
RATER DRIFT IN CONSTRUCTED RESPONSE SCORING VIA LATENT CLASS 

SIGNAL DETECTION THEORY AND ITEM RESPONSE THEORY 

Yoon Soo Park 

Submitted in partial fulfillment of the  

requirements for the degree of  

Doctor of Philosophy 

under the Executive Committee  

of the Graduate School of Arts and Sciences 

COLUMBIA UNIVERSITY 

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


© 2011 

Yoon Soo Park 

All Rights Reserved 



ABSTRACT 

RATER DRIFT IN CONSTRUCTED RESPONSE SCORING VIA LATENT CLASS 

SIGNAL DETECTION THEORY AND ITEM RESPONSE THEORY 

Yoon Soo Park 

The use of constructed response (CR) items or performance tasks to assess test 

takers’ ability has grown tremendously over the past decade. Examples of CR items in 

psychological and educational measurement range from essays, works of art, and 

admissions interviews. However, unlike multiple-choice (MC) items that have 

predetermined options, CR items require test takers to construct their own answer. As 

such, they require the judgment of multiple raters that are subject to differences in 

perception and prior knowledge of the material being evaluated. As with any scoring 

procedure, the scores assigned by raters must be comparable over time and over different 

test administrations and forms; in other words, scores must be reliable and valid for all 

test takers, regardless of when an individual takes the test.

This study examines how longitudinal patterns or changes in rater behavior affect 

model-based classification accuracy. Rater drift refers to changes in rater behavior across 

different test administrations. Prior research has found evidence of drift. Rater behavior 

in CR scoring is examined using two measurement models – latent class signal detection 

theory (SDT) and item response theory (IRT) models. Rater effects (e.g., leniency and 

strictness) are partly examined with simulations, where the ability of different models to 

capture changes in rater behavior is studied. Drift is also examined in two real-world 



large scale tests: teacher certification test and high school writing test. These tests use the 

same set of raters for long periods of time, where each rater’s scoring is examined on a 

monthly basis.

Results from the empirical analysis showed that rater models were effective to 

detect changes in rater behavior over testing administrations in real-world data. However, 

there were differences in rater discrimination between the latent class SDT and IRT 

models. Simulations were used to examine the effect of rater drift on classification 

accuracy and on differences between the latent class SDT and IRT models. Changes in 

rater severity had only a minimal effect on classification. Rater discrimination had a 

greater effect on classification accuracy. This study also found that IRT models detected 

changes in rater severity and in rater discrimination even when data were generated from 

the latent class SDT model. However, when data were non-normal, IRT models 

underestimated rater discrimination, which may lead to incorrect inferences on the 

precision of raters. These findings provide new and important insights into CR scoring 

and issues that emerge in practice, including methods to improve rater training.  
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Chapter I 

INTRODUCTION

The use of constructed response (CR) items or performance tasks to assess test 

takers’ ability has grown tremendously over the past decade. Examples of CR items in 

educational measurement range from essays, works of art, and musical performances. In 

particular, there is a growing prevalence of essays used in high-stakes decisions such as 

admissions tests; examinations such as the Medical College Admission Test (MCAT) and 

the Graduate Record Examination (GRE) demonstrate the popularity of CR items in the 

educational field. In addition, the use of CR items has also extended to certification 

programs. Examples include essays that determine eligibility for high school diploma, 

teaching certification, and medical practice (National Education Goals Panel, 1996; 

National Board for Professional Teaching Standards, 1993; Margolis & Ross, 1995).  

The increased use of CR items can be attributed to its role in validity. According 

to Livingston (2009), there are important skills and knowledge, such as complex 

competencies, direct performances, or explication of reasoning that cannot be fully 

measured when only multiple choice (MC) items are used. CR items also measure the 

abilities of low- and high-performing students more accurately (Ercikan et al., 1998) and 

avoid testwiseness that can occur when only MC items are administered (Pollock, Rock, 

& Jenkins, 1992; Rodriguez, 2002). Therefore, when used selectively and scored with 

rigor, CR items provide valid information and insight into students’ achievements.  

However, unlike multiple-choice (MC) items that have predetermined options, CR 

items require test takers to construct their own answer. Although clear guidelines exist to 
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score MC items such as fixed timing, machine-scored answer sheets, equating different 

forms, and reporting scores on a continuous scale, items that require test takers to write 

essays, create pieces of art, dance, or record spoken language do not necessarily have a 

clear and objective answer (McClellan, 2010). As such, they require the judgment of 

multiple raters that are subject to differences in perception and prior knowledge of the 

material being evaluated. As with any scoring procedure, scores assigned by raters must 

be comparable over time and over different test administrations and forms; in other words, 

scores must be reliable and valid for all test takers, regardless of when an individual takes 

the test.  

Rater drift refers to changes in rater behavior across different test administrations. 

Prior research has found evidence of rater drift (e.g., Wilson & Case, 2000; Congdon & 

McQueen, 2000). Although raters can drift within a testing occasion, this study considers 

rater drift between test administrations. More specifically, this study investigates patterns 

of rater drift from two or more raters scoring the same CR and examines how changes in 

their rating behavior can affect scores in the context of various rater models. Rater drift 

will be examined using simulations and analysis of real-world data.  

 

1.1 Statement of the Problem 

Inherent within the framework of CR scoring is the notion that objective scores 

are independent of the rater (Wright & Douglas, 1986), meaning that regardless of the 

person grading the performance, the same score will be given. However, contrary to this 

assumption, it has been noted in the literature that there are individual differences in 

perception and judgment (Thurstone, 1927), which embodies a subjective nature into 



 3

scoring CR items. This can lead to dire consequences for measuring an examinee’s ability 

when differences in raters are ignored. For example, if the reliability of a rater is low, 

then there is a high likelihood that the same decision made by another rater will result in a 

different score. The volatility of decisions that vary across raters can become a problem, 

even a liability with legal consequences (Johnson, Penny, & Gordon, 2000). As such, 

78.4% of state departments of educations that use CR items in their testing program 

employ two or more raters to help resolve reliability issues that may result from using the 

score from only one rater (Johnson, Penny, & Johnson, 1998). This section considers 

problems associated with CR scoring within the context of rater drift. 

Rater Drift 

Rater drift occurs when raters unintentionally redefine their scoring criteria or 

standards over time (Wheeler, Hartel, & Scriven, 1992, p. 12). A problem associated with 

rater drift is that it can lead to problems with scoring accuracy. For example, a rater can 

be strict or lenient depending on the testing occasion; that is, given two testing 

administrations, a rater may score stricter on the second test, giving an advantage to 

examinees that tested earlier. These changes in raters’ scoring behavior can be attributed 

to a wide variety of errors or rater effects (Myford and Wolfe, 2003). Rudner (1992) 

classifies rater effects as (1) the halo effect, impressions that a rater forms about an essay, 

(2) stereotyping, impressions that a rater forms about a group of essays, (3) perceptional 

differences, viewpoints and past experiences of a rater that can affect interpretation of 

behaviors or context, (4) leniency or stringency error, systematically scoring higher or 

lower from lacking sufficient knowledge to make an objective rating, and (5) scale 

shrinking, preference in raters to avoid the end of a scale.  
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The measurement literature focuses mostly on rater drift due to leniency or 

stringency error – rater severity (e.g., Lumley & McNamara, 1995; Congdon & 

McQueen, 2000). For instance, in Lunz and Stahl (1990), rater severity was studied over 

three grading periods using essays and oral examinations. They found that there was 

significant instability in rater severity among two of the three periods. In a different study 

by Myford (1991), ratings of dramatic performances were examined over a month. It was 

again found that there were significant changes in the severity of raters regardless of their 

expertise. Rater drift has also been studied using a large-scale assessment that was graded 

by trained raters over seven rating days; the results from this study showed differences in 

rater severity for each rating day (Congdon & McQueen, 2000). In these studies, rater 

drift was examined using parameters from the FACETS model (Linacre, 1989) that 

indicated a level of rater stringency. Drift was measured as a change in the severity 

parameter over different occasions; it was also measured using fit statistics and residuals 

derived from the rater model that examined a level of agreement between the raters. 

As these studies show, raters have a tendency to drift in their rating, which can be 

a problem for scores generated from models used in CR scoring. As such, the effect of 

rater drift on the accuracy of scores derived from different rater models needs further 

examination. The following section describes models used in CR scoring.  

Models Used for CR Scoring 

  Various models have been developed to score CR items. However, it is unclear 

how rater drift affects model-based classification of scores as defined in the scoring 

rubric. This section considers two types of rater models (1) item response theory (IRT) 

models and (2) latent class signal detection theory (SDT) model.  
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Item response theory (IRT) models. In IRT, an examinee’s response patterns are 

used as indicators to measure a latent ability ( ). Examples of IRT models for scoring CR 

items are the graded response (GR) model (Samejima, 1969), partial credit (PC) model 

(Masters, 1982), and generalized partial credit (GPC) model (Muraki, 1992). All three 

models have a threshold or step parameter (bk), which can be used to estimate rater 

severity and to infer information about rater effects. Both the GR and the GPC models 

also have a discrimination parameter (a) that measures the ability of raters to discriminate 

among essays of different quality. The PC model is a simplified version of the GPC 

model in that the former does not incorporate a discrimination parameter. Furthermore, 

the GR model and the GPC model differ in how they parameterize differences in scoring 

categories. Another IRT model commonly used to score CR items is the FACETS model 

(Linacre, 1989) that measures both rater severity as well as item difficulty; both rater and 

item effects comprise the “facets” of the model.  However, for a single CR item, the 

FACETS model is equivalent to the PC model.  

Latent class signal detection theory (SDT) model. In the latent class signal 

detection theory (SDT) model, CR scoring is viewed as a psychological process. The 

SDT approach to CR scoring uses a latent class extension (DeCarlo, 2002, 2005), where 

raters are viewed as attempting to discriminate between latent classes of essays. Here, 

latent classes are defined by the scoring rubric, because the rubric provides a description 

of latent categories that raters attempt to discriminate. For example, if there are 4 scores 

defined in the scoring rubric, it is assumed that there are 4 latent classes that raters 

attempt to discriminate. The latent class SDT model provides a measure of a rater’s 

precision in terms of how well they discriminate between the latent classes (d). It also 
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estimates their use of response criteria (ck), which reflects rater effects such as how 

lenient or strict they score as well as shrinkage and other effects.  

Using patterns of rater scores and estimated rater parameters, the latent class 

SDT model classifies essays into latent classes defined by the scoring rubric. A unique 

aspect of the latent class SDT model is that it allows an examination of the quality of 

classification. This is measured by classification accuracy (see DeCarlo, 2002, 2005), 

which is used in this study to examine the effect of rater drift on model-based 

classification from the latent class SDT model.  

The study of rater drift also requires the use of incomplete designs which are used 

in practice. Large-scale assessments such as Praxis and the Test of English as a Foreign 

Language (TOEFL) use incomplete designs with 2 raters per essay (DeCarlo, 2008). In 

both cases, when there is a discrepancy of two or more points, a third rater adjudicates 

differences in the scores (Xi & Mollaun, 2009). The use of only two raters per essay 

raises issues about rater designs. Both simulations and empirical data analysis can be 

used to evaluate whether rater drift can be adequately estimated under incomplete designs 

and how it affects classification accuracy.  

 

1.2 Purpose of the Study 

The purpose of this study can be divided into two main goals. This study 

investigates the effect of rater drift on model-based classification of constructed 

responses into latent categories defined by the scoring rubric; that is, this study examines 

the effect of different patterns of rater drift on classification accuracy. Moreover, the 

ability of different rater models to detect drift is examined, as parameters used to describe 
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rater severity and discrimination may differ between models. To address these issues, this 

study is divided into two parts – empirical and simulation studies. 

Empirical study. In the empirical study, two real-world data sets are used: a 

teacher certification test and a high school writng test. The analysis consists of the 

following: 

(1) identify patterns of rater drift and 

(2) examine the effects of rater drift on model-based classification.  

Patterns of rater drift are summarized using IRT models (GR and GPC models) and the 

latent class SDT model.  Rater drift is examined using plots of parameter estimates 

reflecting rater severity and rater precision from rater models over several testing 

occasions. Parameters that represent rater severity (threshold or step parameter in IRT 

models and the criteria in the latent class SDT model) are investigated for drift. This 

study also examines drift in rater discrimination. Most studies that examined rater drift 

(e.g., Congdon & McQueen, 2000) have concentrated on rater effects such as rater 

severity over time; however, not many have examined changes in rater discrimination 

over time.  

The effect of rater drift on model-based classification is examined using 

classification accuracy statistics derived from the latent class SDT model, which 

measures the quality of classification. Measures of classification accuracy can be created 

for each scoring occasion to examine changes in latent scores due to drift. These 

measures provide information about the effect of rater drift on the quality of model-based 

classifications.  
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Simulation study. Simulation studies are conducted to examine the effect of rater 

drift on classification accuracy. Simulations allow the researcher to test different 

conditions by manipulating rater severity and discrimination over time to assess how rater 

drift can affect classification. The simulation study examines the relationship between 

rater drift and model-based classification using the latent class SDT model. Rater drift is 

examined by changing rater behavior across two time points. This study examines the 

following: 

(1) the effect on classification accuracy when some raters become stricter or 

lenient, 

(2) the effect on classification accuracy when raters become more discriminating, 

(3) the ability of IRT and the latent class SDT models to detect rater drift, and 

(4) the impact of changing latent class sizes on rater parameter estimates.  

First, simulations are used to examine the effect of rater drift on classification 

accuracy using data generated from the latent class SDT model. In this model, one type of 

rater severity occurs when raters’ criteria locations shift. If the criteria all shift up, then 

raters are stricter, because they tend to give lower scores. If they shift down, then raters 

are more lenient. The conditions above allow an examination of rater severity on 

classification accuracy when rater effects are present across two testing administrations. 

The simulation also investigates changes in classification accuracy when rater 

discrimination increases between the testing administrations.   

Simulations are also used to examine how well IRT models detect drift when data 

are generated using the latent class SDT model. The effect on IRT parameter estimates 

are studied when raters are more lenient and strict. Parameters are also examined when 
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the distribution of scores are non-normal, meaning a concentration of scores in the mid-

scoring categories with very few scores in the extreme categories. Shifting the latent class 

sizes and assessing this effect on classification is also examined. For example, this can 

occur when there is a greater use of higher scoring categories in the second scoring 

occasion than in the first scoring occasion.  

 Summary. The empirical and simulation studies comprise an investigation of 

how rater drift affects classification accuracy. The empirical analysis investigates patterns 

of drift in real-world data, and whether rater severity and discrimination affect 

classification. This is accompanied by examining classification accuracy over the testing 

administrations. The simulation study investigates the relationship between rater drift and 

model-based classification. The combination of both studies will inform researchers on 

the effects of rater drift and its implication for rater models. The results from this analysis 

will also indicate new and important understanding of CR scoring and issues that emerge 

in practice. 
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Chapter II 

LITERATURE REVIEW 

 This chapter reviews studies in educational measurement used to assess rater drift. 

Efforts to reduce rater effects through the use of feedback and training are examined in 

the context of rater drift. A description of incomplete designs, which are commonly used 

in practice to allocate CR to raters, is also included. The remaining sections of the chapter 

describe models used for rater effects: IRT models and the latent class SDT model.  

 

2.1 Rater Drift 

 Rater drift refers to changes in rater behavior over different testing 

administrations. The literature on rater drift documents its occurrence as a change in rater 

scoring over time. More specifically, studies have focused on drift due to changes in rater 

severity, which refers to the general leniency or harshness of a rater (Linacre, 1989). On 

the other hand, the term rater characteristic is a more holistic term that encompasses both 

rater severity as well as other rater effects (McNamara & Adams, 1991). The consensus 

from most studies in the measurement literature is that rater drift persists, and it is 

difficult to eliminate tendencies in raters to drift. Although many studies have identified 

rater drift as a problem, not many have examined how it affects model-based 

classification. 

Knowledge that there is variability in test scores due to rater factors dates as early 

as Edgeworth (1890). In general, there are two main problems with grading CR items: (1) 

different raters assign different scores to a particular essay and (2) the same rater may 
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assign different scores to the same CR on different occasions (Coffman, 1971). For 

example, in a classic study by Diederich, French, and Carlton (1961), where 300 essays 

were judged by 53 raters, it was found that 94% of the essays received at least 7 different 

scores from the raters.  

This section reviews articles from the literature that have examined rater drift. 

Then, efforts to reduce rater effects through training and feedback, focused on rater 

severity are presented. These studies are important, because they attempt to alleviate the 

problems created by rater drift.  

Studies on Rater Drift 

Various studies have investigated the effects of rater severity on model-based 

scores. In Lunz, Wright, and Linacre (1990), a section of the certification examination 

was used to demonstrate the prevalence of rater severity using the FACETS model 

(Linacre, 1989). Two hundred and seventeen examinees’ clinical assessments of fifteen 

histology slides were examined by eighteen raters that scored each slide on a 1 to 5 scale. 

There were 15 slides to examine, with a total possible score of 75 points. However, due to 

varying rater severity, some judges gave a score lower than others reflecting strictness; 

others scored higher, showing leniency. The study reported two fit statistics to indicate 

intra-judge consistency across items and examinee performances. The infit statistic is an 

information weighted mean-square residual difference between the observed and 

expected that measures the change from the expected value, and the outfit statistic is an 

unweighted mean-square residual, which is useful for identifying outlying deviations 

(Wright & Masters, 1982). The authors used these statistics to screen judges that were 

deviant from the rest.  
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The study found that the slides were graded consistently by the raters, as indicated 

by the infit statistic, but there were also severe or lenient graders, represented by the outfit 

statistic. That is, raters maintained their level of severity across slides and examinations, 

but the level of severity differed significantly between raters. The authors noted that 

using unadjusted rater scores without accounting for rater severity can create biased 

inferences about examinee performance. Moreover, results from the study supported the 

findings from the literature that differences in rater characteristics can bias examinee 

performance.  

In Congdon and McQueen (2000), the FACETS model was used again to examine 

the stability of rater severity over time (i.e., rater drift) using the ratings of 16 judges on 

8,285 elementary school students over seven rating days. Results showed that there were 

significant differences in rater severity between raters and also for the same rater during 

this period by separately fitting the FACETS model for each day. They also examined 

measures of agreement using the infit and outfit statistics, which demonstrated drift 

among raters. In other words, the findings suggested calibrating rater severity for each 

occasion, due to the variability of rater severity between raters and for the same rater at 

different time points. The authors also concluded that a possible extension of their study 

using the partial credit model (Masters, 1982) would be meaningful under variant 

multifaceted considerations. 

In a study spanning three months, scores of “stable” raters were studied using a 

clinical skills assessment task (McKinley & Boulet, 2004). An analysis of covariance 

(ANCOVA) design was used to study rater severity over time, where the effect of an 

outcome was controlled using explanatory variables. Two measures of examinee ability 
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were used as adjustments over different time periods with rater scores as the outcome 

variable. This method was used to ensure that changes in rater behavior were not a 

function of examinee ability. The authors concluded that raters who were relatively stable 

across days or weeks may also drift in more extended periods; the authors also found that 

even from a sample of stable raters, there were some that drifted significantly. They 

concluded that drift among certain raters should be regarded as an important effect, 

because they can provide an unfair advantage to examinees.  

Rater drift has also been examined under the generalizability theory (G-theory) 

framework. In Harik et al. (2009), the effectiveness of using estimated rater parameters to 

adjust for differences in rater severity was studied. They used a clinical skills 

examination data to assess whether the G-theory approach could eliminate rater-related 

error by statistical adjustment. The authors adjusted for sources of rater and item 

variability, which was found to improve the precision of the scores. Furthermore, they 

noted that adjusting for rater severity produced appropriate estimates within similar 

periods or between 1 to 2 months. However, the use of predetermined rater parameters to 

adjust for rater severity in as little as 5 to 6 months was ineffective and even 

counterproductive.   

Using a simulation, Wolfe, Moulder, and Myford (2001) examined the recovery 

of parameters exhibiting rater drift. They generated data using the FACETS model (e.g., 

by setting examinee ability to be normally distributed with fixed mean and variance) that 

an examinee receives a particular score from a rater; they also specified population values 

of parameters to exhibit drift. For example, by shifting rater severity parameter over 

testing occasions, they generated a condition where raters were stricter. The infit and 
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outfit statistics were used to assess rater drift; these statistics were derived from the 

FACETS model as well as the recovery of parameters. By investigating rater severity 

over time, the authors recovered parameters for the same rater as well as variability 

across raters. Although this was one of few studies that conducted a simulation to 

examine the effects of drift on a rater model, the authors received criticism that their 

study was not generalizable or realistic (e.g., Harik et al., 2009). Their simulations did not 

encompass a condition where multiple patterns of drift occurred over time; rather, they 

only considered one condition per simulation.   

In sum, the literature shows that rater drift is inevitable. These studies indicate the 

need for model-based approaches to scoring CR items that incorporates rater 

characteristics for measuring examinee ability. In light of these developments, other 

studies have investigated the effect of rater training and feedback as means to reduce rater 

drift. The following section describes studies that have examined training and feedback 

using measures of agreement in the context of rater drift.  

Studies on Rater Drift with Efforts to Reduce Rater Effects 

To improve consistency and to minimize rating errors, raters must familiarize 

themselves with the measures they are using, understand the sequence of operation, and 

explain how they interpret the data. Several empirical studies have shown the 

effectiveness of these strategies. For example, in Shohamy, Gordon, and Kraemer (1992), 

it was found that the overall reliability among raters were higher for trained raters than 

untrained raters, whereas prior experience did not affect their reliability. To a certain 

degree, rater training may help to alleviate rater differences. However, studies have also 

shown that completely overcoming them is difficult. 
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In the context of reducing rater effects over time, Lumley and McNamara (1995) 

used the FACETS model to examine rater drift with training. They used the Occupational 

English Test (McNamara, 1990) to examine six criteria on communicative effectiveness 

with a maximum score of 6 points for each criterion. Data were collected on three 

occasions, of which the first two comprised training sessions. They concluded that even 

with multiple training sessions across different occasions, rater severity could not be 

eliminated. Furthermore, they asserted that there were significant rater variations in 

severity. The authors concluded that rater severity must be calibrated at each 

administration to estimate examinee performance, and they called into question the 

practice of using unadjusted rater scores.  

In Wilson and Case (2000), the impact of feedback using estimates of rater 

severity on half-day intervals from two scoring occasions was examined. They found that 

it was feasible to provide interpretable feedback to raters on given intervals. However, 

even with feedback, there were significant rater drift between periods. They also noticed 

that the effectiveness of the feedback varied from rater to rater. Hoskens and Wilson 

(2001) extended their study by providing real-time feedback to rater leaders. Feedback 

was provided using estimates of rater severity in five successive periods. A modified 

linear logistic test model (LLTM) was used to generate rater severity estimates. Although 

feedback seemed to draw raters closer to the mean, a controlled test showed that this was 

not successful. Given an attempt to reduce drift, the authors found that changes in rater 

behavior was inevitable in their study. Although these empirical findings demonstrate a 

reduction in measurement error due to training, not all variability in rater severity was 



 16

eliminated. These results reiterate that rater drift due to rater severity are difficult to 

overcome even with training. 

Testing contextual effects have also been studied to reduce rater effects (Hughes 

& Keeling, 1984). Contextual effects refer to raters giving higher scores when an essay is 

preceded by a poor-quality essay. Using data from high school students scored by 156 

first-year college students with model essays, the authors conducted a regression analysis 

controlling for context quality and scoring instructions. They found that contextual 

effects were neither reduced nor eliminated; the authors concluded that it was 

increasingly challenging to find practical methods to overcome context effects.  

In a study conducted by Chase (1986), the impact of multiple factors affecting 

rater scores was examined. These factors included gender, race, reader expectation, and 

different qualities of penmanship. They conducted a multiple regression analysis 

controlling for these factors. They also allowed interactions between variables to examine 

whether there was a joint effect among the factors that explained the variability in scores. 

The authors found that all four factors had a significant effect on rater scores.  

