The set-up of the cube of resolutions in Section 2.1 of this paper differs somewhat from Ozsváth

and Szabó’s original formulation [45], so it does not follow formally from their work that C(D),

as defined in (2.2) of this paper, computes knot Floer homology. However, an adaptation of the

arguments in Sections 3–5 of [45], suffices to prove the following result, which is an analogue of [45,

Theorem 1.2].

Proposition 2.8.1. Let D be a layered braid diagram with initial edge x0. Then there is an iso-

morphism of graded F2[x0]-modules

H∗(C(D)⊗R[x(D)] R̂[x(D)]⊗ F2) ∼= HFK−(K)⊗F2 F2[t−1, t]]

and an isomorphism of graded F2-vector spaces

H∗(C(D)/(x0)⊗R[x(D)] R̂[x(D)]⊗ F2) ∼= ĤFK(K)⊗F2 F2[t−1, t]].

The two key differences between our set-up and that of [45] are the use of layered braid diagrams

and the ground ring over which we define the cube of resolutions chain complex. Ozsváth and Szabó

use a knot projection in braid form with a basepoint ∗, but do not require the additional bivalent

vertices that we add parallel to each crossing when forming a layered braid diagram. Consequently,

in their diagrams, bivalent vertices arise only when a crossing is smoothed, which means they come

in pairs that lie on adjacent strands. A layered braid diagram has these sorts of bivalent vertices,

but also others. This difference will require us to modify the Heegaard diagrams used in the proof

of [45, Theorem 1.2].

The second difference between our set-up and that of [45] is in the ground rings over which the

cube of resolutions complex is defined. We define the algebras AI(D) overR[x(D)] = Z[t−1, t][x(D)],

and pass to the completion R̂ = Z[t−1, t]][x(D)] for the precise statement of invariance in Sec-

tion 2.1.4. Ozsváth and Szabó set up their algebras over F2[x(D), t], pass to the completion
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F2[x(D)][[t]] when identifying these algebras with twisted singular knot Floer homology and finally

pass to F2[x(D)][t−1, t]] for the statement of [45, Theorem 1.2]. These choices of rings in each case

allow results to be stated in the greatest possible generality, but a profusion of tensor products will

be required to bring the two approaches into alignment.

Proof. Ozsváth and Szabó prove [45, Theorem 1.2] in three steps: calculate a particular twisting of

singular knot Floer homology to verify that it is identical to the algebra they define as a quotient

of the edge ring [45, Section 3]; establish a spectral sequence from the cube of resolutions defined

algebraically to knot Floer homology [45, Section 4]; show that the spectral sequence collapses [45,

Section 5]. We mirror each of these arguments in turn, pointing out where modifications are required

to address the differences between our set-up (Section 2.1 of this paper) and that of [45].

Let S be a layered braid diagram with all crossings singularized or smoothed. The twisted

version of singular knot Floer homology needed to recover the algebra A(S) as defined in (2.1) in

Section 2.1.1 of this paper is specified by the “initial diagram” in [45, Figure 3] with the additional

rule that near a bivalent vertex that does not arise from smoothing a crossing, the diagram has the

form shown on the left in Figure 2.19. Near a pair of bivalent vertices that arise from smoothing a

crossing, we use the same diagram as in [45, Figure 3], which is shown in the middle in Figure 2.19.

Call this the modified initial diagram. Let CFK−(S) denote the chain complex coming from the

modified initial diagram. That is, CFK−(S) is the F2[x(S)][[t]]-module whose generators are given

by intersection points and differentials by counting holomorphic disks with respect to the twisting

in the modified initial diagram. See [34] for a precise definition of singular knot Floer homology, [45,

Section 2.1] for details on twisted coefficients in knot Floer homology generally, and [45, Section 3.1]

for details on combining singular knot Floer homology with twisted coefficients. The completion of

the ground ring with respect to t is necessary to make the differential on twisted singular knot Floer

homology well defined, as detailed in [45, Section 3.1]. We will continue to work over F2[x(S)][[t]]

for the first section of this proof, so abbreviate this ring by R′.

Let M denote the Koszul complex on the linear relations for each vertex.

M =
⊗
v∈V4

(
R′

tx(v)
a +tx

(v)
b −x

(v)
c −x

(v)
d−−−−−−−−−−−−−−−→ R′

)
⊗
⊗
v∈V2

(
R′ tx

(v)
a −x

(v)
c−−−−−−−→ R′

)
,

where V4 and V2 denote the set of 4-valent and bivalent vertices, respectively, in S. Let C ′(S) =

CFK−(S)⊗M . Then the claim, an analogue of [45, Theorem 3.1], is that we can identify H∗(C ′(S))

with A(S) after appropriately changing the ground rings. Recall that A(S) was defined in (2.1) of

Section 2.1.1 of this paper as an R[x(S)] = Z[t−1, t][x(S)]-module. Therefore, the precise claim is

that

H∗(C ′(S))⊗R′ R′[t−1] ∼= A(S)⊗R[x(S)] R̂[x(S)]⊗ F2. (2.21)
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Figure 2.19: From left to right: the modified initial diagram near an extra bivalent vertex; the

modified initial diagram near a bivalent vertex arising from a smoothing; the planar diagram or the

master diagram near any bivalent vertex. The bold dots in each picture show the marking that

specifies our particular twisted version of singular knot Floer homology.

The reduced version of the statement,

H∗(C ′(S)/(x0))⊗R′ R′[t−1] ∼= A(S)/(x0)⊗R[x(S)] R̂[x(S)]⊗ F2, (2.22)

then follows immediately.

The arguments required to prove [45, Proposition 3.4] apply essentially unchanged to show that

H∗(C ′(S)/(x0)) is free as a F2[[t]]-module, generated by the generalized Kauffman states defined

in [45, Figure 4], and concentrated in a single algebraic grading. The unreduced H∗(C ′(S)) is

also concentrated in a single algebraic grading. To calculate the structure of H∗(C ′(S)) as an R′-

module, we use a planar Heegaard diagram for S defined exactly as in [45, Figure 9] with extra

bivalent vertices of the layered diagram treated as if they had come from smoothing a crossing.

So, the diagram looks like that on the right in Figure 2.19 near any bivalent vertex. The same

procedure of handleslides and destabilizations described in the proof of [45, Lemma 3.7] shows

that the chain complex specified by this planar diagram is quasi-isomorphic to the one specified

by the modified initial diagram. The planar diagram has a canonical generator, which is a cycle,

defined by making the same choice of intersection point near each vertex as Ozsváth and Szabó

do in [45, Proposition 3.10]. Incoming differentials from chains with algebraic grading one higher

than the canonical generator produce all of the quadratic local relations, the linear local relations

associated to bivalent vertices, and the non-local relations that appear in the definition of A(S).

Since H∗(C ′(S)) is concentrated in a single algebraic grading, this completes the calculation and

establishes the isomorphisms claimed in (2.21) and (2.22).

Now consider a layered braid diagram D with m crossings, and let DI denote its I-resolution.
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The spectral sequence constructed in [45, Section 4] comes from a filtration on

V (D) =
⊕

I∈{0,1}m
H∗
(
CFK−(DI)⊗MI

)
,

where MI is the Koszul complex on linear relations coming from all vertices in diagram DI . To

define the filtration, Ozsváth and Szabó consider a planar Heegaard diagram that simultaneously

encodes each possible state (positive, negative, singularized, smoothed) of a crossing [45, Figure 12].

To adapt this Heegaard diagram to D, we need only add a small piece like that shown on the right

in Figure 2.19 near any bivalent vertex. Call the diagram from [45, Figure 12] so adapted the master

diagram.

Using particular choices of generators near crossings in the master diagram, Ozsváth and Szabó

define a filtration on V (D). They also define maps that count holomorphic disks intersecting certain

regions near crossings in the master diagram [45, Section 4]. In [45, Proposition 5.2], they verify

that some of these maps (those with the appropriate gradings) are the same as the edge maps in

Section 2.1.2 of this paper, under the identification of H∗(C ′(DI)) with AI(D). The description of

all of the maps on V (D) and the proof of [45, Proposition 5.2] depend only on the form of their

Heegaard diagram near crossings, so they apply unchanged to our master diagram. Taken together,

the maps defined by counting appropriate holomorphic disks near crossings in the master diagram

form an endomorphism of V (D). Lemma 4.6 of [45] shows that V (D) with this endomorphism is

quasi-isomorphic to the chain complex CFK−(D), which is the twisted knot Floer homology of

the classical knot D, defined via the traditional holomorphic disks construction and regarded as an

F2[x0][[t]]-module. Again, the arguments depend only on the properties of the master diagram near

crossings in D, so they carry through unchanged to our situation. Therefore, as in [45, Theorem 4.4],

the filtration on V (D) gives rise to a spectral sequence with E1 page⊕
I∈{0,1}m

H∗
(
CFK−(DI)⊗MI

)
,

with d1 differential the zip and unzip maps defined algebraically, and converging to HFK−(D).

Finally, in Section 5, Ozsváth and Szabó argue that this spectral sequence collapses after the

E1 stage for grading reasons. The gradings in this paper are defined identically to those in [45],

so the same argument shows that the spectral sequence here collapses. The immediate result is an

isomorphism of F2[x0][[t]]-modules

H∗

 ⊕
I∈{0,1}m

H∗
(
CFK−(DI)

)
⊗MI

 ∼= H∗
(
CFK−(D)

)
Inverting t in the ground ring throughout the spectral sequence, then applying the isomorphism

from (2.21) allows us to identify the left side with the cube of resolutions complex C(D) used in this
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paper:

H∗

(
C(D)⊗R[x(D)] R̂[x(D)]⊗ F2

)
∼= H∗

(
CFK−(D)⊗F2[[t]] F2[t−1, t]]

)
A standard theorem about twisted coefficients in knot Floer homology, stated as [45, Lemma 2.2],

completes the identification with H∗ (CFK−(D)) ⊗F2 F2[t−1, t]]. The reduced statement follows

similarly.
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Chapter 3

Braids, Soergel Bimodules, and

Knot Floer Homology

This chapter concerns the knot Floer analogue of the braid group action underlying Khovanov’s

construction of HOMFLY-PT homology in [21]. We begin by näıvely adapting the knot Floer cube

of resolutions from Chapter 2 to braid diagrams instead of closed braid diagrams. Section 3.1 sets

up the notation, then proves that this extension makes redundant the ideal of non-local relations.

Section 3.2 provides the necessary background on Soergel bimodules and their use in HOMFLY-PT

homology. Section 3.3 introduces twisted Soergel bimodules, relates them to the näıve knot Floer

braid invariant, and proves that they are only a mild generalization of the original Soergel bimodules.

Section 3.4 uses twisted Soergel bimodules to produce a braid group action analogous to the one in

HOMFLY-PT homology.

3.1 Knot Floer cube of resolutions for braids

Before bringing Soergel bimodules into the construction, we consider a natural generalization of the

knot Floer cube of resolutions from Chapter 2 to braids. Let σ ∈ Brb be a braid with b strands

and Dσ a layered diagram for σ. As in Chapter 2, a layered diagram is a braid-form projection

composed of the three types of layers shown in Figure 3.1. Layered braid diagrams are described

by Brb ⊕ Z〈λ〉, where λ refers to the layer with only bivalent vertices. Our convention will be that

braids always have the upwards orientation. Label the layers of Dσ by s0, . . . , sm as in Chapter 2

and the edges of Dσ by x0, . . . , xb(m+2)−1 = xn, distinguishing between the edges incident to the

top and bottom boundaries of the diagram.



CHAPTER 3. BRAIDS, SOERGEL BIMODULES, AND KNOT FLOER HOMOLOGY 51

??���������
????

__????
OO OO

• •· · · · · ·

b i+1 i 1

σi

����

??����
__?????????

OO OO

• •· · · · · ·

b i+1 i 1

σ−1
i

OO OOOO OO

• •• •· · · · · ·

b i+1 i 1

λ

Figure 3.1: Three types of layers in a layered braid diagram and their corresponding generators in

Brb ⊕ Z〈λ〉.

Singularizing and smoothing crossings in the same way as in Chapter 2, we obtain a cube of

resolutions for the braid diagram Dσ. The diagram at multi-index I is a layered singular braid, which

inherits edge labels from Dσ. Figure 3.2 shows a correctly labeled layered singular braid diagram.

We will associate to each layered singular braid diagram an algebra defined by combinatorial data

from its vertices. The ground ring will be R̂ = Z[t−1, t]] and the edge ring R̂[x0, . . . , xn] = R̂[x(Dσ)]

as before. To the layered singular braid at multi-index I, associate the algebra

AI(Dσ) =
R̂[x(Dσ)]

LI(Dσ) +NI(Dσ)
,

where

• LI(Dσ) is generated by linear relations of the form txa + txb − xc − xd associated to 4-valent

vertices and txi+1 − xi associated to bivalent vertices; and quadratic relations of the form

t2xaxb − xcxd associated to 4-valent vertices;

• and NI(Dσ) is generated by non-local relations of the form gΓ = tw(Γ)xΓ,D\Γ − xΓ,D\Γ associ-

ated to subsets Γ of the vertices in the I-resolution of Dσ.

We write xΓ,∆ for the product of edges from a subset Γ to a subset ∆ in a layered singular braid.

We will also sometimes write xout
Γ and xin

Γ to refer to xΓ,D\Γ and xD\Γ,Γ respectively. For now, we

will use the convention that xΓ,D\Γ includes edges from Γ to the top boundary of the braid and

xD\Γ,Γ includes edges from the bottom boundary of the braid to Γ. As before, the weight w(Γ) is

twice the number of 4-valent vertices plus the number of bivalent vertices in Γ. In Chapter 4, we

will change notation to emphasize that edges between Γ and other vertices in the layered singular

braid sometimes play a different role than edges between Γ and the boundaries of the braid.

The only difference between the algebra AI(Dσ) associated to a braid and the algebra AI(Dbσ)

associated to its braid closure arises from the different edge labeling in Dσ and Dbσ. However, this

difference turns out to be quite significant: the non-local relations in a braid diagram are redundant.

That is, the generators of NI(Dσ) are already contained in LI(Dσ). This is far from the case in the

knot Floer cube of resolutions for closed braids. Figure 3.2 illustrates the idea of the proof.
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s0 ◦• •

x0 x1 x2

s1

���������

?????????
• ◦

x3 x4 x5

s2

���������

?????????
•◦

x6 x7 x8

s3

���������

?????????
• ◦

x9 x10 x11

x12 x13 x14

+ (tx5 − x2)x4x6x11

+ (t2x7x8 − x4x5)tx6x11

+ (t2x9x10 − x6x7)t3x8x11

(t2x13x14 − x10x11)t5x8x9

= t7x8x9x13x14 − x2x4x6x11

Figure 3.2: At left: A layered singular braid diagram for the 1011-resolution of σ2σ
−1
1 σ2σ

−1
1 (reading

top to bottom, strands labeled right to left). At right: the bottom line is the non-local relation

associated to the subset shown by open dots. The lines above show how it can be obtained from

local relations associated to the vertices in the subset. Note that neither x14 nor x2 would appear

in the non-local relation associated to this subset in the closure of this diagram.

Proposition 3.1.1. Let σ ∈ Brb and Dσ a layered braid diagram for σ. Then

NI(Dσ) ⊂ LI(Dσ)

as ideals of the edge ring R̂[x(Dσ)].

Proof. Refer to the notation in Figure 3.3 throughout. Let Γ be a subset of the vertices in the

I-resolution of Dσ and let sj denote the set of vertices in layer j. Filter Γ by layers so that

Γj = Γ ∩ (sj ∪ · · · ∪ sm) and

∅ = Γm+1 ⊂ Γm ⊂ · · · ⊂ Γ1 ⊂ Γ0 = Γ.

Notice that edges always go from Γk−1 to Γk and never in the other direction.

Also, notice that Γk \Γk+1 = Γ∩sk is a disconnected subset in which each connected component

is a single vertex. We established in Observation 2.2.1 that the non-local relations of disconnected

subsets are R̂[x(Dσ)]-linear combinations of the non-local relations associated to their connected

components. Since the connected components in this case are single vertices, their associated non-

local relations are actually the same as their associated local relations. Therefore, it suffices to prove

that gΓ is an R̂[x(Dσ)]-linear combination of the gΓk\Γk+1 .
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Dσ

layer

Γk−1

Γk

Γk+1

0

���������

?????????
• • •
∗

x0 x1 xb

1

���������

?????????
• • •

xb+1 xb+2 x2b

x2b+1 x2b+2 x3b

...
...

...
...

...

k−1

���������

?????????
• • •

x(k−1)b+1 xkb

k • • • •
xkb+1 x(k+1)b

k+1

���������

?????????
• • •

x(k+1)b+1 x(k+2)b

x(k+2)b+1 x(k+3)b

...
...

...
...

...

m−1

���������

?????????
• • •

x(m−1)b+1 xmb

m

���������

?????????
• • •
∗

xmb+1 x(m+1)b

x(m+1)b+1

x(m+1)b+2
x(m+2)b−1

Figure 3.3: Notation for the proof of Proposition 3.1.1.
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We claim that gΓ can be expressed as the sum

gΓ =
m∑
j=0

tw(Γ\Γj)xD\Γ,Γj+1xΓ\Γj ,D\ΓgΓj\Γj+1 . (3.1)

For convenience, we argue as if Γ intersects all layers of the braid, but the same argument would

work with 0 and m replaced by the maximum and minimum layers to which Γ actually extends. To

see why Equation (3.1) holds, expand gΓj\Γj+1 and re-index.
m∑
j=0

tw(Γ\Γj)xD\Γ,Γj+1xΓ\Γj ,D\ΓgΓj\Γj+1

= −tw(Γ\Γ0)xin
Γ0\Γ1

xD\Γ,Γ1xΓ\Γ0,D\Γ

+
m−1∑
j=0

(
tw(Γ\Γj)tw(Γj\Γj+1)xout

Γj\Γj+1
xD\Γ,Γj+1xΓ\Γj ,D\Γ

tw(Γ\Γj+1) − tw(Γ\Γj+1)xin
Γj+1\Γj+2

xD\Γ,Γj+2xΓ\Γj+1,D\Γ
)

+ tw(Γ\Γm)tw(Γm\Γm+1)xout
Γm\Γm+1

xD\Γ,Γm+1xΓ\Γm,D\Γ

The first term simplifies because Γ0 = Γ and because the only edges into Γ0 \ Γ1 are from D \ Γ.

tw(Γ\Γ0)xin
Γ0\Γ1

xD\Γ,Γ1xΓ\Γ0,D\Γ = xD\Γ,Γ0\Γ1xD\Γ,Γ1 = xD\Γ,Γ

The last term simplifies because Γm+1 = ∅ and because Γm only has outgoing edges to D \ Γ.

tw(Γm\Γm+1)tw(Γ\Γm)xout
Γm\Γm+1

xD\Γ,Γm+1xΓ\Γm,D\Γ = tw(Γ)xΓm,D\ΓxΓ\Γm,D\Γ = tw(Γ)xΓ,D\Γ

Note that both of these simplifications rely crucially on the braid diagram not being closed. If it

were closed, there could be edges from Γm to Γ0.

The middle two terms in the expanded version of Equation (3.1) cancel. When expanding, the

key fact is that edges always go from Γk−1 to Γk, never in the opposite direction, and that they

never span more than one layer.
m−1∑
j=0

tw(Γ\Γj+1)
(
xΓj\Γj+1,D\ΓxΓj\Γj+1,Γj+1\Γj+2xD\Γ,Γj+1xΓ\Γj ,D\Γ

− xD\Γ,Γj+1\Γj+2xΓj\Γj+1,Γj+1\Γj+2xD\Γ,Γj+2xΓ\Γj+1,D\Γ
)

m−1∑
j=0

tw(Γ\Γj+1)
(
xΓj\Γj+1,D\ΓxΓj\Γj+1,Γj+1\Γj+2xD\Γ,Γj+2xD\Γ,Γj+1\Γj+2xΓ\Γj ,D\Γ

− xD\Γ,Γj+1\Γj+2xΓj\Γj+1,Γj+1\Γj+2xD\Γ,Γj+2xΓ\Γj ,D\ΓxΓj\Γj+1,D\Γ
)

= 0
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Placing AI(Dσ) at the corners of a cube of resolutions for Dσ and using the same maps and

gradings from Sections 2.1.2 and 2.1.3 produces a chain complex that is an invariant of the braid σ.

The proofs of braid-like Reidemeister moves II and III for the cube of resolutions of a closed braid

carry through to this case with the simplification that non-local relations can now be ignored.

3.2 Soergel bimodules and HOMFLY-PT homology

Throughout this section, the ground field will be Q. Tensor products are to be taken over Q unless

otherwise specified.

Khovanov’s construction of a homology theory that categorifies the HOMFLY-PT polynomial

begins with an assignment of certain bimodules to singular braid diagrams. Given a singular braid

diagram with b strands, we define the strand algebra to be S = Q[x1, . . . , xb] with grading given

by deg(xi) = 2 for all i. Let Si denote the subring of S that is invariant under the action of the

transposition (i, i+ 1) ∈ Sb permuting the variables of S, so

Si = Q[x1, . . . , xi−1, xi + xi+1, xixi+1, xi+2, . . . , xb].

To a single singular crossing between strands i and i + 1 in a singular braid, we associate the S-

bimodule Bi = S⊗SiS. Heuristically, the singular crossing makes strands i and i+1 indistinguishable

in a diagram, so we use the tensor product over Si to create a bimodule that does not distinguish

between the corresponding strand variables. To join two layers of a singular braid diagram, we tensor

the corresponding bimodules over S with top/bottom in the diagram corresponding to left/right in

the tensor product. For example, the singular braid in Figure 3.2 is assigned B1 ⊗S B2 ⊗S B1. The

full subcategory of S-grbimod generated by (finite) tensor products over S, (finite) direct sums,

and grading shifts of the Bi will be denoted SB; its objects are called Soergel bimodules [52, 53].

So far, we have defined a map on the objects from the category SBrCobb to SB.

The bimodule Bi has the usual action of S by multiplication on the left and on the right. It

inherits a grading from that on S. As a left or a right S-module, it is free of rank 2, with generators

1 and xi

Bi ∼= S〈1〉 ⊕ S〈xi〉.

An S-bimodule can also be thought of as a left S ⊗ Sop-module, which is simply an S ⊗ S-module

since S is commutative in our case. Interpreting Bi in this way reveals its similarity to both the

matrix factorizations that appear in Khovanov and Rozansky’s alternate definition of HOMFLY-PT

homology [23] and to the knot Floer algebra associated to a layered singular braid diagram with

one layer. Specifically, there is a ring isomorphism ψ : S ⊗ S → Q[y1, . . . , yb, z1, . . . , zb] defined by
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ψ(xj ⊗ 1) = yj and ψ(1⊗ xj) = zj , which induces an isomorphism of S ⊗ S-modules

ψ : Bi →
Q[y1, . . . , yb, z1, . . . , zb]

(yi+yi+1)−(zi+zi+1),
yiyi+1−zizi+1,
{yj−zj}j 6=i, i+1

(3.2)

by considering the target as an S⊗S-module under base change by ψ. We will call ψ the edge-strand

correspondence, since it describes how to pass between constructions in which the indeterminates

signify edges and those in which the indeterminates signify braid strands. The target module in

(3.2) is the homology of the matrix factorization (with the extra variable a set to zero) assigned to

a single singular crossing in the alternative definition of HOMFLY-PT homology [23].1 Khovanov

demonstrates in Theorem 1 of [21] that the edge-strand correspondence is compatible with tensoring

Soergel bimodules over S, so that the Soergel bimodule associated to any singular braid diagram

is isomorphic to the homology of the matrix factorization (with the extraneous variable a set to

zero) associated to the same diagram. The quotient of Q[y1, . . . , yb, z1, . . . , zb] in (3.2) also bears

interesting similarities to the knot Floer algebras. Näıvely, it looks like the quotient of the knot

Floer edge ring by the local relations associated to a single singular crossing, with the parameter

t set to 1. Of course, since the knot Floer algebras are defined over a Laurent series ring in t (in

which t− 1 is a unit), setting t to 1 is not so interesting. Section 3.3 takes a less näıve approach to

exploring this similarity.

The key property of Soergel bimodules for our purposes is that they satisfy categorified statements

of the relations governing the Murakami-Ohtsuki-Yamada graph polynomial’s behavior on singular

braid diagrams. Equivalently, they satisfy categorified statements of the Hecke algebra’s defining

relations.

Proposition 3.2.1 ([52]). Let Bi denote the Soergel bimodule S ⊗Si S as defined above and Bi =

Bi[−1]. Then the following isomorphisms of graded S-bimodules hold, where all tensor products are

taken over S.

