
Synthesis, Editing, and Rendering of Multiscale Textures

Charles Han

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

C O L U M B I A U N I V E R S I T Y

2011

c©2011

Charles Han

All Rights Reserved

A B S T R A C T

Synthesis, Editing, and Rendering of Multiscale Textures

Charles Han

The study of textures—images with repeated visual content—has produced a number

of useful tools and algorithms for analysis, synthesis, editing, rendering, and a variety

of other applications. However, the recent rapid growth in data storage and computa-

tional abilities has expanded the notion of what constitutes a texture. Modern textures

can often outstrip traditional assumptions on input size by several orders of magnitude.

Additionally, these multiscale textures typically contain features at not just one scale but

rather across a wide range of scales, further violating existing assumptions.

In order to meaningfully capture the large-scale features present in multiscale tex-

tures, we introduce a new example-based input representation, the exemplar graph. This

representation enables allows us to efficiently define textures spanning a large–or possi-

bly infinite–range of visual scales. We develop a hierarchical, parallelizable algorithm for

performing texture synthesis from an input exemplar graph.

In addition to automated generation, an increasingly important application of texture

synthesis is in interactive tools for guiding texture design. This modality is especially

important for multiscale textures, as they offer special perceptual challenges to artists.

We examine algorithmic and engineering optimizations to enable real-time analysis and

synthesis of multiscale textures, and explore potential implications for editing tools.

Finally, we study the issue of display. To accurately view a large image at distance,

some filtering operation must be performed. In many cases, such as traditional color

images, the filtering operations are well-known. However, other texture representations,

such as normal or displacement maps, present special difficulties for filtering. We treat

the former case, presenting a principled analysis and algorithms for filtering and display

of large normal maps.

TA B L E O F C O N T E N T S

list of figures iv

list of algorithms vi

acknowledgments vii

notation ix

i background

1 Introduction 2

2 Example-driven Texture Models 6

2.1 Markov Random Field . 6

2.2 Statistical Models . 8

2.3 Other Models . 9

3 Approach and Overview 11

ii authoring multiscale textures

4 The Exemplar Graph 14

4.1 Definition . 15

4.2 Inconsistency . 16

5 Synthesis 19

5.1 Related Work . 20

5.2 Multiscale Texture Synthesis . 21

5.2.1 Data structures . 21

5.2.2 Algorithm . 23

5.3 Inconsistency Correction . 25

i

5.4 GPU optimization . 27

5.5 Results . 29

6 Editing 35

6.1 Related Work . 36

6.2 System overview . 38

6.3 Incremental PCA . 39

6.3.1 Derivation . 40

6.3.2 Computation . 41

6.3.3 Sparse neighborhood sampling . 44

6.3.4 PCA and neighborhood projection . 44

6.4 Incremental PatchMatch . 45

6.4.1 Notation and Background . 45

6.4.2 Restricted passes . 47

6.4.3 Biased search . 47

6.4.4 Vertical propagation . 48

6.5 Implementation and Results . 49

iii filtering of multiscale textures

7 Normal Map Filtering 53

7.1 Related Work . 56

7.2 Preliminaries . 58

7.2.1 BRDF representation and parameterization 59

7.2.2 Normal map representation and filtering 60

7.3 Normal Mapping as Convolution . 60

7.3.1 Normal distribution function . 61

7.3.2 Frequency-domain analysis in 2D . 61

7.3.3 Frequency-domain analysis in 3D . 62

7.4 Spherical Harmonics . 65

7.4.1 Algorithm . 65

7.4.2 Results . 66

ii

7.5 Spherically Symmetric Distributions . 68

7.5.1 Basic theoretical framework for using SRBFs 69

7.5.2 Discussion: unifying framework and multiscale 69

7.5.3 Choice of radial basis function . 70

7.6 Von Mises-Fisher Mixtures . 71

7.6.1 Fitting NDFs with mixtures of vMFs 72

7.6.2 Spherical harmonic coefficients for rendering 74

7.6.3 Complex lighting . 76

7.6.4 Extensions . 77

7.6.5 Results . 81

iv conclusions

8 Future Directions 85

9 Summary and Final Words 87

bibliography 89

iii

L I S T O F F I G U R E S

1.1 Multiscale texture . 3

1.2 The mid-frequency problem . 4

4.1 The exemplar graph . 15

4.2 A simple graph . 16

4.3 Inconsistency correction . 17

5.1 Data structures . 21

5.2 Transfer functions . 26

5.3 Coherent infinite zooms . 30

5.4 Super-resolution . 31

5.5 Compact representation . 32

5.6 A simple chain . 33

6.1 Editing system overview . 38

6.2 PatchMatch phases . 46

6.3 Algorithm comparison . 50

6.4 Texture editing sessions . 51

7.1 The normal map filtering problem . 54

7.2 Comparison of filtering methods . 55

7.3 Spherical harmonic anisotropic filtering . 64

7.4 Temporal coherence . 67

7.5 Rendering with acquired BRDFs . 68

iv

7.6 Multiscale tradeoffs . 70

7.7 vMF lobe fitting . 73

7.8 Dynamically changing reflectance . 82

7.9 Normal map filtering under complex lighting 83

v

L I S T O F A L G O R I T H M S

6.1 Space-optimized covariance computation . 43

7.1 The Spherical EM algorithm . 74

7.2 Pseudocode for the vMF GLSL fragment shader 80

vi

A C K N O W L E D G M E N T S

This thesis would have been impossible without: my co-advisors Eitan Grinspun1 and

Ravi Ramamoorthi2; mentor Hugues Hoppe3; committee members Peter Belhumeur and

Shree Nayar4; fellow Columbia students (in order of appearance) Aner Ben-Artzi, Bo Sun,

Ryan Overbeck, David Harmon, Miklós Bergou, Kevin Egan, Etienne Vouga, and Brean-

nan Smith5; collaborator Eric Risser6; the fine artists, researchers, and developers at Weta

Digital7; admins Anne Fleming, Lily Secora, and Jessica Rosa8; Daisy Nguyen and CRF9;

Bob, Fang, Greg, Jenn, Jess, Job, Kaliq, Max, Sherry, Steph, and the rest of my urban fam-

ily10; long-distance pals Caroline, Dave, Wendy, and so many more11; Girlfriend12; my

little sister Naly13 and her little man Milo14; and my parents15.

Thank you all for carrying me through this journey.

1 An ever-positive wellspring of guidance through my many distractions, diversions, and disillusionments.

Wow, I sure didn’t make it easy for you, did I? We wound up a long way from where we started, and I wonder

if I would’ve made it with any other primary-care advisor on Earth. Thanks for the thrilling ride.

2 Always ready with the perfect bit of insight or motivation, you never let us drift too far off into the

clouds. Conducting research with you has been at once humbling and empowering.

3 Ours has been a truly inspiring collaboration. It’s been a joy to witness firsthand your unique blend of

brilliance, intuition, and practicality; I hope to someday emulate it in my own work.

4 This thesis owes much to your incisive questions and urgings to dig deeper. Thank you for your direction

and perspective.

5 I am proud to call you my contemporaries, and more importantly my friends. Thanks for the many

thoughtful discussions, spirited collaborations, and crazy SIGGRAPH memories (or lack thereof).

6 A sharp research mind and all around nice guy. Also, I still owe you big-time for that rescue in Dublin!

vii

7 So many of the ideas in this research—and so many more yet to be properly explored—arose from my

time in Wellington. I especially thank Joe Letteri for inviting me, and Peter Hillman and Richard Addison-

Wood for countless thought-provoking conversations.

8 It’s scary to think how many reimbursements and registration deadlines I would have missed if not for

you. Thank you each so much for your eternal patience.

9 True heroes, putting out fires every day (literally, when the chill water goes down).

10 I’m sure I missed a few names, sorry! Whether it was throwing a house party at The +, going [food]

clubbing, enjoying a weekly Wednesday drink, or just plain hanging out, my time in New York has been a

constant blast. A big, ZONG thank you to the best friends in world!

11 . . . the other best friends in the world!

12 Susanna Gyujin Kim, I can’t thank you enough for being my constant companion / muse / fashion

model / cheerleader / study buddy / coach / Thai masseuse / friend.

13 Really the grown-up one between us, whom I look up to in many ways. Expect me to come asking for

advice one day when I have a kid or a tax problem.

14 Listen to your mother, she loves you very much!

15 Thank you for giving so completely of yourselves so that I could have every opportunity. I am all I am

because of you.

viii

N O TAT I O N

acronym definition symbol

MRF Markov random field

exemplar Ei

Gaussian stack level Ei
k

admissible candidates A(Ei
k)

appearance transfer function r

cumulative transfer function R

NNF nearest neighbor field f

NDF normal distribution function γ(n)

SH spherical harmonics Ylm

SRBF spherical radial basis function γ(n · µ)
EM expectation maximization

vMF von Mises-Fisher distribution γ(n · µ; θ),

θ = {κ, µ}
movMF mixture of vMF lobes γ(n; Θ),

Θ = {αj, θj}J
j=1

ix

To Kyung-Sook and Dong Suk Han

for their unwavering love and support

x

1

Part I

B A C K G R O U N D

2

C H A P T E R 1

I N T R O D U C T I O N

Texture is an essential part of our everyday experience. From the structured mortar lines

of a brick wall, to the seemingly haphazard strands of a shaggy carpet, texture gives us

important cues in identifying and understanding the world around us. It is no surprise,

then, that the visual representation of texture has long been an important focus both in

computer graphics research and in industry.

Indeed, the demand for textures is greater now than ever. As graphics tools and

practices have improved, there has been increasing trust and reliance on digital effects

in industry. It is no longer uncommon for movies and games to require the creation

(and texturing) of entire digitally created characters, sets, and worlds. Alongside this

growing need for more textures, there is simultaneously a need for better textures. Display

capabilities and data availability are constantly climbing, driving up resolution demands.

Furthermore, these larger texture sizes lead naturally to greater visual complexity. In

short, we find ourselves ever in need of more textures, larger textures, and higher-quality

textures.

This last requirement—higher-quality—is particularly challenging. Consider for in-

stance the geographic texture in Figure 4.1. When viewed from satellite distance, the

texture features are on the order of oceans and land masses. As we zoom in (bottom

insets), features take on the shape of coastlines, forests, or mountain ranges. At the finest

levels (top insets) we begin to differentiate rivers, valley systems, and individual ridges.

introduction 3

Figure 1.1: Multiscale texture. Characteristic of many modern textures, this 16k× 16k texture

exhibits features at a broad range of scales.

This example illustrates a multiscale texture–that is, a texture that simultaneously contains

features of vastly varying size. While it is difficult to precisely quantify what makes a

texture multiscale1, it is easy to see that such a beast reveals several shortcomings in the

way we currently deal with textures.

Challenges for tools Multiscale textures present special technical difficulties, and there-

fore we cannot simply import our existing tools. As we will cover in greater detail in the

next section, most all texture models incorporate some fixed notion of feature size. This

limits the range of scales that can be represented, and thus clearly presents a problem in

the multiscale setting. Revisiting our Figure 4.1 texture, note that an “appropriate” set-

ting of feature size would need to be several thousands of pixels wide—several orders of

magnitude larger than the usual notions. Even supposing that computational demands

were no issue, such an approach would still be conceptually wasteful. In representing

1how tall is the world’s shortest giant?

4 introduction

Figure 1.2: The mid-frequency problem. Manual texture authoring presents a perceptual hurdle

for human artists. Although coarse layouts and fine details are usually well-handled, resolving all

frequencies simultaneously proves to be difficult.

the largest textural features, a great deal of effort would (for most real-world textures) be

wasted on redundant information at finer scales.

Dissatisfaction with these limitations has led to recent research interest in inhomoge-

neous textures [Zhang et al., 2003; Wei et al., 2008; Rosenberger et al., 2009]. These methods

augment the traditional models of texture to accommodate a variable coarse structure,

driven by the insight that most modern useful textures contain interesting variation at

both fine and coarse scales. Our research in multiscale textures follows naturally from a

generalized form of this view: texturing tools should accommodate meaningful features

at a broad range of scales.

Challenges for artists Faced with the aforementioned technical hurdles, current indus-

try practice has turned to a time-honored solution: manual labor. Often using tradi-

tional computer painting tools, human artists are able to perform a rough sort of “texture

introduction 5

synthesis”. Much to their credit, the results can generally be of high subjective quality,

but obvious problems remain with this strategy. First, this is often a tedious and labor-

intensive (read: costly) process. By its very nature, texture editing is a repetitive chore;

we would rather allow the artist to concentrate on broad aesthetic decisions rather than

narrow technical ones.

More fundamentally, there exists a phenomenon that we informally deem the mid-

frequency problem: people are adept at editing coarse frequencies (e.g., laying out broad

patches of texture) and fine frequencies (pixel-level edits using a Photoshop-type tool),

but often have difficulties managing the frequencies in between. This will manifest as

noticeable irregularities, as we show in Figure 1.2. This is a real texture asset taken from a

motion picture pipeline; we see that although the artist has assembled a convincing coarse

appearance and has preserved many fine details, numerous “patching” artifacts remain

in the final result. This problem is both technical and perceptual. A painting tool such

as Photoshop offers excellent low-level control but does not generally give any facility

to manage characteristic structures—precisely the task at which texture synthesis excels.

More crucially, people tend to think naturally in terms of a small band of frequencies at a

given time [Julesz, 1981], making it counterintuitive for an artist to simultaneously work

at all scales when painting.

Given that our texture needs are rapidly outgrowing both existing tools and human

capabilities, it becomes imperative that we develop new “multiscale-ready” methods; this

thesis aims to be a first step in this direction. We organize our document as follows. In

the remainder of this chapter we will provide a survey of relevant models for texture. In

Chapter 5 we introduce new data structures and algorithms for the efficient specification

and synthesis of multiscale textures. We further build on these concepts in Chapter 6 to

enable interactive texture editing tools. Finally, in Chapter 7 we visit the oft-overlooked

issue of filtering for the proper display of large textures, with a particular focus on normal

maps.

6

C H A P T E R 2

E X A M P L E -D R I V E N T E X T U R E M O D E L S

Textures are noteworthy in that their repetition can be exploited for more compact repre-

sentations, and ultimately for automated generation. There is a rich history of methods

for modeling and synthesizing textures; we focus here particularly on the data-driven

class of methods. These approaches attempt to model and recreate new texture images to

resemble a given input exemplar image, and have received significant attention in recent

years for their simplicity and output quality. We organize the discussion of this research

according to the underlying texture models.

2.1 markov random field

Arguably the most successful framework for texture description has been the Markov

random field (MRF) [Cross and Jain, 1983] model, which maps a given texture image to

an undirected graph. The vertices of the graph each represent a given pixel value as a

random variable, and—together with the edges—satisfy the following properties:

Markovianity — the conditional probability distribution of a pixel value, x,

depends only on the adjacent values in the graph, N(x). That is,

p(x|all other pixels) = p(x|N(x)). (2.1)

Locality — vertices in the graph are adjacent if and only if their correspond-

ing pixels are spatially close to each other in the texture plane.

2.1 markov random field 7

Stationarity — the conditional distribution in (2.1) is the same for all pixels.

Put simply, a given pixel’s value should depend only on the values of those pixels

within its local window; furthermore, this dependence should remain constant for all

possible windows in the texture. The formulation captures in analytical terms the in-

tuition that features (pixel neighborhoods) in the exemplar should occur with the same

regularity in the output as they do in the output, and furthermore that this requirement

is sufficient to synthesize plausible textures. In the context of synthesis, the general ap-

proach is: to interpret the input as an MRF; to model–either explicitly or implicitly–the

function p(x|N(x)); and finally to generate an output satisfying both this function and the

MRF properties. There have been a number of works either based directly on or rooted

heavily in this theoretical setting, which we examine below.

Direct modeling Early MRF-based synthesis methods attempt to directly model the

conditional probability in Equation 2.1 [Popat and Picard, 1993; Zhu and Mumford, 1998;

Paget, 2004]. These methods suffer chiefly from two drawbacks. First, they are typically

slow to run, as Equation 2.1 must be represented a high-dimensional vector space; this

incurs the so-called “curse of dimensionality”. Perhaps more discouragingly, the quality

of their synthesis results have in large part been completely superseded by that of later

methods; this is not surprising, as these methods are focused more on finding general

analytic representations than on producing high-quality synthesized results.

Pixel copying Towards the aim of synthesis, a number of methods have utilized a key

observation: if the goal is simply to generate a plausible output, it is not necessary to pa-

rameterize the input at all! For a given pixel, x, we can approximate the conditional prob-

ability in Equation 2.1 simply by locating exemplar pixels with similar neighborhoods. It

follows from stationarity that these pixels were drawn from the same distribution, so it

is reasonable to assign the value of x from among these best-match choices. Indeed, this

simple “pixel copying” approach has shown to be quite effective in generating realistic

textures [Efros and Leung, 1999; Wei and Levoy, 2000].

In the limit, this approach amounts to minimizing the error between a given output

8 example-driven texture models

pixel neighborhood and its closest-matching neighborhood in the exemplar. A number of

recent methods formalize this intuition as a global optimization problem over the entire

output [Kwatra et al., 2005; Lefebvre and Hoppe, 2005].

Patch copying A family of patch copying, or quilting, methods [Efros and Freeman,

2001; Wu and Yu, 2004; Kwatra et al., 2003] seek to generalize the pixel-copying approach.

Rather than copying single pixels from the exemplar, these methods copy entire patches at

a time. New patches are placed to overlap with existing texture, and—analogously with

the pixel-copying strategy of finding best-matching neighborhoods—patches are selected

to match as closely as possible in the overlap region.

Although only loosely based on the formal MRF model, these methods have proven

to be useful in practice. Since outputs are formed by directly copying coherent regions

from the exemplar, visual quality tends to be excellent within these contiguous patches.

Any visible artifacts are consequently concentrated at patch seams, and are determined

mainly by patch compatibility and stitching quality. Difficulties can arise, therefore, for

complex textures where plausible patch arrangements may be difficult to find.

2.2 statistical models

Several schemes have been proposed which replace or augment the traditional MRF

model with statistical constraints on various filter responses of the output [Heeger and

Bergen, 1995; Zhu and Mumford, 1998; Portilla and Simoncelli, 2000]. These methods

characterize a texture by its response to a bank of feature-detecting filters, covering a

range of scales. The underlying assumption of this model is that, for some appropriately

selected filter bank, two texture images will be indistinguishable if they have identical re-

sponse statistics over all filters. Synthesis proceeds in a series of passes, gradually coaxing

the output image’s filter response statistics to match those of the exemplar.

Because the strategy relies on global statistical measures, it performs best for more

stochastic textures, where spatial structures are de-emphasized. There have been some

efforts to address this shortcoming by also considering localized relationships between

2.3 other models 9

filter responses. Portilla and Simoncelli additionally add interscale constraints to the

filter response model [Portilla and Simoncelli, 2000], but they only consider correlations

between immediately adjacent scales. Kopf et al. introduce another interesting statistically-

motivated approach [Kopf et al., 2007a]; their synthesis algorithm, while being primarily

based on the MRF model, additionally incorporates a step to encourage preservation of

global color statistics from the exemplar. Each of these additions serve to capture some

structure, but they can still miss larger or more complex structural patterns.

The statistical approach is notable in that it directly takes into account the appearance

of a texture at multiple scales. This is in contrast with the MRF and other models, which

are typically defined only at the finest pixel scale.

2.3 other models

There have been several interesting texture models that do not easily fit into the previous

categories.