As demonstrated in these studies, rater effects including severity are difficult to 

eliminate even with repeated efforts to retrain raters and provide feedback; rater effects 

have also been found to exist for multiple factors affecting rater scores such as contextual 

effects and characteristics of the rater and the examinee. These studies reinforce the 

conclusion from the rater drift literature that the use of unadjusted rater scores can bias 

assessments of examinees. Therefore, studies have suggested the use of scores derived 

from rater models which accounts for rater effects such as rater severity. However, 

model-based classifications under rater drift have not been extensively studied in the 
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literature. This study contributes to this understanding by examining the effect of rater 

drift on classification accuracy.  

The following sections introduce incomplete designs used in most large-scale 

assessments and present rater models that have incorporated rater severity to improve 

estimates of examinee’s ability. 

 

2.2 Incomplete Designs 

Although fully crossed designs (i.e., all raters score all essays) are ideal, most 

large-scale assessments score CR items using the ratings of two raters. Designs that do 

not allocate each rater to every essay are known as incomplete designs. Variations of 

these rating designs are documented in Hombo, Donoghue, and Thayer (2001). Examples 

of incomplete designs for CR scoring include the balanced incomplete block design 

(BIB) and the unbalanced design.  

Balanced incomplete block (BIB) design. The BIB is an efficient design for 

recovering parameter estimates under the latent class SDT model. The design is defined 

by a systematic method of allocating essays to each rater and the connectivity among 

raters, which are balanced under certain constraints (DeCarlo, 2008, 2010). The BIB is 

divided into n essays (i.e., blocks) of k raters that score each essay, where different raters 

are assigned to the same essay. There are g raters (i.e., treatments) each of which is 

grouped in r essays scored by each rater (i.e, blocks). Finally, any two treatments occur 

together in exactly  essays scored by each pair of rater (i.e., blocks). In other words, the 

following properties must be met (DeCarlo, 2008):  
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Following the specification above, in a BIB design for 10 raters, each rater scores 

216 essays; each of the 45 possible rater pairs scores 108 distinct essays. The uniform 

pattern exhibited by the BIB design allows rater characteristics to be estimated well 

(DeCarlo, 2008).  

Unbalanced design. Another incomplete design used in large-scale assessments 

is the unbalanced design. In an unbalanced design, the restrictions specified above are 

ignored; that is, the number of essays scored by a rater can differ between raters as well 

as the number of essays scored by rater pairs. Moreover, all possible rater pairs do not 

have to be used. Table 1 presents an example of an unbalanced design for 10 rater pairs. 

Table 1. Unbalanced Incomplete Design, 10 rater pairs 

Rater 
10 Pairs 

1 2 3 4 5 6 7 8 9 10 
Total

 20 20   20

  40 40   40

   80 80   80

   60 60   60

   140 140   140

   90 90   90

   220 220   220

   150 150  150

   250 250 250

 30   30 30

Total/Rater 50 60 120 140 200 230 310 370 400 280 1080

 

Each column represents the total number of essays scored by a rater for a total of 10 

raters scoring 1080 essays; each row shows the number of essays scored by a pair of 

raters. As presented above, restrictions from the BIB design on raters are no longer 
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present; that is, there are an unbalanced number of essays that each rater pair scores as 

well as an unequal number of essays scored by each rater. DeCarlo (2010) examined 

different unbalanced designs using 10, 20, and 45 rater pairs using the latent class SDT 

model. Even under an unbalanced design, the recovery of parameters was good; however, 

the bias in parameter estimates and in standard error estimates were larger for raters that 

scored fewer essays. 

 The ensuing sections describe models used for CR scoring. The latent class SDT 

model is presented first, and IRT models follow. Differences between the model 

parameters used to describe rater characteristics as well as scores derived from the rater 

models are discussed. 

2.3 Latent Class Signal Detection Theory (SDT) Model 

In the latent class SDT model (DeCarlo, 2002), rating is conceptualized as a 

psychological process, where a rater’s role in scoring a CR item is viewed as attempting 

to discriminate between latent classes of essays; the latent classes are defined as scores 

from the scoring rubric. That is, for a CR item with four scoring categories, a rater’s task 

is to classify an essay into one of the four latent scores. In fact, the role of a rater is to 

discriminate between scores defined in the rubric, which is analogous to discriminating 

between latent classes.  

The latent class SDT model has two parameters that explain the response of a 

rater: (1) discrimination (d) and (2) response criteria (ck). Rater discrimination (d) refers 

to the ability of a rater to discriminate between latent classes of essays, and the response 

criteria (ck) represents the internal criteria to which the rater uses to compare and judge 
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the essay score. Figure 1 presents a representation of the SDT, where four probability 

distributions of perceptions in essay quality are illustrated. There are three response 

criteria locations in the figure. These locations represent a rater’s criteria for judging a 

particular score. For example, if an essay is thought to be between c1 and c2, then the rater 

gives the essay a “2.” However, if a rater perceives the quality as over c2, but below c3, 

then the score now becomes “3.” As such, the response criteria represent a decisional 

aspect of the rater. Furthermore, it can be inferred from this diagram that by shifting c3 up, 

the rater becomes stricter, because this decreases the likelihood of getting a “4.” Likewise, 

by shifting c1 down, the rater becomes more lenient, because this increases the chance for 

a rater to assign a higher score. As noted, these shifts in raters’ criteria locations represent 

rater effects, because they allow a rater to be lenient or strict. Furthermore, it can also 

account for the shrinkage effect in that if the criteria location for c1 is shifted to the far 

left, then a rater’s chance of assigning a score of “1” becomes very low.  

0 d 2d 3d

c 1 c 2 c 3

"1" "2" "3" "4"
 

Figure 1. A representation of SDT for scoring categories 1 to 4 

 The discrimination parameter (d) represents the distance between the probability 

distributions and reflects a perceptual aspect of the rater. Rater discrimination represents 

how well a rater discriminates between latent classes of essays. When the distance 
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between distributions is larger, the rater has greater discrimination between the latent 

classes, because this means that the perceptions of each scoring category are more 

distinct. In other words, when d is larger, there is less overlap between the distributions 

and less error in terms of a rater’s attempt to classify an essay. If the distance between 

distributions is small, the ability of a rater to differentiate between two latent classes of 

essays becomes less clear.  

More formally, for N items, J raters, and K discrete scores (such that 1  k K), the 

latent class SDT model is expressed as follows: 

)()|Pr( cjjkcj dcFkY . 

Here, Yj is rater j’s observed response, and F is the logistic cumulative distribution 

function. The c  represents the categorical latent classes, which are the discrete ordered 

scores of examinee ability defined by the scoring rubric. This model can be decomposed 

into ordered 1  k K categories as follows: 

)()|Pr( cjjkcj dcFkY       1k  

)()()|Pr( 1 cjjkcjjkcj dcFdcFkY   Kk2  

)(1)|Pr( 1 cjjkcj dcFkY                   Kk  

Unlike measures of agreement that provide an overall estimate of rater reliability, 

the latent class SDT model estimates separate criteria locations (cjk) and discrimination 

(dj) for each rater. However, to compare criteria locations across raters, they should be 

standardized to the same scale. As such, the relative criteria can be used (DeCarlo, 2005):  

rel jjkjk dKcc )1/( . 
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The relative criteria standardize the criteria estimate by rescaling its estimate using rater 

discrimination and the number of scoring categories (i.e., one minus K categories).  

Classification accuracy. One of the aims of latent class analysis is to classify 

examinees into a latent class using the observed response patterns (Dayton, 1998; Clogg, 

1995). The posterior probability of the latent variable c  can be used to measure the 

quality of this classification. For example, using the probabilities estimated from the 

above equations, the posterior probability of latent classification for three raters (Y1,Y2,Y3) 

can be obtained (DeCarlo, 2002), which can be used as a measure of how well raters 

classify an essay into the latent classes: 
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Two measures for classification accuracy are presented for these purposes. These 

measures are used in this study to reflect the accuracy of classification derived from the 

latent class SDT model under rater drift. First, the expected proportion of cases correctly 

classified (Pc) is calculated as follows (DeCarlo, 2002): 

s

Jcsc NYYYnP /)],...,,|Pr(max[ 21 . 

Here, s  indicates the unique response patterns and sn  corresponds to the frequency of 

each pattern. Furthermore, ),...,,|Pr(max 21 Jc YYY  is the maximum posterior probability 

across the latent classes for a given response pattern, and N is the total number of cases. 

In addition to the proportion correctly classified statistic ( cP ), the lambda statistic ( ) is 

considered, which accounts for classification that can occur by chance. This statistic can 
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be important when there is a latent class with a large size (DeCarlo, 2002). The lambda 

statistic is calculated as follows: 

)Pr(max1

)Pr(max

c

ccP
 . 

Both proportion correctly classified (Pc) and the lambda statistic ( ) are used in this study 

to study classification accuracy.  

 

2.4 Item Response Theory (IRT) models

 Item response theory (IRT) models use response patterns as indicators of latent 

ability. The models presented in this section estimate rater discrimination and rater 

threshold parameters by considering raters as items (Wilson & Case, 2000; Masters & 

Wright, 1997). In general, rater discrimination is a measure of how well raters 

discriminate between different qualities of essays, and the threshold parameter expresses 

information on rater effects such as rater severity. This section provides an overview of 

four IRT models used for CR scoring: graded response (GR) model (Samejima, 1969), 

partial credit (PC) model (Masters, 1992), generalized partial credit (GPC) model 

(Muraki, 1992), and the FACETS model (Linacre, 1989).  

Graded Response Model 

 The graded response (GR) model (Samejima, 1969) considers scores as ordered 

polytomous categories. In other words, for a given latent ability (!), the GR model 

estimates the conditional probability that an examinee successfully masters a task up to a 

particular score. For J raters and K scoring categories, we have the following equation 

(McDonald, 1999): 
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)()]([)|Pr( '

jkjjkjjj baFbaFkY . 

The F represents a logistic cumulative density function (cdf), which characterizes the 

ordered nature of the model;   is a continuous latent ability variable. There are two 

parameters in the model. The discrimination parameter (aj) measures the ability of raters 

to discriminate between essays of different quality, and the threshold parameter (bjk), 

which is a product of the '

jkb  and aj, measures rater effects. The latent class SDT model is 

related to the GR model in that the discrimination parameters of the two models are 

analogous and that the threshold parameter is related to the criteria parameter. However, 

the difference lies in the latent ability variable. In the GR model,   is continuous, whereas 

in the latent class SDT model, c  is discrete. The latent class SDT model can be viewed 

as a semi-parametric version of the GR model (DeCarlo, 2005).   

Partial Credit Model and Generalized Partial Credit Model 

The partial credit (PC) model (Masters, 1982) is another IRT model that is used to 

score essays (Wright & Masters, 1982). Rather than considering responses as cumulative 

(e.g., GR model), the PC model calculates the conditional probability of adjacent scoring 

categories (i.e., scoring in category k + 1 versus category k). The following is the PC 

model: 

jk
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jj
b
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]

)|Pr(

)|1Pr(
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Unlike the GR model, the PC model uses adjacent category logits as shown above 

(Agresti, 2002). The parameter bjk is the item step or difficulty parameter. This parameter 

(bjk) is the location in the continuous latent ability scale where two adjacent categories 

intersect.  
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 The generalized partial credit (GPC) model (Muraki, 1992) is an extension of the 

PC model that incorporates the discrimination parameter as follows: 

)(]
)|Pr(

)|1Pr(
log[ jkj

jj

jj
ba

kY

kY
. 

The GPC model has the same interpretation as the PC model with the exception that it 

has an additional discrimination parameter (aj).  

 In a study by Boughton, Klinger, and Gierl (2001), the GPC model and the GR 

model were compared for their utility in scoring essays. Using a simulation, they found 

that the GR model was better than the GPC model in terms of estimation and parameter 

recovery; they compared various numbers of scoring response categories ranging from 4, 

6, and 8, and found that as the number of scoring categories increased, estimation 

improved. Furthermore, they noted that for both models, estimation was poor for the 

threshold parameters that were at the extremes. For example, for the four-point scale, the 

bj1 and the bj3 parameters were poorly estimated. The authors noted that this was due to 

the sparseness of essays scored at extreme categories. The study also assessed the effects 

of rater error on estimation; rater error was generated by changing rater scores to 

incorrect values. They found that the GPC model was better than the GR model under 

rater error.  

FACETS Model  

 One of the most commonly used models to evaluate rater performance is the 

FACETS model (Linacre, 1989). This model includes item and examinee parameters to 

incorporate additional additive effects on the logit scale known as facets. That is, each 

additive effect is measured as a facet, where the model encompasses an item facet, an 

examinee facet, and a rater facet. The FACETS model estimates the conditional 
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probability that rater j scores item m in category k given examinee’s ability, 

)|Pr( kYmj , as the following: 

jkm

mj
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The equation above results in a three-facet model (i.e., examinee, item, and rater facets). 

Here, the parameter bm represents item difficulty, and the parameter   is the item step 

parameter. The parameter cj estimates rater severity, which represents how lenient or 

strict a rater scores; cj also determines the magnitude of shift in the item response 

function along the ability scale. An advantage of the model is that it places all parameters 

in the common linear log-odds scale, centered at a common origin (Lunz, Wright, & 

Linacre, 1990). However, the FACETS model assumes discrimination to be constant 

across raters. This means that the model ignores the possibility that some raters may 

discriminate better than others.  

 For a single CR item (i.e., two-facet design) the FACETS model can be written as 

follows: 
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Here,  is the examinee ability, cj is the severity of rater j, and fk is the difficulty 

of the step from category k + 1 to k. The single CR item FACETS model is related to the 

PC model, in that the step parameter (bjk) of the PC model combines the effect of the rater 

severity (cj) and the difficulty step parameter (fk); furthermore, the FACETS model also 

uses adjacent category logits.  
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One note to consider for parameters of polytomous IRT (e.g., GR, GPC, and PC) 

models is that they confound rater effects with item and examinee effects. In tests that use 

multiple raters, the item response has a three-way interaction between examinee, item, 

and raters (Tate, 1999). Rather than viewing parameters as rater parameters, they should 

be considered as item/rater parameters; therefore, direct estimates of rater effects cannot 

be obtained in IRT models. Tate (1999) proposed several methods to separate item and 

rater parameters that involve linking item parameters between test administrations. 

However, DeCarlo (2011) showed that using the latent class SDT model, rater parameters 

can be recovered without linking item parameters. This was demonstrated by generating 

data with specific item and rater parameters that changed between two occasions. The 

latent class SDT model correctly recovered the generating rater parameters. Unlike IRT 

models that scale the ability parameter, the discrete latent classes of the SDT model allow 

direct estimation of rater parameters.  
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Chapter III 

METHODS

 This study investigates the effect of rater drift on model-based classifications. In 

the empirical study, parameters from rater models were used to identify patterns of drift 

using estimates of rater severity (response criteria for the latent class SDT model and 

threshold or step parameter for the IRT models) and rater discrimination. Furthermore, 

parameter estimates were compared to examine patterns of drift indicated by different 

rater models. When rater characteristics deviate between testing sessions due to random 

shifts in rater perception or due to training, the accuracy of model-based classifications 

may change. The empirical analysis investigates patterns of rater drift for the same rater 

and also examines how drift affects the latent classification of scores.  

The effect of drift on classification accuracy was further examined using 

simulations by varying levels of rater severity and discrimination using the latent class 

SDT model. The ability of rater models to detect drift was also examined. This chapter 

describes methods that were employed in the real-world data analysis as well as in the 

simulation.  

 

3.1 Empirical Study

The empirical analysis examined the effect of rater drift on the classification of 

latent scores. Drift was assessed using parameters estimated from different rater models. 

Parameters cjk and dj were examined from the latent class SDT model, and bjk and aj were 

examined from the IRT models to determine drift in rater severity and rater 
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discrimination, respectively. Furthermore, changes in the accuracy of latent scores due to 

drift were studied. More specifically, the empirical study investigated the following 

research questions: 

(1) What patterns of rater drift appear in a large-scale assessment? 

(2) How do parameters that measure rater severity differ across rater models? 

(3) What is the variability of drift in rater severity and discrimination over time? 

(4) How does rater drift affect classification accuracy? 

IRT models (GR and GPC models) and the latent class SDT model were used to 

fit data from different scoring occasions for two real-world data sets. To investigate 

patterns of drift in real-world data, parameter estimates from the models were examined; 

the threshold or step parameters (bjk) in IRT models and the response criteria (cjk) in the 

latent class SDT model represent rater effects. As such, shifts in these parameters indicate 

a change in rater severity or deviations in category usage. In the latent class SDT model 

and the GR model, when parameters reflecting rater effects shift up, raters are stricter; if 

these parameters shift down, raters are more lenient. The discrimination parameters (aj 

for the IRT models and dj for the latent class SDT model) represent how well raters 

discriminate essays of different quality.  

The specific interpretations of parameters in each model also differ. For example, 

the discrimination parameter of the latent class SDT model indicates the ability of a rater 

to discriminate between discrete latent classes of essays, whereas the discriminate 

parameter for the GR model shows how well a rater discriminates between different 

qualities of essays that are measured in a continuous latent scale. The IRT models and the 

latent class SDT parameters were estimated using Latent Gold 4.5 (Vermunt & Magidson, 
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2007), which uses an EM algorithm then switches to the Newton-Raphson iterative 

process to finalize the estimation process. To avoid boundary estimation problems that 

are often found in latent class models, posterior mode estimation was used (Galindo-

Garre & Vermunt, 2006). 

Estimates of rater parameters were plotted for each rater to assess patterns of drift. 

For instance, a rater can be more lenient over different scoring occasions or stricter; a 

rater can also have higher discrimination between tests. These patterns for rater effects 

and discrimination provide information about different trends in raters’ behavior over 

time. Moreover, by examining different plots of parameters, implications of rater 

behavior can be examined for different rater models. The latent class SDT model and the 

IRT models differ in that the former uses discrete ordered categories, whereas the latter 

uses a continuous scale to estimate ability. These differences can show variations in how 

the models detect rater drift. Overall trends in rater parameters were summarized using 

regression, where the parameter estimates were examined for linear and nonlinear trends. 

This was conducted by regressing time on rater parameter estimates so that the slope of 

this regression indicates drift in the parameters.  

To examine how rater drift affects scoring, the proportion correct (Pc) and the 

lambda ( ) statistics were calculated using posterior probability estimates from the latent 

class SDT model to measure classification accuracy. The Pc statistic measures the overall 

quality of the classification, and the   statistic measures the increase in classification 

accuracy from using the model, over classifying an essay into the largest latent class 

(Dayton, 1998).  By examining scoring accuracy measures, the impact of rater drift on 

scores was evaluated. 
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The real-world data used for the empirical study were taken from two sources: a 

teacher certification test and a high school writing test. Both are large-scale assessments. 

The teacher certification exam was scored in a 1 to 6 scale with 45 raters. The high 

school writing test was scored in a 1 to 4 scale with 28 raters. The teacher certification 

exam covered seven testing administrations, whereas the high school writing test spanned 

twelve scoring occasions for each month of the year. The differences in the number of 

scoring categories and the number of raters as well as the substantive context of these 

assessments motivates the comparison of two real-world data examples.  

In summary, the empirical study examined patterns of drift in rater severity and 

discrimination for real-world data. Rater drift was assessed using plots of parameters 

derived from IRT models and the latent class SDT model. Overall trends in parameter 

estimates were summarized using regression to examine changes in rater behavior. 

Furthermore, to investigate the effect of drift on latent scores, classification accuracy 

from the latent class SDT model was used to evaluate how drift affected the quality of 

classification.  

 

3.2 Simulation Study 

The simulation study was conducted to investigate changes in classification 

accuracy under different conditions of rater drift. Moreover, parameters from the IRT 

model was examined to assess whether rater drift generated from the latent class SDT 

model can be detected. The simulation study addressed four research questions:  

(1) How do changes in rater severity affect classification accuracy? 

(2) How do changes in rater discrimination affect classification accuracy? 
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(3) Can an IRT model detect rater drift generated from a latent class SDT model? 

(4) Does the normality in latent category distribution affect parameter estimates? 

(5) Does a shift in the latent class sizes affect parameter estimates? 

To answer these questions, two simulation studies were conducted. The first study 

examined changes in latent class SDT model parameters – both criteria and 

discrimination – to determine whether drift affected classification accuracy measured 

using the proportion correct (Pc) and the lambda statistics ( ). In the second study, data 

generated from the latent class SDT model were fit using an IRT model. The GR model 

was used as it resembles the latent class SDT model in many ways discussed previously 

such as the use of cumulative logits to parameterize rater effects.  

Study 1: Examining Changes in Classification Accuracy due to Rater Drift 

Study 1 was divided into two subsections. The first section examined changes in 

classification accuracy due to drift in rater effects. In the latent class SDT model, this is 

represented by the criteria parameter. There were three conditions used in this simulation 

study. Ten raters with normally distributed rater discrimination with a mean of 4 were 

generated (see Table 2). Raters’ criteria values were generated at the mid-point criteria 

locations using equidistant spacing. For example, for rater 1 with a rater discrimination 

population value of 2, the criteria locations for the five locations were 1, 3, 5, 7, and 9, 

respectively.  

Table 2 shows two scoring occasions that represent drift in rater severity. 

Condition 1 shows a shift down in the response criteria for raters 4 to 9 between the two 

scoring occasions; this indicates leniency in raters between the two test administrations. 

In condition 2, response criteria were raised for raters 4 to 9, making raters stricter. In 
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condition 3, response criteria were shifted up for raters 1, 4, 5, and 8; response criteria 

were shifted down for raters 3, 6, 7, 9, and 10. This condition allowed raters to be both 

lenient and strict when compared to the first scoring occasion.  

Table 2. Conditions for study of rater drift 

Rater Parameters 

First Scoring Occasion Second Scoring Occasion Condition Rater 

dj cj1 cj2 cj3 cj5 cj5 dj cj1 cj2 cj3 cj5 cj5 

  1 2 1 3   5   7   9 2 1 3   5   7   9 

  2 3 1.5 4.5   7.5 10.5 13.5 3 1.5 4.5   7.5 10.5 13.5

  3 3 1.5 4.5   7.5 10.5 13.5 3 1.5 4.5   7.5 10.5 13.5

  4 4 2 6 10 14 18 4 1 5   9 13 17 

  5 4 2 6 10 14 18 4 1 5 9 13 17 

  6 4 2 6 10 14 18 4 1 5   9 13 17 

  7 4 2 6 10 14 18 4 1 5   9 13 17 

  8 5 2.5 7.5 12.5 17.5 22.5 5 1.5 6.5 11.5 16.5 21.5

  9 5 2.5 7.5 12.5 17.5 22.5 5 1.5 6.5 11.5 16.5 21.5

1 

(more 

lenient; 

 

shift 

down in 

cj for 

some 

raters ) 
10 6 3 9 15 21 27 6 3 9 15 21 27 

  1 2 1 3   5   7   9 2 1 3   5   7   9 

  2 3 1.5 4.5   7.5 10.5 13.5 3 1.5 4.5   7.5 10.5 13.5

  3 3 1.5 4.5   7.5 10.5 13.5 3 1.5 4.5   7.5 10.5 13.5

  4 4 2 6 10 14 18 4 3 7 11 15 19 

  5 4 2 6 10 14 18 4 3 7 11 15 19 

  6 4 2 6 10 14 18 4 3 7 11 15 19 

  7 4 2 6 10 14 18 4 3 7 11 15 19 

  8 5 2.5 7.5 12.5 17.5 22.5 5 3.5 8.5 13.5 18.5 23.5

  9 5 2.5 7.5 12.5 17.5 22.5 5 3.5 8.5 13.5 18.5 23.5

2 

(stricter; 

 

shift up 

in cj for 

some 

raters) 

10 6 3 9 15 21 27 6 3 9 15 21 27 

  1 2 1 3   5   7   9 2 2 4   6   8 10 

  2 3 1.5 4.5   7.5 10.5 13.5 3 1.5 4.5   7.5 10.5 13.5

  3 3 1.5 4.5   7.5 10.5 13.5 3 0.5 3.5   6.5 9.5 12.5

  4 4 2 6 10 14 18 4 3 7 11 15 19 

  5 4 2 6 10 14 18 4 3 7 11 15 19 

  6 4 2 6 10 14 18 4 1 5   9 13 17 

  7 4 2 6 10 14 18 4 1 5   9 13 17 

  8 5 2.5 7.5 12.5 17.5 22.5 5 3.5 8.5 13.5 18.5 23.5

  9 5 2.5 7.5 12.5 17.5 22.5 5 1.5 6.5 11.5 16.5 21.5

3 

(both 

lenient 

and strict;  

 

shifts in 

cj for 

some 

raters) 
10 6 3 9 15 21 27 6 2 8 14 20 26 

Note: Condition 1 specified a shift down in the response criteria for raters 4 to 9 to allow 

raters to be more lenient. In condition 2, response criteria were raised, making raters 

stricter. In condition 3, a combination of rater effects were implemented.  
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The simulation study examined changes in classification accuracy under rater drift using 

the latent class SDT model. Classification accuracy was measured using the proportion 

correct (Pc) and the lambda ( ) statistics. 