1. Bi ⊗ Bi ∼= Bi[−1]⊕ Bi[1]

2. (Bi ⊗ Bi+1 ⊗ Bi)⊕ Bi+1
∼= (Bi+1 ⊗ Bi ⊗ Bi+1)⊕ Bi

3. Bi ⊗ Bj ∼= Bj ⊗ Bi if |i− j| > 1.

Murakami, Ohtsuki, and Yamada [30] define a polynomial on weighted trivalent graphs that

extends to the HOMFLY-PT polynomial via the singular skein relations

P (
BB��������

999

\\999 ) = P ( •
BB��������

\\99999999
) + qP (

OO OO

) and P ( ���

BB���
\\99999999

) = P (
OO OO

) + qP ( •
BB��������

\\99999999
). (3.3)

1 Matrix factorizations in general are not chain complexes, but those in [23] become chain complexes when the
extra parameter a is set to zero.
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Figure 3.4: Murakami-Ohtsuki-Yamada relations for singular braids with unweighted edges.
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Figure 3.5: Extended Murakami-Ohtsuki-Yamada relations with six-valent vertex.

The polynomial for a graph is calculated via simplifying relations. Figure 3.4 shows the limited set

of relations that are relevant to calculations with singular braid diagrams. Replacing each singular

braid diagram with its corresponding Soergel bimodule, the symbol + with ⊕, and each appearance

of qk with a grading shift of [k] yields categorified statements of the Murakami-Ohtsuki-Yamada

relations, which are exactly the statements in Proposition 3.2.1.2

We may simplify statement (2) in Proposition 3.2.1 by noticing that Bi ⊗Bi+1 ⊗Bi and Bi+1 ⊗

Bi⊗Bi+1 actually contain a common summand Bi,i+1 := S⊗Si, i+1 S[−3], where Si, i+1 is the subring

of S invariant under the action of S3 by permutations of xi, xi+1, and xi+2. Using the same heuristic

as above, this summand is appropriately represented by a six-valent vertex at which strands i, i+ 1,

and i+ 2 become indistinguishable. Figure 3.5 shows how the Murakami-Ohtsuki-Yamada relations

can be rewritten to reflect this change.

If we associate a generator gi to a singular crossing between strands i and i + 1, then the

Murakami-Ohtsuki-Yamada relations shown in Figure 3.4 become exactly the relations among the

2 The diagrammatic interpretation of the third statement of Proposition 3.2.1 is simply that the Murakami-Ohtsuki-
Yamada graph polynomial is well defined on isotopy classes of braid diagrams.
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gi in the following presentation of the Hecke algebra.

H(b, q) = 〈g1, . . . , gb−1 | g2
i = (q + q−1)gi,

gigi+1gi + gi+1 = gi+1gigi+1 + gi,

gigj = gjgi if |i− j| > 1〉

Replacing each gi with the Soergel bimodule Bi, replacing + with ⊕, and qk with [k] as before yields

categorified Hecke algebra relations as stated in Proposition 3.2.1.

In fact, Soergel proved a much stronger (and more difficult) result. Enlarging the category SB

to include all direct summands of its objects (i.e. taking the Karoubi envelope Kar(SB)) produces

a category whose split Grothendieck ring is isomorphic to the Hecke algebra.

Theorem 3.2.1 (Soergel [52, 53]). Let Kar(SB) denote the Karoubi envelope of the category SB

of Soergel bimodules. Let K0 denote the split Grothendieck group and H(b, q) the Hecke algebra with

b− 1 generators over Z[q−1, q]. Then there is a ring isomorphism

Φ : H(b, q) −→ K0(Kar(SB))

taking 1 to [S] and gi to [Bi] for each i.

To produce the functor F̂bHOMFLY-PT promised in Chapter 1, one should define maps between

Soergel bimodules for each basic foam between trivalent graphs and prove that they satisfy certain

relations. This has been worked out in detail for the sln homologies [28] and is expected to hold for

HOMFLY-PT homology as well. It is currently work in progress by Blanchet [3].

To extend from the functor F̂bHOMFLY-PT on singular braids to FbHOMFLY-PT on braids, we

must pass to the homotopy category of complexes of Soergel bimodules Com(SB). On objects,

FbHOMFLY-PT is defined from a braid group action introduced by Rouquier [50]. To a single positive

crossing σi between strands i and i+ 1, Rouquier assigns the complex

F (σi) : 0→ Bi[−2] 1−−→ S[−2]→ 0,

where 1 denotes the map 1 ⊗ 1 7→ 1, extended to be an S-bimodule map. To a single negative

crossing σ−1
i , he assigns the complex

F (σ−1
i ) : 0→ S[2]

(xi−xi+1)⊗1+1⊗(xi−xi+1)−−−−−−−−−−−−−−−−−−→ Bi → 0,

where (xi−xi+1)⊗1+1⊗ (xi−xi+1) denotes the map taking 1 ∈ S to the designated element of Bi,

extended to be an S-bimodule map. With grading shifts as noted, these maps are homogenous with

respect to the grading on S. Define a cohomological grading by placing Bi in cohomological degree
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0 in both complexes. To join crossings in a braid diagram, tensor the associated complexes over S

with top/bottom in the diagram corresponding to left/right in the tensor product. For example,

assign to the braid σ−1
2 σ1σ

−1
2 σ1, the complex

F (σ−1
2 σ1σ

−1
2 σ1) = F (σ−1

2 )⊗S F (σ1)⊗S F (σ−1
2 )⊗S F (σ1)

The result is a bigraded complex F (σ) defined for each braid word σ.

In the interest of comparing to the knot Floer cube of resolutions construction, we note that

the complexes F (σ) can be defined by performing the above procedures in a slightly different order.

First, form a cube of resolutions from a braid diagram by singularizing or smoothing each crossing

and indexing the resolutions using the conventions in Figure 2.2. To the singular braid diagrams

at the corners of the cube, associate the Soergel bimodule specified by F̂bHOMFLY-PT. Denote the

S-bimodule associated to the I-resolution of a diagram Dσ by BI(Dσ). To an edge of the cube where

a crossing changes from singular to smooth (resp. smooth to singular), associate the map from F (σi)

(resp. F (σ−1
i )). The result is the Rouquier complex for the original braid diagram. Both of these

constructions—applying F̂bHOMFLY-PT to a diagrammatic cube of resolutions or tensoring complexes

F (σi)—are compatible with the edge-strand correspondence [23, Theorem 1], so F (σ) is also the

homology of the matrix factorization associated to σ in [23], again with the matrix factorization’s

extra parameter a set to zero.

Rouquier [50] proves that the complexes F (σ) define a genuine action (in the terminology of [25])

of the braid group on Com(SB). This means that −⊗F (σ) is an invertible endofunctor on Com(SB);

that for any σ, σ′ ∈ Brb, the complex Fσσ′ is homotopy equivalent to Fσ ⊗ Fσ′ ; and that these

homotopy equivalences satisfy the associativity property in the following commutative diagram.

F (σ)⊗ F (σ′)⊗ F (σ′′)
∼= //

∼=
��

F (σσ′)⊗ F (σ′′)

∼=
��

F (σ)⊗ F (σ′σ′′)
∼= // F (σσ′σ′′)

Checking that these complexes define a weak braid group action amounts to checking that they are

invariant up to homotopy under braid-like Reidemeister moves applied to the braid diagram. This

can be done explicitly, as in [23]. The fact that the braid group action is genuine follows by passing

to the derived category, where the action collapses to an action of the symmetric group that is more

evidently genuine [50, Section 3.3]. Khovanov and Seidel later showed that Rouquier’s braid group

action is faithful [24].

So far, we have defined FbHOMFLY-PT on the objects of BrCobb by sending a braid diagram σ

to the complex F (σ). Khovanov and Thomas [25] define maps between Rouquier complexes that
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correspond to the basic braid movies from which any morphism in BrCobb can be obtained. They

prove that their assignments are well-defined up to a sign, making

FbHOMFLY-PT : BrCobb −→ Com(SB)

a projective functor. The sign ambiguities are resolved in [9], so FbHOMFLY-PT is in fact a functor

from BrCobb to Com(SB).

3.3 Twisted Soergel bimodules

Throughout this section, the ground field will be Q[t−1, t]]. Tensor products are to be taken over

Q[t−1, t]] unless otherwise specified.

3.3.1 Overview

The edge-strand correspondence introduced in the previous section establishes some similarities be-

tween Soergel bimodules and the knot Floer algebras associated to singular braids in the Ozsváth-

Szabó cube of resolutions construction. In particular, the local relations of the knot Floer con-

struction are very nearly the relations that appear when the edge-strand correspondence is used to

interpret a Soergel bimodule as a module over the edge ring. The goal of this section is to modify

the category of Soergel bimodules so that this near similarity can be formalized. In so doing, we

tackle the first two parts of the model advocated in Chapter 1: an assignment of something like

Soergel bimodules to singular braids and a braid group action on complexes of these modified Soergel

bimodules. The braid invariant that we produce in this section is simultaneously a natural extension

of the knot Floer algebras to braids and a minor modification of the braid invariant from Rouquier

complexes.

We will first define a category SBτ of twisted Soergel bimodules by enlarging the ground field of the

strand algebra and changing the way the strand algebra acts on one side of a Soergel bimodule. We

then assign twisted Soergel bimodules to layered singular braid diagrams (as defined in Chapter 2).

Under the edge-strand correspondence, the twisted Soergel bimodule associated to a layered singular

braid diagram will be the knot Floer algebra associated to the same diagram in Section 3.1. We will

detail this construction for a non-closed braid and prove the following proposition in Section 3.3.2.

Proposition 3.3.1. Let Dσ be a layered braid diagram of the braid σ and BτI (Dσ) be the twisted

Soergel bimodule associated to its I-resolution. Let E(Dσ) be the edge ring of Dσ. Then under base

change via the edge-strand correspondence there is an isomorphism of E(Dσ)-modules

BτI (Dσ) ∼= AI(Dσ).
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Twisted Soergel bimodules will satisfy analogous decomposition properties to the usual Soergel

bimodules. We will interpret these as categorifications of layered versions of the Murakami-Ohtsuki-

Yamada relations.

The category of twisted Soergel bimodules will turn out to be only a mild generalization of the

original category of Soergel bimodules. Its split Grothendieck group will categorify the Hecke algebra

with an extra indeterminate and its inverse adjoined. We will prove the following proposition in

Section 3.3.3.

Proposition (Proposition 3.3.5). Let SBτ denote the category of twisted Soergel bimodules and

Kar(SBτ ) its Karoubi envelope. Let K0 denote the split Grothendieck group and H(b, q) the Hecke

algebra with b− 1 generators over Z[q−1, q]. Then there is a ring isomorphism

Φτ : H(b, q)⊗Z Z[`, `−1] −→ K0(Kar(SBτ )).

The remainder of the HOMFLY-PT homology construction described in Section 3.2 can be

carried out in the context of twisted Soergel bimodules with minimal changes. In Section 3.4, we

will define twisted Rouquier complexes and produce a braid group action on Com(SBτ ).

Proposition 3.3.2. Rouquier complexes of twisted Soergel bimodules define a braid group action on

Com(SBτ ).

3.3.2 Definition and basic properties

If M is a bimodule over an algebra A and ϕ : A→ A is an endomorphism, then we define Mϕ to be

the bimodule in which the left action is the same as for M while the right action is twisted by ϕ. That

is, for a ∈ A and m ∈M , we have a ·m = am and m ·a = mϕ(a). For any A-bimodule M , M ⊗AAϕ

is canonically Mϕ. In the case of A as a bimodule over itself, this means that twisting is compatible

with tensor product: if ϕ and ψ are endomorphisms of A, then there is a canonical isomorphism of A-

bimodules Aϕ⊗AAψ ∼= Aϕψ. Since tensor product distributes over direct sum, we have compatibility

of twisting with direct sum as well: (M⊕N)ϕ ∼= (M⊕N)⊗AAϕ ∼= (M⊗AAϕ)⊕(N⊗AAϕ) ∼= Mϕ⊕Nϕ

for A-bimodules M and N . There is also a bimodule ϕM in which the left action is twisted by ϕ

and the right action is as usual. If ϕ is invertible, then there is an isomorphism of A-bimodules
ϕA ∼= Aϕ

−1
.

We will define the category of twisted Soergel bimodules as a subcategory of Q[t−1, t]][x1, . . . , xb]-

grbimod, where Q[t−1, t]] is in grading zero and each xi is in grading 2. The new strand algebra

Q[t−1, t]][x1, . . . , xb] (which we will abbreviate Q[t−1, t]][x] when b is unimportant or clear from

context) is a base change of the strand algebra from Section 3.2 that replaces the ground ring Q with
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the ring of Laurent series over Q. We choose to work over Q rather than Z (and Q[t−1, t]] rather than

Q[t−1, t]) at this juncture because certain results about categories of Soergel bimodules are known

only over infinite fields with characteristic 6= 2 (though expected to hold in more generality). The

completion from Laurent polynomials to Laurent series is also required for Lemma 2.7.1 in the proof

of invariance for the knot Floer cube of resolutions in Chapter 2, and for the interpretation of the knot

Floer algebras as singular knot Floer homology with twisted coefficients using the holomorphic disks

and Heegaard diagrams definitions of [34] (see Proposition 2.8.1). Working over a field also makes

various homological algebra arguments easier, of course. We will keep Q[t−1, t]] as the ground field

for the remainder of this section, so we will abuse notation by re-defining S = Q[t−1, t]][x1, . . . , xb]

to be the strand algebra and Bi = S ⊗Si S to be the basic Soergel bimodules for 1 ≤ i ≤ b − 1.

When we want to differentiate between categories of Soergel bimodules over different ground fields,

we will write SBQ or SBQ[t−1,t]].

We will consider Soergel bimodules twisted by the Q[t−1, t]][x]-algebra automorphism

τ : Q[t−1, t]][x]→ Q[t−1, t]][x]

defined by τ(xi) = txi for all i. Define the ith twisted Soergel bimodule to be Bτi = (S ⊗Si S)τ .

Equivalently, we could write Bτi as Bi ⊗S Sτ , where Sτ is the twisting of the strand algebra as a

bimodule over itself, since

Bi ⊗ Sτ = (S ⊗Si S)⊗S Sτ ∼= (S ⊗Si S)τ = Bτi .

Note that τ is invertible, so we also have Sτ−1 ∼= τS and τS ⊗S Sτ ∼= Sτ ⊗S τS ∼= S. We use the

same grading on twisted Soergel bimodules as before, with Q[t−1, t]] in grading 0 and xi in grading

2 for all i. As was the case for usual Soergel bimodules, twisted Soergel bimodules are free and rank

two as left modules and as right modules over S. However, twisted bimodules are not in general

isomorphic to their untwisted counterparts—far from it in this case.

Proposition 3.3.3. Let M and N be S-bimodules and τ the automorphism of S described above.

Then

Hom(Mτ , Nτ ) ∼= Hom(M,N)τ

as S-bimodules. Moreover, if B and B are objects in SBQ[t−1,t]]. Then

Hom(Bτ
i

, B
τj

) = 0

whenever i 6= j.

Proof. For the first statement, observe first that the morphisms between two objects in S-grbimod

themselves form an S-bimodule. Suppose that f ∈ Hom(M,N). Since f is a morphism of left
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S-modules and of right S-modules, we have for any m ∈M

f(xi ·m) = xi · f(m) = (xi · f)(m) and f(m · xi) = f(m) · xi = (f · xi)(m).

But the same requirements apply if f ∈ Hom(Mτ , Nτ ) or f ∈ Hom(M,N)τ ; only the meaning

of · changes. In other words, the action of S on M and N must be compatible with its action

on Hom(M,N). For example, if f(m · xi) = f(mtxi), then we must have (f · xi)(m) = f(m)txi.

Therefore the S-bimodule isomorphism between Hom(Mτ , Nτ ) and Hom(M,N)τ simply sends f ∈

Hom(Mτ , Nτ ) to f and we have checked that this identification is compatible with the actions of S

on both sides.

For the second statement, consider the left and right actions of the product x1 · · ·xb on elements

of B and B. Both bimodules are made from direct sums and tensor products of S over subrings of

S invariant under various transpositions in Sn. Since x1 · · ·xb is invariant under the action of Sn on

S by permuting variables, it is certainly invariant under any transposition. Therefore, it can move

across any of the tensor products that appear in B or B:

(x1 · · ·xb) ·m = (x1 · · ·xb)m = m(x1 · · ·xb) = m · (x1 · · ·xb)

if m ∈ B or m ∈ B. The twisted bimodules are related to the untwisted bimodules by Bτ
i

= B⊗SSτ
i

and B
τj

= B ⊗S Sτ
j

, so x1 · · ·xb can still be moved across any tensor product that appears in Bτ
i

or B
τj

. The left and right actions are then related by

m · (x1 · · ·xb) = mtbix1 · · ·xb = tbix1 · · ·xbm = (tbix1 · · ·xb) ·m in Bτ
i

and

m · (x1 · · ·xb) = mtbjx1 · · ·xb = tbjx1 · · ·xbm = (tbjx1 · · ·xb) ·m in B
τj

.

Now suppose that m ∈ Bτ i and f is a bimodule morphism from Bτ
i

to B
τj

. Then on the one

hand, if we use the fact that f is a bimodule morphism to compute in Bτ
i

, then we have

f(m) · (x1 · · ·xb) = f(m · (x1 · · ·xb))

= f((tbix1 · · ·xb) ·m)

= (tbix1 · · ·xb) · f(m).

On the other hand, computing in B
τj

gives

f(m) · (x1 · · ·xb) = (tbjx1 · · ·xb) · f(m).

Therefore, for any m ∈ Bτ i and any bimodule morphism f we must have

(tbi − tbj)(x1 · · ·xb)f(m) = 0
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in B
τj

. Since tbi − tbj is a unit in the ground field Q[t−1, t]] and B
τj

is free as a left S-module, this

means that f(m) = 0.

We assign twisted Soergel bimodules to layered singular braid diagrams. These are vertical

stacks of the two diagrams that can be obtained by singularizing or smoothing the layers shown

in Figure 3.1: the singularization of diagrams σi or σ−1
i or the diagram λ. To the diagram λ, we

associate Sτ . To a singular crossing between strands i and i + 1, we associate Bτi . In keeping

with the heuristic from the previous section, these assignments recognize that strands i and i + 1,

hence strand variables xi and xi+1 become indistinguishable at a singular crossing. The twisting

also records the orientation of the layered singular braid. Passing through a layer (either a bivalent

vertex or a 4-valent vertex) in a diagram corresponds to passing from the right action to the left

action of a strand variable on Bτi = (S ⊗Si S)τ , which differ by a factor of t. To stack layers of

a singular braid, we tensor the corresponding twisted Soergel bimodules over S with top/bottom

in the diagram corresponding to left/right in the tensor product. Since twisting is compatible with

tensor products, the twisted Soergel bimodule associated to a layered singular braid diagram with

m layers is the usual Soergel bimodule associated to the same diagram, twisted by τm. For example,

the twisted Soergel bimodule associated to the layered singular braid in Figure 3.2 is

Bτ1 ⊗S Bτ2 ⊗S Bτ1 ⊗S Sτ ∼= (B1 ⊗S B2 ⊗S B1)τ
4
.

The analogue of the edge-strand correspondence in the twisted setting establishes the close

relationship between the twisted Soergel bimodule Bτi and the knot Floer algebra assigned to the

layered singular braid with one singular crossing between strands i and i + 1 of a braid. The edge

ring for a single layer is Q[t−1, t]][y1, . . . , yb, z1, . . . , zb], with outgoing edges labeled y1, . . . , yb from

right to left and incoming edge labeled z1, . . . , zb from right to left. Interpreting the strand algebra

S = Q[t−1, t]][x1, . . . , xb] as a left S ⊗ S-module, there is a ring isomorphism

ψ : S ⊗ S → Q[t−1, t]][y1, . . . , yb, z1, . . . , zb]

given by ψ(1 ⊗ 1) = 1, ψ(xj · (1 ⊗ 1)) = ψ(xj ⊗ 1) = yj and ψ((1 ⊗ 1) · xj) = ψ(1 ⊗ txj) = zj .

Considering the knot Floer algebra as an S⊗S-module under base change via ψ gives the isomorphism

of S ⊗ S-modules

ψ : Bτi →
Q[t−1, t]][y1, . . . , yb, z1, . . . , zb]

t(yi+yi+1)−(zi+zi+1),

t2yiyi+1−zizi+1,
{tyj−zj}j 6=i,i+1

, (3.4)

which we again refer to as the edge-strand correspondence. The edge-strand correspondence is
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clearer if we describe Bτi as a quotient of (S ⊗Q[t−1,t]] S)τ .

Bτi =
(S ⊗Q[t−1,t]] S)τ

t(xi+xi+1)·(1⊗1)−(1⊗1)·(xi+xi+1),

t2xixi+1·(1⊗1)−(1⊗1)·xixi+1,
{txj ·(1⊗1)−(1⊗1)·xj}j 6=i, i+1

We may now prove Proposition 3.3.1.

Proof of Proposition 3.3.1. Let D be the layered braid diagram with one layer and a crossing (of

either type) between strands i and i + 1. The module on the right in (3.4) is the quotient of the

edge ring of D by the local relations in the singular resolution of that braid, although with different

edge labels than in Section 3.1.

The isomorphism ψ is compatible with tensor products. That is, if Dσ is a layered braid diagram

and BτI (Dσ) is the twisted Soergel bimodule associated to its I-resolution, then

BτI (Dσ) ∼=
E(Dσ)
LI(Dσ)

.

By Proposition 3.1.1, N (Dσ) ⊂ LI(Dσ), so

E(Dσ)
LI(Dσ)

∼=
E(Dσ)

LI(Dσ) +NI(Dσ)
= AI(Dσ)

Grading conventions differ in HOMFLY-PT homology and knot Floer homology, but the (Alexan-

der) grading on the knot Floer algebras for layered singular braids and the grading on Soergel bimod-

ules can each be recovered from the other. The knot Floer convention for the edge ring, which we

will call degHFK puts Q[t−1, t]] in grading 0 and degHFK(xi) = −1 for each i. The Alexander grading

on a singular knot Floer algebra is the symmetrization of this grading AI = degHFK + 1
2 (σ − b+ 1),

where I is a multi-index denoting a resolution of a layered singular braid, σ is the number of singular

crossings in the diagram, and b is the number of braid strands. The HOMFLY-PT grading conven-

tion on the strand algebra, which we will call degSB, puts Q[t−1, t]] in grading 0 and degSB(xi) = 2.

We have used the HOMFLY-PT conventions for twisted Soergel bimodules. To recover the Alexan-

der grading on the twisted Soergel bimodule assigned to the I-resolution of a layered braid, simply

compute

AI = −1
2

degSB +
1
2

(σ − b+ 1) .

A dictionary of grading conventions is provided in Table 3.1 at the end of this chapter.

It follows either from the edge-strand correspondence and Lemmas 2.4.1, 2.6.1, and 2.6.2 for

knot Floer algebras in Chapter 2 or from the compatibility of twisting with tensor products and

direct sums of bimodules that twisted Soergel bimodules satisfy decomposition properties analogous

to those of usual Soergel bimodules.



CHAPTER 3. BRAIDS, SOERGEL BIMODULES, AND KNOT FLOER HOMOLOGY 66

Proposition 3.3.4. Let Bτi = Bτi [−1]. Then there are isomorphisms of S-bimodules as follows,

where all tensor products are taken over S.

1. Bτi ⊗ Bτi ∼= Bτ
2

i [−1]⊕ Bτ2

i [1]

2.
(
Bτi ⊗ Bτi+1 ⊗ Bτi

)
⊕ Bτ3

i+1
∼=
(
Bτi+1 ⊗ Bτi ⊗ Bτi+1

)
⊕ Bτ3

i

3. Bτi ⊗ Bτj ∼= Bτj ⊗ Bτi if |i− j| > 1.

Proof. All three statements follow directly from the compatibility of twisting with tensor products

and direct sums. We check statement (2) as an example.

(
Bτi ⊗ Bτi+1 ⊗ Bτi

)
⊕ Bτ

3

i+1
∼= (Bi ⊗ Bi+1 ⊗ Bi)τ

3

⊕ Bτ
3

i+1

∼= ((Bi ⊗ Bi+1 ⊗ Bi)⊕ Bi+1)τ
3

by Prop. 3.2.1 ∼= ((Bi+1 ⊗ Bi ⊗ Bi+1)⊕ Bi)τ
3

∼=
(
Bτi+1 ⊗ Bτi ⊗ Bτi+1

)
⊕ Bτ

3

i

We interpret these decomposition properties to mean that twisted Soergel bimodules categorify

layered Murakami-Ohtsuki-Yamada relations as shown in Figure 3.6. We have also added a new

relation that interchanges a layer containing only bivalent vertices with any other layer. The cor-

responding property of twisted Soergel bimodules is simply that Bτi ⊗ Sτ ∼= Sτ ⊗ Bτi for any i. As

before, there is a common summand of Bτi ⊗Bτi+1 ⊗Bτi and Bτi+1 ⊗Bτi ⊗Bτi+1, which is Bτ3

i, i+1. The

once-twisted version of this summand, Bτi, i+1 should be assigned to a new type of layer containing a

six-valent vertex as in Figure 3.5. This summand was identified explicitly in the knot Floer algebras

in Lemma 2.6.2 of Chapter 2 and seen to be (S ⊗Si, i+1 S)τ .