DeBonet [1997] proposed a multiresolution texture model based on a cross-scale Marko-

vian model. In this model, conditional probability distributions are conditioned only on

pixels at coarser resolutions, and do not have any direct relationships with spatially neigh-

boring features. As with statistical models, features are represented using a bank of edge-

detecting filters. A strength of this model is that it can, in the limit, naturally account

for potentially complex interscale correlations. However, a limitation of this model arises

from the limited amount of training data available in our problem setting (typically orders

of magnitude smaller than the desired output).

Texton-based models attempt to closely model the human psychovisual system [Le-

ung and Malik, 2001; Zhu et al., 2005] by isolating exactly those features which are in-

terpreted as semantically significant. A texture image is then characterized as a global

arrangement of these textons. This separation of appearance and structure will bear some

resemblance to our hierarchical view of multiscale texture (Section 7.5.2), in that coarser

exemplars can be viewed as prescribing structure while finer exemplars play a texton-like

role. However, texton-centered research has tended to originate from the vision literature,

10 example-driven texture models

and has therefore been geared more towards analysis than synthesis. Example-driven syn-

thesis algorithms have largely been theoretically interesting but have thus far produced

unconvincing results [Dischler et al., 2002; Charalampidis, 2006].

For the special case of regular and near-regular textures, Liu et al. [2004] showed that

synthesis quality can be improved by explicitly modeling textures as deformations and

relightings on a regular lattice. Similar structural priors have been imposed in the form of

feature maps [Zhang et al., 2003; Matusik et al., 2005; Lefebvre and Hoppe, 2006], image

correspondences [Risser et al., 2010], or more domain-specific models such as faces [Mo-

hammed et al., 2009]. While these algorithms produce largely compelling results, and

provide valuable insight, we seek a more general study.

11

C H A P T E R 3

A P P R O A C H A N D O V E RV I E W

As we have surveyed in the previous chapter, existing models and tools are not well-suited

for application for application to multiscale texture. In the remainder of this thesis we

will seek to identify and address the challenges brought about by the multiscale setting.

Approach Our work is motivated chiefly by real-world limitations in production prac-

tice (Chapter 1). Therefore, the foremost consideration in this research is ultimately the

usability of our methods. Within the bounds of correctness, our algorithms favor computa-

tional efficiency and ease of implementation. Likewise, we seek naturally understandable

solutions, and explain the principles behind our main engineering decisions.

Given our emphasis on usability, a natural overarching principle to our work will be to

adopt and extend existing tools wherever possible. This is both a practical and ideological

consideration. We seek to encourage adoption of our work; to this end, tools which can be

implemented “on top” of those currently in use are clearly preferable to those which must

be engineered from scratch. Likewise, given the rich selection of tools available to use,

we wish to avoid reinventing the wheel. We will of course need to identify and address

crucial departure points for adoption to the multiscale, but as a whole we consider it a

strength of our work that it flows naturally from well-studied concepts.

Overview We begin with an investigation into methods for authoring multiscale tex-

tures. A key limitation of existing synthesis tools lies in the input representation itself;

12 approach and overview

we address this in Chapter 4 with the introduction of the exemplar graph. This powerful

image-based data structure enables compact specification of multiscale textures, and will

serve as a crucial object for our research. In Chapter 5 we present an algorithm to synthe-

size outputs of arbitrary size and resolution from an exemplar graph input. Our method

extends a popular single-scale synthesis scheme, and demonstrates that qualitatively new

multiscale results can be achieved through a perhaps surprisingly small number of prin-

cipled modifications.

Building upon our framework, we examine in Chapter 6 mechanisms to allow in-

teractive control of the synthesis process. In seeking this goal we develop a number

of optimizations to key algorithm components. These enhancements allow us then to

perform novel editing operations such as the real-time modification of exemplars and

globalization of local edits.

Lastly, in Chapter 7 we address the long-standing problem of filtering normal maps

for display. In forming our solutions we develop a new convolution-based theory of

normal mapping. This theory yields several immediate consequences: it generalizes many

previous works in normal filtering; brings normal mapping within the wider umbrella of

frequency-domain rendering methods; and enables the development of new techniques

for accurate filtering and display.

13

Part II

A U T H O R I N G M U LT I S C A L E T E X T U R E S

14

C H A P T E R 4

T H E E X E M P L A R G R A P H

Before we can even begin to address the algorithms for multiscale textures, we must first

address the more fundamental issue of representation. To illustrate this problem, recall

the maplike texture introduced in Chapter 1 (Figure 7.6). In a traditional example-based

synthesis scheme, textures must be specified in a single exemplar image large enough

to contain the coarsest features, but with enough resolution to depict the finest—in this

example, such an exemplar would be on the order of 16k × 16k pixels. This is both

wasteful and impractical, as there is much repeated featural content (e.g., vast expanses

of ocean or green land) that can be summarized in a more compact form. This is the

observation underlying our exemplar graph representation.

Figure 4.1, right shows an exemplar graph describing this same texture. In this graph,

each exemplar need only be large enough (in resolution) to faithfully capture those fea-

tures that characterize a feature at a particular spatial scale. The graph arrows relate

structures of differing scale: the head of an arrow points to an upsampled feature present

somewhere on its tail, and the label on the arrow gives the relative scale between the

exemplars. This formal decoupling of feature size and image resolution allows us to rep-

resent large textures far more efficiently; in this case, our entire planet-like structure was

synthesized from just eleven 256× 256 exemplars.

Beyond this significant quantitative gain, the graph representation enables qualitatively

new types of inputs. In particular, loops in the exemplar graph represent an infinitely-

4.1 definition 15

3 3
33

3

Figure 4.1: The exemplar graph. A desired multiscale texture (left) can be represented as a graph

containing a set of small exemplars and associated scaling relationships (right).

detailed, self-similar texture. They will enable our synthesis scheme (Chapter 5) to trans-

form a finite resolution input into an infinite resolution output, that can be navigated

by unbounded zooming and panning. Loops make the exemplar graph fundamentally

more expressive than a single exemplar, since a single exemplar (of large but finite resolu-

tion) cannot allow for infinite levels of detail. By using graphs of exemplars, we take one

step toward enjoying the benefits typically associated to procedural methods [Perlin, 1985;

Ebert et al., 2003]. At the same time, we allow for synthesis in those settings (e.g., acquired

data, artistic design) where a precise mathematical formulation is not readily available.

We give a more formal definition of the exemplar graph in the next section, followed

by a discussion of potential problems one could encounter in working with it.

4.1 definition

The exemplar graph, (V, E), is a reflexive, directed, weighted graph, whose vertices are

the exemplars, V = {E0, E1, . . .}, and whose edges, E, denote similarity relations between

exemplars. The root, E0, serves as the coarsest-level starting point for synthesis. We fix

the spatial units by declaring that root texels have unit diameter. For ease of notation,

16 the exemplar graph

our exposition assumes that all exemplars have resolution m×m (where m = 2L), but the

formulation can easily be generalized to exemplars of arbitrary size.

E0

E1 E2

2 3
1

Figure 4.2: A simple graph. A

simple exemplar graph contain-

ing three exemplars.

Figure 4.2a shows a simple graph with three exem-

plars. An edge, (i, j, r) ∈ E, emanates from a source ex-

emplar, Ei, and points to a destination exemplar, Ej, and

carries an associated similarity relation r. In this thesis we

consider only scaling relations, which we represent by a

nonnegative integer r such that 2r is the spatial scale of

the source relative to the destination. For example, in Fig-

ure 4.2a the edge (0, 1, 2) denotes a transition from E0 to

E1 along with the interpretation that the diameter of a

pixel in E0 is four (22) times the diameter of a pixel in E1.

Likewise, pixels in E2 are eight times smaller than those

of the root. The reflexive edge (2, 2, 1) indicates that E2 is similar to a 2× scaling of it-

self. Finally, since exemplars are self-similar, every exemplar has an implicit self-loop (not

shown in our figures) with r = 0.

We do not restrict the destination of an edge; in particular, we permit arbitrary net-

works including loops (e.g., the self-loop of E2 in Figure 4.2). We do, however, require r

to be less than some maximum value rmax; this ensures sufficient overlap between source

and destination scales, as this is required to reconstruct intermediate scales.

4.2 inconsistency

With the increased expressive power of exemplar graphs comes an added caveat: the

implicit information that the graph gives about the texture function may contain con-

tradictions. This problem of inconsistency arise because an exemplar graph can contain

arbitrary images in arbitrary arrangement. Consider, for example, the exemplar graph

in Figure 4.3, which prescribes a rainbow-stripe pattern at an 8× coarser scale relative to

a black-and-white texture. Such a relation is clearly inconsistent, as no combination of

downsampled neighborhoods in the greyscale image can reproduce the colorful appear-

4.2 inconsistency 17

3

Figure 4.3: Inconsistency correction. An exemplar graph (middle) may include inconsistent rela-

tionships (edge from rainbow-streaked to grey blobby texture). Neighborhoods in the finer (grey)

exemplar provide poor matches for those in the coarse (striped) exemplar (left). Our proposed in-

consistency correction scheme (right) repairs this problem by maintaining a color transfer function

at each synthesis texel Section 5.3.

ance. Such contradictions do not exist in single-exemplar setting, where features of all

scales are encoded in a single image; our treatment of exemplar graphs must therefore

include a discussion of consistency. We list here several possible approaches.

Consistency by convention One could simply restrict the space of allowable inputs to

include only strictly consistent exemplar graphs, but this would also restrict many useful

and desirable applications. We would often like to use data acquired from different

sources (for instance, satellite and aerial imagery), but variations in lighting and exposure

make it very hard to enforce consistency in these cases. Inconsistency handling is also

desirable in that it allows greater expressive power. For example, the artist-designed

exemplar graph in Figure 4.3 is inconsistent, yet can specify a pleasing outputs; were

inconsistency not allowed, the same result would have required much more effort on the

part of the artist.

Inconsistency correction One possible corrective approach is to attempt to reconcile

inconsistencies at synthesis time. We will present such a strategy as a component of our

synthesis algorithm (Section 5.3). In our scheme, we establish the convention that the

texture prescribed by coarser exemplars acts as a prior for the appearance of finer levels.

18 the exemplar graph

Figure 4.3 (right) demonstrates a result employing our inconsistency correction method.

Note that we are able to compensate for the color variations between exemplars, adjusting

finer-level texels to match those encountered at coarser levels in the synthesis.

Although we chose a “coarse-to-fine” convention, other conventions are also possible.

In fact, this choice will have drastic implications on the corrected result. For instance, the

left-side result in Figure 4.3 was generated under the inverse rule: that the coarse output

appearance should be dictated by fine-level exemplars. While our approach gives (in our

opinion) superior results in this comparison, we note that other inconsistency correction

strategies are possible and may be an area for future exploration.

Consistentization An interesting middle-of-the-road approach that has not yet been ex-

plored is consistentization, wherein arbitrary inputs are allowed, and through a preprocess

adjusted to form consistent graphs. This process has two potential use cases:

• Given a very large (multiscale) exemplar, decompose it to find a plausible exemplar

graph. Since the input is a single image, it should be possible to extract a completely

consistent graph. This process can be considered a multiscale analog (or perhaps

extension) to inverse texture synthesis [Wei et al., 2008], which attempts to reduce

an inhomogeneous texture to a single exemplar.

• Given an arbitrary exemplar graph, modify its component exemplars to be more

consistent with the prescribed scale relationships.

Pyramid optimization The preceding approaches assume a single, self-consistent image

as the final rendered result. However, some settings (such as online map imagery) allow

a relaxation of this assumption wherein the desired output is a pyramid of (potentially

inconsistent) images. For such cases, it has been shown [Han and Hoppe, 2010] that

it is possible to efficiently produce image pyramids of nearly-optimal interscale visual

continuity. While this strategy has yet to be combined with texture synthesis methods,

we point out such an investigation as potentially interesting future work.

19

C H A P T E R 5

S Y N T H E S I S

Given the exemplar graph representation of the preceding chapter, we can now begin

to develop useful tools for multiscale textures. Chief among these is the application of

synthesis—that is, generating novel instances of a prescribed input texture. Our input we

will be an (possibly inconsistent) exemplar graph, and our output will be a prescribed

window of a deterministic, conceptually infinite texture image.

Although our input form presents a new problem setting, we fortunately have the

benefit of a wealth of example-based synthesis tools and methods to draw upon. One

strength of our framework is that it can directly leverage these existing techniques. In

particular, we build on the method of Lefebvre and Hoppe [2005], whose parallel hierar-

chical synthesis approach provides a natural starting point for our algorithm. We show

the insights needed to bridge the gap between conventional and multiscale hierarchical

texture synthesis (Section 5.2), and furthermore demonstrate optimizations to enable GPU

implementation (Section 5.4).

Our CPU and GPU implementations handle general graphs with arbitrary connec-

tivity, including multiple loops, as evident in numerous examples derived from both

user-designed textures and real-world data. Our algorithms can generate gigapixel-sized

images exhibiting different features at all scales (e.g., Figures 4.1, 5.4, 5.5, 5.6). Alterna-

tively, they can render small windows of the multiscale texture at a given spatial position

and scale, and even support pans and zooms into infinite resolution textures (Figure 5.3).

20 synthesis

5.1 related work

Our work builds on recent literature in texture synthesis, and in particular hierarchical

and parallel example-based synthesis.

Texture synthesis A great deal of recent work synthesizes texture using either paramet-

ric [Heeger and Bergen, 1995; Portilla and Simoncelli, 2000], non-parametric [De Bonet,

1997; Efros and Leung, 1999; Wei and Levoy, 2000], or patch-based [Praun et al., 2000;

Efros and Freeman, 2001; Liang et al., 2001; Kwatra et al., 2003] approaches. Using only a

single exemplar, these methods capture only a limited range of scales.

Hierarchical texture synthesis Hierarchical methods synthesize textures from a sin-

gle exemplar whose features span varying spatial frequencies [Popat and Picard, 1993;

Heeger and Bergen, 1995; Wei and Levoy, 2000]. A hierarchical method synthesizes in

a coarse-to-fine manner, establishing the positions of coarse features and refining to add

finer ones. This general approach serves as a natural starting point for our work.

Parallel texture synthesis Since multiscale textures are typically very large, our work in-

corporates ideas from parallel synthesis [Wei and Levoy, 2002; Lefebvre and Hoppe, 2005]

to deterministically synthesize an arbitrary texture window at any scale. This avoids ex-

plicitly rendering to the finest available scale—in fact, recursive exemplar graphs have no

finest scale!

Multiple exemplars and scales Several existing works employ multiple exemplars, but

these methods assume equal scale across all inputs [Heeger and Bergen, 1995; Bar-Joseph

et al., 2001; Wei, 2002; Zalesny et al., 2005; Matusik et al., 2005]. Others take multiple

scales into account, either explicitly [Tonietto and Walter, 2002] or in the form of local

warps [Zhang et al., 2003], but they do not consider scale relationships between exemplars.

5.2 multiscale texture synthesis 21

E0

E1

E2

E2

E0
1

A(E0)5

A(E0)7

A(E2)6

E0
0

(b)(a) (c)

E0

E1 E2

2 3
1

(0,0,0)

(0,1,1)

(0,2,2)

(0,3,3)

(0,4,4)

(2,0,3)

(2,1,4) (2,0,4)

(1,0,2)

(1,1,3)

(1,2,4)

...

Upsampling

Correction

Figure 5.1: Data structures. (a) A simple exemplar graph (previously seen in Figure 4.2). (b) Upon

computing the Gaussian stacks for each exemplar in the graph, we call those stack levels with

equivalent scale admissible candidates of one another. To guide the synthesis process towards higher-

resolution exemplars, the finest stack levels are considered inadmissible. (c) The superexemplar

expansion of the graph shown at left. Nodes correspond to stack levels, red edges to upsampling

steps, and black edges to correction passes. Node labels give (respectively) exemplar index, stack

level, and red depth; this last quantity will be used to aid in exemplar graph analysis (Section 5.4).

5.2 multiscale texture synthesis

A graph of exemplars opens the door to far more expressive, yet economical, design of

textures. The question we address below is how to enjoy the benefits of the graph repre-

sentation with a minimal set of changes to an existing hierarchical approach. Specifically,

we extend the parallel, hierarchical approach of Lefebvre and Hoppe [2005], and adopt

their notation where applicable.

5.2.1 data structures

Adopting the traditional hierarchical approach, we build an image pyramid S0, S1, . . . , ST,

in a coarse-to-fine order, where T depends on our desired output image size. The images

are not represented by color values, but rather store coordinates, St[p] = (i, k, u), of some

stack level texel, Ei
k[u]. Progressing in a coarse-to-fine manner, each level St is generated

by (1) upsampling the coordinates of St−1, (2) jittering these coordinates to introduce

spatially-deterministic randomness, and then (3) locally correcting pixel neighborhoods

to restore a coherent structure.

22 synthesis

5.2.1.1 gaussian stacks

We associate to each exemplar, Ei, its Gaussian stack, Ei
0, Ei

1, . . . , Ei
L

[Lefebvre and Hoppe,

2005]. Each stack level, Ei
k, is an m × m image obtained by filtering the full-resolution

exemplar image with a Gaussian kernel of radius 2L−k. Figure 5.1b shows the Gaussian

stacks associated with the exemplar graph in Figure 5.1a, positioned to show their relative

scales (E2 is shown twice to reflect its self-similarity relation). The stacks pictured are

eight levels tall, corresponding to an exemplar size of 128 (L = 7).

5.2.1.2 admissible candidates

In the single-exemplar setting, neighborhood matching (Section 5.2.2.3) operates naturally

on neighborhoods chosen from the same stack level as the source texel. The multiscale set-

ting, however, requires us to consider neighborhoods from multiple candidate stack levels,

and–in the presence of loops–possibly even from multiple levels within each exemplar.

The admissible candidates for stack level Ei
k,

A(Ei
k) = { E

j
l | ∃ (i, j, k− l) ∈ E, 0 ≤ l < L } ,

are determined by the exemplar graph edges emanating from Ei, and their associated

scaling relations. For example, the sets of admissible candidates for three different stack

levels are shown with dashed lines in Figure 5.1b. The set A(E0
5) contains E0

5, E1
3, and E2

2,

since links (0, 0, 0), (0, 1, 2), and (0, 2, 3) exist in the exemplar graph. Notice that E2
1 is not

admissible, as there is no link (0, 2, 4). The finest levels of each stack (E0
7, for example)

are not admissible candidates; this is to enforce that correction (see Section 5.2.2.3) will

progress to finer scales and not get “stuck” on a given exemplar. Finally, exemplar graph

loops (such as the reflexive edge at E2) can result in stack levels with candidates from the

same exemplar, e.g., E2
5 ∈ A(E2

6).

5.2.1.3 multiscale considerations

When using Gaussian stacks one must be careful to consider the physical scale of a refer-

enced texel relative to the current synthesis level. We use hk = 2L−k to denote the regular

5.2 multiscale texture synthesis 23

spacing of a texel in level k of a given stack. In our framework, synthesis pixels are not

“synchronized”; each synthesized pixel may point to a different exemplar, and to any

level of its Gaussian stack. Therefore, whereas Lefebvre and Hoppe [2005] use a single

spacing parameter hl for each synthesis level, our spacing must be accounted for on a

per-pixel basis since each pixel can have a unique relative scale. Additionally, our correc-

tion step must also take into account the presence of multiple exemplars. When finding

a matching neighborhood for a given pixel, we search within all admissible candidate

levels (Section 5.2.1.2).