The second part of this section examined changes in classification accuracy when 

rater discrimination increased. Table 3 shows the population values for this simulation:  

Table 3. Condition for drift in rater discrimination 

Rater Parameters 

First Scoring Occasion Second Scoring Occasion Rater 

dj cj1 cj2 cj3 cj5 cj5 dj cj1 cj2 cj3 cj5 cj5 

  1 0.5 0.25 0.75 1.25 1.75 2.25 2 1 3   5   7   9 

  2 1 0.5 1.5 2.5 3.5 4.5 3 1.5 4.5   7.5 10.5 13.5 

  3 1 0.5 1.5 2.5 3.5 4.5 3 1.5 4.5   7.5 10.5 13.5 

  4 2 1 3 5 7 9 4 2 6 10 14 18 

  5 2 1 3 5 7 9 4 2 6 10 14 18 

  6 2 1 3 5 7 9 4 2 6 10 14 18 

  7 2 1 3 5 7 9 4 2 6 10 14 18 

  8 3 1.5 4.5 7.5 10.5 13.5 5 2.5 7.5 12.5 17.5 22.5 

  9 3 1.5 4.5 7.5 10.5 13.5 5 2.5 7.5 12.5 17.5 22.5 

10 4 2 6 10 14 18 6 3 9 15 21 27 

Note: In the first scoring occasion, rater discrimination (d) had population values that 

were normally distributed with mean of 2; in the second scoring occasion, d was raised to 

be normally distributed with mean of 4. 

 

Between the first and second scoring occasions, rater discrimination increased by two 

units for all raters, except rater 1; the discrimination for rater 1 had a population value of 

0.5 for the first scoring occasion to indicate a value close to 0. Mid-point criteria 

locations were used with equidistant spacing; as rater discrimination increased, criteria 

locations also changed. In the first scoring occasion, rater discrimination had population 

values that were normally distributed with a mean of 2; in the second scoring occasion, 

this was raised to be normally distributed with a mean of 4. To estimate classification 

accuracy for the conditions described, the latent class SDT model was fit separately for 
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the two time points. Classification accuracy measures were examined for each scoring 

occasion to assess whether drift affected scoring accuracy.  

Study 2: Detecting Drift using Rater Models 

 In this section, data were generated using the latent class SDT model following 

specifications from Table 2 (p. 33) and from Table 3 (p. 34). This data were fit using the 

GR model to examine whether drift in rater severity and in rater discrimination can be 

detected by an IRT model. That is, this investigated whether the GR model was sensitive 

to detect data indicating drift in rater severity and discrimination.  

 Differences in latent class sizes between two time periods were also investigated 

to examine how this affected parameters in the latent class SDT model and in the GR 

model. Table 4 shows three conditions using 6 and 4 scoring categories. In both scoring 

occasions, mid-point criteria were used for raters with population values of the 

discrimination normally distributed with a mean of 4. The difference between the two 

scoring occasions is in the latent class sizes. For the first condition with 6 categories, the 

first scoring occasion had normally distributed sizes with 0.08, 0.17, 0.25, 0.25, 0.17, and 

0.08 for the six latent classes, respectively. However, in the second scoring occasion, this 

was changed to a non-normal distribution with sizes of 0.03, 0.03, 0.40, 0.40, 0.10, and 

0.04 with a concentration of density at the middle classes, 3 and 4. The second condition 

with 4 categories followed a similar pattern. The first scoring occasion had latent class 

sizes of 0.17, 0.33, 0.33, and 0.17 to represent a normal distribution of scores. The second 

occasion had a non-normal distribution with class sizes of 0.07, 0.43, 0.43, and 0.07 for 

the four classes, respectively.  
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Table 4. Conditions for differences in latent class sizes over two scoring occasions 

Parameters #  of categories 

and condition First Scoring Occasion Second Scoring Occasion 

Class LC1 LC2 LC3 LC4 LC5 LC6 LC1 LC2 LC3 LC4 LC5 LC6 

Size 0.08 0.17 0.25 0.25 0.17 0.08 0.03 0.03 0.40 0.40 0.10 0.04

Rater dj cj1 cj2 cj3 cj5 cj5 dj cj1 cj2 cj3 cj5 cj5 

1 2 1 3 5 7 9 2 1 3 5 7 9 

2 3 1.5 4.5 7.5 10.5 13.5 3 1.5 4.5 7.5 10.5 13.5 

3 3 1.5 4.5 7.5 10.5 13.5 3 1.5 4.5 7.5 10.5 13.5 

4 4 2 6 10 14 18 4 2 6 10 14 18 

5 4 2 6 10 14 18 4 2 6 10 14 18 

6 4 2 6 10 14 18 4 2 6 10 14 18 

7 4 2 6 10 14 18 4 2 6 10 14 18 

8 5 2.5 7.5 12.5 17.5 22.5 5 2.5 7.5 12.5 17.5 22.5 

9 5 2.5 7.5 12.5 17.5 22.5 5 2.5 7.5 12.5 17.5 22.5 

6 

 

Condition 1: 

 

Change in 

normality of 

latent class sizes 

 

10 6 3 9 15 21 27 6 3 9 15 21 27 

Class LC1 LC2 LC3 LC4 LC1 LC2 LC3 LC4 

Size 0.17 0.33 0.33 0.17 0.07 0.43 0.43 0.07 

Rater dj cj1 cj2 cj3   dj cj1 cj2 cj3   

1 2 1 3 5   2 1 3 5   

2 3 1.5 4.5 7.5   3 1.5 4.5 7.5   

3 3 1.5 4.5 7.5   3 1.5 4.5 7.5   

4 4 2 6 10   4 2 6 10   

5 4 2 6 10   4 2 6 10   

6 4 2 6 10   4 2 6 10   

7 4 2 6 10   4 2 6 10   

8 5 2.5 7.5 12.5   5 2.5 7.5 12.5   

9 5 2.5 7.5 12.5   5 2.5 7.5 12.5   

4 

 

Condition 2: 

 

Change in 

normality of 

latent class sizes 

 

10 6 3 9 15 6 3 9 15 

Class LC1 LC2 LC3 LC4 LC1 LC2 LC3 LC4 

Size 0.07 0.5 0.4 0.03 0.03 0.4 0.5 0.07 

Rater dj cj1 cj2 cj3   dj cj1 cj2 cj3   

1 2 1 3 5   2 1 3 5   

2 3 1.5 4.5 7.5   3 1.5 4.5 7.5   

3 3 1.5 4.5 7.5   3 1.5 4.5 7.5   

4 4 2 6 10   4 2 6 10   

5 4 2 6 10   4 2 6 10   

6 4 2 6 10   4 2 6 10   

7 4 2 6 10   4 2 6 10   

8 5 2.5 7.5 12.5   5 2.5 7.5 12.5   

9 5 2.5 7.5 12.5   5 2.5 7.5 12.5   

4 

 

Condition 3: 

 

Shift in density 

 

10 6 3 9 15 6 3 9 15 

Note: Three conditions are presented using 6 and 4 scoring categories for two time points. 

In the first two conditions, the first scoring occasion had normally distributed latent class 

sizes; the second scoring occasion had a distribution where class sizes were concentrated 

in the middle categories. For the third condition, there was a shift in the class sizes. 

 



 37

The rationale for using these conditions was that many large-scale assessments 

use either 4 or 6 scoring categories as presented in the two empirical data sets in this 

study. In addition, many IRT models such as the GR model assume a normal distribution 

of examinee ability. As such, the implications of fitting a non-normally distributed 

condition using IRT can be investigated; the effect of latent class sizes on parameter 

estimates was designed to assess whether IRT models can detect non-normal distributions 

of scores.  

The simulation also includes a condition for a shift in latent class sizes, meaning 

that there was a change in the proportion of scores. This is presented in condition 3 of 

Table 4. For the first scoring occasion, the latent class sizes were generated using 

population values of 0.07, 0.50, 0.40, and 0.03; in the second scoring occasion, it changed 

to 0.03, 0.40, 0.50, and 0.07 for the four latent classes, respectively. This condition also 

presents a change in the proportions at the end categories, while maintaining a high 

concentration of scores in the middle categories.   

The data generated from these conditions were fit using both the latent class SDT 

model and the GR model to examine whether changes in latent class sizes can be 

recovered. Both BIB and unbalanced designs (see specification in Table 1 for the 

unbalanced design) were used, which represent designs used in many large-scale 

assessments. Unbalanced designs are used for assessments such as Praxis and the TOEFL 

(DeCarlo, 2008).  

A SAS macro used in DeCarlo (2010) was implemented to create fully-crossed 

data sets with 6 latent classes (or 4 latent classes depending on the condition) for 10 raters 

and 1,080 essays using the latent class SDT model. The population values for class sizes 
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were 0.08, 0.17, 0.25, 0.25, 0.17, and 0.08, respectively, for all data generation except for 

conditions specified in Table 4 of Study 2. These class sizes represent a normal 

distribution of scores. Following the generation of data, fully-crossed data sets were 

transformed into incomplete designs. A SAS macro generated 100 replications of the 

conditions with corresponding Latent Gold input files and a DOS batch file. A different 

macro summarized the results from the replication and provided information on 

classification, parameter recovery, and standard errors of the simulated data. 

 In summary, the simulation studies presented in this chapter examined the effect 

of drift on classification accuracy using the latent class SDT model. These simulations 

examined rater drift using two testing occasions to assess classification accuracy in the 

latent class SDT model. These conditions were studied within the framework of 

incomplete designs specified by the BIB and the unbalanced design to resemble rating 

formats used in many large-scale assessments. The results from this study can be used to 

understand the relationship between rater drift and classification accuracy. These findings 

were also used to investigate implications for rater training in the literature that have been 

focused on rater severity.  

The second part of the simulation study examined the ability of rater models to 

detect drift. This was conducted by generating data using the latent class SDT model for 

drift in rater effects and in rater discrimination. Variations of latent class sizes between 

testing occasions were also examined. Both normal and non-normal distributions in latent 

class sizes were generated for 6 and 4 scoring categories; shifts in latent class sizes were 

also generated. Data were fit using the GR model to assess whether data generated from 

the latent class SDT model could be detected by an IRT model.  Furthermore, results 



 39

from these studies can be used to provide researchers with a greater understanding of the 

effects that rater drift have in the context of different rater models. 
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Chapter IV 

RESULTS 

 This chapter presents findings from the empirical and simulation studies, which 

are both divided into two separate sections.  In the empirical section, results from the 

teacher certification test and the high school writing test are presented. The simulation 

study presents findings on the effects of rater drift on classification accuracy. Simulation 

results also indicate how well an IRT model such as the GR model, detects drift when 

data were generated using the latent class SDT model. The effects of changing the 

distribution of latent class sizes on parameter estimation were also examined for both the 

latent class SDT model and the GR model.   

 

4.1 Empirical Study: Teacher Certification Test 

This section uses the latent class SDT model and IRT models to examine patterns 

of drift in a teacher certification test used nationally to license instructors entering the 

teaching profession. The essay section from this test was used in the analysis. Among 45 

raters that scored the essays, the ratings of 32 raters were used; these 32 raters were 

selected on the basis that they consistently scored on 6 or more administrations of the test 

(there were 7 total administrations of the test). The CR item was scored on a 1 to 6 scale, 

with a higher score representing greater mastery. For each of the 7 administrations, there 

were 3326, 10659, 4804, 6257, 7014, 5450, and 3387 examinees (Mean=5842, SD=2528), 

respectively.  
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Teacher Certification Test: Rater Effects  

 Plots of rater parameters. Figure 2 present plots of the relative criteria 

parameters for the latent class SDT model. Figures 3 and 4 show plots of the threshold 

and step parameters for the two IRT models. For each plot, the X-axis represents the 7 

administrations, and the Y-axis represents the relative criteria or the threshold values in 

the latent class SDT model and the IRT models, respectively. The estimates of the 

relative criteria in Figure 2 rescale the criteria locations for each rater so that the relative 

criteria are between 0 and 1; this allows criteria locations to be comparable between 

raters (DeCarlo, 2008). For 6 distributions (since the essay is scored in a 1 to 6 scale), the 

means are located at 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. Horizontal lines were added at 

intersection-point criteria locations of the six distributions. They are the midway points 

between the means and are therefore at 0.1, 0.3, 0.5, 0.7 and 0.9. Relative criteria 

estimates above this line indicate a stricter rating; estimates below indicate a more lenient 

rating. As such, these lines serve as a relative guide to indicate rater effects such as 

severity and scale shrinkage. It is noted here that intersection-point locations cannot be 

derived for IRT models, as they do not have the same conceptualization of latent classes, 

which are used to create these markers.  

 Using the intersection-point criteria as a relative guide, plots in Figure 2 can be 

examined for rater effects. In general, most raters were consistent in their scoring; that is, 

their plots lied mostly on the intersection-point locations. This indicates that the level of 

severity among most raters were constant during the 7 scoring administrations. However, 

the plots can also be used to identify raters that were strict or lenient.  
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Although minor, some raters showed strictness in their use of the “6” category. This can 

be identified by criteria locations that were higher than the intersection-criteria locations 

for the fifth criteria estimates. Furthermore, scale shrinkage effects were also identified 

for raters that do not have five criteria estimates for each administration.  

For the purposes of presenting an example, Rater 3 is used to discuss rater effects. 

In Figure 2, Rater 3’s use of the fifth criteria was above the intersection-point location, 

indicating that this rater was strict on the use of scoring a “6.” In addition, for all 

administrations except the second scoring occasion, this rater only used scores from 2 to 

6. This demonstrates a scale shrinkage effect. Examining the relative location of the 

second criteria, which is below the horizontal line, rater 3 was also lenient in scoring a 

“2.” Based on this figure, this rater tended not to use the “1” category and was stricter on 

the higher scores, while lenient on the use of the lower scoring categories. As 

demonstrated from this example, these plots provide informative detail about a rater’s 

scoring behavior over the seven administrations.  

Rater effects also appear in the IRT plots of threshold locations and step 

parameters for the GR and GPC models in Figures 3 and 4, respectively. Plots of 

parameters from these IRT models were similar. However, in comparison to the relative 

criteria locations using the latent class SDT model, the parameters from the IRT models 

were difficult to interpret as there are no natural intersection-points of reference. 

Although the IRT plots were also fairly stable across the seven scoring administrations, 

there were differences when compared to the latent class SDT model in Figure 2. Using 

Rater 3 as an example again, the IRT plots indicate that there were drift in this rater’s use 

of the “2” category in that it fluctuated between the administrations. However, the 
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relative criteria plots for the lowest category were stable throughout the 7 occasions.

These results indicate that the latent class SDT model and the IRT models differ in their 

presentation of rater drift – but only in what appear to be minor ways. 

Parameter estimates summarized using regression. To examine the overall 

trend in the parameter estimates, a regression was used to summarize changes in rater 

parameter estimates. For example, changes in rater criteria were summarized by using cj

as outcomes in a linear regression. Table 5 presents these results by separately fitting a 

regression to summarize linear trends for each parameter (nonlinear trends were also 

examined, but the results showed no trends and thus are not presented); that is, each row 

presents the slope and intercept of a parameter estimate that is regressed on time. The 

coefficient of variation, which allows a comparison of residual variance between models, 

is also used to indicate the variability in parameter estimates. Significant estimates in the 

slope would indicate a linear trend for rater effects such as rater severity for the latent 

class SDT and the IRT models, respectively.

Results indicated that for the latent class SDT model, there was no linear increase 

in all five relative criteria parameter estimates as indicated by slopes that are near zero. A 

similar trend was found for the IRT models in that most slope estimates were not 

significant. The third location or step parameter for the GR and the GPC models were 

significant, but given the small parameter estimate of 0.1, this indicates a minor increase. 

The coefficient of variation, a measure of model residual, was smaller for the latent class 

SDT model, except for the second parameter estimate. In summary, the rater effects from 

the plots show drift for some raters, but as indicated by the regression that summarized 
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the parameters, there was no significant evidence of overall rater drift for parameters that 

describe rater severity.

Table 5. Regression results to summarize parameter estimates in rater effects (cj for

the latent class SDT and bj for IRT models) over 7 administrations

Model Parameter Slope Coefficient of Variation 

c1 –0.002 (0.003) 0.279 

c2 0.003 (0.002) 7.916 

c3 –0.002 (0.002) 0.208 

c4 0.002 (0.003) 0.106 

LC-

SDT

c5 –0.003 (0.003) 0.079 

b1 –0.336 (0.406) 0.334 

b2 –0.057 (0.106) 0.313 

b3 0.103 (0.049) 0.432 

b4 0.085 (0.047) 0.342 

GR

b5 –0.020 (0.119) 0.308 

b1 –0.397 (0.421) 0.369 

b2 –0.059 (0.110) 0.335 

b3 0.105 (0.049) 0.452 

b4 0.079 (0.048) 0.365 

GPC

b5 –0.042 (0.125) 0.336 

Note: Values in parenthesis represent standard errors. LC-SDT model refers to the latent 

class SDT model.  Coefficient of variation represents the ratio of the root mean squared 

error to the mean of the parameter estimate.  

Teacher Certification Test: Rater Discrimination

 Mean rater discrimination. Table 6 shows the mean rater discriminations across 

the 7 administrations. The results show that the overall mean rater discriminations were 

similar for the 7 scoring occasions. Although the mean discrimination was greatest for the 

fifth administration, as indicated in both the latent class SDT and the IRT models, this 

scoring occasion also had the greatest variability of discrimination across the raters. In 

general, the distribution of discrimination estimates for each scoring administrations 

show a normal distribution of the parameters based on the skewness and kurtosis, 

regardless of the rater model used. That is, based on the distribution of rater 

discrimination parameters from the latent class SDT model, there were differences in 
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raters’ ability to discriminate between latent classes of essays. Similarly, the IRT models 

also show that there were differences in raters’ ability to discriminate between different 

qualities of essays.

Table 6. Mean rater discrimination for each administration 

Model (parameter) Administration Mean Variance Skewness Kurtosis 

1 3.029 0.481  –0.369  2.884  

2 3.620 0.723  0.149  2.385  

3 3.521 1.093  0.266  2.200  

4 3.243 0.467  0.163  3.026  

5 3.985 1.708  –0.140  2.527  

6 3.244 1.001  0.313  2.270  

LC-SDT (d)

7 3.327 0.993  0.388  2.788  

1 4.847 1.561  –0.065  3.366  

2 4.341 1.624  0.479  2.699  

3 4.573 2.577  0.644  2.595  

4 4.524 0.770  –0.258  2.977  

5 5.103 3.100  –0.130  2.065  

6 4.697 2.210  0.554  3.050  

GPC (a)

7 4.646 1.857  0.341  2.311  

1 4.542 1.716  –0.049  3.926  

2 4.171 1.644  0.279  2.332  

3 4.338 2.600  0.612  2.740  

4 4.346 0.864  –0.339  2.632  

5 4.900 3.208  –0.266  2.253  

6 4.454 2.129  0.171  2.477  

GR (a)

7 4.375 1.910  0.002  2.361  

Note: Formula for kurtosis used: 3)( 2

24 mm , where NXXm i

i /)( . LC-SDT 

model refers to the latent class SDT model.   

 Plots of rater parameters. Figures 5, 6, and 7 present plots of the discrimination 

parameter estimates for the latent class SDT, GR, and the GPC models, respectively. A 

best-fit linear line was added to the figure for each rater’s discrimination to summarize 

the overall trend. Similar to the criteria and location parameters presented above, the 

latent class SDT and the IRT models showed similar trends and parameter estimates for 

the discrimination parameter.
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For raters that showed an increase in discrimination for the latent class SDT models, the 

parameter estimates also increased for the IRT models. This was also the case for 

parameters that remained stable and for parameters that decreased. These plots also show 

that rater discrimination increased for some raters, while decreased for others. This shows 

that the level of discrimination differed between raters. For example, Rater 1’s 

discrimination estimates increased, while Rater 17’s discrimination estimates were lower 

and decreased between the scoring occasions.  

Parameter estimates summarized using regression. Regression was used to 

summarize changes in the discrimination parameter estimates over time. Similar to Table 

5, the slope represents the linear growth in the discrimination parameter. Based on 

regression slopes, there were no significant linear trends in discrimination. The 

coefficient of variation, which shows a measure of model residual, was about 0.3 for all 

three models. The results from the regression indicate that there were no significant linear 

trends in the three rater models.  

Table 7. Regression results to summarize parameter estimates in rater 

discrimination (dj for the latent class SDT and aj for IRT models) over 7 

administrations

Model Parameter Slope Coefficient of Variation

LC-SDT d 0.022 (0.015) 0.292  

GR a 0.035 (0.022) 0.303 

GPC a 0.030 (0.022) 0.322 

Note: Values in parenthesis represent standard errors. LC-SDT model refers to the latent 

class SDT model.  Coefficient of variation represents the ratio of the root mean squared 

error to the mean of the parameter estimate. 

 

Teacher Certification Test: Latent Class Sizes and Classification Accuracy 

 Latent class sizes. Figure 8 presents the latent class sizes for the 7 

administrations. The X-axis presents the six latent classes, and the Y-axis shows the latent 
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class sizes. As shown in Figure 8, for every administration, there was a concentration of 

scores in the fourth scoring category.
0

.2
.4

.6
0

.2
.4

.6

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4

5 6 7

s
iz

e

latent class

Figure 8. Teacher certification test: Histogram of latent class sizes 

The large proportion of scores distributed to this category is contrasted with scores in the 

end categories.  Based on Figure 8, the distribution of latent class sizes were similar 

across the seven administrations.  

Classification accuracy. To examine the quality of classification, Figure 9 

presents a plot of the proportion correctly classified and the lambda statistics. As noted 

earlier in the literature review, the latent class SDT model classifies essays into latent 

classes. That is, the posterior probability and the latent class sizes can be used to estimate 

the quality of classification. These are presented by the classification accuracy statistics. 

Two classification accuracy statistics are considered. The proportion correct (Pc) is the 

expected proportion of cases correctly classified, and the lambda ( ) is a statistic that 
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accounts for classification that can occur by chance, which is motivated when there is a 

latent class with a large class size.  The plots show that classification accuracy from the 

Pc statistic was around 75%; there was relatively small deviation in both classification 

accuracy statistics.

Classification Statistics: Teacher Certification

0.76
0.74

0.76 0.75 0.76 0.76

0.73

0.55

0.59

0.56

0.59
0.57

0.560.51
0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7

Administration

PC

Lambda

Figure 9. Teacher certification test: Classification statistics 

Overall summary of the teacher certification test. The empirical results of the 

teacher certification exam showed that changes in classification accuracy over 7 scoring 

occasions were minimal. Plots showed individual variation in drift, where some raters 

were stricter and others lenient; there were raters that increased in discrimination, while 

others decreased during the seven administrations. However, the results summarized by 

regression indicated that overall, there was no significant linear trend in the parameter 

estimates. Given these results, the classification accuracy was also stable for the seven 

administrations. The empirical findings from this analysis indicate that although there 
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were variations between raters and also for the same rater, there were minimal effects on 

classification accuracy.  