3.3.3 The category SBτ

Define the category SBτ of twisted Soergel bimodules to be the smallest full subcategory of S-

grbimod generated from the set {S,Sτ ,τS, B1, . . . , Bb−1} by (finite) tensor products over S, (finite)

direct sums, and grading shifts. This category includes Bτ
k

i for all 1 ≤ i ≤ b − 1 and k ∈ Z, since

Bi ⊗ Sτ
k ∼= Bτ

k

i and Sτ−k ∼= τkS. It is a Q[t−1, t]]-linear, additive, monoidal category.

We would like to understand the split Grothendieck group of this new category SBτ , especially

in comparison with the split Grothendieck group of the original category of Soergel bimodules. The

split Grothendieck group of an additive category C is generated by symbols [M ] for each object in

C, subject to the relation [M ] = [M ′] + [M ′′] if M ∼= M ′ ⊕M ′′ (see [17]). Understanding the split

Grothendieck group then amounts to understanding direct sum decompositions in the category C and

classifying indecomposable objects. This is much more tractable in a category with the Krull-Schmidt
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Figure 3.6: Layered versions of the MOY relations.
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property, which says that every object is isomorphic to a finite direct sum of indecomposable objects,

and that this decomposition is unique up to isomorphism. The category Q[t−1, t]][x]-grbimod is

Krull-Schmidt [19], so every object of SBτ does have a unique direct sum decomposition. However,

there is no guarantee that the objects appearing in this decomposition are themselves twisted Soergel

bimodules. Taking the Karoubi envelope of SBτ inserts all of the necessary direct summands, thereby

allowing SBτ to inherit the Krull-Schmidt property from Q[t−1, t]][x]-grbimod. The problem then

is to identify the indecomposable objects in Kar(SBτ ).

Soergel proves Theorem 3.2.1, about the decategorification of SB by setting up a correspondence

between the indecomposable objects in Kar(SB) and the elements of the Kazhdan-Lusztig basis of

the Hecke algebra. In fact, his argument holds over any infinite field with characteristic not equal

to 2 (see [52, 53, 8] for more details), so there is a ring isomorphism

Φ : H(b, q) −→ K0

(
Kar

(
SBQ[t−1,t]]

))
.

The difficulty arises in understanding what happens when the twisted bimodules Sτ and τS are added

to the generating set. As one might expect from the properties M ⊗Sτ ∼= Mτ and τS ⊗S Sτ ∼= S, it

turns out that adding these two objects to the generating set of SBQ[t−1,t]] corresponds to adjoining

a new variable and its inverse to its Grothendieck group.

Proposition 3.3.5. Let SBτ denote the category of twisted Soergel bimodules and Kar(SBτ ) its

Karoubi envelope. Let K0 denote the split Grothendieck group and H(b, q) the Hecke algebra with

b− 1 generators over Z[q−1, q]. Then there is a ring isomorphism

Φτ : H(b, q)⊗Z Z[`, `−1] −→ K0(Kar(SBτ ))

sending 1⊗ 1 to [S], 1⊗ ` to [Sτ ], 1⊗ `−1 to [τS], and gi ⊗ 1 to [Bi].

Proof of Proposition 3.3.5. The main idea here is that the indecomposable bimodules in Kar (SBτ )

correspond to the τk twistings of the indecomposable bimodules in Kar
(
SBQ[t−1,t]]

)
, which Soergel’s

theorem identifies with the elements of the Kazhdan-Lusztig basis for the Hecke algebra. We show

that SBτ is a direct sum of categories
⊕

k∈Z SBτ
k in which each summand is equivalent as an additive

category to SBQ[t−1,t]].

Define SBτ
0 to be the smallest full subcategory of SBτ containing the objects S, B1, . . . , Bb−1

and closed under (finite) tensor products, (finite) direct sums, and grading shifts. There is a fully

faithful inclusion of SBQ[t−1,t]] into SBτ as SBτ
0 . Let SBτ

k be the subcategory of SBτ whose objects

are Bτ
k

for any object B in SBτ
0 . Then SBτ

k is closed under direct sums and grading shifts, but

not tensor products. There is an equivalence of additive categories between SBτ
0 and SBτ

k given

by −⊗ Sτk , which the first statement in Proposition 3.3.3 shows is fully faithful. Moreover, by the
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second statement in Proposition 3.3.3, there are no non-trivial morphisms between SBτ
k and SBτ

k′

for k 6= k′. Therefore, SBτ decomposes as a direct sum of categories

SBτ ∼=
⊕
k∈Z

SBτ
k.

We have also established that Sτ acts on this direct sum by taking SBτ
k to SBτ

k+1.

An object in the direct sum of categories has the form Mk1⊕· · ·⊕Mkp for some {k1, . . . , kp} ⊂ Z

and Mki an object in SBτ
ki . The indecomposables in the direct sum, then, must have only a

single component Mk, which is indecomposable in SBτ
k. Also, the direct sum is compatible with

taking the Karoubi envelope, so we have Kar(SBτ ) ∼=
⊕

k∈Z Kar(SBτ
k). Each summand Kar(SBτ

k)

is equivalent to Kar
(
SBQ[t−1,t]]

)
via the inclusion of Kar

(
SBQ[t−1,t]]

)
as Kar(SBτ

0), followed by

−⊗Sτk . Therefore, each summand is Krull-Schmidt with indecomposables in correspondence with

the Kazhdan-Lusztig basis elements of the Hecke algebra. Composing Φ from Soergel’s theorem

with the map induced by the equivalence of categories, we have Z[q−1, q]-module isomorphisms

Φτk : H(b, q)→ K0(Kar(SBτ
k))

taking 1 to Sτk and gi to Bτ
k

i .

Combine the Φτk to define a Z[q−1, q]-module isomorphism

Φτ : H(b, q)⊗Z Z[`, `−1] −→ K0 (Kar (SBτ ))

by Φτ (g ⊗ `k) = Φτk(g). Proposition 3.3.4 along with the previously identified action of − ⊗ Sτ as

an endofunctor establishes that Φτ is in fact a ring isomorphism.

3.4 Twisted Rouquier complexes and a braid group action

We have at this point a map from layered singular braids to twisted Soergel bimodules that respects

the Murakami-Ohtsuki-Yamada relations among layered singular braids, along with the extra relation

of interchanging any row with a row containing only bivalent vertices. The extension to a braid group

action proceeds exactly as it did for the usual Soergel bimodules: to the generators of the braid group,

we assign complexes that categorify the singular skein relations

P (
BB��������

999

\\999 ) = P ( •
BB��������

\\99999999
) + qP (

OO OO

• • ) and P ( ���

BB���
\\99999999

) = P (
OO OO

• • ) + qP ( •
BB��������

\\99999999
), (3.5)

now with dots added to make the braid diagrams layered.

The layered braid diagrams defined in Chapter 2 correspond to an enlarged braid group Brb⊕Z〈λ〉

in which layers with only bivalent vertices are signified by the new generator λ. The usual generators
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σi and σ−1
i signify layers with the usual positive or negative crossing between strands i and i + 1,

but now with bivalent vertices on all strands away from the crossing. We assign the following twisted

Rouquier complexes to the generators of Brb ⊕ Z〈λ〉.

F τ (σi) : 0→ Bτi [−2] 1−−→ Sτ [−2]→ 0

F τ (σ−1
i ) : 0→ Sτ [2]

txi⊗1−1⊗xi+1−−−−−−−−−−→ Bτi → 0

F τ (λ) : 0→ Sτ → 0

F τ (λ−1) : 0→ τS → 0,

where [k] denotes a shift by k in the internal grading inherited from the grading on the strand

algebra. Define a cohomological grading by placing Bτi in grading 0 in the first two complexes and

placing Sτ and τS in grading 0 in the latter two complexes. As before, 1 denotes the map 1⊗1 7→ 1,

extended to be an S-bimodule map. In the second complex, txi ⊗ 1 − 1 ⊗ xi+1 is the image of 1.

The rest of the map is defined by extending to an S-bimodule map. For example, for j 6= i, i + 1,

the image of xj under the map in F τ (σ−1
i ) is determined by the requirements that

xj · 1 7→ xj · (txi ⊗ 1− 1⊗ xi+1) = txixj ⊗ 1− xj ⊗ xi+1 and

1 · t−1xj 7→ (txi ⊗ 1− 1⊗ xi+1) · t−1xj = txi ⊗ xj − 1⊗ xi+1xj ,

which are compatible because the two expressions on the right are equal.

Observe that although the maps in these twisted Rouquier complexes assigned to σ−1 appear

less symmetric than those in the original Rouquier complexes, they are in fact not so different. In

Bτi or Bi, we have the equation

(xi + xi+1)⊗ 1 = 1⊗ (xi + xi+1) or

xi ⊗ 1− 1⊗ xi+1 = − (xi+1 ⊗ 1− 1⊗ xi) ,

which means that the original Rouquier complex maps could be written as 2(xi⊗1−1⊗xi+1) instead.

Twisted Rouquier complex maps differ from these by the expected factor of t on one side and the

extra factor of 2. Had we chosen to use the more obvious generalization (txi−txi+1)⊗1+1⊗(xi−xi+1)

of the original Rouquier complex map, we would have produced a homotopy equivalent complex,

given that we are working over Q.

Under the edge-strand correspondence, the maps in these twisted Rouquier complexes are the

same as those in the knot Floer cube of resolutions. Ignoring gradings, we have the following

commutative diagram involving the twisted Rouquier complex and the knot Floer complex for a
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single negative crossing.

Sτ

ψ

��

txi⊗1−1⊗xi+1 // Bτi

ψ

��

Q[t−1,t]][y1,··· ,yb,z1,··· ,zb]
{tyj−zj}bj=1

tyi−zi+1 //
Q[t−1,t]][y1,··· ,yb,z1,··· ,zb]

{tyj−zj}j 6=i, i+1
t(yi+yi+1)−(zi+zi+1)

t2yiyi+1−zizi+1

We may define the complex associated to a word σ ∈ Brb ⊕ Z〈λ〉 either by tensoring the twisted

Rouquier complexes corresponding to each generator in the word or we may form a diagrammatic

cube of resolutions, assign the appropriate twisted Soergel bimodule to each resolution, and then

insert maps from the twisted Rouquier complexes on the appropriate edges. The result is the same

either way, and we call it F τ (σ). There is another sense in which F τ (σ) is a twisted Rouquier

complex. If σ ∈ Brb ⊕ 〈λ〉 is a braid with m layers (i.e. λ appears m times in σ) and σ is σ with

all instances of λ removed, then the bimodules in each bigrading of F τ (σ) are τm twistings of the

bimodules in the corresponding bigradings of F (σ). However, the maps in F τ (σ) are also twisted,

so it is not true that F τ (σ) is simply F (σ)⊗ Sτm .

We have now produced a map from layered braids to complexes of twisted Soergel bimodules.

Tensoring with a twisted Rouquier complex is an endofunctor of Com(SBτ ). We now prove that

two words representing the same element of Brb ⊕ 〈λ〉 give isomorphic endofunctors. In particular,

this means that the endofunctors F τ (σ) are all invertible.

Lemma 3.4.1. The complexes F τ (σi), F τ (σ−1
i ), F τ (λ), and F τ (λ−1) act by invertible endo-

functors on Com(SBτ ) and the following complexes are isomorphic in the homotopy category of

complexes Com(SBτ ).

1. F τ (λ)⊗S F τ (λ−1) ∼= (0→ S → 0)

2. F τ (σ)⊗S F τ (λ±1) ∼= F τ (λ±1)⊗S F τ (σ) for any braid word σ

3. F τ (σi)⊗S F τ (σj) ∼= F τ (σj)⊗S F τ (σi) if |i− j| ≥ 2

4. F τ (σi)⊗S F τ (σ−1
i ) ∼= F τ (σ−1

i )⊗S F τ (σi) ∼= (0→ S → 0)

5. F τ (σi)⊗S F τ (σi+1)⊗S F τ (σi) ∼= F τ (σi+1)⊗S F τ (σi)⊗S F τ (σi+1)

Proof. The first two statements follow from facts we have already established about the twisted

strand algebra: Sτ ⊗S τS ∼= S and Sτ ⊗S Bτi ∼= Bi⊗S Sτ and similarly for τS, so F τ (λ)⊗S F τ (λ−1)

is the identity endofunctor. The third statement holds because Sτ commutes with any Bτi and

because Bτi commutes with Bτj when strands i and j are not adjacent.
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The remaining two statements are twisted analogues of the claim that Rouquier’s original com-

plexes define a weak braid group action. We know from Proposition 3.3.4 that twisted Soergel

bimodules decompose in the same way that usual Soergel bimodules do. These decompositions will

imply the braid-like Reidemeister moves as long as they are compatible with the differentials appear-

ing in F τ (σ) and F τ (σ−1). For example, we need not only that Bτi ⊗S Bτi ∼= Bτi [1]⊕ Bτi [−1], but

that the differentials from F τ (σ−1
i ) and F τ (σi) are inclusion and projection maps for the appropri-

ate summands of Bτi [1] ⊕ Bτi [−1]. For this, we appeal to the edge-strand correspondence and the

proofs that the knot Floer algebras are invariant under Reidemeister moves II and III in Chapter 2.

In those arguments, the necessary compatibility between twisted Rouquier complex differentials and

Soergel bimodule decompositions were checked first for the quotient of the edge ring by local re-

lations only, and then for the quotient by local and non-local relations. Simply ignore the latter

part of the argument to get the result claimed here. Moreover, the calculations in Chapter 2 are

done locally, in the minimal possible number of layers, so the edge labeling convention there is also

consistent with non-closed braids.

Proof of Prop. 3.3.2. The proposition follows from Lemma 3.4.1 and an argument parallel to that

in [50, Section 3.3]. Upon passing to the derived category, the twisted complexes F τ (σi) and F τ (σ−1
i )

are both quasi-isomorphic to the complex

0→ Sτ◦(i i+1) → 0,

where (i i + 1) is the automorphism of S that transposes xi and xi+1. Therefore, the action of

Br⊕Z〈λ〉 collapses to a genuine action of Sn⊕Z〈λ〉. The same argument given by Rouquier applies

to show that the braid group action by twisted Rouquier complexes is genuine.

Grading conventions are again different between the twisted Soergel bimodules set-up (in which

we have mimicked the conventions for HOMFLY-PT homology) and the knot Floer cube of resolu-

tions. In each case there is an adjustment to the internal grading (quantum or singular Alexander,

respectively) built into the complex associated to a crossing in order to make the maps homogenous.

We call the resulting grading grSBq in the (twisted) Soergel bimodules case. In the knot Floer case,

it is the usual Alexander grading. The cohomological degrees in the two constructions differ by a

shift. Table 3.1 summarizes the relationships among all of the gradings we have introduced.

We have produced in this section replicas of two of the three algebraic structures used to define

HOMFLY-PT homology: an assignment of bimodules to layered singular braids from a category

whose Grothendieck group is related to the Hecke algebra and an action of the (layered) braid group



CHAPTER 3. BRAIDS, SOERGEL BIMODULES, AND KNOT FLOER HOMOLOGY 73

Grading Soergel Bimodules Knot Floer Homology Conversion

strand/edge degSB(xi)=2 degHFK(xi)=−1 degSB=−2 degHFK

sing. quantum/

Alexander

degSB AI=degHFK +s degSB=−2(AI−s)

cohomological cohomSB=wr−wrσ cohomHFK=c+−wrσ cohomSB=cohomHFK−c−

quantum/

Alexander

grSBq=degSB−2wr−2σ− A=AI−c−+cohomHFK grSBq=−2A+2s

Table 3.1: Dictionary of grading conventions for (twisted) Soergel bimodules and HFK. Let c+

and c− denote the number of positive resp. negative crossings in a braid diagram, σ denote the

number of singular crossings in a singular braid diagram, and σ+ and σ− the number of singular

crossings arising from positive resp. negative crossings. The symmetrizer s is 1
2 (σ + b− 1), where b

the number of braid strands in a diagram. The writhe and singular writhe are wr = c+ − c− and

wrσ = σ+ − σ−.

on complexes of those bimodules. We expect that both of these assignments would extend to functors

F̂bHFK : SBrCobb → S-grbimod and

FbHFK : BrCobb → Com(S-grbimod),

but leave this question for another time. Instead, we move on to Chapter 4 for a consideration of

braid closures and the appropriate replacement operation for Hochschild homology in the context

of knot Floer homology.
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Chapter 4

Braid Closures and Ideal Quotients

The goal of this chapter is to recover knot Floer homology from the braid invariant introduced

in Chapter 3. We define an operation Qu that we claim converts the twisted Soergel bimodule

associated to a layered singular braid in Chapter 3 to the algebra associated to its braid closure

in Chapter 2. Applying this operation to each homological grading of F τ (σ), the chain complex

associated to a layered braid σ, produces a bigraded chain complex that is an invariant of the

layered braid’s closure. Under the edge-strand correspondence, this chain complex is conjectured

to be the knot Floer cube of resolutions chain complex from Chapter 2 (with Q replacing Z as the

ground ring). We prove a somewhat weaker statement, but expect that the full conjecture can be

proved by similar methods.

Section 4.1 describes the operation Qu precisely, states the conjecture that Qu recovers the knot

Floer cube of resolutions, and states the partial result in this direction that we prove here. The proof

employs a computational device from commutative algebra called Gröbner bases. Section 4.2 briefly

outlines the small slice of this theory that will be useful for our purposes. A more thorough treatment

is provided in [1] or [7]. Section 4.3 sets up the application of Gröbner bases to our problem. The

remaining sections of this chapter carry out the algorithm in full, less-than-enlightening detail.

4.1 The operation Qu

On twisted Soergel bimodules, the operation Qu is defined in two steps. Let σ ∈ Brb ⊕ Z〈λ〉 be

a layered braid with m layers and Dσ a layered braid diagram for σ. Let BτI (Dσ) be the twisted

Soergel bimodule associated to the I-resolution of Dσ. Then BτI (Dσ) is a bimodule over the strand

algebra S = Q[t−1, t]][x1, . . . , xb] (equivalently, a left S ⊗ S-module). Label the strands of Dσ so

that 1 is closest to the braid axis and b is furthest from it. Step one of the operation Qu is to take
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the quotient of BτI (Dσ) by the sub-bimodule Z generated by

xj · (1⊗ · · · ⊗ 1)− (1⊗ · · · ⊗ 1) · xj = xj ⊗ 1⊗ · · · ⊗ 1− 1⊗ · · · ⊗ 1⊗ tmxj

for 1 ≤ j ≤ b− 1. We may regard BτI (Dσ)/Z as an S-module under the map S ⊗ S → S defined by

xj⊗1 7→ xj and 1⊗xj 7→ t−mxj . In terms of the diagram Dσ, this quotient corresponds to attaching

the top and bottom endpoints of strands 1 through b − 1. Algebraically, we have equated the left

and right actions of xj on the S-bimodule BτI (Dσ) for 1 ≤ j ≤ b− 1. Defining a sub-algebra S ′ ⊂ S

by S ′ = Q[t−1, t]][x1, . . . , xb−1], we could describe this first step of Qu as taking the co-invariants of

S ′ with respect to the bimodule BτI (Dσ), which is (by definition) the zeroth Hochschild homology

BτI (Dσ)/Z = HH0(S ′, BτI (Dσ)).

We have not attached the top and bottom endpoints of the left-most strand in the braid diagram

(strand b) because it is the strand that should carry the basepoint ∗ in a layered braid diagram for

the braid closure σ̂ of σ. Therefore, the top and bottom edges on strand b should remain distinct

in BτI (Dσ)/Z. We will think of BτI (Dσ)/Z as being associated to a layered diagram of σ̂ with a

basepoint ∗ on the left-most strand as in Chapter 2.

The second step is to quotient by the kernel of multiplication by the product of the strand

variables x1 · · ·xb−1 on BτI (Dσ)/Z. This step is meant to recover the non-local relations used to

define AI(Dbσ). Putting these steps together, we define

Qu(BτI (Dσ)) =
HH0(S ′, BτI (Dσ))
ker(x1 · · ·xb−1)

and conjecture that it recovers the knot Floer algebra associated to a closed singular braid.

Conjecture (Conjecture 4.1.1). Let σ be a braid, Dσ a layered braid diagram, and Dbσ a layered braid

diagram for its closure. Let BτI (Dσ) be the twisted Soergel bimodule associated to the I-resolution of

Dσ in Chapter 3. Let AI(Dbσ) be the algebra associated to the I-resolution of Dbσ in the knot Floer

cube of resolutions of Chapter 2, defined over R̂ = Z[t−1, t]]. Then

Qu(BτI (Dσ)) ∼= AI(Dbσ)⊗Z Q. (4.1)

The operation Qu plays the role that Hochschild homology does in HOMFLY-PT homology: it

takes S ′-bimodules to left S ′-modules1 and replaces algebraic objects naturally associated to braids

with algebraic objects naturally associated to closed braids. However, the new operation certainly

1 HOMFLY-PT homology is defined without using a basepoint on the outermost edge of a diagram, so in fact the
Hochschild homology there is applied to S rather than the sub-algebra S′, which means that S-bimodules become left
S-modules.
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uses nowhere near the full strength of Hochschild homology, which is the derived functor of the

co-invariants functor we apply as the first step of Qu. It would be interesting to understand the

properties of this operation more precisely, especially to see whether it can be reproduced via an

extra set of differentials on the Hochschild chain complex of F τ (σ), as conjectured in [6]. We plan

to return to these questions in future work.

This rather mysterious operation is somewhat clearer on the other side of the edge-strand corre-

spondence. As we showed in Proposition 3.3.1, the twisted Soergel bimodule associated to a layered

singular braid can instead be viewed as AI(Dσ)⊗Z Q, where

AI(Dσ) =
Z[t−1, t]][x(Dσ)]
LI(Dσ) +NI(Dσ)

as defined in Section 3.1. We proved in Proposition 3.1.1 that NI(Dσ) ⊂ LI(Dσ) when Dσ is a

layered braid diagram, so in fact we could have defined AI(Dσ) = Z[t−1,t]][x(Dσ)]
LI(Dσ) instead.

Since the edges incident to the top and bottom boundaries of the braid will play a special role

in the closure operation Qu, we introduce a notational shorthand for them and change our other

notation to emphasize that edges between vertices of the graph obtained by resolving a braid play

a different role from edges between vertices in the resolution and the boundaries of the braid. Let

z1
τ , . . . , z

b
τ be the edges incident to the top boundary of Dσ, labeled such that ziτ is on the ith strand.

Let z1
β , . . . , z

b
β be the edges incident to the bottom boundary of Dσ labeled such that ziβ is on the ith

strand. We treat these not as new variables, but simply alternate names for the appropriate edges

already labeled by some subset of the variables x(Dσ) in the edge ring. We call edges labeled with a

ziτ or ziβ boundary edges and edges between vertices in Dσ internal edges. Our new convention will

be that xΓ,D\Γ does not include edges from Γ to the top boundary of the braid and likewise xD\Γ,Γ

does not include edges from the bottom boundary of the braid to Γ. The appropriate notation for

the non-local relation associated to a subset Γ in the I-resolution of Dσ is now

gΓ = tw(Γ)xΓ,D\ΓzΓ,τ − xD\Γ,Γzβ,Γ.

Under the edge-strand correspondence, the first step in the operation Qu is to take a quotient

by the ideal

Z = (z1
τ − z1

β , . . . , z
b−1
τ − zb−1

β ) ⊂ Z[t−1, t]][x(Dσ)].

We call Z the closure ideal and the set of generators above the closure relations. The second

step of Qu is to take a quotient by the kernel of multiplication by z1
τ · · · zb−1

τ as an automorphism

of AI(Dσ)/Z. By definition, this kernel consists of polynomials p ∈ Z[t−1, t]][x(Dσ)] such that

z1
τ · · · zb−1

τ p ∈ LI(Dσ)+NI(Dσ)+Z. In other words, it is the ideal quotient of LI(Dσ)+NI(Dσ)+Z

by the principal ideal (z1
τ · · · zb−1

τ ).
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Definition 4.1.1. Let I, J be ideals in a ring R. The ideal quotient of I by J is

I : J = {r ∈ R | rJ ⊂ I}.

Note that I is always contained in I :J .