The images shown in this chapter can be on the order of gigapixels; building and main-

taining a synthesis pyramid of this size would be cumbersome and impractical. Rather,

we exploit the spatial determinism of the parallel approach to generate smaller windows

of the overall finest-scale texture and tile them offline. Alternatively, since we can inter-

pret any scale as being the output image resolution, we can generate zooming animations

(such as Figure 5.3) in real time, with finer resolutions being rendered as needed.

5.2.2 algorithm

5.2.2.1 upsampling

We refine each pixel in St−1 to form a coherent 2 × 2 patch in St by upsampling its

coordinates. Intuitively, pixels in the upsampled image will point to the same exemplar

as their parent pixels, but will move to the next-finer Gaussian stack level. Using (i, k, u) =

St−1[p], the upsampled patch is defined by

St [2p + ∆ + (1
2 , 1

2)] :=

i, k + 1, u + ⌊hk∆⌋ (mod m)

 ,

where ∆ ∈
{

(

± 1
2 ,± 1

2

)

}

.

5.2.2.2 jitter

Next, we jitter the coordinates. Using (i, k, u) = St[p], the jittered pixels are

St[p] :=

i, k, u + Jt(p) (mod m)

 , where Jt(p) =
⌊

hkH(p)ρt +
(

1
2 , 1

2

)

⌋

.

24 synthesis

This jittering step directly follows that of Lefebvre and Hoppe [2005], and we use the hash

function, H, and the level-dependent randomness coefficient, ρt ∈ [0, 1], defined therein.

5.2.2.3 correction

For each synthesized pixel, St[p] = (i, k, u), the correction step seeks among all admissible

stack levels, E
j
l ∈ A(Ei

k), a texel E
j
l [v], whose local 5 × 5 exemplar neighborhood best

matches the local 5× 5 synthesis neighborhood of St[p]. Formally,

E
j
l [v] is the minimizer of the error functional

∑
∆∈{−2...+2}2

∥

∥

∥
*St[p + ∆]− E

j
l [v + ∆hl]

∥

∥

∥

2
(5.1)

over E
j
l ∈ A(Ei

k) and v ∈ {0 . . . 2L−1}2.

Here *St[p] dereferences the texel pointer, St[p], to get the stored texel color. Following

Lefebvre and Hoppe [2005], we perform the computation in parallel, splitting into eight

subpasses to aid convergence.

Accelerated matching To accelerate neighborhood matching, we use the k-coherence

search algorithm [Tong et al., 2002]. Given the exemplar graph, our analysis algorithm

identifies for each stack level texel, Ei
k[u], the exemplar texels, E

j
l [v], which minimize the

error functional

∑
∆∈{−2...+2}2

∥

∥

∥
Ei

k[u + ∆hk]− E
j
l [v + ∆hl]

∥

∥

∥

2
(5.2)

over E
j
l ∈ A(Ei

k) and v ∈ {0 . . . 2L−1}2. We choose the K best (typically, K = 2) spatially

dispersed candidates [Zelinka and Garland, 2002] to form the candidate set Ã(Ei
k[u]). We

then adopt coherent synthesis [Ashikhmin, 2001], which seeks the minimum of Equation 5.1

over the set of precomputed candidates

⋃

d∈{−1...1}2

Ã (*St[p + d]) (5.3)

drawn from the 3× 3 synthesis neighborhood; to ensure that the source and destination

neighborhoods are aligned, we replace E
j
l [v + ∆hl] by E

j
l [v + (∆− d)hl] in Equation 5.1.

5.3 inconsistency correction 25

5.3 inconsistency correction

As we outline in Section 4.2, our multiscale synthesis must address the problem of graph

inconsistency.

Overview Noting the coarse-to-fine direction of hierarchical synthesis, we introduce

the axiom that the visual appearance of a coarser synthesis level constrains the visual appearance

of the next finer level, and by induction, all finer synthesis levels. Considering that a given

exemplar is self-consistent by definition, it follows that inconsistencies arise only as a

result of inter-exemplar transitions during the correction step. Our strategy will therefore

be to describe each transition with an appearance transfer function, r : RGB→ RGB, which

captures the overall change in appearance between the source and destination stack level

neighborhoods. During synthesis, we will keep a history of all transitions by maintaining

a cumulative transfer function, Rt[p], at each synthesis pixel, St[p]. Specifically, Rt[p] is the

composition of all transfer functions encountered during the synthesis of St[p], and the

rendered color of pixel St[p] is now given by Rt[p](*St[p]).

To formalize these ideas, consider any transfer function that is linearly composable

and invertible. In our implementation, we examined both linear (r(c) = Ac + b) and

constant offset (r(c) = c + b) functions, and found that the latter gave good results, a

compact and efficiently evaluable representation, and less numerical instability during

fitting.

Analysis We will need a transfer function to describe every pixel transition that happens

during the correction step. Fortunately, for all source pixels, Ei
k[u], we need only consider

a small number of possible destinations, namely the candidate set E
j
l [v] ∈ Ã(Ei

k[u]). Con-

sequently, our transfer functions can be computed offline for all precomputed candidates

(Section 5.2.2.3).

During the candidate set precomputation (Figure 5.2a), we solve for the transfer func-

tion that best transforms the destination neighborhood to match the source neighborhood

26 synthesis

correction

step

source destination
transformed
destination

transformed
neighborhood

untransformed
neighborhood

best
match

r

R-1

r º

candidate

search

A
n

a
ly

si
s

S
yn

th
e

si
s

(a) (b)

(c) (d) (e)

(f)

Figure 5.2: Transfer functions. (a) For every transition found during analysis, (b) we find a

transfer function, r that minimizes color error. (c) At runtime, we store a cumulative transfer

function, R, at each synthesis pixel. Since analysis originally took place in the untransformed

color space, (d) these transfers must be undone before performing the correction step. Finally, (e)

we arrive at a best-match texel and its associated transfer function, which we (f) accumulate into

the synthesis pixel by composition.

(Figure 5.2b), i.e., we optimize r with respect to the metric

∑
δ∈{−2...+2}2

∥

∥

∥
Ei

k[u + δhk]− r
(

E
j
l [v + δhl]

)
∥

∥

∥

2
. (5.4)

Given our choice of transfer function, r(c) = c + b, and the use of 5× 5 neighborhoods,

this yields:

b =
1

25 ∑
δ∈{−2...+2}2

(

Ei
k[u + δhk]− E

j
l [v + δhl]

)

.

By our definition of consistency, r is the identity map (b=0) for intra-exemplar transitions.

Synthesis Recall that the correction step (Section 5.2.2.3) chooses the transition candi-

date that best matches the current synthesized neighborhood. We would like to match to

the appearance of the transformed (i.e., viewer-perceived) neighborhood, Rt[p](*St[p]) (Fig-

ure 5.2c). However, the precomputed transfer function was evaluated with respect to the

actual (untransformed) texel values. Therefore, we inverse-transform the synthesis neigh-

borhood back to the original exemplar color space used during analysis (Figure 5.2d). For

our transfer functions, inversion is simply: r−1(c) = c− b. Composing both the forward

5.4 gpu optimization 27

and inverse transforms, the error functional in equation 5.1 becomes

∑
δ∈{−2...+2}2

∥

∥

∥
R−1

p (Rp+δ(*St[p + δ]))− rv

(

E
j
l [v + δhl]

)
∥

∥

∥

2
, (5.5)

where we adopt the shorthand Rp = Rt[p]. Upon finding the best-match neighborhood

(Figure 5.2e), we update the synthesis pixel by composing the associated transfer function

onto Rt[p] (Figure 5.2f); for constant offset functions, composition simply amounts to

adding offsets, b.

During upsampling, we must propagate the cumulative transfer function to the next-

finer synthesis level. We found that letting each pixel inherit its parent’s transfer function

(i.e., a piecewise constant interpolation of Rt+1 from Rt) led to blocking artifacts. Instead,

we linearly interpolate the transfer functions of the four nearest parents.

5.4 gpu optimization

It is often useful to have a real-time visualization of synthesized textures, e.g., for tuning of

jitter parameters or for application to games. As in the single-exemplar setting [Lefebvre

and Hoppe, 2005], we will use principal component analysis (PCA) to make neighborhood

matching more tractable on a GPU (or, alternatively, faster on a CPU). However, we first

define a construction, called the superexemplar, that maps the exemplar graph into a form

more readily treatable by existing analysis tools.

Superexemplar Formally, the superexemplar is a tree with root E0
0 and directed red and

black edges. Each vertex, (i, k, t) ∈ V
∗, points to a stack level, Ei

k, and its name includes a

red depth counter, t. We build the superexemplar from the exemplar graph by induction:

Base step — the root vertex is (0, 0, 0) ∈ V
∗.

Inductive step 1 (black edge) — The admissible destinations of a correc-

tion step for stack level Ei
k are determined by the directed edges, and

28 synthesis

associated scaling relations, of the exemplar graph:

A∗(i, k, t) = { (j, l, t) | ∃ (i, j, k− l) ∈ E, 0 ≤ l ≤ L } ,

(i, k, t) ∈ V
∗ −→ A∗(i, k, t) ⊂ V

∗ .

Inductive step 2 (red edge) — The upsampling step maps a texel in stack

level Ei
k to a texel in stack level Ei

k+1, for k < L:

(i, k, t) ∈ V
∗ −→ (i, k + 1, t + 1) ∈ V

∗ , for 0 ≤ k < L .

Informally, the superexemplar can be understood as (a) an unrolling of exemplar

graph loops to transform the graph into a (possibly infinite) tree whose root is E0, (b) an

expansion of each exemplar graph vertex into a chain of vertices (each representing a stack

level) connected by red edges, and (c) linking of the stack levels of corresponding exemplar

graph edges with black edges. Figure 5.1c illustrates the superexemplar expansion of the

exemplar graph shown in Figure 4.2a. Notice that red edges correspond to synthesis

upsampling steps, and black edges correspond to synthesis correction steps.

The red depth of a vertex is the number of red edges in the unique path from the

superexemplar root, E0
0, to the vertex. This number directly corresponds to the synthesis

level, t, at which the superexemplar vertex plays a role. The set of superexemplar vertices

of red depth t gives us the set of stack levels that may appear at synthesis level t. This

knowledge will enable us to further optimize our algorithm using PCA projection.

PCA projection We accelerate neighborhood matching (Section 5.2.2.3) by projecting the

5× 5 pixel neighborhoods into a truncated 6d principal component analysis (PCA) space.

However, we make two additional considerations for multiscale synthesis. First, since

pixels may transition across multiple stack levels during correction, we must consider all

stack levels that can participate at a given synthesis level. Using the superexemplar to

find all levels at a given depth, we perform PCA on the set of all neighborhoods found

therein to compute a suitable PCA basis.

To account for the inconsistency correction term in Equation 5.5, we first transform

the target neighborhoods before projection into PCA space. Note that a unique transfer

5.5 results 29

function, r, is associated to each candidate destination; we store alongside each candidate

its transfer function and its transformed, PCA-projected neighborhood. For the GPU

implementation, we also project the RGB color space down to a per-synthesis level 2d

PCA space.

Texture packing Since the superexemplar provides all of the w stack levels that partici-

pate at level t, it is straightforward to map indices (i, k) at level t to one integer coordinate,

e ∈ [0 . . . w− 1]. This allows us to store all needed stack levels in one large wm×m texture,

and to replace the u coordinate universally with u′ = me + u.

We use one RGB texture for the stack levels Ee(u); three RGBA textures for the

two 6d PCA-reduced, inconsistency corrected candidate neighborhoods; and one 16-bit

RGBA texture1 to store each of the candidate links and associated transfer functions,

(Ã(Ee(u)), ru). The synthesis structures (S[p], R[p]) are stored in 16-bit RGBA textures.

5.5 results

We now explore the types of results enabled by our multiscale framework. Please note

that the figures in this thesis have been downsampled to 150pi.

Gigapixel textures Figure 4.1 shows a 16k × 16k map texture generated using our

method. The exemplar graph contains eleven exemplars of size 256 × 256, with scales

spanning over three orders of magnitude. The large resolution of this image is able to

capture features at all these scales, and allows us to evaluate the algorithm’s success in

synthesizing an image with spatial coherence at all scales. We faithfully recreate details

at all levels, from the coarse distribution of islands to fine-level terrain details (shown

in closeups). Generating such textures using existing single-exemplar methods would

require an exemplar on the order of 214 × 214 pixels, or about 400 times more data!

A similar example is shown in Figure 5.4, with the key distinction that we have dis-

abled jitter at the coarsest levels. In this light we can interpret our method as a form of

1u′ will generally exceed the 8-bit limit of 256.

30 synthesis

20 2-4 2-8 2-12

pixel scale

Figure 5.3: Coherent infinite zooms. Using a single exemplar with one reflexive edge (r = 1), we

can specify textures with infinite detail. From left to right, each image shows a 16× zoom into the

previous one. These self-similar textures exhibit structure at every scale, all taken from the same

exemplar.

super-resolution [Freeman et al., 2001; Hertzmann et al., 2001]. As in previous such ap-

proaches, we employ our hierarchical texture synthesis algorithm to fill in high-resolution

details on a lower-resolution image—in this case, the root exemplar (a 256 × 256 map of

Japan.) However, we can deal with many more levels of detail beyond the coarse guiding

image; the output image shown is again of size 16k × 16k.

Coherent infinite zooms Figure 5.3 shows frames from two infinitely zooming anima-

tions, with each image containing pixels at 1/16th the scale of the one to its left. Notice

that texture characteristics are consistently preserved across all scales. Each sequence

was created using a single exemplar with a single self-looping edge. What we see here

is an example-based approach to creating resolution-independent textures—previously

attainable only through procedural methods. Furthermore, our method can utilize both

artist-created (van Gogh’s The Starry Night, top) or captured (a photograph of pebbles,

5.5 results 31

Figure 5.4: Super-resolution. We use fourteen exemplars and a complex topology to model

a map of Japan. By disabling jitter at the coarsest levels, we “lock in” large features such as

mountains and cities; these constrain the proceeding synthesis, which fills in details using the

fine-scale exemplars.

32 synthesis

4
4

4

8x zoom out

Figure 5.5: Compact representation. The exemplar graph used here is very small, being com-

prised of only four 128 × 128 exemplars; still, we are able to generate a convincing output texture

several orders of magnitude larger (8k× 8k, inset).

5.5 results 33

3

3

Figure 5.6: A simple chain. A texture created from a chain of exemplars, exhibiting unique

features at three different scales. Crafted in a matter of minutes, this artist-created exemplar

graph offers pleasing results that would be much harder to develop using procedural techniques.

Note that inconsistencies in the input are repaired by inconsistency correction (Section 5.3).

34 synthesis

bottom) data.

Artist controllability Finally, we show two examples that demonstrate the compact ex-

pressiveness of the exemplar graph representation. The rusted metal surface shown in

Figure 5.5 was generated using just four 128 × 128 exemplars all taken from the same

high-resolution photograph. For essentially the cost of a single 256× 256 exemplar, we

can produce large, aperiodic, high-resolution textures (a zoom-out is shown in the inset).

The texture in Figure 5.6 was generated from an artist-created chain of exemplars,

exhibiting distinct features (yellow splotches, blue dabs of paint, and a grainy surface) at

three different scales. Note that the tiny (1–2 pixel) specks in the root exemplar prescribe

only the rough placement of the blue dabs, while their wispy details are contributed by

the intermediate exemplar. Also notice that we achieve this result despite the largely

inconsistent input. The exemplars were made in a matter of minutes, demonstrating

the intuitive user control made possible by the exemplar graph; it would be much more

difficult and time-consuming to create such effects using procedural methods.

35

C H A P T E R 6

E D I T I N G

Despite the numerous powerful tools available for unguided synthesis, there are still

many situations in which user intervention is needed. For instance, an artist may need

to carefully control aspects of the aspect such as final coarse feature arrangement. There

will often be cases where synthesis results will exhibit slight artifacts which need to be

adjusted. Or, the director may simply change his mind about the desired texture ap-

pearance. Therefore, user interaction remains a crucial part of any real-world texture

authoring pipeline.

This need for interaction is growing with current production practices. With the com-

moditization of photographic tools and the steady increase of processing and storage

capabilities, it is becoming ever easier to acquire large amounts of textural data. The

problem, then, is increasingly becoming not one of synthesizing new textures from sparse

input, but rather one of manipulating a wealth of available source material into the de-

sired result. Given that the main criterion for desirability is often a subjective one (e.g.,

the vision of an artistic director), there must be some facility to insert a human into the

texture design loop.

The synthesis algorithm described in Section 5 allows real-time manipulation of some

texture properties, such as perceived randomness and selective feature placement. How-

ever, these edits may prove to be insufficient to achieve the desired output. This can

happen, for example, if the given exemplar graph simply does not contain the correct

36 editing

features, or if the graph connectivity proves to be errant. One could modify the exem-

plar graph and resynthesize, but this reveals a key limitation of the scheme: it requires a

potentially lengthy precomputation, and is thus not suitable for a changing input.

Our goal in this chapter, then, is to develop modifications to the analysis (i.e., prepro-

cessing) phase of the algorithm which will allow for synthesis results shown in real time.

Our scheme complements the synthesis algorithm presented in Chapter 5, and therefore

inherits all of its advantages of controllability and flexibility. As a part of our investi-

gation, we will come across several technical insights (Section 6.2) which we believe are

more broadly applicable.

Given our eventual goals, we lay out the following desiderata for our algorithm:

Low latency — Since our results must update in real time, we tailor our

operations to return a plausible result as soon as possible. Since we employ

an iterative algorithm, this will mean that we wish for the solution to be

highly accurate—if not fully converged—within the first few passes.

Compatibility — Ultimately, our “target client” is the synthesis algorithm

described in Chapter 5. Our algorithm should therefore be mindful of the

data structures expected later on in this pipeline.

Parallelizability — Tightly coupled with these former two goals, we pre-

fer an algorithm which can run on the GPU. This would simultaneously

satisfy our desires for fast performance and compatibility with our GPU-

based synthesis algorithm.

6.1 related work

Texture editing Within the texture synthesis literature, there have been a number of

proposed mechanisms for controlling the appearance of the final output.

A form of basic control exists through so-called “texture-by-numbers”. In such a

scheme, the artist provides as input a collection of different exemplars and a control image.

The pixels of this image can either directly specify the desired output colors [Ashikhmin,

6.1 related work 37

2001], or serve as an index into some (user-defined) mapping of textures [Hertzmann et

al., 2001]. Other methods have been developed which allow for a low-dimensional control

map which is used to guide the synthesis process [Gu et al., 2006; Wei et al., 2008]. The

control variable usually corresponds to some semantically meaningful image parameter

(e.g., age, weathering, etc.). While these methods provide some degree of controllability

to the synthesis process, they are still not interactive. Recent work by Busto et al. [2010]

presents a parallelizable CPU-based texture-by-numbers scheme.

There has been some research into methods for allowing direct, real-time interaction

with the synthesized output. Ritter et al. [2006] presented an interactive texture editing

tool based on the texture-by-numbers algorithm [Hertzmann et al., 2001]. Their system

allows for texture editing and takes into account interactions between differing textures.

Ultimately, their algorithm is limited by its nearest-neighbor search algorithm and as a

result is limited in the size of textures it can handle. Lefebvre and Hoppe [2005; 2006]

investigated techniques to implement synthesis on the GPU, enabling interactive editing

tools. However, the scope of edits offered to the user is limited. The system supports

broad control over global parameters and a simple feature placement mechanism, but

more sophisticated edits—and in particular, changes to the exemplar—are not permitted.