4.2 Empirical Study: High School Writing Test 

The second data set used for this study comes from a national assessment of 

writing ability at the high school level. There were 28 raters used for this study that 

scored on a 1 to 4 scale, where a higher score represented greater writing mastery. This 

test was administered continuously throughout the year. The combined administrations 

were analyzed on a monthly basis making twelve points of analysis. Based on this 

method, 18 raters were selected that scored on 6 or more months throughout the testing 

year. Consequently, there were 11697, 14508, 15428, 17924, 16772, 14756, 11415, 9169, 

12278, 14234, 12788, and 11320 examinees for each of the twelve consecutive months 

(Mean=13524, SD=2527), respectively. The presentation of the results for the high 

school writing test follows similarly from the teacher certification exam. 

High School Writing Test: Rater Effects 

 Plot of rater parameters. To examine drift in rater effects, Figures 10, 11, and 

12 illustrate plots of raters’ relative criteria and locations for the three CR models. In 

Figure 10, the plots of the latent class SDT model are presented. Similar to the teacher 

certification test, intersection points were added to the figure to help identify reference 

locations. Since there were 4 distributions, the means for the locations were at 0.00, 0.33, 

0.67, and 1.00; therefore, the intersection points lie at 0.17, 0.50, and 0.83. These three 

points provide a reference to indicate the severity of rating as well as category usage. 
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Relative criteria estimates above the optimal location indicate a stricter rating and an 

estimate below implies a more lenient rating.  

Figure 10 shows that for most raters, their criteria locations for the second and the 

third criteria were above the optimal locations; for the first relative criteria, parameter 

estimates were below the intersection-point location. This meant that raters were harsher 

for giving higher scores and more lenient for lower scores (based on the relative reference 

indicated by the intersection-points). However, given that all raters had similar relative 

criteria locations that were above the intersection points for the second and third criteria 

and below the intersection point for the first criteria, this indicated consistent stringency.  

 The general patterns of rater severity from the latent class SDT model and the IRT 

models showed that raters were stable in their ratings. Raters 2, 4, 5, 7, and 14 had very 

stable parameter estimates; they showed minimal drift in their criteria locations. However, 

for raters such as 8, 17, and 18, there was drift; there were months when their criteria and 

locations shifted up and others when they shifted down. For raters 17 and 18, the relative 

criteria estimates for the first and the third parameter were lower and higher than other 

raters, respectively. Unlike the teacher certification test, there were fewer instances of 

category shrinkage, (i.e., raters avoiding to use a specific scoring category). Across the 

twelve months, all 18 raters used each of the four scoring categories, implying that there 

were no raters that systematically avoided using a scoring category. The GR and the GPC 

models showed plots that were nearly identical, whereas the plots of the latent class SDT 

and the IRT models were slightly different. For example, there were spikes in the plots of 

the IRT models for Rater 10 and 11, but this was not present in the latent class SDT plots. 

In general, these plots show that parameter estimates reflecting rater severity were stable.
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 Parameter estimates summarized using regression. Parameters from the latent 

class SDT model and the IRT models were summarized using regression. This 

presentation is similar to the results presented earlier in the teacher certification test to 

examine overall trends in parameter estimates that describe rater effects. Table 8 presents 

the changes in rater effects as a regression on time. The two IRT models produced nearly 

identical results. However, they differed from the latent class SDT model. The slope of 

the relative criteria in the latent class SDT model showed a significant increase in the first 

and the second locations; in the third relative criteria, there was a significant decrease in 

the parameters. However, these estimates in slope were very small, representing a change 

of less than 0.005. For the IRT models, the first location parameter showed a significant 

decrease on average. These differences in direction between the two models can mean 

contradicting interpretations. An increase in the relative criteria location in the latent class 

SDT model or in the location estimates for IRT models reflects a rater becoming stricter. 

The coefficient of variation, which shows a measure of model residual, was similar 

among the IRT models, but differed with the latent class SDT model.  

Table 8. Regression results to summarize parameter estimates in rater effects (cj for

the latent class SDT and bj for IRT models) over 12 months 

Model Parameter Slope Coefficient of Variation 

c1 0.004 (0.001) 0.904 

c2 0.002 (0.001) 0.079 LC-SDT

c3 –0.004 (0.002) 0.068 

b1 –0.160 (0.048) 0.126 

b2 –0.048 (0.027) 0.460 GR

b3 –0.057 (0.055) 0.203 

b1 –0.156 (0.049) 0.273 

b2 –0.047 (0.027) 0.607 GPC

b3 –0.060 (0.057) 0.310 

Note: Values in parenthesis represent standard errors. LC-SDT model refers to the latent 

class SDT model. Coefficient of variation represents the ratio of the root mean squared 

error to the mean of the parameter estimate. 
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High School Writing Test: Rater Discrimination 

Mean rater discrimination for each administration. Table 9 shows the mean 

rater discrimination for each month, which differed between the latent class SDT model 

and the IRT models. The latent class SDT model showed an increase in the mean 

discrimination from 5.8 to 8.9 between January and December. On the other hand, the 

mean discrimination estimates in the IRT models remained constant throughout the year. 

This difference in results can be important, because the discrimination parameter in the 

latent class SDT model reflects the level of precision in raters; that is the ability for raters 

to discriminate between different classes of essays. For the latent class SDT model, there 

was an increase in rater precision, while the discrimination for IRT models was stable.  

Table 9. Mean rater discrimination for each month 

Model (parameter) Month Mean Variance Skewness Kurtosis 

1 5.826 2.593 0.249  1.696 

2 5.697 2.220 –0.290  2.825 

3 6.478 0.836 –0.169  2.138 

4 5.912 1.907 –0.682  2.494 

5 6.344 2.145 –0.056  1.955 

6 6.461 1.366 –0.796  2.912 

7 5.843 1.806 0.041  2.328 

8 6.369 2.674 –0.327  3.258 

9 9.466 5.461 –0.124  1.865 

10 9.142 6.364 –0.484  2.953 

11 9.074 4.013 0.192  1.970 

LC-SDT (d)

12 8.949 5.136 –0.471  2.405 

1 3.802 1.657 1.775  5.642 

2 3.334 0.655 0.019  3.066 

3 3.471 0.485 –0.009  1.733 

4 3.272 0.290 0.290  2.771 

5 3.359 0.613 0.764  2.850 

6 3.246 0.717 1.156  4.321 

7 3.178 0.400 –0.475  2.605 

8 3.157 0.770 0.304  2.625 

9 3.784 4.125 1.544  4.362 

10 3.432 0.814 0.004  2.017 

11 3.615 1.700 3.077  11.953 

GR (a)

12 3.429 0.748 1.137  3.415 
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1 3.746 1.636 1.665  5.249 

2 3.281 0.654 –0.080  3.382 

3 3.420 0.478 –0.037  1.717 

4 3.227 0.304 0.274  2.730 

5 3.281 0.556 0.390  2.004 

6 3.205 0.785 1.048  3.973 

7 3.127 0.402 –0.555  2.607 

8 3.098 0.778 0.221  2.529 

9 3.726 4.147 1.501  4.238 

10 3.366 0.853 –0.015  1.883 

11 3.560 1.653 3.055  11.900 

GPC (a)

12 3.369 0.813 1.139  3.355 

Note: Formula for kurtosis used: 3)( 2

24 mm , where NXXm i

i /)( . LC-SDT 

model refers to the latent class SDT model.   

There was also a gradual increase in variance for the discrimination parameter in the 

latent class SDT model. 

Plots of rater discrimination. To examine rater-specific trends in the 

discrimination parameter, Figures 13, 14, and 15 show plots of the rater discrimination 

over the twelve months for the latent class SDT, GR, and GPC models, respectively. 

Best-fit lines were added to describe the trend of the parameter estimates. For the latent 

class SDT model (Figure 13), nearly all raters (except rater 14) showed an increase in 

discrimination over time, which is consistent with the results presented in the previous 

section.

 However, in the IRT models (Figures 14 and 15), nearly all raters showed stability. 

Only rater 3, 4, and 15 showed an increase in discrimination; other raters such as rater 10 

exhibited a decrease in discrimination (in comparison to an increase in the latent class 

SDT model). The results from the rater discriminations indicate that there is a 

discrepancy between the CR models. Differences in these results between the two rater 

models are further discussed in the Discussion section of the study.
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 Parameter estimates summarized using regression. A regression was used to 

summarize the rater discrimination parameters. Table 10 shows these results, which 

indicates the discrimination parameter increased significantly for the latent class SDT 

model (slope = 0.356), whereas in the two IRT models, the slope parameter was close to 

zero. Furthermore, the coefficient of variation, which represents a measure of residual 

variance, was similar for the three models. As indicated from previous results, the results 

in this section present a contradicting picture between the latent class SDT model and the 

IRT models. The following section examines the latent class sizes and the classification 

accuracy.

Table 10. Regression results to summarize parameter estimates in rater 

discrimination (dj for the latent class SDT and aj for IRT models) over 12 months 

Model Parameter Slope Coefficient of Variation

LC-SDT d 0.356 (0.023) 0.268 

GR a 0.001 (0.013) 0.308 

GPC a 0.001 (0.013) 0.314 

Note: Values in parenthesis represent standard errors. LC-SDT model refers to the latent 

class SDT model. Coefficient of variation represents the ratio of the root mean squared 

error to the mean of the parameter estimate. 

High School Writing Test: Latent Class Sizes and Classification Accuracy

 Latent class sizes. Figure 16 shows the distribution of latent class sizes, which 

shows a highly non-normal distribution of class sizes with light tails (kurtosis of about 1 

for each month). The class sizes were mostly concentrated in the second and the third 

latent classes. In contrast, the first and the fourth latent classes had minimal sizes below 

0.03 and 0.13 at any given month, respectively. There was also a shift in the class sizes 

between the second and the third latent classes. For example, until May, the second latent 

class had the largest class size; however, this was reversed in the following months.
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 The histogram of latent class sizes indicates a level of non-normality in the 

distribution of scores. Given that there were 4 scoring categories for this assessment, the 

non-normality may be important as most IRT models assume a normal distribution of the 

latent trait.  
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Figure 16. High school writing test: Histogram of latent class sizes 

 Classification accuracy. Figure 17 shows the classification accuracy statistics for 

each month. As presented earlier, the same classification accuracy measures – proportion 

correctly classified (Pc) and the lambda statistic ( ) – were used to examine the quality of 

classification. For Pc, there were minimal changes between the 12 months. The lambda 

statistic may be motivated here, because it corrects for latent classes with large sizes. 

Although the Pc was stable, the   decreased nearly 0.2 points from January to September. 

In contrast to the teacher certification exam, the classification accuracy statistics 

presented here had greater deviation. On average, classification was lowest in June, 



68

September, and in October. Given that classification accuracy statistics are derived from 

model parameters and the latent class sizes, these factors played a role in affecting these 

estimates. Further discussion of this result is provided in the Discussion section of this 

study.

Classification Statistics: High School Writing
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Figure 17. High school writing test: Classification statistics

 Overall summary of the high school writing test. The empirical analysis of the 

high school writing test showed patterns of drift that differed from the teacher 

certification test in that the former assessment had greater indicators of overall drift. Most 

notably, the discrimination parameters of the latent class SDT model showed a significant 

increase in the parameter estimates, whereas the IRT models showed no significant trend. 

Moreover, unlike the rater criteria estimates, the variability of rater discrimination was 

over three times greater in the latent class SDT model when compared to IRT models. 

The estimated latent class sizes of the high school writing test had a larger concentration 
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in the middle-two categories. This non-normal distribution in latent class sizes differed 

from the more normally distributed class sizes of the teacher certification test. Overall, 

the high school writing test generated results that differed between the rater models that 

contradicted in the interpretation of rater drift.   

4.3 Simulation Study 1: Examining Changes in Classification Accuracy due to Rater 

Drift

 Simulations were conducted to examine how changes in rater behavior affect 

classification. Data reflecting rater drift were generated by varying population values of 

rater criteria and discrimination parameters from the latent class SDT model. The rater 

criteria parameter (ck) indicates rater effects such as rater severity and scale usage. The 

rater discrimination parameter (d) reflects how well a rater discriminates between latent 

classes of essays. This section presents results from different conditions of rater drift and 

their effect on classification accuracy. Changes in population values from two parameters 

of the latent class SDT model (criteria and discrimination) were used to simulate rater 

drift, which were used to assess their effect on classification accuracy.

Classification accuracy was measured using the proportion correctly classified 

(Pc) statistic and the lambda ( ) statistic. This section compares estimates of classification 

accuracy for different conditions of rater drift. The BIB (i.e., all raters score the same 

number of essays) and the unbalanced (i.e., raters and pairs of raters score different 

number of essays) designs were used in the simulation; they were used to examine 

differences in classification accuracy between the two designs.  

Classification Accuracy: Rater Effects 
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 Table 11 presents classification accuracy statistics for three conditions with 

varying rater severity (i.e., raters are more lenient, stricter, and both lenient and strict) 

following population values in Table 2 (p. 33). Two incomplete designs, BIB and the 

unbalanced, were specified to reflect common frameworks used to conduct large-scale 

assessment tests. In condition 1, six raters among the ten total raters scored more 

leniently between the two scoring occasions by shifting their response criteria down. 

Condition 2 represents raters that were stricter, which was implemented by raising the 

response criteria of six raters. Finally in condition 3, some raters were stricter, while 

others were more lenient. 

Table 11. Classification accuracy due to drift 

Time 1 Time 2 
Parameter Design 

Condition

(2
nd

 scoring occasion) PC   PC   

More lenient 0.843 0.789  0.823  0.762  

Stricter 0.843 0.789  0.825  0.764  BIB

Both 0.843 0.789  0.820  0.757  

More lenient 0.852 0.800  0.827  0.766  

Stricter 0.852 0.800  0.829  0.769  

Criteria 

Unbalanced

Both 0.852 0.800  0.823  0.761  

BIB More discriminating 0.619 0.477  0.843  0.789  
Discrimination 

Unbalanced More discriminating 0.641 0.510  0.852  0.800  

Note: Simulations ran with 100 replications. BIB refers to the balanced incomplete block 

design.

The three conditions were repeated for the BIB and the unbalanced design for ten rater 

pairs (as specified in Table 1, p. 18). The results for both designs were similar. As shown 

in Table 11, between time 1 and time 2, classification accuracy (PC) changed from 84% 

to 82% for the BIB design for all three conditions, whereas for the unbalanced design, it 

changed from 85% to about 83%.  These results indicate that a shift in raters’ response 

criteria for all three conditions had minimal impact on classification accuracy. That is, 
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changes in rater’s leniency, strictness, or both have only a small effect on classification 

accuracy. This result has implications for rater training and feedback, which are discussed 

in greater detail in the next chapter. In short, these results show that changes in rater 

severity had only a small effect on classification accuracy.

Classification Accuracy: Rater Discrimination 

 Table 11 (p. 70) also shows the results of classification accuracy for changes in 

rater discrimination following the specification in Table 3 (p. 34). In the first scoring 

occasion, raters’ discrimination was normally distributed with a mean of 2; in the second 

scoring occasion, raters’ discrimination increased to a mean of 4. As such, rater 

discrimination increased by two points (except for rater 1’s discrimination, which 

increased by 1.5 points). This was simulated for both the BIB and the unbalanced designs 

for 10 rater pairs.

 Results showed that for the BIB and the unbalanced conditions, both classification 

statistics Pc and   increased from about 0.6 to about 0.8. These conditions show a contrast 

with classification accuracy resulting from changes in rater severity, which had minimal 

effects on classification. In sum, the findings from these simulation results show that 

classification accuracy is largely driven by changes in rater discrimination, rather than 

shifts in rater effects such as rater severity. This again has implications for rater training. 

These issues are also discussed in greater detail in the next chapter. 

4.4 Simulation Study 2: Detecting Drift using Rater Models 

The simulations in this section present results that examine how well IRT models 

detect drift when data were generated using the latent class SDT model. In the first part of 



72

this simulation study, conditions specified in Table 2 (p. 33) were fit using the GR model. 

This was done to examine the effect on parameter estimates (bk) reflecting rater severity. 

Condition from Table 3 (p. 34) that increased rater discrimination was also fit using the 

GR model. The combination of these conditions together indicate whether IRT models 

such as the GR model can detect drift in either rater effects and in rater discrimination, if 

the data are generated according to the latent class SDT model.  

The second part of this study examined whether the distribution of the latent 

classes affects IRT parameters when data are generated using the latent class SDT model. 

Conditions for this simulation follow from Table 4 (p.36), where the first scoring 

occasion has normally distributed latent class sizes. In the second scoring occasion, there 

was a concentration in the third and in the fourth latent classes. The simulation study 

changed latent class sizes to examine how the normality of data affect discrimination 

estimates in the latent class SDT and in the IRT models. For all simulations in this section, 

the BIB design was used to allow a balanced number of essays to be scored by each rater. 

Results of the mean parameter estimates and standard errors are presented in Appendix A.  

Detecting Drift using the GR model 

This section presents the results of IRT parameters when data were generated 

reflecting drift in rater criteria and in rater discrimination using the latent class SDT 

model.

Drift in rater effects. Table A1 (see Appendix) shows the results of the three 

conditions that reflect raters that are more lenient, stricter, and both lenient and strict 

between two scoring occasions. The first block shows the mean parameter estimates and 

the mean standard errors of the first scoring occasion, where raters had discrimination 
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population values that were normally distributed with a mean of 4 and criteria population 

values at the mid-point locations. The following blocks show the mean parameter 

estimates and standard errors of each condition – reflecting raters that were more lenient, 

stricter, and both lenient and strict.

Figure 18 graphically illustrates the mean parameter estimates in Table A1 (see 

Appendix) to present the effect of parameter changes between the scoring occasions. The 

X-axis represents the two scoring occasions, and the Y-axis represents the location 

(threshold) parameter estimated using the GR model. Similar to the presentation in Table 

A1, the first row presents the mean parameter estimates for the condition representing 

raters becoming more lenient; raters 4 to 9 had parameter estimates that shifted down to 

demonstrate this effect. The second row presents the case where raters were stricter; 

raters 4 to 9 had parameter estimates that shifted up to reflect stricter ratings. The third 

row presents both leniency and strictness for the raters; for this case, raters 3, 6, 7, 8, and 

10 had parameters that shifted up to show strictness in rating, while raters 1, 4, 5, and 8 

had parameter estimates that shifted down to reflect leniency.  

In general, the results showed that the GR model was able to detect drift in rater 

severity. For the raters that were more lenient, the location parameters shifted down. This 

was shown for raters 4 to 9 that had their criteria shifted down by 1 point in the 

generating values. This was also found in the condition where raters were stricter and also 

in the condition where raters were both stricter and more lenient. Although a 1-point 

increase or decrease in the generating value of the latent class SDT model did not 

necessarily result in a 1-point difference in the estimates, an overall shift was present in 

the GR model parameter estimates.  
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Drift in discrimination. Table A2 (see Appendix) presents the mean parameter 

and standard error estimates of the GR model when there was an increase in 

discrimination generated from the latent class SDT model. The conditions used for 

generating the two scoring occasions were taken from Table 3 (p.34), where raters’ 

discrimination was normally distributed with a mean of 2 at the first scoring occasion and 

increased to a mean of 4 in the second scoring occasion. 

The mean parameter estimates indicate that the GR model was able to detect drift 

resulting from changes in rater effects and in rater discrimination. That is, when data 

were fit for the two scoring occasions representing an increase in mean discrimination, 

estimates of discrimination from the GR model increased. This indicates that the GR 

model was able to detect changes in rater discrimination from the latent class SDT model. 

Although the population values had a two-point increase in discrimination (d), the GR 

discrimination parameters (a) did not necessarily increase by two units. For raters with 

lower discrimination (d) population values (raters 1, 2, and 3), their discrimination (a)

increased by more than two points; for raters with higher discrimination (d) population 

values (raters 8, 9 and 10), their discrimination (a) increased by less than two points. For 

raters with discrimination (d) population values of 2 and 4 (raters 4, 5, 6, and 7), their 

discrimination (a) increased by about two points. Because mid-point criteria values were 

used to generate data, the GR location parameters also shifted as discrimination increased.  

Effect on IRT parameters for Normal and Non-Normal Class Sizes 

 This section presents results of GR parameter estimates when class sizes changed 

between two scoring occasions. The data used for this simulation were generated using 

the latent class SDT model. Conditions described in Table 4 (p. 36) were used. In the first 
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condition using 6 categories, the first scoring occasion used latent class sizes that were 

normally distributed; in the second scoring occasion, the latent class sizes were non-

normal in that there was a greater concentration of class size in the third and fourth latent 

classes. The BIB design was used in this simulation.  

Normal and non-normal latent class sizes for 6 scoring categories. In this 

section, simulations were conducted to examine the effect of parameter estimates when 

the distribution of latent class sizes was non-normal. This is presented in Table A3 (first 

scoring occasion) and in Table A4 (second scoring occasion). The left column shows the 

generating conditions, and the column to the right shows the mean parameter estimates 

and standard errors for the latent class SDT model and the GR model. In general, when 

latent class sizes were non-normal, discrimination parameter (a) estimates in the GR 

model were underestimated. 

The parameters for the latent class SDT model closely resemble the population 

values; that is, the parameters were recovered well with low bias. The latent class sizes 

were also recovered well for this condition. Table A4 (see Appendix) shows the results of 

the same condition presented in Table A3, but only changing the latent class sizes. 

Between the two conditions, there was a small decrease in the discrimination parameters 

for the latent class SDT model. For rater 10 that had the highest rater discrimination 

(d=6), discrimination decreased by 0.28 points; for other raters, their discrimination on 

average decreased by 0.13 points. However, taking into account the range of estimates 

using the standard error, the differences between the two scoring occasions were not 

significant. This showed that changing the normality of the latent class sizes did not have 

a significant effect on affecting parameter estimates for the latent class SDT model.   
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This result contrasts with the GR model, where the average decrease in rater 

discrimination was about 1.00 point. Figure 19 illustrates the mean change in 

discrimination parameters between the two scoring occasions. Here, the X-axis represents 

the two scoring occasions, and the Y-axis represents the discrimination parameter (d for 

the latent class SDT model and a for the GR model).  
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Note: The X-axis represents the two scoring occasions. The Y-axis represents d for the 

latent class SDT model and a for the GR model. 

Figure 19. Plots of the discrimination parameters for the latent class SDT model

and the GR model with 6 scoring categories (Condition 1: Change in normality of 

latent class sizes: non-normal condition for the second scoring occasion) 

For the criteria parameters, the second and third criteria that had the largest latent class 

sizes also decreased by 0.41 and 0.45 points on average, respectively, for the latent class 

SDT model. In contrast, the second and the third location parameters of the GR model 

decreased by 1.51 and 0.40 points on average, respectively.

Normal and non-normal latent class sizes for 4 scoring categories. The

condition examined in this section follows from the previous simulation; the effect of 
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non-normal distribution in latent class sizes on parameter estimates were investigated for 

4 scoring categories. Tables A5 and A6 show the results for the 4 category condition. 

This is graphically illustrated in Figure 20, where the X-axis presents the two scoring 

occasions, and the Y-axis shows the discrimination parameter estimates. In the condition 

with 4 scoring categories, the mean discrimination parameter estimates for both latent 

class SDT model and the GR model decreased. However, similar to the condition using 6 

categories, the decrease in parameter estimates from the latent class SDT model was not 

significant; moreover, the level of decrease was greater in the GR model. For the latent 

class SDT model, the mean decrease in parameter estimate was 0.3 points. The decrease 

for the GR model was 0.9 on average (see Figure 20).
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Figure 20. Plots of the discrimination parameters for the latent class SDT model

and the GR model with 4 scoring categories (Condition 2: Change in normality of 

latent class sizes: non-normal condition for the second scoring occasion) 

A notable difference from the 6 category condition was the large bias in class sizes from 

the latent class SDT model. The class size estimates were overestimated with estimates of 
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0.106, 0.397, 0.393, and 0.104 for the four classes, respectively (the population values 

were 0.07, 0.33, 0.33, and 0.07).

Shift in latent class sizes. The results of the third condition, which shifted the 

densities of the latent classes –from 0.07, 0.50, 0.40, and 0.03 for the four classes to 0.03, 

0.40, 0.50, and 0.07, respectively – are presented in Tables A7 and A8 (see Appendix). 

Similar to the others, the only condition that changed in the generating values was the 

latent class sizes, not the parameter values. Figure 21 shows a graphical representation of 

the changes in discrimination parameters for the two models between the two scoring 

occasions. For this condition, the mean discrimination parameter estimates for the latent 

class SDT model and the GR model seemed to be stable between the two scoring 

occasions.
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Note: The X-axis represents the two scoring occasions. The Y-axis represents d for the 

latent class SDT model and a for the GR model. 