Putting the two steps together, the operation Qu is defined to be

Z[t−1,t]][x(Dσ)]
LI(Dσ)+NI(Dσ)

� Qu // Z[t−1,t]][x(Dσ)]

(LI(Dσ)+NI(Dσ)+Z):(z1
τ ···z

b−1
τ )

Our conjecture is that Qu recovers the algebra AI(Dbσ) associated to the closure of the I-resolution

of the layered singular braid diagram Dbσ, which means that the ideal quotient should recover the

non-local relations associated to subsets in the closed braid diagram. A precise formulation of the

conjecture stated in Chapter 1 and earlier in this chapter is as follows.

Conjecture 4.1.1. Let σ be a braid, Dσ a layered braid diagram, and Dbσ a layered braid diagram

for its closure. Then

(LI(Dσ) +NI(Dσ) + Z) :
(
z1
τ · · · zb−1

τ

)
= LI(Dbσ) +NI(Dbσ) + Z (4.2)

as ideals in Z[t−1, t]][x(Dσ)].

Building on the intuition behind the proof that NI(Dσ) ⊂ LI(Dσ), we introduce the ideal

quotient because it allows us to build the non-local relations in NI(Dbσ) by taking edge-ring-linear

combinations of quadratic relations, then dividing by as many of the zjτ as desired. The non-local

relation associated to a subset in a closed braid diagram differs from the non-local relation associated

to the same subset in the non-closed braid diagram only because edges incident to the top and bottom

boundaries of the braid are considered distinct in the former diagram, but not in the latter. If the

top-most and bottom-most edges on a strand are both incident to vertices in a certain subset, then

they are edges “from the subset to its complement” or “from the complement to the subset” in the

non-closed diagram, but not in the closed diagram. The result of Proposition 3.1.1 can be re-stated

as LI(Dbσ) + NI(Dbσ) + Z ⊂ (LI(Dσ) +NI(Dσ) + Z) :
(
z1
τ · · · zb−1

τ

)
. The difficulty is in showing

that the opposite inclusion holds.

For now, we prove a weaker statement than that of Conjecture 4.1.1. First, we work over Q

rather than Q[t−1, t]] or Z[t−1, t]]. Given a braid σ, layered braid diagram Dσ, and a layered braid

diagram Dbσ for the closure of σ, let E ′(Dσ) and E ′(Dbσ) be polynomial rings over Q with one

indeterminate for each edge in Dσ or Dbσ respectively. Define L′I(Dσ) and L′I(Dbσ) to be the ideals of

E ′(Dσ) and E ′(Dbσ) obtained by removing the extra parameter t in the definition of the generating

sets of LI(Dσ) and LI(Dbσ). In other words, LI(Dσ) and LI(Dbσ) are generated by local relations
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xa+xb−xc−xd and xaxb−xcxd for each 4-valent vertex and xi+1−xi for each bivalent vertex in Dσ

or Dbσ as appropriate. Similarly, define modified ideals of non-local relations N ′I(Dσ) and N ′I(Dbσ)

by removing the extra parameter t from the corresponding definitions in Chapters 2 and 3. Finally,

let Q′I(Dσ) ⊂ L′I(Dσ) and Q′I(Dbσ) ⊂ L′I(Dbσ) denote the ideals generated by only the quadratic

generators xaxb − xcxd associated to 4-valent vertices and the generators xi+1 − xi associated to

bivalent vertices. The main result in this chapter is as follows.

Theorem 4.1.1. With notation as above, the following holds among ideals of E ′(Dσ).

(Q′I(Dσ) +N ′I(Dσ) + Z) :
(
z1
τ · · · zb−1

τ

)
= Q′I(Dbσ) +N ′I(Dbσ) + Z (4.3)

We expect that the proof of this result can be quickly adapted to work over Q[t−1, t]] withQ′I(Dσ),

Q′I(Dbσ), N ′I(Dσ), andN ′I(Dbσ) replaced by the original ideals of relations that do use the parameter t.

We expect the same method of proof to apply to the stronger statement of Conjecture 4.1.1, but

re-introducing the linear local relations associated to 4-valent vertices may complicate the argument

considerably.

4.2 Background: Gröbner bases and Buchberger’s algorithm

We approach Theorem 4.1.1 as a calculation: given generating sets for two ideals in a polynomial

ring, create a generating set for their ideal quotient. In fact, we would like to re-create a previously

specified generating set. Gröbner bases are a convenient tool for this sort of commutative algebra

calculation. They make it possible to generalize sensibly the division algorithm for single-variable

polynomials to a division algorithm for multivariable polynomials, thereby reducing certain difficult

questions in commutative algebra and algebraic geometry to computational problems. Gröbner

bases are the foundation of computer algebra programs that do commutative algebra in polynomial

rings, such as Macaulay 2 [11]. In this section, we define Gröbner bases, describe an algorithm for

converting an arbitrary generating set for an ideal into a Gröbner basis, and explain how Gröbner

bases can be used to calculate generating sets for ideal intersections and quotients. The exposition

here is an adaptation of that in [1].

4.2.1 Monomial orderings

Let k be a field and k [x0, . . . , xn] = k [x] a polynomial ring over it.2

2 Much of this material generalizes to the case where k is a Noetherian commutative ring, but certain computability
properties are required of the ring for the full theory of Gröbner bases to generalize.
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Definition 4.2.1. A monomial ordering is a total ordering of the monomials xα0
0 · · ·xαnn in k [x]

that satisfies

1. 1 < xα0
0 · · ·xαnn for all monomials with αi not all zero, and

2. y < y′ implies yz < y′z for any monomials y, y′, z in k [x].

We will use the lexicographic ordering on k [x] in which x0 > x1 > · · · > xn > 1. This means

that xα0
0 · · ·xαnn > xβ0

0 · · ·xβnn when αi > βi for the first i at which the exponents differ. The largest

monomial is written first. For example, the following polynomials are written correctly with respect

to the lexicographic term order.

f1 = x2
1x2 − x1x

2
2 f2 = 2x1 − x2x3x4 f3 = x5 + 4x3

6 − 1

Throughout the remainder of this chapter, we will write polynomials with respect to the lexicographic

order unless we specify otherwise. Given a monomial ordering, we will denote the leading term and

the leading monomial of a polynomial f ∈ k [x] by LT(f) and LM(f) respectively. For example,

LT(f2) = 2x1 and LM(f2) = x1. There will be no difference between leading terms and leading

monomials for most of this chapter because our coefficients are always ±1

4.2.2 Gröbner bases and the division algorithm

A Gröbner basis is a generating set for an ideal that accounts for all possible leading monomials of

polynomials in that ideal.

Definition 4.2.2. A Gröbner basis for an ideal I ⊂ k [x] is a set of polynomials g1, . . . , gk in I such

that for any f ∈ I, there is some i for which LM(gi) divides LM(f).

It follows from the Hilbert Basis Theorem and a few basic observations that every nonzero ideal in

k [x] has a Gröbner basis [1, Corollary 1.6.5]. Gröbner bases are not unique and are typically highly

redundant; an ideal typically has a smaller generating set that is not a Gröbner basis.

The key advantage of Gröbner bases over other generating sets is that they make it possible

to generalize the division algorithm to multivariable polynomials in a useful way. Generalizing the

algorithm is straightforward enough: To divide f by g in k [x], we see whether LM(g) divides LM(f).

If it does, we record LM(f)/LM(g) as a term of the quotient and replace f by f − LM(f)
LM(g) g. If

not, we record LT(f) as a term in the remainder and replace f with f − LT(f). Continuing this

process as long as possible, we eventually obtain a decomposition of f as f = qg + r for some

q, r ∈ k [x]. We may also divide f by a collection of polynomials g1, . . . , gk to obtain a decomposition

f = q1g1 + · · · + qkgk + r. (Such a calculation is not interesting in the single variable case, since
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every ideal in k [x] is principal.) At each step, we look for the first i such that LM(gi) divides LM(f),

then record LM(f)/LM(gi) as a term in the quotient qi and replace f by f − LM(f)
LM(gi)

gi. If no LM(gi)

divides LM(f), then we record LT(f) as a term in the remainder r and replace f with f − LT(f).

We will write

f
g1,...,gk−−−−−→ r

and say “f reduces to r via g1, . . . , gk” if r is obtained as a remainder when using this algorithm to

divide f by g1, . . . , gk. In general, the result of this algorithm depends on the monomial ordering

chosen on k [x] and the order in which the polynomials g1, . . . , gk are listed. Neither the quotients

q1, . . . , qk nor the remainder r are unique. Consequently, this generalized division algorithm on its

own is of little use. It is not true, for example, that the remainder r is zero if and only if f is in the

ideal generated by g1, . . . , gk.

However, if g1, . . . , gk are a Gröbner basis for the ideal they generate, then the remainder r is

unique: it does not depend on the monomial ordering or on the order in which the gi are listed.

The quotients are still not unique, but the uniqueness of the remainder is sufficient to make the

generalized division algorithm useful for commutative algebra computations. If g1, . . . , gk are a

Gröbner basis for the ideal they generate, then f ∈ (g1, . . . , gk) if and only if f reduces to zero via

g1, . . . , gk.

4.2.3 Buchberger’s algorithm and ideal quotients

Buchberger [4] developed an algorithm for converting any generating set of an ideal into a Gröbner

basis. Such an algorithm must produce new generators that account for all possible leading monomi-

als of polynomials in the ideal. New leading monomials arise when a linear combination of existing

generators causes their leading terms to cancel. Buchberger’s algorithm systematically produces

these cancellations using S-polynomials.

Definition 4.2.3. The S-polynomial of two non-zero polynomials f, g ∈ k [x] is

S(f, g) =
lcm(LM(f),LM(g))

LT(f)
f − lcm(LM(f),LM(g))

LT(g)
g,

where f ′ = f − LT(f) and g′ = g − LT(g).

If LT(f) = LM(f) and LT(g) = LM(g), as will be the case throughout this chapter, then the formula

for an S-polynomial simplifies to

S(f, g) =
LM(f)LM(g)

gcd(LM(f),LM(g))
f ′ − LM(f)LM(g)

gcd(LM(f),LM(g))
g′.
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Buchberger’s theorem [1, Theorem 1.7.4] is that a generating set g1, . . . , gk for an ideal I ⊂ k [x]

is a Gröbner basis for I if and only if S(gi, gj)
g1,...,gk−−−−−→ 0 for all i 6= j. Buchberger’s algorithm, then,

is as follows.

1. Let g1, . . . , gk be a generating set for an ideal I ⊂ k [x].

2. Compute S(gi, gj) for some i 6= j and attempt to reduce it via g1, . . . , gk using the generalized

division algorithm.

3. If S(gi, gj)
g1,...,gk−−−−−→ 0, go back to the previous step and compute a different S-polynomial. If

S(gi, gj)
g1,...,gk−−−−−→ r and r 6= 0, then add r to a working basis.

4. Repeat the previous two steps until a basis g1, . . . , gk+s is obtained for which S(gi, gj)
g1,...,gk+s−−−−−−→

0 for all i 6= j.

Buchberger [4] proved that this algorithm terminates and produces a Gröbner basis for I.

We will use Buchberger’s algorithm to produce an explicit generating set for (Q′I(Dσ)+N ′I(Dσ)+

Z) : (z1
τ · · · zb−1

τ ) in terms of the generating sets for Q′I(Dσ), N ′I(Dσ) and Z. The generating set

we produce will be readily recognizable as the generators by which Q′I(Dbσ), Z, and N ′I(Dbσ) were

defined, so this computation will prove Theorem 4.1.1. The first step is to produce a generating set

for the intersection (Q′I(Dσ) +N ′I(Dσ) +Z)∩ (z1
τ · · · zb−1

τ ). The following proposition explains how

a generating set for an intersection yields a generating set for a quotient.

Proposition 4.2.1. Let I ⊂ R be an ideal in a commutative ring and x ∈ R not a zero divisor. If

h1, . . . , hk is a generating set for I ∩ (x), then h1
x , . . . ,

hk
x is a generating set for I : (x).

Proof. For polynomial rings, this is [5, Theorem 11, Chapter 4]. We repeat the straightforward

argument given there to clarify why the non-zero-divisor hypothesis is needed if R is not a polynomial

ring. Since each hj ∈ I ∩ (x), each hj ∈ (x), which means there exists h′j ∈ R such that h′jx = hj .

Suppose f = a1h
′
1+· · ·+akh′k for some a1, . . . , ak ∈ R. Then fx = a1h1+· · ·+akhk. So fx ∈ I∩(x).

In particular fx ∈ I, so f ∈ I : (x). Suppose f ∈ I : (x). Then fx ∈ I and fx ∈ (x), so there exist

a1, . . . , ak ∈ R such that fx = a1h1 + · · · + akhk = a1h
′
1x + · · · + akh

′
kx = (a1h

′
1 + · · · + akh

′
k)x.

Since x is not a zero divisor, we may cancel to obtain f = a1h
′
1 + · · ·+ akh

′
k.

To produce a Gröbner basis for an intersection, we follow the method prescribed in [1, Section

2.3]. Suppose that I, J ⊂ k [x0, . . . , xn] are ideals with generating sets p1, . . . , pk and q1, . . . , qm

respectively. Enlarge the polynomial ring to include a dummy variable ν. Define the monomial

order on k [x0, . . . , xn, ν] to be lexicographic with ν > x0 > · · · > xn > 1. (The lexicographic
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ordering is a special case of an “elimination ordering” which is what is actually required for this

procedure to work.) Then

I ∩ J = (νI + (1− ν)J) ∩ k [x0, . . . , xn]

and a Gröbner basis for I ∩J can be obtained from a Gröbner basis for νI+(1−ν)J by intersecting

the basis with k [x0, . . . , xn] [1, Theorem 2.3.4]. Therefore, to obtain a basis for I ∩ J , we apply

Buchberger’s algorithm to the basis

νp1, . . . , νpk, (1− ν)q1, . . . , (1− ν)qk

and discard any generator in which ν appears.

4.2.4 Simplifying Gröbner basis computations

We record here a collection of propositions that will simplify computations encountered when apply-

ing Buchberger’s algorithm. We assume throughout that all coefficients are ±1 and use LT in place

of LM in all S-polynomials. First, we establish that Buchberger’s algorithm applied to a basis that

consists of differences of monomials will produce a basis that consists of differences of monomials.

Proposition 4.2.2. If h1, . . . , hk are a basis for an ideal I and each hi is a difference of monomials

h′i − h′′i , then the Gröbner basis obtained by applying Buchberger’s algorithm to h1, . . . , hk will also

consist of differences of monomials.

Proof. We first check that the S-polynomial of two differences of monomials is again a difference of

monomials. Let d = gcd(LT(h′i),LT(h′′i )). Then

S(h′i − h′′i , h′j − h′′j ) =
h′j
d

(−h′′i )− h′i
d

(−h′′j ),

which may not be the correct term order, but is in either case a difference of monomials.

The other steps of Buchberger’s algorithm are applications of the generalized division algorithm.

If a difference of monomials is being reduced by other differences of monomials, then each step of

the division algorithm involves subtracting one difference of monomials from another such that their

leading terms cancel. The result is the difference of their trailing terms, which is again a difference

of monomials.

Second, we notice that there are some situations in which there is no need to compute an S-

polynomial explicitly. In other situations, we can compute many S-polynomials in terms of a single

simpler S-polynomial.
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Proposition 4.2.3. Let f, g ∈ k [x]. If gcd(LT(f),LT(g)) = 1, then S(f, g)
f,g−−→ 0.

Proof. Let f = LT(f) + f ′ and g = LT(g) + g′. Then we can compute and reduce S(f, g) as follows.

The two possible term orders are considered in two columns.

S(f, g) = LT(g)f ′ − LT(f)g′ or S(f, g) = −LT(f)g′ + LT(g)f ′

reduce − f ′(LT(g) + g′) reduce + g′(LT(f) + f ′)

= −g′(LT(f) + f ′) = f ′(LT(g) + g′)

reduce + g′f reduce + f ′g

= 0 = 0

Proposition 4.2.4. Let f, g ∈ k [x]. For any a ∈ k [x],

S(af, ag) = aS(f, g).

If gcd(a, b) = gcd(a,LT(g)) = gcd(b,LT(f)) = 1, then

S(af, bg) = abS(f, g).

Proof. Let d = gcd(LT(f),LT(g)) and f = LT(f) + f ′ and g = LT(g) + g′. Then we compute as

follows for the first claim.

S(af, ag) =
aLT(g)
ad

af ′ − aLT(f)
ad

ag′

= a

(
LT(g)
d

f ′ − LT(f)
d

g′
)

= aS(f, g)

For the second claim, the key observation is that lcm(af, bg) = ab lcm(f, g) and the computation is

as follows.

S(af, bg) =
ab lcm(f, g)
aLT(f)

af ′ − ab lcm(f, g)
bLT(g)

bg′

= ab

(
lcm(f, g)

LT(f)
f ′ − lcm(f, g)

LT(g)
g′
)

= abS(f, g)

Finally, we will sometimes encounter expressions with unknown term order after computing an

S-polynomial. The following proposition allows us to reduce some such expressions without ever

determining their term order.

Proposition 4.2.5. Let p, q, r, s ∈ k [x] be monomials whose relationships to each other under the

monomial ordering are unknown. Then whichever of ps−rq or rq−ps is correctly ordered is reducible

by the correctly ordered versions of p− q and r − s.
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Proof. Suppose that ps − rq is correctly ordered, so ps > rq. Then either p > q or s > r or

both. Assume without loss of generality that p > q. Then term orders are correct in the following

computation.

ps− rq

reduce: − s(p− q)

= q(s− r) or q(r − s)

The term order in the last line depends on whether r < s or s < r. Either way, the last expression

reduces by the version of r − s with the correct term order.

If instead rq − ps is correctly ordered, then either q > p or r > s or both. Without loss of

generality, assume q > p. Reduce by q− p to get p(r− s) or p(s− r) depending on which term order

is correct for r − s. Either way, the result reduces by the correctly ordered version of r − s.

4.3 Buchberger’s algorithm: Preliminaries

Gröbner bases and Buchberger’s algorithm offer a concrete, if computationally intensive, approach

to our claim that the ideal of non-local relations arises as an ideal quotient of the quadratic and

closure relations by the product of the edges incident to the top boundary of the braid. With

a carefully chosen monomial order, the computations and reductions of S-polynomials prescribed

by Buchberger’s algorithm actually produce exactly the standard non-local relations associated to

subsets in a layered (closed) braid diagram. Moreover, it is possible to interpret all S-polynomial

computations with reference to the braid diagram, and thereby ensure that Buchberger’s algorithm

produces no extraneous generators for the ideal quotient aside from the expected quadratic, closure,

and non-local relations.

The first step is to define a monomial ordering on the edge ring associated to a layered braid

diagram. We do this by re-labeling edges. Let Dσ be a layered braid diagram for the layered

braid σ ∈ Brb ⊕ 〈λ〉. Label the edges of Dσ with x0, . . . , x(m+1)b−1 from top to bottom, right to

left. Using the linear relations xi − xi+1 associated to bivalent vertices, eliminate edge variables

associated to the incoming edges of bivalent vertices. Let x0, . . . , xn be the remaining edge variables

so that the edge ring E ′(Dσ) is Q[x′]. Let zτ =
∏b−1
i=1 z

i
τ denote the product of the edge variables

incident to the top boundary of Dσ, labeled from right to left and excluding the outermost edge.

Let zβ =
∏b−1
i=1 z

i
β denote the similar product of the edge variables incident to the bottom boundary

of Dσ. For simplicity, we will drop σ from the notation in most of this chapter, since the braid will

remain fixed throughout, and use D to denote a complete resolution of Dσ.
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The algorithm for finding a Gröbner basis of the intersection (Q′I(Dσ) + N ′I(Dσ) + Z) ∩ (zτ )

takes place in the ring Q[x′, ν] with the lexicographic ordering where ν > x0 > · · · > xn. This

ordering and the edge labeling rules above guarantee that the edges incident to any 4-valent vertex

have a consistent order: upper right, lower right, upper left, lower left. Let q0, . . . , qm denote the

standard quadratic relations associated to 4-valent vertices presented as differences of monomials.

With respect to this monomial ordering, qi is written q out
i − q in

i , where q out
i is the product of the

outgoing edges from vertex i and q in
i is the product of incoming edges to vertex i. The standard

generators of the ideal of closure relations are written ziτ − ziβ .

As before, we will write xΓ,∆ for the product of edges in D from Γ ⊂ D to ∆ ⊂ D. Note that

such products cannot be divisible by zjτ or zjβ for any j. We will write zΓ,τ for the product of edges

from vertices in Γ to the top boundary of D and zβ,Γ for the product of edges from the bottom

boundary of D to Γ. We will sometimes need to replace the edge variables zjτ in a product with their

counterparts zjβ under the closure relations. In that case, we add β as a superscript. For example,

zβΓ,τ denotes the product of zjβ for j such that zjτ is outgoing from Γ. Note that zβΓ,τ 6= zβ,Γ in

general. The former is the β-equivalents of the outgoing edges from Γ to the top boundary of D,

while the latter is the edges from the bottom boundary of D into Γ. We also write zΓ,τ,∆ to denote

the product of zjτ such that zjτ is outgoing from Γ and zjβ is incoming to ∆. Similarly, zΓ,β,∆ is the

product of zjβ such that zjτ is outgoing from Γ and zjβ is incoming to ∆. These are products of edges

that would go from Γ to ∆ in the braid closure of the diagram D but do not in D.

In this notation, the relation in N ′I(Dσ) associated to a subset Γ of vertices in D is

gΓ = xΓ,D\ΓzΓ,τ − xD\Γ,Γzβ,Γ. (4.4)

We write gout
Γ and gin

Γ for the first and second terms, respectively. Note that (4.4) shows the

correct term order for this polynomial: the outgoing edges of the right-most, upper-most vertex in

Γ determine the leading term. The quadratic relations qi are a special case of gΓ when Γ is a single

vertex. Therefore, the set of gΓ for all Γ ⊂ D is a generating set for Q′I(Dσ)+N ′I(Dσ). Setting t = 1

in the proof of Proposition 3.3.1 of Chapter 3 shows that N ′I(Dσ) ⊂ Q′I(Dσ), so we could instead

say that the polynomials gΓ are a (highly redundant) generating set for Q′I(Dσ).

The relation associated to a subset in Dbσ is

nΓ = xΓ,D\ΓzΓ,τ,D\Γ − xD\Γ,ΓzD\Γ,β,Γ. (4.5)

We also write nout
Γ and nin

Γ for the first and second terms, respectively. The term order shown in

(4.5) is correct for the same reasons as above. The generators gΓ of N ′I(Dσ) and nΓ of N ′I(Dbσ) are

closely related: gout
Γ = zΓ,τ,Γn

out
Γ and gin

Γ = zΓ,β,Γn
in
Γ . In particular, for subsets that do not have any

edges incident to the top or bottom boundary of D, the relations gΓ and nΓ are identical.
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We have now established that the following is a basis for Q′I(Dσ) +N ′I(Dσ) + Z in E ′(Dσ):

Q′I(Dσ) +N ′I(Dσ) + Z =
(
{gΓ}Γ⊂D, z1

τ − z1
β , . . . , z

b−1
τ − zb−1

β

)
(4.6)

and that we hope to add generators nΓ for all Γ ⊂ D to this basis over the course of Buchberger’s

algorithm. By Section 4.2, the first step to obtaining a Gröbner basis for (Q′I(Dσ) +N ′I(Dσ) + Z) :

(zτ ) is to find a Gröbner basis for the intersection, which we can do by applying Buchberger’s

algorithm to

G0 =
(
{νgΓ}Γ⊂D, νz1

τ − νz1
β , . . . , νz

b−1
τ − νzb−1

β , νzτ − zτ
)
.

We will now apply Buchberger’s algorithm to this basis. As we compute S-polynomials, we will record

the results in tables showing any propositions used and whether the result of the S-polynomial was

added to the working basis.

4.4 Buchberger’s algorithm: Round 1

Table 4.1 tracks the S-polynomials we compute in this section. We begin by dispensing with some

S-polynomials that are easily seen to reduce to zero within the original generating set G0.

Proposition 4.4.1. Let Γ,∆ ⊂ D with Γ ∩∆ = ∅. Assume i 6= j. Then

S(gΓ, g∆)
gΓ,g∆−−−−→ 0 (4.7)

S(ziτ − ziβ , zjτ − z
j
β)

ziτ−z
i
β ,z

j
τ−z

j
β−−−−−−−−−→ 0 (4.8)

and if zjτ is not outgoing from any vertex in Γ

S(gΓ, z
j
τ − z

j
β)

gΓ,z
j
τ−z

j
β−−−−−−→ 0 (4.9)

Proof. In each case, the leading terms of the two generators in the S-polynomial have no common

divisors. Since Γ and ∆ do not share any vertices, and each edge is outgoing from only one vertex, Γ

and ∆ cannot share any outgoing edges. By Proposition 4.2.3, an S-polynomial of generators whose

leading terms share no common divisors reduces to zero via the generators themselves.