This drawback is compounded by the lengthy preprocess required of the algorithm, which

adds considerable latency to the overall design process. Eisenacher et al. [2010] propose

simplifications to accelerate the preprocess, although their method is ultimately aimed at

out-of-core synthesis and preview.

Image editing As textures are themselves simply a special case of general images, we

can also look to the broader class of image editing tools. Of particular interest to us are

recent methods which perform image shuffling, retargeting, refactoring, and cloning [Avi-

dan and Shamir, 2007; Cho et al., 2010; Barnes et al., 2009; Farbman et al., 2009; Cheng et

al., 2010]. These applications often require efficient subcomponents to analyze repeated

content within images–certainly a relevant problem for textures.

38 editing

CPU GPU

Incremental

PatchMatch

Incremental

PCA

PCA

Projection
Synthesis

AAT

basis
GaGaGaGaGaGaGaGaGaGausususususususussisisisisisisisisisiananananananananan

ststststststststacacacacacacacackkkkkkk

user
edit

masks

PCPCPCPCPCPCPCPCPCPCAAAAAAAAAA
rerererererereredudududududududududucecececececececececeddddddddd

kNkNkNkNkNkNkNkNkNkNkNkNkNkNkNkNNFNFNFNFNFNFNFNFNFNFNFNFNFNFNFNFNFssssssssssssss sysysysysysysysysyntntntntntntntntntntnthehehehehehehesisisisisisisisisisizezezezezezezezezezeddddddd
tetetetetetetetextxtxtxtxtxtxtxtxtururururururureeeeeee

Figure 6.1: Editing system overview. A schematic diagram of our editing system.

Incremental PCA A key component of our algorithm is the realtime calculation of trun-

cated PCA bases for changing images. To the best of our knowledge this specific prob-

lem has not been addressed in the literature. There exist some methods for incremen-

tal update of covariance matrices in the face of changing input data [Artač et al., 2002;

Dagher and Nachar, 2006], but these only treat cases in which the initial data are aug-

mented with additional points; we are instead concerned with replacing the original points

with updated values.

6.2 system overview

In an interactive editing scenario, a user is continuously changing the exemplar through a

series of edits (e.g., brush strokes, cut-and-paste operations, etc). In concept, we will need

to repeat our entire precomputation each frame that the exemplar has been changed.

This is clearly wasteful, however, as most edits will result in only small changes to the

exemplar (and precomputation result). Our general strategy will therefore be to adopt an

incremental scheme for efficiently updating the precomputed data structures.

Our system builds upon the work of Lefebvre and Hoppe [2005], and in particular the

analysis phase. The output of this analysis should provide the following at each Gaus-

sian stack level El : (1) a basis matrix for projecting patches in El to a lower-dimensional

representation; (2) an image containing the projected patches of El; and (3) candidate sets

6.3 incremental pca 39

for each patch of El. This precomputation suffers from two bottlenecks: PCA projection

of patches, and the calculation of the k-nearest matches for each patch.

Our solution (illustrated schematically in Figure 6.1) proceeds as follows. A user edit

produces an updated Gaussian stack and boolean masks indicating the changed pixels

at each level. These are fed as inputs into our incremental PCA algorithm (Section 6.3),

which computes the updated PCA bases; having found these bases, we reproject the

patches at each stack level. The resulting output proves doubly useful, as it serves as

an input both to our synthesis algorithm and to the k-nearest neighbor search. This

last phase of our analysis is based on the PatchMatch algorithm of Barnes et al. [2009;

2010]; however, we introduce additional optimizations specific to our incremental set-

ting (Section 6.4).

We note that the candidate sets [Tong et al., 2002] expected by the synthesis algorithm

are essentially the same data structure as the k-nearest neighbor field1 (kNNF) of Barnes et

al. [2010]. The only difference between them is one of notational convention: the former

specifies matches (candidates) as absolute image coordinates, while the latter uses coordi-

nate offsets. For ease of exposition we will adopt the (absolute) convention of the former,

but the terms should be understood to be interchangeable in this chapter.

6.3 incremental pca

The greatest bottleneck in performing PCA is generally the calculation of the covariance

matrix 1
N AAT, where A is a 75× N matrix containing all of the (mean-centered) 5× 5

neighborhoods in an N-pixel image. In the context of exemplar editing, we will often

encounter situations where only relatively few pixels have changed. To efficiently handle

these cases, it would be preferable to avoid recalculating the entire covariance matrix. Our

goal is therefore to find an efficient operation for updating the covariance matrix for small

changes to A.

1 we use this term to distinguish the k-valued NNF from the earlier single-valued form [Barnes et al.,

2009]

40 editing

6.3.1 derivation

Note that the following derivations assume a toroidal topology for our input images. This

is a reasonable and often desirable convention to follow for exemplars [Wei, 2002], and

it allows for pleasing simplifications in our equations. However, there may arise cases

where a toroidal input cannot be assumed. In these situations, one can either account

for the image edges during both PCA and candidate search (Section 6.4), or choose to

enforce nontoroidality only during candidate search. Although this latter compromise

is not strictly correct, we found that it allowed for simpler computation and was a rea-

sonable simplification for most textural images. Adoption of the more rigorous form is

straightforward from our equations.

Image mean The columns of data matrix A are by construction centered about the ori-

gin; that is, it is the result A = B− µ, where B is the matrix containing “raw” (uncentered)

neighborhoods, and µ is a matrix whose columns are the mean neighborhood.

An arbitrary image edit will generally lead to a new mean, which we place in the

columns of matrix µ′. We express the new mean-centered image as A′ = B′ − µ′.

Changed pixels We assume that only some relatively small number of pixels (and, there-

fore, neighborhoods) have changed in the new image B′. Therefore, the matrix d = B′− B

will only have a few nonzero columns.

Refactoring For notational simplicity, we will treat the covariance matrix as AAT (drop-

ping the normalization term), with the understanding that the terms in the following

equations will be handled properly. Since our stored quantity is AAT, we would like to

6.3 incremental pca 41

get a recursive formulation of A′ in terms of A. Using the above equations, we have:

A = B− µ

A′ = B′ − µ′

= A− (B− µ) + B′ − µ′

= A + (µ− µ′) + (B′ − B)

= A + m + d,

where we introduce a term m = µ− µ′, and d is as defined above. Multiplying out the

covariance matrix gives:

A′ = A + m + d

A′A′T = AAT + AmT + mAT + mmT + (A + m)dT + d(A + m)T + ddT

= AAT + mmT + (A + m)dT + d(A + m)T + ddT

Note that, following our toroidal assumption, we can eliminate the AmT +mAT terms

because the rows of m are constant, and the rows of A will always sum to 0.

For ease of computation (see next section) we will use the equivalent form:

A′A′T = AAT + mmT + (B− µ′)dT + d(B− µ′)T + ddT (6.1)

6.3.2 computation

Our main computational savings will come from the sparsity of matrix d, which will have

zero columns for unchanged neighborhoods. We describe here how to compute the 752

matrix X = dBT, with the understanding that the analysis can be applied to all of the “d

terms” of in Equation 6.1. We propose two possible methods and discuss the tradeoffs of

each.

42 editing

6.3.2.1 simple method

The most straightforward solution would be to perform the full multiplication X = dBT ,

but this approach is obviously suboptimal since it disregards the sparseness of d. We

therefore perform the equivalent multiplication X = d̂B̂T, where d̂ and B̂ contain only

the nonzero columns of d, and the corresponding columns of B, respectively. To avoid

memory allocation/deallocation overhead, we preallocate large workspace matrices for

d̂ and B̂, filling them as needed. The “real” row count is provided as a parameter to

each multiplication call, assuming the use of LAPACK or a similar linear algebra library.

Equation 6.1 can be performed in two LAPACK calls—a symmetric rank-1 update (SYRK)

for ddT , and a symmetric rank-2k update (SYR2K) for the B terms—plus a simple routine

to add in the easily-computed matrix mmT.

This method is simple and trivial to implement, but it does come with a few caveats.

First, the use of preallocated matrices requires us to fix a priori nmax, the maximum num-

ber of neighborhoods which can be changed at once. In the event that the number of

changed neighborhoods exceeds this threshold, the calculation can be performed in sev-

eral passes, accumulating the result nmax rows at a time. Additionally, there is a small

amount of redundancy incurred in the accumulation of d̂ and B̂, due to each changed

pixel appearing in 25 different rows. We found that these issues proved to have relatively

minor effects, and were overcome by the near-optimal cache coherence of this approach;

however, we provide in the sequel an alternative computation which avoids temporary

storage altogether.

6.3.2.2 space-optimized method

A given matrix entry Xij represents the sum over all image pixels p:

∑
p

Nd,p(i) ∗ NB,p(j),

where Nd,p(i) denotes the pixel at location i within the neighborhood in image d centered

at image location p. Consequently, for any given pixel location, we will need only to

consider pixel locations within a 5-pixel radius when considering its contribution to X.

6.3 incremental pca 43

Furthermore, there is a great deal of redundancy in the computation of X. This is due

to the fact that:

Nd,p(i) ∗ NB,p(j) = c ∗ Nd,p+∆(i− ∆) ∗ NB,p+∆(j− ∆)

for all valid translations ∆2. The constant c is included to account for varying coefficients

of the Gaussian kernel G(·, ·) over neighborhood locations. As a result of this relation,

we can simply perform the multiplication once for each pair of pixel locations, and write

it (after appropriate scaling for c) into all valid entries of X. This redundancy can be

exploited up to 25 times (for i = j), or just once (for, i, j at opposing neighborhood

corners).

The computation of matrix d(B− µ′)T proceeds according to the pseudocode in Algo-

rithm 6.1. Note that we do not explicitly build matrices B or d, but rather operate directly on

the original and difference images, I and D = I ′ − I, respectively. Likewise, we use only

the (3d) mean pixel value µ̂′ rather than the full 75× N matrix µ′, whose columns are µ̂′

multiplied by the Gaussian weighting coefficients G.

Algorithm 6.1 Space-optimized covariance computation

1: for all pixel locations p do

2: if D[p] 6= 0 then

3: for all pixel locations q s.t. ‖p− q‖∞ ≤ 5 do

4: x ← D[p] ∗ (I[q]− µ̂′)
5: for all pixel locations n s.t. ‖p− n‖∞ ≤ 2 and ‖q− n‖∞ ≤ 2 do

6: i ← index corresponding to p− n

7: j← index corresponding to q− n

8: Xij ← Xij + x

9: end for

10: end for

11: end if

12: end for

13: X ← X ◦ H

Note that we do not perform Gaussian weighting in line 4. Since the weighting coeffi-

cients depend only on the location within X, we precompute and store 25× 25 matrix H

2note that ∆ here is a 2D vector while p,i, and j are scalar indices.

44 editing

containing these coefficients, and perform a single component-wise multiplication at the

end (line 13).

Transpose matrix (B − µ′)dT can be trivially accumulated by adding an operation

Xji ← Xji + x to the inner loop. Likewise, since ddT follows the same access pattern, we

can accumulate it the same loop structure as above; its calculation is further culled with

another zero-test within the second for loop. Finally, we have mmT = m̂ ∗ H, where m̂ is

the change in average mean pixel value.

6.3.3 sparse neighborhood sampling

The preceding algorithm describes the incremental PCA of a single image. We are dealing,

however, with a full Gaussian stack—conceptually, a collection of images—within the

same loop. Due to the manner of their construction, we know that a given edit will

cause more changes at coarser stack levels. Indeed, even a single pixel changed at the

finest level will cause the entire image to require an update at the coarsest level. This is

undesirable since it requires us to perform more computation (in the extreme, a full PCA)

at the coarser levels. This is especially unfortunate when we also consider that these are

precisely the levels with the least “content”.

We propose a simplification of the PCA basis computation: rather than considering

each neighborhood from a given image, we instead collect every hl-th neighborhood,

where hl = 2L−l, as defined in the literature (note that this is equivalent to performing

PCA on the Gaussian pyramid). Due to the linear construction of Gaussian stack levels,

this subset of neighborhoods lies on the convex hull of the full set of neighborhoods, and

the resultant PCA basis should therefore be equivalent to that computed from the full

collection.

6.3.4 pca and neighborhood projection

Having computed our updated covariance matrix, it remains to find our new PCA basis

and to project our neighborhoods to this new subspace. As eigenvalue computation for a

problem of our size is a mostly serial process, we perform the projection on the CPU. At

6.4 incremental patchmatch 45

this point we are able to move all proceeding computation to the GPU, beginning with

the collection and projection of our image neighborhoods. Note that, although we can

use sparse sampling (Section 6.3.3) when computing the basis, we need to reproject all

patches in the image. The GPU-based projection is performed in the same manner as in

a synthesis correction pass, with the result being directly written to a texture. The output

will prove doubly useful: it will serve as an input both to our synthesis algorithm and to

our optimized nearest neighbor search, which is described next.

6.4 incremental patchmatch

The PatchMatch algorithm exploits natural coherence structures within images to find

nearest-matching patches. Figure 6.2 (top row) gives a schematic representation of the

algorithm. In this section we describe several augmentations which make it more suitable

to our algorithm goals. We construct our method components (and update existing ones)

to accommodate GPU implementation and optimization.

6.4.1 notation and background

The kNNF, f , is a map storing the best-matching K candidates for each image patch in the

input. So, the best matches for the patch centered at p are found at f (p) = {c1, c2, . . . , cK}.
In following synthesis convention [Zelinka and Garland, 2002], we further prohibit can-

didates from being within 5 percent of the image size from each other. Furthermore, we

assume an implicit identity match (f (p)0 = p); the first stored candidate is therefore the

best match outside of the 5 percent radius of p, followed by the next-best match not next

to the first two, and so forth.

An image edit will change some number of image patches, and therefore cause our

kNNF to no longer be valid. To attempt to repair the resulting errors we can run iterations

of PatchMatch until the kNNF has again converged, but this proves to be suboptimal;

while we will eventually find the correct solution, much of the computational effort will

be spent trying to improve already converged areas. As we established at the outset,

46 editing

Δ

ΔΔΔΔ

search propagation

vertical propagationbiased search

E
l

E
l±1

p

Figure 6.2: PatchMatch phases. We illustrate the various phases of the PatchMatch algorithm,

including our additions (bottom row). The top left square illustrates our situation: we have a patch

of interest, p (blue square), and its corresponding best match (blue X). Also shown are p’s spatial

neighbors and their respective matches (grey). A region ∆ of edited pixels is also shown. Each

respective phase (other squares) examines a small number of candidate locations (shown in orange)

for best matches.

one of our main goals is to minimize latency, so we therefore seek to minimize this

redundancy.

Consider a given edit, where some small subset, ∆, of patches in the image have

changed, and its effect on the kNNF. We can loosely partition the resulting effects into

three categories:

1. Patches in ∆. Given that these lie within the edit region, it is highly likely that their

matches will require an update.

2. Patches in f−1(∆). These patches match those formerly in ∆. As the region has

changed, it is likely that better matches can be found elsewhere.

3. All patches. Generally, a given edit can potentially affect any kNNF location if the

edit causes formation of a better match.

6.4 incremental patchmatch 47

6.4.2 restricted passes

The kNNF error resulting from the first two cases above is concentrated in a relatively

small subset of the image domain—namely, in ∆ and f−1(∆). We exploit this by running

a full PatchMatch iteration only in these regions. In our GPU implementation, this is

naturally accomplished through the use of stencil buffers and masking. Case 1 is straight-

forward; we have a binary mask image already available to us (provided by the UI and

also used during incremental PCA), so we simply upload it to the GPU. Case 2 is slightly

more involved, as the inverse kNNF f−1 can be of arbitrary length and is therefore not

easily stored on the GPU.

To compute f−1(∆) we use a two-pass process. In the first pass, performed at every

image location (i.e., with masking disabled), we perform a check to see if any candidate

points lie in ∆. The boolean result is written directly into the stencil buffer, which is then

used as the mask for a full PatchMatch pass. Although the first pass requires us to touch

every texel, the comparison operation is very cheap compared to a PatchMatch iteration.

Finally, note that this step subsumes our treatment of Case 1, as ∆ will necessarily be a

member of f−1(∆).

6.4.3 biased search

As we note in Section 6.4.1, an image edit can potentially impact any part of the kNNF if

it results in better matches. Since any kNNF pixel can be theoretically affected, we cannot

restrict the computational domain as in Section 6.4.2; we can, however, restrict the range.

Our goal is a biased search operation to accelerate discovery of these improvements. In the

original PatchMatch algorithm, the random search phase is used to find and introduce

better matches into the kNNF. Formally, a number of candidates

f (p) + wiRi

are examined at each pixel p, where R is a randomly generated 2d vector of length < 1,

and w is a search radius. To ensure good search variety, w is varied at exponentially

increasing intervals to cover a range of scales, from one pixel up to the size of the whole

48 editing

image. This has the effect of “focusing” the search around a central point—namely, the

current kNNF values f (p).

Our biased search instead centers the search around the edit region ∆, evaluating

candidates

µ∆ + wiRi,

where µ∆ is the centroid of ∆.

We motivate our method by examining the assumptions underlying the PatchMatch

search phase. We would ideally like to test location q at a rate proportional to the likeli-

hood that we will find a match there. In the absence of any priors, we have no indication

of where in the image to find good matches, and can therefore do no better than to choose

a location uniformly at random. Random search improves upon this with the implicit as-

sumption that better matches—if they exist—are more likely to be found near the current

best match. Our biased search applies this same intuition to the special situation where

we are given a known edit region ∆; if better matches are to be found, they will be more

likely to lie inside ∆.

Our model uses only the mean coordinate µ∆ of the edit region. This is very simply

and efficiently computed, but could be an overly simplistic model for highly anisotropic

or otherwise irregular edit regions—i.e., long brush strokes. We found no problem in prac-

tice, however, as our overall system runs with low enough latency to keep up with the

artist’s movements. Additionally, we found that keeping a exponential sampling distribu-

tion over wi fared well at finding new matches; however, the computation might further

be culled by, e.g., collecting the variance σ2
∆ of ∆ and truncating the search appropriately.

6.4.4 vertical propagation

The original PatchMatch algorithm and several related methods progress in a coarse-to-

fine progression to find their solutions at the finest level. This hierarchical construction

is based on the fact that a low-resolution kNNF of a downsampled image often provides

a good initial guess for higher-resolution solutions. However, our problem setting differs

in two key aspects: first, we are interested not only in the finest-resolution kNNF, fL,

6.5 implementation and results 49

but rather the full set of kNNFs, { fl : l ∈ [0 . . . L]}, corresponding to the levels of our

Gaussian stack. Furthermore, each of these of these intermediate kNNFs must be the

same resolution, thus negating the efficiency gains of a pyramidal coarse-to-fine approach.

We address and exploit these differences with the introduction of our vertical propagation3

operation.

The idea behind vertical propagation is straightforward: at each pixel p, we consider

candidates fl±1(p) from the neighboring kNNFs in the stack. Formally, we can define

VerticalPropagate(fl , El, p) to be:

argmin
δ∈{−1,0,1}, k

D(El[p], El [fl+δ(p)k]).

Note that this operation can go in either direction—coarse-to-fine or fine-to-coarse. In-

deed, we found that fine-to-coarse propagation greatly aided in overall convergence. This

result agrees with our intuition; coarser-level kNNFs contain larger continuous regions,

so the richer finer levels will be more likely to contribute new information than vice versa.

To fully exploit this interscale flow of information, we reorder our computation: rather

than solving the kNNF at each scale in sequence, we instead solve for the entire stack

conceptually at once, using vertical propagation in place of upsampling. Figure 6.3 illus-

trates the differences between the original (left) and our updated algorithm (right), with

key changes highlighted in blue.