Figure 21. Plots of the discrimination parameters for the latent class SDT model

and the GR model with 4 scoring categories showing shift in density (Condition 3: 

Shift in density between the scoring occasions)
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Unlike previous conditions, where non-normality affected discrimination 

estimates in both the latent class SDT and the GR models, a shift in latent class sizes 

affected the criteria estimates. The criteria and location parameters were affected by the 

shift in class sizes. The mean criteria parameter estimates (ck) for the three locations 

changed from 1.15, 5.54, and 10.02 for the first scoring occasion to 0.69, 5.20, and 9.61 

for the second scoring occasion. This presents a shift down in the criteria parameters. 

Likewise, for the GR parameters, there was also a downward shift in the threshold 

parameters (bk); for the first scoring occasion, the mean parameter estimates for the ten 

raters were –3.65, 0.46, and 4.54, while for the second scoring occasion, it changed to –

4.53, –0.46, and 3.65, respectively. The downward shift in the parameters, which shows 

leniency among raters, is consistent with the shift in the latent class sizes that increased 

the proportion of scores in the lower categories. 

Similar to the non-normal condition with 4 categories in the previous section, the 

latent class sizes were overestimated. The recovery of latent class sizes were 0.109, 0.446, 

0.340, and 0.106 for the first scoring occasion, and 0.096, 0.346, 0.446, and 0.111 for the 

second scoring occasion, respectively.  

Summary. The results from this simulation study shows that changes in latent 

class sizes can affect the discrimination parameter of the GR model. For the latent class 

SDT model, the generating parameters were well recovered, with a small decrease in 

parameter estimates. However, for the GR model, the difference in latent class sizes 

shifted discrimination by nearly 1 point. Furthermore, for the last condition that shifted 

the latent class sizes, the discrimination parameters were not affected; rather, they shifted 

down the estimates for the criteria parameter for the latent class SDT model and the 
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location parameter for the GR model. The effect of shift in class sizes is consistent with 

the interpretation of the rater parameters reflecting rater severity; that is, the shift in 

density indicated greater class size for the 4
th

 category, meaning more lenient scores as 

reflected in the criteria (ck) and in the threshold (bk) parameter estimates.  

4.5 Parameter Recovery: Rater Parameters, Latent Class Sizes, and Standard 

Errors from the Latent Class SDT model. 

This section presents results for the recovery of rater parameters and latent class 

sizes for the simulated data discussed above. Simulated data were generated using the 

latent class SDT model. Appendix B presents the population value, mean estimate, bias, 

percent bias, and mean squared error (MSE) of the parameters.  

Estimates of standard errors of rater discrimination and latent class sizes were also 

evaluated; asymptotic theory was used by examining the inverse of the observed 

information matrix (for details see Vermunt & Magidson, 2005; DeCarlo, 2010). Bias 

was calculated by taking the difference of the standard deviation of the parameter 

estimates across the 100 replications to the mean of the estimated standard errors. 

Appendix C presents the standard deviation, mean standard error, bias, and the percent 

bias for conditions used in the simulation.  

As the focus of the simulation study was on examining the effect of rater drift on 

classification accuracy and on parameter estimates derived from the GR model, a detailed 

account of results from the parameter recovery is not presented – as these results were 

consistent with findings from earlier work conducted in DeCarlo (2008) and in DeCarlo 
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(2010). The following sections present key findings and summaries of the recovery in 

parameter estimates and standard errors.  

Rater Parameters and Latent Class Sizes 

Table B1 presents the parameter estimates, bias, percent bias, and MSE for 10 

raters, where rater discrimination was distributed with a mean population value of 4 

(condition from the second scoring occasion in Table 3, p. 34). The condition used in 

Table B1 represents mid-point criteria locations as population values, which reflect raters 

that do not exhibit rater effects such as severity or scale shrinkage. Tables B2, B3, and B4 

show the results when population values were specified for more lenient, stricter, and 

both lenient and strict raters, respectively, following conditions presented in Table 2 (p. 

33). These conditions were specified for the BIB design, where all 10 raters score the 

same number of essays. Tables B5 to B8 replicates the same conditions using the 

unbalanced design, where raters and pairs of raters score different number of essays.  

 Tables B9 and B10 show the results for rater discrimination normally distributed 

with population mean value of 2 for the BIB and unbalanced designs, respectively. Table 

B11 presents the results when latent class sizes were non-normally distributed; that is, 

population values were specified to create a concentration of class sizes in the middle 

classes 3 and 4.

Tables B12 to B15 replicate similar conditions using 4 scoring categories. In 

Table B12, discrimination was normally distributed with mean population value of 4; in 

Table B13, a non-normal distribution was used to generate data with a concentration in 

classes 2 and 3. Tables B14 and B15 show the results for a shift in latent class sizes 
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where there was a larger class size for classes 1 and 2 in Table B14 and a larger class size 

for classes 3 and 4 in Table B15.

 In general, parameters were underestimated for the first criteria estimate (e.g., c11,

c21, … , c101) with percent bias that was higher than other parameters. For example, in 

Table B1, the percent bias ranged between 10% to 25% for the first criteria estimate; the 

remaining parameters had percent bias that was less than 5%. MSE was greater for the 

fourth and the fifth criteria estimates. Raters with higher population values of 

discrimination also had greater percent bias and also MSE. This trend was consistent for 

all conditions. For conditions where raters were stricter (Tables B2 and B6), most 

parameters were underestimated with a greater percent bias for the first category ranging 

between 27% and 57% (for the rater with the highest discrimination). When raters were 

lenient (Tables B3 and B7), both percent bias and MSE were smaller than Table B1. 

There was a mixed result for the condition with raters exhibiting both leniency and 

strictness (Table B4 and B8); that is, raters had greater percent bias when they were 

stricter for the first criteria estimate.  

 The percent bias in latent class sizes were over 10% for the end categories (i.e., 1 

and 6). For conditions where raters were stricter, the percent bias for the first category 

was 35%; likewise, for the condition where raters were lenient, the percent bias was over 

36% for the last category. These differences in latent class sizes show that when raters are 

stricter, the class sizes increase for the lower scoring categories; when raters are lenient, 

the class sizes increase for the higher categories.  

 The difference between BIB and unbalanced designs were the inflated percent 

bias for raters that score a smaller number of essays. In the unbalanced design, raters 2 
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and 5 only score 50 and 60 essays, respectively. Their percent bias estimates were 

consistently higher for all conditions. For example, comparing Table B1 and B5, which 

reflect conditions without rater severity, the percent bias for rater 2 and 5 were less than 

2.5% (excluding the first criteria); however, they were over 6% for rater 2 and over 10% 

for rater 5 in the unbalanced design. These results are consistent with findings from 

DeCarlo (2010). 

Tables B9 and B10 show results for normally distributed discrimination with 

mean of 2 for the BIB and the unbalanced designs. In general, these results have similar 

findings as discrimination distributed with mean of 4 in that the first criteria estimates 

had consistently higher percent bias than other criteria estimates. However, when 

compared to Table B1 that had discrimination distributed at mean 4, the percent bias were 

higher. The percent bias in the latent class sizes was also higher; the end categories had 

percent bias over 50%. The inflation of percent bias for raters 2 and 5 were also found in 

the unbalanced design.

When discrimination was distributed at mean value of 2 (Tables B9 and B10), 

percent bias was greater for all parameters than when discrimination was distributed at 

mean value of 4 (Table B1). Although raters with higher discrimination also had greater 

bias, the percent bias for the first criteria was over 38% in the BIB design; it was greater 

for raters 2 and 5 that scored less in the unbalanced design. Furthermore, the percent bias 

in latent class sizes were over 50% for the end categories.

Tables B12 to B16 present the results when 4 categories were used. In general, 

similar patterns were found from conditions that used the 6 categories. Raters with higher 

discrimination had greater percent bias, and MSE was greater for higher criteria location 
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estimates. Moreover, the percent bias was greater for the first criteria estimate. The end 

categories of the latent class sizes were overestimated with percent bias of about 6% and 

8% for the first and fourth latent class sizes, respectively, which were lower than the 

percent bias from the 6 category condition. When non-normality was considered by 

concentrating the latent class sizes in class 2 and 3 (population values of 0.43 each), the 

percent bias was about 50% for the end categories. Finally, when class sizes were 

generated to shift from a higher concentration in class 1 and 2 to a higher concentration in 

class 3 and 4 (Tables B14 and B15), the percent bias was over 250% in fourth category in 

the first condition; it was over 220% in the second condition.  

Standard Errors 

 Appendix C presents the standard deviation, mean standard error, bias, and 

percent bias for the conditions generated in this study. In general, the percent bias in 

standard errors was greater for raters with higher discrimination. Furthermore, percent 

bias was greater for raters that scored fewer essays in the unbalanced design.

The different conditions examined in this study seemed to affect percent bias in 

the standard errors of the latent class sizes. For example, when raters were stricter or 

more lenient, the percent bias of standard errors increased for the end categories when 

compared to Table C1, which represented the condition with population values of 

parameters without rater severity. Similarly, non-normality of the latent class sizes also 

increased the percent bias for the end categories, while the shift in the class sizes had 

greater percent bias for latent class sizes that did not have the concentration of class size. 

For example when classes 1 and 2 were larger, classes 3 and 4 had a greater percent bias 

than classes 1 and 2, which was also the case for the bias in class size estimates. As these 
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results indicate, the findings from the standard error estimates were also consistent with 

findings from DeCarlo (2008) and from DeCarlo (2010).  
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Chapter V 

SUMMARY AND DISCUSSION

5.1 Summary

The use of CR items to evaluate examinee ability has increased over the years, 

which can be attributed to its role in validity. There are important skills that cannot be 

fully measured when only MC items are used (Livingston, 2009). CR items ask test 

takers to construct their own answer, which requires the use of raters. This introduces a 

subjective layer into scoring CR items, because scores given by the same rater can also 

differ across scoring occasions. Yet, scores generated from CR items must be reliable and 

valid, regardless of when an individual takes the test.

Differences in rater scores between testing administrations raise the issue of rater 

drift, which occurs when raters change their scoring behavior over different scoring 

occasions. Studies have found evidence of rater drift in real-world data (e.g., Congdon & 

McQueen, 2000) and have suggested the use of rater models (e.g., IRT models and the 

latent class SDT model) to adjust for rater effects such as rater severity when scoring CR 

items. However, the effect of rater drift on model-based classifications of essays into 

latent classes defined by the scoring rubric has not been studied comprehensively. To 

address these issues, this study had two main goals: (1) to examine how changes in rater 

behavior – rater drift – affect model-based classification and (2) to investigate the ability 

of different rater models to detect rater drift. These objectives were addressed using an 

analysis of real-world data and simulation studies.  
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Empirical study 1: Teacher certification test. In the empirical study, a teacher 

certification test and a high school writing test were used to identify patterns of rater drift 

using the latent class SDT model and IRT models. Parameter estimates from the rater 

models were used to detect patterns of rater drift. The teacher certification test was scored 

by 32 raters over 7 testing administrations on a 1 to 6 scale.

Plots of rater parameters showed minor individual variation in drift. These 

changes in rater behavior reflected variations in rater severity and in rater discrimination. 

Regression was used to summarize rater severity, which showed no significant linear (and 

nonlinear) trends; there were no significant trends for rater discrimination.  Measures of 

classification (i.e., proportion correctly classified and lambda) showed stable estimates of 

classification accuracy for the seven testing administrations. Although there was evidence 

of rater drift in rater severity and in rater discrimination, these variations had a minimal 

effect on classification accuracy.

Empirical study 2: High school writing test. In the second phase of empirical 

analysis, the high school writing test was used to examine the effect of rater drift on 

classification accuracy and also to investigate patterns of rater drift using different rater 

models. This data differed from the teacher certification test in that there were 18 raters 

scoring over 12 months on a 1 to 4 scale.  

This study produced results that were unexpected; one of the most notable results 

was that the discrimination parameters from the latent class SDT model showed a 

significant increase in parameter estimates, whereas the IRT models showed stable 

estimates across the scoring occasions. The estimated latent class sizes showed a non-

normal distribution, with a greater class size in the middle scoring categories (i.e., 2 and 
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3). Estimates of classification accuracy showed minor changes over the 12 scoring 

occasions. Unlike the teacher certification test, results from the high school writing test 

showed differences between the latent class SDT model and IRT models that contradicted 

with respective to measures of rater discrimination. 

Simulation study 1: Effect of rater drift on classification accuracy. Two 

simulation studies were conduced. In the first study, the effect of rater drift on 

classification accuracy was investigated. Using the latent class SDT model, data 

reflecting raters becoming stricter, more lenient, and a combination of raters that were 

both stricter and more lenient were generated over two scoring occasions. A separate 

condition was created that showed an increase in rater discrimination between two 

scoring occasions. Results showed that changes in rater severity had a minimal effect on 

classification accuracy. On the other hand, rater discrimination had a greater effect on 

classification accuracy – for an average increase in rater discrimination of two units, 

classification accuracy increased by about 20%.  

Simulation study 2: Effect of rater drift on parameters of rater models. In 

the second simulation study, the effect of rater drift on parameter estimates of the GR 

model was examined using data generated from the latent class SDT model. Results 

showed that the GR model was able to detect changes in rater severity and in rater 

discrimination. This indicated that the GR model was sensitive to detect changes in both 

rater severity and in rater discrimination using data generated from the latent class SDT 

model.

The effect of different latent class sizes using data generated from the latent class 

SDT model on parameter estimates of the GR model was also examined. In general, 
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when the distribution of latent class sizes were non-normal with a greater concentration 

of class size in the middle scoring categories, the GR model underestimated rater 

discrimination.  

Finally, the effect of shifting latent class sizes on parameter estimates of rater 

models was examined; this represented a greater concentration of scores in the higher 

scoring categories during the second scoring occasion than in the first scoring occasion, 

thereby creating a shift in the latent class sizes. This condition affected estimates of the 

criteria parameter for the latent class SDT model and the location parameters of the GR 

model to shift down. However, estimates of rater discrimination remained stable. This 

effect was consistent with the interpretation of the latent class sizes, where there were 

greater proportions of scores in the higher scoring categories, reflecting leniency among 

raters.  

5.2 Discussion 

Implication for rater training: Rater discrimination. This study showed that 

rater training focused on rater severity is an ineffective method to improve classification 

accuracy. Test developers and assessment agencies invest enormous amounts of time and 

energy to train raters using measures of agreement based on rater severity. This study 

reiterates an important result that has implication for rater training – raters should begin 

to focus on improving how well they discriminate between latent classes defined by the 

scoring rubric, because this plays an important role in determining how well raters 

classify an essay. This finding had been noted in previous studies (e.g., DeCarlo, 2002), 

but the literature on CR scoring is still dominated by training focused on rater severity. 
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As this study showed, changes in rater severity affected classification accuracy in only 

minor ways.  

This study is one of the first to examine rater discrimination over time. Not many 

studies have examined rater discrimination in the context of rater drift. In fact, most rater 

models such as the FACETS model and the PC model do not estimate rater 

discrimination; these rater models constrain rater discrimination to be equal across all 

raters. Yet, empirical results from both the teacher certification test and the high school 

writing test showed notable differences in rater discrimination; in fact, rater 

discrimination was normally distributed between raters. Moreover, there were differences 

in rater discrimination for the same rater over time.  

As demonstrated in this study, the use of rater discrimination to identify rater 

behavior is important and cannot be ignored – rater discrimination cannot be assumed to 

be equal across all raters. Given the significant role that rater discrimination plays on 

improving the quality of classification, the inclusion of rater discrimination in rater 

models is both empirically and theoretically motivated.  

Classification of constructed responses. This study showed that a latent class 

SDT framework to study rater drift is useful as it presents additional insights into the 

behavior of raters. This approach differs from traditional rater models such as IRT that 

ranks constructed responses into a continuous latent trait. In the latent class SDT model, 

the interpretations of the latent classes are derived from the scoring rubric, which 

provides a natural context for conceptualizing CR scoring. For example, if an essay is 

classified into a “2,” the scoring rubric provides a detailed description of the ability that 

the examinee demonstrated through the constructed response. The description provided in 
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the scoring rubric is important, because raters are trained on the basis of its description to 

score essays. As such, these classifications provide diagnostic feedback to examinees that 

are reflected in the scoring rubric used by the raters. On the other hand, it may be difficult 

to interpret latent scores derived from other rater models, because its relationship with the 

scoring rubric may not be clear.  

Another benefit in using the latent class approach is the derivation of intersection 

criteria locations. As illustrated in the plots of rater criteria estimates in this study, the 

intersection criteria locations provide a relative guide on the severity of raters. Estimates 

of the relative criteria above the intersection criteria location may imply stricter rating, 

while estimates below may indicate lenient scoring. Although this location may be 

subjective, the close resemblance it showed with parameter estimates in the two real-

world examples indicates its usefulness for diagnosing rater severity. These locations 

cannot be derived using an IRT framework, because the conceptual approach is different 

in that there are no clear locations to distinguish intersections.

The use of latent classes to examine rater behavior also allows an examination of 

classification. This measure can be used to compare different patterns of rater drift as 

demonstrated in this study. In the CR scoring setting, where raters are assumed to classify 

essays into a score defined by the scoring rubric, classification accuracy provides an 

important statistic that examines the quality of classification. Given the natural 

inclination in CR scoring to measure the classification accuracy of raters, this approach 

has not been studied in the context of rater drift. In light of these findings, this study adds 

to the literature in its understanding and implications for rater drift.  
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Treatment of examinee ability: Discrete versus continuous measures. This 

study also showed an important distinction between IRT models and the latent class SDT 

model as models for studying rater drift. Although the main difference between the two 

models lies in the treatment of examinee ability – whether to treat them as discrete or as a 

continuous latent measure – this distinction has led to important implications in assessing 

rater behavior.

This study found that the latent class SDT model is a useful model to examine 

rater drift. The latent class SDT model was able to detect differences in rater behavior 

that was comparable to IRT models. However, this study also found that when examinee 

ability was non-normal, parameter estimates of rater discrimination can lead to greater 

bias when using IRT models in comparison to the latent class SDT model. In both the 

latent class SDT model and the GR model, rater discrimination is the slope parameter of 

examinee ability. When examinee ability is treated as a continuous latent variable, the 

variance of examinee ability can affect parameter estimates of rater discrimination, which 

can subsequently also affect estimates of rater severity. As demonstrated in the high 

school writing test, examinee ability can be non-normal in that there can be a greater 

concentration of scores in the middle categories. Given that most IRT models assume 

examine ability to be normally distributed with fixed variance, this assumption must be 

checked for determining the type of rater model to use.  

Studies of rater drift constitute an important and practical aspect of educational 

measurement. The use of CR items to measure examinee ability is increasing, and an 

attempt to understand errors resulting from human scoring behavior serves as an 

important step to refining how CR items should be measured. The study of rater drift is 
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important with respect to this growing area of CR scoring, because rater errors associated 

with changes in their behavior and their effect on model-based scores have not been 

studied comprehensively. With respect to these considerations, this study adds to the 

growing literature on assessing student ability based on subjective measures of rater 

scores. As this study concludes, the findings from this study provide new and important 

understanding of CR scoring and issues that emerge in practice, especially in exploring 

the effect rater drift has on different rater models. 

5.3 Limitations and Future Research 

There are several limitations to this study that could be addressed in future 

research. For example, in the high school writing test, there was a discrepancy in the 

results between the latent class SDT model and the IRT models. The discrimination 

parameter estimates were increasing over the twelve testing administrations for the latent 

class SDT model, while they were stable in the IRT models. Based on results from the 

simulation study, an increase in rater discrimination should also increase classification 

accuracy. However, classification accuracy remained stable and only fluctuated in minor 

ways. Several conditions including an examination of non-normality in latent class size 

distributions have been investigated using simulations, yet a clear understanding of the 

stability in classification accuracy has not been fully resolved. This requires further study.  

The inference generated from the simulation study and results from the empirical 

study are only valid for specific conditions and substantive settings motivated in this 

study. A wider range of values can be examined for the simulation study that includes the 

effect of classification accuracy for other rater errors resulting from rater drift. Rater 
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effects such as scale shrinkage or null categories, where a rater refuses to use a particular 

scoring category, may have implications on classification accuracy. The literature on rater 

drift is mostly dominated by studies of rater severity, yet other forms of rater errors can 

be studied.

This study also ignored characteristics of the item, such as item difficulty or item 

discrimination, which may affect rater scores. DeCarlo (2010) examined the use of a 

hierarchical rater model using signal detection theory to implement item characteristics 

into the latent class SDT model. Extensions of the hierarchical rater model to examine the 

effect of rater drift on classification can be investigated in future research. 
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Appendix B 

Parameter Estimates, Bias, Percent Bias, and MSE  

Table B1. Intersection Point Criteria, d = Normal 4, BIB, 6 Categories  with 
Normal Class Sizes 

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

216 d1 2.0 1.956 –0.0438 2.190 0.041

216 d2 3.0 3.045 0.0454 1.513 0.153

216 d3 3.0 3.029 0.0294 0.980 0.157

216 d4 4.0 4.040 0.0398 0.995 0.301

216 d5 4.0 3.995 –0.0046 0.115 0.250

216 d6 4.0 4.043 0.0429 1.073 0.224

216 d7 4.0 3.997 –0.0027 0.068 0.269

216 d8 5.0 4.916 –0.0843 1.686 0.406

216 d9 5.0 4.928 –0.0725 1.450 0.377

216 d10 6.0 5.555 –0.4453 7.422 0.707

c11 1.0 0.910 –0.0899 8.990 0.119

c12 3.0 2.884 –0.1159 3.863 0.155

c13 5.0 4.901 –0.0994 1.988 0.302

c14 7.0 6.914 –0.0865 1.236 0.475

c15 9.0 8.905 –0.0946 1.051 0.686

c21 1.5 1.346 –0.1540 10.267 0.281

c22 4.5 4.524 0.0236 0.524 0.528

c23 7.5 7.555 0.0546 0.728 0.884

c24 10.5 10.698 0.1975 1.881 1.794

c25 13.5 13.850 0.3497 2.590 3.024

c31 1.5 1.274 –0.2265 15.100 0.268

c32 4.5 4.467 –0.0332 0.738 0.495

c33 7.5 7.607 0.1074 1.432 1.019

c34 10.5 10.711 0.2112 2.011 1.865

c35 13.5 13.822 0.3221 2.386 2.947

c41 2.0 1.758 –0.2420 12.100 0.519

c42 6.0 5.959 –0.0409 0.682 1.062

c43 10.0 10.145 0.1446 1.446 1.993

c44 14.0 14.282 0.2815 2.011 3.890

c45 18.0 18.450 0.4498 2.499 6.712

c51 2.0 1.711 –0.2891 14.455 0.561

c52 6.0 5.880 –0.1198 1.997 1.064

c53 10.0 10.053 0.0525 0.525 1.808

c54 14.0 14.122 0.1222 0.873 2.985

c55 18.0 18.328 0.3284 1.824 5.130
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Size Parameter Value Estimate Bias %Bias MSE

c61 2.0 1.723 –0.2766 13.830 0.542

c62 6.0 5.950 –0.0503 0.838 0.818

c63 10.0 10.180 0.1795 1.795 1.760

c64 14.0 14.360 0.3602 2.573 3.074

c65 18.0 18.516 0.5159 2.866 4.681

c71 2.0 1.715 –0.2850 14.250 0.553

c72 6.0 5.881 –0.1190 1.983 0.893

c73 10.0 10.106 0.1064 1.064 2.025

c74 14.0 14.149 0.1494 1.067 3.704

c75 18.0 18.407 0.4068 2.260 5.771

c81 2.5 1.973 –0.5274 21.095 1.008

c82 7.5 7.247 –0.2533 3.378 1.530

c83 12.5 12.410 –0.0905 0.724 2.539

c84 17.5 17.467 –0.0335 0.191 4.862

c85 22.5 22.601 0.1005 0.447 7.933

c91 2.5 1.939 –0.5611 22.443 0.959

c92 7.5 7.113 –0.3874 5.165 1.250

c93 12.5 12.431 –0.0690 0.552 2.635

c94 17.5 17.506 0.0062 0.035 5.037

c95 22.5 22.586 0.0857 0.381 8.017

c101 3.0 2.270 –0.7299 24.331 1.351

c102 9.0 8.131 –0.8690 9.656 2.494

c103 15.0 13.935 –1.0646 7.097 4.480

c104 21.0 19.818 –1.1821 5.629 7.953

c105 27.0 25.757 –1.2426 4.602 12.395

Latent class sizes 

  