Next, we consider S-polynomials between gΓ and closure relations for strands on which Γ does

have outgoing edges to the top boundary of D. If computed in the appropriate order, these produce

a new form of subset relations that we will call the bar relations:

gΓ = xΓ,D\Γz
β
Γ,τ − xD\Γ,Γzβ,Γ,

where zβΓ,τ is the product of all ziβ such that ziτ is outgoing from Γ. These new relations may have

either term order.
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Proposition 4.4.2. Let Γ ⊂ D and zΓ,τ =
∏p
i=1 z

ji
τ be the product of edges outgoing from Γ to the

top boundary of D labeled such that j1 > · · · > jp. Then for any 1 ≤ k ≤ p,

S(gΓ, z
jk
τ − z

jk
β )

{zjiτ −z
ji
β }i6=k−−−−−−−−→ gΓ = xΓ,D\Γz

β
Γ,τ − xD\Γ,Γzβ,Γ.

Either term order is possible.

Proof. First consider the case that k = p and assume that p 6= 1. Then we have the following

calculation, where the leading term from the second line until (but not including) the last line is

determined by either zj1τ or some divisor of xΓ,D\Γ. The leading term in the last line is unknown.

S(gΓ, z
jp
τ − z

jp
β ) =

xΓ,D\ΓzΓ,τ

xΓ,D\ΓzΓ,τ

(
−xD\Γ,Γzβ,Γ

)
−
xΓ,D\ΓzΓ,τ

z
jp
τ

(
−zjpβ

)
= xΓ,D\Γ

zΓ,τ

z
jp
τ

z
jp
β − xD\Γ,Γzβ,Γ

reduce − xΓ,D\Γ
zΓ,τ

z
jp
τ z

jp−1
τ

z
jp
β

(
zjp−1
τ − zjp−1

β

)
...

reduce − xΓ,D\Γ
zΓ,τ

z
jp
τ · · · zjiτ

z
ji+1
β · · · zjpβ

(
zjiτ − z

ji
β

)
...

= xΓ,D\Γz
β
Γ,τ − xD\Γ,Γzβ,Γ

While it is convenient to do the calculation in this order, it is not necessary. The leading term

of gΓ is determined either by some divisor of xΓ,D\Γ or by zj1τ . In the first case, any S-polynomial

of the form in the proposition statement will yield an expression with leading term xΓ,D\Γ
zΓ,τ

z
jk
τ

zjkβ .

This expression can then be reduced by all of the other zjiτ − z
ji
β in any order because the factor

xΓ,D\Γ will always guarantee that the term containing zjiτ leads.

In the second case, when zj1τ determines the leading term, then the same argument shows that

S(gΓ, z
jk
τ − z

jk
β ) can be reduced as claimed for k 6= 1. However, when k = 1, there is one situation

in which the term order may reverse at the first step, which is as follows. Since zj1τ is the largest

of the ji, it must be the rightmost outgoing edge from its vertex (i.e. the outgoing edge nearer to

the braid axis). Since zj1τ determines leadership of gΓ, there can be no divisor of xΓ,D\Γ or xD\Γ,Γ

that is greater than zj1τ , so there can be no edge of Γ on a strand closer to the braid axis than j1.

Therefore, the second largest divisor of either monomial in gΓ must be the rightmost incoming edge

of the same vertex where zj1τ is the rightmost outgoing edge. This edge is a divisor of xD\Γ,Γ and

determines leadership in S(gΓ, z
j1
τ −z

j1
β ). The same edge determines leadership in gΓ, which we have

already produced via the more convenient order of S-polynomials. Therefore, we use gΓ to reduce
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as follows.

S(gΓ, z
j1
τ − z

j1
β ) = −xD\Γ,Γzβ,Γ + xΓ,D\Γ

zΓ,τ

zj1τ
zj1β

reduce + xD\Γ,Γzβ,Γ − xΓ,D\Γz
β
Γ,τ

= xΓ,D\Γ

(
zΓ,τ

zj1τ
zj1β − z

β
Γ,τ

)
Both terms in this last expression are divisible by zj1β , so the leading term is determined by zj2τ .

Now reducing sequentially from k = p down to k = 2 by zjkτ − z
jk
β produces zero.

The term order of a bar relation depends on the subset Γ. Whether a bar relation’s leading term

is a product of outgoing edges from Γ or incoming edges to Γ will change how it interacts with other

subset relations throughout the algorithm.

Definition 4.4.1. A subset Γ ⊂ D is in-led if the maximal (with respect to the monomial order)

edge between Γ and D \Γ in D, or incoming to Γ from the bottom boundary of D, is incoming to Γ.

The subset Γ ⊂ D is out-led if the maximal such edge is outgoing from Γ.

4.4.1 S-polynomials with νzτ − zτ

Next, we examine the S-polynomials with νzτ −zτ . As the only element of G0 that is not divisible by

ν, it plays a special role. Proposition 4.2.4 implies that S-polynomials among the generators divisible

by ν are equal to ν times an S-polynomial of the underlying generators ofQ′I(Dσ)+N ′I(Dσ)+Z in the

basis given in (4.6). Therefore, the steps of Buchberger’s algorithm on G0 that do not involve νzτ−zτ
are parallel to the steps of Buchberger’s algorithm applied to the basis for Q′I(Dσ) +N ′I(Dσ) + Z

in (4.6). So, in the process of running Buchberger’s algorithm on G0 we incidentally produce a

Gröbner basis for Q′I(Dσ) +N ′I(Dσ) + Z itself, except that every basis element is multiplied by ν.

By contrast, the S-polynomials involving νzτ−zτ have no parallel in Buchberger’s algorithm applied

to a basis for Q′I(Dσ) + N ′I(Dσ) + Z. They are the only steps of the algorithm that can possibly

produce generators that do not involve ν in any of their terms. The plan, of course, is to eventually

discard any generator that uses ν, so the precursors to generators nΓ that we are hoping to find in

the ideal quotient will have to be produced by νzτ − zτ .

Proposition 4.4.3. Let f ∈ Q[x′] and f = LT(f) + f ′. Then

S(νzτ − zτ , zτf)
νzτ−zτ ,zτf−−−−−−−−→ 0 (4.10)
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If also gcd(LT(f), zτ ) = 1, then

S(νzτ − zτ , νf) νzτ−zτ−−−−−→ −zτf (4.11)

S(νzτ − zτ , f)
νzτ−zτ ,f−−−−−−→ 0. (4.12)

If gcd(LT(f), zτ ) = d 6= 1, then

S(νzτ − zτ , νf) = −zτ
d

(νf ′ + LT(f)) (4.13)

S(νzτ − zτ , νLT(f) + f ′) = −zτ
d
f (4.14)

Proof. The least common multiple of the leading terms in the first three cases is νzτLT(f). In the

second and third cases, this is true only because of the assumption that no term of f is divisible

by ν and that the leading term of f has no divisors in common with zτ . We calculate the first

S-polynomial above as follows.

S(νzτ − zτ , zτf) =
νzτLT(f)

νzτ
(−zτ )− νzτLT(f)

zτLT(f)
(zτf ′)

= −νzτf ′ − zτLT(f) LT determined by ν

reduce + f ′ (νzτ − zτ )

= −zτf

reduce + zτf

= 0

The next two claims follow from similar calculations.

Finally, when gcd(LT(f), zτ ) = d, the least common multiple of the leading terms in either case

is νzτLT(f)
d . Given this, we calculate as follows.

S(νzτ − zτ , νf) =
νzτLT(f)
dνzτ

(−zτ )− νzτLT(f)
dνLT(f)

(νf ′)

=− zτ
d
νf ′ − zτ

d
LT(f) LT determined by ν

=− zτ
d

(νf ′ + LT(f)) LT determined by ν

The last case is similar.

Proposition 4.4.3 has the following corollary, which explains the basic mechanism by which

applications of S(νzτ − zτ ,−) create generators that will survive when we eventually discard all

generators containing ν. Applied twice, S(νzτ − zτ ,−) strips any factors of ziτ that divide both
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terms of a generator of the form νf , where f is a difference of monomials, replaces those factors

with zτ , and removes ν.

Corollary 4.4.4. Let f ∈ Q[x′], f = LT(f) + f ′, and d′′τ = gcd(LT(f), f ′, zτ ). Then

S(νzτ − zτ , S(νzτ − zτ , νf)) = zτ
f

d′′τ
.

Proof. We must apply S(νzτ − zτ ,−) to the result in Equation 4.13 of Proposition 4.4.3 using the

result in Equation 4.14. The greatest common divisor needed to apply Equation 4.14 is

gcd
(
zτ ,

zτ
d
f ′
)

=
zτ
d

gcd(d, f ′) =
zτd
′′
τ

d
.

Therefore,

S(νzτ − zτ , S(νzτ − zτ , νf)) =
zτd

zτd′′τ

zτ
d
f =

zτ
d′′τ
f.

Applying S(νzτ − zτ ,−) to any of the closure relations νzjτ − νz
j
β follows the pattern of Proposi-

tion 4.4.3 in the case of a non-trivial greatest common divisor. The result always reduces to the same

new generator νzβ − zτ . This new generator is not divisible by ν and has a similar form to νzτ − zτ .

As we will make precise in the next section, S(νzβ − zτ ,−) behaves similarly to S(νzτ − zτ ,−).

Proposition 4.4.5. For any i = 1, . . . , b− 1,

S(νzτ − zτ , νziτ − νziβ)
{νzjτ−νz

j
β}i6=j−−−−−−−−−→ νzβ − zτ .

Proof. To avoid excessive indices, we compute for the case i = 1. The general case is similar, and

the reductions can be done in any order because the leading term will always be determined by ν.

S(νzτ − zτ , νz1
τ − νz1

β) = z2
τ · · · zb−1

τ

(
νz1
β − z1

τ

)
by Prop. 4.4.3

reduce − z1
βz

3
τ · · · zb−1

τ

(
νz2
τ − νz2

β

)
= νz1

βz
2
βz

3
τ · · · zb−1

τ − zτ LT determined by ν

...

reduce − z1
β · · · z

j−1
β zj+1

τ · · · zb−1
τ

(
νzjτ − νz

j
β

)
= νz1

β · · · z
j
βz
j+1
τ · · · zb−1

τ − zτ LT determined by ν

...

= νzβ − zτ
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Applying S(νzτ − zτ ,−) to a subset relation νgΓ produces one of three outcomes. First, if none

of the zjτ is outgoing from Γ, then by Proposition 4.4.3, S(νzτ − zτ , νgΓ) reduces to zτgΓ, which is

the precursor to gΓ appearing in the quotient ideal. If Γ does have at least one outgoing edge to the

top boundary of D and is in-led, then S(νzτ − zτ , gΓ) reduces to zero. If Γ has at least one outgoing

edge and is out-led, then S(νzτ − zτ ,−) produces a new type of generator, which has the form

g̃Γ = νxD\Γ,Γzβ,Γz
β
D\Γ,τ − xΓ,D\Γzτ .

We call these new generators tilde relations and add them to the working basis. Because they have

only one term divisible by ν, these generators behave similarly to νzτ−zτ and νzβ−zτ . We consider

their behavior in detail in Section 4.5.2

Proposition 4.4.6. Let Γ ⊂ D. If zΓ,τ = 1, then

S(νzτ − zτ , νgΓ)
νzτ−zτ , gΓ−−−−−−−→ zτgΓ. (4.15)

If zΓ,τ 6= 1, then

S(νzτ − zτ , νgΓ)
{zjτ−z

j
β}j∈D\Γ, νgΓ, νzβ−zτ−−−−−−−−−−−−−−−−−−→ 0 if Γ is in-led and (4.16)

S(νzτ − zτ , νgΓ)
{zjτ−z

j
β}j∈D\Γ−−−−−−−−−→ νxD\Γ,Γzβ,Γz

β
D\Γ,τ − xΓ,D\Γzτ = g̃Γ if Γ is out-led. (4.17)

Proof. In the first case, the leading terms of gΓ and νzτ − zτ have no common divisor. The result

then follows directly from Proposition 4.4.3.

In the second and third cases, the calculation begins as follows.

S(νzτ − zτ , νgΓ) =
νzτxΓ,D\Γ

νzτ
(−zτ )−

νzτxΓ,D\Γ

νxΓ,D\ΓzΓ,τ

(
−νxD\Γ,Γzβ,Γ

)
= νzD\Γ,τxD\Γ,Γzβ,Γ − xΓ,D\Γzτ LT det. by ν

This expression can be reduced by νzjτ −νz
j
β for all zjτ that divide zD\Γ,τ . The term order will never

change because the expression above has ν in only one term, while the expressions we reduce by

have ν in both terms. These reductions produce

g̃Γ = νxD\Γ,Γzβ,Γz
β
D\Γ,τ − xΓ,D\Γzτ

If Γ is in-led, then we may use νgΓ to reduce further.

= νzβD\Γ,τxD\Γ,Γzβ,Γ − xΓ,D\Γzτ

reduce − zβD\Γ,τ
(
νxD\Γ,Γzβ,Γ − νxΓ,D\Γz

β
Γ,τ

)
= νxΓ,D\Γz

β
Γ,τz

β
D\Γ,τ − xΓ,D\Γzτ

= xΓ,D\Γ (νzβ − zτ ) ,

which reduces to zero by νzβ − zτ .
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4.4.2 S-polynomials among subset relations

The final S-polynomial to check in Round 1 is S(νgΓ, νg∆) when Γ ∩ ∆ 6= ∅. We will have to do

similar calculations in later rounds of Buchberger’s algorithm, so we establish a general principle

that will allow us to tackle the internal edges separately from the boundary edges.

Proposition 4.4.7. Let fx, f ′x, fz, f
′
z, gx, g

′
x, gz, g

′
z ∈ Q[x′] be monomials with the property that

any monomial with an x subscript is relatively prime to any monomial with a z subscript. Let

S(fx+f ′x, gx+g′x)1 and S(fx+f ′x, gx+g′x)2 denote the first and second terms of S(fx+f ′x, gx+g′x) as

written in the definition of S-polynomial in Section 4.2, not necessarily with respect to the monomial

ordering, and similarly for S(fz + f ′z, gz + g′z). Then

S(fxfz + f ′xf
′
z, gxgz + g′xg

′
z) = S(fx + f ′x, gx + g′x)1S(fz + f ′z, gz + g′z)1

− S(fx + f ′x, gx + g′x)2S(fz + f ′z, gz + g′z)2

S(fx+f ′x,gx+g′x),S(fz+f ′z,gz+g′z)−−−−−−−−−−−−−−−−−−−−−−→ 0

Proof. The assumptions about greatest common divisors among the monomials mean that

lcm(fxfz, gxgz) =
fxfzgxgz

gcd(fx, gx) gcd(fz, gz)
= lcm(fx, gx)lcm(fz, gz).

The S-polynomial calculations proceed as follows.

S(fxfz + f ′xf
′
z, gxgz + g′xg

′
z) =

gxgz
gcd(fx, gx) gcd(fz, gz)

f ′xf
′
z −

fxfz
gcd(fx, gx) gcd(fz, gz)

g′xg
′
z

gx
gcd(fx, gx)

f ′x
gz

gcd(fz, gz)
f ′z −

fx
gcd(fx, gx)

g′x
fz

gcd(fz, gz)
g′z

The term order in this expression is not clear. However, the first term is a product of the first terms

of S(fx+f ′x, gx+ g′x) and S(fz +f ′z, gz + g′z) and the second term is a product of their second terms,

assuming everything is written as in Definition 4.2.3, not necessarily with respect to the monomial

ordering. Regardless of the correct term order, Proposition 4.2.5 shows that expressions of this form

reduce to zero by their constituent parts.

Proposition 4.4.8. Let Γ,∆ ⊂ D. Assume term orders of the S-polynomial input are as written.

Then

S(xΓ,D\Γ − xD\Γ,Γ, x∆,D\∆ − xD\∆,∆) = xD\(Γ∪∆),Γ∩∆

(
xout

∆\(Γ∩∆)x
in
Γ\(Γ∩∆) − x

out
Γ\(Γ∩∆)x

in
∆\(Γ∩∆)

)
,

where the term order of the result is unknown in general.
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Proof. This proof is mainly a long calculation. The outcome relies on the fact that least common

multiples and greatest common divisors of monomials behave in the same way as union and inter-

section of subsets. The greatest common divisor of the leading terms is xΓ∩∆,D\(Γ∪∆) so the least

common multiple is
xΓ,D\Γx∆,D\∆

xΓ∩∆,D\(Γ∪∆)
.

The least common multiple divided by each leading term is

xΓ,D\Γx∆,D\∆

xΓ∩∆,D\(Γ∪∆)xΓ,D\Γ
= x∆\(Γ∩∆),D\(Γ∪∆)x∆,Γ\(Γ∩∆)

xΓ,D\Γx∆,D\∆

xΓ∩∆,D\(Γ∪∆)x∆,D\∆
= xΓ\(Γ∩∆),D\(Γ∪∆)xΓ,∆\(Γ∩∆)

We may now compute the S-polynomial.

S(gΓ, g∆) = x∆\(Γ∩∆),D\(Γ∪∆)x∆,Γ\(Γ∩∆)xD\Γ,Γ + xΓ\(Γ∩∆),D\(Γ∪∆)xΓ,∆\(Γ∩∆)xD\∆,∆,

where term order is unknown. Expanding, then regrouping produces the form claimed in the propo-

sition. Term order is unknown throughout.

S(xΓ,D\Γ − xD\Γ,Γ, x∆,D\∆ − xD\∆,∆)

= x∆\(Γ∩∆),D\(Γ∪∆)x∆\(Γ∩∆),Γ\(Γ∩∆)xΓ∩∆,Γ\(Γ∩∆)

· x∆\(Γ∩∆),Γ\(Γ∩∆)xD\(Γ∪∆),Γ\(Γ∩∆)x∆\(Γ∩∆),Γ∩∆xD\(Γ∪∆),Γ∩∆

+ xΓ\(Γ∩∆),D\(Γ∪∆)xΓ\(Γ∩∆),∆\(Γ∩∆)xΓ∩∆,∆\(Γ∩∆)

· xΓ\(Γ∩∆),∆\(Γ∩∆)xD\(Γ∪∆),∆\(Γ∩∆)xΓ\(Γ∩∆),Γ∩∆xD\(Γ∪∆),Γ∩∆

= xD\(Γ∪∆),Γ∩∆(x∆\(Γ∩∆),D\∆xΓ∩∆,Γ\(Γ∩∆)xD\Γ,Γ\(Γ∩∆)x∆\(Γ∩∆),Γ∩∆

− xΓ\(Γ∩∆),D\ΓxΓ∩∆,∆\(Γ∩∆)xD\∆,∆\(Γ∩∆)xΓ\(Γ∩∆),Γ∩∆)

= xD\(Γ∪∆),Γ∩∆

(
xout

∆\(Γ∩∆)x
in
Γ\(Γ∩∆) − x

out
Γ\(Γ∩∆)x

in
∆\(Γ∩∆)

)
The calculation for the boundary edges is similar.

Proposition 4.4.9. Let Γ,∆ ⊂ D. Assume term orders of the S-polynomial input are as written.

Then

S(zΓ,τ − zβ,Γ, z∆,τ − zβ,∆) = zβ,Γ∩∆(z∆\(Γ∩∆),τzβ,Γ\(Γ∩∆) + zΓ\(Γ∩∆),τzβ,∆\(Γ∩∆)), (4.18)

where the term order of the result is unknown in general.

Proof. The least common multiple of the leading terms is zΓ∪∆,τ , so the S-polynomial calculation is

as follows.

S(zΓ,τ − zβ,Γ, z∆,τ − zβ,∆) =
zΓ∪∆,τ

zΓ,τ
(−zβ,Γ)− zΓ∪∆,τ

z∆,τ
(−zβ,∆)

= −z∆\(Γ∩∆),τzβ,Γ + zΓ\(Γ∩∆),τzβ,∆
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Factoring out zβ,Γ∩∆ from both terms finishes the calculation.

Combining the calculations in Propositions 4.4.8 and 4.4.9 with the general principle in Propo-

sition 4.4.7, we obtain S(gΓ, g∆) and see that it can always be reduced to zero.

Corollary 4.4.10. Let Γ,∆ ⊂ D. Then

S(gΓ, g∆) = xD\(Γ∪∆),Γ∩∆zβ,Γ∩∆

(
gout

∆\(Γ∩∆)g
in
Γ\(Γ∩∆) − g

out
Γ\(Γ∩∆)g

in
∆\(Γ∩∆)

)
(4.19)

gΓ\(Γ∩∆),g∆\(Γ∩∆)−−−−−−−−−−−−→ 0 (4.20)

Proof. Combine the previous two calculations to see that

S(gΓ, g∆) = xD\(Γ∪∆),Γ∩∆zβ,Γ∩∆(xout
∆\(Γ∩∆)x

in
Γ\(Γ∩∆)z∆\(Γ∩∆),τzβ,Γ\(Γ∩∆)

− xout
Γ\(Γ∩∆)x

in
∆\(Γ∩∆)zΓ\(Γ∩∆),τzβ,∆\(Γ∩∆))

= xD\(Γ∪∆),Γ∩∆zβ,Γ∩∆

(
gout

∆\(Γ∩∆)g
in
Γ\(Γ∩∆) − g

out
Γ\(Γ∩∆)g

in
∆\(Γ∩∆)

)
The term order here is unknown, but Proposition 4.2.5 shows that the expression reduces to zero

either way.

Table 4.1: S-polynomials Round 1

S (−,−) Result Prop. Action

S (νgΓ, νg∆) 0 Prop. 4.2.4 and 4.4.1 or 4.4.10 none

S
(
νziτ − νziβ , νzjτ − νz

j
β

)
0 Prop. 4.2.4 and 4.4.1 none

S
(
νgΓ, νz

j
τ − νz

j
β

)
0 or νgΓ Prop. 4.2.4 and 4.4.1 or 4.4.2 in G1

S (νgΓ, νzτ − zτ ) zτgΓ or 0 or g̃Γ Prop. 4.4.6 in G1

S
(
νzjτ − νz

j
β , νzτ − zτ

)
νzβ − zτ Prop. 4.4.5 in G1

At the end of round 1, we have the following working basis:

G1 = G0 + (νgΓ, zτgΓ, g̃Γ, νzβ − zτ ) ,

where νgΓ occurs only when zΓ,τ 6= 1, zτgΓ occurs only when zΓ,τ = 1, and g̃Γ occurs only when Γ

is out-led and zΓ,τ 6= 1.
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4.5 Buchberger’s algorithm: Round 2

Having added several new types of generators in round 1, we must now compute a new round of

S-polynomials. We compute some of these in round 2 and postpone others to round 3, but keep

track of all of the computations in Tables 4.3 and 4.4.

Some of the necessary computations are immediate from Proposition 4.2.4 and computations

from Round 1. Leading terms of gΓ are never divisible by any zjτ , so we can use Propositions 4.2.3

and 4.2.4 together to see that gΓ pairs trivially with any closure relation. For the same reason,

Proposition 4.2.4 and Proposition 4.4.3 together show that S(νzτ − zτ , gΓ) = zτgΓ. We also apply

Proposition 4.4.3 to show that S(zτgΓ, νzτ − zτ ) = 0.

4.5.1 Properties of νzβ − zτ and their applications

The new generator νzβ − zτ has analogous properties to νzτ − zτ , which we record in the following

proposition.

Proposition 4.5.1. Let f ∈ Q[x′] and f = LT(f) + f ′. Then

S(νzβ − zτ , zτf)
νzτ−zτ ,{zτ(zjτ−zjβ)}b−1

j=1
,zτf

−−−−−−−−−−−−−−−−−−−→ 0

If also gcd(LT(f), zβ) = 1, then

S(νzβ − zτ , νf)
νzβ−zτ−−−−−→ −zτf (4.21)

S(νzβ − zτ , f)
νzβ−zτ ,f−−−−−−→ 0 (4.22)

If gcd(LT(f), zβ) = d 6= 1, then

S(νzβ − zτ , νf) = −zβ
d
νf ′ − zτ

LT(f)
d

(4.23)

S(νzβ − zτ , νLT(f) + f ′) = −zτ
d

LT(f)− zβ
d
f ′ (4.24)

Proof. For the first S-polynomial, let d = gcd(zβ ,LT(f)), which may be 1. Compute as follows.

S(νzβ − zτ , zτf) =
νzβzτLT(f)

dνzβ
(−zτ )− νzβzτLT(f)

dzτLT(f)
(zτf ′)

= −νzτ
zβ
d
f ′ − z2

τ

LT(f)
d

LT determined by ν

reduce +
zβ
d
f ′ (νzτ − zτ )

= −z2
τ

LT(f)
d
− zτ

zβ
d
f ′ LT determined by zτ > zβ ,LT(f) > f ′

...
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reduce +
LT(f)
d

(
z1
β · · · z

j−1
β zj+1

τ · · · zb−1
τ

)
zτ

(
zjτ − z

j
β

)
=
(
z1
β · · · z

j
βz
j+1
τ · · · zb−1

τ

)
zτ

LT(f)
d
− zτ

zβ
d
f ′

...