6.5 implementation and results

We implemented our system on an 8-core, 2.00GHz machine with an nVIDIA GeForce

GTX 580 GPU. Our UI displays to the artist an exemplar, which he is permitted to ma-

nipulate using basic editing tools, and a synthesized output. Additionally, a number of

synthesis controls are offered, such as per-level jitter adjustment and spatial jitter con-

trol [Lefebvre and Hoppe, 2005], and the option to employ a structure-preserving jit-

ter [Risser et al., 2010]. Figure 7.8 shows representative progressions of an editing session.

3“vertical” here referring to the relationship between stack levels, not the image y direction

50 editing

PatchMatch Algorithm

for l ∈ [0 . . . L] do

repeat

for all locations p in fl do

fl(p)← Search(fl , El , p)

fl(p)← Propagate(fl , El , p)

end for

until convergence

fl+1 ← Upsample(fl)

end for

return fL

Our Algorithm

repeat

for l ∈ [0 . . . L] do

for all locations p in fl do

fl(p)← Search(fl , El , p)

fl(p)← Propagate(fl , El , p)

fl(p)← VerticalPropagate(fl , El , p)

end for

end for

until convergence

return { fl : l ∈ [0 . . . L]}

Figure 6.3: Algorithm comparison.

The evolution of a given texture is shown in each row, driven by the artist’s changes to

the exemplar (shown in insets).

6.5 implementation and results 51

Figure 6.4: Texture editing sessions. We give a visual history of a number of editing sessions. In

each row, an artist is progressively editing an exemplar (insets), with immediate feedback in the

form of a synthesized texture.

52

Part III

F I LT E R I N G O F M U LT I S C A L E T E X T U R E S

53

C H A P T E R 7

N O R M A L M A P F I LT E R I N G

By their inherently expansive nature, multiscale textures will necessarily occupy a large

number of pixels. Sampled at their fullest resolutions, they can far overwhelm the capabil-

ities of available display technology. As a result, good filtering (more specifically, down-

sampling) algorithms therefore become necessary in order to accurately and efficiently

display them. Fortunately, there is a wealth of knowledge available in the area of image

and texture filtering [Heckbert, 1989]. In particular, there has been a considerable amount

of research into filtering methods for planar color images–by far the most common object

for texture synthesis and editing. Indeed, tools such as MIP mapping [Williams, 1983] are

so successful and ubiquitous that the filtering problem can often be all but ignored for

standard color images (as—it should be noted—we have done.)

However, filtering operations still remain less well-understood for other important

types of images. In this chapter we will examine one such class of texture, the normal

map. Normal mapping (equivalently known as bump mapping [Blinn, 1978] or normal

perturbation) is a simple and widely used analogue to color texture mapping wherein

surface normals are specified at each texel. This allows for the expression of fine surface

details, without a corresponding increase in geometric complexity. Unfortunately, as

shading is not linear in the normal, the usual operations—i.e., standard MIP-mapping or

anisotropic filtering—cannot be applied to normal maps.

For example, consider the simple V-groove surface geometry in Figure 7.1a. In a

54 normal map filtering

=

=

=⊗

⊗

⊗

zo
o

m
e

d
 in

zo
o

m
e

d
 o

u
t

(e) standard (f) convolution

NDF BRDF

(c) V-groove

e!ective
BRDF

(a) V-groove

(d) NDF

(b)

Figure 7.1: The normal map filtering problem. Consider a simple V-groove. Initially in closeup

(a), each face is a single pixel. As we zoom out, and average into a single pixel (c), standard

MIP-mapping averages the normal to an effectively flat surface (e). However, our method uses the

full normal distribution function or NDF (d), that preserves the original normals. This NDF can

be linearly convolved with the BRDF (f) to obtain an effective BRDF, accurate for shading.

closeup, this structure spans two pixels, each of which has distinct normals (b). As we

zoom out (c), the average normal of the two sides (e) corresponds simply to a flat surface.

Clearly this is incorrect, and will likely lead to an entirely different shading result than

desired. As we will shortly see, what we really desire is to preserve the full normal

distribution (d); this will allow us to achieve accurate shading through convolution with

the BRDF (f).

A more complex example is shown in Figure 7.2. The inset provides both schematic (a)

and diffuse-shaded (b) views of the normal map for illustration. At the top left we see a

rendering at close range, where no filtering is required. However, as we zoom out (middle

and bottom rows), we see that existing MIP-mapping-based realtime approaches (right

two columns) result in radically different results from “ground truth” (first column)1. In

contrast, our method (second column) is able to closely match the desired result, while

rendering at interactive rates.

It has long been known qualitatively that antialiasing involves convolution of the

input signal (here, the distribution of surface normals) with an appropriate low-pass

1“Ground truth” images are rendered using jittered supersampling (on the order of hundreds of samples

per pixel) and unfiltered normal maps.

normal map filtering 55

Our method [Toksvig 2005]“Ground Truth” Normalized MM

(a) (b)

Figure 7.2: Comparison of filtering methods. Top: Closeup of the base normal map; all other

methods are identical at this scale and are not shown. Schematic (a) and diffusely shaded (b)

views are provided to aid in comparison/visualization. Middle: When we zoom out, differences

emerge between our method (second column), normalized MIP-mapping (third column), and the

GPU approach of Toksvig [2005] (rightmost). Bottom: Zooming out even further, our result is

clearly more accurate than other realtime methods, and compares favorably with ground truth.

56 normal map filtering

filter. The situations above illustrate the crucial limitation of using a single directional

vector to represent surface normals: a usable filter is not readily available. The main

insight behind our work will be to instead represent distributions of normals as spherical

functions. In Section 7.2 and Section 7.3 we will outline a theoretical framework for

normal map filtering, showing that filtering can be written as a spherical convolution of

reflectance and normal distribution functions. This will lead us to a family of practical

algorithms for filtering and rendering normal maps.

7.1 related work

Normal Map Filtering Most all of the previous research into normal map filtering has–

in some form or another–built upon the intuition touched upon in the preceding introduc-

tion: that the unit normal vector fails as an easily filterable representation. We can then

attempt to understand previous approaches by the representations (and accompanying

algorithms) that they have proposed.

Several methods approximate the distribution of normals using a single symmetric

or asymmetric lobe, often employing Gaussian fitting. Olano and North [1997] modeled

normal distributions consisting of a single symmetric 3d Gaussian. Asymmetric lobes—

represented as 2dcovariance matrices—have also been used to describe the distribution

of normals [Schilling, 1997]. In recent work, analytical Gaussian lobe models have been

used to accelerate filtering and rendering on the GPU [Toksvig, 2005; Olano and Baker,

2010]. As we explore later (Section 7.6), a single lobe is typically insufficient to capture

all but the simplest normal distributions.

To capture more complex distributions, a typical strategy is to employ weighted mix-

tures of multiple lobes. In this vein, we find two closely-related inspirations. The work

of Fournier [1992] fit mixtures of Phong lobes (up to seven per texel) using a nonlinear

least-squares optimization. More recently, Tan et al. [2005] modeled normal distributions

as mixtures of planar-projected 2dGaussians. These methods bear similarities to our lobe-

based algorithm (Section 7.6), and in fact can be understood to be special cases within

7.1 related work 57

our framework.

Indeed, we see our theoretical result (Section 7.3) as unifying all of the above ap-

proaches. One key result of our theory is that it illuminates the relationship between

appearance (BRDF) and geometry (NDF, Section 7.3.1). Whereas prior methods required

a specific rendering strategy to accompany the choice of normal representation, our for-

mal convolution theory allows us to separate the two. Thus, once filtered, the same

normal map can easily be rendered with a wide range of different BRDFs, even changing

them at runtime.

Hierarchy of Representations A hierarchy of scales, with geometry transitioning to

bump or normal maps, then transitioning further to BRDFs, was first proposed by Ka-

jiya [1985]. This idea was explored further by Becker and Max [1993], although they

did not focus on the filtering of any particular representation. Similarly, appearance-

preserving simplification methods replace fine-scale geometry with normal and texture

maps [Cohen et al., 1998]. It is likely that our approach could enable continuous level of

detail and antialiasing in these methods.

Convolution and Precomputed Radiance Transfer (PRT) Many of our mathematical

representations and ideas derive from previous spherical convolution techniques [Basri

and Jacobs, 2001; Ramamoorthi and Hanrahan, 2001]. We also build on PRT methods that

have used spherical harmonics [Sloan et al., 2002]. Our spherical vMF method extends

zonal harmonics [Sloan et al., 2005] and spherical radial basis functions [Tsai and Shih,

2006]. We also considered wavelet methods (introduced for reflectance in [Lalonde and

Fournier, 1997]), but found the number of terms for an artifact-free solution too large for

practical use, even with smoother wavelets.2 Claustres et al. [2007] present a real-time

method for wavelet-based BRDF representation and filtering on the GPU, although they

do not account for normals.

We emphasize, however, that ours is not a PRT algorithm; it requires minimal precom-

2 PRT methods can use a coarse wavelet approximation of the lighting, since it is not visualized directly,

but we directly visualize NDF and BRDF.

58 normal map filtering

putation and works with conventional real-time rendering techniques. Furthermore, our

method rests on an explicit analytic convolution formula and uses the representations

above solely for normal map filtering, not for PRT.

7.2 preliminaries

In this section, we introduce relevant notation for the reflectance equation, and BRDF and

normal map representations.

The reflected light B at a surface point x with normal direction n in direction ωo is

given by the standard reflectance equation:

B(x, ωo) =
∫

S2
L(x, ωi)ρ(ωi, ωo)(n ·ωi) dωi,

where L is the lighting at x from incident direction ωi, and ρ is the BRDF.

We make two modifications to this form. First, following general readability practices,

the following discussion will “bake in” the cosine falloff term (n ·ωi) to the BRDF itself,

making ρ a general transfer function rather than a BRDF in the strictest definition3. Also,

since the BRDF is often defined in the local coordinate frame of the surface, we express

this explicitly using a change of coordinates

B(x, ωo) =
∫

S2
L(x, ωi)ρ(ω

′
i , ω

′
o) dωi, (7.1)

where parameters ω′i and ω′o denote directions in the local frame. To find these directions,

we must project or rotate the global incident and outgoing directions ωi and ωo to the local

tangent frame. This local frame is defined by the surface normal n and a tangent direction.

As we will limit ourselves to isotropic BRDFs, the tangent direction will not be important;

thus we can use any rigid rotation Rn mapping the normal to the z-axis [Ramamoorthi

and Hanrahan, 2001],

ω
′
i = Rn(ωi) ω

′
o = Rn(ωo).

3We will continue use the term “BRDF” to refer to this new object, making clarifications as needed

7.2 preliminaries 59

Finally, although we specify an integration over the sphere S2 of incident directions,

we will mainly be concerned with rendering under a small number of point lights. The

evaluation of Equation 7.1 will therefore become in practice a summation over discrete

directions ωi. We will relax this restriction, and discuss extensions to environment maps,

in Section 7.6.3.

7.2.1 brdf representation and parameterization

Effective BRDF: We define a new function, the effective BRDF or transfer function that

depends on the surface normal (that we denote as n(x) or simply n for clarity) as,

ρeff(ωi, ωo; n) = ρ (Rn(ωi), Rn(ωo)) ,

allowing us to write Equation 7.1 using the global directions,

B(x, ωo) =
∫

S2
L(x, ωi)ρ

eff(ωi, ωo; n(x)) dωi. (7.2)

BRDF Parameterizations: Many BRDFs can be written as

ρeff(ωi, ωo; n) = f (n ·ω(ωi, ωo)), (7.3)

where the 1d function f is radially symmetric about the shading normal n, and depends

on the chosen parameterization ω(ωi, ωo) (henceforth ω). In this chapter, we focus most

of our effort on these types of BRDFs, which encompass Lambertian, Blinn-Phong or

microfacet half angle (like Torrance-Sparrow), and many factored and measured BRDFs.

A very common example is Lambertian reflectance, where the transfer function is

simply the cosine of the incident angle, so that ω = ωi, and f (u) = max(u, 0). The Blinn-

Phong specular model with exponent s uses a transfer function of the form f (u) = us,

with the half-angle parameterization, ω = ωh = ωi+ωo

‖ωi+ωo‖ . Measured BRDF functions

f (ωh · n) can also be used.4

4 A number of recent chapters have proposed factored BRDFs for measured reflectance. [Lawrence et al.,

2006] uses a factorization f (θh)g(θd), in terms of half and difference angles. The f (θh) term clearly fits into

the framework of equation 7.3, but the BRDF now also includes a product with g(θd). However, θd does not

depend on n (and g does not need to be filtered). Thus, our framework also applies to general BRDFs of the

form f (ω · n)g(ωi, ωo), where the g factor does not depend directly on n.

60 normal map filtering

7.2.2 normal map representation and filtering

Normal Map Input Representation: There are many equivalent normal map represen-

tations, including bump maps and normal offsets. For simplicity we use normal maps,

parameterized on a plane, that directly specify the normal in tangent space. In the actual

implementation, we perform all computations in the local tangent frame of the geometric

surface; lighting and view are projected into this local frame, allowing the planar normal

map to be used directly without explicit rotation. For simplicity in the proceeding discus-

sion, the reader can therefore assume a planar underlying surface while understanding

that the extension to curved 3

D geometry is straightforward.

Normal Map Filtering: In screen space, the exitant radiance or pixel color B(x, ωo)

at a surface location x should represent the average radiance at the N corresponding

finer-level texels q:

B(x, ωo) =
1

N ∑
q∈x

∫

S2
L(x, ωi)ρ

eff(ωi, ωo; n(q)) dωi

=
∫

S2
L(x, ωi)

(

1

N ∑
q∈x

ρeff(ωi, ωo; n(q))

)

dωi.

This formulation allows us to define a new effective BRDF,

ρeff(ωi, ωo; x) =
1

N ∑
q∈x

ρ
(

Rn(q)(ωi), Rn(q)(ωo)
)

. (7.4)

Note that the effective BRDF now depends implicitly on all the normals n(q) at x, rather

than on a single normal. At a high level, this chapter is about ways to efficiently compute

and represent ρeff. To this end, the next section shows how to explicitly represent ρeff as a

convolution of the original BRDF and a new function we call the NDF.

7.3 normal mapping as convolution

In this section, we introduce our theoretical framework for normal map filtering as con-

volution. The next sections describe mathematical representations that can be used for

7.3 normal mapping as convolution 61

practical implementation.

7.3.1 normal distribution function

Our first step is to convert equation 7.4 into continuous form, defining

ρeff(ωi, ωo; γ(·)) =
∫

S2
ρ (Rn(ωi), Rn(ωo)) γ(n) dn, (7.5)

where γ(n) is a new function that we introduce and define as the normal distribution

function (NDF), and the integral is over the sphere S2 of surface orientations. Note that

a unique NDF γ(n) exists at each surface location x; for a discrete normal map, γ(n)

would simply be a sum of (spherical) delta distributions at n(q), the fine-scale normals at

x. Formally, γ(n) = 1
N ∑q∈x δ(n − n(q)), as seen in Figure 7.1d. For some procedurally

generated normal maps, γ(n) may be available analytically.

7.3.2 frequency-domain analysis in 2d

Although we will not directly use the results of this section for rendering, we can gain

many insights by starting in the simpler 2d case. This “flatland” analysis is easier because

the rotation operator in equation 7.5 is given simply by Rn(ω) = ω + n, yielding

ρeff(ωi, ωo; γ(·)) =
∫ 2π

0
ρ(ωi + n, ωo + n) γ(n) dn. (7.6)

Significant new insight is gained by analyzing equation 7.6 in the frequency domain.

Specifically, we expand in Fourier series:

γ(n) = ∑
k

γkFk(n)

ρ(ωi + n, ωo + n) = ∑
l

∑
m

ρlmFl(ωi + n)Fm(ωo + n), (7.7)

where Fk(n) are the familiar Fourier basis functions 1√
2π

eikn. Noting that Fk(ω + n) =
√

2πFk(ω)Fk(n), equations 7.6 and 7.7 can be simplified to

ρeff(ωi, ωo; γ(·)) = 2π ∑
k,l,m

γkρlmFl(ωi)Fm(ωo)×
∫ 2π

0
Fk(n)Fl(n)Fm(n)dn. (7.8)

62 normal map filtering

The integral above involves a triple integral of Fourier series, and we denote the cor-

responding tripling coefficients Cklm. These tripling coefficients have recently been stud-

ied [Ng et al., 2004], and for Fourier series they vanish unless k = −(l + m), where

Cklm = 1√
2π

. Since ρeff above is already expressed in terms of Fl(ωi)Fm(ωo), we can write

a formula for its Fourier coefficients:

ρeff
lm =

√
2πγ−(l+m)ρlm. (7.9)

Discussion and Analogy with Convolution: Equation 7.9 gives a very simple product

formula for the frequency coefficients of the effective BRDF. This is much like a convolu-

tion, where the final Fourier coefficients are a product of the Fourier coefficients of the

functions being convolved (here the NDF and BRDF). However, the convolution analogy

is not exact, since equation 7.8 involves a triple integral and n appears thrice in equa-

tion 7.6. In 3d, the formulae and sparsity for triple integrals in the frequency domain

(especially those involving rotations) are much more complicated [Ng et al., 2004]. Fortu-

nately, many BRDFs are primarily single-variable functions f (ω · n) as in equation 7.3. In

these cases, we will obtain a spherical convolution of the NDF and BRDF.

7.3.3 frequency-domain analysis in 3d

To proceed with analyzing equation 7.5 in the 3d case, we substitute the form of the BRDF

from equation 7.3. Recall in this case that the BRDF only depends on the angle between

ω and the surface normal n, and is given by f (ω · n). The effective BRDF is now also only

a function of ω,

ρeff(ω; γ(·)) =
∫

S2
f (ω · n)γ(n) dn. (7.10)

Note that the initial BRDF ρ(·) = f (ω · n) is symmetric about n, but the final result ρeff(ω)

is an arbitrary function on the sphere and is generally not symmetric.

We would like to analyze Equation 7.10 in the frequency domain, just as we did with

Equation 7.6. In 3d, we must use the spherical harmonic (SH) basis functions Ylm(·),
which are the frequency domain analog to Fourier series on the unit sphere. The l index

7.3 normal mapping as convolution 63

is the frequency with l ≥ 0, and −l ≤ m ≤ l,

γ(n) =
∞

∑
l=0

l

∑
m=−l

γlmYlm(n) f (ω · n) =
∞

∑
l=0

flYl0(ω · n)

ρeff(ω) =
∞

∑
l=0

l

∑
m=−l

ρeff
lmYlm(ω).

The above is a standard function expansion, as in Fourier series. Note that the symmetric

function f (ω · n) is expanded only in terms of the zonal harmonics Yl0(·) (m = 0), which

are radially symmetric and thus depend only on the elevation angle.

Equation 7.10 has been extensively studied in recent years, within the context of

lighting-BRDF convolution for Lambertian or radially symmetric BRDFs [Basri and Ja-

cobs, 2001; Ramamoorthi and Hanrahan, 2001]. In those works, the NDF γ(n) is replaced

by the incident lighting environment map. Since the theory is mathematically identical,

we may directly use their results. Specifically, Equation 7.10 expresses a spherical convo-

lution of the NDF γ(n) with the BRDF filter f . In particular, there is a simple product

formula in spherical harmonic coefficients, similar to the way standard convolution can

be expressed as a product of Fourier coefficients,

ρeff
lm =

√

4π

2l + 1
flγlm.