 Class 1 0.080 0.089 0.0090 11.250 

 Class 2 0.170 0.166 –0.0040 2.353 

 Class 3 0.250 0.242 –0.0080 3.200 

 Class 4 0.250 0.244 –0.0060 2.400 

 Class 5 0.170 0.168 –0.0020 1.176 

 Class 6 0.080 0.092 0.0120 15.000 
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Table B2. Criteria Shifted Up (Strict Raters), d = Normal 4, BIB, 6 Categories 
with Normal Class Sizes 

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

216 d1 2.0 1.966 –0.0340 1.700  0.051 

216 d2 3.0 3.006 0.0057 0.190  0.141 

216 d3 3.0 3.020 0.0200 0.667  0.159 

216 d4 4.0 3.815 –0.1851 4.628  0.292 

216 d5 4.0 3.828 –0.1719 4.298  0.280 

216 d6 4.0 3.760 –0.2397 5.993  0.340 

216 d7 4.0 3.842 –0.1585 3.963  0.310 

216 d8 5.0 4.429 –0.5706 11.412  0.680 

216 d9 5.0 4.524 –0.4762 9.524  0.633 

216 d10 6.0 5.380 –0.6205 10.342  0.743 

c11 1.0 0.646 –0.3537 35.370  0.325 

c12 3.0 2.709 –0.2913 9.710  0.340 

c13 5.0 4.761 –0.2392 4.784  0.445 

c14 7.0 6.804 –0.1960 2.800  0.608 

c15 9.0 8.810 –0.1902 2.113  0.954 

c21 1.5 1.041 –0.4594 30.627  0.524 

c22 4.5 4.189 –0.3111 6.913  0.620 

c23 7.5 7.321 –0.1793 2.391  1.043 

c24 10.5 10.349 –0.1514 1.442  1.797 

c25 13.5 13.539 0.0385 0.285  2.539 

c31 1.5 1.036 –0.4642 30.947  0.456 

c32 4.5 4.230 –0.2701 6.002  0.668 

c33 7.5 7.335 –0.1647 2.196  1.129 

c34 10.5 10.457 –0.0435 0.414  1.746 

c35 13.5 13.619 0.1193 0.884  2.844 

c41 3.0 2.200 –0.8005 26.683  1.346 

c42 7.0 6.285 –0.7147 10.210  1.747 

c43 11.0 10.216 –0.7842 7.129  2.901 

c44 15.0 14.150 –0.8496 5.664  4.479 

c45 19.0 18.165 –0.8352 4.396  5.998 

c51 3.0 2.115 –0.8846 29.487  1.392 

c52 7.0 6.326 –0.6737 9.624  1.487 

c53 11.0 10.188 –0.8125 7.386  2.555 

c54 15.0 14.173 –0.8268 5.512  4.370 

c55 19.0 18.202 –0.7982 4.201  5.830 

c61 3.0 2.134 –0.8665 28.883  1.349 

c62 7.0 6.188 –0.8116 11.594  2.058 

c63 11.0 9.990 –1.0100 9.182  3.487 

c64 15.0 13.935 –1.0650 7.100  5.135 
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Size Parameter Value Estimate Bias %Bias MSE

c65 19.0 17.917 –1.0832 5.701  7.160 

c71 3.0 2.177 –0.8232 27.440  1.440 

c72 7.0 6.330 –0.6705 9.579  1.853 

c73 11.0 10.315 –0.6846 6.224  2.960 

c74 15.0 14.187 –0.8133 5.422  4.517 

c75 19.0 18.229 –0.7706 4.056  7.220 

c81 3.5 2.060 –1.4401 41.145  2.840 

c82 8.5 6.868 –1.6317 19.196  3.864 

c83 13.5 11.469 –2.0314 15.048  6.617 

c84 18.5 16.140 –2.3602 12.758  10.410 

c85 23.5 20.885 –2.6150 11.128  14.825 

c91 3.5 2.187 –1.3135 37.528  2.689 

c92 8.5 7.123 –1.3766 16.195  3.521 

c93 13.5 11.754 –1.7457 12.931  6.201 

c94 18.5 16.385 –2.1148 11.431  9.724 

c95 23.5 21.194 –2.3065 9.815  13.547 

c101 3.0 1.295 –1.7046 56.819  3.728 

c102 9.0 7.226 –1.7745 19.716  4.568 

c103 15.0 12.975 –2.0254 13.502  6.827 

c104 21.0 18.656 –2.3440 11.162  10.350 

c105 27.0 24.468 –2.5317 9.377  14.092 

Latent class sizes 

  

 Class 1 0.080 0.108 0.0280 35.000 

 Class 2 0.170 0.163 –0.0070 4.118 

 Class 3 0.250 0.248 –0.0020 0.800 

 Class 4 0.250 0.240 –0.0100 4.000 

 Class 5 0.170 0.159 –0.0110 6.471 

 Class 6 0.080 0.083 0.0030 3.750 
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Table B3. Criteria Shifted Down (Lenient Raters), d = Normal 4, BIB, 6 Categories 
with Normal Class Sizes 

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

216 d1 2.0 1.910 –0.0901 4.505  0.049 

216 d2 3.0 2.949 –0.0508 1.693  0.130 

216 d3 3.0 3.007 0.0067 0.223  0.122 

216 d4 4.0 3.831 –0.1689 4.223  0.309 

216 d5 4.0 3.678 –0.3219 8.048  0.319 

216 d6 4.0 3.783 –0.2167 5.418  0.267 

216 d7 4.0 3.784 –0.2161 5.403  0.295 

216 d8 5.0 4.470 –0.5305 10.610  0.636 

216 d9 5.0 4.520 –0.4800 9.600  0.563 

216 d10 6.0 5.540 –0.4604 7.673  0.563 

c11 1.0 0.885 –0.1152 11.520  0.204 

c12 3.0 2.942 –0.0580 1.933  0.235 

c13 5.0 4.880 –0.1202 2.404  0.347 

c14 7.0 6.956 –0.0443 0.633  0.506 

c15 9.0 8.946 –0.0542 0.602  0.730 

c21 1.5 1.445 –0.0552 3.680  0.286 

c22 4.5 4.550 0.0503 1.118  0.556 

c23 7.5 7.628 0.1277 1.703  0.952 

c24 10.5 10.702 0.2022 1.926  1.572 

c25 13.5 13.741 0.2408 1.784  2.308 

c31 1.5 1.411 –0.0894 5.960  0.251 

c32 4.5 4.619 0.1186 2.636  0.394 

c33 7.5 7.735 0.2347 3.129  0.923 

c34 10.5 10.884 0.3842 3.659  1.627 

c35 13.5 14.034 0.5343 3.958  2.712 

c41 1.0 0.966 –0.0344 3.440  0.325 

c42 5.0 4.944 –0.0563 1.126  0.578 

c43 9.0 8.966 –0.0345 0.383  1.485 

c44 13.0 12.901 –0.0995 0.765  2.887 

c45 17.0 16.941 –0.0588 0.346  4.727 

c51 1.0 0.792 –0.2085 20.850  0.324 

c52 5.0 4.682 –0.3184 6.368  0.592 

c53 9.0 8.617 –0.3833 4.259  1.415 

c54 13.0 12.431 –0.5690 4.377  2.642 

c55 17.0 16.267 –0.7334 4.314  4.471 

c61 1.0 0.928 –0.0723 7.230  0.315 

c62 5.0 4.893 –0.1070 2.140  0.639 

c63 9.0 8.799 –0.2008 2.231  1.182 

c64 13.0 12.758 –0.2418 1.860  2.451 
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Size Parameter Value Estimate Bias %Bias MSE

c65 17.0 16.780 –0.2202 1.295  4.290 

c71 1.0 0.895 –0.1049 10.490  0.286 

c72 5.0 4.863 –0.1368 2.736  0.534 

c73 9.0 8.826 –0.1741 1.935  1.407 

c74 13.0 12.816 –0.1836 1.412  2.307 

c75 17.0 16.804 –0.1965 1.156  4.436 

c81 1.5 1.281 –0.2193 14.619  0.463 

c82 6.5 6.053 –0.4475 6.884  1.102 

c83 11.5 10.778 –0.7223 6.281  2.910 

c84 16.5 15.409 –1.0909 6.631  5.439 

c85 21.5 20.224 –1.2762 5.936  8.360 

c91 1.5 1.294 –0.2062 13.748  0.493 

c92 6.5 6.112 –0.3880 5.933  0.972 

c93 11.5 10.938 –0.5620 4.887  2.729 

c94 16.5 15.677 –0.8227 4.986  5.033 

c95 21.5 20.521 –0.9795 4.556  8.085 

c101 3.0 2.403 –0.5975 19.917  0.979 

c102 9.0 8.531 –0.4690 5.211  1.382 

c103 15.0 14.472 –0.5282 3.522  2.538 

c104 21.0 20.421 –0.5791 2.757  5.071 

c105 27.0 26.297 –0.7027 2.603  7.515 

Latent class sizes 

  

 Class 1 0.080 0.084 0.0040 5.000 

 Class 2 0.170 0.159 –0.0110 6.471 

 Class 3 0.250 0.235 –0.0150 6.000 

 Class 4 0.250 0.246 –0.0040 1.600 

 Class 5 0.170 0.168 –0.0020 1.176 

 Class 6 0.080 0.109 0.0290 36.250 
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Table B4. Criteria Shifted Up and Down (Strict and Lenient Raters), d =Normal 4,

BIB, 6 Categories with Normal Class Sizes 

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

216 d1 2.0 1.965 –0.0345 1.725  0.054 

216 d2 3.0 3.043 0.0434 1.447  0.197 

216 d3 3.0 3.007 0.0074 0.247  0.131 

216 d4 4.0 3.859 –0.1405 3.513  0.296 

216 d5 4.0 3.828 –0.1721 4.303  0.295 

216 d6 4.0 3.892 –0.1079 2.698  0.289 

216 d7 4.0 3.840 –0.1605 4.013  0.330 

216 d8 5.0 4.728 –0.2722 5.444  0.356 

216 d9 5.0 4.495 –0.5048 10.096  0.632 

216 d10 6.0 5.151 –0.8494 14.157  1.063 

c11 2.0 1.926 –0.0739 3.695  0.193 

c12 4.0 3.944 –0.0564 1.410  0.289 

c13 6.0 5.953 –0.0472 0.787  0.517 

c14 8.0 7.936 –0.0637 0.796  0.736 

c15 10.0 10.007 0.0070 0.070  1.117 

c21 1.5 1.412 –0.0881 5.873  0.318 

c22 4.5 4.564 0.0641 1.424  0.773 

c23 7.5 7.662 0.1620 2.160  1.245 

c24 10.5 10.821 0.3207 3.054  2.550 

c25 13.5 13.976 0.4756 3.523  3.440 

c31 0.5 0.363 –0.1372 27.440  0.274 

c32 3.5 3.536 0.0355 1.014  0.454 

c33 6.5 6.589 0.0886 1.363  0.762 

c34 9.5 9.608 0.1078 1.135  1.289 

c35 12.5 12.756 0.2556 2.045  2.158 

c41 3.0 2.781 –0.2190 7.300  0.550 

c42 7.0 6.750 –0.2501 3.573  1.234 

c43 11.0 10.677 –0.3230 2.936  2.269 

c44 15.0 14.692 –0.3079 2.053  3.969 

c45 19.0 18.590 –0.4103 2.159  6.154 

c51 3.0 2.671 –0.3294 10.980  0.546 

c52 7.0 6.633 –0.3672 5.246  1.191 

c53 11.0 10.588 –0.4119 3.745  2.304 

c54 15.0 14.585 –0.4152 2.768  3.748 

c55 19.0 18.469 –0.5311 2.795  5.197 

c61 1.0 0.884 –0.1157 11.570  0.433 

c62 5.0 4.887 –0.1134 2.268  0.798 

c63 9.0 8.870 –0.1302 1.447  1.420 

c64 13.0 12.888 –0.1125 0.865  2.864 
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Size Parameter Value Estimate Bias %Bias MSE

c65 17.0 16.884 –0.1158 0.681  4.886 

c71 1.0 0.822 –0.1776 17.760  0.307 

c72 5.0 4.724 –0.2763 5.526  0.764 

c73 9.0 8.754 –0.2461 2.734  1.591 

c74 13.0 12.702 –0.2982 2.293  3.138 

c75 17.0 16.697 –0.3034 1.784  5.708 

c81 3.5 2.938 –0.5625 16.073  0.869 

c82 8.5 7.967 –0.5327 6.267  1.473 

c83 13.5 12.798 –0.7022 5.201  2.663 

c84 18.5 17.612 –0.8878 4.799  4.645 

c85 23.5 22.576 –0.9238 3.931  7.417 

c91 1.5 1.243 –0.2575 17.167  0.565 

c92 6.5 5.978 –0.5217 8.026  1.360 

c93 11.5 10.472 –1.0277 8.937  3.484 

c94 16.5 15.193 –1.3074 7.924  5.901 

c95 21.5 19.883 –1.6167 7.520  10.145 

c101 2.0 1.557 –0.4432 22.161  0.876 

c102 8.0 6.961 –1.0388 12.985  2.187 

c103 14.0 12.394 –1.6059 11.471  4.526 

c104 20.0 17.667 –2.3328 11.664  9.488 

c105 26.0 23.123 –2.8766 11.064  14.970 

Latent class sizes 

 

 Class 1 0.080 0.085 0.0050 6.250 

 Class 2 0.170 0.165 –0.0050 2.941 

 Class 3 0.250 0.245 –0.0050 2.000 

 Class 4 0.250 0.246 –0.0040 1.600 

 Class 5 0.170 0.168 –0.0020 1.176 

 Class 6 0.080 0.091 0.0110 13.750 
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Table B5. Intersection Point Criteria, d = Normal 4, Unbalanced, 6 Categories 
with Normal Class Sizes 

   

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

370 d1 2.0 2.081 0.0812 4.060  0.043 

50 d2 3.0 2.741 –0.2591 8.637  0.321 

200 d3 3.0 3.054 0.0540 1.800  0.144 

140 d4 4.0 3.710 –0.2903 7.258  0.336 

60 d5 4.0 3.431 –0.5686 14.215  0.555 

120 d6 4.0 4.097 0.0969 2.423  0.299 

280 d7 4.0 4.532 0.5321 13.303  0.511 

400 d8 5.0 4.396 –0.6042 12.084  0.608 

230 d9 5.0 5.094 0.0937 1.874  0.271 

310 d10 6.0 4.977 –1.0226 17.043  1.376 

c11 1.0 0.978 –0.0219 2.190  0.098 

c12 3.0 3.078 0.0776 2.587  0.195 

c13 5.0 5.202 0.2018 4.036  0.308 

c14 7.0 7.348 0.3479 4.970  0.519 

c15 9.0 9.446 0.4459 4.954  0.823 

c21 1.5 1.319 –0.1808 12.053  0.865 

c22 4.5 4.062 –0.4379 9.731  1.407 

c23 7.5 6.899 –0.6007 8.009  2.276 

c24 10.5 9.799 –0.7007 6.673  3.481 

c25 13.5 12.574 –0.9260 6.859  5.530 

c31 1.5 1.358 –0.1418 9.453  0.328 

c32 4.5 4.524 0.0242 0.538  0.602 

c33 7.5 7.624 0.1244 1.659  0.953 

c34 10.5 10.809 0.3093 2.946  1.724 

c35 13.5 13.990 0.4903 3.632  2.892 

c41 2.0 1.452 –0.5484 27.420  0.797 

c42 6.0 5.403 –0.5967 9.945  1.464 

c43 10.0 9.334 –0.6665 6.665  2.430 

c44 14.0 13.177 –0.8230 5.879  3.858 

c45 18.0 17.089 –0.9113 5.063  5.952 

c51 2.0 1.430 –0.5696 28.480  1.137 

c52 6.0 4.945 –1.0547 17.578  2.102 

c53 10.0 8.662 –1.3377 13.377  3.655 

c54 14.0 12.209 –1.7915 12.796  6.229 

c55 18.0 15.964 –2.0361 11.312  9.623 

c61 2.0 1.664 –0.3364 16.820  0.662 

c62 6.0 5.977 –0.0229 0.382  1.270 

c63 10.0 10.309 0.3086 3.086  2.399 

c64 14.0 14.546 0.5462 3.901  4.252 
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Size Parameter Value Estimate Bias %Bias MSE

c65 18.0 18.765 0.7650 4.250  6.402 

c71 2.0 2.084 0.0842 4.210  0.517 

c72 6.0 6.713 0.7132 11.887  1.261 

c73 10.0 11.389 1.3893 13.893  3.895 

c74 14.0 16.071 2.0706 14.790  7.315 

c75 18.0 20.689 2.6892 14.940  12.081 

c81 2.5 1.748 –0.7525 30.101  1.038 

c82 7.5 6.379 –1.1211 14.948  2.029 

c83 12.5 10.976 –1.5237 12.189  4.065 

c84 17.5 15.638 –1.8623 10.642  6.669 

c85 22.5 20.327 –2.1734 9.660  9.710 

c91 2.5 1.995 –0.5052 20.208  0.723 

c92 7.5 7.465 –0.0350 0.467  0.843 

c93 12.5 12.805 0.3045 2.436  2.418 

c94 17.5 18.125 0.6253 3.573  4.416 

c95 22.5 23.380 0.8798 3.910  6.412 

c101 3.0 1.854 –1.1457 38.188  1.874 

c102 9.0 7.309 –1.6912 18.791  4.092 

c103 15.0 12.473 –2.5270 16.847  8.913 

c104 21.0 17.773 –3.2274 15.369  14.923 

c105 27.0 23.025 –3.9753 14.723  22.024 

   

Latent class sizes 

   

 Class 1 0.080 0.108 0.0280 35.000  

 Class 2 0.170 0.163 –0.0070 4.118  

 Class 3 0.250 0.248 –0.0020 0.800  

 Class 4 0.250 0.240 –0.0100 4.000  

 Class 5 0.170 0.159 –0.0110 6.471  

 Class 6 0.080 0.083 0.0030 3.750  
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Table B6. Criteria Shifted Up (Strict Raters), d = Normal 4, Unbalanced, 
6 Categories with Normal Class Sizes 

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

370 d1 2.0 2.070 0.0696 3.480  0.032 

50 d2 3.0 2.589 –0.4114 13.713  0.393 

200 d3 3.0 2.936 –0.0642 2.140  0.168 

140 d4 4.0 3.532 –0.4680 11.700  0.451 

60 d5 4.0 3.043 –0.9565 23.913  1.124 

120 d6 4.0 3.659 –0.3406 8.515  0.292 

280 d7 4.0 4.153 0.1531 3.828  0.207 

400 d8 5.0 4.074 –0.9265 18.530  1.106 

230 d9 5.0 4.910 –0.0896 1.792  0.224 

310 d10 6.0 4.928 –1.0725 17.875  1.407 

c11 1.0 0.697 –0.3026 30.260  0.196 

c12 3.0 2.834 –0.1664 5.547  0.142 

c13 5.0 4.954 –0.0462 0.924  0.191 

c14 7.0 7.096 0.0961 1.373  0.282 

c15 9.0 9.240 0.2395 2.661  0.438 

c21 1.5 0.629 –0.8710 58.067  1.546 

c22 4.5 3.369 –1.1307 25.127  2.180 

c23 7.5 6.230 –1.2702 16.936  3.252 

c24 10.5 8.986 –1.5139 14.418  5.133 

c25 13.5 11.936 –1.5641 11.586  6.822 

c31 1.5 0.804 –0.6965 46.433  0.855 

c32 4.5 3.977 –0.5231 11.624  1.156 

c33 7.5 7.065 –0.4355 5.807  1.466 

c34 10.5 10.129 –0.3706 3.530  2.310 

c35 13.5 13.332 –0.1676 1.241  3.233 

c41 3.0 1.858 –1.1417 38.057  2.060 

c42 7.0 5.620 –1.3803 19.719  2.969 

c43 11.0 9.319 –1.6812 15.284  4.743 

c44 15.0 13.098 –1.9023 12.682  7.023 

c45 19.0 16.861 –2.1390 11.258  9.307 

c51 3.0 1.433 –1.5672 52.240  3.180 

c52 7.0 4.730 –2.2705 32.436  6.240 

c53 11.0 8.021 –2.9788 27.080  10.537 

c54 15.0 11.461 –3.5392 23.595  15.438 

c55 19.0 14.904 –4.0962 21.559  21.402 

c61 3.0 1.862 –1.1379 37.930  2.020 

c62 7.0 5.706 –1.2941 18.487  2.631 

c63 11.0 9.640 –1.3600 12.364  3.344 

c64 15.0 13.539 –1.4611 9.741  4.321 
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Size Parameter Value Estimate Bias %Bias MSE

c65 19.0 17.491 –1.5092 7.943  5.933 

c71 3.0 2.114 –0.8865 29.550  1.649 

c72 7.0 6.560 –0.4398 6.283  1.281 

c73 11.0 10.969 –0.0306 0.278  1.756 

c74 15.0 15.289 0.2885 1.923  2.882 

c75 19.0 19.765 0.7650 4.026  4.597 

c81 3.5 1.672 –1.8277 52.220  4.234 

c82 8.5 6.099 –2.4012 28.249  7.364 

c83 13.5 10.395 –3.1048 22.999  11.936 

c84 18.5 14.779 –3.7215 20.116  17.783 

c85 23.5 19.176 –4.3237 18.399  24.450 

c91 3.5 2.073 –1.4273 40.780  2.904 

c92 8.5 7.585 –0.9150 10.765  2.180 

c93 13.5 12.682 –0.8176 6.056  2.680 

c94 18.5 17.905 –0.5955 3.219  3.788 

c95 23.5 23.161 –0.3395 1.445  5.153 

c101 3.0 1.127 –1.8734 62.447  4.245 

c102 9.0 6.527 –2.4731 27.479  7.237 

c103 15.0 11.742 –3.2577 21.718  12.395 

c104 21.0 16.967 –4.0334 19.207  19.638 

c105 27.0 22.436 –4.5639 16.903  26.442 

Latent class sizes 

 

 Class 1 0.080 0.112 0.0320 40.000 

 Class 2 0.170 0.166 –0.0040 2.352 

 Class 3 0.250 0.249 –0.0010 0.400 

 Class 4 0.250 0.235 –0.0150 6.000 

 Class 5 0.170 0.154 –0.0160 9.411 

 Class 6 0.080 0.083 0.0030 3.750 
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Table B7. Criteria Shifted Down (Lenient Raters), d =Normal 4, Unbalanced,
6 Categories with Normal Class Sizes 