= −zτ
zβ
d
f,

which reduces to zero by zτf .

For the second and third S-polynomials, the least common multiple of the leading monomials is

νzβLT(f). Then

S(νzβ − zτ , νf) =
νzβLT(f)

νzβ
(−zτ )− νzβLT(f)

νLT(f)
(νf ′)

= −νzβf ′ − zτLT(f) LT determined by ν

reduce + f ′ (νzβ − zτ )

= −zτf

and

S(νzβ − zτ , f) =
νzβLT(f)

νzβ
(−zτ )− νzβLT(f)

LT(f)
(f ′)

= −νzβf ′ − zτLT(f) LT determined by ν

reduce + f ′ (νzβ − zτ )

= −zτf,

which reduces to zero by zτf .

The computation of the S-polynomial in the case where gcd (LT(f), zβ) 6= 1 is the same except

for the additional factor of 1
d . The corresponding reductions are impossible because the leading term

of the S-polynomial is no longer divisible by νzβ .

S(νzβ − zτ , νf) =
νzβLT(f)

d

1
νzβ

(−zτ )− νzβLT(f)
d

1
νLT(f)

νf ′

= −zτ
LT(f)
d
− zβ

d
νf ′

Since ν determines the leading term, the term order is as stated in the Proposition. The computation

for the last case is similar.

Proposition 4.5.1 has an immediate corollary that explains the role of νzβ − zτ in our application of

Buchberger’s algorithm. Applied twice, S(νzβ − zτ ,−) strips factors of ziβ that divide both terms of



CHAPTER 4. BRAID CLOSURES AND IDEAL QUOTIENTS 97

a generator νf that is a difference of monomials, replaces them with zτ , and removes ν. Together,

νzτ − zτ and νzβ − zτ are the main tools we have to create new generators that survive to be in the

Gröbner basis of the intersection (Q′I(Dσ) +N ′I(Dσ) + Z) ∩ (zτ ).

Corollary 4.5.2. Let f ∈ Q[x′] be a polynomial with two terms and d′′β = gcd(LT(f), f ′, zβ). Then

S(νzβ − zτ , S(νzβ − zτ , νf)) = zτ
f

d′′β
.

Proposition 4.5.1 also allows us to immediately take care of a few S-polynomials:

S(νzβ − zτ , νzjτ − νz
j
β) = zτ

(
zjτ − z

j
β

)
must appear in G2. This allows us to use freely the first fact in Proposition 4.5.1, which relies on

the presence of zτ
(
zjτ − z

j
β

)
in our basis. Proposition 4.5.1 now allows us to immediately take care

of S(νzβ − zτ ,−) applied to any generator whose leading term is not divisible by zjβ for any j and

any generator that is divisible by zτ . Since the leading term of gΓ is a product of outgoing edges for

any Γ, it is not divisible by any zjβ . Therefore, we obtain zτgΓ for any subset Γ ⊂ D.

Applying S(νzβ − zτ ,−) to the bar relations gΓ for in-led Γ produces zτgΓ in the cases where Γ

has no incoming edges from the bottom boundary of D. We have already added these generators to

G2 since they also appeared via the application of S(νzτ − zτ ,−) to the same bar relations. When Γ

is in-led and does have incoming edges from the bottom boundary, S(νzβ − zτ ,−) produces a tilde

relation g̃Γ that is not yet in the working basis. When Γ is out-led, it also produces g̃Γ, but that

generator is already in G1 in all such cases.

Proposition 4.5.3. Let Γ have at least one outgoing edge to the top boundary of D. If Γ is in-led

and has at least one incoming edge from the bottom boundary of D, then

S(νzβ − zτ , νgΓ) = νxΓ,D\Γzβ,D\Γz
β
Γ,τ − xD\Γ,Γzτ

: = g̃Γ.

If Γ is out-led, then

S(νzβ − zτ , νgΓ) = g̃Γ ∈ G1

Proof. If Γ is in-led, gΓ has the form

gΓ = xD\Γ,Γzβ,Γ − xΓ,D\Γz
β
Γ,τ ,

where zβ,Γ 6= 1. By Proposition 4.5.1 in the case that gcd(LT(f), zβ) 6= 1, we have

S(νzβ − zτ , νgΓ) = − zβ
zβ,Γ

νxΓ,D\Γz
β
Γ,τ + zτ

xD\Γ,Γzβ,Γ

zβ,Γ

= −νxΓ,D\Γzβ,D\Γz
β
Γ,τ + zτxD\Γ,Γ,
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which we have defined to be g̃Γ.

If Γ is out-led, then gΓ has the form

gΓ = xΓ,D\Γz
β
Γ,τ − xD\Γ,Γzβ,Γ.

By Proposition 4.5.1,

S(νzβ − zτ , νgΓ) = − zβ

zβΓ,τ
νxD\Γ,Γzβ,Γ + zτ

xΓ,D\Γz
β
Γ,τ

zβΓ,τ

= −νxD\Γ,ΓzβD\Γ,τzβ,Γ + zτxΓ,D\Γ

This is exactly g̃Γ as defined in Section 4.4.1 and the subsets for which Γ is out-led and gΓ is in G1

are exactly the subsets for which g̃Γ is in G1. Therefore, we may reduce S(νzβ − zτ , gΓ) to zero in

this case.

Finally, we may describe S-polynomials between νzβ − zτ and g̃Γ for either type of g̃Γ relation.

The two versions of g̃Γ were obtained by applying S(νzτ − zτ ,−) to out-led νgΓ and S(νzβ − zτ ,−)

to in-led νgΓ. When we apply S(νzβ − zτ ,−) to g̃Γ for in-led Γ, we may instead think of applying

S(νzβ − zτ ,−) twice to some gΓ. In that case, Corollary 4.5.2 says that the effect will be to remove

any factors of ziβ that occur in both terms of gΓ. Regardless of term order, gΓ factors as

gΓ = xΓ,D\Γz
β
Γ,τ − xD\Γ,Γzβ,Γ = zΓ,β,Γ

(
xΓ,D\ΓzΓ,β,D\Γ − xD\Γ,ΓzD\Γ,β,Γ

)
= zΓ,β,ΓnΓ.

In the second case, we apply S(νzβ − zτ ,−) to S(νzτ − zτ , gΓ). The result does not follow directly

from Corollary 4.5.2, but it is a straightforward calculation to see that we again obtain nΓ. Therefore,

S(νzβ − zτ , g̃Γ) = zτnΓ for any Γ for which g̃Γ occurs in the working basis. Therefore, we add zτnΓ

to the working basis for all of the same Γ for which we have g̃Γ.

Our working basis now contains the following generators.

G′1 =(νgΓ, zτgΓ, νgΓ, zτgΓ, g̃Γ, zτnΓ, νz
j
τ − νz

j
β , zτ

(
zjτ − z

j
β

)
, νzτ − zτ , νzβ − zτ ),

where 1 ≤ j ≤ b− 1, νgΓ and zτgΓ occur only when zΓ,τ 6= 1, and g̃Γ and zτnΓ occur only when Γ

is out-led and zΓ,τ 6= 1 or Γ is in-led and zΓ,τ 6= 1, zβ,Γ 6= 1.

4.5.2 More S-polynomials among subset relations

Our next task is to establish a better understanding of how the subset relations gΓ, gΓ, and g̃Γ

behave. As previously mentioned, the key property of a subset in this respect is whether its ingoing

or outgoing edges determine the term order in its associated bar relation. Table 4.2 summarizes the

different types of subset relations we have encountered.
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Table 4.2: Types of Subset Relations

Type Γ out-led Γ in-led

gΓ xΓ,D\ΓzΓ,τ − xD\Γ,Γzβ,Γ xΓ,D\ΓzΓ,τ − xD\Γ,Γzβ,Γ

gΓ xΓ,D\Γz
β
Γ,τ − xD\Γ,Γzβ,Γ xD\Γ,Γzβ,Γ − xΓ,D\Γz

β
Γ,τ

g̃Γ νxD\Γ,Γzβ,Γz
β
D\Γ,τ − xΓ,D\Γzτ νxΓ,D\Γzβ,D\Γz

β
Γ,τ − xD\Γ,Γzτ

In the original subset relations gΓ, the leading term is always the product of outgoing edges

from Γ, regardless of any properties of Γ. For the bar relations gΓ, the leading term is a product

of incoming (resp. outgoing) edges if Γ is in-led (resp. out-led), as defined in Section 4.4. The basis

G′1 has gΓ only for those subsets Γ that have at least one edge outgoing to the top boundary of D,

but for any other subset gΓ = gΓ anyway. We will think of the tilde relation g̃Γ as being artificially

term-reversed. If Γ is out-led, then the leading term of g̃Γ is a product of incoming edges; if Γ is in-

led, then the leading term of g̃Γ is a product of outgoing edges. The term reversal (compared to gΓ)

occurs because the tilde relations are obtained from other subset relations by applying S(νzτ−zτ ,−)

or S(νzβ−zτ ,−) once. These S-polynomials always remove ν from a leading term. We will not need

to consider g̃Γ for all subsets Γ, since sometimes S(νzτ − zτ ,−) or S(νzβ − zτ ,−) applied to a plain

or bar relation produces something that reduces to zero immediately. Specifically, we need only

consider tilde relations for subsets Γ that are (i) out-led with zβΓ,τ 6= 1 or (ii) in-led with zβΓ,τ 6= 1

and zβ,Γ 6= 1, which are exactly those contained in G′1.

At this point, we can fill in a few miscellaneous rows of Tables 4.3 and 4.4. Knowing that

zτ

(
zjτ − z

j
β

)
and zτgΓ for any Γ are in G′1 allows us to reduce S(νzτ − zτ , g̃Γ) for the tilde relations

that were in G1. We may also conclude immediately from Proposition 4.4.3 and the fact that the

leading term of g̃Γ is never divisible by ziτ for any i that S(νzτ − zτ , g̃Γ)→ 0.

We essentially prove two results in the remainder of this section, although technicalities in the

computations make it appear that there are more. First, there is a slight generalization of Corol-

lary 4.4.10 in which we demonstrate that S-polynomials of subset relations for pairs of in-led subsets

Γ and ∆ can also be expressed in terms of subset relations for Γ \ (Γ ∩ ∆) and ∆ \ (Γ ∩ ∆). Sec-

ond, there is a result stating that S-polynomials pairing in-led and out-led subset relations can be

expressed in terms of the union and the intersection of the original two subsets. Since the plain,

bar, and tilde relations to which we must apply these results differ only with respect to which zjτ

and zjβ appear, we will frequently apply Proposition 4.4.7 so that we may compute separately for

the boundary edges and for the internal edges.
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We state several results in this section in terms of the non-local relations we hope to eventually

produce. We write zΓ,β,∆ to denote the product of edges ziβ such that ziτ is outgoing from Γ and

ziβ is incoming to ∆. These are the edges that would go from Γ to ∆ in the closure of our braid

diagram. Similarly, we write zΓ,τ,∆ to denote the product of ziτ for strands i with the same property.

The non-local relations as originally defined are then

nΓ = xΓ,D\ΓzΓ,τ,D\Γ − xD\Γ,ΓzD\Γ,β,Γ.

We may reduce these by closure relations ziτ − ziβ to obtain

nΓ = xΓ,D\ΓzΓ,β,D\Γ − xD\Γ,ΓzD\Γ,β,Γ,

which will have the same term order as gΓ because

gΓ = zΓ,β,ΓnΓ.

We write nout
Γ and nin

Γ to denote the first and second terms as written above.

Proposition 4.5.4. Let Γ,∆ ⊂ D. Assume term orders of the S-polynomial input are as written.

Then

S(xD\Γ,Γ − xΓ,D\Γ, xD\∆,∆ − x∆,D\∆)

= xΓ∩∆,D\(Γ∪∆)

(
xin

∆\(Γ∩∆)x
out
Γ\(Γ∩∆) − x

in
Γ\(Γ∩∆)x

out
∆\(Γ∩∆)

)
,

where the term order of the result is unknown in general.

Proof. The computation here is identical to the computation in the proof of Proposition 4.4.10 with

the roles of Γ and its complement reversed (and ∆ and its complement reversed).

Proposition 4.5.5. Let Γ,∆ ⊂ D. Assume term orders of the S-polynomial input are as written.

Then

S(xD\Γ,Γ − xΓ,D\Γ, x∆,D\∆ − xD\∆,∆) =

xΓ\(Γ∩∆),∆\(Γ∩∆)

(
xΓ∪∆,D\(Γ∪∆)xΓ∩∆,D\(Γ∩∆) − xD\(Γ∪∆),Γ∪∆xD\(Γ∩∆),Γ∩∆

)
,

where the term order of the result is unknown in general.

Proof. The key observation behind this proposition is that the greatest common divisor of leading

terms will be the edges that go from ∆ to Γ. The S-polynomial removes those edges, which are

internal to Γ∪∆, while combining the incoming edges of Γ with those of ∆ and the outgoing edges

of Γ with those of ∆.
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Specifically, the greatest common divisor of the leading terms is x∆\(Γ∩∆),Γ\(Γ∩∆), so the least

common multiple is

x∆\(Γ∩∆),Γ\(Γ∩∆) · xD\(Γ∪∆),Γ\(Γ∩∆)xD\Γ,Γ∩∆ · x∆\(Γ∩∆),D\(Γ∪∆)xΓ∩∆,D\∆

and the S-polynomial calculation is as follows.

S(xD\Γ,Γ − xΓ,D\Γ,x∆,D\∆ − xD\∆,∆) = x∆\(Γ∩∆),D\(Γ∪∆)xΓ∩∆,D\∆ · xΓ,D\Γ

− xD\(Γ∪∆),Γ\(Γ∩∆)xD\Γ,Γ∩∆ · xD\∆,∆

=x∆\(Γ∩∆),D\(Γ∪∆)xΓ∩∆,D\(Γ∪∆)xΓ∩∆,Γ\(Γ∩∆)

·xΓ\(Γ∩∆),D\(Γ∪∆)xΓ\(Γ∩∆),∆\(Γ∩∆)xΓ∩∆,D\(Γ∪∆)xΓ∩∆,∆\(Γ∩∆)

−xD\(Γ∪∆),Γ\(Γ∩∆)xD\(Γ∪∆),Γ∩∆x∆\(Γ∩∆),Γ∩∆

·xD\(Γ∪∆),∆\(Γ∩∆)xD\(Γ∪∆),Γ∩∆xΓ\(Γ∩∆),∆\(Γ∩∆)xΓ\(Γ∩∆),Γ∩∆

=xΓ\(Γ∩∆),∆\(Γ∩∆)(xΓ∪∆,D\(Γ∪∆)xΓ∩∆,D\(Γ∩∆)

− xD\(Γ∪∆),Γ∪∆xD\(Γ∩∆),Γ∩∆)

So far, we have established that S-polynomials of the internal edge portions of subset relations

can always be written in terms of the internal edge portions of other subset relations (unions,

intersections, etc. of the original subsets). The next task is to consider the boundary edge portions

of subset relations and to compute separately for the plain, bar, and tilde relations.

Proposition 4.5.6. Let Γ and ∆ be subsets of D.

1. If Γ is in-led, then

S(gΓ, g∆)
ziτ−z

i
β−−−−→ xΓ\(Γ∩∆),∆\(Γ∩∆)

(
gout

Γ∪∆g
out
Γ∩∆ − gin

Γ∪∆g
in
Γ∩∆

)
.

2. If Γ is out-led, then

S(gΓ, g∆)
ziτ−z

i
β−−−−→ xΓ∩∆,D\(Γ∪∆)zβ,Γ∩∆z

β
Γ∩∆,τ

(
gin

Γ\(Γ∩∆)g
out
∆\(Γ∩∆) − g

in
∆\(Γ∩∆)g

out
Γ\(Γ∩∆)

)
.

3. If Γ and ∆ are both in-led, then

S(gΓ, g∆) = xΓ∩∆,D\(Γ∪∆)zβ,Γ∩∆

(
gin

∆\(Γ∩∆)g
out
Γ\(Γ∩∆) − g

in
Γ\(Γ∩∆)g

out
∆\(Γ∩∆)

)
.

4. If Γ and ∆ are both out-led, then

S(gΓ, g∆) = xD\(Γ∪∆),Γ∩∆z
β
Γ∩∆,τ

(
gin

∆\(Γ∩∆)g
out
Γ\(Γ∩∆) − g

in
Γ\(Γ∩∆)g

out
∆\(Γ∩∆)

)
.
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5. If Γ is in-led and ∆ is out-led, then

S(gΓ, g∆) =xΓ\(Γ∩∆),∆\(Γ∩∆)zΓ\(Γ∩∆),β,Γ∪∆z∆,β,∆\(Γ∩∆)(nout
Γ∪∆g

out
Γ∩∆ − nin

Γ∪∆g
in
Γ∩∆).

Term orders of the results are unspecified in all cases.

Proof. Case 1: The computation for the internal edges is taken care of in Proposition 4.5.5, so

we proceed with the computation for the boundary edges and then combine them using Proposi-

tion 4.4.7. The greatest common divisor of the leading terms is 1.

S(zβ,Γ − zβΓ,τ , z∆,τ − zβ,∆) = z∆,τz
β
Γ,τ − zβ,Γzβ,∆

= zΓ∪∆,β,Γ∪∆(zΓ∩∆,τz∆\(Γ∩∆),τ,D\(Γ∪∆)zΓ,β,D\(Γ∪∆)

− zβ,Γ∩∆zD\(Γ∩∆),β,Γ∪∆)

We may reduce this result by zjτ − z
j
β for the necessary j to convert z∆\(Γ∩∆),τ,D\(Γ∪∆) to

z∆\(Γ∩∆),β,D\(Γ∪∆). That is,

S(zβ,Γ − zβΓ,τ ,z∆,τ − zβ,∆)
{zjτ−zjβ}−−−−−−→

zΓ∪∆,β,Γ∪∆(zΓ∩∆,τzΓ∪∆,β,D\(Γ∪∆) − zβ,Γ∩∆zD\(Γ∩∆),β,Γ∪∆).

Combining with the result in Proposition 4.5.5 produces

S(gΓ, g∆) = xΓ\(Γ∩∆),∆\(Γ∩∆)zΓ∪∆,β,Γ∪∆

· (xΓ∪∆,D\(Γ∪∆)zΓ∪∆,β,D\(Γ∪∆)xΓ∩∆,D\(Γ∩∆)zΓ∩∆,τ

− xD\(Γ∪∆),Γ∪∆zD\(Γ∪∆),β,Γ∪∆xD\(Γ∩∆),Γ∩∆zβ,Γ∩∆)

= xΓ\(Γ∩∆),∆\(Γ∩∆)

(
gout

Γ∪∆g
out
Γ∩∆ − gin

Γ∪∆g
in
Γ∩∆

)
.

Case 2: We use the same strategy as above, computing an S-polynomial for the boundary edges

first, then combining it using Proposition 4.4.7 with the computation in Proposition 4.4.10 for the

internal edges.

The difference in the computation for boundary edges is only that gΓ now has the opposite term

order, but the greatest common divisor of leading terms is still 1.

S(zβΓ,τ − zβ,Γ, z∆,τ − zβ,∆) = z∆,τzβ,Γ − zβΓ,τzβ,∆

Combining with the result in Proposition 4.4.10 using the formula in Proposition 4.4.7 produces

S(gΓ, g∆) = xΓ∩∆,D\(Γ∪∆)

(
xin

Γ\(Γ∩∆)zβ,Γx
out
∆\(Γ∩∆)z∆,τ − xin

∆\(Γ∩∆)zβ,∆x
out
Γ\(Γ∩∆)z

β
Γ,τ

)
= xΓ∩∆,D\(Γ∪∆)zβ,Γ∩∆(xin

Γ\(Γ∩∆)zβ,Γ\(Γ∩∆)x
out
∆\(Γ∩∆)z∆\(Γ∩∆),τzΓ∩∆,τ

− xin
∆\(Γ∩∆)zβ,∆\(Γ∩∆)x

out
Γ\(Γ∩∆)z

β
Γ\(Γ∩∆),τz

β
Γ∩∆,τ )

= xΓ∩∆,D\(Γ∪∆)zβ,Γ∩∆(gin
Γ\(Γ∩∆)g

out
∆\(Γ∩∆)zΓ∩∆,τ − gin

∆\(Γ∩∆)g
out
Γ\(Γ∩∆)z

β
Γ∩∆,τ )
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with an unknown term order. After reducing by ziτ − ziβ for any divisors of zΓ∩∆,τ , we obtain the

expression in the statement of the proposition.

Cases 3 and 4: We assume that both Γ and ∆ are out-led. The computation if both are in-led

is similar except that all term orders are reversed throughout. The computation for the boundary

edges goes as follows.

S(zβΓ,τ − zβ,Γ, z
β
∆,τ − zβ,∆) =

zβΓ,τz
β
∆,τ

zβΓ∩∆,τ

1

zβΓ,τ
(−zβ,Γ)−

zβΓ,τz
β
∆,τ

zβΓ∩∆,τ

1

zβ∆,τ
(−zβ,∆)

= −zβ∆\(Γ∩∆),τzβ,Γ + zβΓ\(Γ∩∆),τzβ,∆

= −zβ,Γ∩∆

(
zβ∆\(Γ∩∆),τzβ,Γ\(Γ∩∆) − zβΓ\(Γ∩∆),τzβ,∆\(Γ∩∆)

)
Combining with the result from Proposition 4.4.10, we have the following.

S(gΓ, g∆) = xΓ∩∆,D\(Γ∪∆)zβ,Γ∩∆(xin
∆\(Γ∩∆)zβ,∆\(Γ∩∆)x

out
Γ\(Γ∩∆)z

β
Γ\(Γ∩∆),τ

− xin
Γ\(Γ∩∆)zβ,Γ\(Γ∩∆)x

out
∆\(Γ∩∆)z

β
∆\(Γ∩∆),τ )

= xΓ∩∆,D\(Γ∪∆)zβ,Γ∩∆

(
gin

∆\(Γ∩∆)g
out
Γ\(Γ∩∆) − g

in
Γ\(Γ∩∆)g

out
∆\(Γ∩∆)

)
Case 5: The S-polynomial of boundary edges only is as follows.

S(zβ,Γ − zβΓ,τ , z
β
∆,τ − zβ,∆) =

zβ,Γz
β
∆,τ

z∆,β,Γ

1
zβ,Γ

(
−zβΓ,τ

)
−
zβ,Γz

β
∆,τ

z∆,β,Γ

1

zβ∆,τ
(−zβ,∆)

= −z∆,β,D\Γz
β
Γ,τ + zD\∆,β,Γzβ,∆

Combining this with the result of Proposition 4.5.5 produces the following, in which the term order

is unknown.

S(gΓ, g∆) = xΓ\(Γ∩∆),∆\(Γ∩∆)

· (xΓ∪∆,D\(Γ∪∆)xΓ∩∆,D\(Γ∩∆)z∆,β,D\Γz
β
Γ,τ − xD\(Γ∪∆),Γ∪∆xD\(Γ∩∆),Γ∩∆zD\∆,β,Γzβ,∆)

= xΓ\(Γ∩∆),∆\(Γ∩∆)zΓ\(Γ∩∆),β,Γ∪∆zΓ∩∆,β,∆z∆\(Γ∩∆),β,∆\(Γ∩∆)

· (nout
Γ∪∆n

out
Γ∩∆ − nin

Γ∪∆n
in
Γ∩∆)

Rearranging slightly, we may put zΓ∩∆,β,Γ∩∆ back into the factors of nΓ∩∆ and state the result in

terms of gΓ∩∆ instead.

The term orders are uncertain in all of the results in Proposition 4.5.6. However, Proposition 4.2.5

says that the four expressions we have obtained are each reducible by their constituent parts. For



CHAPTER 4. BRAID CLOSURES AND IDEAL QUOTIENTS 104

cases 1–4, this means that the S-polynomials are reducible by relations already in our working basis:

S(gΓ, g∆)
ziτ−z

i
β , gΓ∩∆, gΓ∪∆−−−−−−−−−−−−→ 0 if Γ in-led;

S(gΓ, g∆)
ziτ−z

i
β , g∆\(Γ∩∆), gΓ\(Γ∩∆)−−−−−−−−−−−−−−−−−→ 0 if Γ out-led; and

S(gΓ, g∆)
gΓ\(Γ∩∆), g∆\(Γ∩∆)−−−−−−−−−−−−→ 0 if Γ and ∆ are both in-led or both out-led.

We cannot yet reduce the S-polynomial in case 5, so instead we carry it on to the next round.

4.5.3 S-polynomials involving tilde relations

Having checked all S-polynomials among plain and bar relations, we now move on to tilde relations.