Explicitly making the NDF and effective BRDF functions of a texel q, we have

ρeff
lm(q) = ρ̂lγlm(q) ρ̂l =

√

4π

2l + 1
fl , (7.11)

where the NDF considers all normals covered by q. While q usually corresponds to a

given level and offset in a MIP-map, it can also consider more general “footprints”—we

show an example with anisotropic filtering in Figure 7.3.

Generality and Supported BRDFs: The form above is accurate for all BRDFs described

by Equation 7.3, including Lambertian, Blinn-Phong and measured microfacet distribu-

tions. Moreover, our results also apply when the BRDF has an additional Fresnel or g(θd)

multiplicative factor, since θd (and hence g) does not depend on n and does not need to

be filtered.

64 normal map filtering

Our method

Standard anisotropic

filtering

“Ground truth”

Figure 7.3: Spherical harmonic anisotropic filtering. Rendered under Lambertian reflection.

Note the behavior for far regions of the plane. With standard normal filtering, these regions are

averaged to a nearly flat surface. By contrast, our method is quite accurate, with only slight

blurring in distant regions.

Note that for some specular BRDFs, we also need to multiply by the cosine of the

incident angle for a full transfer function. For the spherical vMF method in Section 7.6, we

address this by simply multiplying for each lobe by the cosine of the angle between light

and lobe center (or effective normal). For the spherical harmonic method in Section 7.4,

we simply use the MIP-mapped normals for the cosine term, since it is a relatively low-

frequency effect.

7.4 spherical harmonics 65

7.4 spherical harmonics

To recap, we have as input a normal map which provides a single normal n(q0) for each

finest-level texel q0. We also have a BRDF ρ(·) = f (ω · n), with spherical harmonic coeffi-

cients ρ̂l . In this section, we develop a spherical harmonics-based algorithm from the final

formula in equation 7.11. Later, Section 7.6 will discuss an alternative algorithm better

suited for higher-frequency effective BRDFs. While the theory in the previous section is

somewhat involved, the practical algorithm in this section is relatively straightforward,

involving two basic steps: (1) computing the NDF spherical harmonic coefficients γlm(q)

for each (coarse-level) texel q of the normal map, and (2) rendering the final color by

directly implementing equation 7.11 in a GPU pixel shader.

7.4.1 algorithm

Computing NDF Coefficients: We compute a MIP-map of NDF coefficients5, starting

with the finest level normal map, and moving to coarser levels. At the finest level (denoted

by subscript 0), γ(q0) is a delta distribution at n(q0), i.e., γ(q0) = δ(n − n(q0)) with

corresponding spherical harmonic coefficients6

γlm(q0) = Ylm(n(q0)).

An important insight is that, unlike the original normals, these spherical harmonic NDF

coefficients γlm(q0) can now correctly be linearly filtered or averaged for coarser levels

γlm(q). Hence, we can simply MIP-map the spherical harmonic coefficients γlm(q0) in the

standard way, and no non-linear fitting is required.

5As explained in Section 7.2.2, we are operating in the local tangent frame of the geometric surface, with

lighting and view projected into this frame. Thus, we do not need to explicitly consider rotations into the

global frame. Note that the overall geometric surface is assumed to be locally planar (a single “geometric

normal”) over the region being filtered.

6We use the real form of the spherical harmonics, rather than the complex form, to simplify implementa-

tion. Otherwise, γlm(q0) = Y∗lm(n(q0)).

66 normal map filtering

Rendering: Rendering requires knowing the NDF coefficients γlm(q), the BRDF coef-

ficients ρ̂l , and then applying equation 7.11. We have already computed a MIP-map of

NDF coefficients. At the time of rendering, we also know the BRDF. For many analytic

models, formulae for ρ̂l are known [Ramamoorthi and Hanrahan, 2001]. For example, for

Blinn-Phong, ρ̂l ≈ e−l2/2s where s is the Phong exponent. For measured reflectance, ρ̂l is

obtained directly by a spherical harmonic transform of f (ω · n).
Now, we can compute the spherical harmonic coefficients of the effective BRDF, per

equation 7.11. Finally, to evaluate it, we must expand in terms of spherical harmonics,

ρeff(ω, q) =
l∗

∑
l=0

l

∑
m=−l

ρ̂lγlm(q)Ylm(ω), (7.12)

where ω(ωi, ωo) depends on the BRDF as usual (such as incident direction ω = ωi for

Lambertian or halfway-vector ω = ωh for specular), and l∗ is the maximum l used in the

shader (accurate results generally require l∗ ≈
√

4s where s is the Blinn-Phong exponent).

For shading, assume a single point light source for now. At each surface location, we

know the incident and outgoing directions, so it is easy to find the half-vector ωh or other

parameterization ω, and then use the BRDF formula above for rendering.7

We implement equation 7.12 in a pixel shader using GLSL (see our website for exam-

ple code). The spherical harmonics Ylm are stored in floating point textures, as are the

MIP-mapped NDF coefficients γlm(q). Real-time frame rates are achieved comfortably

for up to 64 spherical harmonic terms (l∗ ≤ 7, corresponding to a Blinn-Phong exponent

s ≤ 12 or a Torrance-Sparrow surface roughness σ ≥ 0.2).

7.4.2 results

Lambertian Reflection: In the Lambertian case, using only nine spherical harmonic

coefficients (l ≤ 2) suffices [Ramamoorthi and Hanrahan, 2001]. An example is shown in

Figure 7.3. This figure also shows the generality of our method in terms of the footprint

7Our spherical harmonic algorithm does not explicitly address color textures; a simple approximation

would be to MIP-map them separately, and then modulate the scalar result in equation 7.12. A more correct

approach to filtering material properties is discussed for our vMF method in Section 7.6.4.

7.4 spherical harmonics 67

(a) Our method, f rame 1 (b) Our method, f rame 2 (c) “Ground truth”, f rame 2 (d) Our method, zoomed out

Figure 7.4: Temporal coherence. Stills from a sequence of cloth draping over a sphere, with close-

ups indicating correct normal filtering using our spherical harmonic algorithm. Note the smooth

transition from the center (almost no filtering) to the corners (fully filtered) in (b)—compare also

with ground truth in (c). (d) is a zoomed out view that also filters correctly. We use a blue fabric

material from the Matusik database as the BRDF.

for texel q, by using GPU-based anisotropic filtering, instead of MIP-mapping. Note

that we preserve accuracy in far away regions of the plane, while naı̈ve averaging of the

normal produces a nearly flat surface that is much darker than the actual (as illustrated

in Figure 7.2e).

Low-Frequency Specularities and Measured Reflectance: Our framework also accom-

modates specular materials with BRDF f (ωh · n). The BRDF can also be changed at run-

time, since it is entirely independent of the NDF. We have factored all of the materials

in the database of [Matusik et al., 2003], using the f (θh)g(θd) factorization in [Lawrence

et al., 2006]. Figure 7.5 shows two examples of different materials, which we can switch

between at runtime.

Figure 7.4 shows closeup views from an animation sequence of cloth draping over a

sphere, using the blue fabric material from the Matusik database. Note the accuracy of

our method (compare (b) with the supersampled “ground truth” in (c)). Also note the

smooth transition between close (unfiltered) and distant (fully filtered) regions in (a) and

(b), as well as the filtered zoomed out view in (d).

Discussion and Limitations Our spherical harmonic method is a practical approach

for low-frequency materials. Unlike previous techniques, all operations are linear—no

nonlinear fitting is required, and we can handle arbitrary lobe shapes and functions f (ωh ·

68 normal map filtering

“Leather” “Violet Rubber”

Figure 7.5: Rendering with acquired BRDFs. Our spherical harmonic algorithm for normal

mapping, with two of the materials in the Matusik database—we can support general measured

BRDFs and change reflectance or material in real time. Notice also the correct filtering of the

zoomed out view, shown at the bottom right.

n). Moreover, the BRDF is decoupled from the NDF, enabling simultaneous changes of

BRDF, lighting and viewpoint.

As with all low-frequency approaches, our spherical harmonic method requires many

terms for high-frequency specularities (a Blinn-Phong exponent of s = 50 needs about

200 coefficients). The following sections provide more practical solutions in these cases.

7.5 spherically symmetric distributions

Spherical harmonics are a suitable basis for representing low-frequency functions, but

are impractical for higher-frequency functions due to the large number of coefficients

required. For higher-frequency NDFs, then, we will instead use radially symmetric basis

functions, which are one-dimensional and therefore much more compactly represented.

By performing an offline optimization, we approximate the NDF at each texel as the sum

of a small number of such lobes.

7.5 spherically symmetric distributions 69

7.5.1 basic theoretical framework for using srbfs

Consider a single basis function γ(n · µ) for the NDF, symmetric about some central

direction µ. For now, γ is a general spherical radial basis function (SRBF). Equation 7.10

now becomes

ρeff(ω · µ; γ(·)) =
∫

S2
f (ω · n)γ(n · µ) dn.

It can be shown (for example, see [Tsai and Shih, 2006]) that ρeff is itself radially symmetric

about µ (hence the form ρeff(ω ·µ) above), and its spherical harmonic coefficients are given

by

ρeff
l = ρ̂lγl. (7.13)

Compared to equation 7.11, this is a simpler 1d convolution, since all functions are

radially symmetric and therefore one-dimensional. To represent general functions, we

can use a small number of representative lobes γl,j. Note that the calculation of the

lobe directions is generally a nonlinear process; our particular implementation is given in

Section 7.6.

For rendering, we need to expand the effective BRDF in spherical harmonics, analo-

gously to equation 7.12, but now using only the m = 0 terms. Considering the summation

of J lobes, we obtain

ρeff(ω, q) =
J

∑
j=1

∞

∑
l=0

ρ̂lγl,j(q)Yl0(ω · µj), (7.14)

where we again make clear that the NDF γl,j is a function of the texel q. This equation

can be used directly for shading once we find ω for the light source and view direction.

7.5.2 discussion : unifying framework and multiscale

Our theoretical framework in Section 7.5.1 unifies many normal filtering algorithms. Pre-

vious lobe- or peak-fitting methods Section 7.1 can be seen as special cases. By develop-

ing a general convolution framework, we show how to separate the NDF from the BRDF.

Since we properly account for general BRDFs ρ̂l , we can even change BRDFs on the fly.

Equation 7.13 has an interesting multi-scale interpretation, as depicted in Figure 7.6.

At the finest scale (a), the geometry used is the original highest-resolution normal map.

70 normal map filtering

(b)(a) (d)(c)

Rendered Image

E!ective

BRDF

Figure 7.6: Multiscale tradeoffs. Illustration of filtering of the BRDF (rendered sphere) and

NDF (inset). (a) shows a closeup of the sphere, where we see the individual facets and a sharp

NDF/effective BRDF. In (b), we have zoomed out to where the geometry now appears smoother,

although roughness is still clearly visible. The effective BRDF is now blurred, now incorporating

finer-scale geometry. As we zoom further out in (c) and (d), the geometry appears even smoother,

while the BRDF is further filtered.

Therefore, the NDF is a delta distribution at each texel, and the effective BRDF ρeff
l = ρ̂l .

At coarser scales, the shading geometry used is effectively a filtered version of the fine-

scale normal map, with the NDF becoming smoother from (b)-(d). The effective BRDF

is now filtered by the smoothed NDF, essentially representing the complex fine-scale

geometry as a blurring of the BRDF.

Also note the symmetry between the BRDF and NDF in equation 7.13. While the

common fine-scale interpretation is for a delta function NDF and the original BRDF, we

can also view it as a delta function BRDF and an NDF given by ρ̂l . These interpretations

are consistent with most microfacet BRDF models, which start by assuming a mirror-like

BRDF (delta function) and complex NDF (microfacet distribution), and derive a net glossy

BRDF on a smooth macrosurface (delta function NDF).

7.5.3 choice of radial basis function

We now briefly discuss some possible approaches for approximating and representing

our radial basis functions γ(n · µ). One possible method is to use zonal harmonics [Sloan

et al., 2005]; however, our high-frequency NDFs lead to large orders l, making fitting

difficult and storage inefficient. An alternative is to use Gaussian RBFs, with parameters

7.6 von mises-fisher mixtures 71

chosen using expectation maximization (EM) [Dempster et al., 1977]. In this case, we

simply need to store 3 parameters per SRBF: the amplitude, width and central direction.

Whereas Tan et al. [2005] pursued this approach using Euclidean or planar (and therefore

distorted) RBFs, we consider NDFs represented on their natural spherical domain, which

also enables us to derive a simple convolution formula.

Indeed, spherical Gaussian RBFs [Tsai and Shih, 2006] or Phong lobes [Fournier, 1992],

are most appropriate. However, the nonlinear minimization required for fitting these

models is inefficient, given that we need to do so at each texel. Instead, we use a spherical

variant [Banerjee et al., 2005] of EM, with the von Mises-Fisher8 (vMF) distribution [Fisher,

1953]. Spherical EM and vMFs have previously been used in other areas such as computer

vision [Hara et al., 2005] for approximating Torrance-Sparrow BRDFs; here we introduce

them for the first time in computer graphics, to represent NDFs.

7.6 von mises-fisher mixtures

We now describe our algorithms for fitting the NDF, and rendering with mixtures of vMF

lobes. The fitting is done using a technique known as spherical expectation maximization

(EM) [Banerjee et al., 2005]. EM is a common algorithm for fitting in statistics, that finds

maximum-likelihood estimates of parameters [Dempster et al., 1977]. It is an iterative

method, with each iteration consisting of two steps known as the E-step and the M-

step. We use EM as opposed to other fitting and minimization techniques because of

its simplicity, efficiency, robustness, and ability to work with sparse data (the discrete

normals in the NDF). We also show how to extend the basic spherical EM algorithm to

handle color and different materials, create coherent lobes for hardware interpolation, and

implement spherical harmonic convolution for rendering. Note that while the theoretical

development of this section is somewhat complicated, the actual implementation is quite

simple, and full pseudocode is provided in Algorithms 7.1 and 7.2.

8 For the unit 3d sphere, this function is also known as the Fisher distribution. We use the more general

term von Mises-Fisher distribution, that applies to n-dimensional hyperspheres.

72 normal map filtering

7.6.1 fitting ndfs with mixtures of vmfs

vMF distributions were introduced in statistics to model Gaussian-like distributions on

the unit sphere (or hypersphere). An advantage of vMFs is that they are well suited to

a spherical expectation maximization algorithm to estimate their parameters. They are

characterized by two parameters θ = {κ, µ} corresponding to the inverse width κ and

central direction µ. vMFs are normalized to integrate to 1, as required by a probability

distribution, and are given by

γ(n · µ; θ) =
κ

4π sinh(κ)
eκ(n·µ). (7.15)

A mixture of vMFs (movMF) is defined as an affine combination of vMF lobes θj, with

amplitude αj, where ∑j αj = 1,

γ(n; Θ) =
J

∑
j=1

αjγj(n · µj; θj).

Here, θj = {κj, µj} characterizes a single vMF lobe, and Θ stores the parameters {αj, θj}J
j=1

of all J vMFs in the movMF.

We use spherical EM (Algorithm 7.1) to fit a movMF to the normals covered at each

texel in the MIP-map. Line 5 of Algorithm 7.1 shows the E-step. For all normals ni

in a given texel, we compute the expected likelihood 〈zij〉 that ni corresponds to lobe

j. Lines 9-14 execute the M-step, which computes maximum likelihood estimates of the

parameters. In practice, we seldom need more than 10 iterations, so the full EM algorithm

for a 512× 512 normal map converges in under 2 minutes. Note that this is an offline

computation that needs to be done only once per normal map—unlike most previous

work, it is also independent of the BRDF (and lighting).

Note the use of auxiliary variable rj in line 11, which represents 〈xj〉/αj, where 〈xj〉 is

the expected value of a random vector generated according to the scaled vMF distribution

γ(x; θj). The central normal µj and the inverse width κj are related to rj by

r = A(κ)µ,

where A(κ) = coth(κ)− 1

κ
. (7.16)

7.6 von mises-fisher mixtures 73

Figure 7.7: vMF lobe fitting. We fit the NDF using increasing numbers of lobes, at a represen-

tative MIP-map texel. The middle row displays our fitting results; with 3-4 lobes, we already

get excellent agreement in the rendered image. Each vMF lobe is symmetric about some central

direction, and is fit on the natural spherical domain (shown in both a top and side view, middle

row). By contrast, a Gaussian EM fit on a planar projection of the hemisphere (top row), must

remain symmetric in the distorted planar space, and has considerable errors at the boundaries of

the hemisphere. Because no explicit convolution formula exists in the planar case, we only show

renderings with our method (bottom row), which accurately match a reference with a few vMF

lobes.

The direction µ is found simply by normalizing r (line 13), while κ is given by A−1(‖r‖);
since no closed-form expression exists for A−1, we use the approximation in [Banerjee et

al., 2005] (line 12).

Since EM is an iterative method, good initialization is important. For normal map

filtering, we can proceed from the finest texels to coarser levels. At the finest level, we

have only a single normal at each texel, so we need only a single lobe and directly set

α = 1, µ = n, and κ to a large initial value. At coarser levels, a good initialization is to

choose the furthest-apart J lobes from among the 4J µ’s in the four finer-level texels; for

this we use Hochbaum-Shmoys clustering [Hochbaum and Shmoys, 1985]. Note that the

actual fitting uses all normals covered by a given texel in the MIP-map.

The accuracy of our method is shown in Figure 7.7, where we see that about four lobes

suffices in most cases, with excellent agreement with six lobes. We also compare with the

74 normal map filtering

Algorithm 7.1 The Spherical EM algorithm. Inputs are normals ni in a texel. Outputs are

movMF parameters α, κ and µ for each lobe j.

1: repeat

2: {The E-step}
3: for all samples ni do

4: for j = 1 to J do

5: 〈zij〉 ← γj(ni;θj)

∑
J
k=1 γk(ni;θk)

{Expected likelihood of ni in lobe j}

6: end for

7: end for

8: {The M-step}
9: for j = 1 to J do

10: αj ← ∑
N
i=1〈zij〉

N

11: rj ← ∑
N
i=1〈zij〉ni

∑
N
i=1〈zij〉

{Auxiliary variable for κ, µ in equation 7.16}

12: κj ←
3‖rj‖−‖rj‖3

1−‖rj‖2

13: µj ← normalize(rj)

14: end for

15: until convergence

Gaussian EM fits of Tan et al. [2005]. They work on a projection of the hemisphere onto

the plane, and use standard Euclidean (rather than spherical) EM. Because this planar pro-

jection introduces distortions, they have a significant loss of accuracy near the boundaries

(top row). Our method (middle row) works on the natural spherical domain (hence the

side view shown), and is able to fit undistorted lobes anywhere on the sphere. Also note

that, in contrast to previous methods, our form permits an explicit convolution formula

and thus can be combined with any BRDF to produce accurate renderings (bottom row).

7.6.2 spherical harmonic coefficients for rendering

For rendering, we will need the spherical harmonic coefficients γl of a normalized vMF

lobe. To the best of our knowledge, these coefficients are not found in the literature, so we

derive them here based on reasonable approximations. First, for large κ, we can assume

that sinh(κ) ≈ eκ/2. In practice, this approximation is accurate as long as κ > 2, which is

7.6 von mises-fisher mixtures 75

almost always the case. Hence, the vMF in equation 7.15 becomes

γ(n · µ; θ) ≈ κ

2π
e−κ(1−n·µ).