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

370 d1 2.0 2.076 0.0762 3.810  0.038 

50 d2 3.0 2.727 –0.2730 9.100  0.387 

200 d3 3.0 2.942 –0.0583 1.943  0.127 

140 d4 4.0 3.416 –0.5842 14.605  0.658 

60 d5 4.0 3.127 –0.8728 21.820  1.025 

120 d6 4.0 3.521 –0.4793 11.983  0.455 

280 d7 4.0 4.023 0.0232 0.580  0.200 

400 d8 5.0 4.004 –0.9958 19.916  1.250 

230 d9 5.0 4.988 –0.0119 0.238  0.288 

310 d10 6.0 4.923 –1.0773 17.955  1.452 

c11 1.0 1.135 0.1347 13.470  0.160 

c12 3.0 3.262 0.2621 8.737  0.243 

c13 5.0 5.397 0.3968 7.936  0.437 

c14 7.0 7.560 0.5599 7.999  0.749 

c15 9.0 9.701 0.7010 7.789  1.102 

c21 1.5 1.175 –0.3254 21.693  1.348 

c22 4.5 4.186 –0.3139 6.976  1.397 

c23 7.5 7.093 –0.4070 5.427  2.220 

c24 10.5 10.053 –0.4466 4.253  4.479 

c25 13.5 13.112 –0.3884 2.877  6.658 

c31 1.5 1.470 –0.0298 1.987  0.342 

c32 4.5 4.547 0.0472 1.049  0.536 

c33 7.5 7.605 0.1046 1.395  0.967 

c34 10.5 10.693 0.1927 1.835  1.722 

c35 13.5 13.822 0.3218 2.384  2.686 

c41 1.0 0.832 –0.1683 16.830  0.587 

c42 5.0 4.450 –0.5502 11.004  1.291 

c43 9.0 8.044 –0.9564 10.627  2.689 

c44 13.0 11.689 –1.3110 10.085  4.835 

c45 17.0 15.559 –1.4413 8.478  8.177 

c51 1.0 0.458 –0.5416 54.160  1.189 

c52 5.0 3.906 –1.0939 21.878  2.321 

c53 9.0 7.370 –1.6303 18.114  4.596 

c54 13.0 10.938 –2.0621 15.862  7.661 

c55 17.0 14.343 –2.6567 15.628  12.610 

c61 1.0 0.651 –0.3495 34.950  0.640 

c62 5.0 4.515 –0.4853 9.706  1.190 

c63 9.0 8.272 –0.7285 8.094  1.971 

c64 13.0 12.075 –0.9252 7.117  3.397 
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Size Parameter Value Estimate Bias %Bias MSE

c65 17.0 16.037 –0.9626 5.662  5.690 

c71 1.0 1.037 0.0374 3.740  0.305 

c72 5.0 5.302 0.3023 6.046  0.859 

c73 9.0 9.534 0.5336 5.929  2.026 

c74 13.0 13.695 0.6947 5.344  3.735 

c75 17.0 18.080 1.0804 6.355  6.005 

c81 1.5 1.263 –0.2369 15.792  0.354 

c82 6.5 5.517 –0.9827 15.118  1.597 

c83 11.5 9.811 –1.6887 14.684  4.467 

c84 16.5 14.001 –2.4987 15.190  8.803 

c85 21.5 18.371 –3.1286 14.552  13.892 

c91 1.5 1.480 –0.0202 1.347  0.537 

c92 6.5 6.938 0.4380 6.697  1.472 

c93 11.5 12.034 0.5344 4.647  2.331 

c94 16.5 17.231 0.7306 4.428  4.401 

c95 21.5 22.743 1.2428 5.780  7.603 

c101 3.0 2.257 –0.7428 24.760  1.087 

c102 9.0 7.614 –1.3861 15.401  3.045 

c103 15.0 12.952 –2.0480 13.653  6.134 

c104 21.0 18.158 –2.8417 13.532  11.917 

c105 27.0 23.476 –3.5245 13.054  18.341 

Latent class sizes 

 

 Class 1 0.080 0.080 0.0000 0.000  

 Class 2 0.170 0.156 –0.0140 8.235  

 Class 3 0.250 0.234 –0.0160 6.400  

 Class 4 0.250 0.248 –0.0020 0.800  

 Class 5 0.170 0.165 –0.0050 2.941  

 Class 6 0.080 0.116 0.0360 45.000  
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Table B8. Criteria Shifted Up and Down (Strict and Lenient Raters), d =Normal 4, 

Unbalanced, 6 Categories with Normal Class Sizes 

   

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

370 d1 2.0 2.092 0.0918 4.590  0.049 

50 d2 3.0 2.603 –0.3966 13.220  0.434 

200 d3 3.0 2.987 –0.0135 0.450  0.159 

140 d4 4.0 3.579 –0.4213 10.533  0.473 

60 d5 4.0 3.181 –0.8188 20.470  0.922 

120 d6 4.0 3.970 –0.0296 0.740  0.278 

280 d7 4.0 4.322 0.3220 8.050  0.285 

400 d8 5.0 4.224 –0.7756 15.512  0.766 

230 d9 5.0 4.795 –0.2047 4.094  0.219 

310 d10 6.0 4.635 –1.3655 22.758  2.085 

c11 2.0 2.159 0.1591 7.955  0.162 

c12 4.0 4.282 0.2822 7.055  0.315 

c13 6.0 6.400 0.4002 6.670  0.547 

c14 8.0 8.522 0.5223 6.529  0.838 

c15 10.0 10.636 0.6356 6.356  1.176 

c21 1.5 1.257 –0.2426 16.173  0.757 

c22 4.5 3.932 –0.5682 12.627  1.457 

c23 7.5 6.722 –0.7780 10.373  2.924 

c24 10.5 9.441 –1.0593 10.089  4.520 

c25 13.5 12.295 –1.2049 8.925  7.109 

c31 0.5 0.456 –0.0437 8.740  0.238 

c32 3.5 3.548 0.0476 1.360  0.352 

c33 6.5 6.622 0.1218 1.874  0.777 

c34 9.5 9.684 0.1835 1.932  1.563 

c35 12.5 12.795 0.2953 2.362  2.598 

c41 3.0 2.587 –0.4127 13.757  0.700 

c42 7.0 6.292 –0.7084 10.120  1.730 

c43 11.0 9.986 –1.0141 9.219  3.413 

c44 15.0 13.717 –1.2827 8.551  5.282 

c45 19.0 17.561 –1.4390 7.574  7.894 

c51 3.0 2.030 –0.9700 32.333  1.814 

c52 7.0 5.461 –1.5392 21.989  3.337 

c53 11.0 8.889 –2.1114 19.195  6.596 

c54 15.0 12.212 –2.7876 18.584  11.243 

c55 19.0 15.682 –3.3180 17.463  15.766 

c61 1.0 0.878 –0.1216 12.160  0.755 

c62 5.0 5.060 0.0602 1.204  1.033 

c63 9.0 9.109 0.1088 1.209  2.142 

c64 13.0 13.160 0.1603 1.233  3.327 
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Size Parameter Value Estimate Bias %Bias MSE

c65 17.0 17.503 0.5027 2.957  6.266 

c71 1.0 1.101 0.1006 10.060  0.547 

c72 5.0 5.482 0.4820 9.640  0.766 

c73 9.0 9.986 0.9863 10.959  2.128 

c74 13.0 14.345 1.3453 10.348  3.859 

c75 17.0 18.944 1.9442 11.436  7.524 

c81 3.5 2.741 –0.7592 21.691  0.969 

c82 8.5 7.144 –1.3563 15.956  2.448 

c83 13.5 11.555 –1.9450 14.407  5.154 

c84 18.5 15.965 –2.5346 13.700  8.703 

c85 23.5 20.407 –3.0930 13.162  13.098 

c91 1.5 1.489 –0.0115 0.769  0.478 

c92 6.5 6.555 0.0551 0.848  0.735 

c93 11.5 11.563 0.0633 0.551  1.411 

c94 16.5 16.302 –0.1981 1.201  2.075 

c95 21.5 21.517 0.0174 0.081  3.927 

c101 2.0 1.496 –0.5039 25.197  0.673 

c102 8.0 6.521 –1.4792 18.490  3.009 

c103 14.0 11.411 –2.5894 18.496  8.324 

c104 20.0 16.186 –3.8137 19.068  17.402 

c105 26.0 21.230 –4.7696 18.345  28.056 

   

Latent class sizes 

   

 Class 1 0.080 0.083 0.0030 3.750  

 Class 2 0.170 0.161 –0.0090 5.294  

 Class 3 0.250 0.243 –0.0070 2.800  

 Class 4 0.250 0.248 –0.0020 0.800  

 Class 5 0.170 0.167 –0.0030 1.765  

 Class 6 0.080 0.099 0.0190 23.750  
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Table B9. Intersection Point Criteria, d = Normal 2, BIB, 6 Categories  with 
Normal Class Sizes 

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

216 d1 0.50 0.456 –0.0440 8.800  0.011 

216 d2 1.00 0.936 –0.0639 6.390  0.026 

216 d3 1.00 0.915 –0.0847 8.470  0.029 

216 d4 2.00 1.911 –0.0890 4.450  0.157 

216 d5 2.00 1.859 –0.1410 7.050  0.122 

216 d6 2.00 1.839 –0.1609 8.045  0.134 

216 d7 2.00 1.896 –0.1036 5.180  0.162 

216 d8 3.00 2.671 –0.3286 10.953  0.379 

216 d9 3.00 2.777 –0.2235 7.450  0.327 

216 d10 4.00 3.305 –0.6945 17.363  0.836 

c11 0.25 0.153 –0.0972 38.880  0.095 

c12 0.75 0.637 –0.1126 15.013  0.101 

c13 1.25 1.131 –0.1189 9.512  0.113 

c14 1.75 1.641 –0.1095 6.257  0.107 

c15 2.25 2.158 –0.0923 4.102  0.106 

c21 0.50 0.321 –0.1789 35.780  0.171 

c22 1.50 1.334 –0.1659 11.060  0.186 

c23 2.50 2.349 –0.1511 6.044  0.210 

c24 3.50 3.368 –0.1324 3.783  0.258 

c25 4.50 4.385 –0.1153 2.562  0.281 

c31 0.50 0.300 –0.1999 39.980  0.206 

c32 1.50 1.310 –0.1898 12.653  0.200 

c33 2.50 2.302 –0.1983 7.932  0.234 

c34 3.50 3.327 –0.1726 4.931  0.259 

c35 4.50 4.319 –0.1814 4.031  0.328 

c41 1.00 0.578 –0.4221 42.210  0.432 

c42 3.00 2.718 –0.2823 9.410  0.772 

c43 5.00 4.870 –0.1301 2.602  1.366 

c44 7.00 6.968 –0.0319 0.456  1.974 

c45 9.00 9.002 0.0018 0.020  2.740 

c51 1.00 0.551 –0.4491 44.910  0.505 

c52 3.00 2.612 –0.3883 12.943  0.679 

c53 5.00 4.675 –0.3252 6.504  0.860 

c54 7.00 6.739 –0.2607 3.724  1.241 

c55 9.00 8.786 –0.2144 2.382  1.758 

c61 1.00 0.523 –0.4768 47.680  0.435 

c62 3.00 2.585 –0.4151 13.837  0.592 

c63 5.00 4.635 –0.3650 7.300  0.884 

c64 7.00 6.660 –0.3398 4.854  1.387 
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c65 9.00 8.680 –0.3198 3.553  1.942 

c71 1.00 0.597 –0.4026 40.260  0.557 

c72 3.00 2.688 –0.3116 10.387  0.886 

c73 5.00 4.774 –0.2261 4.522  1.239 

c74 7.00 6.869 –0.1308 1.869  1.734 

c75 9.00 8.920 –0.0800 0.888  2.647 

c81 1.50 0.705 –0.7950 53.001  1.005 

c82 4.50 3.697 –0.8027 17.838  1.638 

c83 7.50 6.707 –0.7932 10.575  2.520 

c84 10.50 9.711 –0.7888 7.512  3.951 

c85 13.50 12.734 –0.7657 5.672  6.188 

c91 1.50 0.751 –0.7495 49.965  1.057 

c92 4.50 3.852 –0.6480 14.400  1.485 

c93 7.50 6.977 –0.5232 6.976  2.288 

c94 10.50 10.039 –0.4615 4.395  3.711 

c95 13.50 13.162 –0.3382 2.505  5.938 

c101 2.00 0.841 –1.1594 57.970  1.843 

c102 6.00 4.572 –1.4284 23.806  3.410 

c103 10.00 8.255 –1.7452 17.452  5.727 

c104 14.00 12.074 –1.9264 13.760  8.593 

c105 18.00 15.784 –2.2165 12.314  11.845 

   

Latent class sizes 

   

 Class 1 0.080 0.122 0.0420 52.500  

 Class 2 0.170 0.144 –0.0260 15.294  

 Class 3 0.250 0.230 –0.0200 8.000  

 Class 4 0.250 0.232 –0.0180 7.200  

 Class 5 0.170 0.148 –0.0220 12.941  

 Class 6 0.080 0.123 0.0430 53.750  
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Table B10. Intersection Point Criteria, d = Normal 2, Unbalanced, 6 Categories 
with Normal Class Sizes 

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

370 d1 0.50 0.483 –0.0167 3.340  0.009 

50 d2 1.00 0.972 –0.0275 2.750  0.117 

200 d3 1.00 0.915 –0.0855 8.550  0.027 

140 d4 2.00 1.624 –0.3763 18.815  0.233 

60 d5 2.00 1.552 –0.4480 22.400  0.343 

120 d6 2.00 1.968 –0.0316 1.580  0.108 

280 d7 2.00 2.215 0.2149 10.745  0.145 

400 d8 3.00 2.173 –0.8266 27.553  0.794 

230 d9 3.00 3.080 0.0795 2.650  0.212 

310 d10 4.00 3.085 –0.9147 22.868  1.063 

c11 0.25 0.197 –0.0532 21.280  0.055 

c12 0.75 0.711 –0.0385 5.133  0.056 

c13 1.25 1.223 –0.0270 2.160  0.058 

c14 1.75 1.731 –0.0187 1.069  0.066 

c15 2.25 2.233 –0.0166 0.738  0.068 

c21 0.50 0.306 –0.1936 38.720  0.468 

c22 1.50 1.441 –0.0592 3.947  0.710 

c23 2.50 2.469 –0.0314 1.256  0.907 

c24 3.50 3.532 0.0320 0.914  1.309 

c25 4.50 4.598 0.0977 2.171  1.727 

c31 0.50 0.274 –0.2264 45.280  0.162 

c32 1.50 1.254 –0.2457 16.380  0.191 

c33 2.50 2.261 –0.2391 9.564  0.235 

c34 3.50 3.299 –0.2010 5.743  0.273 

c35 4.50 4.326 –0.1736 3.858  0.321 

c41 1.00 0.336 –0.6641 66.410  0.816 

c42 3.00 2.149 –0.8506 28.353  1.248 

c43 5.00 4.068 –0.9322 18.644  1.597 

c44 7.00 5.917 –1.0835 15.479  2.324 

c45 9.00 7.771 –1.2293 13.659  3.043 

c51 1.00 0.259 –0.7407 74.070  1.111 

c52 3.00 2.108 –0.8923 29.743  1.551 

c53 5.00 3.910 –1.0904 21.808  2.287 

c54 7.00 5.739 –1.2607 18.010  3.268 

c55 9.00 7.596 –1.4045 15.606  4.638 

c61 1.00 0.580 –0.4200 42.000  0.625 

c62 3.00 2.791 –0.2086 6.953  0.641 

c63 5.00 4.908 –0.0921 1.842  0.818 

c64 7.00 7.097 0.0967 1.381  1.265 
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Size Parameter Value Estimate Bias %Bias MSE

c65 9.00 9.302 0.3023 3.359  2.063 

c71 1.00 0.792 –0.2082 20.820  0.303 

c72 3.00 3.195 0.1945 6.483  0.517 

c73 5.00 5.535 0.5347 10.694  1.101 

c74 7.00 7.939 0.9393 13.418  2.177 

c75 9.00 10.284 1.2836 14.262  3.566 

c81 1.50 0.411 –1.0890 72.601  1.404 

c82 4.50 2.933 –1.5672 34.826  2.874 

c83 7.50 5.432 –2.0677 27.569  4.994 

c84 10.50 7.905 –2.5952 24.717  7.920 

c85 13.50 10.445 –3.0550 22.629  11.413 

c91 1.50 0.850 –0.6498 43.322  0.877 

c92 4.50 4.365 –0.1349 2.999  0.918 

c93 7.50 7.712 0.2124 2.832  1.588 

c94 10.50 11.146 0.6460 6.152  2.924 

c95 13.50 14.509 1.0087 7.472  4.758 

c101 2.00 0.693 –1.3074 65.370  2.132 

c102 6.00 4.258 –1.7419 29.031  4.097 

c103 10.00 7.722 –2.2782 22.782  6.768 

c104 14.00 11.193 –2.8068 20.048  10.737 

c105 18.00 14.785 –3.2146 17.859  14.745 

Latent class sizes 

 

 Class 1 0.080 0.123 0.0430 53.750  

 Class 2 0.170 0.139 –0.0310 18.235  

 Class 3 0.250 0.237 –0.0130 5.200  

 Class 4 0.250 0.235 –0.0150 6.000  

 Class 5 0.170 0.141 –0.0290 17.059  

 Class 6 0.080 0.124 0.0440 55.000  
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Table B11. Intersection Point Criteria, d = Normal 4, BIB, 6 Categories 
with Non-normal Class Sizes  

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

216 d1 2.0 1.918 –0.0820 4.100  0.069 

216 d2 3.0 2.934 –0.0662 2.207  0.176 

216 d3 3.0 2.974 –0.0261 0.870  0.137 

216 d4 4.0 3.876 –0.1245 3.113  0.363 

216 d5 4.0 3.964 –0.0365 0.913  0.358 

216 d6 4.0 3.967 –0.0330 0.825  0.327 

216 d7 4.0 3.881 –0.1193 2.983  0.305 

216 d8 5.0 4.674 –0.3256 6.512  0.568 

216 d9 5.0 4.739 –0.2613 5.226  0.548 

216 d10 6.0 5.272 –0.7276 12.127  0.911 

c11 1.0 0.757 –0.2434 24.340  0.507 

c12 3.0 2.746 –0.2542 8.473  0.476 

c13 5.0 4.776 –0.2239 4.478  0.554 

c14 7.0 6.835 –0.1655 2.364  0.665 

c15 9.0 8.860 –0.1404 1.560  1.022 

c21 1.5 1.064 –0.4361 29.073  0.860 

c22 4.5 4.174 –0.3258 7.240  1.033 

c23 7.5 7.261 –0.2388 3.184  1.357 

c24 10.5 10.412 –0.0881 0.839  1.890 

c25 13.5 13.589 0.0893 0.661  3.035 

c31 1.5 1.147 –0.3533 23.553  0.924 

c32 4.5 4.311 –0.1895 4.211  0.994 

c33 7.5 7.381 –0.1190 1.587  1.112 

c34 10.5 10.584 0.0842 0.802  1.635 

c35 13.5 13.849 0.3488 2.584  2.726 

c41 2.0 1.453 –0.5466 27.330  1.293 

c42 6.0 5.546 –0.4542 7.570  2.303 

c43 10.0 9.637 –0.3630 3.630  2.627 

c44 14.0 13.849 –0.1514 1.081  3.933 

c45 18.0 18.019 0.0189 0.105  6.741 

c51 2.0 1.547 –0.4534 22.670  1.374 

c52 6.0 5.695 –0.3052 5.087  1.929 

c53 10.0 9.850 –0.1500 1.500  2.739 

c54 14.0 14.170 0.1701 1.215  4.230 

c55 18.0 18.402 0.4022 2.234  7.631 

c61 2.0 1.422 –0.5783 28.915  1.547 

c62 6.0 5.661 –0.3387 5.645  2.076 

c63 10.0 9.846 –0.1537 1.537  2.606 

c64 14.0 14.177 0.1771 1.265  4.118 
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Size Parameter Value Estimate Bias %Bias MSE

c65 18.0 18.408 0.4081 2.267  6.568 

c71 2.0 1.419 –0.5814 29.070  1.493 

c72 6.0 5.515 –0.4854 8.090  2.044 

c73 10.0 9.633 –0.3668 3.668  2.533 

c74 14.0 13.993 –0.0074 0.053  3.913 

c75 18.0 18.144 0.1438 0.799  5.577 

c81 2.5 1.889 –0.6107 24.429  1.721 

c82 7.5 6.549 –0.9510 12.679  3.670 

c83 12.5 11.639 –0.8612 6.890  4.308 

c84 17.5 16.912 –0.5882 3.361  5.923 

c85 22.5 21.807 –0.6934 3.082  9.906 

c91 2.5 1.869 –0.6311 25.244  1.894 

c92 7.5 6.610 –0.8896 11.861  3.702 

c93 12.5 11.725 –0.7747 6.197  4.187 

c94 17.5 17.104 –0.3960 2.263  6.890 

c95 22.5 22.126 –0.3741 1.663  10.884 

c101 3.0 2.036 –0.9642 32.141  2.816 

c102 9.0 7.140 –1.8602 20.669  5.992 

c103 15.0 13.053 –1.9473 12.982  6.939 

c104 21.0 19.232 –1.7680 8.419  8.725 

c105 27.0 24.785 –2.2151 8.204  14.222 

Latent class sizes 

  

 Class 1 0.030 0.034 0.0040 13.333 

 Class 2 0.030 0.042 0.0120 40.000 

 Class 3 0.400 0.390 –0.0100 2.500 

 Class 4 0.400 0.374 –0.0260 6.500 

 Class 5 0.100 0.109 0.0090 9.000 

 Class 6 0.040 0.050 0.0100 25.000 
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Table B12. Intersection Point Criteria, d = Normal 4, BIB, 4 Categories  with 
Normal Class Sizes 

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

216 d1 2.0 2.016 0.0164 0.820  0.083 

216 d2 3.0 2.991 –0.0093 0.310  0.173 

216 d3 3.0 3.012 0.0121 0.403  0.206 

216 d4 4.0 4.044 0.0442 1.105  0.313 

216 d5 4.0 4.051 0.0514 1.285  0.369 

216 d6 4.0 4.026 0.0262 0.655  0.386 

216 d7 4.0 4.106 0.1061 2.653  0.385 

216 d8 5.0 5.083 0.0833 1.666  0.592 

216 d9 5.0 5.140 0.1396 2.792  0.641 

216 d10 6.0 5.685 –0.3148 5.247  0.703 

c11 1.0 0.974 –0.0264 2.640  0.126 

c12 3.0 3.033 0.0330 1.100  0.194 

c13 5.0 5.119 0.1191 2.382  0.414 

c21 1.5 1.455 –0.0448 2.987  0.262 

c22 4.5 4.532 0.0320 0.711  0.575 

c23 7.5 7.632 0.1319 1.759  0.977 

c31 1.5 1.443 –0.0572 3.813  0.220 

c32 4.5 4.519 0.0192 0.427  0.570 

c33 7.5 7.641 0.1410 1.880  1.067 

c41 2.0 1.820 –0.1804 9.020  0.399 

c42 6.0 6.101 0.1006 1.677  0.840 

c43 10.0 10.326 0.3257 3.257  2.265 

c51 2.0 1.904 –0.0962 4.810  0.399 

c52 6.0 6.096 0.0955 1.592  0.948 

c53 10.0 10.300 0.3000 3.000  2.199 

c61 2.0 1.883 –0.1171 5.855  0.364 

c62 6.0 6.011 0.0110 0.183  0.996 

c63 10.0 10.205 0.2050 2.050  2.550 

c71 2.0 1.947 –0.0534 2.668  0.388 

c72 6.0 6.182 0.1816 3.026  0.970 

c73 10.0 10.463 0.4629 4.629  2.334 

c81 2.5 2.262 –0.2376 9.503  0.750 

c82 7.5 7.613 0.1134 1.512  1.687 

c83 12.5 13.010 0.5097 4.078  4.129 

c91 2.5 2.471 –0.0289 1.156  0.927 

c92 7.5 7.718 0.2175 2.900  1.870 

c93 12.5 13.275 0.7748 6.198  5.297 

c101 3.0 2.378 –0.6224 20.746  1.010 

c102 9.0 8.521 –0.4794 5.327  1.772 
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Size Parameter Value Estimate Bias %Bias MSE

c103 15.0 14.707 –0.2927 1.951  4.155 

Latent class sizes 

 

 Class 1 0.170 0.180 0.0100 5.882  

 Class 2 0.330 0.320 –0.0100 3.030  

 Class 3 0.330 0.316 –0.0140 4.242  

 Class 4 0.170 0.183 0.0130 7.647  
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Table B13. Intersection Point Criteria, d = Normal 4, BIB, 4 Categories  with 
Non-Normal Class Sizes 