Like νzτ − zτ and νzβ − zτ , the tilde relations are differences of monomials with ν dividing only one

of the two terms. We establish here a few properties of the tilde relations similar to those we proved

for νzτ − zτ and νzβ − zτ in Propositions 4.4.3 and 4.5.1.

Proposition 4.5.7. Let f, f ′, g, g′ ∈ Q[x′] be monomials. Then

S(νf + f ′, νg + g′) = S(f + f ′, g + g′),

S(νf + f ′, νg + νg′) = S(νf + f ′, g + g′),

and if the former reduces with either term order, then so does the latter.

If gcd(f, g) = 1, then

S(νf + f ′, νg + νg′)
νf+f ′,νg+νg′−−−−−−−−−→ 0.

Proof. Both equalities follow from routine calculations. Let d = gcd(f, g).

S(νf + f ′, νg + g′) =
νfg

d

1
νf
f ′ − νfg

d

1
νg
g′

=
g

d
f ′ − f

d
g′

= S(f + f ′, g + g′)

The term order above is unknown in general.

S(νf + f ′, νg + νg′) =
νfg

d

1
νf
f ′ − νfg

d

1
νg
νg′

= −ν f
d
g′ +

g

d
f ′

= S(νf + f ′, g + g′)

The results of these two calculations differ only by the presence of ν on one term, and possibly term

order. If the former S-polynomial reduces regardless of term order, then the latter S-polynomial
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reduces by the same polynomials, multiplied by ν. If d = 1, then the last expression is reducible by

its constituent parts.

As an immediate corollary, we have that S(g̃Γ, νz
i
τ − νziβ) reduces to zero in the current working

basis.

Proposition 4.5.8. Let Γ ⊂ D be out-led and zΓ,τ 6= 1 or Γ be in-led and zΓ,τ 6= 1 and zβ,Γ 6= 1.

Let f ∈ Q[x′].Then

S(g̃Γ, zτf) = zτS(g̃Γ, f).

Proof. Let f = LT(f) + f ′. The result follows by direct computations with each possible term order

of g̃Γ. We show explicitly the case in which Γ is out-led. Let d = gcd(LT(f), xD\Γ,Γzβ,Γz
β
D\Γ,τ ).

S(νxD\Γ,Γzβ,Γz
β
D\Γ,τ − xΓ,D\Γzτ , zτf) =

νxD\Γ,Γzβ,Γz
β
D\Γ,τzτLT(f)

dνxD\Γ,Γzβ,Γz
β
D\Γ,τ

(
−xΓ,D\Γzτ

)
−
νxD\Γ,Γzβ,Γz

β
D\Γ,τzτLT(f)

dzτLT(f)
(zτf ′)

= νzτf
′xD\Γ,Γzβ,Γz

β
D\Γ,τ − z

2
τ

LT(f)
d

xΓ,D\Γ

reduce − f ′xD\Γ,Γzβ,ΓzβD\Γ,τ (νzτ − zτ )

LT unknown = zτ

(
f ′xD\Γ,Γzβ,Γz

β
D\Γ,τ − zτ

LT(f)
d

xΓ,D\Γ

)
= zτS(g̃Γ, f)

We are now equipped to analyze the interaction of the tilde relations with the other subset

relations.

Proposition 4.5.9. Let Γ and ∆ be subsets of D.

1. If Γ is out-led and zΓ,τ 6= 1, then

S(g̃Γ, g∆) = xΓ\(Γ∩∆),∆\(Γ∩∆)

(
νgin

Γ∪∆g
in
Γ∩∆z

β
D\Γ,τ − g

out
Γ∪∆g

out
Γ∩∆zD\Γ,τ

)
.

2. If Γ is in-led, zΓ,τ 6= 1, and zβ,Γ 6= 1, then

S(g̃Γ, g∆) = xΓ∩∆,D\(Γ∪∆)

(
νgin

∆\(Γ∩∆)g̃
out
Γ\(Γ∩∆)z

β
Γ∩∆,τ − g̃

in
Γ\(Γ∩∆)g

out
∆\(Γ∩∆)zΓ∩∆,τ

)
.

3. If Γ and ∆ are both in-led with zΓ,τ 6= 1, zβ,Γ 6= 1, z∆,τ 6= 1, and zβ,∆ 6= 1, then

S(g̃Γ, g̃∆) = zτxΓ∩∆,D\(Γ∪∆)

(
nin

∆\(Γ∩∆)n
out
Γ\(Γ∩∆) − n

in
Γ\(Γ∩∆)n

out
∆\(Γ∩∆)

)
.
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4. If Γ and ∆ are both out-led with zΓ,τ 6= 1 and z∆,τ 6= 1, then

S(g̃Γ, g̃∆) = zτxD\(Γ∪∆),Γ∩∆

(
nin

∆\(Γ∩∆)n
out
Γ\(Γ∩∆) − n

in
Γ\(Γ∩∆)n

out
∆\(Γ∩∆)

)
.

5. If Γ is in-led, zΓ,τ 6= 1, and zβ,Γ 6= 1, and ∆ is out-led, z∆,τ 6= 1, then

S(g̃Γ, g̃∆) = zτxΓ\(Γ∩∆),∆\(Γ∩∆)

(
nout

Γ∪∆n
out
Γ∩∆ − nin

Γ∪∆n
in
Γ∩∆

)
.

6. If Γ is out-led and ∆ is in-led and zΓ,τ 6= 1, z∆,τ 6= 1, then

S(g̃Γ, g∆) = xΓ∩∆,D\(Γ∪∆)(νgout
∆\(Γ∩∆)g

in
Γ\(Γ∩∆)z

β
Γ∩∆,τzD\Γ,β,Γ∩∆zD\Γ,β,D\∆

− xin
∆\(Γ∩∆)x

out
Γ\(Γ∩∆)zΓ,β,∆\(Γ∩∆)zτ ).

7. If Γ is in-led and ∆ is out-led and zΓ,τ 6= 1, zβ,Γ 6= 1, z∆,τ 6= 1, then

S(g̃Γ, g∆) = xD\(Γ∪∆),Γ∩∆(νgout
Γ\(Γ∩∆)g

in
∆\(Γ∩∆)zβ,Γ∩∆zD\∆,β,D\ΓzΓ∩∆,β,D\Γ

− xout
∆\(Γ∩∆)x

in
Γ\(Γ∩∆)z∆\(Γ∩∆),β,Γzτ ).

8. If Γ and ∆ are both out-led and zΓ,τ 6= 1, z∆,τ 6= 1, then

S(g̃Γ, g∆) = xΓ\(Γ∩∆),∆\(Γ∩∆)

· (νnin
Γ∪∆g

in
Γ∩∆zΓ∩∆,β,∆\(Γ∩∆)zΓ\(Γ∩∆),β,Γz∆\(Γ∩∆),β,Γz

β
D\(Γ∪∆),τ

− xout
Γ∪∆x

out
Γ∩∆zΓ∩∆,β,D\Γzτ ).

9. If Γ and ∆ are both in-led and zΓ,τ 6= 1, zβ,Γ 6= 1, and z∆,τ 6= 1, then

S(g̃Γ, g∆) = x∆\(Γ∩∆),Γ\(Γ∩∆)

· (νnout
Γ∪∆n

out
Γ∩∆zβ,D\(Γ∪∆)zΓ\(Γ∩∆),β,Γ\(Γ∩∆)zΓ\(Γ∩∆),β,∆\(Γ∩∆)z∆,β,Γ∩∆

− xin
Γ∪∆x

in
Γ∩∆zD\Γ,β,Γ∩∆zτ ).

Term orders in cases 3–5 are undetermined; all other term orders are determined by ν.

Proof. Each of these results is a straightforward computation.

Case 1: The leading term of g∆ is necessarily a product of outgoing edges, so this case is similar

to Proposition 4.5.5. We compute the S-polynomial explicitly for the boundary edges, then use

Proposition 4.4.7 to combine with the calculation for internal edges in Proposition 4.5.5.

The boundary edges in the leading term of g̃Γ are all divisors of zβ , while those in the leading

term of g∆ are divisors of zτ . Therefore, the greatest common divisor of the leading terms is 1, and
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the S-polynomial is simply the following.

S(zβ,Γz
β
D\Γ,τ − zτ , z∆,τ − zβ,∆) = z∆,τzτ − zβ,ΓzβD\Γ,τzβ,∆

= z∆,τzτ − zβ,Γ∪∆zβ,Γ∩∆z
β
D\Γ,τ

Combining with the S-polynomial of internal edges and inserting ν in the appropriate term yields

the following.

S(g̃Γ, g∆) = xΓ\(Γ∩∆),∆\(Γ∩∆)(νxD\(Γ∪∆),Γ∪∆xD\(Γ∩∆),Γ∩∆zβ,Γ∪∆zβ,Γ∩∆z
β
D\Γ,τ

− xΓ∪∆,D\(Γ∪∆)xΓ∩∆,D\(Γ∩∆)z∆,τzτ )

= xΓ\(Γ∩∆),∆\(Γ∩∆)

(
νgin

Γ∪∆g
in
Γ∩∆z

β
D\Γ,τ − g

out
Γ∪∆g

out
Γ∩∆zD\Γ,τ

)
Case 2: The leading terms of g̃Γ and g∆ are both products of outgoing edges, so the appropriate

internal edge calculation for this case comes from Proposition 4.4.10. The boundary edges that

appear in the leading term of g̃Γ are all divisors of zβ , while those that appear in the leading term

of g∆ are all divisors of zτ , so the greatest common divisor of leading terms below is 1. Therefore,

S(zβΓ,τzβ,D\Γ − zτ , z∆,τ − zβ,∆) = z∆,τzτ − zβΓ,τzβ,D\Γzβ,∆.

Combining with the result for the internal edges and placing ν in the appropriate term, we have the

following.

S(g̃Γ, g∆) = xΓ∩∆,D\(Γ∪∆)(νxin
∆\(Γ∩∆)x

out
Γ\(Γ∩∆)z

β
Γ,τzβ,D\Γzβ,∆

− xin
Γ\(Γ∩∆)x

out
∆\(Γ∩∆)z∆,τzτ )

= xΓ∩∆,D\(Γ∪∆)

(
νgin

∆\(Γ∩∆g̃
out
Γ\(Γ∩∆)z

β
Γ∩∆,τ − g̃

in
Γ\(Γ∩∆)g

out
∆\(Γ∩∆)zΓ∩∆,τ

)
Cases 3 and 4: Assume that Γ and ∆ are both out-led. The in-led case is very similar. Then the

S-polynomial of the internal edges is the same computation as that in Proposition 4.4.10. Following

Proposition 4.4.7, we compute for the boundary edges separately, then recombine with internal

edges. First, we need the greatest common divisor of zβ,Γz
β
D\Γ,τ and zβ,∆z

β
D\∆,τ . Rewrite these as

zβ,Γz
β
D\Γ,τ =zβ,Γ∩∆zβ,Γ\(Γ∩∆)z

β
∆\(Γ∩∆),τz

β
D\(Γ∪∆),τ and

zβ,∆z
β
D\∆,τ =zβ,Γ∩∆zβ,∆\(Γ∩∆)z

β
Γ\(Γ∩∆),τz

β
D\(Γ∪∆),τ

to see that

gcd(zβ,Γz
β
D\Γ,τ , zβ,∆z

β
D\∆,τ ) = zβ,Γ∩∆z

β
D\(Γ∪∆),τzΓ\(Γ∩∆),β,Γ\(Γ∩∆)z∆\(Γ∩∆),β,∆\(Γ∩∆)
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Therefore, the S-polynomial calculation for the boundary edges is as follows.

S(zβ,Γz
β
D\Γ,τ − zτ , zβ,∆z

β
D\∆,τ − zτ )

=
zβ,∆z

β
D\∆,τ

zβ,Γ∩∆z
β
D\(Γ∪∆),τzΓ\(Γ∩∆),β,Γ\(Γ∩∆)z∆\(Γ∩∆),β,∆\(Γ∩∆)

(−zτ )

−
zβ,Γz

β
D\Γ,τ

zβ,Γ∩∆z
β
D\(Γ∪∆),τzΓ\(Γ∩∆),β,Γ\(Γ∩∆)z∆\(Γ∩∆),β,∆\(Γ∩∆)

(−zτ )

= −zτ (zD\∆,β,∆\(Γ∩∆)zΓ∩∆,β,∆\(Γ∩∆)zΓ\(Γ∩∆),β,D\ΓzΓ\(Γ∩∆),β,Γ∩∆

− zD\Γ,β,Γ\(Γ∩∆)zΓ∩∆,β,Γ\(Γ∩∆)z∆\(Γ∩∆),β,D\∆z∆\(Γ∩∆),β,Γ∩∆)

Putting this together with the result of the S-polynomial of internal edges calculated in Proposi-

tion 4.4.10 (and omitting some simplifying steps) produces

S(g̃Γ, g̃∆) = zτxΓ∩∆,D\(Γ∪∆)

(
nin

∆\(Γ∩∆)n
out
Γ\(Γ∩∆) − n

in
Γ\(Γ∩∆)n

out
∆\(Γ∩∆)

)
,

where the term order is unknown.

Case 5: Following Proposition 4.4.7, we compute the S-polynomial for boundary edges separately

as follows. The leading terms are now

zβΓ,τzβ,D\Γ =zΓ,β,∆zΓ,β,D\∆zD\∆,β,D\Γz∆,β,D\Γ and

zβ,∆z
β
D\∆,τ =zΓ,β,∆zD\Γ,β,∆zD\∆,β,D\ΓzD\∆,β,Γ .

Their greatest common divisor is

gcd(zβΓ,τzβ,D\Γ, zβ,∆z
β
D\∆,τ ) = zΓ,β,∆zD\∆,β,D\ΓzΓ\(Γ∩∆),β,Γ\(Γ∩∆)z∆\(Γ∩∆),β,∆\(Γ∩∆)

Therefore the S-polynomial of boundary edges is as follows.

S(zβΓ,τzβ,D\Γ − zτ , zβ,∆z
β
D\∆,τ − zτ )

= −zτ
(

zβ,∆z
β
D\∆,τ

zΓ,β,∆zD\∆,β,D\ΓzΓ\(Γ∩∆),β,Γ\(Γ∩∆)z∆\(Γ∩∆),β,∆\(Γ∩∆)

−
zβΓ,τzβ,D\Γ

zΓ,β,∆zD\∆,β,D\ΓzΓ\(Γ∩∆),β,Γ\(Γ∩∆)z∆\(Γ∩∆),β,∆\(Γ∩∆)

)
= −zτ

(
zD\(Γ∪∆),β,Γ∪∆zD\(Γ∩∆),β,Γ∩∆ − zΓ∪∆,β,D\(Γ∪∆)zΓ∩∆,β,D\(Γ∩∆)

)
Putting this together with the result for the internal edges in Proposition 4.5.5 produces

S(g̃Γ, g̃∆) = zτxΓ\(Γ∩∆),∆\(Γ∩∆)

(
nout

Γ∪∆n
out
Γ∩∆ − nin

Γ∪∆n
in
Γ∩∆

)
,

where term order is unknown.
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Case 6: The computation for the boundary edges is as follows. The greatest common divisor of

leading terms is zβ,Γ∩∆zD\Γ,β,∆\(Γ∩∆).

S(zβ,Γz
β
D\Γ,τ − zτ , zβ,∆ − z

β
∆,τ ) = zΓ,β,∆\(Γ∩∆)zτ − zβ,Γ\(Γ∩∆)zD\Γ,β,Γ∩∆zD\Γ,β,D\∆z

β
∆,τ

Since Γ is out-led and ∆ is in-led, we use the computation for internal edges in Proposition 4.5.4.

S(g̃Γ, g∆) = xΓ∩∆,D\(Γ∪∆)(νxin
Γ\(Γ∩∆)x

out
∆\(Γ∩∆)zβ,Γ\(Γ∩∆)zD\Γ,β,Γ∩∆zD\Γ,β,D\∆z

β
∆,τ

− xin
∆\(Γ∩∆)x

out
Γ\(Γ∩∆)zΓ,β,∆\(Γ∩∆)zτ )

= xΓ∩∆,D\(Γ∪∆)(νgout
∆\(Γ∩∆)g

in
Γ\(Γ∩∆)z

β
Γ∩∆,τzD\Γ,β,Γ∩∆zD\Γ,β,D\∆

− xin
∆\(Γ∩∆)x

out
Γ\(Γ∩∆)zΓ,β,∆\(Γ∩∆)zτ )

Case 7: The computation for the boundary edges is as follows. The greatest common divisor of

leading terms is zβΓ∩∆,τz∆\(Γ∩∆),β,D\Γ.

S(zβ,D\Γz
β
Γ,τ − zτ , z

β
∆,τ − zβ,∆) = z∆\(Γ∩∆),β,Γzτ − zβΓ\(Γ∩∆),τzD\∆,β,D\ΓzΓ∩∆,β,D\Γzβ,∆

The internal edges behave as in Proposition 4.4.8. Putting these together, we have the following

expression.

S(g̃Γ, g∆) = xD\(Γ∪∆),Γ∩∆(νxout
Γ\(Γ∩∆)x

in
∆\(Γ∩∆)z

β
Γ\(Γ∩∆),τzD\∆,β,D\ΓzΓ∩∆,β,D\Γzβ,∆

− xout
∆\(Γ∩∆)x

in
Γ\(Γ∩∆)z∆\(Γ∩∆),β,Γzτ )

= xD\(Γ∪∆),Γ∩∆(νgout
Γ\(Γ∩∆)g

in
∆\(Γ∩∆)zβ,Γ∩∆zD\∆,β,D\ΓzΓ∩∆,β,D\Γ

− xout
∆\(Γ∩∆)x

in
Γ\(Γ∩∆)z∆\(Γ∩∆),β,Γzτ )

Case 8: The computation for the boundary edges is as follows. The greatest common divisor of

leading terms is z∆,β,Γz∆\(Γ∩∆),β,D\Γ.

S(zβ,Γz
β
D\Γ,τ − zτ , z

β
∆,τ − zβ,∆) = zΓ∩∆,β,D\Γzτ − zD\∆,β,ΓzβD\(Γ∪∆),τz∆\(Γ∩∆),β,Γzβ,∆

Combining with the appropriate computation for internal edges, we have the following expression.

S(g̃Γ, g∆) = xΓ\(Γ∩∆),∆\(Γ∩∆)(νxD\(Γ∪∆),Γ∪∆xD\(Γ∩∆),Γ∩∆zD\∆,β,Γz
β
D\(Γ∪∆),τz∆\(Γ∩∆),β,Γzβ,∆

− xΓ∪∆,D\(Γ∪∆)xΓ∩∆,D\(Γ∩∆)zΓ∩∆,β,D\Γzτ )

= xΓ\(Γ∩∆),∆\(Γ∩∆)(νnin
Γ∪∆g

in
Γ∩∆zΓ∩∆,β,∆\(Γ∩∆)zΓ\(Γ∩∆),β,Γz∆\(Γ∩∆),β,Γz

β
D\(Γ∪∆),τ

− xout
Γ∪∆x

out
Γ∩∆zΓ∩∆,β,D\Γzτ )

Case 9: The computation for the boundary edges is as follows. The greatest common divisor of

leading terms is zβ,D\(Γ∩∆)zΓ,β,Γ∩∆.

S(zβ,D\Γz
β
Γ,τ − zτ , zβ,∆ − z

β
∆,τ ) = zD\Γ,β,Γ∩∆zτ − zβ,D\(Γ∪∆)zΓ,β,D\(Γ∩∆)z

β
∆,τ
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Combining with the appropriate computation for internal edges, we have the following expression.

S(g̃Γ, g∆) = x∆\(Γ∩∆),Γ\(Γ∩∆)(νxΓ∪∆,D\(Γ∪∆)xΓ∩∆,D\(Γ∩∆)zβ,D\(Γ∪∆)zΓ,β,D\(Γ∩∆)z
β
∆,τ

− xD\(Γ∪∆),Γ∪∆xD\(Γ∩∆),Γ∩∆zD\Γ,β,Γ∩∆zτ )

= x∆\(Γ∩∆),Γ\(Γ∩∆)(νnout
Γ∪∆n

out
Γ∩∆zβ,D\(Γ∪∆)zΓ\(Γ∩∆),β,Γ\(Γ∩∆)zΓ\(Γ∩∆),β,∆\(Γ∩∆)z∆,β,Γ∩∆

− xin
Γ∪∆x

in
Γ∩∆zD\Γ,β,Γ∩∆zτ )

In cases 1 and 2 of Proposition 4.5.9, we may reduce the results of the S-polynomials by generators

that are already in our working basis.

Corollary 4.5.10. Let Γ and ∆ be subsets of D.

1. If Γ is out-led, zΓ,τ 6= 1, and Γ ∪∆ is in-led, then

S(g̃Γ, g∆)
gΓ∪∆, νzβ−zτ , zτgΓ∩∆−−−−−−−−−−−−−−→ 0.

If instead Γ ∪∆ is out-led, then

S(g̃Γ, g∆)
egΓ∪∆, zτ (ziτ−z

i
β), zτgΓ∩∆−−−−−−−−−−−−−−−−→ 0.

2. If Γ is in-led, zΓ,τ 6= 1, and zβ,Γ 6= 1, then

S(g̃Γ, g∆)
egΓ, g∆−−−−→ 0.

Proof. Case 1: If Γ ∪ ∆ is in-led, then the leading term of gΓ∪∆ divides the leading term of the

S-polynomial computed in Proposition 4.5.9. Reduction by gΓ∪∆ leaves

S(g̃Γ, g∆)
gΓ∪∆−−−→ xΓ\(Γ∩∆),∆\(Γ∩∆)x

out
Γ∪∆z∆\(Γ∩∆),τ (νgin

Γ∩∆zβ − gout
Γ∩∆zτ )

Reduce by νzβ − zτ to obtain a multiple of zτgΓ∩∆, which is already in our basis.

If Γ ∪ ∆ is out-led, then the leading term of g̃Γ∪∆ will be gin
Γ∪∆z

β
D\(Γ∪∆),τ , which divides the

leading term of S(g̃Γ, g∆). Reducing by g̃Γ∪∆ yields

S(g̃Γ, g∆)
egΓ∪∆−−−→ zτxΓ\(Γ∩∆),∆\(Γ∩∆)x

out
Γ∪∆(gout

Γ∩∆z∆\(Γ∩∆),τ − gin
Γ∩∆z

β
∆\(Γ∩∆),τ )

Reducing by zτ (ziτ − ziβ) produces a multiple of zτgΓ∩∆.

Case 2: Since Γ is assumed to be in-led, the leading term of g̃Γ is a product of outgoing edges from

Γ. It is related to g̃out
Γ\(Γ∩∆), which appears in the S-polynomial by

g̃out
Γ zβ,Γ∩∆ = g̃out

Γ\(Γ∩∆)xΓ∩∆,D\(Γ∪∆)z
β
Γ∩∆,τ .
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A small rearrangement of the expression in Case 2 of Proposition 4.5.9 shows that the leading term

of g̃Γ divides S(g̃Γ, g∆). Reducing by g̃Γ produces

S(g̃Γ, g∆)
egΓ−→ zτx∆\(Γ∩∆),Γ∩∆xD\Γ,Γ\(Γ∩∆)g∆,

which reduces to zero by zτg∆.

The S-polynomials in cases 3–5 of Proposition 4.5.9 are of the form in Proposition 4.2.5 that

reduces by its constituent parts regardless of term order. We have zτnΓ in the working basis whenever

the corresponding g̃Γ is in the working basis, so we may always reduce to zero the expressions that

come out of cases 3–5. Because of term order, the S-polynomials in cases 6–9 do not reduce via the

relations we currently have available. We postpone these cases until round 3.

At the end of round 2, our working basis remains the same as G′1. Specifically, we have

G2 =(νgΓ, zτgΓ, νgΓ, zτgΓ, g̃Γ, zτnΓ, νz
j
τ − νz

j
β , zτ

(
zjτ − z

j
β

)
, νzτ − zτ , νzβ − zτ ),

where 1 ≤ j ≤ b − 1, νgΓ and zτgΓ occur only when zΓ,τ 6= 1, and g̃Γ and zτnΓ occur only when

Γ is out-led and zΓ,τ 6= 1 or Γ is in-led and zΓ,τ 6= 1, zβ,Γ 6= 1. We have also carried forward the

following two types of S-polynomials: S(νgΓ, νg∆) when Γ is in-led and ∆ is out-led; S(νgΓ, g̃∆).

4.6 Buchberger’s algorithm: Round 3

Having thoroughly analyzed the interactions among the types of relations in our working basis G2 in

round 2, we now pause to re-evaluate. If we halted the algorithm at this point, four types of generator

would survive to be included in the basis for (Q′I(Dσ) +N ′I(Dσ) + Z) ∩ (zτ ); namely, zτ (zjτ − z
j
β),

zτgΓ, zτgΓ, and zτnΓ. The working basis G2 only contained zτnΓ for certain Γ, but we observe now

that these restrictions are unnecessary. If zΓ,τ = 1, then zΓ,β,D\Γ = 1 and zD\Γ,β,Γ = zβ,Γ, so

nΓ = xΓ,D\Γ − xD\Γ,Γzβ,Γ = gΓ.