Let β be the angle between n and µ. Then, 1− n · µ = 1− cos β. For moderate κ, β

must be small for the exponential to be nonzero. In these cases, 1− cos β ≈ β2/2, and we

get a Gaussian form,

γ(n · µ; θ) ≈ κ

2π
e−

κ
2 β2

. (7.17)

Spherical harmonic coefficients of a Torrance-Sparrow model of similar form have

previously been studied [Ramamoorthi and Hanrahan, 2001]. For notational simplicity,

let Λl =
√

4π
2l+1 . Then,

γ =
e−β2/(4σ2)

4πσ2
⇒ Λlγl = e−(σl)2

. (7.18)

Comparing with equation 7.17, we obtain σ2 = 1
2κ and

Λlγl = e−σ2 l2
= e−

l2

2κ . (7.19)

This formula provides us the desired spherical harmonic coefficients γl for a vMF lobe,

in terms of the inverse width κ.

Having obtained γl, we are now ready to proceed to rendering. Since each vMF lobe

is treated independently, and the constants αj and BRDF coefficients can be multiplied

separately, we focus on convolving the normalized BRDF ρ̂l with a single normalized

vMF lobe γl. It is possible to directly use equation 7.19 for the vMF coefficients and equa-

tion 7.14 for rendering with general BRDFs. However, a much simpler method is available

for the important special forms of Blinn-Phong and Torrance-Sparrow like BRDFs. First,

consider a normalized Blinn-Phong model of the form,

ρ = f (ωh · n) =
s + 1

2π
(ωh · n)s,

where s is the specular exponent or shininess. It can be shown [Ramamoorthi and Hanra-

han, 2001] that the spherical harmonic coefficients are ρ̂l ≈ e−l2/2s. Therefore, the result

76 normal map filtering

after convolution with the vMF is still approximately a Blinn-Phong shape:

Λlρ
eff
l = ρ̂lΛlγl = e−l2/2se−l2/2κ = e−l2/2s′ ,

s′ =
κs

κ + s

=⇒ ρeff(ωh · µ) =
s′ + 1

2π
(ωh · µ)s′ . (7.20)

For a Torrance-Sparrow like BRDF of the form of equation 7.18, we obtain a similar

form for ρeff, only with a new surface roughness σ′ in the Torrance-Sparrow model, given

by

σ′ =
√

σ2 + (2κ)−1. (7.21)

Equations 7.20 and 7.21 can easily be implemented in a GPU shader for rendering

(lines 12-13 in Algorithm 7.2 implement equation 7.20; the full Algorithm 7.2 is explained

at the end of Section 7.6.4). The simplicity of these formulae allows us to change BRDF

parameters on the fly, and also to consider very high-frequency BRDFs.

7.6.3 complex lighting

Our vMF-based normal map filtering technique can also be extended to complex envi-

ronment map lighting.9 Equation 7.2, rephrased below, is a convolution (mathematically

similar to equation 7.10), that becomes a simple dot product in spherical harmonics,

B(µ) =
∫

S2
L(ωi)ρ

eff(ω · µ) dωi , (7.22)

where the effective BRDF ρeff is the convolution of the vMF lobe with the BRDF, and µ

is the central direction of the vMF lobe (effective “normal”) as usual. For the diffuse or

Lambertian component of the BRDF ω(ωi, ωo) = ωi, and the spherical harmonic coeffi-

cients can simply be multiplied according to the convolution formula, Blm = Λlρ
eff
l Llm, so

that

B =
l∗

∑
l=0

l

∑
m=−l

Λlρ
eff
l LlmYlm(µ). (7.23)

9 The direct spherical harmonic method in Section 7.4 is more difficult to apply, since general spherical

harmonics cannot be rotated as easily as radially symmetric functions between local and global frames.

7.6 von mises-fisher mixtures 77

However, the specular component of the BRDF is expressed in terms of ω(ωi, ωo) =

ωh, and we need to change the variable of integration in equation 7.22 to ωh (which leads

to a factor 4(ωi ·ωh)),

B(µ) =
∫

S2
[L(ωi(ωh, ωo)) · 4(ωi ·ωh)] ρeff(ωh · µ) dωh

=
∫

S2
L′(ωh)ρ

eff(ωh · µ) dωh .

Thus, we simply need to consider a new reparameterized lighting L′(ωh) = L(ωi(ωh, ωo)) ·
4(ωi · ωh). As the half angle depends on both viewing and lighting angles (ωo and ωi),

the above integration implicitly limits us to a fixed view with respect to the lighting. To

interactively rotate the lighting, we precompute a sparse set (typically, about 16× 16) of

rotated lighting coefficients and interpolate the shading.

Finally, in analogy with equation 7.23,

B =
l∗

∑
l=0

l

∑
m=−l

Λlρ
eff
l L′lmYlm(µ). (7.24)

7.6.4 extensions

We now consider two practically important extensions: the augmentation of the vMF lobe

model to support colors (Section 7.6.4.1), and alignment of neighboring lobes for accurate

linear interpolation (Section 7.6.4.2). These extensions will result in changes to the basic

EM algorithm (Section 7.6.4.3).

7.6.4.1 different materials/colors:

It is often the case that one would like to associate additional spatially varying proper-

ties (such as colors, material blending weights, etc.) to a normal map. For example, the

normal map in Figure 7.2 contains regions of different colors. We represent these proper-

ties in a feature vector yi associated with each normal ni, and extend the EM algorithm

accordingly.

For each vMF lobe, we would now like to find a yj that best describes the yi of all

its underlying texels. In Section 7.6.4.3, we augment the EM likelihood function with an

78 normal map filtering

additional term whose maximization yields an extra line in the M-step,

yj ←
∑

N
i=1〈zij〉yi

∑
N
i=1〈zij〉

(7.25)

Note that, since yj does not affect the E-step, the preceding can be run as a postprocess

to the vanilla EM algorithm.

This extension enables correct filtering of spatially-varying materials (as in Figure 7.2).

Note however that only linear blending of basis BRDFs (and not for example, freely vary-

ing specular exponents) is allowed. Moreover, the result is a “best-fit” approximation,

since normals and colors are assumed decorrelated.

7.6.4.2 coherent lobes for hardware interpolation:

In our case, accurate rendering involves shading the 8 neighboring MIP-map texels (using

the BRDF and respective movMFs), and then trilinearly interpolating them with appro-

priate weights. Greater efficiency (usually a 2× to 4× speedup) is obtained if we instead

follow the classic hardware approach of first trilinearly interpolating the parameters Θ

of the movMFs. We can then simply run our GPU pixel shader once on the interpolated

parameters Θ̃. For accurate interpolation, this requires us to construct the movMFs in the

MIP-map such that lobe j of each texel be similarly aligned to the jth lobe stored at each

neighboring texel.

For alignment, we introduce a new term in our EM likelihood function, and maximize

(details are provided in Section 7.6.4.3). The final result replaces line 13 in the M-step of

Algorithm 7.1 with

µj ← normalize

(

rj + C
K

∑
k=1

αjkµjk

)

. (7.26)

C is a parameter that controls the strength of alignment (intuitively, it seeks to move

µj closer to the central directions µjk of the K neighbors, favoring neighbors with larger

amplitudes αjk.).

We build our aligned movMFs starting at the topmost (that is, most filtered) MIP-map

level and proceed downward, following scanline ordering within each individual level.

In the interest of performance, we use only previously visited texels as neighbors.

7.6 von mises-fisher mixtures 79

We next consider trilinear interpolation of the variables. Unfortunately, the customary

vMF parameters {κ, µ} control non-linear aspects of the vMF lobe and therefore cannot

be linearly interpolated. To solve this problem, we recall from Section 7.6.1 that µ and κ

can be inferred from the scaled Euclidean mean r = 〈x〉/α of a given vMF distribution.

By linearity of expectation, we can interpolate αr = 〈x〉 linearly, as well as the amplitude

α, giving

α̃j = T(αj) r̃j = T(αjrj)/T(αj),

where T(·) denotes trilinear hardware interpolation. Finally, κ̃j and µ̃j can easily be found

in-shader (lines 9 and 10 of Algorithm 7.2).

Algorithm 7.2 shows pseudocode for our GLSL fragment shader. Lines 5-10 look up

α and αr, and then compute κ and µ. For implementation, we store the jth lobe of each

movMF in a standard RGBA MIP-map (vMFTexture in Algorithm 7.2) using one channel

for α and one channel each for the three components of αr. Normalized color/material

properties αy are stored in corresponding textures (colorTexture in line 6 of Algorithm 7.2).

Line 5 reads the parameters θ for a single vMF lobe as an RGBA value. Lines 12-13

compute the specular shading (assuming a Blinn-Phong model with exponent s) using

equation 7.20. The Torrance-Sparrow model can be handled similarly, using equation 7.21.

Line 14 computes the final shading contribution by including the color parameters y, and

scaling by the lobe amplitude α, specular coefficient Ks, and the cosine of the incident

angle, while adding the Lambertian component Kd. Note that this shader can be used

equally with aligned or unaligned vMF lobes; the only difference is whether we manually

compute and combine results from all 8 neighboring texels (unaligned) or use hardware

interpolate to first obtain lobe parameters (aligned).

7.6.4.3 augmented fitting algorithm

The additions of the preceding subsections result in a change to the likelihood function

for spherical EM. The net likelihood function is a product of 3 terms,

P(X, Z|Θ)P(Y, Z|Θ)P(Θ|N(Θ)),

80 normal map filtering

Algorithm 7.2 Pseudocode for the vMF GLSL fragment shader.

1: {Setup: calculate half angle ωh and incident angle ωi}
2: ρ← 0

3: for j = 1 to J do {Add up contributions for all J lobes}
4: {Look up vMF parameters stored in 2D texture map}
5: θ ← texture2D(vMFTexture[j], s, t)

6: αy ← texture2D(colorTexture[j], s, t)

7: α← θ.x

8: r ← θ.yzw
α {θ.yzw stores αr}

9: κ ← 3‖r‖−‖r‖3

1−‖r‖2

10: µ← normalize(r)

11: {Calculate shading per equation 7.20}
12: s′ ← κs

κ+s {s is Blinn-Phong exponent}
13: Bs ← s′+1

2π (ωh · µ)s′ {Equation 7.20}
14: ρ← ρ + αy(KsBs + Kd)(ωi · µ)
15: end for

16: gl FragColor← L× ρ {L is light intensity}

where X are the samples (in this case input normals), Y are the colors/materials, Z are

the hidden variables (in this case which vMF lobe a sample X is drawn from), Θ are

parameters for all vMF lobes and N(Θ) are parameters for neighbors. The first factor cor-

responds to standard spherical EM, the second factor corresponds to the colors/materials

Y,

P(Y, Z|Θ) =
N

∏
i=1

e−‖yzi
−yi‖2

,

and the final factor to coherent lobes for interpolation,

P(N(Θ)|Θ) =
J

∏
j=1

K

∏
k=1

eC′αjk(µ j·µ jk).

We use C′ above as a constant weighting factor (it will be related to the weight C used in

the main text as discussed below).

In EM, we seek to maximize the log likelihood

ln [P(X, Z|Θ)P(Y, Z|Θ)P(Θ|N(Θ))] =
N

∑
i=1

ln γ(ni|θzi
) +

N

∑
i=1

−‖yi − yzi
‖2 +

J

∑
j=1

K

∑
k=1

C′αjk(µj · µjk) ,

7.6 von mises-fisher mixtures 81

which, considering all J lobes and hidden variables 〈zij〉, becomes

J

∑
j=1

[

N

∑
i=1

ln γ(ni|θj)〈zij〉+
N

∑
i=1

−‖yi − yzi
‖2〈zij〉+

K

∑
k=1

C′αjk(µj · µjk)

]

.

Maximizing with respect to yj, we directly obtain equation 7.25. The maximization with

respect to µj is more complex,

µj = normalize

(

κj

N

∑
i=1

ni〈zij〉+ C′
K

∑
k=1

αjkµjk

)

.

Finally, redefining C = C′/κj, we obtain equation 7.26.

7.6.5 results

Figure 7.2 shows the accuracy of our method, and makes comparisons to ground truth

and alternative techniques. It also shows our ability to use different materials for different

parts of the normal map.

Our formulation allows for general and even dynamically changing BRDFs. Figure 7.8

shows a complex scene, where the reflectance changes over time, decreasing in shininess.

Although not shown, the lighting and view can also vary—the bottom row shows close-

ups with different illumination. Note the correct filtering for dinosaurs in the background,

and for further regions along the neck and body of the foreground dinosaur. Even where

individual bumps are not visible, the overall change in appearance as the reflectance

changes is clear. This complex scene has 14,898 triangles for the dinosaurs, 139,392 trian-

gles for the terrain and 6 different textures and normal maps for the dinosaur skins. It

renders at 75 frames per second at a resolution of 640x480 on an nVIDIA 8800 graphics

card. In this example, we used six vMF lobes, with both diffuse and specular shading

implemented as a simple fragment shader.

Finally, Figure 7.9 shows an image of an armadillo rendered under dynamic (rotating)

environment map lighting. We were able to render this model (approximately 350,000

polygons) at interactive framerates, with up to 6 vMF lobes and l∗ = 8 in Equation 7.24.

82 normal map filtering

Figure 7.8: Dynamically changing reflectance. Our framework can handle complex scenes,

allowing for general reflectance, which can even be changed at run-time. Here, the BRDF becomes

less shiny over time. Note the correct filtering and overall changes in appearance for further

regions of the foreground dinosaur, and those in the background. The bottom row shows closeups

(when the material is shiny) with a different lighting condition. This example also shows that we

can combine filtered normal maps with standard color texture mapping.

7.6 von mises-fisher mixtures 83

Figure 7.9: Normal map filtering under complex lighting. Armadillo model with 350,000 poly-

gons rendered interactively with normal maps in dynamic environment lighting. We use 6 vMF

lobes, and spherical harmonics up to order 8 for the specular component.

84

Part IV

C O N C L U S I O N S

85

C H A P T E R 8

F U T U R E D I R E C T I O N S

It will become necessary to develop multiscale analogues to many of the existing methods

from the traditional, narrow-scale setting.

Incorporating geometry In developing the foundations of a multiscale approach, we

have thus far operated chiefly in the planar 2d image domain. However, an important

avenue for future research will be in applying these concepts towards synthesis directly

on mesh geometry. Although there has been a good deal of research into surface texture

synthesis [Turk, 2001; Wei and Levoy, 2001; Ying et al., 2001; Zhang et al., 2003; Magda

and Kriegman, 2003; Lefebvre and Hoppe, 2006], these methods (much like their planar

counterparts) are not particularly suited for the multiscale setting. In the area of texture

editing, modern “final placement” tools allow painting directly on the mesh, hiding the

details of parameterization, or avoiding parameterization altogether [Burley and Lacewell,

2008]. We hope to see the application of concepts from our multiscale editing framework

into these tools.

This move to incorporate geometry is especially compatible with future directions

in filtering as well. Several authors have spelled out a hierarchy of levels-of-detail, in-

cluding: explicit 3d geometry, height displacements, normal/bump maps, and BRDF or

reflectance [Kajiya, 1985; Becker and Max, 1993]. Our work has addressed filtering of

normal maps and to some extent, the transition to a BRDF at far distances. However, a

critical direction for future work is filtering of geometry or displacement maps, where

86 future directions

effects like local occlusions, shadowing, masking and interreflections become important.

With more and more geometry processing being moved into the real-time domain (e.g.,

geometry and tessellation shaders), we anticipate that it will become possible to develop

a unified approach to filtering the entire hierarchy of visual detail.

Lastly, one might consider extensions of our methods into higher-dimensional do-

mains such as solid [Kopf et al., 2007a] or time-varying [Schödl et al., 2000; Gu et al., 2006]

textures. Solid textures in particular have proven to be useful in texturing complex objects

where a surface parameterization is unavailable or otherwise undesirable.

General imagery Just as we are interested in larger and more complex textures, there

has been an increasing interest in larger imagery in general [Kopf et al., 2007b]. Al-

though we have maintained a distinction in this thesis between “textural” and general,

“structural” images, there are many cases where such a distinction is not entirely clear.

Many–if not most–general images contain textural elements, and can therefore still bene-

fit from judicious employment of ideas from texturing. Such applications include texture

replacement [Tsin et al., 2001; Liu et al., 2004] and direct use of perspective photographs

as exemplars [Eisenacher et al., 2008].

Data-driven methods We have thus far worked to allow careful selection and control of

exemplars for texturing. An alternative approach is to pre-assemble and analyze a large

database of textures, from which a user can later select a subset for recombination [Ma-

tusik et al., 2005]. Given the growing sea of available source imagery, this approach will

become increasingly attractive if it can be adopted for larger image sizes. Imagine, for

instance, a “semantic” paintbrush tool that fills in image regions with a desired texture

drawn from a database of choices, all while avoiding issues such as the mid-frequency

problem (Section 1).

87

C H A P T E R 9

S U M M A RY A N D F I N A L W O R D S

In this thesis we have introduced the multiscale setting for textures, and have presented

several representations and methods for working in this new domain.

A subtle but important consequence of our work is simply that it is possible at all to

work directly with multiscale textures. This is not an immediately obvious observation,

as evidenced by current industry practices. In motion pictures, for instance, it is common

for textures to be generated “per-shot”; the same object may require completely different

texture assets for close-up and wide-angle shots, due to the representational limits of

traditional textures. We reject this pattern and offer an alternative view: the same texture

should be usable at any scale, through a careful development of both representation and

algorithm.

Indeed, our work has been in many ways driven by finding the correct multiscale

representations. Our exemplar graph and accompanying synthesis and editing frame-

works provide an intuitive method for generating multiscale textures. Likewise, our NDF

representation and ensuing discretization choices form the key to accurate normal map fil-

tering. We needed to discard the old representations—monolithic exemplars and surface

normal vectors, respectively—before we could begin to form new methods.

Our algorithms have been developed throughout with an eye towards practicality

and usability, with GPU implementations described and demonstrated for many of our

methods. Furthermore, we have shown that it is possible to import many of the insights

88 summary and final words

from single-scale texture methods into the multiscale setting.

While we have dealt here with the most fundamental issues of synthesis, editing,

and display, we view these ultimately as important first steps towards a more complete

understanding of multiscale textures.

89

B I B L I O G R A P H Y

[Artač et al., 2002] Matej Artač, Matjaž Jogan, and Aleš Leonardis. Incremental PCA for

on-line visual learning and recognition. In Proceedings of the International Conference on

Pattern Recognition, pages 781–784, 2002. 38

[Ashikhmin, 2001] Michael Ashikhmin. Synthesizing natural textures. In Proceedings of

the Symposium on Interactive 3D Graphics, pages 217–226, 2001. 24, 37

[Avidan and Shamir, 2007] Shai Avidan and Ariel Shamir. Seam carving for content-

aware image resizing. ACM Transactions on Graphics, 26(3):10, 2007. 37

[Banerjee et al., 2005] Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, and Suvrit

Sra. Clustering on the unit hypersphere using von Mises-Fisher distributions. Journal

of Machine Learning Research, 6:1345–1382, 2005. 71, 73

[Bar-Joseph et al., 2001] Ziv Bar-Joseph, Ran El-Yaniv, Dani Lischinski, and Michael Wer-

man. Texture mixing and texture movie synthesis using statistical learning. IEEE

Transactions on Visualization and Computer Graphics, 7(2):120–135, 2001. 20

[Barnes et al., 2009] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B. Gold-

man. PatchMatch: A randomized correspondence algorithm for structural image edit-

ing. ACM Transactions on Graphics, 28(3):3, 2009. 37, 39

[Barnes et al., 2010] Connelly Barnes, Eli Shechtman, Dan B. Goldman, and Adam Finkel-

stein. The generalized PatchMatch correspondence algorithm. In Proceedings of the

European Conference on Computer Vision, 2010. 39

90 bibliography

[Basri and Jacobs, 2001] Ronen Basri and David Jacobs. Lambertian reflectance and linear

subspaces. In Proceedings of the International Conference on Computer Vision, pages 383–

390, 2001. 57, 63

[Becker and Max, 1993] Barry Becker and Nelson Max. Smooth transitions between

bump rendering algorithms. In Proceedings of ACM SIGGRAPH, pages 183–190, 1993.