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

216 d1 2.0 1.835 –0.1649 8.245  0.141 

216 d2 3.0 2.786 –0.2141 7.137  0.217 

216 d3 3.0 2.801 –0.1993 6.643  0.291 

216 d4 4.0 3.818 –0.1818 4.545  0.529 

216 d5 4.0 3.647 –0.3530 8.825  0.450 

216 d6 4.0 3.757 –0.2426 6.065  0.547 

216 d7 4.0 3.716 –0.2839 7.098  0.491 

216 d8 5.0 4.791 –0.2093 4.186  0.801 

216 d9 5.0 4.838 –0.1623 3.246  0.589 

216 d10 6.0 5.505 –0.4952 8.253  1.049 

c11 1.0 0.694 –0.3062 30.620  0.306 

c12 3.0 2.760 –0.2404 8.013  0.332 

c13 5.0 4.827 –0.1728 3.456  0.441 

c21 1.5 0.973 –0.5273 35.153  0.585 

c22 4.5 4.191 –0.3089 6.864  0.578 

c23 7.5 7.363 –0.1368 1.824  0.951 

c31 1.5 1.032 –0.4678 31.187  0.600 

c32 4.5 4.227 –0.2727 6.060  0.728 

c33 7.5 7.388 –0.1116 1.488  1.443 

c41 2.0 1.295 –0.7052 35.260  1.136 

c42 6.0 5.716 –0.2836 4.727  1.256 

c43 10.0 10.101 0.1006 1.006  2.427 

c51 2.0 1.199 –0.8008 40.040  1.134 

c52 6.0 5.423 –0.5773 9.622  1.223 

c53 10.0 9.703 –0.2975 2.975  2.003 

c61 2.0 1.312 –0.6879 34.395  1.124 

c62 6.0 5.642 –0.3578 5.963  1.350 

c63 10.0 9.964 –0.0357 0.357  2.786 

c71 2.0 1.291 –0.7092 35.459  1.048 

c72 6.0 5.584 –0.4157 6.928  1.271 

c73 10.0 9.909 –0.0915 0.915  2.595 

c81 2.5 1.482 –1.0180 40.721  2.078 

c82 7.5 7.136 –0.3645 4.860  1.985 

c83 12.5 12.850 0.3495 2.796  5.194 

c91 2.5 1.515 –0.9846 39.382  1.882 

c92 7.5 7.209 –0.2913 3.884  1.454 

c93 12.5 12.984 0.4838 3.870  3.931 

c101 3.0 1.429 –1.5707 52.357  3.672 

c102 9.0 8.209 –0.7906 8.784  2.704 
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Size Parameter Value Estimate Bias %Bias MSE

c103 15.0 15.128 0.1278 0.852  5.738 

Latent class sizes 

 

 Class 1 0.070 0.106 0.0360 51.429  

 Class 2 0.430 0.397 –0.0330 7.674  

 Class 3 0.430 0.393 –0.0370 8.605  

 Class 4 0.070 0.104 0.0340 48.571  
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Table B14. Intersection Point Criteria, d = Normal 4, BIB, 4 Categories  with 
Non-Normal Class Sizes (Shift in Density, First Scoring Occasion) 

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

216 d1 2.0 1.717 –0.2832 14.160  0.254 

216 d2 3.0 2.553 –0.4467 14.890  0.468 

216 d3 3.0 2.577 –0.4226 14.087  0.533 

216 d4 4.0 3.571 –0.4287 10.718  0.825 

216 d5 4.0 3.579 –0.4211 10.528  0.708 

216 d6 4.0 3.686 –0.3144 7.860  0.732 

216 d7 4.0 3.558 –0.4421 11.053  0.779 

216 d8 5.0 4.514 –0.4857 9.714  1.042 

216 d9 5.0 4.430 –0.5701 11.402  1.172 

216 d10 6.0 5.246 –0.7542 12.570  1.329 

c11 1.0 0.605 –0.3948 39.480  0.429 

c12 3.0 2.653 –0.3470 11.567  0.464 

c13 5.0 4.712 –0.2881 5.762  0.559 

c21 1.5 0.898 –0.6016 40.107  0.730 

c22 4.5 3.987 –0.5131 11.402  0.792 

c23 7.5 7.146 –0.3542 4.723  0.957 

c31 1.5 0.925 –0.5748 38.320  0.711 

c32 4.5 4.050 –0.4503 10.007  0.914 

c33 7.5 7.175 –0.3254 4.339  1.388 

c41 2.0 1.240 –0.7601 38.005  1.375 

c42 6.0 5.600 –0.4002 6.670  1.573 

c43 10.0 9.917 –0.0832 0.832  3.025 

c51 2.0 1.232 –0.7677 38.385  1.208 

c52 6.0 5.545 –0.4551 7.585  1.346 

c53 10.0 10.049 0.0485 0.485  2.546 

c61 2.0 1.373 –0.6267 31.335  1.135 

c62 6.0 5.748 –0.2521 4.202  1.301 

c63 10.0 10.412 0.4123 4.123  3.712 

c71 2.0 1.181 –0.8189 40.945  1.368 

c72 6.0 5.556 –0.4439 7.398  1.382 

c73 10.0 9.989 –0.0115 0.115  2.666 

c81 2.5 1.406 –1.0937 43.747  2.057 

c82 7.5 7.085 –0.4148 5.531  1.989 

c83 12.5 12.935 0.4347 3.478  5.555 

c91 2.5 1.334 –1.1663 46.652  2.352 

c92 7.5 6.899 –0.6014 8.018  2.155 

c93 12.5 12.617 0.1167 0.934  4.728 

c101 3.0 1.322 –1.6778 55.925  3.806 

c102 9.0 8.247 –0.7532 8.369  2.489 
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Size Parameter Value Estimate Bias %Bias MSE

c103 15.0 15.236 0.2364 1.576  5.776 

Latent class sizes 

 

 Class 1 0.070 0.109 0.0390 55.714  

 Class 2 0.500 0.446 –0.0540 10.800  

 Class 3 0.400 0.340 –0.0600 15.000  

 Class 4 0.030 0.106 0.0760 253.333  
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Table B15. Intersection Point Criteria, d = Normal 4, BIB, 4 Categories  with 
Non-Normal Class Sizes (Shift in Density, Second Scoring Occasion) 

Size Parameter Value Estimate Bias %Bias MSE

   

Rater parameters 

   

216 d1 2.0 1.737 –0.2628 13.140  0.266 

216 d2 3.0 2.568 –0.4317 14.390  0.530 

216 d3 3.0 2.601 –0.3987 13.290  0.456 

216 d4 4.0 3.687 –0.3132 7.830  0.696 

216 d5 4.0 3.503 –0.4971 12.428  0.881 

216 d6 4.0 3.609 –0.3914 9.785  0.601 

216 d7 4.0 3.638 –0.3616 9.040  0.718 

216 d8 5.0 4.488 –0.5115 10.230  1.233 

216 d9 5.0 4.405 –0.5951 11.902  0.881 

216 d10 6.0 5.479 –0.5213 8.688  1.501 

c11 1.0 0.480 –0.5203 52.030  0.742 

c12 3.0 2.573 –0.4265 14.217  0.753 

c13 5.0 4.585 –0.4149 8.298  0.984 

c21 1.5 0.662 –0.8379 55.860  1.485 

c22 4.5 3.717 –0.7831 17.402  1.547 

c23 7.5 6.789 –0.7110 9.480  2.019 

c31 1.5 0.636 –0.8638 57.587  1.437 

c32 4.5 3.774 –0.7255 16.122  1.363 

c33 7.5 6.915 –0.5855 7.807  1.671 

c41 2.0 0.863 –1.1374 56.870  2.845 

c42 6.0 5.339 –0.6611 11.018  2.043 

c43 10.0 9.825 –0.1751 1.751  3.096 

c51 2.0 0.736 –1.2645 63.225  2.795 

c52 6.0 5.080 –0.9199 15.332  2.522 

c53 10.0 9.421 –0.5792 5.792  3.452 

c61 2.0 0.781 –1.2191 60.955  2.873 

c62 6.0 5.277 –0.7231 12.052  1.773 

c63 10.0 9.593 –0.4065 4.065  2.325 

c71 2.0 0.719 –1.2807 64.035  2.845 

c72 6.0 5.278 –0.7225 12.042  2.109 

c73 10.0 9.736 –0.2643 2.643  3.647 

c81 2.5 0.724 –1.7758 71.032  5.271 

c82 7.5 6.568 –0.9323 12.431  3.357 

c83 12.5 12.177 –0.3235 2.588  5.785 

c91 2.5 0.611 –1.8889 75.557  5.112 

c92 7.5 6.443 –1.0568 14.090  2.820 

c93 12.5 11.992 –0.5080 4.064  4.386 

c101 3.0 0.667 –2.3330 77.767  7.808 

c102 9.0 7.944 –1.0562 11.736  4.395 
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Size Parameter Value Estimate Bias %Bias MSE

c103 15.0 15.020 0.0202 0.134  8.344 

Latent class sizes 

 

 Class 1 0.030 0.096 0.0660 220.000  

 Class 2 0.400 0.346 –0.0540 13.500  

 Class 3 0.500 0.446 –0.0540 10.800  

 Class 4 0.070 0.111 0.0410 58.571  
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Appendix C 

Evaluation of the Estimated Standard Errors for d and the Latent Class Sizes 

Table C1. Intersection Point Criteria, d = Normal 4, BIB, 6 Categories  with 
Normal Class Sizes 

Size Parameter SD Mean SE Bias % Bias

216 d1 0.198 0.214  0.016 8.026

216 d2 0.391 0.379  –0.012 3.069

216 d3 0.397 0.370  –0.027 6.871

216 d4 0.550 0.576  0.026 4.784

216 d5 0.503 0.568  0.065 12.947

216 d6 0.473 0.573  0.099 21.006

216 d7 0.521 0.561  0.040 7.601

216 d8 0.635 0.776  0.140 22.107

216 d9 0.613 0.763  0.150 24.445

216 d10 0.717 0.892  0.175 24.456

 Class Size 1 0.012 0.014  0.002 12.903

 Class Size 2 0.019 0.019  0.000 1.604

 Class Size 3 0.021 0.023  0.002 10.577

 Class Size 4 0.020 0.023  0.003 15.578

 Class Size 5 0.017 0.020  0.003 14.943

 Class Size 6 0.012 0.015  0.003 21.951

Table C2. Criteria Shifted Up (Strict Raters), d = Normal 4, BIB, 6 Categories 
with Normal Class Sizes 

Size Parameter SD Mean SE Bias % Bias

216 d1 0.224 0.225  0.001 0.491

216 d2 0.377 0.391  0.014 3.604

216 d3 0.400 0.390  –0.010 2.597

216 d4 0.510 0.601  0.091 17.797

216 d5 0.503 0.592  0.089 17.670

216 d6 0.534 0.582  0.048 8.916

216 d7 0.537 0.599  0.063 11.687

216 d8 0.598 0.715  0.117 19.612

216 d9 0.641 0.739  0.098 15.298

216 d10 0.602 0.895  0.294 48.828

 Class Size 1 0.022 0.018  –0.004 18.919

 Class Size 2 0.024 0.021  –0.003 11.017

 Class Size 3 0.025 0.023  –0.002 6.504

 Class Size 4 0.025 0.023  –0.002 8.730

 Class Size 5 0.019 0.020  0.001 6.383

 Class Size 6 0.012 0.014  0.002 16.667



142

Table C3. Criteria Shifted Down (Lenient Raters), d = Normal 4, BIB,

6 Categories with Normal Class Sizes 

Size Parameter SD Mean SE Bias % Bias

216 d1 0.204 0.217  0.013 6.399

216 d2 0.359 0.381  0.022 6.113

216 d3 0.351 0.388  0.037 10.491

216 d4 0.533 0.591  0.058 10.967

216 d5 0.466 0.561  0.095 20.335

216 d6 0.471 0.588  0.116 24.661

216 d7 0.501 0.586  0.085 16.997

216 d8 0.599 0.728  0.129 21.543

216 d9 0.580 0.740  0.160 27.694

216 d10 0.596 0.928  0.332 55.816

Class Size 1 0.013 0.014  0.001 6.383

Class Size 2 0.018 0.020  0.002 9.170

Class Size 3 0.023 0.023  0.000 0.966

Class Size 4 0.023 0.023  0.000 1.288

Class Size 5 0.020 0.022  0.002 7.949

Class Size 6 0.020 0.019  –0.001 3.700

Table C4. Criteria Shifted Up and Down (Strict and Lenient Raters), d =Normal 4,

BIB, 6 Categories with Normal Class Sizes 

     

Size Parameter SD Mean SE Bias % Bias

216 d1 0.232 0.232  0.000 0.129

216 d2 0.444 0.406  –0.038 8.476

216 d3 0.364 0.424  0.060 16.452

216 d4 0.529 0.626  0.097 18.426

216 d5 0.517 0.620  0.103 19.907

216 d6 0.529 0.625  0.095 17.986

216 d7 0.555 0.607  0.052 9.450

216 d8 0.534 0.796  0.263 49.176

216 d9 0.618 0.727  0.110 17.798

216 d10 0.587 0.858  0.271 46.175

 Class Size 1 0.012 0.015  0.003 21.951

 Class Size 2 0.018 0.019  0.001 5.556

 Class Size 3 0.021 0.022  0.002 7.317

 Class Size 4 0.022 0.022  0.000 1.852

 Class Size 5 0.021 0.019  –0.002 8.654

 Class Size 6 0.015 0.015  0.000 1.316



143

Table C5. Intersection Point Criteria, d = Normal 4, Unbalanced, 6 Categories 
with Normal Class Sizes 

Size Parameter SD Mean SE Bias % Bias

370 d1 0.191 0.189  –0.002 1.151

50 d2 0.507 0.645  0.138 27.269

200 d3 0.378 0.421  0.043 11.435

140 d4 0.504 0.715  0.211 41.809

60 d5 0.484 0.824  0.340 70.219

120 d6 0.541 0.854  0.313 57.973

280 d7 0.479 0.805  0.326 67.974

400 d8 0.495 0.759  0.264 53.354

230 d9 0.515 0.916  0.401 77.963

310 d10 0.577 0.887  0.309 53.560

Class Size 1 0.014 0.014  0.000 0.000

Class Size 2 0.020 0.020  0.000 0.503

Class Size 3 0.026 0.023  –0.003 10.506

Class Size 4 0.021 0.023  0.002 9.005

Class Size 5 0.021 0.020  –0.001 2.913

Class Size 6 0.012 0.014  0.002 17.647

Table C6. Criteria Shifted Up (Strict Raters), d = Normal 4, Unbalanced, 

6 Categories with Normal Class Sizes 

Size Parameter SD Mean SE Bias % Bias

370 d1 0.166 0.196  0.030  17.930 

50 d2 0.475 0.629  0.154  32.421 

200 d3 0.407 0.413  0.006  1.499 

140 d4 0.484 0.716  0.232  47.812 

60 d5 0.460 0.753  0.294  63.896 

120 d6 0.421 0.791  0.370  87.773 

280 d7 0.431 0.777  0.347  80.516 

400 d8 0.500 0.737  0.238  47.519 

230 d9 0.467 0.895  0.428  91.524 

310 d10 0.509 0.900  0.391  76.817 

Class Size 1 0.021 0.017  –0.004  20.188 

Class Size 2 0.030 0.023  –0.007  23.333 

Class Size 3 0.028 0.025  –0.003  11.661 

Class Size 4 0.025 0.024  –0.001  4.762 

Class Size 5 0.022 0.020  –0.002  9.502 

Class Size 6 0.013 0.015  0.002  16.279 
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Table C7. Criteria Shifted Down (Lenient Raters), d =Normal 4, Unbalanced,
6 Categories with Normal Class Sizes 

Size Parameter SD Mean SE Bias % Bias

370 d1 0.181 0.197  0.016 8.900

50 d2 0.562 0.681  0.119 21.218

200 d3 0.353 0.415  0.062 17.597

140 d4 0.566 0.704  0.138 24.426

60 d5 0.516 0.781  0.265 51.484

120 d6 0.477 0.759  0.282 59.057

280 d7 0.449 0.740  0.291 64.943

400 d8 0.511 0.739  0.228 44.494

230 d9 0.539 0.917  0.379 70.236

310 d10 0.543 0.916  0.373 68.680

 Class Size 1 0.011 0.014  0.004 33.333

 Class Size 2 0.017 0.020  0.004 21.212

 Class Size 3 0.028 0.024  –0.004 14.591

 Class Size 4 0.026 0.025  –0.001 2.724

 Class Size 5 0.028 0.023  –0.005 16.968

 Class Size 6 0.022 0.018  –0.004 18.552

Table C8. Criteria Shifted Up and Down (Strict and Lenient Raters), d =Normal 4, 

Unbalanced, 6 Categories with Normal Class Sizes 

Size Parameter SD Mean SE Bias % Bias

370 d1 0.201 0.206  0.005 2.335

50 d2 0.528 0.632  0.104 19.606

200 d3 0.401 0.447  0.046 11.527

140 d4 0.546 0.725  0.179 32.687

60 d5 0.504 0.792  0.288 57.112

120 d6 0.529 0.840  0.310 58.655

280 d7 0.428 0.762  0.335 78.172

400 d8 0.407 0.749  0.341 83.796

230 d9 0.423 0.896  0.473 111.797

310 d10 0.472 0.870  0.398 84.496

Class Size 1 0.014 0.015  0.001 10.294

Class Size 2 0.019 0.020  0.001 3.627

Class Size 3 0.023 0.023  0.000 1.709

Class Size 4 0.019 0.023  0.004 19.171

Class Size 5 0.024 0.021  –0.003 12.863

Class Size 6 0.019 0.016  –0.003 15.344
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Table C9. Intersection Point Criteria, d = Normal 2, BIB, 6 Categories  with 
Normal Class Sizes 

Size Parameter SD Mean SE Bias % Bias

216 d1 0.098 0.116  0.018 18.367

216 d2 0.148 0.161  0.013 9.005

216 d3 0.148 0.159  0.011 7.215

216 d4 0.388 0.355  –0.033 8.411

216 d5 0.322 0.336  0.014 4.344

216 d6 0.331 0.332  0.001 0.320

216 d7 0.391 0.353  –0.038 9.716

216 d8 0.524 0.586  0.062 11.816

216 d9 0.529 0.613  0.084 15.822

216 d10 0.597 0.777  0.180 30.100

Class Size 1 0.031 0.036  0.005 15.756

Class Size 2 0.046 0.045  –0.001 2.808

Class Size 3 0.052 0.051  –0.001 1.163

Class Size 4 0.056 0.051  –0.005 8.602

Class Size 5 0.048 0.044  –0.004 7.757

Class Size 6 0.029 0.035  0.006 21.107

Table C10. Intersection Point Criteria, d = Normal 2, Unbalanced, 6 Categories 

with Normal Class Sizes 

Size Parameter SD Mean SE Bias % Bias

370 d1 0.093 0.085  –0.008 8.700

50 d2 0.343 0.337  –0.006 1.663

200 d3 0.142 0.153  0.011 7.444

140 d4 0.305 0.455  0.150 49.376

60 d5 0.379 0.516  0.136 35.878

120 d6 0.329 0.617  0.288 87.591

280 d7 0.316 0.604  0.288 91.347

400 d8 0.335 0.597  0.262 78.174

230 d9 0.456 0.771  0.315 68.987

310 d10 0.478 0.784  0.306 64.066

Class Size 1 0.030 0.036  0.006 20.000

Class Size 2 0.044 0.046  0.002 4.072

Class Size 3 0.045 0.054  0.009 20.805

Class Size 4 0.048 0.054  0.006 12.735

Class Size 5 0.044 0.046  0.002 4.545

Class Size 6 0.033 0.036  0.003 8.434
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Table C11. Intersection Point Criteria, d = Normal 4, BIB, 6 Categories 
with Non-normal Class Sizes  

Size Parameter SD Mean SE Bias % Bias

216 d1 0.252 0.255  0.003 1.351

216 d2 0.416 0.410  –0.006 1.442

216 d3 0.372 0.415  0.043 11.649

216 d4 0.593 0.600  0.007 1.232

216 d5 0.600 0.614  0.013 2.199

216 d6 0.574 0.618  0.044 7.671

216 d7 0.542 0.596  0.054 9.869

216 d8 0.683 0.770  0.086 12.648

216 d9 0.696 0.785  0.089 12.753

216 d10 0.621 0.904  0.284 45.714

Class Size 1 0.007 0.007  0.000 1.408

Class Size 2 0.061 0.012  –0.049 80.263

Class Size 3 0.029 0.027  –0.002 7.216

Class Size 4 0.047 0.028  –0.019 40.803

Class Size 5 0.028 0.019  –0.009 33.099

Class Size 6 0.009 0.010  0.001 9.890

Table C12. Intersection Point Criteria, d = Normal 4, BIB, 4 Categories  with 
Normal Class Sizes 

Size Parameter SD Mean SE Bias % Bias

216 d1 0.290 0.272  –0.018 6.132

216 d2 0.417 0.420  0.003 0.637

216 d3 0.456 0.420  –0.036 7.885

216 d4 0.560 0.624  0.064 11.389

216 d5 0.608 0.643  0.035 5.758

216 d6 0.624 0.624  0.000 0.059

216 d7 0.615 0.651  0.036 5.834

216 d8 0.769 0.900  0.131 17.016

216 d9 0.792 0.946  0.154 19.438

216 d10 0.781 1.044  0.263 33.631

Class Size 1 0.018 0.021  0.003 19.048

Class Size 2 0.025 0.026  0.001 3.462

Class Size 3 0.026 0.027  0.001 2.779

Class Size 4 0.020 0.022  0.002 10.943
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Table C13. Intersection Point Criteria, d = Normal 4, BIB, 4 Categories  with 
Non-Normal Class Sizes 

Size Parameter SD Mean SE Bias % Bias

216 d1 0.338 0.310  –0.028 8.403

216 d2 0.416 0.446  0.030 7.312

216 d3 0.504 0.462  –0.042 8.361

216 d4 0.708 0.671  –0.037 5.193

216 d5 0.574 0.620  0.047 8.120

216 d6 0.702 0.643  –0.059 8.385

216 d7 0.644 0.641  –0.003 0.520

216 d8 0.874 0.918  0.043 4.973

216 d9 0.754 0.925  0.171 22.660

216 d10 0.901 1.114  0.212 23.545

Class Size 1 0.031 0.022  –0.009 29.283

Class Size 2 0.033 0.031  –0.002 5.257

Class Size 3 0.036 0.030  –0.006 16.037

Class Size 4 0.031 0.021  –0.010 33.078

Table C14. Intersection Point Criteria, d = Normal 4, BIB, 4 Categories  with 
Non-Normal Class Sizes (Shift in Density, First Scoring Occasion) 

Size Parameter SD Mean SE Bias % Bias

216 d1 0.420 0.321  –0.099 23.484

216 d2 0.521 0.453  –0.068 13.079

216 d3 0.598 0.458  –0.140 23.465

216 d4 0.805 0.672  –0.133 16.539

216 d5 0.732 0.681  –0.051 7.009

216 d6 0.800 0.709  –0.090 11.292

216 d7 0.768 0.664  –0.104 13.499

216 d8 0.902 0.924  0.021 2.361

216 d9 0.925 0.891  –0.034 3.690

216 d10 0.876 1.130  0.253 28.924

Class Size 1 0.033 0.024  –0.009 28.337

Class Size 2 0.042 0.033  –0.009 21.485

Class Size 3 0.082 0.038  –0.044 53.771

Class Size 4 0.094 0.029  –0.065 69.007
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Table C15. Intersection Point Criteria, d = Normal 4, BIB, 4 Categories  with 
Non-Normal Class Sizes (Shift in Density, Second Scoring Occasion) 

Size Parameter SD Mean SE Bias % Bias

216 d1 0.446 0.325  –0.121 27.050

216 d2 0.589 0.458  –0.131 22.289

216 d3 0.548 0.453  –0.095 17.312

216 d4 0.777 0.709  –0.068 8.769

216 d5 0.800 0.650  –0.150 18.784

216 d6 0.673 0.675  0.002 0.279

216 d7 0.770 0.682  –0.088 11.408

216 d8 0.991 0.912  –0.079 7.979

216 d9 0.730 0.883  0.153 20.948

216 d10 1.114 1.165  0.051 4.556

Class Size 1 0.077 0.027  –0.050 65.152

Class Size 2 0.073 0.036  –0.037 50.488

Class Size 3 0.040 0.033  –0.007 18.012

Class Size 4 0.033 0.025  –0.008 24.562