In other words, we may as well say that G2 includes zτnΓ for all subsets Γ. Now, dividing by zτ the

elements of G2 that do not contain ν, we would obtain a basis for the quotient (Q′I(Dσ) +N ′I(Dσ) +

Z) : (zτ ) consisting of zjτ − z
j
β , gΓ, gΓ, and nΓ. The generators zjτ − z

j
β are the standard generating

set for Z. The subset relations gΓ generate Q′I(Dσ) or Q′I(Dbσ), since local relations are the same

in Dσ and Dbσ. Modulo the closure relations, the generators gΓ are equivalent to the generators gΓ

and the generators nΓ are the standard generating set for N ′I(Dbσ). Therefore, if we could stop the

algorithm at this point, we would prove Theorem 4.1.1.
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Table 4.3: S-polynomials Round 2, G1 \ G0 with G0

S (−,−) Result Prop. Action

S(νgΓ, νg∆) 0 Prop. 4.2.4, 4.5.6 none

S(νgΓ, νz
j
τ − νz

j
β) 0 Prop. 4.2.3 and 4.2.4 none

S(νgΓ, νzτ − zτ ) zτgΓ Prop. 4.4.3 in G2

S(zτgΓ, νg∆) 0 Prop. 4.2.4; round 1 none

S(zτgΓ, νz
j
τ − νz

j
β) 0 Prop. 4.2.4; round 1 none

S(zτgΓ, νzτ − zτ ) 0 Prop. 4.4.3 none

S(g̃Γ, νg∆) 0 Prop. 4.5.7, Cor. 4.5.10 none

S(g̃Γ, νz
j
τ − νz

j
β) 0 Prop. 4.5.7 none

S(g̃Γ, νzτ − zτ ) 0 Prop. 4.4.3 none

S(νzβ − zτ , νgΓ) zτgΓ Prop. 4.5.1 in G2

S(νzβ − zτ , νzjτ − νz
j
β) zτ

(
zjτ − z

j
β

)
Prop. 4.5.1 in G2

S(νzβ − zτ , νzτ − zτ ) 0 Prop. 4.5.1 none

Table 4.4: S-polynomials Round 2, within G1 \ G0

S (−,−) Result Prop. Action

S(νgΓ, νg∆) ∗ Prop.4.2.4; 4.5.6 carry

S(zτgΓ, zτg∆) 0 Prop. 4.2.4; round 1 none

S(g̃Γ, g̃∆) 0 Prop. 4.5.9; 4.2.5 none

S(νgΓ, zτg∆) 0 Prop. 4.2.4, Cor. 4.5.6 none

S(νgΓ, g̃∆) ∗ Prop. 4.5.7; 4.5.9 carry

S(νgΓ, νzβ − zτ ) zτgΓ or g̃Γ or 0 Prop. 4.5.1, 4.5.3 in G2

S(g̃Γ, zτg∆) 0 Prop. 4.5.8, 4.5.10 none

S(zτgΓ, νzβ − zτ ) 0 Prop. 4.5.1 none

S(g̃Γ, νzβ − zτ ) zτnΓ Cor. 4.5.2 in G2
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However, we still must check that any remaining S-polynomials among the generators in G2

either reduce to zero or at least fail to produce any new generators that we would have to add to

a generating set for the intersection. Fortunately, all of the remaining calculations follow from the

work we have already done. To organize the rest of the argument, we think of the generators in G2

as falling into three types:

• 2ν-generators, in which both terms are divisible by ν;

• 1ν-generators, in which only the leading term is divisible by ν; and

• 0ν-generators, in which neither term is divisible by ν.

The 0ν-generators are all divisible by zτ and are the only generators that survive to be included in

the basis for the intersection of our original ideals. Organized in this way, our current working basis

is the following.

2ν 1ν 0ν

νgΓ νzτ − zτ zτgΓ

νgΓ νzβ − zτ zτgΓ

νziτ − νziβ g̃Γ zτnΓ

zτ (ziτ − ziβ)

We have already computed all S-polynomials among the 2ν-generators and have carried forward

only νS(gΓ, g∆) when Γ is in-led and ∆ is out-led, which is expressed in terms of nΓ∪∆ and gΓ∩∆

in Proposition 4.5.6. We have also already computed all S-polynomials among the 1ν-generators.

The results are all recorded in Tables 4.3 and 4.4 and all reduce by generators in G2. We have also

computed all S-polynomials between 2ν- and 1ν-generators, with results recorded in Tables 4.1, 4.3,

and 4.4. One of these computations, S(νgΓ, g̃∆) was carried forward. It has only its leading term

divisible by ν.

As mentioned at the beginning of Section 4.4.1, the steps of Buchberger’s algorithm that do not

involve ν can be regarded as a parallel computation of a Gröbner basis for (Q′I(Dσ)+N ′I(Dσ)+Z)∩

(zτ ). Since we have already determined that the existing 0ν-generators are a basis for Q′I(Dbσ) +

N ′I(Dbσ) +Z, as desired, we know that any further S-polynomials among the 0ν-generators will just

produce more redundant generators for Q′I(Dbσ)+N ′I(Dbσ)+Z. Since we do not actually need to end

up with a Gröbner basis for the ideal quotient, there is no need to compute further S-polynomials

among 0ν-generators.

For S-polynomials between 0ν- and 2ν-generators, we may always use Proposition 4.2.4 to move

a factor of νzτ to the outside of the computation. In most cases, this leaves a multiple of an S-

polynomial we have already computed. The only exception is S-polynomials between 2ν-generators



CHAPTER 4. BRAID CLOSURES AND IDEAL QUOTIENTS 114

and nΓ. The necessary computations are very similar to those in Proposition 4.5.6, but we record

the results in Proposition 4.6.2.

Finally, we have also already addressed S-polynomials between the 1ν- and 0ν-generators. Propo-

sitions 4.4.3 and 4.5.1 showed that the result of S(νzτ − zτ ,−) and S(νzβ − zτ ,−) applied to any

0ν-generator always reduces to zero. Proposition 4.5.8 shows that S(g̃Γ, zτf) = zτS(g̃Γ, f) for any f

that is a sum of two monomials. We have already computed S(g̃Γ, f) for every f such that zτf ∈ G2

except f = nΓ. We will compute S(g̃Γ, n∆) in Proposition 4.6.3. The results are very similar to

those of Proposition 4.5.9.

Aside from the S-polynomials involving nΓ, the only possible remaining issue is the S-polynomials

that we carried forward from round 2. In their current forms, they do not survive to the basis for

the intersection of our ideals: S(νgΓ, νg∆) is a 2ν-generator and S(g̃Γ, νg∆) is a 1ν-generator. New

0ν-generators can be created from 2ν-generators by double applications of S-polynomials with 1ν-

generators, while new 0ν-generators can be created from 1ν-generators by single applications of

S-polynomials with 1ν-generators. The leading terms for the S-polynomials we have carried forward

are not divisible by ziτ for any i, so we know that applications of S(νzτ − zτ ,−) will produce

expressions that are already reducible in our existing basis. We know from Proposition 4.5.1 that

S(νzβ − zτ ,−) removes ν and factors of ziβ from leading terms. Applied twice, it removes factors

of ziβ that divide both terms of a two-term polynomial, removes ν from both terms, and multiplies

the polynomial by zτ . The S-polynomials we have carried forward are expressed in terms of subset

relations and non-local relations for unions, intersections, and complements of the subsets Γ and ∆

that were put into them. Non-local relations do not have ziβ that divide both of their terms. If a

factor of ziβ divides both terms of a subset relation, then removing it produces a multiple of the non-

local relation associated to the same subset. Therefore, applying S(νzβ−zτ ,−) to the S-polynomials

we have carried forward will produce expressions in terms of non-local relations and their multiples.

These will be reducible in G2. Finally, we might apply g̃Γ to one of the S-polynomials that we have

carried forward. Applications of S(g̃Γ,−) to other subset relations also produce expressions in terms

of non-local relations and subset relations associated to unions, intersections, and complements of

the input subsets. At worst, they remove factors of ziβ just as S(νzβ − zτ ,−) does. Either way, the

result will be an expression in terms of non-local relations that can be reduced within G2.

4.6.1 S-polynomials with nΓ

Recall that nΓ = gΓ if zΓ,τ = 1 or zβ,Γ = 1. We will ignore this situation, since we have already

completed all the necessary S-polynomial calculations with gΓ. Assuming then that zΓ,τ 6= 1 and
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zβ,Γ 6= 1, we still have that gΓ is a multiple of nΓ:

gΓ = zΓ,β,ΓnΓ.

The following proposition allows us to compute S-polynomials between nΓ and generators in which

no term is divisible by ν by comparing them with S-polynomials where gΓ is in place of nΓ.

Proposition 4.6.1. Let f, a ∈ Q[x′] and g ∈ Q[x′, ν] with f = LT(f) + f ′ and g = LT(g) + g′,

where a, f ′, and g′ are monomials. Then

S(af, g) =
a

gcd(a,LT(g))
S(f, g) (4.25)

Proof. Compute as follows.

S(af, g) =
aLT(f)LT(g)

gcd(a,LT(g)) gcd(f, g)
· 1
aLT(f)

(af ′)

− aLT(f)LT(g)
gcd(a,LT(g)) gcd(f, g)

· 1
LT(g)

(g′)

=
a

gcd(a,LT(g))

(
LT(f)LT(g)

gcd(f, g)
· 1

LT(f)
(f ′)− LT(f)LT(g)

gcd(f, g)
1

LT(g)
(g′)
)

=
a

gcd(a,LT(g))
S(f, g)

To apply Proposition 4.6.1, we re-examine the computations from Propositions 4.5.6 and Cases

(6)-(9) of 4.5.9 to see how the appropriate factor of a
gcd(a,LT(g)) can be removed. Notice that there

is no need to reconsider leading terms: dividing gΓ by a factor cannot change its term order. Since

these computations are so similar to those in Propositions 4.5.6 and 4.5.9, we omit most of the

details.

Proposition 4.6.2. Let Γ and ∆ be subsets of D.

1. If Γ is in-led, then

S(nΓ, g∆)
ziτ−z

i
β−−−−→ xΓ\(Γ∩∆),∆\(Γ∩∆)zΓ,β,∆\(Γ∩∆)z∆\(Γ∩∆),β,Γ∪∆

(
nout

Γ∪∆g
out
Γ∩∆ − nin

Γ∪∆g
in
Γ∩∆

)
.

2. If Γ is out-led, then

S(nΓ, g∆)
ziτ−z

i
β−−−−→xΓ∩∆,D\(Γ∪∆)zD\Γ,β,Γ∩∆zΓ∩∆,β,Γ∩∆zΓ∩∆,β,D\Γ

·
(
nin

Γ\(Γ∩∆)g
out
∆\(Γ∩∆) − g

in
∆\(Γ∩∆)n

out
Γ\(Γ∩∆)

)
.

3. If Γ and ∆ are both in-led, then

S(nΓ, g∆) = xΓ∩∆,D\(Γ∪∆)zΓ∩∆,β,Γ∩∆zD\Γ,β,Γ∩∆

(
gin

∆\(Γ∩∆)n
out
Γ\(Γ∩∆) − n

in
Γ\(Γ∩∆)g

out
∆\(Γ∩∆)

)
.
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4. If Γ and ∆ are both out-led, then

S(nΓ, g∆) = xD\(Γ∪∆),Γ∩∆zΓ∩∆,β,Γ∩∆zΓ∩∆,β,D\Γ

(
gin

∆\(Γ∩∆)n
out
Γ\(Γ∩∆) − n

in
Γ\(Γ∩∆)g

out
∆\(Γ∩∆)

)
.

5. If Γ is in-led and ∆ is out-led, then

S(nΓ, g∆) = xΓ\(Γ∩∆),∆\(Γ∩∆)zΓ\(Γ∩∆),β,∆\(Γ∩∆)z∆,β,∆\(Γ∩∆)(nout
Γ∪∆g

out
Γ∩∆ − nin

Γ∪∆g
in
Γ∩∆).

Proof. Case 1: By Proposition 4.6.1, we have the following relationship between the S-polynomial

with nΓ and the one with gΓ.

S(gΓ, g∆) =
zΓ,β,Γ

gcd(zΓ,β,Γ,LT(g∆))
S(nΓ, g∆)

=
zΓ,β,Γ

gcd(zΓ,β,Γ, x∆,D\∆z∆,τ )
S(nΓ, g∆)

= zΓ,β,ΓS(nΓ, g∆)

We may factor zΓ,β,Γ out of zΓ∪∆,β,Γ∪∆, which occurs in the terms of gΓ∪∆ in the expression for

S(gΓ, g∆) from Proposition 4.5.6. The result is to replace gΓ∪∆ with nΓ∪∆ and leave

zΓ∪∆,β,Γ∪∆

zΓ,β,Γ
= zΓ,β,∆\(Γ∩∆)z∆\(Γ∩∆),β,Γ∪∆

on the outside of the expression.

Case 2: As in case 1, we must factor out zΓ,β,Γ from the expression for S(gΓ, g∆) found in Proposi-

tion 4.5.6. This requires a small amount of rearranging.

S(gΓ, g∆) = xΓ∩∆,D\(Γ∪∆)zβ,Γ∩∆z
β
Γ∩∆,τ

(
gin

Γ\(Γ∩∆)g
out
∆\(Γ∩∆) − g

in
∆\(Γ∩∆)g

out
Γ\(Γ∩∆)

)
= xΓ∩∆,D\(Γ∪∆)zβ,Γ∩∆z

β
Γ∩∆,τzΓ\(Γ∩∆),β,Γ\(Γ∩∆)

(
nin

Γ\(Γ∩∆)g
out
∆\(Γ∩∆) − g

in
∆\(Γ∩∆)n

out
Γ\(Γ∩∆)

)
= xΓ∩∆,D\(Γ∪∆)zD\Γ,β,Γ∩∆zΓ∩∆,β,Γ∩∆zΓ∩∆,β,D\ΓzΓ,β,Γ

·
(
nin

Γ\(Γ∩∆)g
out
∆\(Γ∩∆) − g

in
∆\(Γ∩∆)n

out
Γ\(Γ∩∆)

)
The expression for S(nΓ, g∆) in the proposition statement follows immediately.

Cases 3 and 4: As in Cases 3 and 4 of Proposition 4.5.6, there are two subcases here, one in which

Γ and ∆ are both in-led and one in which they are both out-led. The subcases are very similar, so

we again choose to detail only the one in which both subsets are out-led. By Proposition 4.6.1, the

monomial we need to factor out of S(gΓ, g∆) is

zΓ,β,Γ

gcd(zΓ,β,Γ, x∆,D\∆z
β
∆,τ )

=
zΓ,β,Γ

zΓ∩∆,β,Γ
= zΓ\(Γ∩∆),β,Γ.
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From Proposition 4.5.6, we have

S(gΓ, g∆) = xΓ∩∆,D\(Γ∪∆)zβ,Γ∩∆

(
gin

∆\(Γ∩∆)g
out
Γ\(Γ∩∆) − g

in
Γ\(Γ∩∆)g

out
∆\(Γ∩∆)

)
= xΓ∩∆,D\(Γ∪∆)zβ,Γ∩∆zΓ\(Γ∩∆),β,Γ\(Γ∩∆)

(
gin

∆\(Γ∩∆)n
out
Γ\(Γ∩∆) − n

in
Γ\(Γ∩∆)g

out
∆\(Γ∩∆)

)
= xΓ∩∆,D\(Γ∪∆)zΓ∩∆,β,Γ∩∆zD\Γ,β,Γ∩∆zΓ\(Γ∩∆),β,Γ

·
(
gin

∆\(Γ∩∆)n
out
Γ\(Γ∩∆) − n

in
Γ\(Γ∩∆)g

out
∆\(Γ∩∆)

)
The expression for S(nΓ, g∆) follows immediately.

Case 5: As in Case 3, we need to factor out zΓ\(Γ∩∆),β,Γ from S(gΓ, g∆). From Proposition 4.5.6,

we have the following.

S(gΓ, g∆) = xΓ\(Γ∩∆),∆\(Γ∩∆)zΓ\(Γ∩∆),β,Γ∪∆z∆,β,∆\(Γ∩∆)(nout
Γ∪∆g

out
Γ∩∆ − nin

Γ∪∆g
in
Γ∩∆)

Factoring out zΓ\(Γ∩∆),β,Γ from zΓ\(Γ∩∆),β,Γ∪∆ leaves exactly the expression in the statement of this

proposition.

The same arguments that we made following Proposition 4.5.6 apply again to show that Cases

1–4 above reduce via generators in G2. For the expression in Case 5, the same argument as at

the beginning of this section shows that even though it does not reduce by generators in G2, it

nonetheless cannot produce any new generators for the ideal intersection.

Proposition 4.6.3. Let Γ and ∆ be subsets of D. (Case numbers are parallel to Proposition 4.5.9.)

6. If Γ is out-led and ∆ is in-led and zΓ,τ 6= 1, z∆,τ 6= 1, then

S(g̃Γ, n∆) = xΓ∩∆,D\(Γ∪∆)(νgout
∆\(Γ∩∆)g

in
Γ\(Γ∩∆)zΓ∩∆,β,Γ∩∆zΓ∩∆,β,D\∆zD\Γ,β,Γ∩∆zD\Γ,β,D\∆

− xin
∆\(Γ∩∆)x

out
Γ\(Γ∩∆)zΓ\(Γ∩∆),β,∆\(Γ∩∆)zτ ).

7. If Γ is in-led and ∆ is out-led and zΓ,τ 6= 1, zβ,Γ 6= 1, z∆,τ 6= 1, then

S(g̃Γ, n∆) = xD\(Γ∪∆),Γ∩∆(νgout
Γ\(Γ∩∆)g

in
∆\(Γ∩∆)zΓ∩∆,β,Γ∩∆zD\∆,β,Γ∩∆zD\∆,β,D\ΓzΓ∩∆,β,D\Γ

− xout
∆\(Γ∩∆)x

in
Γ\(Γ∩∆)z∆\(Γ∩∆),β,Γ\(Γ∩∆)zτ ).

8. If Γ and ∆ are both out-led and zΓ,τ 6= 1, z∆,τ 6= 1, then

S(g̃Γ, n∆) = xΓ\(Γ∩∆),∆\(Γ∩∆)

· (νnin
Γ∪∆g

in
Γ∩∆zΓ\(Γ∩∆),β,Γz∆\(Γ∩∆),β,Γz

β
D\(Γ∪∆),τ − xout

Γ∪∆x
out
Γ∩∆zΓ∩∆,β,D\(Γ∪∆)zτ ).
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9. If Γ and ∆ are both are in-led and zΓ,τ 6= 1, zβ,Γ 6= 1, and z∆,τ 6= 1, then

S(g̃Γ, n∆) = x∆\(Γ∩∆),Γ\(Γ∩∆)

· (νnout
Γ∪∆n

out
Γ∩∆zβ,D\(Γ∪∆)zΓ\(Γ∩∆),β,Γ\(Γ∩∆)zΓ\(Γ∩∆),β,∆\(Γ∩∆)zΓ∩∆,β,Γ∩∆

− xin
Γ∪∆x

in
Γ∩∆zD\(Γ∪∆),β,Γ∩∆zτ ).

Proof. Case 6: By Proposition 4.6.1, we need to find the following factor in an expression for

S(g̃Γ, g∆).

z∆,β,∆

gcd(z∆,β,∆,LT(g̃Γ))
=

z∆,β,∆

gcd(z∆,β,∆, zβ,Γz
β
D\Γ,τ )

=
z∆,β,∆

z∆\(Γ∩∆),β,∆zΓ∩∆,β,Γ∩∆

= zΓ∩∆,β,∆\(Γ∩∆)

From Proposition 4.5.9, we have the following expression for S(g̃Γ, g∆).

S(g̃Γ, g∆) = xΓ∩∆,D\(Γ∪∆)(νgout
∆\(Γ∩∆)g

in
Γ\(Γ∩∆)z

β
Γ∩∆,τzD\Γ,β,Γ∩∆zD\Γ,β,D\∆

− xin
∆\(Γ∩∆)x

out
Γ\(Γ∩∆)zΓ,β,∆\(Γ∩∆)zτ )

Factoring zΓ∩∆,β,∆\(Γ∩∆) out of zβΓ∩∆,τ in the first term and out of zΓ,β,∆\(Γ∩∆) in the second term

yields the expression in the statement of this proposition.

Case 7: By Proposition 4.6.1, we need to find the following factor in an expression for S(g̃Γ, n∆).

z∆,β,∆

gcd(z∆,β,∆,LT(g̃Γ))
=

z∆,β,∆

gcd(z∆,β,∆, zβ,D\Γz
β
Γ,τ )

=
z∆,β,∆

z∆,β,∆\(Γ∩∆)zΓ∩∆,β,Γ∩∆

= z∆\(Γ∩∆),β,Γ∩∆

From Proposition 4.5.9, we have the following expression for S(g̃Γ, g∆).

S(g̃Γ, g∆) = xD\(Γ∪∆),Γ∩∆(νgout
Γ\(Γ∩∆)g

in
∆\(Γ∩∆)zβ,Γ∩∆zD\∆,β,D\ΓzΓ∩∆,β,D\Γ

− xout
∆\(Γ∩∆)x

in
Γ\(Γ∩∆)z∆\(Γ∩∆),β,Γzτ ).

Factoring z∆\(Γ∩∆),β,Γ∩∆ out of zβ,Γ∩∆ in the first term and out of z∆\(Γ∩∆),β,Γ in the second term

yields the expression in the statement of this proposition.

Case 8: Since Γ is out-led in this case as well, we need to find the same factor of zΓ∩∆,β,∆\(Γ∩∆)

in an expression for S(g̃Γ, n∆) as in Case 6. Case 8 of Proposition 4.5.9 produces an expression

for S(g̃Γ, g∆) in which the first term has a factor of zΓ∩∆,β,∆\(Γ∩∆) and the second has a factor of
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zΓ∩∆,β,D\Γ. Factoring zΓ∩∆,β,∆\(Γ∩∆) out of these terms yields the expression in the statement of

this proposition.

Case 9: Since Γ is in-led in this case as well, we need to find the same factor of z∆\(Γ∩∆),β,Γ∩∆ in

an expression for S(g̃Γ, n∆) as in Case 7. Case 9 of Proposition 4.5.9 produces an expression for

S(g̃Γ, g∆) in which the first term has a factor of z∆,β,Γ∩∆ and the second has a factor of zD\Γ,β,Γ∩∆.

Factoring z∆\(Γ∩∆),β,Γ∩∆ out of these terms yields the expression in the statement of this proposition.

By the same arguments that we made at the beginning of this section about S(g̃Γ, g∆), the

expressions in Proposition 4.6.3 do not produce any new generators for the ideal intersection.
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are not equal. 2005. Preprint arXiv:math/0512348v1.

[16] V.F.R. Jones. Hecke algebra representations of braid groups and link polynomials. Annals of
Mathematics, 125:335–388, 1987.

[17] Christian Kassel. Homology and cohomology of associative algebras: A concise introduction to
cyclic homology. Advanced School on Non-commutative Geometry, ICTP, Trieste, 2004.

[18] Mikhail Khovanov. A categorification of the Jones polynomial. Duke Mathematical Journal,
101(3):359–426, 2000. Preprint arXiv:math/9908171v2.

[19] Mikhail Khovanov. A functor-valued invariant of tangles. Algebraic and Geometric Topology,
2:665–741, 2002. Preprint arXiv:math/0103190v2.

[20] Mikhail Khovanov. sl(3) link homology. Algebraic and Geometric Topology, 4:1045–1081, 2004.
Preprint arXiv:math/0304375v2.

[21] Mikhail Khovanov. Triply-graded link homology and Hochschild homology of Soergel bimodules.
International Journal of Mathematics, 18(8):869–886, 2007. Preprint arXiv:math/0510265v3.

[22] Mikhail Khovanov and Lev Rozansky. Matrix factorizations and link homology. Fundamenta
Mathematicae, 199:1–91, 2008. Preprint arXiv:math/0401268v2.

[23] Mikhail Khovanov and Lev Rozansky. Matrix factorizations and link homology II. Geometry
and Topology, 12:1387–1425, 2008. Preprint arXiv:math/0505056v2.

[24] Mikhail Khovanov and Paul Seidel. Quivers, Floer cohomology, and braid group actions. Journal
of the American Mathematical Society, 15(1):203–271, 2002. Preprint arXiv:math/0006056v2.

[25] Mikhail Khovanov and Richard Thomas. Braid cobordisms, triangulated categories, and flag va-
rieties. Homology, Homotopy and Applications, 9:19–94, 2007. Preprint arXiv:math/0609335v2.
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