57, 85

[Blinn, 1978] James F. Blinn. Simulation of wrinkled surfaces. In Proceedings of ACM

SIGGRAPH, pages 286–292, 1978. 53

[Burley and Lacewell, 2008] Brent Burley and Dylan Lacewell. Ptex: Per-face texture map-

ping for production rendering. Computer Graphics Forum, 26(4):1155–1164, 2008. 85

[Busto et al., 2010] Pau Panareda Busto, Christian Eisenacher, Sylvain Lefebvre, and Marc

Stamminger. Instant texture synthesis by numbers. Vision, Modeling and Visualization,

pages 81–85, 2010. 37

[Charalampidis, 2006] Dimitrios Charalampidis. Texture synthesis: textons revisited.

IEEE Transactions on Image Processing, 15(3):777–787, 2006. 10

[Cheng et al., 2010] Ming-Ming Cheng, Fang-Lue Zhang, Niloy J. Mitra, Xiaolei Huang,

and Shi-Min Hu. RepFinder: Finding approximately repeated scene elements for image

editing. ACM Transactions on Graphics, 29(4):83:1–83:8, 2010. 37

[Cho et al., 2010] Taeg Sang Cho, Shai Avidan, and William T. Freeman. The patch trans-

form. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1489–1501,

2010. 37

[Claustres et al., 2007] Luc Claustres, Loı̈c Barthe, and Mathias Paulin. Wavelet encoding

of BRDFs for real-time rendering. In Proceedings of Graphics Interface, pages 169–176,

2007. 57

[Cohen et al., 1998] Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance pre-

serving simplification. In Proceedings of ACM SIGGRAPH, pages 115–122, 1998. 57

bibliography 91

[Cross and Jain, 1983] George R. Cross and Anil K. Jain. Markov random field texture

models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(1):25–39, 1983.

6

[Dagher and Nachar, 2006] Issam Dagher and Rabih Nachar. Face recognition using

IPCA-ICA algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28:966–1000, 2006. 38

[De Bonet, 1997] Jeremey S De Bonet. Multiresolution sampling procedure for analysis

and synthesis of texture images. In Proceedings of ACM SIGGRAPH, pages 361–368,

1997. 9, 20

[Dempster et al., 1977] Arthur Dempster, Nan Laird, and Donald Rubin. Maximum-

likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical

Society, Series B, 39:1–38, 1977. 71

[Dischler et al., 2002] Jean-Michel Dischler, Karl Maritaud, Bruno Lévy, and Djamchid

Ghazanfarpour. Texture particles. Computer Graphics Forum, 21(3):401–410, 2002. 10

[Ebert et al., 2003] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and

Steven Worley. Texturing and Modeling: A Procedural Approach. Morgan Kaufmann, San

Francisco, CA, 2003. 15

[Efros and Freeman, 2001] Alexei A Efros and William T Freeman. Image quilting for

texture synthesis and transfer. In Proceedings of ACM SIGGRAPH, pages 341–346, 2001.

8, 20

[Efros and Leung, 1999] Alexei A Efros and Thomas K Leung. Texture synthesis by non-

parametric sampling. In Proceedings of the International Conference on Computer Vision,

pages 1033–1038, 1999. 7, 20

[Eisenacher et al., 2008] Christian Eisenacher, Sylvain Lefebvre, and Marc Stamminger.

Texture synthesis from photographs. Computer Graphics Forum, 27:419–428, 2008. 86

92 bibliography

[Eisenacher et al., 2010] Christian Eisenacher, Chuck Tappan, Brent Burley, Daniel Teece,

and Arthur Shek. Example-based texture synthesis on Disney’s Tangled. In ACM

SIGGRAPH Talks, pages 32:1–32:1, 2010. 37

[Farbman et al., 2009] Zeev Farbman, Gil Hoffer, Yaron Lipman, Daniel Cohen-Or, and

Dani Lischinski. Coordinates for instant image cloning. ACM Transactions on Graphics,

28:67:1–67:9, July 2009. 37

[Fisher, 1953] Ronald Fisher. Dispersion on a sphere. Proceedings of the Royal Society of

London, Series A, 217:295–305, 1953. 71

[Fournier, 1992] Alain Fournier. Normal distribution functions and multiple surfaces. In

Proceedings of the Graphics Interface Workshop on Local Illumination, pages 45–52, 1992. 56,

71

[Freeman et al., 2001] William T. Freeman, Thouis R. Jones, and Egon C. Pasztor. Example-

based super-resolution. Technical Report TR-2001-30, Mitsubishi Electric Research Lab-

oratories, 2001. 30

[Gu et al., 2006] Jinwei Gu, Chien-I Tu, Ravi Ramamoorthi, Peter Belhumeur, Wojciech

Matusik, and Shree Nayar. Time-varying surface appearance: Acquisition, modeling

and rendering. ACM Transactions on Graphics, 25(3):762–771, 2006. 37, 86

[Han and Hoppe, 2010] Charles Han and Hugues Hoppe. Optimizing continuity in mul-

tiscale imagery. ACM Transactions on Graphics, 29(5):171:1–171:9, 2010. 18

[Hara et al., 2005] Kenji Hara, Ko Nishino, and Katsushi Ikeuchi. Multiple light sources

and reflectance property estimation based on a mixture of spherical distributions. In

Proceedings of the International Conference on Computer Vision, pages 1627–1634, 2005. 71

[Heckbert, 1989] Paul S. Heckbert. Fundamentals of texture mapping and image warping.

Technical Report UCB/CSD-89-516, University of California, Berkeley, 1989. 53

[Heeger and Bergen, 1995] David J. Heeger and James R. Bergen. Pyramid-based texture

analysis/synthesis. In Proceedings of ACM SIGGRAPH, pages 229–238, 1995. 8, 20

bibliography 93

[Hertzmann et al., 2001] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Cur-

less, and David H. Salesin. Image analogies. In Proceedings of ACM SIGGRAPH, pages

327–340, 2001. 30, 37

[Hochbaum and Shmoys, 1985] Dorit S. Hochbaum and David B. Shmoys. A best possi-

ble heuristic for the k-center problem. Mathematics of Operations Research, 1985. 73

[Julesz, 1981] Béla Julesz. Textons, the elements of texture perception, and their interac-

tions. Nature, 290:91–97, 1981. 5

[Kajiya, 1985] James T. Kajiya. Anisotropic reflection models. In Proceedings of ACM

SIGGRAPH, pages 15–21, 1985. 57, 85

[Kopf et al., 2007a] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani

Lischinski, and Tien-Tsin Wong. Solid texture synthesis from 2D exemplars. ACM

Transactions on Graphics, 26(3):2, 2007. 9, 86

[Kopf et al., 2007b] Johannes Kopf, Matt Uyttendaele, Oliver Deussen, and Michael F. Co-

hen. Capturing and viewing gigapixel images. ACM Transactions on Graphics, 26, 2007.

86

[Kwatra et al., 2003] Vivek Kwatra, Arno Schodl, Irfan Essa, Greg Turk, and Aaron Bobick.

Graphcut textures: Image and video synthesis using graph cuts. ACM Transactions on

Graphics, 22(3):277–286, 2003. 8, 20

[Kwatra et al., 2005] Vivek Kwatra, Irfan Essa, Aaron F. Bobick, and Nipun Kwatra. Tex-

ture optimization for example-based synthesis. ACM Transactions on Graphics, 24(3):795–

802, 2005. 8

[Lalonde and Fournier, 1997] Paul Lalonde and Alain Fournier. A wavelet representa-

tion of reflectance functions. IEEE Transactions on Visualization and Computer Graphics,

3(4):329–336, 1997. 57

[Lawrence et al., 2006] Jason Lawrence, Aner Ben-Artzi, Chris Decoro, Wojciech Matusik,

Hanspeter Pfister, Ravi Ramamoorthi, and Szymon Rusinkiewicz. Inverse shade trees

94 bibliography

for non-parametric material representation and editing. ACM Transactions on Graphics,

25(3):735–745, 2006. 59, 67

[Lefebvre and Hoppe, 2005] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable

texture synthesis. ACM Transactions on Graphics, 24(3):777–786, 2005. 8, 19, 20, 21, 22,

23, 24, 27, 37, 38, 49

[Lefebvre and Hoppe, 2006] Sylvain Lefebvre and Hugues Hoppe. Appearance-space tex-

ture synthesis. ACM Transactions on Graphics, 25(3):541–548, 2006. 10, 37, 85

[Leung and Malik, 2001] Thomas Leung and Jitendra Malik. Representing and recogniz-

ing the visual appearance of materials using 3d textons. International Journal of Computer

Vision, 43(1):29–44, 2001. 9

[Liang et al., 2001] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Harry Shum. Real-

time texture synthesis by patch-based sampling. Technical Report MSR-TR-2001-40,

Microsoft Research, 2001. 20

[Liu et al., 2004] Yanxi Liu, Wen-Chieh Lin, and James Hays. Near-regular texture analy-

sis and manipulation. ACM Transactions on Graphics, pages 368–376, 2004. 10, 86

[Magda and Kriegman, 2003] Sebastian Magda and David J. Kriegman. Fast texture syn-

thesis on arbitrary meshes. In Proceedings of the Eurographics Workshop on Rendering,

pages 82–89, 2003. 85

[Matusik et al., 2003] Wojciech Matusik, Hanspeter Pfister, Matthew Brand, and Leonard

McMillan. A data-driven reflectance model. ACM Transactions on Graphics, 22(3):759–

769, 2003. 67

[Matusik et al., 2005] Wojciech Matusik, Matthias Zwicker, and Frédo Durand. Texture

design using a simplicial complex of morphable textures. ACM Transactions on Graphics,

24:787–794, 2005. 10, 20, 86

[Mohammed et al., 2009] Umar Mohammed, Simon J.D. Prince, and Jan Kautz. Visio-

lization: generating novel facial images. ACM Transactions on Graphics, pages 57:1–57:8,

2009. 10

bibliography 95

[Ng et al., 2004] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. Triple product wavelet

integrals for all-frequency relighting. ACM Transactions on Graphics, 23(3):475–485, 2004.

62

[Olano and Baker, 2010] Marc Olano and Dan Baker. LEAN mapping. In Proceedings of

the Symposium on Interactive 3D Graphics, pages 181–188, 2010. 56

[Olano and North, 1997] Marc Olano and Michael North. Normal distribution mapping.

Technical Report 97-041, UNC, 1997. 56

[Paget, 2004] Rupert Paget. Strong markov random field model. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 26(3):408–413, 2004. 7

[Perlin, 1985] Ken Perlin. An image synthesizer. In Proceedings of ACM SIGGRAPH, pages

287–296, 1985. 15

[Popat and Picard, 1993] Kris Popat and Rosalind W. Picard. Novel cluster-based prob-

ability model for texture synthesis, classification, and compression. In SPIE Visual

Communications and Image Processing, pages 756–768, 1993. 7, 20

[Portilla and Simoncelli, 2000] Javier Portilla and Eero P Simoncelli. A parametric texture

model based on joint statistics of complex wavelet coefficients. International Journal of

Computer Vision, 40(1):49–70, 2000. 8, 9, 20

[Praun et al., 2000] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures.

In Proceedings of ACM SIGGRAPH, pages 465–470, 2000. 20

[Ramamoorthi and Hanrahan, 2001] Ravi Ramamoorthi and Pat Hanrahan. A signal-

processing framework for inverse rendering. In Proceedings of ACM SIGGRAPH, pages

117–128, 2001. 57, 58, 63, 66, 75

[Risser et al., 2010] Eric Risser, Charles Han, Rozenn Dahyot, and Eitan Grinspun. Syn-

thesizing structured image hybrids. ACM Transactions on Graphics, 29(4):85:1–85:6, 2010.

10, 49

96 bibliography

[Ritter et al., 2006] Lincoln Ritter, Wilmot Li, Maneesh Agrawala, Brian Curless, and

David Salesin. Painting with texture. In Proceedings of the Eurographics Symposium

on Rendering, pages 371–376, 2006. 37

[Rosenberger et al., 2009] Amir Rosenberger, Daniel Cohen-Or, and Dani Lischinski. Lay-

ered shape synthesis: automatic generation of control maps for non-stationary textures.

ACM Transactions on Graphics, 28(5):107, 2009. 4

[Schilling, 1997] Andreas Schilling. Towards real-time photorealistic rendering: Chal-

lenges and solutions. In Proceedings of the SIGGRAPH/Eurographics Workshop on Graphics

Hardware, pages 7–15, 1997. 56

[Schödl et al., 2000] Arno Schödl, Richard Szeliski, David Salesin, and Irfan Essa. Video

textures. In Proceedings of ACM SIGGRAPH, pages 489–498, 2000. 86

[Sloan et al., 2002] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radi-

ance transfer for real-time rendering in dynamic, low-frequency lighting environments.

ACM Transactions on Graphics, 21(3):527–536, 2002. 57

[Sloan et al., 2005] Peter-Pike Sloan, Ben Luna, and John Snyder. Local, deformable pre-

computed radiance transfer. ACM Transactions on Graphics, 24(3):1216–1224, 2005. 57,

70

[Tan et al., 2005] Ping Tan, Stephen Lin, Long Quan, Baining Guo, and Harry Shum. Mul-

tiresolution reflectance filtering. In Proceedings of the Eurographics Symposium on Render-

ing, pages 111–116, 2005. 56, 71, 74

[Toksvig, 2005] Michael Toksvig. Mipmapping normal maps. Journal of Graphics Tools,

10(3):65–71, 2005. 55, 56

[Tong et al., 2002] Xin Tong, Jingdan Zhang, Ligang Liu, Xi Wang, Baining Guo, and

Heung-Yeung Shum. Synthesis of bidirectional texture functions on arbitrary surfaces.

ACM Transactions on Graphics, 21(3):665–672, 2002. 24, 39

[Tonietto and Walter, 2002] Leandro Tonietto and Marcelo Walter. Towards local control

for image-based texture synthesis. In Proceedings of SIBGRAPI, page 252, 2002. 20

bibliography 97

[Tsai and Shih, 2006] Yu-Ting Tsai and Zen-Chung Shih. All-frequency precomputed radi-

ance transfer using spherical radial basis functions and clustered tensor approximation.

ACM Transactions on Graphics, 25(3):967–976, 2006. 57, 69, 71

[Tsin et al., 2001] Yanghai Tsin, Yanxi Liu, and Visvanathan Ramesh. Texture replacement

in real images. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, volume 2, pages 539–544, 2001. 86

[Turk, 2001] Greg Turk. Texture synthesis on surfaces. In Proceedings of ACM SIGGRAPH,

pages 347–354, 2001. 85

[Wei and Levoy, 2000] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-

structured vector quantization. In Proceedings of ACM SIGGRAPH, pages 479–488, 2000.

7, 20

[Wei and Levoy, 2001] Li-Yi Wei and Marc Levoy. Texture synthesis over arbitrary mani-

fold surfaces. In Proceedings of ACM SIGGRAPH, pages 355–360, 2001. 85

[Wei and Levoy, 2002] Li-Yi Wei and Marc Levoy. Order-independent texture synthesis.

Technical Report TR-2002-01, Stanford University Computer Science Department, 2002.

20

[Wei et al., 2008] Li-Yi Wei, Jianwei Han, Kun Zhou, Hujun Bao, Baining Guo, and Heung-

Yeung Shum. Inverse texture synthesis. ACM Transactions on Graphics, 27(3):52, 2008. 4,

18, 37

[Wei, 2002] Li-Yi Wei. Texture synthesis by fixed neighborhood searching. PhD thesis, Stanford

University, Stanford, California, 2002. 20, 40

[Williams, 1983] Lance Williams. Pyramidal parametrics. In Proceedings of ACM SIG-

GRAPH, pages 1–11, 1983. 53

[Wu and Yu, 2004] Qing Wu and Yizhou Yu. Feature matching and deformation for tex-

ture synthesis. ACM Transactions on Graphics, 23:364–367, 2004. 8

98 bibliography

[Ying et al., 2001] Lexing Ying, Aaron Hertzmann, Henning Biermann, and Denis Zorin.

Texture and shape synthesis on surfaces. In Proceedings of the Eurographics Workshop on

Rendering, pages 301–312, 2001. 85

[Zalesny et al., 2005] Alexey Zalesny, Vittorio Ferrari, Geert Caenen, and Luc J. Van Gool.

Composite texture synthesis. International Journal of Computer Vision, 62(1-2):161–176,

2005. 20

[Zelinka and Garland, 2002] Steve Zelinka and Michael Garland. Towards real-time tex-

ture synthesis with the jump map. In Proceedings of the Eurographics Workshop on Ren-

dering, pages 99–104, 2002. 24, 45

[Zhang et al., 2003] Jingdan Zhang, Kun Zhou, Luiz Velho, Baining Guo, and Heung-

Yeung Shum. Synthesis of progressively-variant textures on arbitrary surfaces. ACM

Transactions on Graphics, 22:295–302, 2003. 4, 10, 20, 85

[Zhu and Mumford, 1998] Song-Chun Zhu and David Mumford. Filters, random fields

and maximum entropy (FRAME)–towards a unified theory for texture modeling. Inter-

national Journal of Computer Vision, 27(2):107–126, 1998. 7, 8

[Zhu et al., 2005] Song-Chun Zhu, Cheng en Guo, Yizhou Wang, and Zijian Xu. What are

textons? International Journal of Computer Vision, 62(1-2):121–143, 2005. 9

	Table of Contents
	List of Figures
	List of Algorithms
	Acknowledgments
	Notation
	i Background
	Introduction
	Example-driven Texture Models
	Markov Random Field
	Statistical Models
	Other Models

	Approach and Overview

	ii Authoring Multiscale Textures
	The Exemplar Graph
	Definition
	Inconsistency

	Synthesis
	Related Work
	Multiscale Texture Synthesis
	Data structures
	Algorithm

	Inconsistency Correction
	GPU optimization
	Results

	Editing
	Related Work
	System overview
	Incremental PCA
	Derivation
	Computation
	Sparse neighborhood sampling
	PCA and neighborhood projection

	Incremental PatchMatch
	Notation and Background
	Restricted passes
	Biased search
	Vertical propagation

	Implementation and Results

	iii Filtering of Multiscale Textures
	Normal Map Filtering
	Related Work
	Preliminaries
	BRDF representation and parameterization
	Normal map representation and filtering

	Normal Mapping as Convolution
	Normal distribution function
	Frequency-domain analysis in 2D
	Frequency-domain analysis in 3D

	Spherical Harmonics
	Algorithm
	Results

	Spherically Symmetric Distributions
	Basic theoretical framework for using SRBFs
	Discussion: unifying framework and multiscale
	Choice of radial basis function

	Von Mises-Fisher Mixtures
	Fitting NDFs with mixtures of vMFs
	Spherical harmonic coefficients for rendering
	Complex lighting
	Extensions
	Results

	iv Conclusions
	Future Directions
	Summary and Final Words

	Bibliography

